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Abstract-

 

Getachew [1] introduced

 

there is overfishing in Lake Tana, Amhara, Ethiopia using critical depensation model. 
In this paper, we applied this technique for depensation model.

 

We investigated that if we consider depensation model 
we found that there is overfishing.

 

Keywords:

 

mathematical bio-economics, overfishing.

 
I.

 

Introduction

 
The economics of renewable resource use is essentially a multi-disciplinary 

undertaking, integrating both biological and economic aspects. When modeling the 
dynamics of the resource, one has to choose a level of analysis. An intuitive entity is the 

organism itself (a fish, a tree, or a cow) that experiences growth and mortality. While 
growth and mortality determine the dynamics of the existing number of individuals, it 
is the potential to reproduce which characterizes renewable resources. Resources whose 
reproduction is completely outside of the control of the resource users can perhaps best 

be analyzed in the framework of “eating a cake of unknown size”. We will meet 
resources whose reproduction can be completely controlled when discussing forestry 
issues, but aquaculture could be another example. For most resource management 
problems however, it will be useful to model a reproduction function which depends in 
some (possibly highly nonlinear, possibly very stochastic) way on the existing number of 

individuals, which in turn

 

are influenced by the current exploitation regime. In the 
absence of regulation control over harvesting behavior, the resource stocks are subject 
to open access [1]. In addition to the viewpoint of an organism, one could also focus on 
the dynamics of the underlying processes. Most models will take an aggregated view 

means analyzing a fishery, a forest, an ecosystem as a whole. 

 
In different renewable resource management, it is important to balance ecological 

and economic needs. For example if we consider one

 

of the renewable resource (fish), 
the fishery management is the consideration of the ecological effects of harvesting. 
Fisherman work to provide fish for a growing human population but because of this 
some fish populations have been dangerously declining.

 

A major focus in fishery 
management is how best to ensure harvesting sustainability [2, 4, 5, 6]. The object of 
the management is to devise harvesting strategies that will not drive species to 
extinction. Therefore, the notion of persistence, extinction times of the populations and 
precautionary harvesting policy, is always critical. A control variable of every fishery 
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management is the fishing effort [3, 8], which is defined as a measure of the intensity of 
fishing operations.  As fishery management is the  balance between harvesting and its 
ecological implications, it is important to fish in such a way that a species is sustainable 
and not in danger of becoming extinct. Mathematical bio economics is the study of the 
management of renewable resources. It takes into consideration not only economic 
questions like revenue, cost, price, effort etc., but also the impact of this demand on the 
resource. The aim of fish harvesting management is to gain a sustainable development 
of activity so that, future generation can also benefit from the resources.  In this paper 
we consider  depensation (weak Alee effect) deterministic model with a constant harvest 
rate as well as time dependent. Optimization and numerical calculations were used to 
determine the harvest rate that produces maximum yield under different population 
density scenarios. The dynamic mathematical models set on the background of biology 
and economics knowledge. The integration of these seemingly different subjects namely 
mathematics, biology and economics creates the source of interesting results and give 
valuable applications for the peoples living with fishing activities and those policy 
makers who involved control of overfishing.  

II.  Mathematical Biology  of Depensation Model  
Deterministic models of fishery populations can be classified into three types 

namely compensation, depensation and critical depensation. Compensation model  is a 
growth type where population declination is compensated by increased growth rate. 
Depensation model is the opposite case to composition growth model. The critical 
depensation modelis the generalized logistic model which is extremely in opposite of the 

depensation model. A population’s dynamics are depensatory or depensation  is said to 
occur if the per- capita rate of growth decreases as the density decreases to low levels. 
Component of the life-history such as fecundity or survival during a particular stage or 
the mechanisms that affect these components (such as group defense or mate-finding 
difficulty) are called depensatory if they decrease the per-capita growth rate as 
abundance declines to low levels. Depensation model is the label most often used in 
fisheries. The strong depensation model is called critical depensation model. By the 
work done [9] some populations experience reduced rates of survival and reproduction 
when reduced to very low densities. Mathematical biology expression of depensation is 
given by growth model as:   

                                         (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) = 𝑟𝑟𝑑𝑑𝑎𝑎 [1 − (𝑑𝑑/𝑘𝑘)]                                     (1)                                                                                           

Here in the growth model (1), 𝑑𝑑(𝑑𝑑)  represents fish biomass, 𝑟𝑟  represents intrinsic 

growth rate of fish, 𝑘𝑘  is ecological carrying capacity, 𝑎𝑎 ≥ 0  and 𝑎𝑎 ≠ 1, and (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑)  
growth rate of fish without harvest. Model (1) has the property that for 𝑎𝑎 >  1  there is, 
at low stock levels,  depensation, which is a situation where the proportionate growth 
rate  is an increasing function of the stock size, as opposed to being a decreasing 

function (compensation) in the simple logistic case where 𝑎𝑎 =  1. The biological growth 

model (1) exhibiting depensation at the stock level below, 𝑦𝑦0, and compensation 
thereafter as shown the figure below.  
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   In the figure 1 we have shown the rate change curve of the depensation model 
for some positive particular values of the parameters as shown. The curve is plotted for 

the population size function 𝑑𝑑(𝑑𝑑)

 

versus the population rate change function

 

𝑑𝑑′ =
(𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑). The maximum rate change of population,

 

𝑀𝑀𝑎𝑎𝑑𝑑(𝑑𝑑′), occurs when the 

population size be 𝑑𝑑(𝑑𝑑) = (𝑎𝑎𝑘𝑘/(𝑎𝑎 + 1))

 

for 𝑎𝑎 > 0

 

and the corresponding maximum rate 

change of population is given by 𝑀𝑀𝑎𝑎𝑑𝑑(𝑑𝑑′) = �𝑟𝑟(𝑎𝑎𝑘𝑘/(𝑎𝑎 + 1))𝑎𝑎�1 − (𝑎𝑎/(𝑎𝑎 + 1))��. 

III.

 

Solution

 

of

 

the Depensation Model

 The solution of depensation model (1) with initial condition  𝑑𝑑(0) = 𝑑𝑑0

 

is 
obtained as follows. Using techniques of separable variables the model (1) can be 

rewritten as [

 

𝑑𝑑𝑑𝑑/𝑑𝑑𝑎𝑎(𝑘𝑘 − 𝑑𝑑)] = (𝑟𝑟/𝑘𝑘)𝑑𝑑𝑑𝑑

 

and integrating both sides we get ∫[ 1/𝑑𝑑𝑎𝑎(𝑘𝑘 −
𝑑𝑑)]𝑑𝑑𝑑𝑑 = ∫(𝑟𝑟/𝑘𝑘)𝑑𝑑𝑑𝑑. To integrate the left hand side, we have to consider the following 

two cases by assuming that the initial value

 

𝑑𝑑(0) = 𝑑𝑑0; 𝑎𝑎

 

is an integer and 𝑎𝑎 > 1

 

and 
then applying integration by partial fraction. 

 Case1:

 

Let  𝑎𝑎
 

is an even integer so that 𝑎𝑎 = 2𝑛𝑛, 𝑛𝑛 ∈ Z+. 

