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ABSTRACT
The roundjaw bonefish, Albula glossodonta, is the most widespread albulid in the Indo-Pacific
and is vulnerable to extinction. We assembled the genome of a roundjaw bonefish from Hawai‘i,
USA, which will be instrumental for effective transboundary management and conservation
when paired with population genomics datasets. The 1.05 gigabase pair (Gbp) contig-level
assembly had a 4.75 megabase pair (Mbp) NG50 and a maximum contig length of 28.2 Mbp.
Scaffolding yielded an LG50 of 20 and an NG50 of 14.49 Mbp, with the longest scaffold reaching
42.29 Mbp. The genome comprised 6.5% repetitive elements and was annotated with 28.3 K
protein-coding genes. We then evaluated population genetic connectivity between six atolls in the
Western Indian Ocean with 38,355 SNP loci across 66 A. glossodonta individuals. We discerned
shallow population structure and observed genetic homogeneity between atolls in Seychelles and
reduced gene flow between Seychelles and Mauritius. The South Equatorial Current might be the
limiting mechanism of this reduced gene flow. The genome assembly will be useful for addressing
taxonomic uncertainties of bonefishes globally.

Subjects Genetics and Genomics, Evolutionary Biology, Marine Biology

DATA DESCRIPTION
Bonefishes (Albula spp.) are popular and economically important sportfishes found in the
tropics around the globe. In the Florida Keys (Florida, USA) alone, $465 million of the
annual economy is attributed to sportfishing tourism for bonefish and other fishery species
inhabiting coastal flats [1]. Considering only bonefish, the sportfishing industry generates
$169 million annually in the Bahamas [2, 3]. Unfortunately, population declines of bonefish
have been observed around the globe, raising questions about how best to conserve
bonefish and manage the associated fisheries [4]. Albula contains many morphological
cryptic species, which, when combined with baseline data gaps, creates a considerable
hurdle to effective management [5–7].

Gigabyte, 2022, DOI: 10.46471/gigabyte.44 1/29

mailto:kauwe@byu.edu
mailto:kauwe@byu.edu
mailto:kauwe@byu.edu
mailto:kauwe@byu.edu
mailto:kauwe@byu.edu
mailto:kauwe@byu.edu
mailto:kauwe@byu.edu
mailto:kauwe@byu.edu
mailto:kauwe@byu.edu
mailto:kauwe@byu.edu
mailto:kauwe@byu.edu
mailto:kauwe@byu.edu
mailto:kauwe@byu.edu
https://doi.org/10.1101/2021.09.10.458299
https://doi.org/10.1101/2021.09.10.458299
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.46471/gigabyte.44


B. D. Pickett et al.

Figure 1. Roundjaw bonefish (Albula glossodonta) adult. Quantitative morphological data for this illustration
of A. glossodonta were obtained primarily from Hidaka et al. [18] and Shaklee and Tamaru [14]. These were
evaluated to select specific values for details such as the number of pored lateral line scales (76) and the number
of rays in the pectoral (18), dorsal (16), pelvic (10), and anal fins (9). Each of these was portrayed in the illustration
to be at or near the middle of the ranges reported in the reference articles. While some limited information
was found in the literature describing coloration and general shape, the artist found particular benefit in some
excellent, detailed photographs by Derek Olthuis of samples that Dr. J. S. K. Kauwe caught in Hawai‘i and later
genetically identified as A. glossodonta. A full-resolution version of this illustration can be viewed at https:
//www.timjohnsongallery.com/albula-glossodonta-illustration (also archived at the Internet Archive (https://web.
archive.org) on 4 March 2022).

All bonefish species were historically synonymized to a single species, Albula vulpes [8],
by 1940 [9–11], except for the threadfin bonefish, A. nemoptera [12], which is
morphologically distinct [12, 13]. Molecular testing in the last several decades has enabled
specific distinctions that were not previously possible [6, 9, 14–16]. Presently, three species
complexes (A. argentea, A. nemoptera, and A. vulpes complexes) contain the 12 putative
albulid species, although identification remains difficult in most cases [4]. The roundjaw
bonefish, A. glossodonta (NCBI:txid121402; Fishbase ID: 11512) [17] (Figure 1), is one of
seven species in the A. vulpes complex.

Most of the species in the A. vulpes complex can be found in the Caribbean Sea and
Atlantic Ocean. By contrast, A. glossodonta can be found throughout the Indian and Pacific
Oceans; this range overlaps slightly with A. koreana [19] from the A. vulpes complex and
drastically with each species in the A. argentea complex [4]. A. glossodonta may be
distinguished genetically from other species, but morphological identification based on its
more rounded jaw and larger average size is difficult for non-experts [4, 20]. This difficulty,
alongside underregulated fisheries and anthropogenic habitat loss, poses considerable
threats to the future of this species. A. glossodonta has been evaluated as “Vulnerable” on
the International Union for the Conservation of Nature’s (IUCN) Red List of Threatened
Species™ [7], and several incidents of overexploitation, including regional extirpation, have
been reported [21–25].

Context
The threat to A. glossodonta and other bonefish species will persist unless identification is
made easier and population genomics techniques are employed to understand and identify
evolutionarily significant units, areas of overlap between species, presence and extent of
hybridization, and life-history traits, especially migration and spawning [4]. Genetic
identification has previously been accomplished using only a portion of the mitochondrial
cytochrome b gene and some microsatellite markers [6, 9, 15, 19, 26–33], which probably
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Table 1. Sampling sites forA. glossodonta for population genomic analyses. The number of individuals (N) after
data filtering are displayed for each atoll and island group.

Island group Atoll N (Atoll) N (Island group)
Amirantes St. Joseph 17 17
Farquhar Farquhar

Providence
8
9

17

Aldabra Aldabra
Cosmoledo

8
6

14

Mauritius St. Brandon 18 18

provide an insufficient taxonomic history [4, 34–36]. To contribute to a more robust
capacity for identification and enable more complex genomics-based analyses, we present a
high-quality genome assembly of an A. glossodonta individual. A transcriptome assembly
was also created and was used alongside computational annotation methods to create
structural and functional annotations for the genome assembly. Additionally, we present
results from a population genomic analysis of A. glossodonta populations in Seychelles and
Mauritius, two island nations that support lucrative bonefish fly fishing industries.

METHODS
An overview of the methods used in this study is provided here. Where appropriate,
additional details, such as the code for custom scripts and the commands used to run
software, are provided in the annotated shell scripts hosted in GigaDB [37].

