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Abstract. Planktic foraminifera are major marine calcifiers
in the modern ocean, regulating the marine inorganic car-
bon pump, and generating marine fossil archives of past cli-
mate change. The foraminifera contain ecogroups with and
without spines and algal symbionts, creating functional trait
diversity which expands their ecological niches. Here, we
incorporate symbiosis and spine traits into the symbiont-
barren non-spinose foraminifer functional type in EcoGE-
nIE to represent all the extant foraminifera species. We cali-
brated the modelled new traits using Latin hypercube sam-
pling (LHS) and identified the optimal model parameters
from an ensemble of 1200 runs compared with global ob-
servations from core-top sediment samples, sediment traps,
and plankton nets. The model successfully describes the
global distribution and seasonal abundance variation of the
four major foraminiferal functional groups. The model re-
produces the dominance of the symbiont-obligate group in
subtropical gyres and of the symbiont-barren types in the
productive subpolar oceans. Global annual mean biomass
and foraminifer-derived carbon export rate are correctly pre-
dicted compared to data, with biomass ranging from 0.001
to 0.010 mmol C m−3 and organic carbon export 0.002–
0.031 mmol C m−2 d−1. The model captures the seasonal
peak time of biomass and organic carbon export but strug-
gles to reproduce the amplitude of both in productive areas.
The sparseness and uneven distribution of observations and
the model’s limitation in upwelling regions likely contribute
to this discrepancy. Our model overcomes the lack of ma-
jor groups in the previous ForamEcoGEnIE 1.0 version and
offers the potential to explore foraminiferal ecology dynam-
ics and its impact on biogeochemistry in modern, future, and
paleogeographic environments.

1 Introduction

Planktic foraminifera are marine-calcifying zooplankton that
have populated the surface ocean since the mid-Jurassic pe-
riod (∼ 175 Ma). They produce calcite shells (or “tests”) pre-
served in vast amounts of sediments. These sediments pro-
vide proxy archives (e.g. 13C, 18O, Mg/Ca) which are com-
monly used to reconstruct past climate conditions (Tierney et
al., 2020), ocean carbonate chemistry (Hönisch et al., 2012),
and to study the biotic response to environmental change
(Todd et al., 2020). In the modern oceans, foraminifera con-
tribute to 23 %–56 % of the total open-ocean CaCO3 ex-
port (Schiebel, 2002) alongside the other major calcifiers,
such as coccolithophores (Daniels et al., 2018) and pteropods
(Buitenhuis et al., 2019). However, understanding the im-
pacts of environmental change on foraminifera and their role
in the carbon cycle is challenged by their low standing stocks
in the surface ocean, a (semi)lunar reproductive cycle driving
abundances and difficulties in culturing to ground truth phys-
iology (Schiebel and Hemleben, 2017). Modelling planktic
foraminifera and their ecology, therefore, has a critical role
in increasing and testing our understanding of their biologi-
cal and ecological influence on the marine inorganic carbon
cycle and their role as a paleoproxy carrier.

Significant developments of global foraminifera models
have been driven by the increasing number and extent of flux
and community structure observations (Siccha and Kucera,
2017; Buitenhuis et al., 2013; Sunagawa et al., 2020). Most
existing models are either empirically-based or focus on se-
lected extant species. For example, Waterson et al. (2017)
built a Maxent species distribution model based on sedi-
ment core data to study the niche variability during the Last
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Glacial Maximum (LGM) compared to the Holocene. Žarić
et al. (2006) constructed a statistical model that correlated
hydrographical factors with sediment trap abundance of 18
dominant species. Correlative models, though, are limited
for extensive future projections as they assume a constant
environmental niche, neglecting adaptation and acclimation
(Buckley et al., 2010). In addition, niche models do not re-
solve biological interactions which have an important role in
shaping species distribution (Anderson, 2017).

Fraile et al. (2008, 2009), Lombard et al. (2011)
and Kretschmer et al. (2016, 2018) built and extended
ecophysiology-based models (PLAFOM and FORAM-
CLIM) to overcome these limitations. They successfully
reconstructed planktic foraminifera’s geographical distribu-
tion, seasonal and vertical population dynamics, and simu-
lated distributions in different climatologies such as the LGM
(Fraile et al., 2009) and future high-emission scenarios (Roy
et al., 2015). Both models are species-based and therefore
cannot be applied in the deeper geological record older than
the Miocene (>5 Ma) (Kucera and Schonfeld, 2007) due to
a high number of extinct species and cryptic taxa with un-
known novel ecologies (Renaud and Schmidt, 2003). Addi-
tionally, FORAMCLIM uses experimental growth rates to
simulate foraminifera abundance and does not resolve top-
down controls on foraminifera biomass. To fill the model gap
and to leverage the abundant foraminiferal fossil information,
a mechanistic model not limited to species is needed.

Trait-based plankton models are an alternative approach
focusing on organismal traits including morphological and
physiological properties instead of taxonomic identities.
They provide a mechanistic way to mimic the complex ocean
ecology characterising the functional groups, their traits, and
associated benefits and costs (i.e. trade-offs) (Zakharova et
al., 2019; Kiørboe et al., 2018). Models adopting trait-based
approaches have successfully reconstructed the biomass dis-
tribution of diverse marine community including cyanobac-
teria (Follows et al., 2007) and diazotrophs (Monteiro et al.,
2010). This modelling strategy is well suited to be applied
to planktic foraminifera as functional traits such as body size
(Schmidt et al., 2004a), size-normalised weight (Todd et al.,
2020; Barker and Elderfield, 2002), and symbiosis (Spero
and Parker, 1985) are widely measured and studied. The evo-
lution of these functional traits has been described in detail
across the Cenozoic (Ezard et al., 2011).

Critical traits of planktic foraminifera include calcifica-
tion, body size, and the presence and absence of spines
and symbiosis. While calcification and body size are uni-
versal traits for all foraminifera, the evolution of spines and
symbiosis determine the species-level discrepancies (Aze et
al., 2011). Based on the presence of symbionts and spines,
foraminifera can be divided into four functional groups: (1)
symbiont-barren non-spinose; (2) symbiont-barren spinose;
(3) symbiont-facultative non-spinose; (4) and symbiont-
obligate spinose (Table 1). Roughly 19 out of the 50 mod-
ern foraminifera species are symbiotic, bearing eukaryotic

algae such as dinoflagellates, chrysophytes, and haptophytes
(Takagi et al., 2019), though this important relationship is not
established for all taxa. Photosynthesising symbionts pro-
vide extra energy to foraminifera in nutrient-depleted re-
gions (LeKieffre et al., 2018; Ortiz et al., 1995; Uhle et al.,
1999). Consequently, symbiotic species dominate tropical
to subtropical regions, while non-symbiont species (termed
as “symbiont-barren”) reach high abundance in temperate
and polar oceans (Fig. 3). Some symbiont-bearing taxa
cannot live without their symbionts (termed as “symbiont-
obligate”) (Bé et al., 1982) while others are flexible (termed
as “symbiont-facultative”).