∫[1/𝑑𝑑𝑎𝑎(𝑘𝑘 − 𝑑𝑑)] 𝑑𝑑𝑑𝑑 = ∫[1/𝑑𝑑2𝑛𝑛 (𝑘𝑘 − 𝑑𝑑)] 𝑑𝑑𝑑𝑑 = ∫[1/(𝑑𝑑2)𝑛𝑛 (𝑘𝑘 − 𝑑𝑑)] 𝑑𝑑𝑑𝑑 = (𝑟𝑟/𝑘𝑘) 𝑑𝑑+ ℓ where 

ℓ ∈ ℛ
 If 𝑛𝑛 = 1

 

then 𝑎𝑎 =  2
 

and thus we do have ∫[1/𝑑𝑑𝑎𝑎(𝑘𝑘 − 𝑑𝑑)]𝑑𝑑𝑑𝑑 = ∫[1/𝑑𝑑2(𝑘𝑘 − 𝑑𝑑)]𝑑𝑑𝑑𝑑. 

The solution is obtained using integration by partial fraction and is 𝑙𝑙𝑛𝑛 � 𝑑𝑑
𝑘𝑘−𝑑𝑑

� − 𝑘𝑘
𝑑𝑑

=

 
𝑟𝑟𝑘𝑘𝑑𝑑 + ln � 𝑑𝑑0

𝑘𝑘−𝑑𝑑0
� − 𝑘𝑘

𝑑𝑑0
. If 𝑛𝑛 = 2

 

then 𝑎𝑎 =  4
 

and thus we do have ∫[1/𝑑𝑑4(𝑘𝑘 − 𝑑𝑑)]𝑑𝑑𝑑𝑑 =

(𝑟𝑟/𝑘𝑘)𝑑𝑑. The solution is obtained using integration by partial fraction and is:

 

ln �
𝑑𝑑

𝑘𝑘 − 𝑑𝑑
� −

𝑘𝑘
𝑑𝑑
−
𝑘𝑘2

2𝑑𝑑2 −
𝑘𝑘3

3𝑑𝑑3 = 𝑟𝑟𝑘𝑘3𝑑𝑑 + ln �
𝑑𝑑0

𝑘𝑘 − 𝑑𝑑0
� −

𝑘𝑘
𝑑𝑑0
−

𝑘𝑘2

2(𝑑𝑑0)2 −
𝑘𝑘3

3(𝑑𝑑0)3
 

In general by mathematical induction for 𝑎𝑎 = 2𝑛𝑛
 
using partial fraction we get 

the solution: 
 

�
𝑑𝑑𝑑𝑑

(𝑑𝑑2)𝑛𝑛(𝑘𝑘 − 𝑑𝑑)
= �(

𝐴𝐴1𝑑𝑑 + 𝐵𝐵1

𝑑𝑑2 +
𝐴𝐴2𝑑𝑑 + 𝐵𝐵2

(𝑑𝑑2)2 +∙∙∙ + 
𝐴𝐴𝑛𝑛𝑑𝑑 + 𝐵𝐵𝑛𝑛

(𝑑𝑑2)𝑛𝑛
+

𝑐𝑐
𝑘𝑘 − 𝑑𝑑

)𝑑𝑑𝑑𝑑 = (𝑟𝑟/𝑘𝑘)𝑑𝑑 + ℓ
 

𝑦𝑦0

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

𝑘𝑘

 

𝑑𝑑

 

  

1

G
lo
ba

l
Jo

ur
na

l
of

Sc
ie
nc

e
Fr

on
tie

r
R
es
ea

rc
h 

  
  
  
 V

ol
um

e
X
V
II  

 I
ss
ue

  
  
 e

rs
io
n 

I
V

II
Y
ea

r
20

17

39

  
 

( F
)

© 2017   Global Journals Inc.  (US)

Fish Harvesting Experienced by Depensation Growth Function

, 

This is the general solution. Here 𝐴𝐴1 = 1
𝑘𝑘2𝑛𝑛 ,  𝐴𝐴2 = 1

𝑘𝑘2𝑛𝑛−2 , ∙∙∙, 𝐴𝐴𝑛𝑛−1 = 1
𝑘𝑘4 , 𝐴𝐴𝑛𝑛 = 1

𝑘𝑘2; 

𝐵𝐵1 = 1
𝑘𝑘2𝑛𝑛−1 ,  𝐵𝐵2 = 1

𝑘𝑘2𝑛𝑛−3 , … , 𝐵𝐵𝑛𝑛−1 = 1
𝑘𝑘3 , 𝐵𝐵𝑛𝑛 = 1

𝑘𝑘
; 𝑐𝑐 = 𝐴𝐴𝑛𝑛 = 1

𝑘𝑘2 and ℓ ∈ ℛ. 

Figure 1: Growth curve of depensation model for 𝑟𝑟 = 1.4, 𝑎𝑎 = 2𝑘𝑘 = 3.2, 𝑦𝑦0 = 1
Notes



   

  

 

If  𝑛𝑛 = 1

 

then 𝑎𝑎 =  3

 

and thus we have, ∫[1/𝑑𝑑3(𝑘𝑘 − 𝑑𝑑)]𝑑𝑑𝑑𝑑 = (𝑟𝑟/𝑘𝑘)𝑑𝑑. The solution 
is obtained using integration by partial fraction and is:

 
ln �

𝑑𝑑
𝑘𝑘 − 𝑑𝑑

� −
𝑘𝑘
𝑑𝑑
−
𝑘𝑘2

2𝑑𝑑2 = 𝑟𝑟𝑘𝑘2𝑑𝑑 + ln �
𝑑𝑑0

𝑘𝑘 − 𝑑𝑑0
� −

𝑘𝑘
𝑑𝑑0
−

𝑘𝑘2

2(𝑑𝑑0)2

 
If  𝑛𝑛 = 2

 

then 𝑎𝑎 =  5

 

and thus we do have ∫[1/𝑑𝑑5(𝑘𝑘 − 𝑑𝑑)]𝑑𝑑𝑑𝑑 = (𝑟𝑟/𝑘𝑘)𝑑𝑑. The 
solution is obtained using integration by partial fraction and is:

 ln �
𝑑𝑑

𝑘𝑘 − 𝑑𝑑
� −

𝑘𝑘
𝑑𝑑
−
𝑘𝑘2

2𝑑𝑑2 −
𝑘𝑘3

3𝑑𝑑3 −
𝑘𝑘4

4𝑑𝑑4 = 𝑟𝑟𝑘𝑘4𝑑𝑑 + ln �
𝑑𝑑0

𝑘𝑘 − 𝑑𝑑0
� −

𝑘𝑘
𝑑𝑑0
−

𝑘𝑘2

2(𝑑𝑑0)2 −
𝑘𝑘3

3(𝑑𝑑0)3 −
𝑘𝑘4

4(𝑑𝑑0)4

 In general by mathematical induction for 𝑎𝑎 = 2𝑛𝑛 + 1 

 

and using partial fraction 
we get the solution: 

