
If Microsoft SQL Server 2000 can do it,
you can do it too . . .
Here’s everything you need to harness the power of SQL Server 2000, Microsoft’s high-performance, Web-enabled
client/server database and data analysis package. With a focus on performance and data integrity, database
expert Paul Nielsen shows you how to design performance into your database from day one. From basic installation
to working with XML, monitoring, and performance tuning — a topic so hot, it merits an entire section — Nielsen
provides clear instructions, sound theory, and a special “Best Practice” icon that points to the most effective way
to accomplish a given task. It’s more than a guidebook; it’s your total SQL Server 2000 toolkit.

Shelving Category:
SQL Server/Database

Reader Level:
Beginning to Advanced

System Requirements:
PC running Windows XP, 2000 Pro, Win NT 4
with SP 5 or later. See “What’s on the CD-ROM”
appendix for details and complete system
requirements. ISBN 0-7645-4935-9

$49.99 USA
$74.99 Canada
£37.50 UK

Master the
bestselling
client/server
database platform

Build high-
performance,
enterprise-class
databases

Analyze data
with advanced
SQL techniques

Paul Nielsen

“Something for everyone . . . this book includes examples
to demonstrate concepts along with little-known

technical information about SQL Server.”
—Melinda S. King, President of Best Technology Solutions, Inc.

,!7IA7G4-fejdfj!:p;o;t;T;T

Sample applications,
utilities, code
examples, and

more on CD-ROM BONUS
CD-ROM
Includes 6 sample databases,
10,000+ lines of code, SQL
Server Utilities, and useful Web links

w w w . w i l e y . c o m / c o m p b o o k s /

100%
O N E H U N D R E D P E R C E N T

C O M P R E H E N S I V E
A U T H O R I T A T I V E
W H A T Y O U N E E D
O N E H U N D R E D P E R C E N T

• Sample database applications and code examples from the book
• SQL Server utilities
• Links to Web sites, including the author’s SQL Server Web site,

www.IsNotNull.com

SQL Server 2000
Bible

*85555-BAHJHh

SQL Server 2000
MicrosoftMicrosoft

NIELSEN

®®

Inside, you’ll find complete coverage
of SQL Server development
• Design database schemas for performance, adapt integrity, and agility
• Understand ACID and Transactional Integrity and

build rock-solid databases
• Use relational algebra to write powerful queries
• Tune indexes as the bridge between data and query
• Analyze Query Execution plans for performance
• Create T-SQL stored procedures, triggers, and user-defined functions
• Share data using DTS, distributed queries, XML, and ADO.NET
• Analyze data with Analysis Services
• Add advanced scalability, availability, performance, and

portability to your database

100%
C O M P R E H E N S I V E

™™

Explore the numerous tasks available
within Enterprise Manager.

Learn to analyze
query execution

plans to see
what’s affecting

performance

Paul Nielsen explains
how to accomplish

database tasks using
the graphical tools
and using the raw

SQL code.

M
icrosoft

SQ
L Server 2000

M
icrosoft

SQ
L Server 2000

® ®

™ ™

w w w . S Q L S e r v e r B i b l e . c o m

BONUS CD-ROM!

549359 Cover 11/15/02 1:53 PM Page 1

Dear Valued Customer,

We realize you’re a busy professional with deadlines to hit. Whether your goal is to learn a new
technology or solve a critical problem, we want to be there to lend you a hand. Our primary objective is
to provide you with the insight and knowledge you need to stay atop the highly competitive and ever-
changing technology industry.

Wiley Publishing, Inc., offers books on a wide variety of technical categories, including security, data
warehousing, software development tools, and networking — everything you need to reach your peak.
Regardless of your level of expertise, the Wiley family of books has you covered.

• For Dummies – The fun and easy way to learn

• The Weekend Crash Course –The fastest way to learn a new tool or technology

• Visual – For those who prefer to learn a new topic visually

• The Bible – The 100% comprehensive tutorial and reference

• The Wiley Professional list – Practical and reliable resources for IT professionals

The book you hold now, Microsoft SQL Server 2000 Bible, is your 100% comprehensive guide to developing
database projects for SQL Server 2000. If you are new to SQL Server, or client/server technology, SQL
Server 2000 Bible is everything you need to incorporate best practices into your database development.
Beginning with database design theory, Paul Nielsen and his team of experts guide you through
developing SQL Server databases, developing data connections, administering SQL Server and keeping
your databases performing at their peak with a section on performance tuning and optimization. Our
commitment to you does not end at the last page of this book. We’d want to open a dialog with you to see
what other solutions we can provide. Please be sure to visit us at www.wiley.com/compbooks to review
our complete title list and explore the other resources we offer. If you have a comment, suggestion, or
any other inquiry, please locate the “contact us” link at www.wiley.com.

Finally, we encourage you to review the following page for a list of Wiley titles on related topics. Thank
you for your support and we look forward to hearing from you and serving your needs again in the
future.

Sincerely,

Richard K. Swadley
Vice President & Executive Group Publisher
Wiley Technology Publishing

WILEY
advantage

The

more information
on related titles

549359 FM.F 11/21/02 4:06 PM Page oi

The Next Level of SQL Server Books
Available from Wiley Publishing

Available at your favorite bookseller or visit www.wiley.com/compbooks

A
D

V
A

N
C

E
D

IN
T
E

R
M

E
D

IA
T
E

0-7645-4939-5

Covers everything
needed to
know how to use
SQL Server 2000

0-471-21970-3

Protect information
by properly designing
and maintaining
security at the
database level.

0-7645-4699-6

An indispensable
reference to
Oracle-SQL
Server integration.

549359 FM.F 11/21/02 4:06 PM Page oii

Microsoft® SQL Server™

2000 Bible

549359 FM.F 11/21/02 4:06 PM Page i

549359 FM.F 11/21/02 4:06 PM Page ii

Microsoft® SQL™

Server 2000 Bible

Paul Nielsen

549359 FM.F 11/21/02 4:06 PM Page iii

Microsoft SQL Server 2000 Bible

Published by
Wiley Publishing, Inc.
909 Third Avenue
New York, NY 10022
www.wiley.com

Copyright © 2003 by Wiley Publishing, Inc., Indianapolis, Indiana

ISBN: 0-7645-4935-9

Library of Congress Control Number: 2002110311

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/RT/RS/QS/IN

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 750-4470. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-Mail:
permcoordinator@wiley.com.

is a trademark of Wiley Publishing, Inc.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Trademarks: Wiley, the Wiley logo and related trade dress are trademarks or registered trademarks of Wiley Publishing,
Inc., in the United States and other countries, and may not be used without written permission. Microsoft is a trademark or
registered trademark of Microsoft Corporation. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE
ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A
PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS
OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

549359 FM.F 11/21/02 4:06 PM Page iv

About the Authors
Paul Nielsen has been a programmer since 1979 and has focused exclusively on
database development since the early ’80s. After serving a term with the US Navy
Submarine Service as a Data Systems Technician Petty Officer, Paul became a com-
puter trainer and consultant, which led to writing computer magazine articles.

Paul co-authored a book with Peter Norton in the early ’90s and contributed several
chapters to various programming and database books. He was the initial technical
editor for Access Advisor Magazine, and has spoken at several computer conferences
including Microsoft Tech-Ed, and ICCM.

Over the course of a couple decades, Paul has developed several database projects
using a variety of database products and tools. Much of the work has centered on the
manufacturing industry, and insurance regulation databases. Recently, Paul was the data
modeler and SQL Server developer for a team that built an MRP/II inventory system.

Of the 98,000 who have taken the BrainBench.com RDBMS Concepts certification
test, at the time of this writing, Paul ranks fifth in the United States.

Currently, Paul is a database developer with Compassion International, a Christian
organization dedicated to releasing children from poverty in Jesus’ name. He is also
a part-time SQL Server instructor with Learning Tree. When not thinking about
database development, Paul plays a Taylor guitar, reads the New Living Translation,
listens to Natalie Cole, and watches his kids grow up way too fast.

Brian Patterson currently works as a software developer in central Illinois. Brian has
been writing for various Visual Basic publications since 1994 and has co-authored
several .NET related books, including Migrating to Visual Basic .NET and C# Bible.
Brian is exceptionally well rounded and in his spare time he likes to program, write
about programming, and read about programming. He can generally be found posting
in the MSDN newsgroups and is reachable by e-mail at briandpatterson@msn.com.

Pierre Boutquin is a senior software architect in the treasury of a major Canadian
bank, where he helps develop leading-edge market risk management software. He has
more than a decade of experience implementing PC-based computer systems, along
with an in-depth knowledge of distributed systems design, data warehousing, Visual
Basic, Visual C++, and SQL. He has co-authored many programming books and has
also contributed material on C#, VB, COM+, XML, and SQL for others. Koshka and
Sasha, his two adorable Burmese cats, own most of Pierre’s spare time. While petting
them, he often thinks how nice it would be to find more time and get back into chess
or keep up with news from Belgium, his native country. Pierre can be reached at
boutquin@hotmail.com.

Todd Meister is a developer specializing in Microsoft technologies. He has been a
developer for over 10 years and has published articles for both ActiveWeb
Developer and MSDN Magazine. Todd can be reached at tmeister@tmeister.com.

549359 FM.F 11/21/02 4:06 PM Page v

Credits
Senior Acquisitions Editor
Sharon Cox

Project Editor
Andy Marinkovich

Technical Editor
Bobbie Townsend

Copy Editor
Sarah Kleinman

Editorial Manager
Mary Beth Wakefield

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Bob Ipsen

Executive Editorial Director
Mary Bednarek

Project Coordinator
Erin Smith

Graphics and Production Specialists
Sean Decker, Melanie DesJardins,
Carrie Foster, Heather Pope

Quality Control Technicians
John Tyler Connoley, Andy Hollandbeck

Proofreading and Indexing
TECHBOOKS Production Services,
Johana VanHoose

549359 FM.F 11/21/02 4:06 PM Page vi

This work is dedicated to the author of the true Bible,
our heavenly Father, “Hallowed be Thy Name.”

My heart, love, and blessing goes to you my wife, Melissa,
not for anything you do but because of who you are and

how you complete me. God blessed me greatly the day we met.
I can’t imagine any other life or any better life. Thank you

for your love, compassion, faithfulness, and sweetness.
I will never forget.

549359 FM.F 11/21/02 4:06 PM Page vii

549359 FM.F 11/21/02 4:06 PM Page viii

Preface

Welcome to this Book
SQL Server is an incredible database product. I have personally developed with about
a dozen different database products and I enjoy working with SQL Server more than
any other. It offers an excellent mix of performance, reliability, and ease of administra-
tion, yet enables the developer to control minute details when desired. SQL Server is
a dream system for a database developer. Developing with SQL Server is a pleasure.
The first goal of this book is to share with you the fun of working with SQL Server.

SQL Server is a big product. To cover every nuance of every command would con-
sume several thousand pages. With that in mind, the second goal for this book is to
provide a concise yet comprehensive guide to SQL Server based on the information
I have found most useful in my experience as a database developer, consultant, and
instructor.

A wise database developer once showed a box to an apprentice and asked, “How
many sides do you see?” The apprentice replied, “There are six sides to the box.” The
experienced database developer then said, “Users may see six sides, but database
developers only see two sides, the inside and the outside. To the database developer,
the cool code goes inside the box.” This book is about thinking inside the box.

The Writing Style
I don’t like filler text, screen shots stepping through wizards, or page-length query
results, so this book avoids them. If a result set is long, it is abbreviated with an
ellipsis in the listing. Wizards are explained with a numbered list.

Chatty writing tends to get in the way of the facts. First person writing is generally
reserved for when I want to write directly to you from my experience, or share my
opinion. The goal for the writing style is that every sentence adds value to the
book. I doubt I reached that goal, but that was my intent.

549359 FM.F 11/21/02 4:06 PM Page ix

x Microsoft SQL Server 2000 Bible

Conventions
This book uses the following style guidelines:

✦ New terms are italicized as they are defined in the text.

✦ When code is referenced within the text, the code words are set in mono-
space type. Sometimes those same SQL keywords are used as concepts. For
example, inner join is used both as SQL code and in referring to the concept
of a type of join.

✦ Some of the code samples are long. To draw attention to the main point of the
code, important keywords in code are highlighted in bold.

✦ For consistency sake, the code conventions are similar to those used by
Microsoft SQL Server Books online.

Icons
The following icons are used in this book to offer additional tips and information
about the topics in the book:

In several places in this book, material overlaps. For example, when installing SQL
Server, one decision has to do with the authentication mode used for security.
Rather than constantly refer you to other parts of the book, I’ve tried to provide
enough information so that the immediate issue is covered without being too
redundant. Even so, there are numerous cross-references throughout the book so
more detail on a topic may be easily looked up.

Best Practice icons indicate where I add to the factual material in the book with
my opinions and lessons I’ve learned from my own experience.

Note icons emphasize additional facts about the topic at hand.

Caution icons caution you about potential negative effects if a procedure or pro-
cess is not precisely executed.

Caution

Note

Cross-
Reference

549359 FM.F 11/21/02 4:06 PM Page x

xiPreface

Walking Through the Book
A well-designed database is born not in the code, but in the planning. The same is
true for a book. There’s a purpose to the organization of this book. So that you
understand the direction and destination of this book, here’s the reasoning behind
its organization.

Development Philosophy
This book is based on a certain client/server development philosophy. The following
themes reverberate throughout the book.

✦ Transactional Integrity (ACID) is fundamental to the database.

✦ SQL is a set-oriented environment and SQL code should be set-oriented rather
than procedural or row-based.

✦ The physical database schema is designed to serve the query.

✦ Processing should be moved as close to the data as possible.

✦ Performance is designed into every aspect of the database; it’s not a final
optimization step. However, slow and right beats fast and wrong every time.

✦ Excellent database development requires a thorough understanding of the
underlying theory, the best practices, and the database tools.

Organization
The chapter organization of the book went through several evolutions. The final
chapter plan is designed to segment the chapters into the most logical sequence for
study as well as reference.

Part I — Laying the Foundation
Provides a foundation for developing database projects with SQL Server. If you’re
new to SQL Server 2000, this part introduces SQL Server and the theory behind
database development.

Part II — Developing SQL Server Databases
Covers actual database development from creating the database to advanced
server-side code. The real fun of SQL Server development is writing server side
code. This part explains how and provides some interesting code examples. If
you’re a server-side developer or a front-end developer who needs to learn more
about SQL Server, this section is designed for you.

549359 FM.F 11/21/02 4:06 PM Page xi

xii Microsoft SQL Server 2000 Bible

Part III — Data Connectivity
The database is the center of a multitude of applications using multiple data con-
nectivity methods. Depending on your particular environment, choose the chapter
that applies to you.

Part IV — Administering SQL Server
Every database requires administration, maintenance, and security. Whether
administration is your primary responsibility or if it falls under the “other duties
as assigned” part of your job description, this part of the book is for you.

Part V — Advanced Issues
Tuning and optimization is always a hot topic. The final part presents a few
advanced topics to take the book to the next level.

The Sample Databases
This book is more than just the text on the pages. The CD-ROM includes the SQL
DDL code to create the tables and stored procedures for the five sample databases,
as well as the scripts to populate them with sample data. Appendix B contains more
details about the sample databases.

Learning is a combination of new information and new experiences. To get the most
out of this book, install the databases on your computer and work through the
chapters’ sample code. I had fun writing the book and developing these databases; I
hope your experience is equally as enjoyable.

www.IsNotNull.com
Paul Nielsen publishes the Web site www.IsNotNull.com, which contains a series of
articles focused on SQL queries, database development, and optimization, in addi-
tion to sample code, on-line polls, recommended resources, and performance tips.

Your Input
I want to hear from you. Which sections did you enjoy? What did you learn? What
section did you skip over? There will be new editions of this book that follow the
new versions of SQL Server. What should be added to the next edition of the book?
Your comments matter so please e-mail me at pauln@IsNotNull.com.

549359 FM.F 11/21/02 4:06 PM Page xii

Acknowledgments

A special thank you to Dr. Breeze and everyone in the University Hospital
Neuro ICU in Denver, Colorado for the gentle care given to my wife during

her last two weeks with us.

To my daughter, Lauren, “Daddy loves his little girl.” You are growing into an
incredible young lady. And to my son, David, watching you develop in the family
tradition of engineering brings me great joy. And, things are being put back
together more often these days, too! I’m very proud of you both. Hey kids, the
book’s fi-na-lly done! Lauren, let’s FedEx in some white pizza from Dante’s in
Hickory! Hey Dave! My multiplayer computer game suspension is over! Let’s head
to Best Buy and pick out a new game. I love you both.

To my friend, Kennedy Kinyanjui Wainaina in Kenya, I’m proud of you and your
studies. Thank you for your prayers. Keep up the good work and God bless you.

Thank you Wess Stafford, Mark Ambrose, Margo Beaven, Chuck Boudreau, Tim
Chambers, Jim Finwick, Kaye Garten, Laura Goins, Aravindan Gurumurthy, Greg
Hollmann, Brian Houghtaling, Ragu Maddipati, Scott Noll, Jim Pruett, Rod Stricklin,
Steve Thompson, Bob Towry, Anthony Virgil, Alan Werckle, and my other team
members at Compassion International in Colorado Springs and around the world.
I truly believe we are fighting the good fight against poverty and I’m grateful that
I’m working with you.

I’m indebted to Phil Senn, one of the best programmers I know, for the many
lunches discussing Dilbert, programming style, good database design, the conflict
between innovation and stability, and the difficulty of finding good management
these days.

Hoorays to the entire Microsoft SQL Server team for developing a set of software
that’s truly a database developer’s dream. Go Bill!

I’m indebted to Bobbie Townsend for her efforts as technical editor. She is one of the
most professional instructors I know and she knows SQL Server inside and out. She is
a Microsoft Certified Professional and has owned her own consulting company since
1992. Her company provides customized software development and training. She is a
book author and has served as the technical editor for multiple books and classes. If
any of you need professional SQL Server assistance, I would not hesitate to recom-
mend Bobbie. She can be reached via email at BobbieTownsend@Hotmail.com.

549359 FM.F 11/21/02 4:06 PM Page xiii

xiv Microsoft SQL Server 2000 Bible

I have been greatly influenced and have learned significantly from a few select
database heroes. Joe Celko is at the top of my list of people I listen to. Credit is
also due to SQL authors E.F. Codd, Chris J. Date (even though you’re wrong about
nulls), Sharon Dooley, Kalen Delaney, Ken Henderson, B.P. Margolin, and Bill
Vaughn. Thank you all. I’m no Isaac Newton, but his saying “If I have seen further
than you, it is only by standing on the shoulders of giants,” rings true for me.

Recognition and appreciation goes out to Gary Fletcher for his contributions to the
early design of this book.

Thank you all to the Learning Tree SQL Server course authors: Jamie Beidleman,
Sharon Dooley and her cats, Geoff Ballard, Efrem Perry, Dag Hoftun Knutsen; my
fellow Learning Tree SQL Server instructors: Scott Whigham, Melinda King,
Bobbie Townsend, Nathan Stevens; and professionals: Sandra Thayer, Robin
Hunter, Colleen Harrison, and Pete Peterson. I’ve enjoyed working alongside the
experts at “the Tree.” Moreover, thank you to my students — your interest and
questions contributed greatly to this book.

A hearty “thanks!” goes out to my fellow programming buddies who provided a peer
review of this book, submitted questions/SQL problems, or from whom I’ve learned
some best practices or tips: Gary Lail, Donny Beard, Lauck Benson, Steve Miller,
Dave Catherman, Robin Jueschke, Carl Federl, Lynn Garten, David Scott, Pascal Gill,
Dan Adamson, Hilary Cotter, Hirantha S. Hettiarachchi, Bill Carver, Tom Sallese,
Todd Porter, and, of course, Dean Vrables U.S.M.C. To my other friends on the SQL
Yahoo Groups, too many to list, Thank You. Your conversation and feedback made
the solitary process of writing so much more enjoyable, and your questions and
comments greatly improved this book.

Mark Ambrose did a final code walk-through on the sample databases and the
chapter code. Thank you, Mark.

Thank you Master Chief Miller, U.S.N., C.S.T.S.C. Mare Island, CA., who 20 years ago
started me on the database developer path. To any of my old Navy friends, please
send me an e-mail at pauln@IsNotNull.com.

Appreciation and honors to Matt Wagner of Waterside Productions for handling the
business side of writing. Without hesitation, I recommend Matt and Waterside
Productions to anyone desiring to have their words actually read by others. Having
a trustworthy agent who really works for you makes a world of difference.

A grand “thank you!” to the folks at Wiley Publishing (formerly Hungry Minds, for-
merly IDG). Thanks to Terri Varveris for first envisioning this book and working
through the numerous outline revisions with me. It was a pleasure working with
you. To Sharon Cox and Chris Webb, thank you for your management of the book.
To Sarah Kleinman, I greatly appreciate you and your contribution to the quality of
this book. And, thank you, Andy Marinkovich, for your style direction, excellent

549359 FM.F 11/21/02 4:06 PM Page xiv

xvAcknowledgments

editing, and smoothing of the material. I am grateful for the way all of you handled
the final issues with the book while I was focused on my wife during her medical
crisis. Thank you.

Credit is shared with the other authors who contributed material to this book: Brian
Patterson, who took over the final stages of the author review process while I tended
to my wife during her illness; Anthony Virgil, who contributed material to Part III,
“Administering SQL Server;” Joseph Gagliardo, who assisted with the writing of
Chapter 20, “Replicating Databases,” and Chapter 22, “XML and Web Publishing;”
John Paul Mueller, who authored Chapter 21, “ADO and ADO.Net;” Pierre Boutquin,
who wrote Chapter 25, “Automating Database Maintenance with SQL Server Agent;”
and Todd Meister, who penned Chapter 31 “Analysis Services.” I couldn’t have done
it without all of you.

Hazzah! to Microsoft/Ensemble Studios and LucasArts Entertainment for Star Wars
Galactic Battleground: Clone Campaigns, aka “AOE-Star Wars.” AOE is the chess
of the digital age. Besides SQL Server, it’s the most fun on a computer I’ve had since
DEC-Trek.