The presence of calcareous spine influences the
foraminifera’s feeding behaviour. Non-spinose foraminifera
rely on rhizopodia to capture prey. Spinose foraminifera have
spines extruding from the test that increases their effective
reach range and ability to active prey; this in turn increases
the ability to caption more prey types and larger cell sizes
like copepods (Anderson et al., 1979). Laboratory obser-
vations show that spinose carnivorous foraminifera prefer
food with a high zooplankton-to-phytoplankton protein ratio
(Schiebel and Hemleben, 2017). The effective encounter rate
of a spinose taxon can be 3 orders of magnitude higher than
non-spinose species (Gaskell et al., 2019). Roughly half of
modern species are spinose, but existing models have not
taken this trait advantage into consideration.

Recently, Grigoratou et al. (2019) developed the first
mechanistic and trait-based 0D model (ForamEcoGEnIE 1)
for the symbiont-barren non-spinose foraminiferal group and
coupled it to a carbon-centric Grid-ENabled Integrated Earth
system model (cGEnIE; Grigoratou et al., 2021a), a 3D Earth
System Model of Intermediate Complexity (EMIC), allowing
for fast computational time and widely applied to past cli-
mates including the Paleocene–Eocene Thermal Maximum
(PETM; Ridgwell and Schmidt, 2010), Last Glacial Max-
imum (LGM; Rae et al., 2020) and Cretaceous–Paleogene
(K–Pg) boundary (Henehan et al., 2019). The computa-
tional efficiency and application to a wide range of geolog-
ical periods mean ForamEcoGEnIE can be used to explore
foraminiferal diversity in past climates beyond the limits of
other models (Ezard et al., 2011). Here, we extend the model
to ForamEcoGEnIE 2.0 by resolving three more critical func-
tional groups of planktic foraminifera by adding the traits
of symbiosis and spines (the latter tested in Grigoratou et
al., 2021b). This development therefore focuses on solving
foraminiferal diversity rather than marine carbonate chem-
istry. We tuned the model by comparing it with three global
observational data compilations (sediment core-tops, plank-
ton nets, and sediment traps) and test its ability to reproduce
surface biomass, organic carbon and calcite flux, and geo-
graphic distribution in the modern climate.

Geosci. Model Dev., 16, 813–832, 2023 https://doi.org/10.5194/gmd-16-813-2023



R. Ying et al.: ForamEcoGEnIE 2.0 815

2 cGEnIE ocean and atmosphere physics

ForamEcoGEnIE is based on cGEnIE (carbon-centric Grid-
ENabled Integrated Earth system model). The fast climate
and ocean physics of cGEnIE are based on a coarse-
resolution 3D frictional geostrophic ocean model coupled
to a 2D energy-moisture-balance atmospheric model and
a dynamic–thermodynamic sea-ice model (Edwards and
Marsh, 2005; Marsh et al., 2011). The ocean has a 36× 36
equal-area horizontal grid (uniform in longitude and sine-
uniform in latitude) with 16 logarithmically spaced verti-
cal levels as defined in Cao et al. (2009). The physical
model is coupled with a model of ocean biogeochemical
cycles (Ridgwell et al., 2007; van de Velde et al., 2021),
sea-floor sedimentary processes (Ridgwell and Hargreaves,
2007), and marine ecosystem processes (Ward et al., 2018).
The plankton ecosystem is resolved in the surface layer (0–
80.8 m). The model presented in this study is configured with
a seasonally forced pre-industrial climate state and an atmo-
spheric CO2 concentration restored to 278 ppm.

3 Size-based plankton ecosystem framework
EcoGEnIE

3.1 Biogeochemical tracers

The model has three main state variables: inorganic resources
(ir), living biomass (ib), and detritus (id). Each state vari-
able contains multiple biogeochemical tracers: carbon, phos-
phorus, and iron. Plankton populations are counted in nota-
tion j , and each plankton includes the three tracers above,
although autotroph plankton (phytoplankton and symbiotic
foraminifera) have an extra tracer of chlorophyll (noted in
Chl). Figure 1 shows a schematic of the plankton types
including foraminifera and denotes elements in different
colours.

3.2 Plankton cell size and quota

In EcoGEnIE, individual body size determines key physi-
ological processes including nutrient uptake, photosynthe-
sis, grazing gain, and predation through allometric scaling
(West et al., 1997) because of its role as a master trait among
pelagic organisms (Andersen et al., 2016). The modelled
size-dependent parameters (except for photosynthesis) fol-
low a generic power law: P = aV b, where P is the size-
based parameter, V the spherical biovolume, and a and b the
allometric intercept and exponent, respectively.

A fundamental size-based concept of EcoGEnIE is the
plankton cell quota for various elements. The carbon quota
content (QC) follows the same power law as per Eq. (1).
Variable stoichiometry (Qib , Eq. 2) is achieved by the ra-
tio of assimilated nutrients biomass (Bib , where ib stands for
P, Fe, or chlorophyll) to carbon biomass (BC) (Droop, 1968;
Flynn, 2008). This stoichiometry limits nutrient uptake rate

(Qstat
ib

, Eq. 3) as per Geider et al. (1998), with a higher value
close to its maximum (Qmax

ib
) lowering the nutrient uptake or

chlorophyll synthesis rate. The nutrient quota range (Qmin
ib

,
Qmax
ib

) is proportional to the carbon quota (QC):

QC = aV
b, (1)

Qib =
Bib

BC
, ib = P, Fe, Chl, (2)

Qstat
ib
=

(
Qmax
ib
−Qib

Qmax
ib
−Qmin

ib

)0.1

. (3)

3.3 Plankton biomass dynamics

The biomass of any plankton group (j ) and element (ib),
Bj,ib , varies due to a combination of potential physiological
processes that are determined by the type of organism: nutri-
ent uptake, grazing gains, grazing losses, mortality, and res-
piration loss (Eq. 5). Foraminifera-related specific processes
will be introduced in following sections. We refer readers to
Ward et al. (2018) for the detailed description of EcoGEnIE
that expands on the description below.

∂Bj,ib

∂t
= µj,ib ·Bj,C︸ ︷︷ ︸

nutrient uptake

+Bj,C · λj,ib

J∑
jprey=1

Gj,jprey,ib︸ ︷︷ ︸
grazing gains

−Bjpred,C ·

J∑
jprey=1

Gjpred,j,ib︸ ︷︷ ︸
grazing losses

− mj ·Bj,ib︸ ︷︷ ︸
mortality loss

− rj,C ·Bj,C︸ ︷︷ ︸
respiration loss

. (4)

3.4 Inorganic nutrient dynamics

The inorganic resource state variable (Rir ) varies with nutri-
ent uptake (Vj,ir ) and dissolved inorganic carbon (DIC) with
the living organisms’ respiration (rj,C):

∂Rir

∂t
=


J∑
j=1
−µj,ir ·Bj,C, ir = Fe, P

J∑
j=1
−µj,ir ·Bj,C+

J∑
j=1

rj,CḂj,C, ir = C.
(5)

Additional sources and sinks of nutrients such as remineral-
isation of organic matter and air–sea gas exchange are com-
puted in the biogeochemical module BIOGEM (Ridgwell et
al., 2007).