 
�

𝑑𝑑𝑑𝑑
𝑑𝑑2𝑛𝑛+1(𝑘𝑘 − 𝑑𝑑)

= �(
𝐴𝐴1

𝑑𝑑
+
𝐴𝐴2

𝑑𝑑2 +
𝐴𝐴3

𝑑𝑑3 +∙∙∙∙ +
𝐴𝐴2𝑛𝑛

𝑑𝑑2𝑛𝑛 +
𝐴𝐴2𝑛𝑛+1

𝑑𝑑2𝑛𝑛+1 +
𝐵𝐵

𝑘𝑘 − 𝑑𝑑
)𝑑𝑑𝑑𝑑 = (𝑟𝑟/𝑘𝑘)𝑑𝑑 + ℓ

 

This is the general solution. Where 𝐴𝐴1 = 1
𝑘𝑘2𝑛𝑛+1 ,  𝐴𝐴2 = 1

𝑘𝑘2𝑛𝑛 ,𝐴𝐴3 = 1
𝑘𝑘2𝑛𝑛−1 , 𝐴𝐴4 = 1

𝑘𝑘2𝑛𝑛−2 ,

∙∙∙, 𝐴𝐴2𝑛𝑛 = 1
𝑘𝑘2 , 𝐴𝐴2𝑛𝑛+1

 

= 1
𝑘𝑘

, 𝐵𝐵 = 1
𝑘𝑘2𝑛𝑛+1

 

and ℓ ∈ ℛ. 

When we combine the above two cases we found that ∀𝑎𝑎 ∈ 𝑍𝑍𝑙𝑙+
 

and 
 

𝑎𝑎 ≥ 2
  

the 
general implicit solution of the depensation model is: 

 

                  
∫ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑎𝑎 (𝑘𝑘−𝑑𝑑)

= 𝑙𝑙𝑛𝑛 � 𝑑𝑑
𝑘𝑘−𝑑𝑑

� − ∑ 1
𝑛𝑛

𝑎𝑎−1
𝑛𝑛=1 �𝑘𝑘  

𝑑𝑑
�
𝑛𝑛

=  𝑟𝑟(𝑘𝑘𝑎𝑎−1)𝑑𝑑 + ℓ                               (2) 

Result (3) is the required particular implicit solution of the depensation model (1).  

           
          𝑙𝑙𝑛𝑛 � 𝑑𝑑

𝑘𝑘−𝑑𝑑
� − ∑ 1

𝑛𝑛
𝑎𝑎−1
𝑛𝑛=1 �𝑘𝑘

 

𝑑𝑑
�
𝑛𝑛

=  𝑟𝑟(𝑘𝑘𝑎𝑎−1)𝑑𝑑 + 𝑙𝑙𝑛𝑛 � 𝑑𝑑0
𝑘𝑘−𝑑𝑑0

� − ∑ 1
𝑛𝑛

𝑎𝑎−1
𝑛𝑛=1 �𝑘𝑘

 

𝑑𝑑0
�
𝑛𝑛
                       (3)          

                                    
 

The following graph represents the stock level of the depensation model. 

 
 
 
 
 
 
 
 
 
 
 
 

  

𝑑𝑑(𝑑𝑑)
 

𝑘𝑘

 

𝑑𝑑
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Case 2: Let  𝑎𝑎 is an odd integer so that 𝑎𝑎 = 2𝑛𝑛 + 1, 𝑛𝑛 ∈ Z+. 

∫[1/𝑑𝑑𝑎𝑎(𝑘𝑘 − 𝑑𝑑)]𝑑𝑑𝑑𝑑 = ∫�1/𝑑𝑑(2𝑛𝑛+1)(𝑘𝑘 − 𝑑𝑑)�𝑑𝑑𝑑𝑑 = (𝑟𝑟/𝑘𝑘)𝑑𝑑 + ℓ, where ℓ ∈ ℛ

Figure 2: Typical solution curve for depensation model for 𝑟𝑟 = 1.6, 𝑘𝑘 = 2.0, 𝑎𝑎 = 3.0

Notes



In figure 2 we have time series plot for depensation model which verifying local 
stability of the three equilibrium point in model (1). The depensation model has two 

equilibrium points namely the trivial and non-trivial equilibrium points 𝑑𝑑 = 0 or 𝑑𝑑 = 𝑘𝑘 

respectively which are obtained by making
dx
dt

= rxa�1− x
k
�= 0. The equilibrium point 

𝑑𝑑 = 0 is semi stable since f ′(0) = 0.  The non-trivial equilibrium point 𝑑𝑑 =  𝑘𝑘 is stable 

for  𝑟𝑟 > 0 and unstable for  𝑟𝑟 < 0[7, 11]. 

IV. Mathematical Bio-Economics of Depensation Model 

A fishery is an area with an associated fish or aquatic population which is 
harvested for its commercial or recreational value. Population dynamics describes the 
ways in which a given population grows and shrinks over time, as controlled by birth, 
death, and emigration or immigration. It is the basis for understanding changing fishery 
patterns and issues such as habitat destruction, predation and optimal harvesting rates. 
With the natural positive population growth the population size can be brought down 
whenever harvesting is introduced. Schaefer catch equation is a bilinear short-term 
harvest function and it assumes that effort always removes a constant proportion of the 

stock. Depensation Mathematical Bio-Economics model is given by 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓(𝑑𝑑) − ℎ(𝐸𝐸, 𝑑𝑑) 
where f(x) = rxa[1 − (x/k)] is the growth function of fish and ℎ(𝐸𝐸, 𝑑𝑑) = 𝑞𝑞𝐸𝐸𝑑𝑑  is the 
harvest function of fish. And thus we do have  

                               (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) = 𝑟𝑟𝑑𝑑𝑎𝑎 [1 − (𝑑𝑑/𝑘𝑘)]− 𝑞𝑞𝐸𝐸𝑑𝑑                                      (4) 

Here in the model (4), 𝑑𝑑(𝑑𝑑) represents fish biomass, 𝑟𝑟 represents intrinsic growth 

rate of fish, 𝑘𝑘 is ecological carrying capacity, 𝑎𝑎 ≥ 0 and 𝑎𝑎 ≠ 1, 𝑑𝑑 is time, (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) is 
growth rate of the fish with harvest function  ℎ(𝐸𝐸, 𝑑𝑑). 

a) Equilibrium Points of Bio-Economics of Depensation Model 

The equilibrium points of model (4) are obtained by making (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) = 0 ⟺
𝑟𝑟𝑑𝑑𝑎𝑎 [1 − (𝑑𝑑/𝑘𝑘)] − 𝑞𝑞𝐸𝐸𝑑𝑑 = 0. This implies that the trivial equilibrium point 𝑑𝑑 = 0 or the 

non-trivial equilibrium point: 𝑟𝑟𝑑𝑑𝑎𝑎−1�1 − (𝑑𝑑/𝑘𝑘)� − 𝑞𝑞𝐸𝐸 = 0 for 𝑎𝑎 > 1 are the equilibrium 

points. If we take  𝑎𝑎 = 2, we get, 𝑟𝑟𝑑𝑑2 − 𝑟𝑟𝑘𝑘𝑑𝑑 + 𝑞𝑞𝑘𝑘𝐸𝐸 = 0. So that the non-trivial 
equilibrium points are  