549359 FM.F 11/21/02 4:06 PM Page xv

Contents at a Glance
Preface . ix
Acknowledgments . xiii

Part I: Laying the Foundation . 1
Chapter 1: Introducing SQL Server . 3
Chapter 2: Modeling the Logical Database Schema 33
Chapter 3: Installing and Configuring SQL Server 61
Chapter 4: Using SQL Server’s Developer Tools . 89

Part II: Developing SQL Server Databases 109
Chapter 5: Implementing the Physical Database Schema 111
Chapter 6: Retrieving Data with Select . 155
Chapter 7: Merging Data Using Relational Algebra 215
Chapter 8: Searching Full-Text Indexes . 267
Chapter 9: Creating Views . 289
Chapter 10: Modifying Data . 303
Chapter 11: Transactional Integrity . 335
Chapter 12: Programming with Transact-SQL . 367
Chapter 13: Developing Stored Procedures . 403
Chapter 14: Building User-Defined Functions . 425
Chapter 15: Implementing Triggers . 435
Chapter 16: Advanced Server-Side Programming 449

Part III: Data Connectivity . 495
Chapter 17: Transferring Databases . 497
Chapter 18: Working with Distributed Queries 507
Chapter 19: Migrating Data with DTS . 529
Chapter 20: Replicating Databases . 547
Chapter 21: ADO and ADO.NET . 563
Chapter 22: XML and Web Publishing . 593

549359 FM.F 11/21/02 4:06 PM Page xvi

Part IV: Administering SQL Server . 623
Chapter 23: Configuring SQL Server . 625
Chapter 24: Maintaining the Database . 655
Chapter 25: Automating Database Maintenance with SQL Server Agent 671
Chapter 26: Recovery Planning . 687
Chapter 27: Securing Databases . 717

Part V: Advanced Issues . 749
Chapter 28: Advanced Performance . 751
Chapter 29: Advanced Availability . 779
Chapter 30: Advanced Scalability . 793
Chapter 31: Analysis Services . 809
Chapter 32: Advanced Portability . 831

Appendix A: Resources . 835
Appendix B: Sample Databases . 837
Appendix C: SQL Server 2000 Specifications . 847
Appendix D: What’s on the CD? . 851

Index . 853
End-User License Agreement . 891

549359 FM.F 11/21/02 4:06 PM Page xvii

549359 FM.F 11/21/02 4:06 PM Page xviii

Contents
Preface . ix

Acknowledgments . xiii

Part I: Laying the Foundation 1

Chapter 1: Introducing SQL Server . 3
The Client/Server Database Model . 4

Desktop Databases . 4
Client/Server Databases . 4
Client/Server Roles . 6
N-Tier Design . 7

The Advantages of SQL Server . 8
ACID Properties and High Availability 8
SQL Server Has Become the Standard 8
SQL Server Security . 9
SQL Server Performance and Scalability 9
Balanced and Complete . 11
Out of the Box Experience . 11
Developer Flexibility . 11
Price and Performance . 12

Selecting the Right SQL Server 2000 Edition 13
Enterprise (Developer) Edition . 13
Standard Edition . 15
Personal Edition . 15
MSDE/Desktop Engine . 16
SQL Server CE Edition . 16
Licensing SQL Server 2000 . 16
MSDN Universal . 16

Server Components . 17
SQL Server Engine . 17
SQL Server Agent . 17
Distributed Transaction Coordinator (DTC) 18
Microsoft Search Service . 18
SQL Mail . 18
English Query . 18
Data Transformation Services . 19
Analysis Services . 20

549359 FM.F 11/21/02 4:06 PM Page xix

xx Microsoft SQL Server 2000 Bible

Client Components . 20
Server Network Utility . 21
Client Network Utility . 21
SQL Server Service Manager . 21
Enterprise Manager . 21
Query Analyzer . 21
Command-Line Utilities: Isql, osql, Bulk Copy 22
SQL Books On-Line . 22
SQL Profiler . 23
Performance Monitor . 23
MSDTC Administrative Console . 24
IIS Virtual Directory Manager . 24
SQL Server Resource Kit . 24

Transact SQL . 24
Client Applications . 25

DB-Lib . 25
ODBC/DSN . 25
OLE-DB/ADO . 25
Microsoft Access . 26
Excel . 26
Visio . 27
Data Analyzer . 27

Certifications and Training . 27
Microsoft MCP . 28
MCDBA . 28
Learning Tree SQL Server 2000 Certifications 29
Brainbench.com . 29
Conferences . 30

SQL Server in a Brave New .Net World . 30
.Net and Application Development . 30
.Net and XML . 31
Microsoft BizTalk and EDI . 31
How SQL Server Fits into .Net . 32
The Future . 32

Summary . 32

Chapter 2: Modeling the Logical Database Schema 33
Database Basics . 34

Benefits of a Digital Database . 34
Tables, Rows, Columns . 34
Transaction Processing Databases . 35
Decision Support Databases . 35
Digital Nervous System . 36

Data Modeling . 36
Gathering Project Requirements . 37
Logical Database Schema . 37

549359 FM.F 11/21/02 4:06 PM Page xx

xxiContents

Visible Entities . 38
Identifying Multiple Entities . 38
Modeling Relationships . 40
Normalization . 47

Data Integrity . 52
Entity Integrity . 53
Domain Integrity . 53
Referential Integrity . 53
User-Defined Integrity . 53

Object-Oriented Database Design . 54
Dynamic/Relational Database Design . 56

Basic Dynamic/Relational Design . 57
Dynamic/Relational Front-End Programming 58
Advanced Dynamic/Relational Database Design 58

Summary . 59

Chapter 3: Installing and Configuring SQL Server 61
Planning Your Installation . 61

Operating System . 61
Planning the Security Accounts . 62
Planning the File Locations . 63
Planning the Sort Collation . 63
Planning the Network Protocols . 64
Planning the Authentication Mode . 65
Planning the Server Instances . 65

Hardware Recommendations . 67
Dedicated Server . 67
Copious Memory . 67
Using Multiple CPUs . 67
Disk-Drive Subsystems . 68
Network Performance . 70

Performing the Installation . 71
Attended Installations . 71
Unattended Installations . 73
Installing Multiple Instances . 74
Testing the Installation . 74

Installing Service Packs . 74
Upgrading from Previous Versions . 75

Upgrading from SQL Server 7 . 75
Upgrading from SQL Server 6.5 . 75
Upgrading from Versions Previous to 6.5 76
After Upgrading . 76
Database Compatibility Level . 76

Upsizing from Access . 77
Converting to a Client/Server Design 77
Using the Access Upsizing Wizard . 78
Access .adp Front-End Applications . 80

549359 FM.F 11/21/02 4:06 PM Page xxi

xxii Microsoft SQL Server 2000 Bible

Migrating to SQL Server . 82
Upgrading from MySQL . 82
Migrating from Oracle . 82

Removing SQL Server . 83
Client Connectivity . 83

Server Network Utility . 83
Client Network Utility . 84

Exploring System Databases and Tables . 84
System Databases . 84
Pubs and Northwind . 85
System Tables . 86
Information Schema Views . 87

Summary . 88

Chapter 4: Using SQL Server’s Developer Tools 89
Using Service Manager . 89
Using Enterprise Manager . 91

The Microsoft Management Console Add-In 91
Connecting to a Server . 92
Server Properties . 93
Navigating the Tree . 93
Taskpad . 96
Menus and Toolbars . 97
The Right-Click Menu . 97
The Wizards . 98
The Table Design View . 99
Building Database Diagrams . 100
The Query Designer . 101

Using Query Analyzer . 104
Connecting to a Server . 104
Executing SQL Batches . 105
Opening and Saving Scripts . 105
Object Browser . 105
Templates . 106
Viewing Query Execution Plans . 107

Summary . 108

Part II: Developing SQL Server Databases 109

Chapter 5: Implementing the Physical Database Schema 111
Designing the Physical Database Schema 112

The Designing for Simplicity and Agility 112
Designing for Performance . 114
Designing for Security . 114
Designing for Maintainability . 114
Responsible Denormalization . 115

549359 FM.F 11/21/02 4:06 PM Page xxii

xxiiiContents

Creating Databases . 116
Database-File Concepts . 117
Configuring File Growth . 118
Using Multiple Files . 119
Planning Multiple Filegroups . 122

Creating Tables . 123
Designing Tables Within Enterprise Manager 124
Working with SQL Scripts . 125
Table and Column Names . 126
Filegroups . 128

Creating Keys . 128
Primary Keys . 128
Creating Primary Keys . 130
Creating Foreign Keys . 132

Creating User-Data Columns . 137
Column Data Types . 137
Calculated Columns . 140
Column Constraints and Defaults . 141
Data Catalog . 145

Creating Indexes . 146
Creating Indexes with Enterprise Manager 147
Understanding Indexes . 149
Index Options . 152

Documenting the Database Schema . 154
Summary . 154

Chapter 6: Retrieving Data with Select 155
Choosing Your Tool . 155

Selecting Data with Enterprise Manager 156
Retrieving Data with Query Analyzer 157

Selecting Data from a Single Table . 158
Basic Flow of the Select Statement . 158
Select Distinct . 160
Returning the Top Rows . 162
Columns, Stars, Aliases, and Expressions 164
Bitwise Operators . 167
Case Expressions . 169
From Datasets . 171
Where Conditions . 172
Using the In Search Condition . 176
Ordering the Result Set . 181

Working with Nulls . 185
Testing for Null . 185
Handling Nulls . 187

549359 FM.F 11/21/02 4:06 PM Page xxiii

xxiv Microsoft SQL Server 2000 Bible

Scalar Functions . 191
Server Environment Information . 192
User Information Functions . 193
Data-Time Functions . 193
String Functions . 196
Soundex Functions . 199
Data-Type Conversion Functions . 202

Summing and Grouping Data . 205
Aggregate Functions . 205
Grouping Within a Result Set . 208
Filtering Grouped Results . 210
Generating Totals . 213

Summary . 214

Chapter 7: Merging Data Using Relational Algebra 215
Using Joins . 216

Inner Joins . 218
Outer Joins . 222
Self-Joins . 229
Cross (Unrestricted) Joins . 230
Exotic Joins . 232

Using Subqueries . 234
Simple Subqueries . 234
Correlated Subqueries . 243

Using Unions . 246
Intersection Union . 248
Difference Union . 249

Relational Division . 250
Relational Division with a Remainder 251
Exact Relational Division . 253
Set Difference . 255

Three Query Scenarios . 258
Scenario #1: Northwind’s Inventory Problem 258
Scenario #2: Denormalizing Time Sequences 260
Scenario #3: The Stockbroker Problem 264

Summary . 266

Chapter 8: Searching Full-Text Indexes 267
Configuring Full-Text Search Catalogs . 269

Enabling Full-Text Search on the Server 269
Creating a Catalog with the Wizard 269
Creating a Catalog with T-SQL Code 271
Pushing Data to the Full-Text Index 272
Maintaining a Catalog with Enterprise Manager 273
Maintaining a Catalog in T-SQL Code 273
Noise Files . 275

549359 FM.F 11/21/02 4:06 PM Page xxiv

xxvContents

Word Searches . 276
The Contains Function . 276
ContainsTable . 276

Advanced Search Options . 278
Multiple Word Searches . 278
Searches with Wildcards . 280
Phrase Searches . 280
Word-Proximity Searches . 280
Word-Inflection Searches . 281
Variable-Word–Weight Searches . 282

Fuzzy Searches . 284
Freetext . 284
FreetextTable . 284

Binary Object Indexing . 285
Summary . 287

Chapter 9: Creating Views . 289
Why Use Views? . 289
Creating Views . 290

Creating Views with Enterprise Manager 290
Creating Views with DDL Code . 291
View Restrictions . 292
Creating Views for Ad Hoc Queries 293
The With Check Option . 294
Order By and Views . 295
Protecting the View . 296

Updatable Views . 297
Performance Problems with Views . 298
Nested Views . 300
Summary . 302

Chapter 10: Modifying Data . 303
Inserting Data . 304

Inserting One Row of Values . 305
Inserting a Result Set from Select . 307
Inserting the Result Set from a Stored Procedure 308
Creating a Default Row . 310
Creating a Table While Inserting Data 310

Updating Data . 313
Updating a Single Table . 313
Performing Global Search and Replaces 314
Referencing Multiple Table While Updating Data 315

Deleting Data . 318
Referencing Multiple Tables While Deleting 319
Cascading Deletes . 319
Alternatives to Physically Deleting Data 321

549359 FM.F 11/21/02 4:07 PM Page xxv

xxvi Microsoft SQL Server 2000 Bible

Potential Data-Modification Obstacles . 322
Data Type/Length Obstacles . 322
Primary Key Obstacles . 323
Foreign Key Obstacles . 327
Unique Index Obstacles . 328
Null and Default Obstacles . 329
Check Constraint Obstacles . 329
Instead of Trigger Obstacles . 330
After Trigger Obstacles . 331
Non-Updateable View Obstacles . 332
Views With-Check-Option Obstacles 333
Security Obstacles . 334

Summary . 334

Chapter 11: Transactional Integrity . 335
Transactional Basics . 335
Transactional Integrity . 337

The ACID Properties . 337
Transactional Faults . 338
Isolation Levels . 343

Transaction-Log Architecture . 344
Transaction Log Sequence . 344
Transaction-Log Recovery . 348

Understanding SQL Server Locking . 350
Lock Granularity . 350
Lock Mode . 351
Lock Duration . 353
Viewing Locks . 353

Controlling SQL Server Locking . 355
Setting the Isolation Level . 355
Using Locking Hints . 356
Index-Level Locking Restrictions . 357
Controlling Lock Timeouts . 358
Evaluating Database Concurrency Performance 358
Application Locks . 358

Deadlocks . 360
Creating a Deadlock . 360
Automatic Deadlock Detection . 362
Handling Deadlocks . 362
Minimizing Deadlocks . 362

Application Locking Design . 363
Implementing Optimistic Locking . 363
Lost Updates . 363

Summary . 366

549359 FM.F 11/21/02 4:07 PM Page xxvi

xxviiContents

Chapter 12: Programming with Transact-SQL 367
Transact-SQL Fundamentals . 367

T-SQL Batches . 368
T-SQL Formatting . 369
Debugging Commands . 370

Variables . 371
Variable Default and Scope . 371
Using the Set and Select Commands 372
Conditional Select . 373
Using Variables Within SQL Queries 373

Procedural Flow . 374
If . 374
While . 375
Goto . 376

Examining SQL Server with Code . 376
sp_help . 376
Global Variables . 377

Temporary Tables and Table Variables . 379
Local Temporary Tables . 379
Global Temporary Tables . 380
Table Variables . 380

Dynamic SQL . 381
Executing Dynamic SQL . 381
sp_excecuteSQL . 381
Developing Dynamic SQL Code . 382

Recursive Select Variables . 384
Denormalizing a List . 384
Dynamic Crosstab Queries . 385

Cursors . 386
Cursor Basics . 386
Working with Cursors . 388
Denormalizing a List with a Cursor 388
Building a Dynamic-Crosstab Query with a Cursor 389
Navigating a Tree with a Recursive Cursor 390

Error Handling . 395
Using @@Error . 395
Using @@RowCount . 396
T-SQL Fatal Errors . 396
Raiserror . 397
Error-Handling . 401

Summary . 402

549359 FM.F 11/21/02 4:07 PM Page xxvii

xxviii Microsoft SQL Server 2000 Bible

Chapter 13: Developing Stored Procedures 403
Managing Stored Procedures . 404

Create, Alter, and Drop . 404
Returning a Record Set . 405
Compiling Stored Procedures . 405
Stored Procedure Encryption . 406
System Stored Procedures . 408

Passing Data to Stored Procedures . 408
Input Parameters . 408
Parameter Defaults . 409

Returning Data from Stored Procedures . 410
Output Parameters . 410
Using the Return Command . 411
Path and Scope of Returning Data . 412

Using Stored Procedures Within Queries 413
Debugging Stored Procedures . 414
Executing Remote Stored Procedures . 416
The Complete Stored Procedure . 416

The pGetPrice Stored Procedure . 417
The pOrder_AddNew Stored Procedure 419
The pOrder_AddItem Store Procedure 421
Adding an Order . 423

Summary . 424

Chapter 14: Building User-Defined Functions 425
Scalar Functions . 425

Creating a Scalar Function . 426
Calling a Scalar Function . 427
Creating Functions with Schema Binding 428

Inline Table-Valued Functions . 428
Creating an In-Line Table-Valued Function 428
Calling an Inline Table-Valued Function 429
Using Parameters . 430

Multistatement Table-Valued Functions . 431
Creating a Multistatement Table-Valued Function 431
Calling the Function . 432

Summary . 433

Chapter 15: Implementing Triggers . 435
Trigger Basics . 435

Transaction Flow . 436
Creating Triggers . 437
After Triggers . 437
Instead of Triggers . 438

549359 FM.F 11/21/02 4:07 PM Page xxviii

xxixContents

Trigger Limitations . 439
Disabling Triggers . 439
Listing Triggers . 439
Triggers and Security . 440

Working with the Transaction . 440
Determining the Updated Columns 440
Inserted and Deleted Logical Tables 442
Developing Multi-Row Enabled Triggers 443

Multiple-Trigger Interaction . 444
Trigger Organization . 444
Nested Triggers . 445
Recursive Triggers . 445
Instead of and After Triggers . 447
Multiple After Triggers . 447

Summary . 448

Chapter 16: Advanced Server-Side Programming 449
Developing Application Stored Procedures 450

The AddNew Stored Procedure . 450
The Fetch Stored Procedure . 451
The Update Stored Procedure . 453
The Delete Stored Procedure . 456

Complex Business Rule Validation . 457
Complex Referential Integrity . 458
Row-Level Custom Security . 460

The Security Table . 461
The Security-Check Stored Procedure 468
The Security-Check Function . 469
Using the NT Login . 470
The Security-Check Trigger . 472

Auditing Data Changes . 472
The Audit Table . 473
The Fixed Audit Trail Trigger . 473
Rolling Back from the Audit Trail . 477
Auditing Complications . 478
The Dynamic Audit-Trail Trigger and Procedure 479

Transaction-Aggregation Handling . 485
Logically Deleting Data . 489

Logical Delete Triggers . 489
Undeleting a Logically Deleted Row 490
Filtering out Logically Deleted Rows 491
Cascading Logical Deletes . 491
Degrees of Inactivity . 492

Archiving Data . 492
Summary . 493

549359 FM.F 11/21/02 4:07 PM Page xxix

xxx Microsoft SQL Server 2000 Bible

Part III: Data Connectivity 495

Chapter 17: Transferring Databases 497
Copy Database Wizard . 498
Working with SQL Script . 501
Detaching and Attaching . 504
Summary . 505

Chapter 18: Working with Distributed Queries 507
Distributed Query Concepts . 507
Accessing a Local SQL Server Database . 509
Linking to External Data Sources . 509

Linking with Enterprise Manager . 509
Linking with T-SQL . 512
Linking with Non-SQL Server Data Sources 515

Developing Distributed Queries . 518
Distributed Queries and Enterprise Manager 518
Distributed Views . 519
Local-Distributed Queries . 519
Pass-Through Distributed Queries . 523

Distributed Transactions . 525
Distributed Transaction Coordinator 526
Developing Distributed Transactions 526
Monitoring Distributed Transactions 527

Summary . 528

Chapter 19: Migrating Data with DTS 529
The DTS Designer . 530
DTS Package Properties . 531
Connecting to Data . 532
Transformations . 533

The Source . 534
The Destination . 534
The Transformation . 535
Lookups and ActiveX Script Transformations 536
Transformation Options . 538

Other DTS Tasks . 539
SQL Server Transfer Tasks . 539
Messaging Tasks . 540
Data Transfer Tasks . 540
DTS Processing Tasks . 541
Data Warehousing Tasks . 541

Workflow Precedence . 542

549359 FM.F 11/21/02 4:07 PM Page xxx

xxxiContents

Executing the DTS Package . 543
Saving and Moving DTS Packages . 543
Deltas and Versions . 545
Summary . 545

Chapter 20: Replicating Databases . 547
Replication Concepts . 548

Transactional Consistency . 548
Replication Types . 548

Configuring Replication . 550
Creating a Publisher and Distributor 550
Creating a Publication . 552

Replication Data . 555
Subscribing to the Publication . 555
Pushing a Subscription . 556
Pulling a Subscription . 557
Removing Replication . 557

Replicating to an Access Database . 558
Pushing a Subscription . 558
Pulling a Subscription . 558
Access Replication Issues . 558

Merge Replication Conflict Management . 559
Creating and Resolving Conflicts . 559

Summary . 561

Chapter 21: ADO and ADO.NET . 563
An Overview of ADO . 563

ADO and OLE-DB . 564
The ADO Object Model . 565
Understanding Data Providers . 567
Data Types . 568
ADO and Scripting . 571

An Overview of ADO.NET . 571
The ADO.NET Object Model . 571
Managed Providers . 573
Data Types . 573

Understanding ADO and ADO.NET Differences 574
Using Server Explorer . 575

An Overview of the Server Explorer Hierarchy 576
Accessing SQL Server . 580
Working with SQL Server Databases 582

Working with Stored Procedures . 584
Accessing Stored Procedures with Server Explorer 584
Adding Stored Procedures to Visual Studio Projects 586
Passing Parameters to the Stored Procedure 589

549359 FM.F 11/21/02 4:07 PM Page xxxi

xxxii Microsoft SQL Server 2000 Bible

Creating a Basic Application . 589
Creating the DataAdapter . 590
Creating a Grid View . 591

Summary . 592

Chapter 22: XML and Web Publishing 593
XML and EDI . 594
Working with XML . 595

XML Parsing . 595
XML Viewing . 595
XML Publishing . 596
XML Validation . 597

Inside an XML Document . 598
Declaration Section . 598
Root Element . 598
Elements . 599
Attributes . 600
Namespaces . 600
Well-Formed XML Documents . 600
XML Text . 601

Document Type Definitions (DTDs) . 602
DTD Structure . 602
General Entities . 603
Parameter Entities . 604
Defining Attributes . 604
Referencing the DTD . 605

XML Schema — XSDs . 606
XSD Elements . 607
XSD Attributes . 608
XSD Data Types and Validation . 608
Referencing an XSD Schema . 608

XML and SQL Server . 608
Creating XML with SQL Server 2000 608
Reading XML into SQL Server . 610

Transforming XML with XSL . 612
XSL Style Sheets . 613
Transforming XML to XML . 614

XPATH . 615
SQLXML . 615

Virtual Directories . 615
HTTP Queries . 617
Template Queries . 618

Publishing Data on the Web . 620
Summary . 622

549359 FM.F 11/21/02 4:07 PM Page xxxii

xxxiiiContents

Part IV: Administering SQL Server 623

Chapter 23: Configuring SQL Server 625
Setting the Options . 625

Configuring the Server . 625
Configuring the Database . 628
Configuring the Connection . 630

Configuration Options . 631
Start/Stop-Configuration Properties 631
Memory-Configuration Properties . 632
Processor-Configuration Properties 637
Security-Configuration Properties . 640
Connection-Configuration Properties 641
Server-Configuration Properties . 643
Index-Configuration Properties . 645
Configuring Database Auto Options 646
Cursor-Configuration Properties . 647
SQL ANSI–Configuration Properties 648
Trigger Configuration Properties . 651
Database-State-Configuration Properties 652
Recovery-Configuration Properties 653

Summary . 654

Chapter 24: Maintaining the Database 655
DBCC Commands . 655

Database Integrity . 656
Index Maintenance . 658
Database File Size . 662
Miscellaneous DBCC Commands . 665