3.5 Particulate organic matter dynamics

Particulate organic matter (POM) flux (F ) is a combination
of predators’ messy feeding (the first term) and the mortality
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loss (the second term) from all plankton groups (Eq. 6):

F =

J∑
jpred=1

J∑
jprey=1

(1 − βjpred, id
)(1 − λjpred, ib

)Gjpred,jpreyBjpred, C

+

J∑
j=1
(1 − βj )mjBj, id , (6)

where β (subscript j represents every plankton type, whereas
jpred is for predators only) is the fraction of dissolved organic
matter (DOM) subject to diffusion and advection by ocean
circulation. The remaining fraction (1−β) is the particulate
organic matter (POM) subject to redistribution through the
water column by sinking. The parameter β is a sigmoid func-
tion depending on maximum and minimum DOM fraction
(βmax,βmin) of predators’ equivalent sphere diameter (ESD)
and the size βs at which DOM/POM ratio equals 1 (Ward
and Follows, 2016). Smaller cell sizes are associated with
greater proportion as DOM.

β = βmax−
βmax−βmin

1+βs/ESD
. (7)

Messy feeding behaviour is modelled as the unassimilated
fraction (1− λjpred ) of prey which is limited by the size-
independent maximum efficiency coefficient (λm) and the
nutrient limitation (Fe or P):

λ= λm ·min
[
Qstat

P ,Qstat
Fe
]
. (8)

4 ForamEcoGEnIE 1 brief description

ForamEcoGEnIE 1 accounted for the feeding behaviour and
calcification of foraminifera (Grigoratou et al., 2019, 2021a).
It implemented a predator–prey interaction (Gjpred,jprey,C,
Eq. 9) using a Holling type II model (Holling, 1965), where
the overall grazing rate depends on the total available prey
(Fjpred ), the maximum grazing rate of predators (Gm

pred), and
the half-saturation concentration of available food (kjprey ); it
is regulated by temperature limitation (γT), a prey-switching
term (8), and a prey-refuge protection (1− e3Fjpred ). The
other elements’ biomass (Bib ) are then scaled using plank-
ton’s own biomass ratio (Bib/BC). The calcification trait was
included by reducing foraminifera palatability (Pp which in-
fluences Fjpred (Eq. 10) and mortality rate (mj , Eq. 5) to ac-
count for higher protection against predators and infections at
the expense of a lower Gm

foram (Eq. 9). We also introduce the
ForamEcoGEnIE 2 parameters (spine effect τ and a mixotro-
phy limitation λh) here which is set to 1, i.e. not functioning
in ForamEcoGEnIE 1:

Gjpred,jprey,C = γT · λj,h︸ ︷︷ ︸
limitations

·

Gm
j,predFjpred,C

τkjprey,C+Fjpred,C︸ ︷︷ ︸
overall grazing rate

·8jpred,jprey︸ ︷︷ ︸
Switching

· (1− e3Fjpred,C)︸ ︷︷ ︸
prey refuge

, (9)

Fjpred,C = Pj,p ·Bjprey,C

· exp

[
−

(
ln
(
µjpred,jprey

µopt

))2

/(2σ 2
jpred

)

]
. (10)

Predators select their prey (Eq. 10) based on the predator–
prey size ratio µjpred,jprey relative to the optimal value µopt,
the predators’ food range σ 2

jpred
, and the calcification protec-

tion Pp. Foraminifera in both ForamEcoGEnIE 1 and 2 are
set as herbivores.

The grazing process like other metabolic processes in
EcoGEnIE is temperature-dependent, following the universal
metabolic theory (Brown et al., 2004). The body temperature
of ectothermic plankton is determined by the ambient sea-
water environment (T ). Temperature regulation γT acts on
metabolic processes including respiration, nutrient uptake,
and predation. It is modelled through an Arrhenius-like func-
tion (Eq. 12), where the parameter A determines temperature
sensitivity and reference temperature (Tref) is the temperature
allowing γT = 1:

γT = e
A(T−Tref). (11)

The prey-switching term (8jpred,jprey ) simulates the feeding
habitat of zooplankton (Eq. 9). The exponential s defines the
active level of zooplankton predators which capture abundant
prey with higher priority when s increases. Foraminifera in
both ForamEcoGEnIE 1 and 2 are assumed to be ambush
passive predators with s = 1:

8jpred,jprey =

(
Fjpred,C

)s∑J
jprey=1

(
Fjpred,C

)s . (12)

A refuge term (1−e3Fjpred ) in Eq. (9) is added to decrease the
grazing rate when prey availability lowers. The coefficient3
determines the strength of such protection.

5 ForamEcoGEnIE 2: improved calcification and more
functional groups

In ForamEcoGEnIE 2, we add symbiosis and spine traits
for foraminifera to result in four functional groups (Table 1,
Fig. 1). We also implement a new calcification energetic cost
by using a respiration term rather than a reduced maximum
growth rate in ForamEcoGEnIE 1.

5.1 Calcification trait trade-offs

5.1.1 Benefit: mortality protection

The mortality loss term for zooplankton scales with a basal
rate constant mb (Eq. 5). As per Grigoratou et al. (2019,
2021a), this is downscaled for foraminifera by a protection
term Pm, where a lower value of mj indicates a higher pro-
tection from the foraminiferal test against viral and bacterial
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Table 1. The four modelled functional groups of planktic foraminifera and their species representative in ForamEcoGEnIE 2.0.

Spine trait Symbiosis trait Species example Species number* Model implementation

Spinose Symbiont-obligate Globigerinoides ruber 17 This study
Spinose Symbiont-barren Globigerina bulloides 2 This study
Non-spinose Symbiont-facultative Neogloboquadrina dutertrei 5 This study
Non-spinose Symbiont-barren Neogloboquadrina pachyderma 23 Extended from ForamEcoGEnIE 1

∗ Count from Schiebel and Hemleben (2017).

Figure 1. Schematic representation of the ForamEcoGEnIE 2.0 model structure. The model includes the biogeochemical cycles of C, Fe,
and P (shown in different colours), various plankton size classes and four main groups of planktic foraminifera: A – symbiont-barren spinose
group; B – Symbiont-facultative non-spinose group; C – symbiont-barren non-spinose group; D – symbiont-obligate spinose group. DIC
stands for dissolved inorganic carbon and PO4 for phosphate. The model represents nutrient uptake (red arrows), dissolved and particulate
organic matter production (DOM and POM) caused by messy feeding and mortality (dashed arrows), and zooplankton grazing (black arrows).

infections:

mj = Pm,j ·mb. (13)

5.1.2 Benefit: protection from predators (palatability)

As per ForamEcoGEnIE 1.0, calcification protects from
grazing and is defined by Pp which reduces the biomass loss
from predation (Eq. 10).