                                                 𝑑𝑑1 =  𝑟𝑟𝑘𝑘+�(𝑟𝑟𝑘𝑘 )2−4𝑟𝑟𝑞𝑞𝑘𝑘𝐸𝐸
2𝑟𝑟

   𝑜𝑜𝑟𝑟  𝑑𝑑2 = 𝑟𝑟𝑘𝑘−�(𝑟𝑟𝑘𝑘 )2−4𝑟𝑟𝑞𝑞𝑘𝑘𝐸𝐸
2𝑟𝑟

                              (5) 

Provided that  𝑟𝑟𝑘𝑘 > 4𝑞𝑞𝐸𝐸 and since 𝑟𝑟𝑘𝑘 > �(𝑟𝑟𝑘𝑘)2 − 4𝑟𝑟𝑘𝑘𝑞𝑞𝐸𝐸  both equilibrium 

points are positive for positive parameters 𝑟𝑟, 𝑞𝑞,𝐸𝐸 and 𝑘𝑘.  

The stability analysis of the equilibrium points is obtained by identifying the 
algebraic sign of the first derivative of the function at each equilibrium points. That is,  

(𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) = 𝑔𝑔(𝑑𝑑) = 𝑟𝑟𝑑𝑑𝑎𝑎[1 − (𝑑𝑑/𝑘𝑘)]− 𝑞𝑞𝐸𝐸𝑑𝑑. So, its first derivative for 𝑎𝑎 = 2 is,  𝑔𝑔′(𝑑𝑑) =
2𝑟𝑟𝑑𝑑 − 3𝑟𝑟

𝑘𝑘
𝑑𝑑2 − 𝑞𝑞𝐸𝐸. Since 𝑔𝑔′(0) = −𝑞𝑞𝐸𝐸 < 0 implies equilibrium point  𝑑𝑑 = 0 is stable. Next 

we have, 𝑔𝑔′(𝑑𝑑1) = −(𝑟𝑟𝑘𝑘/2) + 2𝑞𝑞𝐸𝐸 − 1
2
�(𝑟𝑟𝑘𝑘)2 − 4𝑟𝑟𝑘𝑘𝑞𝑞𝐸𝐸 < 0 this implies that  𝑑𝑑1

 in (5) is 

stable. Further we have,  𝑔𝑔′(𝑑𝑑2) = − 𝑟𝑟𝑘𝑘
2

+ 2𝑞𝑞𝐸𝐸 + 1
2
�(𝑟𝑟𝑘𝑘)2 − 4𝑟𝑟𝑘𝑘𝑞𝑞𝐸𝐸  this implies that, 

𝑑𝑑2 = 𝑟𝑟𝑘𝑘−�(𝑟𝑟𝑘𝑘 )2−4𝑟𝑟𝑞𝑞𝑘𝑘𝐸𝐸
2𝑟𝑟

  is stable if �(𝑟𝑟𝑘𝑘)2 − 4𝑟𝑟𝑘𝑘𝑞𝑞𝐸𝐸 < 𝑟𝑟𝑘𝑘 − 4𝑞𝑞𝐸𝐸 and unstable otherwise.  
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Notes
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b)  Maximum Sustainable Yield (MSY) Of The  Depensation Model  
Schaefer catch equation is a bilinear short-term harvest function and it assumes 

that effort always removes a constant proportion of the stock.  

                                          𝐻𝐻(𝐸𝐸, 𝑑𝑑) = 𝑞𝑞𝐸𝐸𝑑𝑑                                                   (6) 

Where 𝐻𝐻 =catch measured in terms of biomass; 𝐸𝐸  fishing effort and 𝑞𝑞  is a 
constant catchability of coefficient. And substituting the non-trivial bio-economic 

equilibrium points of (5) in (6) gives the harvesting function as a function of effort  𝐸𝐸. 

Let 𝐻𝐻(𝑑𝑑1,𝐸𝐸) = 𝐻𝐻1(𝐸𝐸)  and 𝐻𝐻(𝑑𝑑2,𝐸𝐸) = 𝐻𝐻2(𝐸𝐸)  then we got  

                    
𝐻𝐻1(𝐸𝐸) = (𝑞𝑞𝐸𝐸/2𝑟𝑟)�𝑘𝑘𝑟𝑟 + �(𝑘𝑘𝑟𝑟)2 − 4𝑘𝑘𝑟𝑟𝑞𝑞𝐸𝐸�                                       (7) 

                       𝐻𝐻2(𝐸𝐸) = (𝑞𝑞𝐸𝐸/2𝑟𝑟) �𝑘𝑘𝑟𝑟 − �(𝑘𝑘𝑟𝑟)2 − 4𝑘𝑘𝑟𝑟𝑞𝑞𝐸𝐸�                                      (8) 

The effort at the maximum sustainable yield denoted by 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀
 

is obtained by 

making the first derivative of  𝐻𝐻
 

with respect to the effort 𝐸𝐸
 

equal to zero. That is 
𝑑𝑑(𝐻𝐻1)
𝑑𝑑𝐸𝐸

= 0, gives 𝐸𝐸 = 0 or
 

𝐸𝐸 = 2𝑘𝑘𝑟𝑟
9𝑞𝑞

 
. Thus, 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 = 2𝑘𝑘𝑟𝑟

9𝑞𝑞
. We have the same result for,  

𝑑𝑑(𝐻𝐻2)
𝑑𝑑𝐸𝐸

= 0.
 

And thus the corresponding Maximum Sustainable Yield in (7) to be

 

𝑀𝑀𝑀𝑀𝑀𝑀1 = 𝐻𝐻1(𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀) =
4𝑘𝑘2𝑟𝑟

27

 

Again the corresponding Maximum Sustainable Yield in (8) to be

 

𝑀𝑀𝑀𝑀𝑀𝑀2 = 𝐻𝐻2(𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀) =
2𝑘𝑘2𝑟𝑟

27

 

From this we conclude that, 𝑀𝑀𝑀𝑀𝑀𝑀1 = 2𝑀𝑀𝑀𝑀𝑀𝑀2.   

c)

 

The Open Access Yield (OAY) For The Depensation Model

 

A work done in [10] shows that economic models of fishery are underlined by 
biological models and it is impossible to formulate any useful economic model of fishery 
without specifying the underlining biological dynamics of the fishery. Based on constant 

price and unit cost of effort the total revenue denoted by 𝑇𝑇𝑇𝑇

 

will be calculated using 

the formula  𝑇𝑇𝑇𝑇(𝐸𝐸) = 𝑝𝑝.𝐻𝐻(𝐸𝐸), where 𝑝𝑝

 

is the average price per kilogram of fish. The 
relationship between cost and effort is assumed to be linear and then the total cost