Managing Database Maintenance . 665
Planning Database Maintenance . 665
Database Maintenance Plan Wizard 666
Command-Line Maintenance . 669
Monitoring Database Maintenance . 669

Summary . 670

Chapter 25: Automating Database Maintenance
with SQL Server Agent . 671

Setting up SQL Server Agent . 671
Understanding Alerts, Operators, and Jobs 674
Managing Operators . 675
Managing Alerts . 676

Creating User-Defined Errors . 676

549359 FM.F 11/21/02 4:07 PM Page xxxiii

xxxiv Microsoft SQL Server 2000 Bible

Managing Jobs . 680
Creating a job category . 680
Creating a Job Definition . 681
Setting up the Job Steps . 682
Configuring a Job Schedule . 684
Handling Completion-, Success-, and

Failure-Notification Messages . 685
Summary . 686

Chapter 26: Recovery Planning . 687
Recovery Concepts . 687
Recovery Models . 688

Simple Recovery Model . 689
The Full Recovery Model . 690
Bulk-Logged Recovery Model . 692
Setting the Recovery Model . 692
Modifying Recovery Models . 693

Backing up the Database . 693
Backup Destination . 693
Performing Backup with Enterprise Manager 694
Backing up the Database with Code 696
Verifying the Backup with Code . 698

Working with the Transaction Log . 698
Inside the Transaction Log . 699
Backing up the Transaction Log . 700
Truncating the Log . 701
The Transaction Log and Simple Recovery Model 701

Recovery Operations . 701
Detecting the Problem . 702
Recovery Sequences . 702
Performing the Restore with Enterprise Manager 703
Restoring with T-SQL Code . 706

System Databases Recovery . 709
Master System Database . 710
MSDB System Database . 713

Performing a Complete Recovery . 714
Summary . 715

Chapter 27: Securing Databases . 717
Security Concepts . 717

Server-Level Security . 718
Database-Level Security . 718
Object Ownership . 719

549359 FM.F 11/21/02 4:07 PM Page xxxiv

xxxvContents

Windows Security . 719
Windows Security . 719
SQL Server Login . 720

Server Security . 720
SQL Server Authentication Mode . 720
Windows Authentication . 721
SQL Server Logins . 726
Server Roles . 727

Database Security . 729
Guest Logins . 729
Granting Access to the Database . 729
Fixed Database Roles . 731
Statement Permissions . 733
Application Roles . 734

Object Security . 734
Object Permissions . 735
Standard Database Roles . 736
Object Security and Enterprise Manager 738
Object Ownership . 743
A Sample Security Model Example . 745

C2-Level Security . 746
Views and Security . 747
Summary . 748

Part V: Advanced Issues 749

Chapter 28: Advanced Performance 751
The Optimization Cycle . 752
Measuring Accuracy . 752
Measuring Response Time . 753

Script Testing . 753
Load Testing . 753

Monitoring SQL Server . 754
Performance Monitor . 755
SQL Profiler . 757

Developing Well-Performing Databases . 761
Database Design and Performance . 762
Constraints and Triggers . 762
Query Design and Performance . 762

Query Optimization . 763
Query-Execution Plans . 763
Measuring Query Performance . 766
Reusing Query Execution Plans . 767

549359 FM.F 11/21/02 4:07 PM Page xxxv

xxxvi Microsoft SQL Server 2000 Bible

A Balanced Index Strategy . 768
Indexing Basics . 768
Indexing and Database Size . 769
OLTP Indexing versus OLAP Indexing 769
The Base Indexes . 770
Index Tuning . 770
Using the Index Tuning Wizard . 774

Locking and Performance . 776
Summary . 777

Chapter 29: Advanced Availability . 779
Warm-Standby Availability . 780

Log Shipping with Enterprise Edition 781
Log Shipping with SQL Server Agent 785
Shipping the Users . 790
Detecting and Handling a Crash . 790
Going Live on the Warm-Standby Server 790
Returning to the Original Primary Server 791

Failover Servers and Clustering . 791
Summary . 792

Chapter 30: Advanced Scalability . 793
De-normalization Indexes . 793

Indexed Views and Queries . 795
Partitioned Tables . 796

Local-Partition Views . 797
Distributed-Partition Views . 805

Summary . 808

Chapter 31: Analysis Services . 809
What’s Included with Analysis Services . 809
The Process Needed to Analyze Data . 810
Installing Analysis Services . 812
Creating and Browsing Cubes . 813

The Analysis Manager MMC Snap-in 813
Creating Your First Cube . 815
Querying the Cube from Analysis Manager 826
Using Cubes from Microsoft Excel . 828

Summary . 830

549359 FM.F 11/21/02 4:07 PM Page xxxvi

xxxviiContents

Chapter 32: Advanced Portability . 831
Detecting Non-ANSI Standard Code . 831
Developing Portable Code . 832

The update...from Command . 832
The delete...from Command . 832
The top Command . 833
User-Defined Functions . 833
Partition Views . 833
The set Command . 834
Logic Programming Flow . 834
System Tables . 834
Instead of Triggers on Non-Updateable Views 834
View with order by . 834

Summary . 834

Appendix A: Resources . 835

Appendix B: Sample Databases . 837

Appendix C: SQL Server 2000 Specifications 847

Appendix D: What’s on the CD? . 851

Index . 853

End-User License Agreement . 891

549359 FM.F 11/21/02 4:07 PM Page xxxvii

549359 FM.F 11/21/02 4:07 PM Page xxxviii

Laying the
Foundation

Welcome to SQL Server! SQL Server is built to deliver the perfor-
mance, scalability, and transactional integrity required for

heavy-duty, high-visibility databases. If the data is critical to an orga-
nization, then a well-developed and maintained SQL Server based
application is worthy of the task.

The goal of this book is to help you develop such an application. The
foundation begins with a well-rounded understanding of SQL Server,
relational database logical schema design, as well as a programmer-
to-programmer introduction to Enterprise Manager, the graphical
DBA tool, and Query Analyzer, the database developer’s editor of
choice.

If the server is “the box” and developing is thinking inside the box,
then Part I of this book is the mental preparation of approaching
the box.

✦ ✦ ✦ ✦

In This Part

Chapter 1
Introducing SQL Server

Chapter 2
Modeling the Logical
Database Schema

Chapter 3
Installing and
Configuring SQL Server

Chapter 4
Using SQL Server’s
Developer Tools

✦ ✦ ✦ ✦

P A R T

II

02549359 PP01.F 11/21/02 9:21 AM Page 1

02549359 PP01.F 11/21/02 9:21 AM Page 2

Introducing
SQL Server

As a database, SQL Server is all about efficiently storing data
within tables built from rows and columns. At the center of

SQL Server is the SQL Server engine, which processes the database
commands. The process runs inside Windows and understands only
connections and SQL commands. Enterprise Manager, Query
Analyzer, every SQL Server–enabled Graphical User Interface (GUI),
Application Programming Interface (API), and application makes a
connection to SQL Server and sends SQL statements to SQL Server
for processing.

As robust as the engine is, SQL Server is much more than just the
engine: it includes a set of tools for administrating the server and
preparing queries; add-on tools for converting and moving data, and
for performing data warehousing and analysis; and services for man-
aging the connection at both the server side and the client side.

SQL Server is based on the ANSI SQL 92 standard. SQL is the de facto
standard for stating relational-database queries. Nearly every
database product is based on some variation of SQL, even if the SQL
code is not visible to the end user.

There’s some debate over the pronunciation of SQL. Most devel-
opers simply say “sequel.” But there are a few purists who insist
the proper pronunciation is “ess-cue-el,” because there was
another language called Sequel before SQL. The pronunciation
affects sentence grammar — “a sequel” versus “an SQL.” Personally,
I prefer “sequel,” but either pronunciation is OK.

SQL Server is a complete database system, and fully mastering its
scope can take years. In terms of features, commands, subsystems,
components, and possibilities, SQL Server is one of the largest and
most complex software products on the market. Fortunately,
Microsoft has gone the extra mile to improve the “out-of-the-box
experience” by making SQL easier to use and administer than other
client/server database systems (including previous version of SQL
Server). The server administration can be so simple that I know of
several databases in production that were set up using administrative
wizards and have not required administrative attention in over two
years, yet they’re still running great. Nonetheless, the sheer number
of SQL Server features can easily overwhelm a new developer.

This initial chapter provides a 28,000-foot view of the numerous SQL
Server components and features. This big-picture overview will serve
as a framework for understanding the details in the rest of the book

Note

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

An overview of SQL
Server

Understanding the
client/server database
paradigm

The benefits of running
SQL Server

Choosing the SQL
Server edition that
meets your needs

Surveying the server
and client components
of SQL Server

Understanding the role
of Transact-SQL

A few of the available
clients

The various
certifications available
to SQL Server
developers and
database administrators

How SQL Server fits
into the brave new .NET
world

✦ ✦ ✦ ✦

549359 ch01.F 11/21/02 4:09 PM Page 3

4 Part I ✦ Laying the Foundation

and how those details fit into SQL Server. In addition, this chapter will help you decide which
features are most important to you and will show you why SQL Server is so popular.

The Client/Server Database Model
Technically, the term client/server refers to any two cooperating processes. The client pro-
cess requests a service from the server process, which in turn handles the request for the
client. The client process and the server process may be on different computers or on the
same computer: It’s the cooperation between the processes that is significant, not the physi-
cal location.

The term client/server applies to many aspects of computing. File servers, print servers, and
Internet service providers (ISPs) are all client/server models. File servers provide files, print
servers handle print requests, and ISPs handle requests for Internet service. In the area of
client/server databases, a database server process handles database requests from the
database client process.

Desktop Databases
Desktop databases perform all the database tasks at the client. While a multi-user desktop
database may use client/server file processing, it doesn’t qualify as client/server database
processing. Access’ Jet Engine, for example, performs all database tasks at the client. In a
multi-user Access application, the file server is merely providing file sharing — no database
intelligence is contained in the file server. If an Access user requests a customer, the entire
index comes across the network and the search and retrieval takes place within the client
process. Multi-user desktop databases tend to make heavy demands on the network and,
therefore, bog down as the demand grows.

To visualize a desktop database searching for a phone number, picture the entire telephone
book moving through the network wire (Figure 1-1). Actually, some desktop databases try to
optimize the operation by opening only a portion of the database file, such as an index or a data
page. Once the client computer has the index, the client computer searches it and selects the
correct row. It then opens the table and retrieves the row. All this work takes place on the client.
If multiple clients are working with the database, portions of the database file are constantly fly-
ing across the network. In other words, the network is as busy as the I-485 loop in Atlanta at 5:30
pm, and each client has the opportunity to corrupt the file. Updates are even messier.

As the database file grows, or the number of clients increases, the amount of data being
transported by the network increases. From my experience, as a rule of thumb desktop
databases are good for about 20 users, or about 20MB. There are exceptions, but beyond
these thresholds, they become slow and unstable.

Client/Server Databases
In contrast to desktop databases, which make the clients do all the work, client/server
databases are like research librarians who handle the request by finding the information, and
then return a photocopy. The actual reference materials never leave the watchful eye of the
research librarian.

In a client/server database, the database client prepares a SQL request — just a small text
message — and sends it to the database server, which in turn reads and processes the
request (Figure 1-2). Inside the server, the security is checked, the indexes are searched, the
data is retrieved or manipulated, any server-side code is executed, and the final results are
sent back to the client.

549359 ch01.F 11/21/02 4:09 PM Page 4

5Chapter 1 ✦ Introducing SQL Server

Figure 1-1: Desktop databases move the database file to the client, and the
work is performed within the client.

Figure 1-2: Client/server databases perform the work within the server process.

Client/Server database

i

i

i

1) SQL request

2) DB
work

3) RecordSet
returned

Data remains in
server

Database work
performed in
server

Desktop database

i i i

i

2) Database work
performed at
desktop

1) Desktop opens file
from server

549359 ch01.F 11/21/02 4:09 PM Page 5

6 Part I ✦ Laying the Foundation

All the database work is performed within the database server. If the client requests a
dataset, the dataset is prepared within the server and a copy of the data is sent to the client.
The actual data and indexes never leave the server. When the client requests an insert,
update, or delete operation, the server receives the SQL request and processes the request
internally.

The client/server–database model offers several benefits over the desktop database model:

✦ Reliability is improved because the data is not spread across the network and several
applications. Only one process handles the data.

✦ Data integrity constraints and business rules can be enforced at the server level, result-
ing in a more thorough implementation of the rules.

✦ Security is improved because the database keeps the data within a single server.
Hacking into a data file that’s protected within the server is much more difficult then
hacking into a data file on a workstation.

✦ Performance is improved and better balanced among workstations because half of the
workload, the database processing, is being handled by the server, and the worksta-
tions are only handling the user-interface half. Because the database server process
has single-user rapid access to the data files, and much of the data is already cached in
memory, database operations are much faster at the server than in a multi-user desk-
top-database environment. A database server is serving every user operating a
database application; therefore it’s easier to justify the cost of a beefier server.

✦ Network traffic is greatly reduced. Compared to a desktop database’s rush-hour traffic,
client/server traffic is like a single motorcyclist carrying a slip of paper with all 10 lanes
to himself. This is no exaggeration! Upgrading a heavily used desktop database to a
well-designed client/server database will reduce database-related network traffic by
more than 95 percent.

✦ A byproduct of reducing network traffic is that well-designed client/server applications
perform well in a distributed environment — even when using slower communications.
So little traffic is required that even a 56KB dial-up line should be indistinguishable
from a 100baseT Ethernet connection for a Visual Basic application connected to a
SQL Server database.

Client/Server Roles
In a client/server database configuration, each side plays a specific role. If the roles are con-
fused, the performance and integrity of the client/server database application will suffer.

The database server is responsible for the following:

✦ Processing data modification and retrieval requests.

✦ Performing data-intensive processing.

✦ Enforcing all database rules and constraints.

✦ Enforcing data security.

The database client process should be responsible for:

✦ Presenting the data to the user in an easily recognizable, inviting, and useful format.

✦ Providing an interface to the various tools, data, and reports.

✦ Submitting requests to the server.

549359 ch01.F 11/21/02 4:09 PM Page 6

7Chapter 1 ✦ Introducing SQL Server

N-Tier Design
Often, in a client/server application, more processes are involved besides the database client
and the database-server process. Middle tiers are often employed to handle connection han-
dling, connection pooling, and business logic, as shown in Figure 1-3.

Figure 1-3: N-tier middle layers can manage user connections between the
client process and the database server.

A middle tier that handles connections is useful because multiple users can take advantage of
a few constantly open connections to the database server. This type of connection, however,
affects the way the database server can authenticate individual users. The database-security
plan will have to take this into account.

In a situation in which more than one server may be available, a common connection object
makes it easier to switch the users from Server A to Server B if Server A should go down. The
connection object becomes a single point that could automatically detect the situation and
switch to Server B.

Some developers argue that it’s a good idea to place business rules in a middle-tier object
because that makes modifying the business rules easier. I disagree. Business rules and
database constraints should be enforced at the database server level so they can never be
bypassed by any user application or process. Coding the business rules at the server level
gives the code faster access to database lookups and improves performance. The only down-
sides to coding the business rules within the server are that the programmer must learn
server-side programming, and that the database application is more difficult to port to other
database products.

When you’re considering the various roles within the client/server database application, the
following rule is crucial: Move the processing as close to the data as possible.

Middle Tier

Middle
Tier

Object

i

i

549359 ch01.F 11/21/02 4:09 PM Page 7

8 Part I ✦ Laying the Foundation

The Advantages of SQL Server
SQL Server is growing in popularity for good reason — it’s a database with numerous com-
pelling advantages. Microsoft marketing may offer a different set of reasons, but in the follow-
ing sections I introduce what I think are the features that make SQL Server so great (in order
of importance).

ACID Properties and High Availability
Data integrity is the single most important feature of any significant database. To me, the sin-
gle greatest benefit of SQL Server is its rock-solid implementation of the ACID properties —
which means that transactions are Atomic, Consistent, Isolated, and Durable. Heavy-duty
databases are judged by their implementation of the ACID properties.

This topic is so important that Chapter 11, “Transactional Integrity,” is basically an explana-
tion of ACID and how SQL Server meets the requirements with transactions and locks.

Closely related to ACID, the concept of availability in this context means that the data
remains available even in the face of trouble. SQL Server uses a write-ahead transaction log,
robust recovery methods, and high-end features such as log shipping and clustered servers
to provide high availability. It will cost a pretty penny, but if it’s important that the database
always be available, regardless of the situation, SQL Server can do it. Even with standard
server hardware, SQL Server data is highly available and easily recoverable.

Chapter 11, “Transactional Integrity,” explains the write-ahead transaction log, and Chapter
29, “Advanced Availability,” discusses developing databases that use the high-end availability
features of SQL Server.

SQL Server Has Become the Standard
If there’s one thing I’ve learned in two decades of developing databases, it’s that staying cur-
rent in the software industry is like river rafting. Let me explain. The water in a river is con-
stantly moving, but if you don’t stay in the center of the current, you can get stuck in an eddy
or hung up in the side of a rapid. Technology has to be more than cool to be desirable
(remember NeXT computers?); it has to have momentum that will carry it through to tomor-
row. The choice is to be in the current or to be caught in the debris.

SQL Server qualifies as a fast-moving current in five significant ways:

✦ SQL Server has the sales numbers to demonstrate it’s a standard that’s going to be here
for a while. SQL Server sales surpassed the billion-dollar mark in mid-2001, and SQL
Server is outselling the competition in both dollar volume and units of sales. SQL
Server is the most popular Windows client/server database with 38 percent to 70 per-
cent of market share (depending on whose figures are most believable), and Windows
databases are growing twice as fast as UNIX databases. SQL Server holds a 68 percent
market share of Web databases.

✦ Bill Gates recently identified SQL Server as one of Microsoft’s most important products.

✦ SQL Server is a true relational database and is entry-level compliant with the SQL 92
ANSI standard.

✦ The database has won several significant industry awards, including the VARBusiness
Annual Report Card Best Database.

Cross-
Reference

Cross-
Reference

549359 ch01.F 11/21/02 4:09 PM Page 8

9Chapter 1 ✦ Introducing SQL Server

✦ SQL Server is capable of supporting very large databases (VLDBs) having 1000s
of users and terabytes of data. Several corporate success stories about very large
databases running on SQL Server 2000 are detailed at www.microsoft.com/sql/
evaluation/casestudies/2000/default.asp.

✦ A strong and healthy community of third-party tools, training, conferences, books, mag-
azines, and user groups surrounds SQL Server. Microsoft claims there are over 85,000
trained SQL Server DBAs.

SQL Server Security
Critical data must be secure. If there’s a chance that any of the data has been compromised
then all the data is suspect. When initially installed, SQL Server is wide open, which is OK
because it makes learning SQL Server much easier. But when you want to secure the data,
SQL Server has a very clean security model, which can be configured to meet the U.S. federal
C2 security requirements.

Chapter 27, “Securing Databases,” explains the SQL Server security model and provides
advice about designing and implementing database security.

SQL Server Performance and Scalability
Many developers are being introduced to SQL Server from Microsoft Access with the goal of
improving performance for an existing database application. If that’s you, you’ll be pleased
with SQL Server. It’s fast and highly tunable. From my experience, a nice dual CPU server with
a couple of RAID 5 disk subsystems and half a gig of RAM is incredibly fast.

While the performance of desktop databases will eventually max out, SQL Server perfor-
mance will continue to scale with additional hardware. Scalability is the sustained perfor-
mance as the database grows from a small database (under 10GB) to a large database (over
100GB), moving from Windows CE to multimillion-dollar 32-CPU clusters. It can take advan-
tage of the hardware and add high-end features to handle very large databases.

Chapter 30, “Advanced Scalability,” covers some of SQL Server’s high-end features for
scalability.

Database vendors compete with large-scale performance benchmarks. The Transaction
Processing Council (TPC) is a not-for-profit organization that defines and monitors database-
performance benchmarks such as the TPC-C, TPC-H, and TPC-W benchmarks.

The current benchmark results and the complete 130-page TPC-C specification is available
on the TPC Web site at www.tpc.org.

The TCP-C benchmark is designed to simulate a typical online transaction processing (OLTP)
database. The benchmark specifications detail the database schema and transactions for a
standard order processing/inventory system, the way in which the costs must be calculated,
and the auditing procedures for measuring the performance of the database. The TPC-C
throughput measures how many new orders the database can accept while simultaneously
handling four other types of transaction (payment, order-status, delivery, and stock-level).

The TCP competition is a cost-is-no-object free for all. A vendor submits a tuned configura-
tion of hardware, operating system, and database, so the test isn’t a database-only test and
apples aren’t compared with apples; nevertheless, TCP-C is the standard industry measure of
database speed.

Note

Cross-
Reference

Cross-
Reference

549359 ch01.F 11/21/02 4:09 PM Page 9

10 Part I ✦ Laying the Foundation

Database vendors are constantly trying to one-up one another in the benchmark wars. As of
this writing, SQL Server 2000 holds several of the top positions including number one in per-
formance and cost per transaction. And the margin isn’t narrow. SQL Server’s maximum num-
ber of transactions per minute is about three times that of fifth-place Oracle, and SQL Server
costs half as much per transaction.

Microsoft TerraServer

One of my favorite examples of the performance and scalability of SQL Server is Microsoft’s
TerraServer project (Figure 1). Microsoft purchased Russian surveillance photos of most of the
populated world, augmented them with photos from the U.S. Geological Survey, loaded them all
into SQL Server, and made them searchable for free on the Internet at terraserver.
microsoft.com.

Figure 1: TerraServer’s satellite view of the Cape Hatteras Light House (before it was
moved in 2000) on the outer banks of North Carolina.

The TerraServer database includes several terrabytes of data, yet the Web site serves the images
with an excellent response time. This performance demonstrates SQL Server’s ability to scale
from small databases to very large database and still perform well.

549359 ch01.F 11/21/02 4:09 PM Page 10

11Chapter 1 ✦ Introducing SQL Server

Balanced and Complete
Several types of database applications exist. Transactional applications that handle the day-
to-day work of a business are known as On-Line Transactional Processing Applications
(OLTPs) and require the transactional-integrity aspects of the ACID properties mentioned ear-
lier. Performance is critical for a database handling thousands of updates. SQL Server is well
tuned for these applications, as are several other database products.

Another type of database application is intended to gather huge amounts of data history and
perform amazing feats of analysis, data mining, and trend identification. These are On-Line
Analysis Processing (OLAP) database applications. While several third-party analysis prod-
ucts are available, SQL Server includes tools for gathering data into SQL Server and perform-
ing the analysis.

The balanced and complete capabilities of SQL Server are one of its advantages. The numer-
ous additional features, such as replication, DTS, Analysis Services, and jobs provide a future
for a SQL Server–based project. A project started with SQL Server is not going to get locked
into a limited feature set that restricts future growth.