Tissue collection and preservation
Blood, gill, heart, and liver tissues from one A. glossodonta (NCBI:txid121402, Fishbase ID:
11512) individual were collected off the coast of Moloka‘i (near Kaunakakai, Hawai‘i, USA)
in February 2016. Heart tissue from a second individual was also collected at the same
location in September 2017 because of a failed sequencing run. Tissue samples were
flash-frozen in liquid nitrogen, and blood samples were preserved in
ethylenediaminetetraacetic acid (EDTA). All samples were packaged in dry ice for
transportation to Brigham Young University (BYU; Provo, Utah, USA) and stored at −80 °C
until sequencing. The blood sample from the first individual was used for short-read DNA
sequencing. The gill, heart, and liver samples from the same individual were used for
short-read RNA sequencing. The heart sample from the second individual was used for
long-read sequencing and Hi-C sequencing.

For population genomic analyses, tissues (dorsal muscle samples or fin clips) were
collected by fly fishing charter operators from 96 individuals of A. glossodonta from six
coral atolls in the Southwest Indian Ocean (SWIO; Figure 1; Table 1). All tissues were
preserved in 95% ethanol alcohol (EtOH) at −20 °C until sequencing, and thereafter
cataloged and preserved in −80 °C in the tissue biobank of the South African Institute for
Aquatic Biodiversity (Makhanda, South Africa).

Sequencing
DNA sequencing
DNA was prepared for long-read sequencing with Pacific Biosciences (PacBio; Menlo Park,
California, USA) SMRTbell Library kits, following a manufacturer’s protocol [38].
Continuous long-read (CLR) sequencing was performed on 13 SMRT cells for a 10-hour
movie on the PacBio Sequel at the BYU DNA Sequencing Center (DNASC). Short-read
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sequencing was performed in rapid run mode for 250 cycles in one lane on the Illumina
(San Diego, California, USA) Hi-Seq 2500 at the DNASC after sonication with Covaris
(Woburn, Massachusetts, USA) Adaptive Focus Acoustics technology and preparation with
New England Biolabs (Ipswich, Massachusetts, USA) NEBNext Ultra II End Repair and
Ligation kits with adapters from Integrated DNA Technologies (Coralville, Iowa, USA).

mRNA sequencing
RNA was prepared with Roche (Basel, Switzerland) KAPA Stranded RNA-seq kit, following
manufacturer recommendations. Paired-end sequencing was performed in high output
mode for 125 cycles on the three samples together in one lane on the Illumina Hi-Seq 2500
at the DNASC.

Hi-C sequencing
DNA was prepared with Phase Genomics (Seattle, Washington, USA) Proximo Hi-C kit
(Animal) using the Sau3AI restriction enzyme (cut site: GATC) following recommended
protocols. Paired-end sequencing was performed in rapid run mode for 250 cycles in one
lane on the Illumina Hi-Seq 2500 at the DNASC.

ddRAD library preparation and sequencing
Double digest restricted site-associated (ddRAD) sequencing was used to measure
intraspecific genetic variation across six sampling localities in the SWIO. We extracted total
DNA using Qiagen DNeasy Tissue kits according to the manufacturer’s protocol (Qiagen,
Inc., Valencia, California, USA). We visually examined the quality of DNA extractions using
gel electrophoresis and by quantifying isolated DNA using a Qubit fluorometer (Life
Technologies, Carlsbad, California, USA).

We modified a protocol developed by Peterson et al. [39] to prepare samples for ddRAD
sequencing. We used the rare cutter PstI (5′-CTGCAG-3′ recognition site) and common cutter
MspI (5′-CCGG-3′ recognition site). We carried out double digests of 150–200 ng total DNA
per sample using the two enzymes in the manufacturer’s supplied buffer (New England
Biolabs) for 8 hours at 37 °C. We randomly distributed samples from different localities
across the sequencing plate to minimize bias during library preparation. We visually
examined samples using gel electrophoresis to determine digestion success, then ligated
barcoded Illumina adapters to DNA fragments [39]. After ligation, we pooled samples into
12 libraries and performed a clean-up using the QIAquick PCR Purification kit. We then
performed the polymerase chain reaction (PCR) using Phusion Taq (New England Biolabs)
and Illumina-indexed primers [39]. Library DNA concentration was checked using a Qubit
fluorometer, followed by normalization, a second round of pooling into four libraries, and
an additional QIAquick cleanup step. We then re-measured DNA concentration using a
Qubit and combined equal amounts from each of the four pools into one. We analyzed this
final pool using a BioAnalyzer (Agilent, Santa Clara, California, USA) and performed
size-selection using a Pippin Prep (Sage Science, Beverly, Massachusetts, USA), selecting for
fragments between 300 and 500 bp. This was followed by a final measure of concentration
using a BioAnalyzer. We sent the library to the University of Oregon Genomics and Cell
Characterization Core Facility where concentrations were verified via quantitative PCR
(qPCR) before 100-bp single-end sequencing on an Illumina Hi-Seq 4000.
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Read error correction
Illumina DNA
Illumina whole-genome sequencing (WGS) reads were corrected using Quake v0.3.5
(RRID:SCR_011839) [40], which depended upon old versions of R v3.4.0
(RRID:SCR_001905) [41] and the R package VGAM v0.7-8 [42, 43]. Quake attempts to
automatically choose a k-mer cutoff, traditionally based on k-mer counts provided by
Jellyfish (RRID:SCR_005491) [44]. To generate q-mer counts instead of k-mer counts,
BFCounter v0.2 (RRID:SCR_001248) [45] was used. Quake suggested a q-mer cutoff of 2.33,
which was subsequently used by the correction phase of Quake. Unlike the WGS reads, the
Illumina DNA reads created with the Hi-C library preparation were not corrected.

An estimate of the number of k-mers present in the reads is required to run BFCounter.
This number is based on the number of reads, the length of the reads, and k-mer size
according to this equation:

T = n(l − k + 1),

where n is the number of reads, l is the read length, k is the k-mer size, and T is the total
number of k-mers (not necessarily unique or distinct) present in the reads. This assumes a
uniform read length. If the reads are paired-end, n is still the number of reads, not the
number of pairs of reads. Since ntCard v1.0.1 (RRID:SCR_022010) [46] was used to quickly
get a picture for the k-mer coverage histogram, its reported value F1 was used instead of the
equation as it is an estimate for T.

Illumina RNA
Illumina RNA-seq reads were corrected using Rcorrector v1.0.2 (RRID:SCR_022011) [47].
Rcorrector automatically chooses a k-mer cutoff based on k-mer counts provided by
Jellyfish [44], which Rcorrector runs automatically for the user. Alternately, Jellyfish can be
run externally or bypassed with an alternate k-mer counting program, and counts can
subsequently be provided to Rcorrector, which may be started at “stage 3”. We bypassed
Jellyfish by using BFCounter v0.2 [45] to count k-mers. Note that Rcorrector made no
changes to the reads.