5.1.3 Cost: higher metabolic cost

We modified the metabolic cost of calcification defined in
Grigoratou et al. (2019, 2021a) by replacing the original

reduced maximum growth rate (or specifically maximum
grazing rate) with a temperature-dependent respiration loss
term. We made this change because (1) extra respiration is
a more biologically realistic cost with (2) this temperature-
dependent term reconciling the model with the low-latitude
biomass observation. The respiration rj present in Eq. (5)
scales with carbon biomass and is multiplied by constant rb
and temperature limitation (Eq. 11). We assumed that the
lost carbon from respiration is instantly recycled back to dis-
solved inorganic carbon (DIC) pool:

rj = rb · γT. (14)
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5.2 Spine trait trade-offs

Spines are an important part of foraminiferal taxonomy.
Spines, like the overall test, are made of calcite. A range of
biological functions are assumed to be linked to symbiosis
and feeding behaviour (Schiebel and Hemleben, 2017).

5.2.1 Benefit: enhanced grazing

Studies show that spinose foraminifera are more efficient in
capturing and digesting prey due to the spine and rhizopodia
networks (Anderson and Bé, 1976). Spines widen the prey
availability of immotile foraminifera and facilitate the cap-
ture of larger preys. Non-spinose species cannot hold active
prey and only accept smaller particles of copepods in the lab-
oratory observations (Anderson et al., 1979; Hemleben et al.,
1989). Grigoratou et al. (2021b) modelled such benefit by
reducing the half-saturation constant (conventionally noted
as k in a Michaelis–Menten model). Here, we adopt this ap-
proach and reduce kjprey by multiplying a scaling parameter
τ (0<τ<1; Eq. 10).

5.2.2 Other trade-offs as calcification: higher
metabolic cost and reduced palatability

We assume that the metabolic cost and protection from the
spines are characterised the same way as for calcification
(Eqs. 13–14). Spinose foraminifera have a higher cost for cal-
cification due to the slightly higher amounts of carbonate and
a stronger protection than non-spinose taxa (Table 2). We did
not reduce the mortality term as this was not supported by
direct evidence.

5.3 Symbiosis trait trade-offs

Symbiosis is a novel trait in the model, commonly seen
in marine organisms including foraminifera. Many plank-
tic foraminifera harbour algae (e.g. dinoflagellate, diatom)
within their cells (Takagi et al., 2019). We represent these
symbiotic species in the model as a single organism which
combines heterotrophy and autotrophy, equivalent to a cal-
cifying mixotroph. We use the trait-based representation
of mixotrophy of Ward and Follows (2016), where any
plankton can “naturally” predate and photosynthesise. While
mixotrophs have this ability in the model, this is turned off
for the rest of plankton (i.e. Vm is 0 for zooplankton and Gm
is 0 for phytoplankton).

5.3.1 Benefit: enabled autotrophy for planktic
foraminifera

The symbiont has a cell size that is defined via a sym-
biont / foraminifera size ratio ψ (Eq. 16) to characterise the
symbiont’s affinity in taking up nutrients and light. Photomi-
crograph observations showed that foraminifera symbionts
are about 1 : 20 smaller in size than the host cell (Takagi et

al., 2019):

Vs = ψ
3Vh. (15)

The generic nutrient uptake of symbionts follows a
Michaelis–Menten function limited by mixotrophy (λs),
quota (Qstat

ir
), and temperature (γT), where the variable (R)

represents nutrient resources. The half-saturation constant is
replaced by nutrient affinity, a more mechanistic parame-
ter for nutrient uptake αir . Nutrient affinity is often referred
to “clearance rate” and regarded as a proxy of competi-
tive strength (Fiksen et al., 2013). According to Edwards et
al. (2012) review on phytoplankton trait trade-offs, nutrient
affinity is negatively related to cell size because of lower sur-
face to volume ratio, while the maximum uptake rate (Vm) is
positively related:

µj,ir = λj,s ·Q
stat
j,ir
· γT ·

V m
j,ir
αj,irRir

V m
j,ir
+αj,irRir

. (16)

The symbionts’ photosynthesis growth is modelled follow-
ing a size-dependent unimodal equation (Geider et al., 1998;
Moore et al., 2001). This equation has higher explanatory
power for eukaryotic phytoplankton cells than a power law
(Bec et al., 2008). The maximum photosynthesis rate Pm

C is
determined by dimensionless parameter Pa,Pb,Pc and the
biovolume of symbiont Vs, and the mixotrophy cost λs:

Pm
j,C =

λj,s
(
Pa + log10Vj,s

)
Pb+Pclog10Vj,s+ log10V

2
j,s
. (17)

The practical photosynthesis rate is further constrained by
nutrient availability (the smallest between γFe and γP), tem-
perature (γT), and light intensity (γI):

Pj,C = P
m
j,C ·min

[
γj,P,γj,Fe

]
· γj,T · γj,I. (18)

Nutrient limitation γir (ir is either P or Fe, see the definition in
Eq. 2) is determined by the minimal value of the phosphorus
or iron limitation term, which follows the quota relationship
in Droop (1968):

γj,ir =
1−Qmin

j,ir
/Qj,ir

1−Qmin
j,ir
/Qmax

j,ir

, ir = Fe, P. (19)

Light limitation follows the model of Moore et al. (2001),
where I represents light intensity, α is initial slope of the
photosynthesis rate–light intensity curve limited by Fe con-
tent (γFe), and QChl is chlorophyll quota.

γj,I = 1− exp

(
−α · γj,Fe ·Qj,Chl · I

Pm
j,C · γj,T ·min

[
γj,P,γj,Fe

]) (20)

5.3.2 Cost: downgrading autotroph and heterotroph
efficiency

The cost of mixotrophy is that both autotrophic and het-
erotrophic processes (i.e. photosynthesis and grazing rates)
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are scaled down (by multiplying factor λs and λh for sym-
bionts and hosts, respectively: 0<λs, λh<1, Eqs. 9 and 16)
compared to the pure autotroph or heterotroph specialist
(Castellani et al., 2013; Våge et al., 2013; Ward and Fol-
lows, 2016). We distinguish between symbiont-obligate and
symbiont-facultative foraminifera using different λs/λh pa-
rameter values to reflect their different dependency on sym-
bionts (Table 2).

5.4 Approximating foraminiferal calcite export using
fixed PIC/POC ratio

Planktic foraminifera produce organic carbon in the sub-
surface water column (Salter et al., 2014) and sequester
inorganic carbon into the deep oceans via their dead
tests (Schiebel, 2002). The organic carbon flux derived
from foraminifera is treated the same way as in EcoGE-
nIE as discussed in Sect. 3.4. The calcite export, spe-
cific to foraminifera, is approximated by multiplying the
foraminiferal bulk organic carbon export with a globally
uniform particle inorganic carbon (PIC) to organic carbon
(POC) molar ratio of 0.36 based on the empirical data by
Schiebel and Movellan (2012).