Out of the Box Experience
SQL Server is easy to install and use with little training. Microsoft has put considerable effort
into simplifying the administrative tasks of a complex client/server database. SQL Server’s
copious controls enable fine-tuning and a high degree of developer control, but if that level of
control isn’t required, then SQL Server can be nearly self-administrating.

Other systems install with the assumption that security should be tight out of the box, and
the administrator can choose to relax security as he or she comes to understand and require
the various features. Believing that security shouldn’t get in the way of the initial experience
with the product, Microsoft takes the opposite approach. It’s easy to install SQL Server so
that it’s fully open without any security.

Chapter 27, “Securing Databases,” explains the SQL Sever security and object ownership
model. Installing the SA account with a password is discussed in Chapter 3, “Installing and
Configuring SQL Server.”

Developer Flexibility
SQL Server developers and DBAs enjoy a wide variety of interfaces and levels of detail (Figure
1-4). For many databases, SQL Server’s automated default settings will work fine, but the con-
trol will be there when needed. As a developer or DBA, you decide the amount of control
appropriate for the project. If you don’t want to be bothered, SQL Server can handle most of
the administration automatically.

SQL Server offers multiple interfaces. If you prefer down-and-dirty code, you can control
almost every feature of SQL Server without ever seeing a graphical interface. At the other end
of the spectrum, even complex tasks can be accomplished with one of the 22 major wizards.
SQL Server offers you several ways to accomplish any task. Even within a SQL query there’s
the flexibility to state a request in the way that makes the most sense.

Cross-
Reference

549359 ch01.F 11/21/02 4:09 PM Page 11

12 Part I ✦ Laying the Foundation

Figure 1-4: SQL Server offers unparalleled flexibility in terms of levels of control, tools,
and connection technologies.

Chapter 4, “Using SQL Server’s Developer Tools,” covers both the GUI of Enterprise Manager
and the command-line interface of Query Analyzer.

Beyond the SQL Server engine are multiple methods for importing data, analyzing data,
connecting to SQL Server from code, publishing to the Web, and working with XML.

For the client-side programmer, connecting to SQL Server also presents several possibilities
and multiple APIs.

Regardless of your preferences, SQL Server enables you to have it your way. At times, it may
seem to the developer that SQL Server is too flexible. My recommendation is to begin with
the graphical user interfaces and migrate to the command level as your needs and skills
develop. Throughout this book I’ll explain the multiple ways to accomplish a given task and
make some recommendations as to the best developer interface for the task.

Price and Performance
SQL Server is the cheapest of the high-end client/server databases based on the TCP bench-
mark cost per transaction (www.tcp.org). SQL Server 2000’s cost per transaction is 44 percent
less than the average cost per transaction of the other configurations in the TCP benchmark
top-ten list.

Microsoft has priced SQL Server with a variety of editions and licensing models. You can
select the edition with the features you need and spend appropriately. Licensing SQL Server

Cross-
Reference

549359 ch01.F 11/21/02 4:09 PM Page 12

13Chapter 1 ✦ Introducing SQL Server

for a cluster with eight computers with 16 CPUs each will cost about 2.5 million dollars, while
the Desktop Engine is essentially free.

Selecting the Right SQL Server 2000 Edition
SQL Server 2000 is available in several editions, which differ in terms of features, hardware,
and cost. This section details the various editions and their respective features. Table 1-1
highlights the differences among the various editions.

Enterprise (Developer) Edition
This is the high-end edition. It includes all the bells and whistles for very large corporate
databases, including the advanced features Analysis Services, clustering and federated
databases, and indexed views. In addition, Enterprise Edition supports the operating-system
maximum for CPUs and memory, as detailed in Table 1-2. It installs only on server versions of
Windows and not Windows 9x or Professional versions. The Enterprise Evaluation Edition is a
full-featured copy of Enterprise Edition with a 120-day limit.

Here’s a listing of the Enterprise Edition advanced features:

✦ Clustering and system area network: A grouping of several servers into a single virtual
server, sharing a common high-performance disk subsystem. The client connects to the
virtual server, and the cluster provides near instant failover recover.

✦ Log shipping: The transaction log is regularly backed up and the file sent to a warm
backup server. If the primary server goes down, the warm backup server can be easily
recovered and the clients can switch to the warm failover server lossing a minimum
amount of work.

For more details on SQL Server clusteriing and log shipping refer to Chapter 29, “Advanced
Availability.”

✦ Enhanced parallelism: Complex queries may be processed using on multiple CPUs.

✦ Indexed views: An indexed view is actually a clustered index based on a view that
denormalizes the data. Indexed views improve the performance of queries that read
from very large tables.

✦ Federated databases: Databases that spread a single table’s data over multiple servers
using constraints and accessing the data through a union query speed performance by
selecting smaller sets of data and improving the chance that the selected data pages
will be in RAM.

Indexed views and federated databases are explained in Chapter 30, “Advanced Scalability.”

The Developer Edition is the same as the Enterprise Edition, with two exceptions. First, the
Developer Edition is licensed only for development and testing, so it can’t legally be used in a
production environment. Second, the Developer Edition runs on Windows NT Workstation,
Windows 2000 Professional, and Windows XP Professional. To promote development and
experimentation, Microsoft also grants Developer Edition licensees the right to download the
CE Edition. The Developer Edition is included with MSDN Universal or may be purchased sep-
arately. When purchased, it is the lowest-cost edition of SQL Server.

Cross-
Reference

Cross-
Reference

549359 ch01.F 11/21/02 4:09 PM Page 13

14 Part I ✦ Laying the Foundation

Table 1-1: SQL Server 2000 Editions Chart

Feature Enterprise Standard Personal MSDE CE
Edition Edition Edition Edition Edition

Target Audience/ Very large Mid-sized, Mobile or Embedded CE devices
Intended enterprise department, remote user within
Application databases workgroup application

databases

Engine Features

Multiple Instances Yes Yes Yes Yes No

Clustering Yes No No No No

Log Shipping Yes No No No No

Enhanced Yes No No No No
Parallelism

Indexed Views Yes No No No No

Federated Yes No No No No
Databases

Data Analysis and DTS Features

Analysis Services Yes Yes Yes No No

Data Mining Yes Yes Yes No No

Advanced Yes No No No No
Analysis Services

DTS Packages Yes Yes Yes Deployment No
only

English Query Yes Yes Yes No No

Replication Features

Snapshot Yes Yes Yes Yes No
Replication

Transactional Yes Yes Subscriber only Subscriber only No
Replication

Merge Replication Yes Yes Yes Yes Yes,
anonymous
subscriber
only

Immediate Yes Yes Yes Yes No
Updating
Subscribers

Queued Yes Yes Yes Yes No
Subscribers

549359 ch01.F 11/21/02 4:09 PM Page 14

15Chapter 1 ✦ Introducing SQL Server

Feature Enterprise Standard Personal MSDE CE
Edition Edition Edition Edition Edition

Scaling Limitations

Database 1,048,516TB 1,048,516TB 1,048,516TB 2GB 2GB
Size Limit

CPUs Supported 32 4 2 2 1
(may also be
limited by the
Windows version)

Memory 64GB 2GB 2GB 2GB 2GB
Supported (also
limited by the
Windows version)

Table 1-2: Physical Capabilities of the Operating System

Windows Version Clustering CPUs Supported Memory Supported

Windows 2000 DataCenter Yes 32 64GB

Windows 2000 Advanced Server No 8 8GB

Windows 2000 Server No 4 4GB

Windows 2000 / XP Professional No 2 2GB

Windows 9x No 1 2GB

Windows CE No 1 2GB

Standard Edition
The majority of database projects will be well served by the Standard Edition. This
workhorse edition supports up to four CPUs and provides all the features required for most
projects. Many IT departments consider purchasing Enterprise Edition, thinking they need
the advanced features, but the Standard Edition will likely meet their needs and save them a
considerable amount of money.

Personal Edition
The Personal Edition may be purchased as a stand-alone product, and is also included with
the Enterprise Edition and Standard Edition. The purpose of the Personal Edition is to enable
you to extend the reach of SQL Server products by installing a mobile copy of SQL Server on
desktops or notebooks that are not normally connected to the main server. Therefore, the
Personal Edition lacks some high-end features. It is supported on Windows 98, and will run on
Windows 95, but is not supported by Microsoft on this platform.

549359 ch01.F 11/21/02 4:09 PM Page 15

16 Part I ✦ Laying the Foundation

Because full-text search (the ability to index words within character columns and then search
the index) is implemented by Windows 2000, full-text search will not be available in the
Personal Edition if it is running on Windows 98.

MSDE/Desktop Engine
The Desktop Engine is a royalty-free, redistributable edition of SQL Server that’s intended to
serve as an embedded database within an application. It’s included with MSDN Universal,
Office Developer Edition 10, and a few other Microsoft developer products. It’s basically the
database engine from Personal Edition. MSDE does have some limitations: It may not publish
transactional replications (a type of replication), does not include full-text search, and is lim-
ited to 2GB in size and five user logons.

MSDE does not include licenses for the client tools such as Enterprise Manager and Query
Analyzer. MSDE is not simply a plug-in replacement for the Access Jet database engine. It’s
SQL Server and it requires administration. If an application is using MSDE as the embedded
database, that application will need to provide administrative controls such as adding users,
performing backups and restores, handling the transaction log, and so on. Throughout this
book, the administrative tasks will be presented both in the GUI method and with code.

SQL Server CE Edition
The CE edition of SQL Server is technically a different database engine that is fully compatible
with SQL Server. Its small footprint of only 1MB of RAM means that it can actually serve well
on a Pocket Windows handheld device. Other than the ability to subscribe to a merged repli-
cation, this edition lacks all other advanced features.

Licensing SQL Server 2000
Microsoft offers two licensing structures for SQL Server 2000. Client Access Licenses (CALs)
may be purchased on a per-seat basis. Per-seat licensing is intended for internal applications
with a known, small number of users. Per-seat licensing may not be used for servers with
users behind a firewall.

Alternately, SQL Server may be licensed on a per-CPU basis. The advantage of per-CPU licens-
ing, besides ease of administration, is the flexibility of deploying a project or Web site when
the number of future clients is completely unknown.

For configurations including both active servers and passive backup servers, a license is not
required for the passive server.

MSDN Universal
Microsoft Developer Network (MSDN) includes every server and development tool offered by
Microsoft including the many editions of SQL Server, and will keep you in the loop with ser-
vice packs and new releases. In total, over $48,000 worth of software is included for about
$2500, depending on special pricing and volume discounts. The MSDN subscription provides
quarterly (sometime monthly) updates on CD-ROM or DVD and many downloads in the pri-
vate area of www.microsoft.com for MSDN subscribers.

If your IT shop develops applications internally, I highly suggest you investigate MSDN.

Note

549359 ch01.F 11/21/02 4:09 PM Page 16

17Chapter 1 ✦ Introducing SQL Server

Server Components
SQL Server is more than just a database engine. A complete set of tools, utilities, interfaces,
and extensions round out its data-handling and analyzing features (Figure 1-5). Because SQL
Server has so many components, it’s worth the time to briefly see the role each plays and to
get a sense of the breadth of features available.

Figure 1-5: SQL Server is a collection of server and client components.

SQL Server’s components are either server processes or client processes. The following four
components are server processes for SQL Server.

SQL Server Engine
The SQL Server engine is the core of SQL Server. It is the process that handles all the rela-
tional database work. SQL is a descriptive language, meaning that it describes to the engine
only the query to be processed. SQL Server’s query optimizer determines how to process the
query based on the costs of different types of query-execution operations. The estimated
and actual query-execution plans may be viewed graphically with the Query Analyzer.

SQL Server 2000 supports installation of multiple instances of the engine on a single server
machine. Each instance is the same as a complete separate installation of SQL Server.

SQL Server Agent
The agent is an optional process which, when running, executes the SQL jobs and handles
other automated tasks. It can be configured to automatically run when the system boots, or
may be started from the Service Manager or Enterprise Manager.

i

English Query

Server Network Utility

DTS
DTC

Replication

Server Side Code

SQL Mail
SQL Server Agent

Client Network
Utility

Query Analyzer
Enterprise Manage:
Service Manager
Custom Program

OLE DB
ADO
ODBC
XML

Analysis Services Cubes

Windows - MS Search Service

SQL
Server
Engine

549359 ch01.F 11/21/02 4:09 PM Page 17

18 Part I ✦ Laying the Foundation

Chapter 25, “Automating Database Maintenance with SQL Server Agent,” details SQL agents,
jobs, and mail, as well as the SQL Server Agent.

Distributed Transaction Coordinator (DTC)
The Distributed Transaction Coordinator is a process that handles dual-phase commits for
transactions that span multiple SQL Servers. DTC can be started from the Service Manager or
from within Windows’ Computer Administration/Component Services. If the application regu-
larly uses distributed transactions, then I recommend you start DTC when the operating sys-
tem starts.

Chapter 18, “Working with Distributed Queries,” explains dual-phase commitments and dis-
tributed transactions.

Microsoft Search Service
The Microsoft Search Service is actually a component of the operating system that maintains
text-search capabilities for files. SQL Server leverages the Search Service when performing
full-text searches. The service may be started or stopped with the Service Manager or from
within Windows’ Computer Administration/Component Services.

Chapter 8, “Searching Full-Text Indexes,” explains how to create full-text catalogs and how to
query them using the contains command.

The next three components are not considered core server processes for SQL Server.
Nonetheless, they function within the server, so I’ve included them in this list.

SQL Mail
The SQL Mail component enables SQL Server to send mail to an external mailbox through a
mail profile. Mail may be generated from multiple sources within SQL Server, including T-SQL
code, jobs, alerts, DTS packages, and maintenance plans.

Chapter 25, “Automating Database Maintenance with SQL Server Agent,” explains how to set
up a mail profile for SQL Server and how to send mail.

English Query
English Query is a very different sort of application. Using English Query, a developer can
specify English words that a specific user population might use when discussing the data and
the relationships among the data. Once these words are fully developed and tested, the devel-
oper can create a .dll that can translate English questions using these words into SQL queries.
An application or Web page can then send these English questions through the DLL, and use
the returned SQL query to fetch the answer from SQL Server. Popular questions are often
stored in a list to help users get started. But let me warn you, English Query takes a lot of
work to develop and implement and the results are sometimes questionable. English Query
is an optional component and is installed separately from SQL Server.

Cross-
Reference

Cross-
Reference

Cross-
Reference

Cross-
Reference

549359 ch01.F 11/21/02 4:09 PM Page 18

19Chapter 1 ✦ Introducing SQL Server

Data Transformation Services
Data Transformation Services (DTS) moves data among nearly any types of data sources. As
shown in Figure 1-6, DTS uses a graphical tool to define how data can be moved from one con-
nection to another connection. DTS packages have the flexibility to either copy data column
for column or perform complex transformations, lookups, and exception handling during the
data move. DTS is extremely useful during data conversions, collecting data from many dis-
similar data sources, or gathering for data warehousing data that can be analyzed using
Analysis Services.

Figure 1-6: DTS graphically illustrates the data transformations within a planned data
migration or conversion.

Data Transformation Services is located within Enterprise Manager. You can use SQL Agent to
schedule a DTS package to run, and you can optionally save the package as a Visual Basic
script.

DTS is very cool. If you have experience with other databases, but are new to SQL Server
2000, this is one of the tools that will most impress you. If any other company were marketing
DTS it would be the flagship product, but instead we find it bundled inside SQL Server with-
out much fanfare and at no extra charge. Be sure to find the time to explore DTS.

Chapter 19, “Migrating Data with DTS,” describes how to create and execute a DTS package.Cross-
Reference

549359 ch01.F 11/21/02 4:09 PM Page 19

20 Part I ✦ Laying the Foundation

Analysis Services
Analysis Services is the component within SQL Server that provides business intelligence or
online analysis processing (OLAP). Essentially, Analysis Services enables the developer to
define cubes that are similar to Excel pivot tables or Access crosstab queries, but with multi-
ple dimensions. The cubes contain pre-calculated summary, or aggregate, data from very
large databases. This enables the user to easily and quickly browse the cube’s summarized
totals and subtotals without having to query terabytes worth of data (Figure 1-7).

Figure 1-7: Browsing a multidimensional cube within Analysis Services is a fluid way to
compare various aspects of the data.

Analysis Services is loaded separately from SQL Server and is considered a high-end data-
warehousing feature.

Chapter 31, “Analysis Services,” shows you how to create cubes and browse the work table’s
data based on the cube’s dimensions.

Client Components
The following components are client processes for SQL Server used to control, or communi-
cate with, SQL Server.

Cross-
Reference

549359 ch01.F 11/21/02 4:09 PM Page 20

21Chapter 1 ✦ Introducing SQL Server

Server Network Utility
Since SQL Server is a client/server process, it’s important that it be able to listen to the net-
work and communicate with clients. SQL Server’s Server Network Utility configures the way
in which SQL Server communicates with clients. Technically this is a client component used
to control the server.

Client Network Utility
SQL Server’s Client Network Utility is the client-side partner to the Server Network Utility. It
establishes the protocols used to communicate from the client to the server.

SQL Server Service Manager
When SQL Server is installed, a SQL Server icon appears in the system tray. This icon is some-
times confused as the icon for the SQL Server engine, but it actually represents the Service
Manager, a client utility used to start and stop the major services of SQL Server and to indi-
cate the current status.

Service Manager can control multiple servers and instances, and all the processes required to
run SQL Server. By default it displays the first instance on the local server and polls the
instance every 10 seconds, but it is configurable.

Running the Service Manager is completely optional. Many DBAs avoid loading Service
Manager because of its sizable memory footprint (about 3MB), and instead choose to launch
it from the Start menu when needed.

Enterprise Manager
Enterprise Manager is often confused with the SQL Server engine, but Enterprise Manager is
only a client application. Although Enterprise Manager often has trouble knowing when to
automatically refresh, and must frequently be manually refreshed, nearly all of SQL Server
may be easily controlled using the GUI controls and wizards (Figure 1-8). Tables and queries
are easily created and browsed with the Query Designer. Enterprise Manager’s weakness is in
the area of code development, because of the poorly designed modal interface. On the other
hand, Enterprise Manager is the only SQL Server interface that includes database diagrams.
The bottom line is that Enterprise Manager is more useful for administrative tasks than for
database development.

Chapter 4, “Using SQL Server’s Developer Tools,” discusses using the Service Manager,
Enterprise Manager, and Query Analyzer.

Query Analyzer
Although it might be mistaken for Notepad, there’s actually a lot of intelligence within Query
Analyzer. This lightweight tool is the perfect means of executing raw batches of T-SQL code.
Editing, executing, and saving scripts of SQL code is what Query Analyzer does best. Its
object browser enables the developer to easily view the existing database objects and to
create or alter objects.

Where Query Analyzer really shines is in viewing query-optimization plans and execution
statistics, as shown in Figure 1-9.

Cross-
Reference

549359 ch01.F 11/21/02 4:09 PM Page 21

22 Part I ✦ Laying the Foundation

Figure 1-8: Enterprise Manager provides an easy graphical method of administering
multiple SQL Servers from any workstation.

Command-Line Utilities: Isql, osql, Bulk Copy
These command-line interfaces enable the developer to execute SQL code or perform bulk-
copy operations from the DOS prompt or a command-line scheduler. DTS and SQL Server
Agent have rendered these tools somewhat obsolete, but in the spirit of extreme flexibility,
Microsoft still includes them.

SQL Books On-Line
The SQL Server team did an excellent job with Books On-Line (BOL). The articles tend to be
complete and include several examples. The indexing method provides a short list of applica-
ble articles.

BOL is well integrated with the primary interfaces. Selecting a keyword within Query
Analyzer and pressing Shift+F1 will launch BOL to the selected keyword The Enterprise
Manager help buttons will also launch the correct BOL topic.

I have only two complaints about Books On-Line. First, while the articles are detailed, they
don’t often provide a sense of the big picture. If a developer understands SQL Server, BOL is
a great place to find details quickly. But developers new to SQL Server sometimes complain
that it’s a steep learning curve. Using BOL can be like studying geography, one square foot at
a time.

549359 ch01.F 11/21/02 4:09 PM Page 22

23Chapter 1 ✦ Introducing SQL Server

Figure 1-9: Query Analyzer can view the query plan generated by SQL Server’s Query
Optimizer.

My second comment is that the articles in BOL are not always indexed by the article title. For
example, there’s a great article entitled “Lock Compatibility,” but it can’t be found by searching
the index for the title. Instead, search for “Update Lock” and then select “Lock Compatibility.”
Because of this problem, the Favorites tab is especially useful. This feature is a welcome
improvement that stores the locations of articles for future reference.

Other than those two minor comments, SQL Books On-Line is far superior to any other devel-
oper-tool help I’ve used.

SQL Profiler
SQL Profiler quietly watches SQL Server’s traffic and events, recording the selected informa-
tion to the screen, table, or file. Profiler is great for debugging an application or tuning the
database. The Index Tuning Wizard can use the collected data to optimize the database.

Performance Monitor
While Profiler records large sets of details concerning SQL traffic and SQL Server events,
Performance Monitor is a visual window into the current status of the selected performance
counters. Performance Monitor is found within Windows 2000’s administrative tools. When
SQL Server is installed it adds the SQL Server counters within Performance Monitor. And SQL
Server has a ton of useful performance counters. It’s enough to make a network administrator
jealous.

549359 ch01.F 11/21/02 4:09 PM Page 23

24 Part I ✦ Laying the Foundation

Chapter 28, “Advanced Performance,” covers SQL Profiler and Performance Monitor.

MSDTC Administrative Console
Distributed transactions — those that update more than one server’s data — are handled by
the Distributed Transaction Coordinator (DTC). The best way to monitor distributed transac-
tions is with the DTC administrative console. In Windows 2000, the console is found under
Administrative Tools/Component Services.

IIS Virtual Directory Manager
SQL Server 2000 supports XML queries directly from a browser. To make this happen, IIS
needs to think of SQL Server as one of its virtual directories. The “Configure SQL XML sup-
port for IIS” Wizard initially sets up that virtual directory.

SQL Server Resource Kit
Although the Resource Kit is a separate product from SQL Server, it includes several useful
utilities, sample procedures, and white papers for SQL Server, Analysis Services, and DTS. It
may be purchased separately, although it’s included with MSDN Universal, and much of it can
be downloaded from msdn.microsoft.com.

Transact SQL
SQL Server is based on the SQL standard with some Microsoft-specific extensions. SQL was
invented by E. F. Codd while he was working at the IBM research labs in San Jose in 1971. SQL
Server 2000 is entry-level (Level 1) compliant with the ANSI SQL 92 standard. The complete
specifications for the ANSI SQL standard are found in five documents that can be purchased
from www.techstreet.com/ncits.html.

While the ANSI SQL definition is excellent for the common data-selection and data definition
commands, it does not include commands with which to control SQL Server properties, or
provide the level of logical control within batches required to develop a SQL Server–specific
application. Therefore, the Microsoft SQL Server team has extended the ANSI definition with
several enhancements and new commands, and has also left out a few commands because
SQL Server implemented them differently. The final result is Transact-SQL or T-SQL — the
dialect of SQL understood by SQL Server 2000.