 

of 

fishing effort denoted by 𝑇𝑇𝑇𝑇

 

is defined as  𝑇𝑇𝑇𝑇(𝐸𝐸) = 𝑐𝑐.𝐸𝐸

 

, where 𝑐𝑐

 

is the unit cost of 

effort that includes cost of labor and capital and 𝐸𝐸

 

is the unit of effort and thus the 

total economic rent of fishery denoted by 𝑇𝑇𝐸𝐸𝑇𝑇

 

defined as 

 

                                   𝑇𝑇𝐸𝐸𝑇𝑇(𝐸𝐸) = 𝑇𝑇𝑇𝑇(𝐸𝐸) − 𝑇𝑇𝑇𝑇(𝐸𝐸)                                          (9) 

At the open access point, total fishing costs are equal to total revenues from the 

fishery. Then the open access effort is obtained by equating  𝑇𝑇𝑇𝑇(𝐸𝐸) = 𝑇𝑇𝑇𝑇(𝐸𝐸). Where  

𝑇𝑇𝑇𝑇(𝐸𝐸)  = 𝑝𝑝𝑞𝑞𝑑𝑑𝐸𝐸

  

and 

 

𝑇𝑇𝑇𝑇(𝐸𝐸)  =  𝑐𝑐𝐸𝐸

 

which yields  𝑝𝑝𝑞𝑞𝑑𝑑𝐸𝐸 = 𝑐𝑐𝐸𝐸. To calculate the effort for 

the Open Access Yield we used two non-trivial equilibria in (5). And thus we have two 
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equations namely  𝑝𝑝𝑞𝑞𝑑𝑑1𝐸𝐸 = 𝑐𝑐𝐸𝐸  and  𝑝𝑝𝑞𝑞𝑑𝑑2𝐸𝐸 = 𝑐𝑐𝐸𝐸. And substituting their corresponding 
values respectively gives 

𝑝𝑝𝑞𝑞
2𝑟𝑟
𝐸𝐸�𝑘𝑘𝑟𝑟 + �(𝑘𝑘𝑟𝑟)2 − 4𝑘𝑘𝑟𝑟𝑞𝑞𝐸𝐸� = 𝑐𝑐𝐸𝐸                                    (10) 

𝑝𝑝𝑞𝑞
2𝑟𝑟
𝐸𝐸�𝑘𝑘𝑟𝑟 − �(𝑘𝑘𝑟𝑟)2 − 4𝑘𝑘𝑟𝑟𝑞𝑞𝐸𝐸� = 𝑐𝑐𝐸𝐸                                      (11) 

From (10), we have 𝐸𝐸 = 0 𝐸𝐸 = 𝑐𝑐𝑟𝑟
𝑝𝑝𝑞𝑞2 �1 − 𝑐𝑐

𝑝𝑝𝑞𝑞𝑘𝑘
� that is 𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀 = 𝑐𝑐𝑟𝑟

𝑝𝑝𝑞𝑞2 �1 − 𝑐𝑐
𝑝𝑝𝑞𝑞𝑘𝑘

� provided, 

𝑐𝑐 < 𝑝𝑝𝑞𝑞𝑘𝑘. 

And thus the corresponding Open Access Yield to be 

𝑂𝑂𝐴𝐴𝑀𝑀1 = 𝐻𝐻1(𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀) =
𝑞𝑞

2𝑟𝑟
.𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀 �𝑘𝑘𝑟𝑟 + �(𝑘𝑘𝑟𝑟)2 − 4𝑘𝑘𝑟𝑟𝑞𝑞𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀� 

𝑂𝑂𝐴𝐴𝑀𝑀1 =
𝑐𝑐

2𝑝𝑝𝑞𝑞
(1 −

𝑐𝑐
𝑝𝑝𝑞𝑞𝑘𝑘

)�𝑘𝑘𝑟𝑟 + �(𝑘𝑘𝑟𝑟)2 −
4𝑘𝑘𝑟𝑟2𝑐𝑐
𝑝𝑝𝑞𝑞

(1 −
𝑐𝑐
𝑝𝑝𝑞𝑞𝑘𝑘

)� 

Equation (11) gives 𝐸𝐸 = 0 or 𝐸𝐸 = 𝑐𝑐𝑟𝑟
𝑝𝑝𝑞𝑞2 �1 − 𝑐𝑐

𝑝𝑝𝑞𝑞𝑘𝑘
� that is 𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀 = 𝑐𝑐𝑟𝑟

𝑝𝑝𝑞𝑞2 �1 − 𝑐𝑐
𝑝𝑝𝑞𝑞𝑘𝑘

� 

provided, 𝑐𝑐 < 𝑝𝑝𝑞𝑞𝑘𝑘. 

And thus the corresponding Open Access Yield to be 

𝑂𝑂𝐴𝐴𝑀𝑀2 = 𝐻𝐻2(𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀) =
𝑞𝑞

2𝑟𝑟
𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀 �𝑘𝑘𝑟𝑟 − �(𝑘𝑘𝑟𝑟)2 − 4𝑘𝑘𝑟𝑟𝑞𝑞𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀�

 

𝑂𝑂𝐴𝐴𝑀𝑀2 =
𝑐𝑐

2𝑝𝑝𝑞𝑞
�1 −

𝑐𝑐
𝑝𝑝𝑞𝑞𝑘𝑘

��𝑘𝑘𝑟𝑟 − �(𝑘𝑘𝑟𝑟)2 −
4𝑘𝑘𝑟𝑟2𝑐𝑐
𝑝𝑝𝑞𝑞

(1 −
𝑐𝑐
𝑝𝑝𝑞𝑞𝑘𝑘

)� 

d) The Maximum Economic Yield (MEY) of Depensation Model 

The maximum economic yield is attained at the profit maximizing level of effort 

which is obtained using equation (9). So,   [𝑑𝑑�𝑇𝑇𝐸𝐸𝑇𝑇(𝐸𝐸)�/𝑑𝑑𝐸𝐸] = 0  implies  [𝑑𝑑�𝑇𝑇𝑇𝑇(𝐸𝐸)�/
𝑑𝑑𝐸𝐸] = [𝑑𝑑�𝑇𝑇𝑇𝑇(𝐸𝐸)�/𝑑𝑑𝐸𝐸]. To calculate the effort for the Maximum Economic Yield we 

used two non-trivial equilibria  𝑑𝑑1
 and 𝑑𝑑2

 in (5). And thus we have two equations 

namely [𝑑𝑑(𝑝𝑝𝑞𝑞𝑑𝑑1𝐸𝐸)/𝑑𝑑𝐸𝐸] =  [ 𝑑𝑑 (𝑐𝑐𝐸𝐸)/𝑑𝑑𝐸𝐸 ]    and    [ 𝑑𝑑(𝑝𝑝𝑞𝑞𝑑𝑑2𝐸𝐸)/𝑑𝑑𝐸𝐸] = [𝑑𝑑(𝑐𝑐𝐸𝐸)/𝑑𝑑𝐸𝐸]. And 

substituting the corresponding values of 𝑑𝑑1
 and 𝑑𝑑2  in these equations give respectively 

