

TE X-Rays	
When x-rays are produced and directed toward the patient, they may act in three basic ways:	
They may be	Which means
unabsorbed	they pass through the patient unchanged and strike the x-ray film
completely absorbed	the energy of the x-ray is totally deposited within the patient
scattered	they are deflected within the patient but may still strike the x-ray film

B

X-ray Absorption

- Factors that contribute to X-ray absorption include:
 - The density of the tissue the beam strikes
 - The energy of the X-ray beam (the enery of the X-ray bean is usually fairly constant in posterior/anterior and lateral radiography)

- The term posterior/anterior (PA) refers to the direction of the X-ray beam which in this case traverses the patient from posterior (back) to anterior (front)
- The PA view taken at a distance of 6 feet to reduce magnification and enhance sharpness

Normal Frontal (PA) Chest Radiograph

Lateral Radiograph

• The other routine view is the lateral radiograph

B

- By convention it is taken at a distance of 6 feet and the left side of the chest is held against the X-ray cassette
- Often it is difficult to detect lesions located behind the heart, near the mediastinum, or near the diaphragm on the PA view
- The lateral view generally shows such lesions, so we use it routinely

Normal Lateral Chest Radiograph

Basic Patterns of Disease Consolidation (or airspace filling)

- Interstitial (including linear and reticular opacities, small well-defined nodules, miliary patterns, and peribronchovascular thickening)
- Solitary nodule
- Mass
- Lymphadenopathy
- Cyst/cavity
- Pleural abnormalities

Consolidation

• Also known as air space disease (ASD), alveolar filling disease, or acinar disease

Appearance and findings

Increased opacity

B

- Ill defined, hazy, patchy, fluffy, or cloud-like
- Silhouette sign
- Air bronchograms
- Butterfly or bat-wing pattern
- Lobar or segmental distribution

PA Chest Radiograph (LLL pneumonia consolidation)

Lateral Chest Radiograph (LLL pneumonia consolidation)

Consolidation (Airspace Opacity) (RUL pneumonia)

Basic Patterns of Disease

- Consolidation (or airspace filling)
- **Interstitial** (including linear and reticular opacities, small well-defined nodules, miliary patterns, and peribronchovascular thickening)
- Solitary nodule
- Mass
- Lymphadenopathy
- Cyst/cavity
- Pleural abnormalities

Interstitial Lung Disease (ILD)

Appearance and findings

- Reticular pattern, increased linear opacities
- Interlobular septal thickening (Kerley B lines)
- Peribronchial thickening (cuffing or tram tracking)
- Honeycombing
- Discrete miliary nodules
- Reticulonodular pattern

Miliary Pattern

Basic Patterns of Disease • Consolidation (or airspace filling)

- Interstitial (including linear and reticular opacities, small well-defined nodules, miliary patterns, and peribronchovascular thickening)
- Solitary nodule
- Mass
- Lymphadenopathy
- Cyst/cavity
- Pleural abnormalities

Masses

B

- Nodules and masses are discrete areas of increased lung opacity whose borders do not conform to anatomic divisions (such as a fissure)
- Masses are similar to nodules except that they are larger, measuring greater than 30mm in diameter
- Nodules and masses should be described by noting their size, the sharpness of their borders, their number, their location and the presence or absence of calcification

Basic Patterns of Disease

- Consolidation (or airspace filling)
- Interstitial (including linear and reticular opacities, small well-defined nodules, miliary patterns, and peribronchovascular thickening)
- Solitary nodule
- Mass

R

- Lymphadenopathy
- Cyst/cavity
- Pleural abnormalities

• Enlarged lymph nodes appear on the chest

- radiograph as soft tissue densities in characteristic locations, including:
 - Right paratracheal area
 - Hila
 - Aorticopulmonary window
 - Subcranial mediastinum
 - Supraclavicular area
 - Paraspinous region
 - Retrosternal area on the lateral radiograph
- One or more regions may be involved, and in certain conditions, nodes may calcify

B

Lymphadenopathy

- Hilar enlargement due to adenopathy is frequently lobular
- Thickening of the posterior wall of the bronchus intermedius may be due to lymphadenopathy, tumor or edema
- Lymphadenopathy is often best visualized on the lateral radiograph, when it fills the normally clear infrahilar window with an unexpected contour

Mediastinal Lymphadenopathy

B

Basic Patterns of Disease

- Consolidation (or airspace filling)
- **Interstitial** (including linear and reticular opacities, small well-defined nodules, miliary patterns, and peribronchovascular thickening)
- Solitary nodule
- Mass
- Lymphadenopathy
- Cyst/cavity
- Pleural abnormalities

Cysts and Cavities

B

- Focal lucent areas within the lung may result from cavities, cysts, emphysema, and bronchiectasis
- Pulmonary cysts differ from cavities in that cavities are created by necrosis of lung parenchyma, whereas true cysts are formed by other means
- Pulmonary cavities may result from infection, neoplasm, and infarction
- Pulmonary cysts commonly result from infections, trauma, or toxic ingestion, as well as other rare etiologies

Cysts and Cavities

 Pulmonary cysts and cavities are characterized by noting:

- Their distribution

B

- Their number
- The character of the inner lining
- The thickness of the wall (at the thickest portion, not including air-fluid levels) and
- The nature of the contents of the lesion

Basic Patterns of Disease

- Consolidation (or airspace filling)
- Interstitial (including linear and reticular opacities, small well-defined nodules, miliary patterns, and peribronchovascular thickening)
- Solitary nodule
- Mass

B

- Lymphadenopathy
- Cyst/cavity
- Pleural abnormalities

Pleural Disease Pleural abnormalities are, by definition, outside the lung parenchyma, an air bronchogram cannot be seen

- Pleural abnormalities are usually homogeneous opacities
- In the upright patient, a pleural effusion will form a curvilinear interface with aerated lung that resembles a meniscus. This occurs because the pleural fluid settles dependently within the pleural space
- In the supine patient, a pleural effusion may layer posteriorly in a dependent fashion, creating a hazy opacity over the entire hemithorax

Primary TB in an Adult

Primary TB with Cavitation

Post-Primary (Reactivation) TB (PA View)

Post-Primary (Reactivation) TB (Lateral View)

Paratracheal Adenopathy in HIV

Summary: Chest Radiographs

- Tuberculosis has a myriad of radiographic appearances
- Chest X-rays are snapshots and cannot determine if the disease is active or infectious
- Tuberculosis may present atypically when patients are immune compromised
- Direct comparison to old films is critically important to follow disease progression