Missing from T-SQL are very few ANSI SQL commands (the union join variants, minus and
intersect, and certain foreign key cascade options, nullify and default) primarily because
Microsoft implemented the functionality in other ways. T-SQL, by default, also handles nulls,
quotes, and padding differently from the ANSI standard, although that behavior can be con-
trolled. From my personal development experience, none of these differences affect the pro-
cess of developing a database application using SQL Server. T-SQL adds significantly more to
ANSI SQL than it lacks.

Understanding SQL Server requires understanding T-SQL. The SQL Server engine understands
only one language — Transact-SQL. Every command sent to SQL Server 2000 must be a valid
T-SQL command. Batches of stored T-SQL commands may be executed within the server as
stored procedures. Other tools, like Enterprise Manager, which provide graphical user inter-
faces with which to control SQL Server, are at some level converting those mouse clicks to
T-SQL for processing by the engine.

Cross-
Reference

549359 ch01.F 11/21/02 4:09 PM Page 24

25Chapter 1 ✦ Introducing SQL Server

T-SQL commands are divided into the following three categories:

✦ Data Manipulation Language (DML): Includes the common SQL select, insert,
update, and delete commands. DML is sometimes mistakenly said to stand for Data
Modification Language; this is misleading, because the select statement does not mod-
ify data. It does, however, manipulate the data returned.

✦ Data Definition Language (DDL): Those commands that create and manage data tables,
constraints, and other database objects.

✦ Data Control Language (DCL): Security commands such as grant, revoke, and deny.

Client Applications
A client/server database won’t be used without client processes delivering the data to users.
Several technologies (such as DB-Lib, ADO, ODBC) are available with which client applica-
tions can connect to SQL Server. Access, Excel, and Visio all leverage these technologies to
display and edit SQL Server data. This section is a brief overview of some of the connection
technologies available.

DB-Lib
The original API to SQL Server was DB-Library. It was the native connection method for SQL
Server 6.5 (and older), and intended for C programs. Although DB-Lib was fast, it’s no longer
supported. It exists only for the sake of backward capability.

ODBC/DSN
Open Database Connectivity (ODBC) is the Microsoft standard for connecting to relational
databases. Its strength is the number of OBDC drivers available; however, being “all things to
all data formats” means that ODBC requires some internal compatibility layers and internal
data types. The result is that ODBC works smoothly, but fails to set performance records.

ODBC is actually a C-language interface, but objects such as DAO (Data Access Objects) are
available for most languages and for many years it was the most popular connectivity tech-
nology. Microsoft Jet Engine, built into Microsoft Access since version 1.0, uses ODBC to con-
nect to nearly any data format.

ODBC references data source names (DSNs) to manage connection strings and settings.
DSNs are organized within Windows 2000’s Administrative Tools, in the Data Sources tool.
Deploying ODBC connections to several workstations requires setting up the DSN on each
individual computer. However, file DSNs make this process easier.

OLE-DB/ADO
OLE-DB is the replacement for ODBC and features several improvements. But first, ignore the
OLE in OLE-DB. OLE originally stood for Object Linking and Embedding, and back in the
Windows 2 days it enabled a Microsoft Word document to point to live data in an Excel
spreadsheet. Over the years, the term OLE came to mean, informally, “new cool technology.”
OLE-DB is superior to ODBC because it’s a lighter-weight object intended to be wrapped
within a data-source object that extends OLE-DB to meet the data source’s capabilities.

549359 ch01.F 11/21/02 4:09 PM Page 25

26 Part I ✦ Laying the Foundation

This means that OLE-DB loses some of the unnecessary overhead of ODBC and at the same
time gains the flexibility to handle data types other than relational data. Hence the name
OLE — new cool technology.

As more data sources become available for OLE-DB, it will be able to work with as many
databases as ODBC. (There’s even an OLE-DB data source to ODBC, which lets OLE-DB go
through ODBC to get to nearly any database.)

OLE-DB is important to SQL Server 2000 client-side developers because it’s the native means
of connecting to SQL Server. This means that it’s the fastest possible connection technology.

ActiveX Data Objects, or ADO, is the object wrapper that exposes OLE-DB to developer lan-
guages such as Visual Basic (Figure 1-10). With .NET, ADO is being extended and will have an
even faster direct connection to SQL Server.

Figure 1-10: Connecting to SQL Server through ADO.

Chapter 21, “ADO and ADO.Net,” demonstrates how to construct and use an ADO connection.

Microsoft Access
Microsoft Access is listed here because, since Access 2000, it has had the ability to work with
two types of files: Access databases (.mdb) with the Jet Engine, and Access Projects (.adp).
Access Projects don’t include the traditional Access Jet Engine, but instead connect directly
to SQL Server (Figure 1-11).

Many SQL Server developers have found that Access Projects make a fast and easy SQL
Server client. While Access Projects may not be the final client interface for large databases,
they make an excellent transition and data-management tool. For smaller databases, merging
the reliability of SQL Server with the development ease of Access Forms is a winning combi-
nation.

Access includes an Upsizing Wizard that can automatically move tables and data to SQL
Server to make it easier to convert from existing Access databases to SQL Server.

Excel
Surprisingly, Excel integrates well with SQL Server. SQL Server includes a wizard to export
data to Excel for analysis, and can directly connect to Excel spreadsheets using distributed
queries. In return, Excel can view and edit data inside SQL Server.

Cross-
Reference

i
ADO

OLE DB

Visual Basic
program

549359 ch01.F 11/21/02 4:09 PM Page 26

27Chapter 1 ✦ Introducing SQL Server

Figure 1-11: An Access Project leaves Jet behind and connects directly to SQL Server
objects using OLE-DB.

As database developers, we tend to shun flat-file modes of working with data as uncivilized.
However, denormalizing some data and preparing them for a manager to manipulate using his
or her favorite data tool will likely reduce the report workload and free developer time for
more noble pursuits, such as tuning indexes or testing the recovery plan.

Visio
Enterprise Manager’s database-diagramming tool is augmented by Visio’s ability to import
database schemas from SQL Server and create databases within SQL Server based on Visio
drawings.

A large diagram of the database schema from a drafting plotter helps the whole team work
with the database. I always try to get one posted on the wall.

Data Analyzer
The Microsoft Data Analyzer, a new product in Microsoft Office, is designed for business intel-
ligence (BI) analysis — much like the On-Line Analysis Processing (OLAP) cubes within SQL
Server’s Analysis Services, but with an emphasis on graphing.

Certifications and Training
As a SQL Server DBA or developer, you may wish to pursue certification for two reasons.
First, SQL Server 2000 has a board set of features. Typically, IT professionals are experts in
the features they’ve had to employ to solve problems, but are less familiar with other por-
tions of the software. Seeking certification will help shore up these deficiencies and round out
your skills. A thorough knowledge of the capabilities of SQL Server will help you find the most
appropriate solution to future problems.

SQL
Server
engine

i JET Engine

Access Database (.mdb)

ODBC

SQL
Server
engine

i
Access Project (.adb)

OLE DB

549359 ch01.F 11/21/02 4:09 PM Page 27

28 Part I ✦ Laying the Foundation

The second compelling reason for certification is career advancement. SQL Server is selling
very well, and the user interface, which hides many of the details, makes SQL Server 2000
seem simple to operate. Certification, along with your experience, can help differentiate you
from Joe’s brother-in-law who installed SQL Server last week. The following sections cover
the available certification options.

Microsoft MCP
The Microsoft Certified Professional program is intended to train you for product-specific cer-
tification. Passing any Microsoft exam qualifies you for MCP status. Completing a series of
exams qualifies an MCP for a premium certification such as MCSE (System Engineer), MCSD
(Solution Developer), or MCDBA (Database Administrator).

The following two MCP exams are aimed specifically at SQL server DBAs and developers:

✦ Exam 70-228 — SQL Server 2000 Administration covers DBA skills including installation,
configuration, creating databases, monitoring and troubleshooting, DTS, linked servers,
replication, IIS and XML, security, and SQL Server Agent.

✦ Exam 70-229 — SQL Server 2000 Database Design and Implementation covers logical and
physical database design, retrieving and modifying data, T-SQL programming, database
security, and tuning and optimization.

Both tests have a reputation for being difficult and taking the full allotment of time to com-
plete (an hour and 45 minutes for 45 questions). The tests are skewed toward the details of
new features and include several questions that are less than specific. Several times I’ve
found myself thinking that a question provided a poor scenario, and then asked me to choose
among four bad practices. Several questions present a complex story with four lengthy
options and then ask which option best meets the story’s requirements. Just reading the
question carefully consumes much of the time allowed per question.

Microsoft also offers Microsoft Official Curriculum (MOC) courses taught by third-party edu-
cation centers. I have personally used the Microsoft Press Readiness Review books, the Exam
Cram books, and some online practice tests to prepare for Microsoft exams.

MCP exams may qualify for college credit with Regents University. For complete and current
information on MCP exams go to www.microsoft.com/MCP.

MCDBA
The Microsoft Certified DBA certification is a premier certification, with only 25,088 people
meeting the qualification at the time of this writing. That’s about 1.8 percent of those holding
some type of Microsoft certification, but about a third of trained SQL Server DBAs. Qualifying
for MCDBA within the SQL Server 2000 track requires passing four exams:

✦ One of the following Server Exams:

• Exam 70-215 — Installing, Configuring, and Administering Microsoft Windows 2000
Server

or

• Exam 70-275 — Installing, Configuring and Administering Microsoft Windows.NET
Server

549359 ch01.F 11/21/02 4:09 PM Page 28

29Chapter 1 ✦ Introducing SQL Server

✦ Both SQL Server 2000 Exams:

• Exam 70-228 — SQL Server 2000 Administration

• Exam 70-228 — SQL Server 2000 Database Design and Implementation

✦ One elective exam from the following list:

• 70-015 — Designing and Implementing Distributed Applications with Microsoft
Visual C++ 6.0

• 70-019 — Designing and Implementing Data Warehouses with Microsoft SQL
Server 7.0

• 70-155 — Designing and Implementing Distributed Applications with Microsoft
Visual FoxPro 6.0

• 70-175 — Designing and Implementing Distributed Applications with Microsoft
Visual Basic 6.0

• 70-216 — Implementing and Administering a Microsoft Windows 2000 Network
Infrastructure

• 70-276 — Implementing and Administering a Microsoft Windows .Net Server
Network Infrastructure

As .Net and WindowsXP exams become available these requirements may change. I also
expect to see SQL Server 2000 data-warehousing and DTS exams in the future.

MCDBA certification offers several excellent benefits, including discounts on MSDN Universal,
the Tech-Ed conference, and discounted membership in the Professional Organization for SQL
Server (PASS).

Learning Tree SQL Server 2000 Certifications
As an alternative to the Microsoft test-based certifications, Learning Tree offers several class-
room-based courses which lead to two SQL Server 2000 certifications, one for DBAs and one
for developers. Each certification requires four hands-on classes and passing a straightfor-
ward test at the end of the week.

Learning Tree courses qualify as college credits with the American Council on Education
(ACE). For more information on Learning Tree courses or the Learning Tree certification pro-
grams referred to here, go to www.learningtree.com.

Brainbench.com
A third certification option is Brainbench.com, an on-line independent certification company
with over 350 certifications. Brainbench tests are open book — referencing any resource,
except another person, is encouraged. The results of the Brainbench tests are more detailed
than Microsoft’s and the transcript may be posted on-line within Brainbench.com.

If certification is important to you, my recommendation is to combine multiple certifications
with hands-on experience.

549359 ch01.F 11/21/02 4:10 PM Page 29

30 Part I ✦ Laying the Foundation

Conferences
If you want to stay on top of SQL Server developments and hear from the experts, two confer-
ences demand your consideration:

✦ Microsoft Tech-Ed is an annual event held in over a dozen locations throughout the
world. The U.S. Tech-Ed is typically held during the spring in a large southern city. It’s
the premier technical-education event for Microsoft. The products are explained by
Microsoft developers and program managers. For complete information, visit msdn.
microsoft.com/events/teched.

✦ SQL PASS is the annual conference of the Professional Association for SQL Server. The
U.S. conference is held in the fall and the European conference is held in the spring.
SQL PASS tends to attract independent experts as well as the Microsoft SQL Server
development team. While Microsoft Tech-Ed covers all Microsoft IT technologies, SQL
PASS focuses solely on developing with, administrating, and extending SQL Server. For
more information about PASS and the PASS conference, visit www.sqlpass.org.

SQL Server in a Brave New .Net World
SQL Server 2000 is marketed by Microsoft as a .Net Server. However, SQL Server 2000 was
released before the .Net initiative was announced and almost a year and a half before the .Net
languages shipped. Is the combination of SQL Server 2000 and .Net more than just Microsoft
marketing hype? I think so, and here’s why.:

.Net and Application Development

.Net is a complete redesign of application development, built directly on top of Win32, and
provides all languages with equal access to Win32 features.

Use of a Common Language Runtime (CLR) means that any .Net language can compile to the
same MSIL intermediate language. COM+ used to be tacked onto objects to allow them to
share data. The CLR now lets any object easily share with any other object without the over-
head of COM+. Functions built in C.NET may mix with applications built with VB.NET. The lan-
guage no longer divides the code.

.Net’s Base Class Library provides a consistent library for all development, regardless of lan-
guage or deployment — Windows or Web.

It has always been difficult to develop fully interactive applications because HTML is state-
less. To the server every page redraw is handled as a new page request. The entire page must
be completely rebuilt at the server based on the URL request.

ASP.Net takes much of the work out of developing ASP Web applications. The new Web Forms
include methods that actually respond to events on the page. And because ASP.Net uses the
same base-class library, the functionality is huge and Web Forms include many great controls.
But wait, there’s more. The ASP handler examines the client browser and automatically gener-
ates the correct code for that browser at runtime. Finally, thin-client development is as
straightforward and as powerful as full GUI development.

Combine all these features with a new set of tools and developer interfaces, and .Net is the
biggest initiative from Microsoft since Windows NT.

549359 ch01.F 11/21/02 4:10 PM Page 30

31Chapter 1 ✦ Introducing SQL Server

.Net and XML
HTML is a presentation mark-up language. HTML data is polluted with presentation informa-
tion and lacks a data protocol. At the heart of .Net is XML and the ability to mark up not only
how data should appear, but also what the data mean. In addition to its inherent capabilities,
several companion technologies enhance XML:

✦ XSLT — Business logic within XML

✦ XPath — XML query language

✦ XQuery — New way to query data

✦ SOAP — Simple Object Access Protocol

The purpose of XML is to allow any application on any platform to share data with any other
application on any other platform. The idea is that your PC will share information with your
handheld, alarm clock, cell phone, bank, travel agent, airline, and work scheduler.

Chapter 22, “XML and Web Publishing,” includes a sample XML document from the Cape
Hatteras Adventures database.

Some believe that XML is superior to the SQL language because XML handles a greater vari-
ety of data. The two are compared in Table 1-3.

Table 1-3: SQL Data Versus XML Data

Data feature SQL Resultset XML Dataset

Level of data handled Single table (rows and columns) Multiple hierarchical data

Embedded data schema No Yes

Embedded business rules No Yes

Embedded data constraints No Yes

Format using stylesheets into No Yes
HTML, WML, or other XML

Microsoft BizTalk and EDI
Electronic Data Interchange (EDI) has been the standard for companies exchanging data for
over a decade. Nearly every industry has numerous complex data-file formats. These formats,
developed by industry committees, include every possible data field including the kitchen
sink, and are often tied to older, non-relational database structures (such as AS-400 flat-file).
To make sense of this mess, several companies handle the EDI translation of data between
business partners. This service is not cheap.

Microsoft is proposing to undo the EDI monopolies with BizTalk, a graphical data-mapping
server that enables companies to easily exchange XML data. BizTalk can be envisioned as
DTS for XML with multiple mapping capabilities. Using BizTalk, multiple companies will be
able to share XML mappings and then swap data without paying the EDI translators.

Cross-
Reference

549359 ch01.F 11/21/02 4:10 PM Page 31

32 Part I ✦ Laying the Foundation

How SQL Server Fits into .Net
All these development tools need fast access to data. .Net is optimized to use SQL Server
2000 as its data store. SQL Server 2000 includes the ability to receive and send data in XML
format. Because .NET is designed around SQL Server and XML, SQL Server is, by definition, a
core .NET server.

The Future
SQL Server 2000 is a cool product, but Microsoft isn’t sitting still. The next version of SQL
Server, code named Yukon, has been in development for a couple of years and is expected to
ship in late 2003.

The future of databases is XML, and Yukon is being built to handle XML as well as it handles
SQL. It would also seem logical for Microsoft to incorporate other .NET technologies, such as
the Common Language Runtime, making it possible to program with languages other than T-
SQL, work with objects, and share data with other .NET objects. In short, I expect Yukon to be
a whole new world for SQL Server developers.

Summary
SQL Server is indeed a large and complex product. It’s important to have a solid understand-
ing of the big picture concerning SQL Server before diving into its details. From here, the next
chapter continues to build a foundation for SQL Server development as it drills into the the-
ory of relational database design.

✦ ✦ ✦

549359 ch01.F 11/21/02 4:10 PM Page 32

Modeling the
Logical Database
Schema

When I was in the U.S. Navy Submarine Service there was an on-
going friendly debate between the sailors about who was most

important. The nuclear power–plant engineers (glow-in-the-darks)
seemed to think that the purpose of the boat was to transport their
nuclear reactor. Although I was a Data System Tech, I thought the tor-
pedo mates were the most important. Without them, the rest of us
were just on an underwater cruise.

It’s the same with information technology.

During the late 1980s, in keeping with the belief that the medium is
the message, Sun Microsystems preached that the network is the
computer. But, as the explosion of Web pages has demonstrated, it’s
content that brings people back to a site. The data is the computer.

Web-page designers may have the limelight, and the newest processors
and hardware may get the headlines, but without the database the rest
of the computer network only shares files and sends e-mail. If you have
selected database development as your career, I think you’ve made a
wise choice.

This concise chapter introduces the basic design skills required to
design a database application. Volumes have been written on these
topics; the goal here is to provide a concise introduction and the
background you need in order to develop with SQL Server. Without
dealing specifically with SQL Server, this chapter explains the skills
and methods used to develop the logical design, which is then imple-
mented with SQL Server.

Some of the examples in this chapter refer to the sample
database on the CD. For more information on these databases,
see Appendix B, “Sample Databases.”

On the
CD-ROM

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Database basics

Data modeling and
normalizing

Understanding and
designing for data
integrity

Object-oriented
database design

Designing a flexible
database using a
dynamic/relational
schema

✦ ✦ ✦ ✦

04549359 ch02.F 11/21/02 9:22 AM Page 33

34 Part I ✦ Laying the Foundation

Database Basics
The purpose of a database is to store the day-to-day operational information required by
an organization. Any means of collecting and organizing data is a database. Prior to the
Information Age, information was primarily stored on cards, in file folders, or in ledger books.
Before the adding machine, offices employed dozens of workers who spent all day adding
columns of numbers and double-checking the math of others. The title of those who had that
exciting career was computer.

As the number crunching began to be handled by digital machines, human labor, rather than
being eliminated, shifted to other tasks. Analysts, programmers, managers, and IT staff have
replaced the human “computers” of days gone by.

Benefits of a Digital Database
The Information Age and the relational database brought several measurable benefits to
organizations:

✦ Increased data consistency and better enforcement of business rules

✦ Improved sharing of data, especially across distances

✦ Faster searches for and retrieval of data

✦ Improved generation of comprehensive reports

✦ Improved ability to analyze data trends

The general theme is that a computer database originally didn’t save time in the entry of
data, but rather in the retrieval of data and in the quality of the data retrieved. However, with
automated data collection in manufacturing, bar codes in retailing, databases sharing more
data, and consumers placing their own orders on the Internet, the effort required to enter the
data has also decreased.

Tables, Rows, Columns
A relational database collects common, or related, data in a single list. For example, all the
product information may be listed in one table and all the customers in another table.

A table appears similar to a spreadsheet and is constructed of columns and rows. The appeal
of the spreadsheet is its informal development style, which makes it easy to modify and add
to as the design matures. In fact, managers tend to store critical information in spreadsheets,
and many databases started as informal spreadsheets.

In both a spreadsheet and a database table, each row is an item in the list and each column is
a specific piece of data concerning that item. So each cell should contain a single piece of
data about a single item. While a spreadsheet tends to be free-flowing and loose in its design,
database tables should be very consistent as to the meaning of the data in a column. Because
row and column consistency is so important to a database table, the design of the table is
critical.

Over the years different development styles have referred to these columns with various
different terms, listed in Table 2-1.

04549359 ch02.F 11/21/02 9:22 AM Page 34

35Chapter 2 ✦ Modeling the Logical Database Schema

Table 2-1: Comparing Database Terms

Development Style The Common List An Item in the List A Piece of Information in the List

Spreadsheet Spreadsheet/ Row Column/cell
worksheet/
named range

Historic software File Record Field

Relational algebra/ Entity Tuple (rhymes Attribute
logical design with couple)

SQL/physical design Table Row Column

Object-oriented design Class Object instance Property

SQL Server developers generally refer to database elements as tables, rows, and columns
when discussing the physical schema, and sometimes use the terms entity, tuple, and
attribute when discussing the logical design. While the rest of this book will use the physical-
schema terms, this chapter is devoted to the theory behind the design, and so it will use the
relational-algebra terms (entity, tuple, and attribute).

Transaction Processing Databases
A database that’s used for day-to-day processing with frequent data inserts, updates, and
searches is referred to as an online transaction processing (OLTP) database. OLTP databases
typically have multiple purposes, with several front-end applications accessing the data for
searches, modification, and reporting.

Data integrity is a high priority for OTLP because the data change frequently. Therefore,
OTLPs use a normalized data schema and several methods of enforcing data-integrity rules
and business rules (this chapter will explain the various forms of normalization). For perfor-
mance, OLTP databases are tuned for a balance of data retrieval and updating for both index-
ing and locking.

Decision Support Databases
Another type of database is one that’s used primarily for analysis: this is the online analysis
processing (OLAP) database. These databases generally receive large amounts of data from
several OLTP databases in a process called extract-transform-load (ETL).

The primary task of an OLAP database is data retrieval and analysis, so the data-integrity
concerns present with an OLTP database don’t apply. Analysis databases are designed for
fast retrieval and aren’t as normalized as OLTP databases. OLAP databases use a basic star
schema design. Locks generally don’t apply and the indexing is applied without risk of slow-
ing down inserts or updates.

The analysis process is usually more than SQL queries, and also uses data cubes that consoli-
date gigabytes of data into dynamic pivot tables. Data warehousing is the combination of the
ETL process, the OLAP database, and the acts of creating and browsing cubes.