6 Model parameterisation

6.1 Plankton community size structure

We resolve eight size classes of phytoplankton, seven size
classes of zooplankton, and one size class for each of the
four foraminiferal groups. Phytoplankton and zooplankton
size classes include 0.6, 1.9, 6.0, 19.0, 60.0, 190.0, 600.0,
and 1900.0 µm, with zooplankton missing the smallest class
due to minimum prey size. While the size structure of these
plankton is fixed, we tested the foraminiferal ESD ranging
from pre-adult (60 µm) to adult (600 µm) using the ensemble
described below. Each test contains one randomly assigned
foraminiferal size and this is same for each foraminiferal
group. However, we found that the size (190 µm) from a pre-
vious study (Grigoratou et al., 2021a) still achieved the best
score (Table 2).

6.2 Experiments with sampled parameters

We run an ensemble of 1200 model experiments, each test-
ing a different combination of parameter values (Table 2),
to explore all possible trait values and select the best trait
combinations to match available foraminiferal observations
(Sect. 3.2). The parameter sets are generated using a Latin
hypercube sampling (LHS) algorithm that samples values
of 12 foraminiferal parameters from uniform parameter dis-
tributions (Table 2; Sarrazin et al., 2016). However, sev-
eral rules are set in the sampling: (1) the spinose ones al-
ways own higher palatability and mortality protection (and
corresponding respiration cost) than the non-spinose ones;

(2) the symbiont size for both symbiont-facultative and
symbiont-obligate groups are set to the same value; (3) all the
foraminifera have the same size. Each simulation is run for
250 years continuing from a 10 000-year spin-up simulation
as the ecosystem structure typically reaches equilibrium after
∼ 50 years. The other ecosystem parameters are the same as
Ward et al. (2018) (Table S3).

6.3 Observations for comparison

We used multisource data compilations (sampled from sed-
iment core-tops, sediment traps, and plankton nets) to cal-
ibrate the model (see below). To simplify the model–data
comparison, we assume that the biomass/export changes be-
tween the pre-industrial age (the model) and the present cli-
mate represented in plankton net and sediment trap samples
are negligible. This is because (1) planktic foraminifera have
stably low biomass; and (2) sediment trap and plankton net
data were collected over a wide time range (1970s–2010s)
with changing climatologies.

6.3.1 Relative abundance

We used a sediment core-top census data compilation (Sic-
cha and Kucera, 2017) to represent a long-term mixed Late
Holocene baseline (pre-industrial) to validate the spatial
abundance patterns of each modelled foraminiferal group.
We calculated the modelled relative abundance of each group
based on its carbon export production.

To determine the observed relative abundance, we com-
piled species into functional groups using species traits
defined by Schiebel and Hemleben (2017) and Takagi et
al. (2019) (Table S4). We regridded the observations into the
model grid (averaging each data grid point onto the cGEnIE
grid). We ignored species with less than 3 % local abundance
(a few specimen) to avoid uncertainties caused by transport
via ocean currents (van Sebille et al., 2015) and taxonomic
uncertainties of rare taxa. This threshold is determined by
the standard error of Fisher’s diversity index (Fisher et al.,
1943). We used the Mielke measure (details in Sect. 6.4) to
quantify the model–data fit. We omitted the Arctic Ocean
and the Mediterranean Sea in the model–data comparison
because the model resolution in these regions is too low to
represent adequate ocean physics.

6.3.2 Annual average biomass and export

To validate the modelled biomass and organic carbon export,
we compiled two global datasets: (1) plankton net data from
the first 100 m (if sampled, otherwise the nearest depth that is
no more than 120 m) for biomass and (2) sediment trap data
for carbon export. We converted the units of plankton net
(“number m−3”) and sediment trap data (“number m−2 d−1”)
into “mmol C m−3” and “mmol C m−2 d−1” using the em-
pirical factor of 0.845 µg C per specimen from Schiebel and
Movellan (2012). We converted modelled carbon export pro-
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Table 2. List of the foraminifera-relevant model parameters tested in the global sensitivity analysis (GSA) and identified optimal parameter
values for each foraminiferal group.

Related trait(s) Parameter Description Tested rangea Unit Optimal values Optimal values Optimal values Optimal values
(bnb) (bsb) (snb) (ssb)

Foraminiferal size ESD Equivalent sphere
diameter

[60, 600] µm 190c 190 190 190

Calcification/spine pm Protection from mortality [0–1] 0.6 0.6 0.6 0.6

pp Protection from grazing [0–1] 0.8 0.7 0.8 0.7

r Respiration rate [0–0.02] mmol C d−1 0.04 0.06 0.04 0.06

Spine τ Coefficient of grazing half
saturation

[0–1] / 0.9 / 0.9

Symbiosis ψ Symbiont to foraminiferal
size ratio

[0–0.05] / / 0.0015 0.0015

λs Symbiont autotroph
efficiency

[0–1] / / 0.2 0.8

λh Foraminiferal heterotroph
efficiency

[0–1] / / 0.8 0.55

a All scaling parameters are sampled from values of 0 to 1; respiration terms are as per Ward et al. (2018); the symbiont cell size ratio upper bound is calculated from Takagi et al. (2019). For any other plankton group where
these traits are not relevant, scaling parameters are set to 1 and cost parameters are set to 0. b bn – symbiont-barren non-spinose; bs – symbiont-barren spinose; sn – symbiont-facultative non-spinose; ss – symbiont-obligate
spinose. c The bold parameters are also shown in other groups with same trait(s).

duction (mmol C m−3 d−1) into “mmol C m−2 d−1” multi-
plying it by the surface-layer depth (80.8 m) to compare with
sediment-trap-generated export observations. The full list of
plankton net and sediment trap data sources is in Tables S1
and S2.

Both datasets are classified by species and were regrid-
ded into the model resolution following the methods of the
core-top data. We calculated the annual average at each
grid point to remove seasonality and interannual variabil-
ity. However, the plankton nets are mostly sampled within
1 month (Fig. S1) and represent a day’s snapshot, such that
the annual mean biomass is likely overestimated as the nets
would be typically sampled during higher production times.
In contrast, sediment traps are deployed over 6 months or
more (Fig. S1), thereby capturing seasonal variation. Sedi-
ment traps were deployed at different depths, typically over
1000 m and thereby deeper than our surface layer. We as-
sume that sediment trap depth has negligible impact on
foraminiferal export because foraminiferal tests sink rela-
tively fast due to large size (Takahashi and Be, 1984; Car-
omel et al., 2014).

6.3.3 Seasonality

To complement the annual comparison, we analysed the
modelled seasonal pattern by finding each group’s first month
with peaking production. We also provided a comparison
with plankton net and sediment trap data for most sam-
pled locations in the Supplementary Material. We did not at-
tempt to calculate the Mielke measure (Sect. 6.4) for seasonal
model–data comparisons because (1) the temporal coverage
of observations is too low at most locations, and (2) the num-
ber of available locations is insufficient, creating large spatial
bias towards specific oversampled locations.