PacBio CLRs
Several methods were attempted to correct the PacBio CLRs. Corrected reads from each
method that did not fail were assembled, and the assembly results were used to choose the
correction strategy. Ultimately, a hybrid correction strategy was employed. Typically, a
“hybrid” correction strategy is one in which more than one data type (i.e., PacBio CLRs and
Illumina short reads) are employed. This differs from a “self” correction strategy in which
only the PacBio CLRs are used to correct themselves. Our hybrid strategy is not fully
described by the word “hybrid” because both a “self” and “hybrid” strategy were serially
employed; we referred to this strategy as a “dual” strategy (Figure 2). First, the reads were
self-corrected using Canu v1.6 (RRID:SCR_015880) [48]. Second, the self-corrected reads
were further corrected using Illumina short-reads (previously corrected with Quake) using
CoLoRMap (commit #baa680, RRID:SCR_022012) [49]. Note that Illumina short reads had to
be interleaved into a single file for CoLoRMap. Similarly, all PacBio reads were
concatenated into a single file, and the headers were required to be unique up to the first

Gigabyte, 2022, DOI: 10.46471/gigabyte.44 5/29

https://scicrunch.org/browse/resources/SCR_011839
https://scicrunch.org/browse/resources/SCR_001905
https://scicrunch.org/browse/resources/SCR_005491
https://scicrunch.org/browse/resources/SCR_001248
https://scicrunch.org/browse/resources/SCR_022010
https://scicrunch.org/browse/resources/SCR_022011
https://scicrunch.org/browse/resources/SCR_015880
https://scicrunch.org/browse/resources/SCR_022012
https://doi.org/10.46471/gigabyte.44


B. D. Pickett et al.

Figure 2. Long-read correction experiments. We explored the effects of several correction strategies on assembly
continuity before settling on the chosen strategy (dual). Ignoring failed strategies owing to software failures, three
strategies were employed: (blue) “self” correction (only Pacific Biosciences (PacBio) continuous long reads (CLRs)),
(red) “hybrid” correction (using Illumina reads to correct the PacBio CLRs), and (green) “dual” correction (using
Illumina reads to correct already self-corrected PacBio CLRs). Top panel: flow chart showing correction strategies.
Bottom panel: NGx (left) and LGx (right) plots showing the contig-level assembly continuity per correction strategy.
The x in NGx and LGx is a number between 0 and 100 representing the percentage of the genome size. NGx and LGx
statistics are similar to Nx and Lx statistics except they are scaled to the genome size instead of the assembly size.
Assemblies usually improve by maximizing and minimizing the areas under the NG and LG curves, respectively.

space. CoLoRMap is a pipeline with a basic wrapper script. In practice, it makes more sense
to run each step in the wrapper script as separate jobs to avoid re-computing if a failure
(e.g., too much random access memory (RAM) or time) occurs in a downstream step; this is
how we ran the pipeline.

Genome size estimation
Genome size was estimated using a k-mer analysis on the corrected Illumina WGS reads.
First, the k-mer coverage was estimated using ntCard v1.0.1 [46]. The k-mer coverage
histogram was computationally processed to calculate the area under the curve and
identify the peak to determine genome size according to the following equation:

a/p = s,
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Table 2. BUSCO statistics for the RNA transcripts and genomic assemblies.

Complete
(%)

Complete
single-copy (%)

Complete
duplicated (%)

Fragmented
(%)

Missing (%) Total

Transcriptome
Trinity

Transcripts
3,144
(86.4)

1,241
(34.1)

1,903
(52.3)

128
(3.5)

368
(10.1)

3,640

Genome
Canu

Contigs
3,485
(95.7)

3,081
(84.6)

404
(11.1)

22
(0.6)

133
(3.7)

3,640

RaCon
Polished contigs

3,484
(95.7)

3,076
(84.5) 

408
(11.2)

22
(0.6)

134
(3.7)

3,640

SALSA
Scaffolds

3,480
(95.6)

3,074
(84.5)

406
(11.2)

27
(0.7)

133
(3.7)

3,640

SALSA
+ Rascaf Scaffolds

3,481
(95.6)

3,076
(84.5)

405
(11.1)

25
(0.7)

134
(3.7)

3,640

where a is the area under the curve, p is the number of times the k-mers occur (the x-value)
at the peak, and s is the genome size.

Genome assembly, polishing, and scaffolding
Multiple assemblies were generated from various correction strategies. The final assembly
was based on a hybrid correction strategy as described. The assembly was created using
Canu v1.6 [48]. The assembly underwent two rounds of polishing with the corrected
Illumina WGS reads using RaCon v1.3.1 (RRID:SCR_017642) [50]. Polished contigs were
scaffolded in a stepwise fashion using two types of long-range information: Hi-C and
RNA-seq reads. Both scaffolding steps required read-mapping to the contigs before
determining how to order and orient contigs. The Hi-C data alignments were performed
following the Arima Genomics (San Diego, California, USA) Mapping Pipeline [51], which
relied on bwa v0.7.17-r1998 (RRID:SCR_010910) [52], Picard v2.19.2 (RRID:SCR_006525) [53],
and SAMtools v1.6 (RRID:SCR_002105) [54]. BEDTools v2.28.0 (RRID:SCR_006646) [55] was
used to prepare the Hi-C alignments for scaffolding. The RNA-seq data were aligned using
HiSat v0.1.6-beta (RRID:SCR_015530) [56]. Scaffolding was performed for the Hi-C and
RNA-seq data, respectively, with SALSA (commit #02018dc, RRID:SCR_022013) [57, 58], and
Rascaf (RRID:SCR_022014) v1.0.2, commit #544ff4e [59]. Assembly continuity statistics, e.g.,
N50 and area under the NG-curve (auNG) [60, 61], were calculated with caln50 (commit
#3e1b2be, RRID:SCR_022015) [62] and a custom Python script [37]. Assembly completeness
was assessed using single-copy orthologs with Benchmarking Universal Single Copy
Orthologs (BUSCO) v4.0.6 (RRID:SCR_015008) [63] and OrthoDB v10 (RRID:SCR_011980) [64]
(Table 2).

Transcriptome assembly
The transcriptome was assembled from Illumina RNA-seq reads from all three tissues (i.e.,
gill, heart, and liver). The raw reads were used because Rcorrector did not modify any
bases, thus making the raw reads and the “corrected” reads identical. The transcripts were
assembled using Trinity v2.6.6 (RRID:SCR_013048) [65], which depended on Bowtie v2.3.4.3
(RRID:SCR_016368) [66], Jellyfish v2.2.10 (RRID:SCR_005491) [44], salmon v0.12
(RRID:SCR_017036) [67], and SAMtools v1.6 [54]. Assembly completeness was assessed using
single-copy orthologs with BUSCO v4.0.6 [63] and OrthoDB v10 [64] (Table 2).
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Table 3. Input parameters for ipyrad used to assemble ddRAD data to the A. glossodonta reference genome.