                             𝑑𝑑
𝑑𝑑𝐸𝐸
�𝑝𝑝𝑞𝑞

2𝑟𝑟
𝐸𝐸�𝑘𝑘𝑟𝑟 + �(𝑘𝑘𝑟𝑟)2 − 4𝑘𝑘𝑟𝑟𝑞𝑞𝐸𝐸�� = 𝑑𝑑(𝑐𝑐𝐸𝐸)

𝑑𝑑𝐸𝐸
                              (12)

                                                                           

                               
𝑑𝑑
𝑑𝑑𝐸𝐸
�𝑝𝑝𝑞𝑞

2𝑟𝑟
𝐸𝐸�𝑘𝑘𝑟𝑟 − �(𝑘𝑘𝑟𝑟)2 − 4𝑘𝑘𝑟𝑟𝑞𝑞𝐸𝐸�� = 𝑑𝑑(𝑐𝑐𝐸𝐸)

𝑑𝑑𝐸𝐸
                           (13) 

From equation (12), we do have the following  

𝐸𝐸2 −
2𝑟𝑟

9𝑘𝑘𝑞𝑞2 �𝑘𝑘 �𝑘𝑘𝑞𝑞 +
2𝑐𝑐
𝑝𝑝
� −

2𝑐𝑐2

𝑝𝑝2𝑞𝑞
� 𝐸𝐸 +

𝑟𝑟2𝑐𝑐𝑘𝑘
9𝑝𝑝𝑞𝑞3 �1 −

𝑐𝑐
𝑝𝑝𝑞𝑞𝑘𝑘

� = 0

 

Setting

 

𝐴𝐴 =  𝑘𝑘 �𝑘𝑘𝑞𝑞 + 2𝑐𝑐
𝑝𝑝
� − 2𝑐𝑐2

𝑝𝑝2𝑞𝑞
 and

 

𝐵𝐵 = 1 − 𝑐𝑐
𝑝𝑝𝑞𝑞𝑘𝑘

 

, we obtain
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Notes



𝐸𝐸 = 𝑟𝑟
3𝑞𝑞
� 𝐴𝐴

3𝑘𝑘𝑞𝑞
± �� 𝐴𝐴

3𝑘𝑘𝑞𝑞
�

2
− 𝑐𝑐𝑘𝑘𝐵𝐵

𝑝𝑝𝑞𝑞
� ,  provided that   (𝐴𝐴/3𝑘𝑘𝑞𝑞)2 ≥ (𝑐𝑐𝑘𝑘𝐵𝐵/𝑝𝑝𝑞𝑞)  and,  𝐴𝐴 > 0. 

Thus efforts at maximum economic yield are:
 

𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀1 =
𝑟𝑟

3𝑞𝑞
�
�𝑘𝑘 �𝑘𝑘𝑞𝑞 + 2𝑐𝑐

𝑝𝑝 � −
2𝑐𝑐2

𝑝𝑝2𝑞𝑞�

3𝑘𝑘𝑞𝑞
+ ��

1
3𝑘𝑘𝑞𝑞

�
2

�𝑘𝑘 �𝑘𝑘𝑞𝑞 +
2𝑐𝑐
𝑝𝑝
� −

2𝑐𝑐2

𝑝𝑝2𝑞𝑞
�

2

−
𝑐𝑐𝑘𝑘
𝑝𝑝𝑞𝑞

�1 −
𝑐𝑐
𝑝𝑝𝑞𝑞𝑘𝑘

��
 

𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀2=
𝑟𝑟

3𝑞𝑞
�
�𝑘𝑘 �𝑘𝑘𝑞𝑞 + 2𝑐𝑐

𝑝𝑝 � −
2𝑐𝑐2

𝑝𝑝2𝑞𝑞�

3𝑘𝑘𝑞𝑞
− ��

1
3𝑘𝑘𝑞𝑞

�
2

�𝑘𝑘 �𝑘𝑘𝑞𝑞 +
2𝑐𝑐
𝑝𝑝
� −

2𝑐𝑐2

𝑝𝑝2𝑞𝑞
�

2

−
𝑐𝑐𝑘𝑘
𝑝𝑝𝑞𝑞

�1 −
𝑐𝑐
𝑝𝑝𝑞𝑞𝑘𝑘

��
 

And thus the corresponding Maximum Economic Yields in (7) to be

 

𝑀𝑀𝐸𝐸𝑀𝑀1 = 𝐻𝐻1�𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀1�

 

𝑀𝑀𝐸𝐸𝑀𝑀1 =
1
6
�
�𝑘𝑘 �𝑘𝑘𝑞𝑞 + 2𝑐𝑐

𝑝𝑝 � −
2𝑐𝑐2

𝑝𝑝2𝑞𝑞�

3𝑘𝑘𝑞𝑞
+ ��

1
3𝑘𝑘𝑞𝑞

�
2

�𝑘𝑘 �𝑘𝑘𝑞𝑞 +
2𝑐𝑐
𝑝𝑝
� −

2𝑐𝑐2

𝑝𝑝2𝑞𝑞
�

2

−
𝑐𝑐𝑘𝑘
𝑝𝑝𝑞𝑞

�1 −
𝑐𝑐
𝑝𝑝𝑞𝑞𝑘𝑘

�� ×

 

×

⎝

⎜
⎛
𝑘𝑘𝑟𝑟+�(𝑘𝑘𝑟𝑟)2−

4𝑘𝑘𝑟𝑟2

3
�
�𝑘𝑘 �𝑘𝑘𝑞𝑞 + 2𝑐𝑐

𝑝𝑝 � −
2𝑐𝑐2

𝑝𝑝2𝑞𝑞�

3𝑘𝑘𝑞𝑞
+��

1
3𝑘𝑘𝑞𝑞

�
2

�𝑘𝑘 �𝑘𝑘𝑞𝑞 +
2𝑐𝑐
𝑝𝑝
� −

2𝑐𝑐2

𝑝𝑝2𝑞𝑞
�

2

−
𝑐𝑐𝑘𝑘
𝑝𝑝𝑞𝑞

�1 −
𝑐𝑐
𝑝𝑝𝑞𝑞𝑘𝑘

��

⎠

⎟
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𝑀𝑀𝐸𝐸𝑀𝑀2 = 𝐻𝐻1�𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀2�

 

𝑀𝑀𝐸𝐸𝑀𝑀2 =
1
6
�
�𝑘𝑘 �𝑘𝑘𝑞𝑞 + 2𝑐𝑐

𝑝𝑝 � −
2𝑐𝑐2

𝑝𝑝2𝑞𝑞�

3𝑘𝑘𝑞𝑞
− ��

1
3𝑘𝑘𝑞𝑞

�
2

�𝑘𝑘 �𝑘𝑘𝑞𝑞 +
2𝑐𝑐
𝑝𝑝
� −

2𝑐𝑐2

𝑝𝑝2𝑞𝑞
�

2

−
𝑐𝑐𝑘𝑘
𝑝𝑝𝑞𝑞

�1 −
𝑐𝑐
𝑝𝑝𝑞𝑞𝑘𝑘

�� ×

 