04549359 ch02.F 11/21/02 9:22 AM Page 35

36 Part I ✦ Laying the Foundation

Digital Nervous System
Bill Gates has promoted the concept of a “digital nervous system” in the past few years. The
idea is that vital information is collected and made available throughout the organization.
While his book, Business @ the Speed of Thought (Warner Books, 2000), is about using data to
improve the effectiveness of an organization, a data analyst will read it as a series of database
case studies.

The OLTP database is part of a digital nervous system brain. It’s the portion that collects all
the information from every nerve and organizes the information so that it can be processed
by the rest of the brain. The OLTP database is used for quick responses and instant recogni-
tion of the surroundings. For example, by quickly solving an order-handling problem, the
OLTP database serves as the autonomic nervous system, or the reflexes, of an organization.

In contrast, the OLAP database (the data warehouse) is the memory of the organization. It
stores history and is used for trend analysis, such as finding out where (and why) an organi-
zation is doing well or is failing. The portion of the digital nervous system that used by an
organization for thoughtful musings — slowly turning over a problem and gaining wisdom —
is the OLAP database and a cube.

Data Modeling
The goal of data modeling is to define a data structure that logically represents certain
objects and events. The foundation of data modeling is careful observation and understand-
ing of reality. Based on those insights, the data modeler constructs a logical system — a new
virtual world — that models reality.

The basic data element is a single container for data — the intersection of a tuple (row) and
an attribute (column) — a single cell in a spreadsheet visualization. Data modeling is the art
of fitting that single unit of data in the right place inside hundreds of entities and millions of
tuples so that the entire system of data units is logically correct, properly models reality, is
easily searchable, and is utterly consistent. To be a data modeler is to see every scene, situa-
tion, and document from the viewpoint of data elements and relational design.

The role of the data modeler is arguably the most critical role in any software project,
because the data modeler designs the foundation, or structure, of the artificial reality the rest
of the code must survive, or die within. Any feature the project is going to offer must be
designed within the data schema.

Actually doing data modeling involves several processes. Because each step of the design
process is so dependent on the other steps, and discovery continues throughout the process
to some degree, designing a data schema isn’t a only a sequential process; rather the data
modeler moves among these processes as the design takes shape.

1. Observation and requirements gathering

2. Logical representation of reality

3. Visible entity identification and design

4. Schema design (secondary and supporting entities)

5. Application-structure design

04549359 ch02.F 11/21/02 9:22 AM Page 36

37Chapter 2 ✦ Modeling the Logical Database Schema

No schema can perfectly model reality. Each data schema is designed to meet the require-
ments of the project at a given stage of the project’s life cycle. Discerning the actual require-
ments, balancing the trade-offs between reality and the design, and building a data schema
that supports the current version and allows room to grow are skills learned not from a book,
but from experience.

Gathering Project Requirements
The success of any project is based on meeting the requirements of the client. This leads to
the following two questions:

1. Who are the clients?

2. What do they need?

Various people in the client organization may have different and competing needs in terms of
software features, timelines, and interfaces. The requirements must be understood at several
levels, from the overall organizational structure down to the individual details.

Managing the requirement-gathering phase of the project is often the most difficult task, in
part because it’s so easy to satisfy one faction while missing other critical requirements.

Some of the means of learning client requirements are:

✦ Interviews with management, end users, and business analysts

✦ Existing forms and reports

✦ Project focus groups

The goal of the requirement-gathering phase is to reach a consensus on the following issues:

✦ The business objects to be modeled; how they are identified by the users; and how the
objects are further described

✦ How the objects relate to one another

✦ The business rules for the objects

✦ The primary searches and forms required

✦ The primary reports required

✦ How the database will share data with the rest of the organization

Logical Database Schema
The purpose of the logical design is to describe entities, relationships, and rules. The physi-
cal-schema design will take the logical design and implement it within the structure of a par-
ticular software product.

A mathematical approach to relational-database design involves several rules of normaliza-
tion — rules that govern whether the database design is valid. While designing hundreds of
normalized database designs, I have developed an approach to database design that follows
the rules of normalization based on the concept of visible and supporting entities. Visible enti-
ties represent elements users would recognize, while supporting entities are abstract entities
designed by the database modeler to physically support the logical design.

04549359 ch02.F 11/21/02 9:22 AM Page 37

38 Part I ✦ Laying the Foundation

Visible Entities
Visible entities generally represent objects that most people would recognize. Many objects
are nouns — people, places, or things, such as a contact, a facility, an item, or an airplane.
Visible entity might also represent actions, such as a material being assembled or an order
being processed. Typically, a visible object is already represented in a document somewhere.

Some visible objects represent ways in which other primary objects are organized, or
grouped. For example, clients recognize that groceries fall into several categories — dairy,
bread, meats, canned goods, and so on. For another example, purchase orders might be cate-
gorized by their priority.

Every Tuple (row) Is an Island
At the tuple level, each tuple must represent a complete logical thought, and each attribute in
the tuple must belong specifically to that tuple and no other.

Every entity is based on the idea that each tuple represents, or models, a single noun or verb.
Here’s where the experience of data modeling pays off. The key is properly identifying the
unique, yet generic, nouns and verbs. That’s what is meant by the term relational database
system. It’s not that entities relate to other entities, but that similar, or related, data are
assembled into a single entity.

Only data that describe the object belong in the entity. Some of the possible attributes, even
though they are sometimes listed on paper documents for one object, may actually describe
another object. An order form will often include the customer’s name and address although
the name belongs to the customer and not the order. The address also belongs to the cus-
tomer. However, if the customer changes his or her address next year, the order should still
show the old address. The point is that careful analysis of the objects and their properties is
vital to data modeling.

Well-designed entities are generic so they can handle a variety of similar items. For example,
a single grocery entity would contain a variety of grocery items, instead of there being an
apple entity and a separate beef entity, and so on.

Primary Keys
Every tuple in an entity has to represent a single unique object in reality. In the same way that
there can’t be two of the same airplane, there can’t be two tuples that represent the same air-
plane. To logically prove that each tuple is unique, one attribute (the primary key) is assigned
to be the primary way that a specific tuple is referenced for data-modification commands.
The logical purpose of the primary key is only to uniquely identify or name the tuple. If you
can demonstrate that each object in reality has a single primary key, and visa versa, then
you’ve done your job well.

For an example of a primary key in the physical schema, each customer in the Cape Hatteras
Adventures database is identified by their Customer ID. Using SQL Server’s identity column
option, a new integer is automatically generated for each customer row as the row is inserted
in the table.

Identifying Multiple Entities
While each entity must be a proper entity with all attributes dependent on the primary key, a
single entity can’t model very much. It takes several entities modeled together to represent
an entire business function or organizational task.

04549359 ch02.F 11/21/02 9:22 AM Page 38

39Chapter 2 ✦ Modeling the Logical Database Schema

Additional entities provide multiple additional pieces of information about the primary
objects, group the primary objects, and connect them. While developing the logical data
model, several types of logical scenarios within the requirements that will require multiple
entities in the logical model are:

✦ Multiple objects

✦ Relationships between objects

✦ Organizing or grouping objects

✦ Consistent look-up values

✦ Complex objects

Sometimes the differentiation between objects, lookup values, and grouping objects blur. As
long as all the previous scenarios are considered, the logical data model will be complete.

Multiple Objects
Sometimes what appears to be a single object is in fact a list of multiple objects. For example:

✦ In the Cape Hatteras Adventures database, a tour may be offered several times. Each
time is an event.

✦ In the Family database, each person may have several children.

✦ An employee timecard can include multiple timestamps. The employee timecard can be
considered a single object, but upon closer examination it’s really a list of time events.

✦ A daily calendar can include multiple appointments.

Relationships Between Objects
The most common purpose of multiple entities is to describe some type of relationship
between two different objects. For example:

✦ In the Cape Hatteras Adventures (CHA) sample database, customers participate in
tours, and guides lead tours. These are relationships between customers and tours,
and between guides and tours.

✦ A material can be built from multiple other materials.

✦ A health insurance policy can cover multiple family members; this is a relationship
between the policy and the family members.

✦ For a software-quality tracking system, a software feature can have multiple bugs.

When examining objects and attributes, use the “none, one, or infinity” rule. Whenever it is
possible that more than one of any object or attribute may exist, allow for an infinite num-
ber. If the user says that the object will always have a fixed number of related objects, just
nod, say “I understand,” and design for infinity anyway.

Organizing or Grouping Objects
Objects are sometimes grouped into different categories. These categories should be listed in
their own entities. For example:

04549359 ch02.F 11/21/02 9:22 AM Page 39

40 Part I ✦ Laying the Foundation

✦ Customers may be grouped by their customer type in the CHA database.

✦ Materials are grouped by their state (raw materials, works in process, finished goods)

✦ In the Cape Hatteras Adventures sample database, the base camp groups the tours.

Consistent Look-Up Values
Object attributes often require consistent look-up values. For example:

✦ The type of credit card used for a purchase

✦ The region for an address

✦ The department code for an item

Complex Objects
Some objects in reality are too complex to model with a single entity. The information takes
on more forms than a single primary key and a single tuple can contain. Usually this is
because the object in reality includes some form of multiplicity. For example, an order can
include multiple order lines. The order lines are part of the order, but the order requires a
secondary entity to properly model the multiplicity of the order lines.

Modeling Relationships
Once the nouns and verbs are organized, the next step is to determine the relationships
among the objects. Each relationship connects two entities using their keys and has the fol-
lowing two main attributes:

✦ Cardinality — The number of objects that may exist on each side of the relationship.

✦ Optionality — Whether the relationship is mandatory or optional.

Clients or business analysts should be able to describe the common relationships between
the objects using terms like includes, has, or contains. A customer may place many orders. An
order may include many items. An item may be on many orders.

Secondary Entities and Foreign Keys
When two objects relate, one entity is typically the primary entity and the other entity the
secondary entity. One object in the primary entity will relate to multiple objects or tuples in
the secondary entity, as shown in Figure 2-1.

The role of the foreign key is to hold the primary key’s value so the secondary tuple can be
matched with the relating primary tuple.

Relationship Cardinality
The cardinality of the relationship describes the number of tuples on each side of the rela-
tionship. Either side of the relationship may either be restricted to a single tuple or allow mul-
tiple tuples. The type of key enforces the restriction of multiple tuples. Primary keys enforce
the single-tuple restriction while foreign keys permit multiple tuples.

There are several possible cardinality combinations as shown in Table 2-2. Within this section,
each of the cardinality possibilities is examined in detail.

04549359 ch02.F 11/21/02 9:22 AM Page 40

41Chapter 2 ✦ Modeling the Logical Database Schema

Figure 2-1: A one-to-many relationship consists of a primary entity and a secondary
entity. The secondary entity’s foreign key connects with the primary entity’s primary key.

Table 2-2: Relationship Cardinality

Relationship Type First Entity’s Key Second Entity’s Key

One-to-one Primary entity–primary key– Primary entity–primary key–
single tuple single tuple

One-to-many Primary entity–primary key– Secondary entity–foreign key–
single tuple multiple tuples

Many-to-many Secondary entity–foreign key– Secondary entity–foreign key–
multiple tuples multiple tuples

Relationship Optionality
The second property of the relationship is its optionality. The difference between an optional
and a mandatory relationship is critical to the data integrity of the database.

Some secondary tuples require that the foreign key point to a primary key. The secondary
tuple would be incomplete or meaningless without the primary entity. It’s critical in these
cases that the relationship be enforced as a mandatory relationship, for the following reasons:

04549359 ch02.F 11/21/02 9:22 AM Page 41

42 Part I ✦ Laying the Foundation

✦ An order-line item without an order is meaningless.

✦ An order without a customer is invalid.

✦ In the Cape Hatteras Adventures database, an event without an associated tour tuple is
a useless event tuple.

On the other hand, some relationships are optional. The secondary tuple can stand alone
without the primary tuple. The object in reality that is represented by the secondary tuple
would exist with or without the primary tuple. For example:

✦ A customer without a discount code is still a valid customer.

✦ In the OBX Kites sample database, an order may or may not have a priority code.
Whether the order’s PriorityID points to a valid tuple in the order priority entity or
not, it’s still a valid order.

Some database developers prefer to avoid optional relationship and so they design all rela-
tionships as mandatory and point tuples that wouldn’t need a foreign key value to a surrogate
tuple in the primary table. For example, rather than allow nulls in the discount attribute for
customers without discounts, a “no discount” tuple is inserted into the discount entity and
every customer without a discount points to that tuple.

There are two reasons to avoid surrogate null tuples; the design adds work when work isn’t
required (additional inserts and foreign key checks), and it’s easier to locate works without
the relationship by selecting where column is not null. The null value is a useful design
element. Ignoring the benefits of nullability only creates additional work for both the devel-
oper and the database.

Some rare situations call for a complex optionality based on a condition. Depending on a rule,
the relationship must be enforced as follows:

✦ If an organization sometimes sells ad hoc items that are not in the item entity, the rela-
tionship may, depending on the item, be considered optional. The orderdetail entity
can use two attributes for the item. If the ItemID attribute is used then it must point to
a valid item entity primary key.

✦ However, if the temext attribute is used instead, the ItemID attribute is left null.

How the optionality is implemented is up to the physical schema. The only purpose of the
logical design is to model the organization’s objects, their relationships, and their business
rules.

Data-Model Diagramming
Data modelers use several methods to graphically work out their data models. The Chen ER
diagramming method is popular, and Visio Professional includes it and five others. The
method I prefer is rather simple and works well on a whiteboard, as shown in Figure 2-2. The
cardinality of the relationship is indicated by a single line or by three lines (chicken feet). If
the relationship is optional, a circle is placed near the foreign key.

Figure 2-2: A simple method for diagramming
logical schemas.

Primary Table Secondary Table

04549359 ch02.F 11/21/02 9:22 AM Page 42

43Chapter 2 ✦ Modeling the Logical Database Schema

Another benefit of this simple diagramming method is that it doesn’t require an advanced
version of Visio.

One-to-Many Relationships
By far the most common relationship is a one-to-many relationship. Several tuples in the sec-
ondary entity relate to a single tuple in the primary entity. The relationship is between the pri-
mary entity’s primary key and the secondary entity’s foreign key, as in the following examples:

✦ In the Cape Hatteras Adventures database, each base camp may have several tours
that originate from it. Each tour may originate from only one base camp. So the rela-
tionship is modeled as one base camp relating to multiple tours. The relationship is
made between the BaseCamp’s primary key and the Tour entity’s BaseCampID foreign
key, as diagrammed in Figure 2-3. Each Tour’s foreign-key attribute contains a copy of
its BaseCamp’s primary key.

Figure 2-3: The one-to-many relationship relates a
primary key to a foreign key.

✦ Each customer may place multiple orders. While each order has its own unique
OrderID primary key, the Order entity also has a foreign-key attribute that contains
the CustomerID of the customer who placed the order. The Order entity may have sev-
eral tuples with the same CustomerID that defines the relationship as one-to-many.

✦ A non-profit organization has an annual pledge drive. As each donor makes an annual
pledge, the pledge goes into a secondary entity that can store several years’ worth of
pledges. An entity structure of donor name, 2001pledge, 2002pledge, 2003pledge is
an amateurish design.

✦ One order may have several order lines. The Order primary key is duplicated in the
OrderDetail entity’s foreign key. This constrains each order to a single tuple in the
Order entity, but allows multiple associated tuples in the OrderDetail entity.

One-to-One Relationships
One-to-one relationships connect two entities with primary keys at both entities. Because a
primary key must be unique, each side of the relationship is restricted to one tuple.

One-to-one relationships are sometimes used to expand the tuple in one entity with addi-
tional, but optional or separate, attributes. For instance, an Employee entity can store general
information about the employee. However, more sensitive information is stored in a separate
entity. While security can be applied on an attribute-by-attribute basis, or a view can project
selected attributes, many organizations choose to model sensitive information as two one-to-
one entities.

Super-Type/Sub-Type Relationship
A design element that leverages the one-to-one relationship is the super-type/sub-type rela-
tionship. This relationship connects a single super-type entity with multiple sub-type entities
to extend the tuple with flexible attributes depending on the type of tuple. The super-type
entity has a one-to-one optional relationship with each sub-type.

Base Camp Tour

04549359 ch02.F 11/21/02 9:22 AM Page 43

44 Part I ✦ Laying the Foundation

This design is useful when some objects share a majority of attributes but differ in a few
attributes such as customers, vendors, and shippers. All three share name and address
attributes, but each has specific attributes. For example, only customers have credit limits
and only suppliers have purchase order-related attributes.

While it’s possible to use separate entities for customers and suppliers, a better design is to
use a single Contact entity to hold the common attributes and separate entities for the
attributes unique to customers and suppliers.

If the contact is a customer, additional customer information is stored in the Customer entity.
If the contact is a supplier, supplier-related information is stored in the Supplier entity. All
three entities (Contact, Customer, Supplier) share the same primary key. One tuple in the
Contact entity can optionally relate to one tuple in the Customer entity, and to one tuple in
the Supplier entity, as shown in Figure 2-4.

Figure 2-4: A one-to-one relationship relates a
primary key to a primary key.

Most super-type/sub-type designs permit only a single sub-type tuple for each super type
tuple. The contact example, however, could permit a contact to be both a customer and a
supplier by adding tuples in each of the sub-type entities.

There’s a performance hit for using this design. Inserts must insert into two entities and
selects must join the super-type and sub-type entities. Therefore, don’t use the super-
type/sub-type design to categorize tuples; use this design only when there are several
columns that are unique to each sub-type, and it reduces the workload when selecting only
tuples from one of the sub-types.

Many-to-Many Relationships
In a many-to-many relationship both sides may relate to multiple tuples on the other side of
the relationship. The many-to-many relationship is common in reality, as shown in the follow-
ing examples:

✦ In the OBX Kites sample database an order may have multiple items, and each item
may be sold on multiple orders.

✦ In the Cape Hatteras Adventures sample database a guide may qualify for several tours,
and each tour may have several qualified guides.

✦ In the Cape Hatteras Adventures sample database a customer may participate in sev-
eral events, and each tour/event hopefully has several customers.

Referring to the previous example in the logical model, the many-to-many relationship between
customers and tours is modeled by signifying multiple cardinality at each side of the relation-
ship, as shown in Figure 2-5. The many-to-many relationship is optional because the customer
and the tour/event are each valid without the other:

Contact

Customer

Supplier

04549359 ch02.F 11/21/02 9:22 AM Page 44

45Chapter 2 ✦ Modeling the Logical Database Schema

Figure 2-5: The many-to-many logical model shows
multiple tuples on both ends of the relationship.

The one-to-one and the one-to-many relationship may be constructed from objects from their
organizations that users can describe and understand. In the physical schema, a many-to-
many relationship can’t be modeled with just the visible objects.

A resolution table (Figure 2-6), sometimes called an associative or junction table, is required
to resolve the many-to-many relationship. This supporting table artificially creates two one-
to-many relationships between the two entities.

Figure 2-6: The many-to-many physical model includes a resolution table providing
artificial one-to-many relationships for both tables.

In some cases, additional information may describe the many-to-many relationship. Such
information belongs in the resolution entity. For example, in the bill of materials example, the
material-to-material relationship might include a quantity attribute in the resolution entity to
describe the amount of one material used in the construction of the second material.

The relationship between each primary entity and the resolution entity is mandatory because
the relationship is invalid without the primary object. If either the customer or the tour/event
were to be deleted, the tuple representing the resolution relationship would become invalid.

Customer Event

04549359 ch02.F 11/21/02 9:22 AM Page 45

46 Part I ✦ Laying the Foundation

Category Entities
Another type of supporting entity is the category entity, sometimes called a look-up table.
These entities provide consistency in terms of the way tuples are organized. An excellent
example of this consistency is a state table. Instead of Customer tuples containing inconsis-
tent references in the Region attribute to Florida, such as FL, Fl, Fla, and Florida, any
tuples referencing Florida simply point to the Florida tuple in the state entity. Searching and
sorting is faster and easier because of the consistency.

Visible entities typically relate to category entities in a one-to-many relationship. The relation-
ship can be optional or mandatory.

Reflexive Relationships
In some cases a relationship is between two items of the same type, as in the following
examples:

✦ An organizational chart represents a person reporting to another person.

✦ A bill of materials details how a material is constructed from other materials.

✦ Within the Family sample database a person relates to his or her mother and father.

These are examples of reflexive relationships, also referred to as recursive, unary, or self-join
relationships. Because of the way it’s diagrammed, it’s sometimes informally called an ele-
phant-ear relationship.

To use the Family database as an example, each tuple in the Person entity represents one
person. Each person has both a mother and a father, who are also in the Person entity. So the
MotherID foreign key and the FatherID foreign key point to the mother and father tuples in
the same person entity.

Because PersonID is a primary key and MotherID is a foreign key, the relationship cardinal-
ity is one-to-many, as shown in Figure 2-7. One mother may have several children, but each
child may have only one mother.

Figure 2-7: The reflexive, or recursive, relationship is a one-
to-many relationship between two tuples of the same entity.

A bill of materials is more complex because a material may be built from several source mate-
rials, and the material may be used to build several materials in the next step of the manufac-
turing process. This many-to-many reflexive relationship is illustrated in Figure 2-8.

Figure 2-8: The logical schema of a many-to-many reflexive
relationship shows multiple cardinality at each end of the
relationship.

Materials

Person

04549359 ch02.F 11/21/02 9:22 AM Page 46

47Chapter 2 ✦ Modeling the Logical Database Schema

A resolution entity is required to resolve the many-to-many relationship, just as with the
previous many-to-many relationship. In the material-specification sample database, the
BillOfMaterials resolution entity has two foreign keys that both point to the Material
entity, as shown in Figure 2-9.

Figure 2-9: The physical database schema of the many-to-many reflexive relationship
must include a resolution entity, just like the many-to-many two-entity relationship.

The first foreign key points to the material being built. The second foreign key points to the
source material.

Normalization
When creating the logical design, normalization is the mathematical method of evaluating the
relational quality of the data model. The opposite of a relational-database model, a flat-file or
non-normalized data model, tends to exhibit certain problems with data updates, generally
caused by duplicate data. Each progressive form of normalization removes another type of
flat-file problem.

A normalized database design has the following advantages over flat-file databases:

✦ Improved data integrity owing to the elimination of duplicate storage locations for the
same data

✦ Reduced locking contention and improved multiple-user concurrency

✦ Smaller files

04549359 ch02.F 11/21/02 9:22 AM Page 47

48 Part I ✦ Laying the Foundation

A data model does not begin un-normalized and then move through the normal forms.
Instead, a data modeler usually initially designs the logical schema in at least a third normal
form, and may choose to take a portion of the schema to a higher form.

First Normal Form (1NF)
The first normalized form means the data is in an entity format, such that the following three
conditions are met:

✦ Every unit of data is represented within scalar attributes. A scalar value is a value “capa-
ble of being represented by a point on a scale,” according to Merriam-Webster.