Parameter Description Input
assembly_method Assembly method reference

datatype Datatype ddrad
restriction_overhang Restriction overhang (cut1,) or (cut1, cut2) TGCAG, CCG
max_low_qual_bases Max low quality base calls (Q < 20) in a read 5
phred_Qscore_offset phred Q score offset 33
mindepth_statistical Min depth for statistical base calling 6
mindepth_majrule Min depth for majority-rule base calling 6

maxdepth Max cluster depth within samples 10,000
clust_threshold Clustering threshold for de novo assembly 0.9

max_barcode_mismatch Max number of allowable mismatches in barcodes 0
filter_adapters Filter for adapters/primers 2

filter_min_trim_len Min length of reads after adapter trim 35
max_alleles_consens Max alleles per site in consensus sequences 2

max_Ns_consens Max N’s (uncalled bases) in consensus 0.05
max_Hs_consens Max Hs (heterozygotes) in consensus 0.05

min_samples_locus Min number of samples per locus for output 10
max_SNPs_locus Max number of SNPs per locus 0.2

max_Indels_locus Max number of of indels per locus 8
max_shared_Hs_locus Max number of heterozygous sites per locus 0.5

trim_reads Trim raw read edges (R1>, <R1, R2>, <R2) 0, 0, 0, 0
trim_loci Trim locus edges (R1>, <R1, R2>, <R2) 0, 0, 0, 0

ddRAD sequence assembly and filtering
We assembled all ddRAD data using the program ipyrad v0.9.31 (RRID:SCR_022016) [68].
The input parameters for ipyrad are shown in Table 3. All A. glossodonta reads were
mapped to the genome assembly.

The seven-step ipyrad workflow was as follows:

(1) Sequences were demultiplexed by identifying individual sample barcode sequences
and restriction overhangs.

(2) Barcodes and adapters were trimmed from reads, which were then hard-masked
using a q-score threshold of 20 and filtered for a maximum number of undetermined
bases per read.

(3) Reads were clustered with a minimum depth of coverage of six to retain clusters in
the ddRAD assembly.

(4) Sequencing error rate and heterozygosity were jointly estimated from site patterns
across the clustered reads assuming a maximum of two consensus alleles per individual.

(5) Consensus base calls were determined for each allele using the parameters from step
four and filtered for a maximum number of undetermined sites per locus.

(6) Consensus sequences and aligned reads were clustered for each sample.
(7) Data were filtered by the maximum number of alleles per locus, the maximum
number of shared heterozygous sites per locus, and other criteria [68], and output files
were formatted for downstream analyses. We included all loci shared by at least 10
individuals.

We performed additional filtering steps after running ipyrad to account for missing data
and rare alleles. Using VCFtools v0.1.16 (RRID:SCR_001235) [69] and BCFtools v1.6
(RRID:SCR_002105) [54], we removed individuals missing more than 98% of genotype calls.
We retained only biallelic single nucleotide polymorphisms (SNPs) and removed (i) indels,
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Table 4. Data filtering steps implemented in VCFtools and PLINK after assembly in ipyrad.

SNP quality filters
Genotype calls Remove individuals missing >98% genotype calls

Indels Remove indels
Read depth Remove loci with mean depth >100

Singletons and minor alleles Retain sites with a minor allele frequency > 0.05 and minor allele count ≥2
Biallelic SNPs Max alleles = 2

Missing data
Remove loci with genotype call rate <40%

Remove individuals missing >60% genotype calls
Remove loci with genotype call rate <60%

Remove individuals missing >50% genotype calls
Remove loci with genotype call rate <75%

Hardy–Weinberg Equilibrium (HWE)
Hardy–Weinberg Equilibrium Remove loci out of HWE (0.05)

Linkage disequilibrium
Linkage disequilibrium Remove loci within 1-Kbp windows with r2 > 0.6

(ii) loci with minor allele frequencies <0.05 to exclude singletons and false polymorphic loci
due to potential sequencing errors, (iii) alleles with a minimum count <2, and (iv) loci with
high mean depth values (>100). We then implemented an iterative series of filtering steps
based on missing data and genotype call rates to maximize genomic coverage per
individual (Table 4) [70]. Thereafter, we removed loci out of Hardy–Weinberg Equilibrium
to filter for excess heterozygosity. We then used PLINK v1.9 (RRID:SCR_001757) [71] to
perform linkage disequilibrium pruning by calculating the squared coefficient of
correlation (r2) on all SNPs within a 1-kilobase pair (Kbp) window [72]. We removed all
SNPs with an r2 value greater than 0.6.

Computational annotation of assembled genome
The MAKER v3.01.02-beta (RRID:SCR_005309) [73] pipeline was used to annotate the
assembly. With minor modifications (see Figure 3 and protocols.io [74]), annotation
proceeded as described in the Maker Wiki tutorial [75]. A custom repeat library was created
using RepeatModeler v1.0.11 (RRID:SCR_015027) [76]. The transcriptome assembly, genome
assembly, and proteins from UniProtKB Swiss-Prot (RRID:SCR_002380) [77, 78] were used as
input to MAKER to create initial annotations. Gene models based on these annotations were
used to train the following ab initio gene predictors: AUGUSTUS v3.3.2
(RRID:SCR_008417) [79, 80] and SNAP (commit #daf76ba, RRID:SCR_005501) [81]. AUGUSTUS
was trained using BUSCO [63] as a wrapper; SNAP was trained without a wrapper.
Genemark-ES v4.38 (RRID:SCR_011930) [82–84] was also trained on the assembled genome.
These models were all provided to MAKER for a second round of structural annotation,
which utilized EVidenceModeler v1.1.1 (RRID:SCR_014659) [85]. The gene models based on
those annotations were filtered with gFACs v1.1.1 (RRID:SCR_022017) [86] and again
provided to AUGUSTUS and SNAP. As Genemark-ES does not accept initial gene models, it
did not need to be run again. The gene models from the ab initio gene predictors were again
provided to MAKER for a third and final round of annotation, in which tRNAs were
searched for with tRNAscan-SE v1.3.1 (RRID:SCR_010835) [87]. Functional annotations were
added using MAKER accessory scripts, the BLAST+ Suite v2.9.0 (RRID:SCR_004870) [88, 89],
and InterProScan v5.45-80.0 (RRID:SCR_005829) [90, 91]. The annotations in GFF3 format
were validated with GenomeTools v1.6.1 (RRID:SCR_016120) [92] and manually curated to
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Figure 3. Protocols.io protocol for annotation of the Albula glossodonta genome using MAKER [3]. https://www.
protocols.io/widgets/doi?uri=dx.doi.org/10.17504/protocols.io.b3xvqpn6

adhere to GenBank submission guidelines. Repeat characterization was performed with
RepeatMasker v4.1.2-p1 (RRID:SCR_012954) [93] using Dfam v3.3 (RRID:SCR_021168) [94]
and the RepBase RepeatMasker Library v20181026 (RRID:SCR_021169) [95, 96].