6.4 Model performance metrics

We used the Mielke measure, or M-score (Watterson, 1996;
Watterson et al., 2014), to quantify the model–data fit in
(1) relative abundance and (2) annual average biomass/car-
bon export (Eq. 21). This metric is a non-dimensional trans-
formed mean square error combining mean and variance in-
formation (Gregoire et al., 2011; Hemer and Trenham, 2016).
The score spans from −1 (low performance) to 1 (high per-
formance) with 0 representing no predictive skill, and nega-
tive values representing negative correlation:

M =
2
π

arcsin

[ ∑n
i=1(Mi −Oi)

2/n

σ 2
m+ σ

2
o + (µm−µo)

2

]
. (21)

The numerator corresponds to the mean square error, withMi

andOi denoting the model and observational value in the ith
grid point, respectively, and n the total number of grid points.
The variance and mean are respectively denoted as σ 2 and µ,
with superscripts m and o representing model and observed
fields, respectively.

6.5 Global sensitivity analysis

We conduct a global sensitivity analysis (GSA) to explore the
model robustness of our 1200 experiments using the PAWN
method (Pianosi and Wagener, 2015). This method measures
the sensitivity of model outputs (focusing on the M-score
here) to different values of 12 input parameters (shown in
Table 2). A total M-score is calculated by summing scores
of each foraminiferal group in biomass, POC export, and
relative abundance (i.e. the total score ranges from −12 to
12). To further measure the uncertainty and robustness of
the GSA results, we also apply a bootstrapping method with
1000 resamples. This approach enables us to understand the
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confidence intervals of the sensitivity indices without run-
ning more experiments (Wagener and Pianosi, 2019). We
bootstrapped our data using the rsample package (Frick et
al., 2022) in the R software environment v4.1 (R Core Team,
2021).

7 Model results

7.1 Model ensemble results

The 1200-member ensemble shows the ability to reproduce
the observed POC export and relative abundance in terms
of spatial pattern and values (both with the highest total
M-score>1.0) but struggles with capturing the observed
biomass (total M-score<0.5) (Fig. 2). The M-score heatmap
(Fig. 2) shows that the model runs cluster into four groups
when compared to the three observational datasets. Clus-
ter C, covering most parameter combinations, has an overall
low performance in predicting foraminiferal metrics. Clus-
ter D shows an inverse abundance distribution compared to
the observation. Cluster B only predicts POC export. Clus-
ter A achieves the highest (i.e. the best) relative-abundance
M-score with good predictions for biomass and POC export.
Cluster A is also the only cluster with low foraminiferal ex-
port, suggesting that low export is associated with parameter
values required to have a high total M-score. The sensitivity
analysis confirms this, as model performance is sensitive to
those parameters controlling the source/sink of foraminiferal
export: symbiont size (ψ), autotrophy efficiency (λs), and
palatability reduction (Pp) (Fig. 3). Models with low ex-
port production and higher M-scores tend to have smaller
foraminiferal size and symbiont-to-host size ratio (for sym-
biotic groups) that facilitates the survival of foraminifera in
the low-nutrient regions like subtropical gyres. These runs in
cluster A also tend to have less than 20 % decreased palata-
bility caused by the shell and a high respiration cost, driv-
ing low biomass and export (Fig. S2). In contrast, the runs
with negative scoring (Cluster D) have larger foraminiferal
size and higher protection against grazing (Fig. S3). These
results suggest that foraminiferal body size and the calcifica-
tion trait have a crucial role in foraminiferal distributions to
achieve a match to the observed data. Questions addressing
the size trait in more detail, like life history and geographic
size distribution (Schmidt et al., 2004b), cannot be answered
with this model ensemble as all foraminiferal groups are as-
signed the same narrow cell size per run, even though they
vary between runs.

We selected the model with the parameter set (Table 2) that
leads to the highest total M-score (Table 3), hereafter termed
the optimal model. This optimal model also has the highest
M-score for the relative abundance (group mean= 0.3) for
each group (Fig. S5) and POC export (group mean= 0.16;
Fig. S4). More details are discussed in the next sections.

Figure 2. Foraminiferal M-score heatmap of the model ensemble
for foraminiferal biomass (plankton net data), POC export (sedi-
ment trap data), relative abundance (sediment core-top data). Each
of the first three columns shows the M-score sum of the four
foraminiferal groups, and the fourth column shows the sum of the
left three columns. The right panel shows the global annual mean
export production of all foraminiferal groups. The ensemble clus-
ter was derived from a complete linkage clustering algorithm (Leg-
endre and Legendre, 1998). Higher M-scores have a better perfor-
mance against observations, whilst negative values stand for nega-
tive correlation.

7.2 Relative abundance distribution of foraminiferal
groups

Our optimal model run compares generally well with the
core-top data showing the relative spatial distribution of the
four foraminiferal functional groups (Fig. 4; Table 3). The
model agrees with the presence/absence of most groups in
the sediment trap and plankton net studies (Figs. 5 and 6).
The model suggests that the symbiont-obligate spinose group
is the most abundant with a global abundance of 60.7 %
(Fig. 4g), dominating the tropical open oceans. In con-
trast, the symbiont-barren non-spinose (Fig. 4a) and spinose
groups (Fig. 4c) dominate in the mid-to-high latitudes, con-
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Table 3. M-score values across foraminiferal groups for the optimal parameter set. The total foraminiferal M-score is the sum of the M-scores
of the four functional groups.

M-scores

Groups Symbiont-barren Symbiont-barren Symbiont-facultative Symbiont-obligate Total
non-spinose spinose non-spinose spinose foraminifera

Biomass 0.19 0.08 −0.05 −0.05 0.17
POC export 0.11 0.07 0.43 0.02 0.63
Relative abundance 0.51 0.35 0.02 0.32 1.20

Row sum 0.81 0.50 0.40 0.29 2.00

Figure 3. Model parameter sensitivity for overall model perfor-
mance (summed M-scores). Bar boundaries indicate the 95 % con-
fidence interval with the thick line showing the mean value. The
grey line indicates the non-influential upper limit of the index
value as control group. sn – symbiont-facultative non-spinose; ss
– symbiont-bearing spinose. cal – the abbreviation of calcification;
τ is the spine effect on grazing rate.

tributing 25.5 % and 9.4 % of the global foraminiferal abun-
dance, respectively (note that the symbiont-barren spinose
type contains a small number of taxa with a relatively high
contribution to the abundance). The model underestimates
the symbiont-facultative group (Fig. 4e) with visible model–
data disparities in the eastern equatorial pacific where the
sediment data show high abundance. This discrepancy may
be due to the resistance to dissolution of some species (e.g.
N. dutertrei) in high productivity settings as suggested in a
previous model study (Lombard et al., 2011). Importantly
though, it is not very clear what triggers the presence or ab-
sence of symbionts, why this relationship changes and often
the taxa are less well studied. The fact that the summed abun-
dances of these two symbiotic groups agree with the observa-
tions indicates the ability of the symbiont-facultative group
to exploit the same benefits as the symbiont-obligate one.
It also highlights our need to better understand how often
symbiosis is used by the former group and what triggers the
switch to the loss of symbionts.