Every attribute must contain one unit of data, and each unit of data must fill one
attribute. Designs that embed multiple pieces of information within an attribute violate
the first normal form. Likewise, if multiple attributes must be combined in some way to
determine a single unit of data, the attribute design is incomplete.

✦ All data must be represented in unique attributes. Each attribute must have a unique
name and a unique purpose. An entity should have no repeating attributes. If the
attributes repeat, or the entity is very wide, the object is too broadly designed.

A design that repeats attributes, such as an order entity that includes item1, item2,
and item3 attributes to hold multiple line items, violates the first normal form.

✦ All data must be represented within unique tuples. If the entity design requires or permits
duplicate tuples, that design violates the first normal form.

For an example of the first normal form in action, consider the listing of base camps and
tours from the Cape Hatteras Adventures database. Table 2-3 shows base camp data in a
model that violates the first normal form. The repeating tour attribute is not unique.

Table 2-3: Violating the First Normal Form

BaseCamp Tour1 Tour2 Tour3

Ashville Appalachian Trail Blue Ridge Parkway Hike

Cape Hatteras Outer Banks Lighthouses

Freeport Bahamas Dive

Ft. Lauderdale Amazon Trek

West Virginia Gauley River Rafting

To redesign the data model so that it complies with the first normal form, resolve the repeating
group of tour attributes into a single unique attribute, as shown in Table 2-4, and then move any
multiple values to a unique tuple. The BaseCamp entity contains a unique tuple for each base
camp, and the Tour entity’s BaseCampID refers to the primary key in the BaseCamp entity.

04549359 ch02.F 11/21/02 9:22 AM Page 48

49Chapter 2 ✦ Modeling the Logical Database Schema

Table 2-4: Conforming to the First Normal Form

Tour Entity BaseCamp Entity

BaseCampID(FK) Tour BaseCampID (PK) Name

1 Appalachian Trail 1 Ashville

1 Blue Ridge Parkway Hike 2 Cape Hatteras

2 Outer Banks Lighthouses 3 Freeport

3 Bahamas Dive 4 Ft. Lauderdale

4 Amazon Trek 5 West Virginia

Gauley River Rafting

Another example of a data structure that desperately needs to adhere to the first normal form
is a corporate product code that embeds the department, model, color, size, and so forth
within the code. I’ve even seen product codes that were so complex they included digits to
signify the syntax for the following digits.

In a theoretical sense this type of design is wrong because the attribute isn’t a scalar value. In
practical terms, it has the following problems:

✦ Using a digit or two for each data element means that the database will soon run out of
possible data values.

✦ Databases don’t index based on the internal values of a string so searches require scan-
ning the entire table and parsing each value.

✦ Business rules are difficult to code and enforce.

Entities with non-scalar attributes need to be completely redesigned so that each individual
data attribute has its own attribute.

The Second Normal Form (2NF)
The second normal form ensures that each attribute is in fact an attribute of the entity. It’s an
issue of dependency. Every attribute must require its primary key, or it doesn’t belong in the
database.

If the entity’s primary key is a single value, this isn’t too difficult. Composite primary keys can
sometimes get into trouble with the second normal form if the attributes aren’t dependent on
every attribute in the primary key. If the attribute depends on one of the primary key
attributes but not the other, that is a partial dependency that violates the second normal form.

An example of a data model that violates the second normal form is one in which the base-
camp phone number is added to the BaseCampTour entity, as shown in Table 2-5. Assume
that the primary key (PK) is a composite of both the BaseCamp and the Tour, and that the
phone number is a permanent phone number for the base camp, not a phone number
assigned for each tour.

04549359 ch02.F 11/21/02 9:22 AM Page 49

50 Part I ✦ Laying the Foundation

Table 2-5: Violating the Second Normal Form

PK-BaseCamp PK-Tour Base Camp PhoneNumber

Ashville Appalachian Trail 828 -555-1212

Ashville Blue Ridge Parkway Hike 828 -555-1212

Cape Hatteras Outer Banks Lighthouses 828 -555-1213

Freeport Bahamas Dive 828 -555-1214

Ft. Lauderdale Amazon Trek 828 -555-1215

West Virginia Gauley River Rafting 828 -555-1216

The problem with this design is that the phone number is an attribute of the base camp but
not the tour. So, the phone number attribute is only partially dependent on the entity’s pri-
mary key. (A more significant problem is that the composite primary key does not uniquely
identify the base camp.)

An obvious practical problem with this design is that updating the phone number requires
either updating multiple tuples or risking having two phone numbers for the same phone.

The solution is to remove the partially dependent attribute from the entity with the compos-
ite keys, and create an entity with a unique primary key for the base camp, as shown in
Table 2-6. This new entity is then an appropriate location for the dependent attribute.

Table 2-6: Conforming to the Second Normal Form

Tour Entity Base Camp Entity

PK-Base Camp PK-Tour PK-Base Camp PhoneNumber

Ashville Appalachian Trail Ashville 828 -555-1212

Ashville Blue Ridge Parkway Hike Cape Hatteras 828 -555-1213

Cape Hatteras Outer Banks Lighthouses Freeport 828 -555-1214

Freeport Bahamas Dive Ft. Lauderdale 828 -555-1215

Ft. Lauderdale Amazon Trek West Virginia 828 -555-1216

West Virginia Gauley River Rafting

The PhoneNumber attribute is now fully dependent on the entity’s primary key. Each phone
number is stored in only one location, and no partial dependencies exist.

The Third Normal Form (3NF)
The third normal form checks for transitive dependencies. A transitive dependency is similar
to a partial dependency in that they both refer to attributes that are not fully dependent on a
primary key. A dependency is transient when attribute1 is dependent on attribute2,
which is dependent on the primary key.

04549359 ch02.F 11/21/02 9:22 AM Page 50

51Chapter 2 ✦ Modeling the Logical Database Schema

Just as with the second normal form, the normal form is resolved by moving the non-depen-
dent attribute to a new entity.

Continuing with the Cape Hatteras Adventures example, a guide is assigned as the lead guide
responsible for each base camp. The BaseCampGuide attribute belongs in the BaseCamp
entity. But it is a violation of the third normal form if other information describing the guide
is stored in the base camp, as shown in Table 2-7.

Table 2-7: Violating the Third Normal Form

Base Camp Entity

BaseCampPK BaseCampPhoneNumber LeadGuide DateofHire

Ashville 1- 828 -555-1212 Jeff Davis 5/1/99

Cape Hatteras 1- 828 -555-1213 Ken Frank 4/15/97

Freeport 1- 828 -555-1214 Dab Smith 7/7/2001

Ft. Lauderdale 1- 828 -555-1215 Sam Wilson 1/1/2002

West Virginia 1- 828 -555-1216 Lauren Jones 6/1/2000

The DateofHire describes the guide not the base, so the hire-date attribute is not directly
dependent on the BaseCamp entity’s primary key. The DateOfHire’s dependency is transitive
in that it goes through the LeadGuide attribute.

Creating a Guide entity and moving its attributes to the new entity resolves the violation of
the third normal form and cleans up the logical design, as demonstrated in Table 2-8.

Table 2-8: Conforming to the Third Normal Form

Tour Entity LeadGuide Entity

BaseCampPK LeadGuide LeadGuidePK DateofHire

Ashville, NC Jeff Davis Jeff Davis 5/1/99

Cape Hatteras Ken Frank Ken Frank 4/15/97

Freeport Dab Smith Dab Smith 7/7/2001

Ft. Lauderdale Sam Wilson Sam Wilson 1/1/2002

West Virginia Lauren Jones Lauren Jones 6/1/2000

If the entity has a good primary key and every attribute is scalar and fully dependent on the
primary key then the logical design is in the third normal form. Most database designs stop
at the third normal form.

The additional forms prevent problems with more complex logical designs. If you tend to
work with mind-bending modeling problems and develop creative solutions, then under-
standing the advanced forms will prove useful.

04549359 ch02.F 11/21/02 9:22 AM Page 51

52 Part I ✦ Laying the Foundation

The Boyce-Codd Normal Form (BCNF)
The Boyce-Codd normal form occurs between the third and fourth normal forms, and it han-
dles a problem with an entity that might have two sets of primary keys. The Boyce-Codd nor-
mal form simply stipulates that in such a case the entity should be split into two entities, one
for each primary key.

The Fourth Normal Form (4NF)
The fourth normal form deals with problems created by complex composite primary keys. If
two independent attributes are brought together to form a primary key along with a third
attribute, but the two attributes don’t really uniquely identify the entity without the third
attribute, then the design violates the fourth normal form.

For example, suppose the following conditions:

1. The BaseCamp and the base camp’s LeadGuide were used as a composite primary key.

2. An Event and the Guide were brought together as a primary key.

3. Because both used a guide all three were combined into a single entity.

The preceding example violates the fourth normal form.

The fourth normal form is used to help identify entities that should be split into separate enti-
ties. Usually this is only an issue if large composite primary keys have brought too many dis-
parate objects into a single entity.

The Fifth Normal Form (5NF)
The fifth normal form provides the method for designing complex relationships that involve
multiple (three or more) entities. A three-way or ternary relationship, if properly designed, is
in the fifth normal form. The cardinality of any of the relationships could be one or many.
What makes it a ternary relationship is the number of related entities.

As an example of a ternary relationship, consider a manufacturing process that involves an
operator, a machine, and a bill of materials. From one point of view, this could be an opera-
tion entity with three foreign keys. Or it could be thought of as a ternary relationship with
additional attributes.

Just like a two-entity many-to-many relationship, a ternary relationship requires a resolution
entity in the physical schema design to resolve the many-to-many into multiple artificial one-
to-many relationships. But, in this case the resolution entity has three or more foreign keys.

In such a complex relationship, the fifth normal form requires that each entity, if separated
from the ternary relationship, remains a proper entity without any loss of data.

Data Integrity
The purpose of the relational database is to model reality. Toward that end, the rules and
methods of enforcing data integrity are important to both the theory and the practice of
developing databases.

One of the keys to enforcing data integrity is educating the owners of the data so that they will
value data integrity and “own” not only the job and the project, but the data integrity as well.

04549359 ch02.F 11/21/02 9:22 AM Page 52

53Chapter 2 ✦ Modeling the Logical Database Schema

Data integrity seldom occurs by accident. It must be planned for from day one of the project.

One of the most difficult factors in a project’s data integrity is legacy data. When legacy data
meet relational-data integrity some serious problems with the legacy data are often revealed.

It’s easy for those who were responsible for the legacy system to feel personally threatened
by the new project. Getting the legacy developers to feel that they own the data integrity and
to participate in the development of the project is far better than presenting the new project
so that they are cornered and react defensively. One way to do this is to enable them to set
goals and then help them see how best to meet those goals.

Entity Integrity
Entity integrity involves the structure (primary key, and its attributes) of the entity. If the pri-
mary key is unique, and all attributes are scalar and fully dependent on the primary key then
the integrity of the entity is good. Essentially, entity integrity is normalization.

In the physical schema, the table’s primary key enforces entity integrity.

Domain Integrity
In relational theory terms, a domain is a set of possible values for an attribute, such as inte-
gers, bit values, or characters. Domain integrity enforces that only valid data is permitted in
the attribute. Nullability (whether a null value is valid for an attribute) is also a part of
domain integrity. In the physical schema, the data type and nullability of the row enforce
entity integrity.

Referential Integrity
A subset of domain integrity, referential integrity refers to the domain integrity of the foreign
key. If the foreign key attribute has a value that value must be in the domain. In the case of
the foreign key, the domain is the list of values in the related primary key.

Referential integrity is therefore not an issue of the integrity of the primary key, but of the
foreign key.

Several methods of enforcing referential integrity at the physical-schema level exist. Within a
physical schema, a foreign key can be enforced by declarative referential integrity (DRI) or by
a custom trigger attached to the table.

User-Defined Integrity
Besides the relational theory–integrity concerns, the user-integrity requirements must also
be enforced, as follows:

✦ Simple business rules, such as a restriction to the domain, limit the list of valid data
entries. Check constraints are commonly used to enforce these rules in the physical
schema.

✦ Complex business rules limit the list of valid data based on some condition. For exam-
ple, certain tours may require a medical waiver. Inplementing these rules in the physi-
cal schema generally requires stored procedures or triggers.

04549359 ch02.F 11/21/02 9:22 AM Page 53

54 Part I ✦ Laying the Foundation

Some other of data-integrity concerns can’t be checked by constraints or triggers. Invalid,
incomplete, or questionable data may pass all the standard data-integrity checks. For exam-
ple, an order without any order detail tuples is not a valid order, but no automatic method
traps such an order. SQL queries can locate incomplete orders and can also help in identify-
ing other less measurable data-integrity issues, including the following:

✦ Wrong data

✦ Incomplete data

✦ Questionable data

✦ Inconsistent data

The quality of the data depends upon the people modifying the data. Data security, control-
ling who can view or modify the data, is also an aspect of data integrity.

Another aspect of data integrity is knowing the history of the data. A database that requires a
very high level of integrity would benefit from a data-audit trail that maintains an automatic
and secure record of every data modification.

Chapter 16, “Advanced Server-Side Programming,” includes examples of implementing such
a data-audit trail.

Object-Oriented Database Design
Object-oriented development has revolutionized the software industry. The basic concepts
of object-oriented development may also be applied to database development resulting in an
object-oriented database management system (OODBMS).

Object-oriented development is based on the concept that an object is an instance of an
object class. The class defines the properties and methods of the object, and contains all the
code for the object. Each instance of the object can have its own internal variables and can
interact with the software world outside the object on its own.

The real power of object-oriented development is building a class based on another class.
The new class inherits all the properties and methods of its base class and can add new prop-
erties and methods. For example, a base class of vehicle may have certain properties and
methods common to all vehicles. An automobile class based on vehicle would include all
of the vehicle properties and methods as well as new properties and methods specific to
the automobile class. A Dodge Intrepid object, therefore, will have the properties of an auto-
mobile, including the vehicle properties.

Some database systems are designed to specifically implement all the features of object-ori-
ented development. Microsoft SQL Server 2000 is a relational database system (RDBMS) and
not an OODBMS. However, the basic concepts of class, inheritance, objects, properties, and
methods may be implemented within a data structure design using SQL Server 2000.

The process of building an OODBMS using SQL Server 2000 begins with a data schema
supporting object classes, properties, and inheritance, as shown in Figure 2-10.

Cross-
Reference

04549359 ch02.F 11/21/02 9:22 AM Page 54

55Chapter 2 ✦ Modeling the Logical Database Schema

Figure 2-10: A basic object-oriented–
database schema from the sample database OOD.

The class entity drives the database schema. The class entity includes a reflexive relationship
to support object class inheritance. As with a hierarchical structure or organizational chart, this
relationship permits each object class to have multiple subclasses and each object class to have
one base class. For example, the vehicle object class would be one tuple in the object class
entity. Because it is a base class, it would not have a value in the InheritedClassID attribute.
The vehicle class would also be a tuple in the object entity and its InheritedClassID
attribute would refer back to the vehicle class.

The property entity is a secondary entity to the object entity and enables each object class
to contain multiple properties. To determine all the properties for a specific object class, a
stored procedure would have to navigate the inherited classes.

An object is a specific instance of an object class. As such, it needs to have its own specific
values for every property of its object class and all inherited object classes.

Although the result can be impressive, many complications are involved in this process.
Many-to-many relationships, which exist in real life, are simulated within object-oriented
databases by means of object collections. Properties must meet data-type and validation
rules, which must be simulated by the data schema rather than by SQL Server’s built-in data-
type and validation rules.

So, building an object-oriented database on top of SQL Server means creating an entirely new
database system using SQL Server as a tool. Every data-modification command (insert, update,
delete, or select) must be coded with stored procedures to handle the class inheritance.

OODBMS is a small sample database that includes an example book object, and related
properties. Also check www.IsNotNull.com for any additional sample files.

On the
CD-ROM

Class

Value

PropertyObject

04549359 ch02.F 11/21/02 9:22 AM Page 55

56 Part I ✦ Laying the Foundation

Dynamic/Relational Database Design
Some database requirements state that the attributes must be dynamic. A manufacturing
material-specifications system, for example, would require different attributes for nearly
every material type. To further complicate matters, the attributes that are tracked frequently
change based on the Total Quality Management (TQM) or ISO 9000 process (TQM) within the
company. A purely relational database might use an entity for each material type and would
require constant schema changes to keep current with the material tracking requirements.

Gary Lail and I have designed several databases using a data-driven method we call
dynamic/relational database design, which implements some of the flexibility of an object-ori-
ented design without completely discarding the familiar relational-database methods. The
dynamic/relational design is not used exclusively within a database, only for some of the user
recognizable objects being modeled. The dynamic/relational design method applies an
object-oriented method to a portion of the relational design.

The basic idea behind a dynamic/relational database is that the attributes are vertical instead
of horizontal.

One way to picture a dynamic/relational database is to compare it to the basic spreadsheet
table. Instead of storing the data as an entity with tuples and attributes, the dynamic/rela-
tional method involves building an entity with three attributes: tuple, attribute, and value. A
traditional entity uses tuples and attributes, as shown in Table 2-9.

Table 2-9: A Relational Entity

Primary Key Color Speed Size

1 Red Fast Medium

2 Green Slow Small

3 Yellow Average Petite

A dynamic/relational representation of the same data is shown in Table 2-10. The new entity
uses only three attributes: primary key, property, and value. Each spreadsheet cell is repre-
sented in its own tuple. The entity is the same width regardless of the number of properties,
but easily grows vertically with additional objects or properties.

Table 2-10: A Dynamic/Relational Entity

Primary Key Property Value

1 Color Red

1 Speed Fast

1 Size Medium

2 Color Green

2 Speed Slow

04549359 ch02.F 11/21/02 9:22 AM Page 56

57Chapter 2 ✦ Modeling the Logical Database Schema

Primary Key Property Value

2 Size Small

3 Color Yellow

3 Speed Average

3 Size Petite

The basic example is much too free-form and footloose to serve as an actual database model.
But by incorporating an entity design that “goes vertical,” some object-oriented concepts,
and relational normalization, the concept becomes as robust as it is flexible.

Basic Dynamic/Relational Design
Within a dynamic/relational database design the relational entity is redesigned using four enti-
ties, as shown in Figure 2-11. Theoretically, the Object entity stores only the identifying data
about each item being represented in the entity. The objects are organized by ObjectType
entity. Each object type may have multiple properties, or attributes stored in the Property
entity, also organized by object type. The actual attribute values for each object are stored in
the Value entity, a many-to-many resolution entity between Object and Property.

Figure 2-11: The basic dynamic/relational
design uses four entities to dynamically
model a single object.

To continue with the material-specifications example, a material type can be plastic, wood, or
steel. Each material type can have multiple properties or attributes stored in the properties
secondary entity. If a material type has 50 specifications that must be tracked, instead of list-
ing each specification in an attribute (which makes for a wide table), the dynamic/relational
design lists the 50 specifications as 50 tuples in the property entity.

Object Type

Value

PropertyObject

04549359 ch02.F 11/21/02 9:22 AM Page 57

58 Part I ✦ Laying the Foundation

Each specific material is listed in the object entity, and the ObjectTypeID foreign key points
to the object type. This portion of the Object entity adheres to a standard normalized
design. Where it differs is in the descriptive attributes, which are not attributes in the Object
entity, but are tuples in the Property entity. The descriptive data is placed vertically in the
Value entity.

Dynamic/Relational Front-End Programming
Most front-end applications use forms with fixed controls for data attributes. But a
dynamic/relational database doesn’t have predefined data attributes. Two user work surfaces
are required. The first gives administrators access to the ObjectType, Type, and Property
entities with which to manage the dynamic nature of the database. The second application is
used by users to enter and examine the objects and the property values.

The user application typically uses grids that are populated on the fly with the current appro-
priate properties for the object being examined.

While it admittedly requires more work to develop a front-end application that’s designed for
a dynamic/relational database than a front-end application for a traditional relational
database, the result is very flexible and will have a long life. Unlike a fixed-control application
that requires a programmer to add new attributes, the dynamic/relational database enables
the user to add new properties as required without additional programming.

Advanced Dynamic/Relational Database Design
The basic dynamic/relational concept may be extended to handle more complex designs by
expanding the features of the properties.

Properties often apply to multiple object types. Therefore, a many-to-many relationship
between ObjectType and Property entities allows properties to serve multiple object types.

The business rules for each property, such as data type, must be stored in a entity. The busi-
ness rules for each property as it applies to each object type can be stored in a secondary
entity.

The material-specification sample database is a dynamic/relational database that includes the
following advanced features, as shown in Figure 2-12:

✦ The database uses a material state entity — raw material, work in progress (wip), fin-
ished goods, and so on — to further group material types.

✦ Each property may be aligned with multiple material types.

✦ Because material specifications are version-specific, the material entity supports multi-
ple versions of each material. Each version includes a pointer to the version it’s based
upon. The original material is stored in every subsequent version to make it easy to
locate each material in the version hierarchy.

✦ Materials are associated with other materials as parts within an assembly. The multiple
reflexive relationship built with the BOM (bill of material) entity enables each material to
be constructed from many other materials, and to be used in the construction of many
other materials.

04549359 ch02.F 11/21/02 9:22 AM Page 58

59Chapter 2 ✦ Modeling the Logical Database Schema

Figure 2-12: The material-specification database is an advanced dynamic/relational
database.

The script MS_Create.sql, on the CD, creates the entity structure for the material-specifi-
cation database and populates it with a small sampling of data. While the material-specifi-
cation database could work for any industry, the sample database is populated for a
neighborhood computer-company.

Microsoft uses integers for primary keys to make it easy to examine the sample data.
However, a production dynamic/relational database would likely use GUIDs for primary keys
for two reasons. First, the value entity would likely outgrow an integer-based primary key.
Second, any significant flexible database will likely be replicated, and that requires GUIDs.

The dynamic/relational database method pushes database design to the limit, but for certain
applications it can provide a database design that’s flexible and useful.

Summary
Data modeling merges reality with the abstract. This chapter presents a method of thinking
about that merger. Normalization is a good thing, but the point is not the form by form pro-
cess, but the resulting data model. Part one of this book is an introduction to developing
databases with SQL Server. The next chapter continues this introduction as it deals with
installing SQL Server.

✦ ✦ ✦

On the
CD-ROM

04549359 ch02.F 11/21/02 9:22 AM Page 59

04549359 ch02.F 11/21/02 9:22 AM Page 60

Installing and
Configuring
SQL Server

While SQL Server is relatively easy to install, this chapter han-
dles the exceptions and explains why certain installation

options are preferable to others. As with most tasks in life, extra time
spent in preparation pays off during execution, so I include additional
hardware recommendations and planning suggestions for a SQL
Server installation.

Very few database projects are virgin endeavors; most are upgrades
from previous implementations. In light of that reality, this chapter
includes not only information about the server upgrade but advice
about moving existing projects to SQL Server 2000’s client/server
environment.

While a freshly installed server will not contain any user databases, it
will contain several system databases, sample databases, and system
views.