Statistical analysis of population genomic data
Detection of loci under selection
Before conducting population genomic analyses, we performed outlier tests to identify loci
putatively under selection. These are usually identified by a significant difference in allele
frequencies between populations [97]. Specifically, we implemented two outlier detection
methods that accommodate missing data: pcadapt v4.1.0 (RRID:SCR_022019) [97] and
BayeScan v2.1 (RRID:SCR_022018) [98]. The assumption behind pcadapt is that loci
associated with population structure, ascertained via principal component analysis (PCA),
are under selection [97]. pcadapt is advantageously fast and able to handle many loci. The
number of principal components (K) was chosen based on visualization of a scree plot of
the eigenvalues of a covariance matrix. Once the K-value was chosen, the Mahalanobis
distance (D test statistic) was calculated using multiple linear regression of the number of
SNPs versus K [97, 99]. To account for false discovery rates, the p-values generated using the
Mahalanobis distance D were transformed to q-values using the R v3.6.3 [41] q-value
package v2.15.0 (RRID:SCR_001073) [100] with the cut-off point (𝛼) set to 10% (0.1).

BayeScan measures allele frequencies between different populations and identifies loci
perceived to be undergoing natural selection based on their FST values [101, 102]. The
method applies linear regression to generate population- and locus-specific FST estimates
and calculates subpopulation FST coefficients by taking the difference in allele frequency
between each population and the common gene pool. BayeScan incorporates uncertainties
in allele frequencies owing to small sample sizes, as well as imbalances in the number of
samples between populations [98]. We assigned each of the six sampling localities as a
population. Our analyses were based on 1:50 prior odds and included 100,000 iterations
and a false discovery rate of 10%. We used the default values for the remaining parameters
and visualized results in R v3.6.3 following the developer’s manual [103]. After running
both pcadapt and BayeScan, we used R to assess the number of outliers identified by both
programs and subsequently removed outlier loci to generate a neutral dataset for
downstream analyses. The outlier dataset results are presented in Figure 4. These datasets
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Figure 4. Population differentiation analyses for the outlier single nucleotide polymorphism (SNP) loci. We
analyzed 155 outlier SNP loci for population structure. Cross-entropy scores generated by sparse non-negative
matrix factorization (sNMF) gave strongest support forK = 3 populations ofAlbula glossodonta. Evidence of genetic
differentiation between island groups was displayed in individual ancestry plots generated in sNMF (A), as well
as principal component analysis (PCA) biplots of the first two principal components (B). Both individual ancestry
plots and PCA results indicated differentiation in the outlier loci dataset was strongest between Farquhar and the
other island groups.

were also annotated with respect to the MAKER-based annotations of the genome assembly
using SnpEff v5.0e (RRID:SCR_005191) [104].

Population structure and genetic differentiation
To examine population structure, we used a model-based clustering method to reconstruct
the genetic ancestry of individuals using sparse non-negative matrix factorization (sNMF)
and least-squares optimization. Model-based analyses were performed using the package
LEA v2.6.0 (RRID:SCR_022020) [105] in R. The sNMF function in LEA estimates the number
of ancestral populations and the probability of the number of gene pools from which each
individual originated by calculating an ancestry coefficient and investigating the model’s fit
through cross-entropy criterion [106]. We calculated and visualized cross-entropy scores of
K population clusters ranging from 1–10 with 10 replicates. To complement sNMF, we also
used PCA, a distance-based approach based on variation in allele distributions,
implemented in VCFtools v0.1.16 [69]. For sNMF and PCA analyses, no populations were
assigned a priori. We assigned each of the six sampling localities as populations for
subsequent visualization, grouped into four “island groups” based on the proximity of some
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Table 5. Sequencing information.

Company Illumina Illumina Illumina PacBio
Instrument Hi-Seq 2500 Hi-Seq 2500 Hi-Seq 2500 Sequel I

Mode Rapid run High output Rapid run N/A
Sequencing type PE PE Hi-C, PE SMRT, CLR

Duration 250 cycles 125 cycles 250 cycles 30 hours
Specimen 1 1 2 2
Tissues Blood Gill, Heart, Liver Heart Heart
Molecule DNA RNA DNA DNA

Millions of read(pair)s 109.5 270.7 88.7 9.5
Mean read length (bp) 246 124 245 7,353

Read N50 (bp) 250 125 250 13,831
Nucleotides (Gbp) 53.9 67.2 44.3 69.9

The results from each type of DNA and RNA sequencing from Albula glossodonta. bp: basepairs; CLR: continuous
long-reads; Gbp: gigabase pair; PacBio: Pacific Biosciences; PE: Paired-end reads; SMRT: Single-Molecule, Real-Time
sequencing.

of the atolls that comprised our sampling localities (Figure 5). The five Seychelles atolls we
sampled were spread among three separate clusters of islands, which are commonly
referred to as the “outer” island groups owing to the geographic locations of these outlying
coralline islands relative to the densely populated, granitic “inner” islands of the Seychelles
archipelago. The island groups consisted of (i) Amirantes (St. Joseph’s Atoll), (ii) Farquhar
(Farquhar and Providence Atolls), (iii) Aldabra (Aldabra and Cosmoledo Atolls), as well as
(iv) Mauritius (St. Brandon’s Atoll; Table 1). We computed summary statistics in R v3.6.3,
including pairwise FST estimates (StAMPP v1.6.1 (RRID:SCR_022022) [107]), isolation by
distance via the Mantel Rand test (adegenet v2.1.3 (RRID:SCR_000825) [108]), and expected
and observed heterozygosity (hierfstat v0.5-7 (RRID:SCR_022021) [109]) to compare genetic
diversity and differentiation between the four island groups.