Overall, the modelled root mean square error (RMSE) of
relative abundance varies between 12 % and 42 % (Table S5).
This result is comparable to the previous species-based mod-
els, like FORAMCLIM (5 %–23 %, Lombard et al., 2011)
and PLAFOM (22 %–25 %, Fraile et al., 2009), which rely
on well-established foraminiferal species observations. Our
results affirm that symbionts and spines and their assumed
trade-offs are sufficient to explain significant parts of the rel-
ative abundance’s geographic distribution. The distribution
of non-symbiotic foraminifera in the model follows the bio-
geography of the prey abundance with high numbers in high-
nutrient areas (Fig. S6). In contrast, symbiotic foraminifera
grow in low-nutrient areas because they have small-sized
symbionts with high nutrient affinities. The model underesti-
mates symbiont-barren spinose foraminifera (mainly G. bul-
loides) in the Arabian Sea and South China Sea (Fig. 4c, d),
probably because the model does not include their carnivo-
rous feeding strategy.

7.3 Annual average biomass of foraminiferal groups

The model reproduces low biomass in planktic foraminifera
in agreement with the plankton net data (Fig. 5).
The global annual mean biomass ranges from 0.001
to 0.010 mmol C m−3, equivalent to 0.08–0.8 mmol C m−2,
with the largest contribution from the symbiont-barren non-
spinose group (Fig. 7). Integrating across all groups, the
model estimates a global foraminiferal biomass of 6.83 Tg C
(Fig. 7). Our annual mean biomass estimate is within
the MAREDAT project result (0.24–0.94 mmol C m−2)
(Schiebel and Movellan, 2012).

The optimal model M-score is low for biomass when com-
pared to the plankton net tow (<0.2; Table 3), possibly be-
cause of the low data coverage and the previously mentioned
intrinsic seasonal bias in the data compared to annual aver-
ages. Our ensemble resulted in higher M-scores for biomass,
but at the cost of a lower M-score for relative abundance and
export.
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Figure 4. Relative abundance of the four modelled (a, c, e, g) planktic foraminiferal function groups, compared to the ForCenS sediment
core-top dataset (b, d, f, h; Siccha and Kucera, 2017). Subplot titles show the M-scores derived relative to observations and the global mean
of relative abundance.

7.4 Annual average POC and calcite export of
foraminiferal groups

The model reproduces consistent distributions and magni-
tude of POC export compared to sediment trap data for all
four groups (Figs. 6 and 7). The model estimates a POC
export of 0.002–0.031 mmol C m−2 d−1, which agrees well
with 0.001–0.026 mmol C m−2 d−1 for the sediment trap
data, despite a medium total M-score for the model POC ex-
port (0.63) likely caused by the limited geographic coverage
akin to the biomass comparison.

Globally, the model suggests a foraminifera-derived
organic carbon export of 0.1 Gt C yr−1, dominated by

the symbiont-barren non-spinose group (55 %), followed
by the symbiont-barren spinose, symbiont-facultative, and
symbiont-obligate groups (30 %, 3 %, and 11 %, respec-
tively). Integrating across the ecogroups and using the empir-
ically averaged PIC:POC ratio of 0.36 (Schiebel and Movel-
lan, 2012), our model estimates a total calcite flux of pelagic
foraminifera of 0.033 Gt PIC yr−1 (Fig. 8). This model esti-
mate is at least 5 times smaller than Schiebel (2002)’s esti-
mate of 0.16–0.39 Gt PIC yr−1 (for the top 100 m). There are
a number of possible reasons for this: (1) a field site selec-
tion bias to avoid regions which have very low abundance,
(2) our calibration of modelled surface export with deep sed-
iment traps data characterised by typically lower export (as
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Figure 5. (a, c, e, g) ForamEcoGEnIE 2.0 annual average foraminiferal biomass (mmol C m−3) compared with plankton net data (b, d, f, h)
for the four main functional groups of planktic foraminifera.

deployed at about 2 km depth), and (3) the temporal variabil-
ity of observation which is not well captured in the model.

7.5 Seasonal variations of foraminiferal biomass and
POC export

Our model shows the different seasonal patterns for each
foraminiferal group (Fig. 9), generally consistent with sed-
iment trap study (Jonkers and Kučera, 2015). Jonkers and
Kučera (2015) divide the foraminiferal assemblages into a
warm group (representing the symbiont-bearing group), cool
and temperate group (representing the two symbiont-barren
groups), and deep-dwelling group according to their sea-
sonal cycle patterns. The cool/temperate group blooms in

spring or summer (Fig. 9a), while the warm group in trop-
ical oceans shows weak and random seasonality (Fig. 9d).
The model also captures the earlier-when-warmer signature
in the cool/temperate group, i.e. the peaking time is strongly
coupled to temperature gradient from high to low latitude
(Fig. 9a).

The model generally underestimates seasonal amplitudes
of export production (Fig. S7). Plankton net data cannot be
compared seasonally due to the very short nature of data col-
lection, despite the general agreement (Fig. S8). The low
model export production is not unique to our model and
also evident in PLAFOM 2.0 (Kretschmer et al., 2018).
Intra-annual variabilities in abundance are driven by the sea-
sonal environmental changes which determine how optimal
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Figure 6. (a, c, e, g) ForamEcoGEnIE 2.0 foraminiferal annual average POC export (mmol C m−2 d−1) below the euphotic zone (80.8 m) in
comparison to sediment trap samples (b, d, f, h).

foraminifera are in the ecological niche. While temperature
is often assumed as the primary driver for foraminiferal ecol-
ogy (Schmidt et al., 2004b; Be and Hamlin, 1967), many
other parameters such as primary productivity are correlated
with temperature and hence difficult to separate their ef-
fects (Jonkers and Kučera, 2015). We suggest that additional
functional trait data collections assessing temporal variabil-
ity, increased geographic coverage, information on deeper-
dwelling species, and information on life history traits will
contribute to resolve this gap in the future.

8 Comparison to prior model iterations

By comparing ForamEcoGEnIE 2.0 with EcoGEnIE (Ward
et al., 2018) and ForamEcoGEnIE 1.0 (Grigoratou et al.,
2021a), we find that adding foraminiferal groups increases
the total plankton mean body size in the tropical and sub-
tropical regions by roughly 20 % due to the larger size of
foraminifera (modelled as 190 µm, Fig. 10c). At the same
time, the new iteration decreases the plankton mean size in
subpolar areas (<10 %) due to additional grazing pressure by
foraminifera on the plankton. In contrast, the total plankton
biomass stays almost the same between the model versions
because of the low standing stocks of foraminifera. Net pri-
mary productivity (NPP) and POC export also do not change,
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Figure 7. Global ForamEcoGEnIE 2.0 annual average biomass and POC export produced by the four foraminiferal groups: (a) modelled
(red) and observational (blue) biomass (mmol C m−3); (b) POC export below the euphotic zone (mmol C m−3 d−1). Bar height and error
bar represents the spatial mean value and standard error, respectively. Panels (c) and (d) show the globally integrated model estimates for (c)
carbon biomass (Gt C) and (d) export production (EP, Gt C yr−1).