×

⎝

⎜
⎛
𝑘𝑘𝑟𝑟+�(𝑘𝑘𝑟𝑟)2−

4𝑘𝑘𝑟𝑟2

3
�
�𝑘𝑘 �𝑘𝑘𝑞𝑞 + 2𝑐𝑐

𝑝𝑝 � −
2𝑐𝑐2

𝑝𝑝2𝑞𝑞�

3𝑘𝑘𝑞𝑞
−��

1
3𝑘𝑘𝑞𝑞

�
2

�𝑘𝑘 �𝑘𝑘𝑞𝑞 +
2𝑐𝑐
𝑝𝑝
� −

2𝑐𝑐2

𝑝𝑝2𝑞𝑞
�

2

−
𝑐𝑐𝑘𝑘
𝑝𝑝𝑞𝑞

�1 −
𝑐𝑐
𝑝𝑝𝑞𝑞𝑘𝑘

��

⎠

⎟
⎞

 

Similarly from equation (13), we have the same effort as the above. And

 

thus the 
corresponding Maximum Economic Yields in (8) to be 

 

𝑀𝑀𝐸𝐸𝑀𝑀3 =
1
6
�
�𝑘𝑘 �𝑘𝑘𝑞𝑞 + 2𝑐𝑐

𝑝𝑝 � −
2𝑐𝑐2

𝑝𝑝2𝑞𝑞�

3𝑘𝑘𝑞𝑞
+ ��

1
3𝑘𝑘𝑞𝑞

�
2

�𝑘𝑘 �𝑘𝑘𝑞𝑞 +
2𝑐𝑐
𝑝𝑝
� −

2𝑐𝑐2

𝑝𝑝2𝑞𝑞
�

2

−
𝑐𝑐𝑘𝑘
𝑝𝑝𝑞𝑞

�1 −
𝑐𝑐
𝑝𝑝𝑞𝑞𝑘𝑘

�� ×
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 Parameter Estimation 

a) Basic Parameters Estimation  

Using the time series data [1], we have the following parameters estimation.  
 
 

Parameters
 

Symbol
 

Value 

Carrying capacity 
 

𝑘𝑘

 

2.57 × 1013𝑘𝑘𝑔𝑔

 

𝑜𝑜𝑓𝑓

 

𝑓𝑓𝑓𝑓𝑓𝑓ℎ

 

Catch ability constant 𝑞𝑞
 

2.197 × 10−11
 

𝑝𝑝𝑝𝑝𝑟𝑟𝑑𝑑𝑎𝑎𝑦𝑦
 

Cost of effort
 

𝑐𝑐
 

182.50
 

𝑏𝑏𝑓𝑓𝑟𝑟𝑟𝑟/𝑘𝑘𝑔𝑔
 

Price of effort

 

𝑝𝑝
 

11𝑏𝑏𝑓𝑓𝑟𝑟𝑟𝑟/𝑘𝑘𝑔𝑔
 

Intrinsic growth rate 𝑟𝑟
 

0.5
 

Table 2:
 
Parameter estimation for depensation model

 

Description

 

Formula Value [
 
kg per day]

 

𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀

 

2𝑟𝑟𝑘𝑘/9𝑞𝑞

 

1.3 × 1023

 

𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀

 

𝑐𝑐𝑟𝑟(1 − (𝑐𝑐/𝑝𝑝𝑞𝑞𝑘𝑘))/𝑝𝑝𝑞𝑞2

 

1.7 × 1022

 

𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀

 

𝑟𝑟(𝐴𝐴 + �𝐴𝐴2 − 𝐵𝐵)/3𝑞𝑞

 

1.29 × 1023

 

𝑀𝑀𝑀𝑀𝑀𝑀

 

4𝑘𝑘2𝑟𝑟/27

 

4.9 × 1025

 

𝑂𝑂𝐴𝐴𝑀𝑀

 

𝑐𝑐(1 − (𝑐𝑐/𝑝𝑝𝑞𝑞𝑘𝑘)) �𝑘𝑘𝑟𝑟 + �(𝑘𝑘𝑟𝑟)2 − 4𝑟𝑟2𝐵𝐵� /2𝑝𝑝𝑞𝑞

 

91.4 × 1023

  

𝑀𝑀𝐸𝐸𝑀𝑀

 

𝑀𝑀𝐸𝐸𝑀𝑀1 = 𝜑𝜑 �𝑘𝑘𝑟𝑟 + �(𝑘𝑘𝑟𝑟)2 − (4𝑘𝑘𝑟𝑟2𝜑𝜑/3)� /6

 

 

48.9 × 1024

 

Where; A = �
𝑘𝑘�𝑘𝑘𝑞𝑞+2𝑐𝑐

𝑝𝑝 �−
2𝑐𝑐2

𝑝𝑝2𝑞𝑞

3𝑘𝑘𝑞𝑞
�, 𝐵𝐵 = 𝑐𝑐𝑘𝑘

𝑝𝑝𝑞𝑞
�1 − 𝑐𝑐

𝑝𝑝𝑞𝑞𝑘𝑘
�, and 𝜑𝜑 = 𝐴𝐴 + √𝐴𝐴2 − 𝐵𝐵
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𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 = 1.3 × 1023

 

𝑀𝑀𝑀𝑀𝑀𝑀1 = 4.89 × 1025

 

𝑀𝑀𝑀𝑀𝑀𝑀2 = 2.45 × 1025

 

𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀 = 1.67 × 1022

 

𝑂𝑂𝐴𝐴𝑀𝑀1 = 91.47 × 1023

  

𝑂𝑂𝐴𝐴𝑀𝑀2 = 2.77 × 1023

  

𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀1 = 1.29 × 1023

 

𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀2 = 8.4 × 1021

 

𝑀𝑀𝐸𝐸𝑀𝑀1 = 48.97 × 1024

 

𝑀𝑀𝐸𝐸𝑀𝑀2 = 46.79 × 1023

 

𝑀𝑀𝐸𝐸𝑀𝑀3 = 23.94 × 1024

 

𝑀𝑀𝐸𝐸𝑀𝑀4 = 6.92 × 1022

 
 

𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 = 2.6 × 1023

 

𝑀𝑀𝑀𝑀𝑀𝑀1 = 9.795 × 1025

 

𝑀𝑀𝑀𝑀𝑀𝑀2 = 4.898 × 1025

 

𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀 = 3.336 × 1022

 

𝑂𝑂𝐴𝐴𝑀𝑀1 = 182.94 × 1023

 

𝑂𝑂𝐴𝐴𝑀𝑀2 = 5.53 × 1023

 

𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀1 = 2.58 × 1023

 

𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀2 = 16.81 × 1021

 

𝑀𝑀𝐸𝐸𝑀𝑀1 = 97.94 × 1024

 

𝑀𝑀𝐸𝐸𝑀𝑀2 = 93.58 × 1023

 

𝑀𝑀𝐸𝐸𝑀𝑀3 = 47.88 × 1024

 

𝑀𝑀𝐸𝐸𝑀𝑀4 = 13.84 × 1022

 
 

𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 = 5.20 × 1023

 