DATA VALIDATION AND QUALITY CONTROL
Sequencing
DNA sequencing
Paired-end, short-read sequencing (Illumina) yielded 109.5 million pairs of reads
comprising 53.86 Gbp. The mean and N50 read lengths were 245.981 and 250, respectively.
Continuous long-read sequencing (PacBio) generated 9.5 million reads with a total of
69.85 Gbp. The mean and N50 read lengths were 7,352.726 and 13,831, respectively. The
longest read was 103,889 bp. The read length distribution is plotted in Figure 5. Result
summaries for both sequencing runs are available in Table 5.

mRNA sequencing
RNA-seq from the three tissues (i.e., gill, heart, and liver) generated 270.7 million pairs of
reads totaling 67.2 Gbp. The gill tissue yielded 107.7 million pairs of reads, with a total of
26.7 Gbp. The heart tissue generated 19.6 Gbp across 78.8 million pairs of reads. The
84.2 million pairs of reads from the liver tissue comprised 20.9 Gbp. Across all three tissues,
the mean and N50 read lengths were 124.122 and 125, respectively. The combined results
from all three tissues are summarized in Table 5.
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Figure 5. Sampling localities for Albula glossodonta population genomic analysis. The upper panel shows the
marine boundaries for the Seychelles and Mauritius in light blue. Locations of sampling sites are indicated by dark
blue ovals. The lower panel shows the atolls comprising the four island groups: Amirantes, Farquhar, Aldabra, and
Mauritius.

Hi-C sequencing
Sequencing yielded 88.7 million pairs of reads comprising 44.28 Gbp. The mean and N50
read lengths were 249.493 and 250, respectively. A summary of these results is presented in
Table 5.
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ddRAD sequencing
After data processing using ipyrad, we recovered a mean of 114,324 reads per individual
and an average of 107,105 loci per individual. Following filtering for missing data, minor
allele frequency, and linkage disequilibrium, the dataset contained 66 individuals and
38,355 SNPs. BayeScan, being a more conservative outlier detection method than pcadapt,
did not identify any outliers; we thus used only outlier detection results from pcadapt.
Subsequent removal of pcadapt outliers (N = 155) resulted in a neutral dataset containing
38,200 SNPs with 9% missing data.

Read error correction
Illumina DNA
When Quake corrects paired-end reads, three outcomes are possible for each pair of reads:
(i) both reads are either already correct or correctable, (ii) one read is either correct or
correctable and the other is low-quality, or (iii) both reads are low-quality. Of the original
218.96 million reads (109.5 million pairs of reads), Quake corrected 62.7 million of them and
removed 51.6 million of them. 5.97 million pairs of reads were discarded because both
reads were rated as erroneous. 39.6   million pairs of reads had one read that was correct or
correctable and one read that was low-quality; these were also discarded. The remaining
63.88 million pairs of reads were either correct or correctable and were kept in the final
read set containing 29.11 Gbp of sequence.

Illumina RNA
No corrections were made to the RNA-seq reads by Rcorrector [47].

PacBio CLRs
The dual-correction strategy (self-correction followed by hybrid-correction) reduced the
number of reads from 9.5 million to 2.79 million and the total number of bases from
69.85 Gbp to 36.79 Gbp. The mean and N50 read lengths were changed from 7,354 and
13,831 to 13,193 and 15,483, respectively. The longest read was 63,271 bases. The
distribution of read lengths can be viewed in Figure 6.

Genome size estimation
The genome size was estimated to be approximately 0.933 Gbp as a result of the k-mer
analysis, which was consistent with the authors’ expectations based on two closely related
elopomorph species [110, 111].

Genome assembly, polishing, and scaffolding
The initial assembly from Canu comprised 3,799 contigs with a total assembly size of
1.05 Gbp. The mean contig length, N50, NG50 [112], and maximum contig length were
276.2 Kbp, 3.6 Mbp, 4.7 Mbp, and 28.2 Mbp, respectively. The L50 was 57, and the LG50 was
43. The auNG was 8.17 million. After two rounds of polishing these contigs with the
corrected Illumina WGS reads using RaCon, the assembly statistics changed only marginally.
The number of contigs, L50, and LG50 were unchanged. The assembly size decreased by
318.7 Kbp (0.03%). The mean contig length, N50, NG50, and maximum contig length were
reduced by 83.8 bp (0.03%), 1.3 Kbp (0.04%), 1.5 Kbp (0.03%), and 3.8 Kbp (0.01%),
respectively. The auNG decreased by 2 Kbp (0.02%).
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Figure 6. Read length frequencies of Pacific Biosciences continuous long reads (PacBio CLRs). The change in
read length distribution is demonstrated as reads are corrected. The dramatic shift from raw to corrected reads
is evident. The self-corrected (purple) data points are slightly larger than the dual-corrected (yellow) data points
to make the purple distribution visible, the size has no meaning.

The scaffolding with the Hi-C data joined some polished contigs together, reducing the
sequence count to 3.6K (−4.69%). The number of bases, excluding unknown bases (Ns), was
unchanged; however, it is important to note that when SALSA creates gaps while ordering
and orienting contigs, it always uses a gap size of 500 bp. The result, in this case, was adding
116 Kbp of Ns, which means 232 gaps were created. These gaps were spread across 113
scaffolds. No scaffold had more than six gaps (seven contigs ordered and oriented together).
The mean scaffold length, scaffold N50, scaffold NG50, and maximum scaffold length
increased by 13.6 Kbp (4.92%), 3.8 Mbp (106.25%), 5.79 Mbp (121.90%), and 14.1 Mbp
(49.85%), respectively. Coupled with these increases were decreases of 29 (50.88%) and 22
(51.16%) in the L50 and LG50, respectively. The auNG increased to 14.1 million (+72.81%).
The quality of the Hi-C scaffolding can be visualized (Figure 7) via a contact matrix
generated by PretextMap (RRID:SCR_022023) [113] and PretextView
(RRID:SCR_022024) [114].

The genome assembly was further improved by scaffolding with RNA-seq data. As
expected, the magnitude of the changes between sets of scaffolds was smaller than what
was observed between contigs and scaffolds. The total number of sequences was reduced
by 176 to 3.4K (−4.69%). The number of known bases was again unchanged; however, it is
important to note that when Rascaf orders and orients contigs (or other scaffolds) it always
inserts a gap of 17 bp to represent gaps of unknown size. Rascaf added 179 new gaps (3,043
unknown bases) across 148 sequences. Three gaps (1,500 unknown bases) from SALSA were
removed, but the rest remained unchanged. The most gaps added to a single sequence by
Rascaf was five. The sequence with the most total gaps (from either source) had seven gaps
(six from Hi-C), thus eight contigs were joined together.