Figure 8. Global ForamEcoGEnIE 2.0 estimates for (a) sur-
face foraminiferal calcite flux (at 80.8 m; mmol C m−2 yr−1) and
(b) groups contribution.

apart from a small drop in the subpolar regions due to en-
hanced foraminiferal grazing. Therefore, ForamEcoGEnIE
2.0 performs as well as the previous version in terms of total
plankton size, biomass, carbon export, and NPP, while cap-
turing foraminiferal diversity and biogeography.

While ForamEcoGEnIE 2.0 developments focused on im-
proving diversity in plankton ecology, it also lays the foun-
dation for future studies on the ocean carbon cycle under
different climates, past or future. For example, the inclusion
of spinose foraminifera is important for particle sinking as
they produce and export more calcite than their non-spinose

Figure 9. The peak month of modelled biomass annual time series
of each foraminiferal group in our best ForamEcoGEnIE 2.0 run.
Note that the months in Southern Hemisphere indicate the opposite
seasonality of the Northern Hemisphere.

counterpart (Takahashi and Be, 1984). It also opens the door
for studies of past climates by expanding the foraminiferal
global niche, which may influence the ocean carbon cycles
by changing the locations of calcite export and distribution of
surface alkalinity. So far, no Earth system model has included
foraminiferal groups acting on the carbon cycle, which would
be an important avenue for future research.
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Figure 10. Comparison of the tuned ForamEcoGEnIE 2.0 (third column, with four foraminiferal groups) with EcoGEnIE (first column; Ward
et al., 2018) and ForamEcoGEnIE 1.0 (second column, with non-spinose non-symbiont foraminifera only; Grigoratou et al., 2021a) for (a–c)
total plankton mean size, (d–f) total plankton biomass, (g–i) total POC export, and (j–l) net primary production (NPP). The first column
displays absolute values while the latter two show the ratio relative to the first column.

9 Model limitation

While making explicit progress in including planktic
foraminifera into a modelling framework with a range of
traits, ForamEcoGEnIE 2.0 is limited by the non-explicit im-
plementations of spines and symbiosis. Currently, our model
represents symbiosis based on mixotrophy implementation.
According to the definition of mixotrophy types in Mitra
et al. (2016), our modelling approach falls within consti-
tutive (inherent or innate) mixotrophy rather than the non-
constitutive mixotroph grouping. Such indirect photosymbi-
otic relationships in the model might miss any differential
climate sensitivities of symbiont and host. Furthermore, the
current parameterisation of calcification, spines, and symbio-
sis will not respond directly to environmental changes, such
as bleaching at high temperatures (Edgar et al., 2013) or re-
duced weight under high CO2 (Barker and Elderfield, 2002).
However, relying on parameterisation is common in EMICs
(Claussen et al., 2002), as quantitative experimental studies
are lacking now to define the trade-offs and benefits. Further-
more, this lack of understanding of trade-off and their change
during development currently makes it impossible to model
the life cycle, though further development would be the in-
clusion of size classes other than 190 µm.

Some potentially important trait interactions and physio-
logical variation are not included in the model. For example,
the model assumes that the spine and symbiosis are indepen-
dent. However, observations suggest that foraminifera sym-
bionts are placed along spines during daytime (LeKieffre et

al., 2018), increasing the efficiency of the symbiont’s photo-
synthesis due to a higher surface area relative to non-spinose
species by avoiding shading.

10 Ecosystem model implementation and complexity

Current coupled Earth system and ecosystem models mostly
rely on nutrient–plankton–zooplankton–detritus (NPZD)
(Keller et al., 2012; Watanabe et al., 2011) or plankton func-
tional type (PFT) (Moore et al., 2001; Aumont et al., 2015)
approaches. The NPZD models focus on biogeochemical
fluxes and ignore diversity of phytoplankton and zooplank-
ton. In contrast, PFT models explicitly represent plankton
functional types (e.g. diatoms, coccolithophores) and size
classes (e.g. picoplankton, nanoplankton, microplankton),
improving performance in reconstructing observed patterns
like Chl a (Quéré et al., 2005) or peak production in olig-
otrophic areas (Tréguer et al., 2018). Additional traits beyond
size, like symbiosis (Suggett et al., 2017) or body extension
(Ohman, 2019), play an important role in determining plank-
ton feeding, metabolism, and export efficiency but are often
missing in the current generation of coupled models. Trait-
based models, such as Darwin (Follows et al., 2007) and
EcoGEnIE (Ward et al., 2018), resolve higher plankton di-
versity by linking key traits with trade-offs (e.g. the allomet-
ric relationships for size), allowing a more continuous rep-
resentation based on physiology (Follows and Dutkiewicz,
2011). This approach enables the inclusion of non-culturable
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species or species with limited laboratory data. Uniquely,
this modelling approach also allows us to characterise extinct
taxa and past geological records with different physiologies
and niches.

There is still a debate on whether higher ecosystem com-
plexity is needed (Anderson, 2005; Quéré et al., 2005) as
more parameters introduce more freedom and longer run
time. However, recent studies highlight the importance of
biodiversity in the marine biological pumps (Tréguer et al.,
2018). The presence of functional groups like diazotroph can
alter the response of primary productivity to global warming
(Bopp et al., 2022). Therefore, compared to the simple food
web structure in current models, ecosystem implementation
is very likely going to improve the future prediction of bio-
logical carbon pump and carbon cycle (Wilson et al., 2022)
building on novel additions in models of ecosystem complex-
ities such as more functional types, variable stoichiometry,
and nutrient co-limitations (Séférian et al., 2020).

11 Summary

In this study, we extended the trait-based planktic
foraminiferal model, ForamEcoGEnIE, to include symbio-
sis and spine traits and thereby resolve all main foraminiferal
functional groups. Using Latin hypercube sampling, we gen-
erated 1200 parameter samples and compared these with
three global observational sources: sediment surface core-
top, plankton nets, and sediment traps. We assessed the
model performance describing biogeographic distributions,
and quantifying carbon biomass and foraminifera-derived
carbon export. Our global sensitivity analysis shows that the
symbiosis and the palatability reduction due to the spinose
test strongly influences model performance. Our best set of
model parameters successfully reproduces the modern bio-
geographical distribution of the four foraminiferal ecogroups
and produces a global annual mean biomass (0.001 to
0.010 mmol C m−3) and foraminifera-derived organic car-
bon export (0.002–0.031 mmol C m−2 d−1) close to observa-
tions. The two symbiont-barren groups account for 85 % of
standing stocks and foraminifera-derived carbon export. The
model accurately reproduces the peak time of seasonal time-
series observations of foraminiferal biomass and organic car-
bon flux but performs poorer in seasonal amplitudes, par-
ticularly in upwelling regions. These results provide confi-
dence in the model’s ability to explore foraminiferal ecol-
ogy and diversity in the geological record, for example of
the last glacial maximum, as well as helping to solve riddles
about their ecology in the past. The trait-based framework of
the cGEnIE ecosystem provides the potential to extend the
model by presenting more traits such as life history and dif-
ferential calcification rates across groups.
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