𝑀𝑀𝑀𝑀𝑀𝑀1 =

 

19.59 × 1025

 

𝑀𝑀𝑀𝑀𝑀𝑀2 = 9.795 × 1025

 

𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀 = 6.67 × 1022

 

𝑂𝑂𝐴𝐴𝑀𝑀1 = 365.885 × 1023

 

𝑂𝑂𝐴𝐴𝑀𝑀2 = 11.07 × 1023

 

𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀1 = 5.162 × 1023

 

𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀2 = 33.62 × 1021

 

𝑀𝑀𝐸𝐸𝑀𝑀1 = 195.885 × 1024

 

𝑀𝑀𝐸𝐸𝑀𝑀2 = 187.156 × 1023

 

𝑀𝑀𝐸𝐸𝑀𝑀3 = 95.75 × 1024

 

𝑀𝑀𝐸𝐸𝑀𝑀4 = 27.68 × 1022

 
 

b)

 

The Economic Model Estimation

 

In this section we calculated the profit for

 

depensation models by using

 

real data 
[1]. In a commercial fishery, the appropriate measure of gross benefits is the total 
revenue that accrues to firms. Assuming that fish are sold in a competitive market, each 

firm takes the market price 𝑝𝑝

 

as given and so the revenue obtained from a harvest 𝐻𝐻

 

is 

given by   𝑇𝑇𝑇𝑇(𝐸𝐸) = 𝑝𝑝𝐻𝐻(𝐸𝐸). And finally the economic rent or profit denoted by 𝑃𝑃

 

is 

defined in terms of total cost  

 

𝑇𝑇𝑇𝑇

 

and total revenue 

 

𝑇𝑇𝑇𝑇

 

by  𝑃𝑃 = 𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇. 

 

c)

 

The depensation economic model parameter estimations 

 

In this case we do have the following parameter estimation with the harvest at 

the given type of Effort is obtained by:

 

𝐻𝐻(𝐸𝐸) = 𝑞𝑞𝐸𝐸
2𝑟𝑟
�𝑘𝑘𝑟𝑟 + �(𝑘𝑘𝑟𝑟)2 − 4𝑘𝑘𝑟𝑟𝑞𝑞𝐸𝐸�.  

Table 4:

 

The depensation economic model parameter estimations

 

𝑟𝑟

 

𝑐𝑐

 

𝑝𝑝

 

𝑞𝑞

 

𝑘𝑘

 

𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀

 

𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀

 

𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀

 

𝐻𝐻(𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀)

 

𝐻𝐻(𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀)

 

𝐻𝐻(𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀 )

 

0.5

 

182.5

 

11

 

2.1
× 10−11

 
2.5
× 1013

 
1.3
× 1023

 
1.6
× 1022

 
1.2
× 1023

 
4.8
× 1025

 
91.4
× 1023

  
48.9
× 1024

 

And thus the profit with different type of harvest function is given by:

 

The depensation economic model for Maximum Sustainable Yield (MSY)

 

𝑃𝑃(𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀) = 𝑇𝑇𝑇𝑇(𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀) − 𝑇𝑇𝑇𝑇(𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀) = 𝑝𝑝.𝐻𝐻(𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀) − 𝑐𝑐.𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀

 

𝑃𝑃(𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀) = 53.877549 × 1025 − 237.330848 × 1023 = 51.50424 × 1025

 

𝑏𝑏𝑓𝑓𝑟𝑟𝑟𝑟

 

The depensation economic model for Open Access Yield (OAY)

 

𝑃𝑃(𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀) = 𝑇𝑇𝑇𝑇(𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀) − 𝑇𝑇𝑇𝑇(𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀) = 𝑝𝑝.𝐻𝐻(𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀)− 𝑐𝑐.𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀

 

𝑃𝑃(𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀) = 1006.1903 × 1023

 

− 30.44 × 1023 = 975.7503 × 1023

 

𝑏𝑏𝑓𝑓𝑟𝑟𝑟𝑟

 

The depensation economic model for Maximum Economic Yield (MEY)

 

𝑃𝑃(𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀) = 𝑇𝑇𝑇𝑇(𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀) − 𝑇𝑇𝑇𝑇(𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀) = 𝑝𝑝.𝐻𝐻(𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀) − 𝑐𝑐.𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀

 

𝑃𝑃(𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀) = 538.684 × 1024 − 235.5227436 × 1023 = 515.13173 × 1024

 

𝑏𝑏𝑓𝑓𝑟𝑟𝑟𝑟

 

VI.

 

Results

 

and  Conclusions

 

Biologically overfishing occurs when fish species are caught at a rate faster than 
they can reproduce. A continuous increase of effort might result in an increase catch 
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Table 3: Parameter estimation to depensation model for different values of 𝑟𝑟. 
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but at a decreasing rate or more effort may result in proportionality a smaller harvest, 
which means the additional effort will have less return. 

Using data [1] there is over fishing for different cases of the natural growth rates  
 𝑟𝑟 = 0.5, 𝑟𝑟 = 1   and   𝑟𝑟 = 2 of fish as in table 3. Without loss of any generality we prefer 

to analyze the tabular approximate value for  𝑟𝑟 = 0.5 as our choice of the parameter is 

similar to that of 𝑟𝑟 = 1  and  𝑟𝑟 = 2. When the natural growth rate  𝑟𝑟 = 0.5, carrying 

capacity 𝑘𝑘 = 2.57 × 1013𝑘𝑘𝑔𝑔 𝑜𝑜𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓ℎ, effort for maximum sustainable yield, 𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 =
1.300443 × 1023 𝑘𝑘𝑔𝑔  𝑜𝑜𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓ℎ, effort for open access yield 𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀 = 0.1668069 ×
1023 𝑘𝑘𝑔𝑔 𝑜𝑜𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓ℎ , effort for maximum economic yield 𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀 = 1.2905355813 ×
1023 𝑘𝑘𝑔𝑔 𝑜𝑜𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓ℎ. And thus we observed from these values that all efforts are greater 
than the carrying capacity therefore there is overfishing if we consider the depensation 
model.  

In the economic point of view we have the approximate price of total population 

of fish in [1] is, 28.2 × 1013 𝑏𝑏𝑓𝑓𝑟𝑟𝑟𝑟. In the depensation economic model parameter 

estimations 𝑃𝑃(𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀) = 51.50424 × 1025𝑏𝑏𝑓𝑓𝑟𝑟𝑟𝑟, 𝑃𝑃(𝐸𝐸𝑂𝑂𝐴𝐴𝑀𝑀) = 975.7503 × 1023

 

𝑏𝑏𝑓𝑓𝑟𝑟𝑟𝑟
 and  𝑃𝑃(𝐸𝐸𝑀𝑀𝐸𝐸𝑀𝑀) = 515.13173 × 1024 𝑏𝑏𝑓𝑓𝑟𝑟𝑟𝑟. And  thus  in  the  depensation  model  the 

economic rent or the profit obtained by all kinds of effort are greater than the price of 

the total population of fish and therefore there is overfishing. To keep the sustainability 
of fish we must reduce the effort levels. 
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