This resulting set of scaffolds (which also includes all the contigs that were not joined to
another contig in some way) had a mean length of 304.5 Kbp (+5.11% from the Hi-C only
value) and a maximum length of 42.29 Mbp (+0.08%). The N50 and NG50 increased to
7.97 Mbp (+7.04%) and 14.49 Mbp (+37.58%), respectively. Decreases to 26 (−7.14%) and 20
(−4.76%) were observed for L50 and LG50, respectively. The auNG increased to 14.7 M
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Figure 7. Hi-C contact matrix showing scaffolding correctness. In the context of scaffolding, Hi-C contact matrices
show how correct the scaffolds are. Off-diagonal marks, especially those that are bright and large, are evidence of
mis-assembly and/or incorrect scaffolding. The interpretations of the lighter and smaller off-diagonal marks in this
image are ambiguous because the assembly is unphased with some relatively short contigs/scaffolds. Additional
detail may be viewed by zooming in on the high-resolution image.

Table 6. Continuity statistics.

Contigs Polished Contigs Scaffolds (Hi-C) Scaffolds (Hi-C +
RNA-seq)

Sequences 3,799 3,799 3,621 3,445
Known bases (Gbp) 1.04935 1.04903 1.04903 1.04903

Mean length 276,217.073 276,133.196 289,707.267 304,507.986
Max. length 28,203,290 28,199,443 42,256,846 42,290,388

N50 3,612,671 3,611,341 7,448,473 7,972,764
NG50 4,747,926 4,746,442 10,532,420 14,490,288
NG90 503,090 503,135 739,806 827,489
LG50 43 43 21 20
LG90 289 289 181 162
auNG 8,165,188 8,163,173 14,106,761 14,723,001

Sequences with gaps – – 133 236
Gaps – – 232 408

Unknown bases – – 116,000 117,543
Mean gap length – – 500.000 288.096

Continuity statistics for the Albula glossodonta genome assembly at various stages. The “Scaffolds (Hi-C + RNA-seq)”
column represents the final assembly. Also note that when submitted to GenBank, the gaps were all converted to a
length of 100 bp. Unless otherwise specified, all nucleotide sequences are measured in base pairs (bp).

(+4.37%). Table 6 summarizes the assembly continuity statistics, and the auNG is visualized
in Figure 8.

The assembly completeness, as assessed with single-copy orthologs, was also evaluated
at each stage (Table 2). The results suggest that the modifications made to the primary
Canu-based assembly from polishing and scaffolding did not significantly impact the
correct assembly of single-copy orthologs. The final set of scaffolds had 3,481 complete
single-copy orthologs (95.6% of 3,640 from the ODB10 Actinopterygii set). Of these 88.4%
(3,076) were present in the assembly only once, and 11.6% (405) were present more than
once. Twenty-five (0.7%) and 135 (3.7%) single-copy orthologs were fragmented in and
missing from the assembly, respectively.
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Figure 8. Area under the NG curve (auNG) for each assembly step. The NG-curve and the area under it are plotted
for each major step of the assembly: contigs, polished contigs, scaffolds from only Hi-C data, and scaffolds from
both Hi-C and RNA-seq data. The auNG for the polished contigs (green) is very similar to the contigs (yellow). Most
of the curve was completely blocked by the contigs (yellow) curve. To show that the polished contigs (green) share
nearly the same curve, the line was plotted more thickly so it can just barely be seen. Similarly, the Hi-C + RNA-seq
scaffolds (purple) curve is very similar to the Hi-C only scaffolds (blue) curve. In this case, differences are more
apparent. In certain places, e.g., at the highest peak, the Hi-C + RNA-seq scaffolds (purple) are plotted more thickly
so it can be seen behind the Hi-C only scaffolds (blue).

Transcriptome assembly
The transcriptome assembly generated by Trinity comprised 455K sequences with a mean
sequence length of 1,177 bp. The N50 and L50 were 2.6 Kbp and 56K, respectively. The N90
and L90 were, respectively, 410 bp and 270K. Of the 3,640 single-copy orthologs in the
ODB10 Actinopterygii set, 86.4% (3,144) were complete; 39.5% (1,241) of which were present
only once in the transcript set. One hundred and twenty-eight (3.5%) single-copy orthologs
were fragmented in the transcript set, 368 (10.1%) were missing (see Table 2).

Computational genome annotation
Computational structural and functional annotation yielded 28.3 K protein-coding genes. Of
these, 17.2 K and 15.6 K have annotated 5′ and 3′ untranslated regions (UTRs), respectively.
Eighteen hundred (1,800) tRNA genes were also identified. The annotations are available
with the assembly on GenBank. Approximately 6.5% of the genome comprised repetitive
elements, and a summary of repeat types is available in Table 7.
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Table 7. Summary of repeats.

Copies Length (Mbp) Percent (%) of sequence
Interspersed repeats 281,290 41.0 3.9

SINE 8,412 0.5 0.0
Penelope 1,919 0.4 0.0
LINE 60,890 8.4 0.8
LTR 6,692 2.6 0.3
DNA transposon 109,377 16.1 1.5
Unclassified 94,000 13.5 1.3

Tandem repeats 528,549 24.5 2.3
Satellite 1,306 0.1 0.0
SSR 464,086 21.0 2.0
Low complexity 63,157 3.4 0.3

Rolling-circles 21,964 1.7 1.2
Small RNA 4,191 0.7 0.1
Total 835,994 67.8 6.5

Summary of repeat content in the Albula glossodonta genome assembly as reported by RepeatMasker [93] using
the Dfam v3.3 [94] and RepBase RepeatMasker v20181026 [ 95, 96] repeat libraries. Mbp: megabase pair; LINE: long
interspersed nuclear element; LTR: long terminal repeat; SINE: short interspersed nuclear element; SSR: single
sequence repeat.

Table 8. Pairwise F ST comparisons by island group.

Amirantes Farquhar Aldabra
Farquhar 0.0014*
Aldabra 0.0005 0.0020*

Mauritius 0.0034* 0.0043* 0.0040*

Significance (p < 0.05) is indicated with an asterisk.

Population genomic analysis
Cross-entropy scores generated by the model-based population differentiation analysis,
sNMF, provided support for a single population of A. glossodonta across all localities.
However, individual ancestry plots generated from sNMF results showed evidence of
genetic differentiation in individuals from Mauritius (St. Brandon’s Atoll), compared to the
Seychelles sites (Figure 9A). This differentiation was corroborated by PCA visualization of
the first two principal components, where St. Brandon’s Atoll individuals clustered
separately from the four Seychelles island groups (Figure 9B). Together, both population
differentiation analyses indicated weak geographic population structure across all sampling
localities, with reduced gene flow between St. Brandon’s Atoll and the Seychelles sites.

Pairwise FST results also indicated greater genetic differentiation between St. Brandon’s
Atoll and all other island groups (Table 8). Estimates of observed and expected
heterozygosity were similar across island groups (Table 9), suggesting no differences in
genetic diversity between sampling localities and providing no evidence for distinguishing
metapopulation processes such as inbreeding. A test of isolation by distance between
sampling sites was not significant (p = 0.1501).

Discussion
Albula glossodonta is an important fishery species in the Indo-Pacific for both subsistence
and recreational purposes [21, 31, 115, 116]. Given this species’ current “Vulnerable” IUCN
status [7, 117] amid recent taxonomic uncertainties [4], understanding patterns of gene flow
and population structure in A. glossodonta is important for fisheries management [31, 118].
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Figure 9. Population differentiation analyses. Weak geographic population structure is present across all
sampling localities, with reduced gene flow between St. Brandon’s Atoll and the Seychelles sites. Island groups are
colored as in Figure 5. (A) Individual ancestry plots generated using sNMF, indicating K = 2 putative populations.
(B) Principal component analysis biplot showing the first two principal components.

Table 9. Observed heterozygosity (HO) and expected heterozygosity (HS) for each island group.

Island Group HO HS
Amirantes 0.2800 0.2915
Farquhar 0.2901 0.2946
Aldabra 0.2589 0.2862

Mauritius 0.2829 0.2923

This annotated genome assembly is the first published for A. glossodonta, and it will provide
a valuable resource for future studies of this vulnerable species. This genome is also the
first for any bonefish species. It thus provides a basis for future genetic differentiation
between all albulid species, especially for those in the same species complex (the A. vulpes
complex) or that share the same range, i.e., primarily species in the A. argentea species
complex. This will help future studies assess the population structure of bonefishes in the
Indo-Pacific, enabling more informed conservation and fisheries management plans.

We observed a genetically homogenous population of A. glossodonta across five island
atolls in the Seychelles Archipelago, with limited gene flow between Seychelles and
Mauritius. Unlike highly migratory species such as eels (Anguillidae), which are close
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relatives of bonefishes, adult bonefishes are known for high site fidelity with relatively
short migrations (∼10–100 km) [116, 119, 120]. We hypothesized that adult bonefishes would
not migrate between the Seychelles islands, or between the Seychelles and St. Brandon’s
Atoll in Mauritius, since these distances span 400–2,000 km. Consequently, the observed
trend of genetic homogeneity across the Seychelles is probably not a result of adult
long-distance migrations, but pelagic larval dispersal, the primary dispersal mechanism for
bonefishes [33, 121–123]. Bonefish larvae, also referred to as leptocephali, have a long
pelagic larval duration ranging from 41–72 days, which enables them to drift long distances
with ocean currents [22, 123]. The estimated pelagic larval duration for A. glossodonta is
57 days, based on observations of individuals from French Polynesia in the South
Pacific [22]. The Seychelles islands are in the South Equatorial Current, which flows
westwards from the Indian Ocean towards the eastern coast of continental Africa, enabling
larvae to be transported across the Seychelles islands, even across depths exceeding
4,000 m (Figure 5) [124, 125].

Genetic homogeneity is not always an outcome of long pelagic larval duration, as
demonstrated by Anguilla marmorata, for which 2–5 stocks were identified in the
Indo-Pacific [126, 127], and A. glossodonta, where putative stocks between the Indian and
Pacific Oceans were suggested [118]. Indeed, we found evidence of restricted gene flow
between the Seychelles sampling sites and St. Brandon’s Atoll, Mauritius, which is
∼1,500–2,000 km from the Seychelles Islands (Figure 5). This genetic structuring was
unexpected, given the long pelagic larval duration of A. glossodonta. However, there is
evidence of limited gene flow between Seychelles and Mauritius in other marine fish
species with pelagic larvae, such as Lutjanid kasmira [128], Lethrinus nebulosus [129], and
Pristipomoides filamentous [130].

We attribute the observed genetic structure between Seychelles and St. Brandon’s Atoll
to the ocean currents in the SWIO and their role in larval transport [131, 132]. St. Brandon’s
Atoll is in the direct path of one of the bifurcated arms of the South Equatorial Current as it
passes through the Mascarene Plateau [124, 133]. The South Equatorial Current pushes
water westward, which may create a barrier to gene flow to islands south of Seychelles
such as Mauritius and Réunion [129, 130, 133]. Although there are currently no bonefish –
or even elopomorph – larval dispersal models for the Indian Ocean, pelagic larval dispersal
simulation models of coral species in the SWIO corroborate the biogeographic break
between Seychelles and Mauritius, suggesting connectivity is limited even when the pelagic
larval duration is between 50–60 days [124, 133]. However, these models considered coral
larvae, which are completely reliant on currents for their dispersal [124, 133, 134]. While
the dispersal behavior of A. glossodonta larvae is unknown, we speculate that, similar to
eels (Anguillidae; which also have long pelagic larval durations), bonefishes could disperse
greater distances than passive corals by having the ability to swim (e.g., Anguilla
japonica [135]) or may even take part in vertical migrations (e.g., Anguilla japonica [136,
137]). While officially undescribed, swimming ability in bonefish leptocephali has been
observed [138], and vertical migrations have previously been theorized [121, 139].

Genome-wide datasets have enabled researchers to better delineate population
connectivity across seascapes for marine species where conventional markers (e.g., mtDNA,
microsatellites) have not provided sufficient genomic resolution [126, 140, 141]. Such
advances in genomic sequencing have altered our view of population connectivity in other
marine fishes such as yellowfin tuna (Thunnus albacores [142]) and the American eel
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(Anguilla rostrata [143]). These studies, including ours, highlight the power of large genomic
datasets for investigating connectivity in open ocean environments containing few, if any,
natural barriers that were traditionally thought to drive population structure. Although
there has been a rapid increase in the number of studies using next-generation sequencing
datasets for marine fishes, few studies to date have employed the use of genomic datasets
on elopomorphs, and none on bonefish [143–145].

REUSE POTENTIAL
This is the first genome assembly and annotation for an albulid species, as well as the first
use of a genome-wide SNP dataset to investigate population structure for Albula
glossodonta or any bonefish species in the Indian Ocean. Individuals of A. glossodonta were
genetically homogenous across four coralline island groups in the Seychelles Archipelago,
but they showed evidence of genetic differentiation between the Seychelles and Mauritius
(St. Brandon’s Atoll). These patterns of connectivity are probably facilitated by pelagic
larval dispersal, which is presumed to be strongly shaped by currents in the SWIO. Only
with high-resolution genomic data were we able to discern this pattern of population
structure between Seychelles and Mauritius. Our dataset serves as a valuable resource for
future genomic studies of bonefishes to facilitate their management and conservation.

DATA AVAILABILITY
The raw reads, genome assembly, and annotations are available under BioProject
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