Planning Your Installation
You should experience no complications when installing a default
installation of SQL Server — but you will have to make a few deci-
sions, and it’s best to think those decisions through before perform-
ing the installation. The areas that you need to think about prior to
installation are:

✦ A security plan

✦ Disk configuration and file locations

✦ Collations or sort methods

✦ Network protocols used to communicate with clients

Operating System
SQL Server 2000 is not restricted to running on Windows 2000. It
installs and runs fine on Windows NT, Windows 2000, and Windows
XP Professional or Server. However, some limitations exist concern-
ing which operating system edition is supported by which SQL Server
edition, as detailed in Table 3-1.

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Planning an installation

Server-hardware
recommendations

Performing the
installation

Installing multiple
instances of SQL Server

Installing service packs

Upgrading from
previous versions of
SQL Server

Moving to SQL Server
from Access, MySQL,
or Oracle

Connectivity between
the server and the client

System databases and
objects

✦ ✦ ✦ ✦

05549359 ch03.F 11/21/02 9:22 AM Page 61

62 Part I ✦ Laying the Foundation

Table 3-1: Operating System Editions Supported by SQL Server 2000

Windows NT
Workstation, 2K Windows NT, 2K, or XP:

Windows 98, Workstation, or XP Server, Advanced Server,
SQL Server Edition ME, XP Home Professional Data Center

Enterprise Edition/120-day No No OK
Evaluation Edition

Developer Edition No OK OK

Standard Edition No OK OK

Personal Edition OK OK OK

Desktop Engine (MSDE) OK OK OK

Planning the Security Accounts
Setting up SQL Server security may be confusing because it includes two separate questions.
First, which types of user logins will SQL Server recognize — Windows user accounts only, or
also SQL Server accounts?

Second, which Windows account will SQL Server and its services use to log on to Windows?

Chapter 27, “Securing Databases,” discusses SQL Security in detail.

SQL Server runs as a process on the server’s operating system, and as such it needs permis-
sion to get to the SQL Server files regardless of the permission of the person who is currently
using SQL Server. In fact, typically, no users will be logged on at the server. So the service
security account is the logon that SQL Server uses to access Windows resources — not a login
for users connecting to SQL Server.

The SQL Server engine and the services (SQL Server Agent and the Distributed Transaction
Controller) will both need to log on. By default they share the same Windows logon account,
but a separate logon can be provided for SQL Server Agent.

Two options exist for this account. The first option is local system account, which does not
require a password and will provide SQL Server with the required system permissions with-
out any maintenance. However, the local system account does not allow network access,
which will cause problems for backups to network drives, SQL Mail, and distributed queries.

The second, and recommended, option is to use a named Windows logon account on the
server or domain. This option has the benefit of providing better tracking and logging of
activities. I recommend creating a specific account just for SQL Server rather than share a
general network system administrator account. This will help reduce the chance that a net-
work-system administrator will one day delete the account or change the password, causing
SQL Server to fail.

Windows accounts are created and maintained in Window’s Setup/Administrative Tools/
Computer Management application. To manage user accounts, you must be logged on with
administrator privileges.

Cross-
Reference

05549359 ch03.F 11/21/02 9:22 AM Page 62

63Chapter 3 ✦ Installing and Configuring SQL Server

A created local account must be

✦ A local administrator

✦ Able to log on as a service

✦ Able to access and update the SQL Server program directory

✦ Able to read and write registry keys

If the installation will include multiple servers which will need to communicate and perform
distributed queries or replication, then the logon account must be a domain level account.
The domain account must be a member of the Windows Administrators group.

The SQL Server account settings may be changed later in the Security tab of the Server
Properties page within Enterprise Manager.

Planning the File Locations
During installation, file locations are selected for the SQL Server program files and the default
location is selected for the data files. For the program files this location is permanent. The
data-file locations will be used for the system databases.

To ensure-up-to-the-minute recovery, always create the database data file and the transac-
tion log in different disk subsystems.

The transaction log is a write-ahead log of all data changes and is used for up-to-the-minute
restoration in case of failure. It’s vital that the log not fail at the same time the data file fails.
The installation process only creates a single default location for database files. However,
after the installation, the server properties include two default file locations — one for data
files and one for transaction logs. These are only the defaults, as file locations may be config-
ured for individual databases.

Typically the default location for the program files is adequate. You will probably need to
change the data-file locations to reflect your server’s disk-subsystem configuration. There’s
more on disk-drive configurations and hardware recommendations later in this chapter.

Planning the Sort Collation
SQL Server is an international product. As such, it includes the ability to sort data in various
languages. The collation setting determines the language and sensitivity of the sort. By
default, SQL Server will choose the language based on the language selected within Windows.
Optionally, the collation can determine the case and accent sensitivity of the sort. In all, there
are 753 available collations available within SQL Server.

The default collation for U.S. English installations is SQL_Latin1_General_CP1_CI_AS,
which means Latin characters, case insensitive, accent sensitive.

Unlike the security settings, collation is difficult to change after installation. Changing the
default collation involves exporting all the data, rebuilding the master database, specifying
the new collation setting, and importing all the data.

The permanence of the choice of collation is lessened by SQL Server 2000’s ability to set the
collation on a database and column level, and during any query.

05549359 ch03.F 11/21/02 9:22 AM Page 63

64 Part I ✦ Laying the Foundation

ASCII characters are one byte in length, which limits the number of possible ASCII characters.
This causes problems for international applications, and for languages with a large number of
characters. The collation determines which characters are represented by which ASCII values.

Unicode makes it easier to develop international databases by using two bytes per character
and bypassing the ASCII character limitation at the cost of disk space. Unicode is not avail-
able as a collation, but may be used on a column and variable basis as tables are created by
using a Unicode-enabled data type, such as nvarchar. The relative merits of Unicode versus
ASCII characters is an ongoing debate among SQL Server developers. The question of flexibil-
ity versus disk space is similar to the question of global unique identifiers versus identity
columns as primary keys.

Using Unicode does not make the collation setting moot. While the collation does not deter-
mine the character set, it still determines the accents, case sensitivity, and sort order of the
alphabet.

Planning the Network Protocols
When a client connects to SQL Server, the connection is not with the Windows operating sys-
tem on the server but is rather a direct connection between the client and SQL Server.
Therefore, SQL Server and every client must use the same network protocol.

SQL Server supports several network protocol libraries, as detailed in Table 3-2.

Table 3-2: SQL Server Network Libraries

Protocol Supports Routing Supports Named Instances

Named Pipes No Yes

TCP/IP sockets Yes Yes

Multiprotocol Yes No

NWLink IPX/SPX Yes Yes

AppleTalk Yes No

BanyanVines Yes No

Named Pipes is based on netbios. The default pipe is \\.\pipe\sql\query. There’s no reason
to change the pipe name, but it must match between server and client. If the client and server
are on the same physical computer Named Pipes can use shared memory. Named Pipes is not
available on Windows 98/ME.

When configuring SQL Server’s TCP/IP properties the TPC/IP firewall port may be specified.
The default port is 1433 for the first instance and randomly determined for additional
instances the first time the instance is run. Encryption may be forced on a client-by-client
basis by setting the option in the Client Network Utility.

The Multiprotocol option will automatically select from among the Named Pipes, TCP/IP, and
NWLInk IPX/SPX protocols. This option does not support named instances of SQL Server, so
it may only be used with the default instance. Multiprotocol encryption is for backward com-
patibility — it’s different from the Secure Socket Layer Encryption.

05549359 ch03.F 11/21/02 9:22 AM Page 64

65Chapter 3 ✦ Installing and Configuring SQL Server

NWLink IPX/SPX is the native network protocol for Novell networks. You specify the server
using the service name and port. NWLink is not available if the server is running on
Windows 98/ME.

AppleTalk and BanyanVines are included only for backward compatibility. They will likely be
dropped in a future version of SQL Server.

Secure Socket Layer Encryption may be enabled using any protocol, but it requires a digital
certificate.

SQL Server will listen for traffic on WinSock Proxy if the WinSock Proxy option is selected and
the required address and port are supplied.

The network protocols selected during installation are not fixed in stone; they may be
changed later using Enterprise Manager, the Server Network Utility, or the Client Network
Utility. Keep in mind that the network protocol is set for each instance of SQL Server, and for
each client workstation.

Planning the Authentication Mode
SQL Server can use two methods to authenticate users, a Windows User account or a SQL
Server account. The option selected during installation determines the methods that will be
available later, as shown in Table 3-3.

Table 3-3: Security-Authentication Modes

Login Method Windows Authentication Mode Mixed Mode

Users may authenticate using Yes Yes
their Windows User logon

SQL Server–specific accounts No Yes

Each SQL authentication method includes Windows User Accounts. The question is whether
to also allow SQL Server–specific accounts. These accounts are created within SQL Server. I
recommend SQL Server Mixed Mode: You can still require all users to log in to SQL Server
using Windows authentication, and Mixed Mode also enables you, as the DBA, to easily create
test users in order to test the security permissions.

If you enable Mixed Mode, the sa account may be assigned a password during installation. An
sa account with no password is the most common security hole. I strongly suggest that you
apply a password to the account.

SQL Server authentication and the sa account is discussed in more detail in Chapter 27,
“Securing Databases.”

Planning the Server Instances
SQL Server 2000 supports up to 16 instances of SQL Server running on the same physical
server. The multiple SQL Server instances may be of different editions (Enterprise, Standard,
or MSDE).

Cross-
Reference

05549359 ch03.F 11/21/02 9:22 AM Page 65

66 Part I ✦ Laying the Foundation

There are several reasons why multiple instances might be desired:

✦ For developing and testing databases on a platform identical to production, but with
separate server options and protection if something should go wrong.

✦ For testing replication scenarios or distributed transactions.

✦ For testing different editions of SQL Server.

✦ For applying service packs in order to test applications with the service packs before
applying the service packs to the production instance.

✦ For disaster-recovery testing using the actual hardware used for production. What’s the
point of a backup if the restore doesn’t recover smoothly?

✦ For running SQL Server 7 concurrently with SQL Server 2000. However, the database
compatibility mode, which forces SQL Server 2000 to run T-SQL code from earlier SQL
Server versions, makes this reason less compelling.

Don’t use multiple instances to support multiple databases. A single instance of SQL Server
running multiple databases will be more efficient than multiple instances running a single
database each.

The first installation is normally the default instance and will have the same name as the
server. Each additional instance must have an instance name that will then be referenced as
[server\instance]. The instance name may be up to 16 characters long, cannot include
spaces or reserved words, and must begin with a letter, underscore, or ampersand (but a mix-
ing of special characters into an instance name is a poor practice).

Each instance is a complete installation of SQL Server with separate program files, registry
entries, network connectivity, server options, and databases.

The default instance location is:

C:\Program Files\Microsoft SQL Server\MSSQL

The location for the additional instance named SQL2 is:

C:\Program Files\Microsoft SQL Server\MSSQL$ SQL2

Certain non-engine components, such as English Query, net libraries, client tools, Service
Manager, and so on, are shared among all instances on a server.

Each instance is started and stopped independently and consumes memory according to the
specifications of the server-memory properties. This could be an issue in a memory-starved
server, because one instance is not going to release memory to another instance. Servers
with multiple instances should have each instance’s maximum SQL Server memory set to
accommodate the multiple instances.

Performance is also affected because every running instance will also demand CPU cycles to
check connections and the like. On a single CPU server, multiple instances will cause each
instance to run slower.

If multiple instances are used for testing purposes, don’t set the test instance to automati-
cally start when the OS starts. Instead, start the instance when it’s needed and stop it when
the test is complete.

Caution

05549359 ch03.F 11/21/02 9:22 AM Page 66

67Chapter 3 ✦ Installing and Configuring SQL Server

Hardware Recommendations
Hardware is quickly out-of-date. The good news is that SQL Server runs well on most servers,
but hardware does make a difference. Ignoring Microsoft’s minimum hardware requirements,
this section provides some design guidelines for planning a server.

The big decision you make when designing a server for SQL Server is deciding how much to
invest in each of the server components. While a server should be fairly balanced in the per-
formance of its subsystems, I’ve prioritized this list according to my opinion of the relative
importance of each.

Dedicated Server
SQL Server is a demanding server application, so running other server tasks (Domain
Controller, SMS, Exchange Server, Proxy Server, file or printer server functions, for example)
on the same server will degrade SQL Server performance. When SQL Server wants to run a
large query it needs the CPU cycles. When it needs to perform, don’t make it share the CPU
with another process.

Running other software can also cause troubles when the other software requires service
packs, hot patches, or the like, and needs to be rebooted or develops some type of conflict.

Buying a single mega-server (read: mini-empire) and running several processes spread across
multiple CPUs doesn’t work in the real world and only renders the server obsolete faster. It’s
better to spread the work across multiple dedicated servers.

Copious Memory
SQL Server 2000 reads the data pages from the disk into memory and then performs the
database work in memory. If a select statement needs to perform a table scan the entire
table is read into memory. To perform updates, SQL Server 2000 reads the data pages into
memory, performs the update, and then writes the data back to disk as a background process.

Caching as much of the database as possible in memory not only saves the time required to
fetch the data page from the disk but also saves the CPU time in determining which pages
must be fetched.

Having plenty of memory will help compensate for CPU and hard disk limitations; conversely,
memory starvation will kill SQL Server performance. So how much memory is required? A
simple answer is the size of the largest database times two, since Windows doesn’t like to
give too much memory to any single process. Realistically speaking, though, considering the
falling prices of memory and the SIMM-slot limitations on the motherboard, it’s not worth it
to calculate a memory requirement of 448MB and then put in one 256MB SIMM, 1x128MB
SIMM, and 1x64MB SIMM. A better plan is to buy a single 512MB memory SIMM and save the
other SIMM slots for expansion. Memory is the cheapest component and provides the best
bang for the buck.

Using Multiple CPUs
Tradition holds that databases are disk-bound. I’ve even been told by a computer salesper-
son that CPU performance has no effect on the performance of a database application. I dis-
agree. Joins are performed by the CPU. Query optimization plans are calculated by the CPU.
Code is executed by the CPU. And, because the plan is to have the data pages already cached
in memory, the CPU along with the memory drives the performance.

05549359 ch03.F 11/21/02 9:22 AM Page 67

68 Part I ✦ Laying the Foundation

When planning the hardware, balance CPU performance, quantity of RAM, and speed
throughput of the disk subsystems.

SQL Server is a smooth multitasking and multi-threading program, so SQL Server perfor-
mance naturally benefits from servers with multiple CPUs. While it’s true that there’s some
overhead for the operating system required to control multiple CPUs, the overhead is small
compared to the gain. The additional multitasking performance helps because SQL Server
queries must share time not only with other queries and connections, but also with Windows
itself. The cost of dual CPUs has come down to the point that it’s worth the extra perfor-
mance. Personally, I prefer a dual Pentium server as a starting point for SQL Server servers.

Moving up the scale, quad-CPU and eight-way servers have also become more reasonable and
more reliable than ever before. Be careful to avoid justifying the purchase by consolidating
servers. Keep the server dedicated to SQL Server. Also, when considering CPUs, remember
that a large CPU L2 cache is very important.

Another factor is that per-CPU licensing will increase the cost of servers with additional
CPUs. A single faster CPU may serve as well as a dual slower CPU and save several thousand
dollars in software costs.

Disk-Drive Subsystems
Although I’ve placed the memory and CPU higher in my list of priorities than the disk subsys-
tem, disk performance is still vital for SQL Server. Fortunately, disks are faster, more reliable,
and available in more intelligent subsystems than in previous years. Of course, you should
buy the fastest SCSI drives your budget will allow.

RAID Disk Subsystems
High-performance disk subsystems nearly always involve some type of RAID, listed in Table
3-4. RAID was originally an acronym for “Redundant Array of Inexpensive Disks,” however, ven-
dors are now referring to it as a “Redundant Array of Individual Disks.”

Table 3-4: RAID Levels

RAID Level Redundancy Percentage Description

0 0% Data Striping— Data is written to multiple drives, speeding up
data writes and reads. No parity or redundancy is available.

1 50% Data Mirroring — Data is written to two drives and read from
either drive.

5 Depends on number of Data striping with a parity bit written to one of the drives.
drives, if five drives and last Because of the parity bit, any single drive can fail, and the
is for parity then 20% disk subsystem can still function even if any single drive fails.

When the failed disk drive is replaced, the disk subsystem
can recreate the data on the failed drive it contained.

RAID 5 is popular because it offers excellent protection, and
good speed, and at the lowest cost.

1/0 50% Mirrored striped drives, which offer the speed of data
stripping and the protection of data mirroring. This is the
most expensive option.

05549359 ch03.F 11/21/02 9:22 AM Page 68

69Chapter 3 ✦ Installing and Configuring SQL Server

Windows’ Disk Management utility enables you to define a mirrored or striped disk. Although
this technique might prove useful for a workstation or a low- volume file server, it trades CPU
cycles for disk redundancy and is not suitable for a SQL Server server. And because the disk
writes are typically sequential through the same controller, disk performance is halved.

In the same vein, enabling Windows file compression or encryption for SQL Server data files
or the transaction file is not a recommended practice.

If you are using anti-virus protection (and you are, right?) then disable the automatic virus
check for the directory storing SQL Server files, or specify no virus checking for .mfd, .ndf,
and .ldf files.

Most RAID controllers support hot-swappable drives, meaning that if a drive fails, the failed
drive may be pulled and a new drive inserted in its place while the computer is running.
During the failure, the RAID controller (if configured for RAID 5) calculates the data that was
on the failed drive by comparing the remaining data with the parity bits. Once a new drive is
inserted, the controller rebuilds the drive’s data automatically. Whether or not you need this
capability depends on your organization’s tolerance for down time. If you maintain the spare
drive on hand, swapping a failed drive and rebuilding the data could take a few hours.

RAID controllers also typically include some amount of physical memory that serves as a
hardware disk cache and greatly improves the throughput of the disk subsystem. Even
though these controllers generally include a battery back-up to maintain the cache memory
in case of power failure or computer crash, I recommend that you disable caching the write
and force the controller to perform the disk write immediately. I’m not willing to sacrifice con-
sistency for performance. The ACID properties of the database are much more critical than a
split-second gain of in performance.

Disk Subsystem Design
When you’re considering disk subsystems, the two most important aspects are redundancy
and throughput. You want some level of redundancy to ensure the reliability of the drives and
throughput for raw performance.

When planning the disk subsystems and file distributions for a server, consider spreading the
files across different disk subsystems, as described in Table 3-5, using the RAID levels listed
in Table 3-4.

Table 3-5: File/Disk Configuration

Files Description Ideal RAID level

Windows and SQL Server Locate these on the primary bootable 1 or 5
program files drive local to the server.

Windows Swap file and Some designers put the Swap file on None or 1
Temp directory its own high-speed drive, although they

could easily remain on the same drive
as the Windows and SQL Server program
files. If the operating system is Windows
XP then the swap file can be disabled,
which is my favorite course of action.

Continued

Caution

05549359 ch03.F 11/21/02 9:22 AM Page 69

70 Part I ✦ Laying the Foundation

Table 3-5 (continued)

Files Description Ideal RAID level

Transaction log SQL Server writes all data-modification 1/0
operations to the transaction log and
then reads the log as part of the process You can perform a restore
of committing a transaction. Therefore, to any point in time by
the transaction log must be on a high- combining the data-file
speed write and read drive. backups, the transaction-log

backups, and the current
transaction log. Therefore, the
transaction log is the single
most critical point of failure.

Tempdb file SQL Server uses Tempdb internally as a 0 or 1
scratch pad for temporary work when
sorting or hashing data. Application code Tempdb is a high-volume
may use Tempdb for cursor temporary read/write file. Data striping
storage. is recommended, and data

mirroring is optional.
One way to balance the disk I/O load is Tempdb is cleared every
to locate Tempdb on its own a drive time SQL Server is restarted;
subsystem. however, a tempdb failure

causes major problems.

Primary and secondary If the database is defined with multiple 5
data files data files, SQL Server will spread the

data pages among the files, attempting
to evenly balance the disk I/O load.
Alternately, using filegroups, individual
tables, and indexes can be manually
positioned on a specific data file.

When planning these file/disk separations the first priority is to ensure that the transaction
log is separate from the data files. Never, ever store the transaction log on the same drive as
the data file for a production application; doing so would compromise the recovery. Next,
separate the data files onto multiple drive subsystems. Lastly, consider separating the Swap
and Tempdb files.

Network Performance
Well-written client/server applications by their nature require less network bandwidth than
other software technologies, so the network interface card, or NIC, is often overlooked during
the planning of a server. The NIC supplied by the server vendor, or the corporate standard
workstation NIC, is often used by default. The NIC card, however, plays an important role in
the processing of client requests.

05549359 ch03.F 11/21/02 9:22 AM Page 70

71Chapter 3 ✦ Installing and Configuring SQL Server

Every transaction includes communication over network, generally TCP/IP over Ethernet. NIC
cards that include some portion of the TPC/IP stack processing, or encryption/decryption, in
their hardware can increase the NIC throughput by as much as 800 percent while reducing
the CPU load. The Alacritech Server NICs offload 99 percent of TPC/IP processing. Because
the goal is to free up as many CPU cycles for SQL Server as possible, including a new NIC
intended for servers is a wise investment. Server-quality NICs are available from Intel, 3Com,
and Alacritech.

If you are building clustered servers, a federated database, or a failsafe system, a direct
dedicated high-speed fiber network connection between the servers may be required or
recommended.

Performing the Installation
Once you have chosen your installation plan, set up the server machine, and loaded
Windows, it’s time to perform the installation.

Attended Installations
Performing an attended installation should be familiar to Windows users and IT professionals.
The SQL Server CD-ROM should automatically launch the installation program. If the program
fails to launch, execute the autorun.exe program on the SQL Server CD.

Prior to installing SQL Server, make sure that the following conditions are met:

✦ The SQL Server account in Windows is configured

✦ Directories are created for the data files.

✦ The Windows Event viewer and Registry viewer have been shut down

✦ Any services or programs dependent on SQL Server have been shut down, if you’re
reinstalling SQL Server 2000.

If SQL Server 7.0 is already installed on the computer, the installation program will offer to
upgrade SQL Server to SQL Server 2000.

SQL Server 2000 Database Server, Analysis Services, and English Query are all separate instal-
lations as shown in Figure 3-1. Optionally, the installation/upgrade help is available from the
installation welcome screen. SQL Server may be installed to the local computer or to a
remote server.

When you are installing a new instance, keeping the default option is appropriate, as shown
in Figure 3-2. However, if an existing instance is being modified, as in the case of a 120-day
Evaluation Edition being upgraded to a Standard Edition, that option is available as well. The
advanced options pertain to unattended installations.

05549359 ch03.F 11/21/02 9:22 AM Page 71

72 Part I ✦ Laying the Foundation

Figure 3-1: SQL Server, Analysis Services, and English Query install
separately.

Figure 3-2: Set-up can install a new instance of SQL
Server, modify an installation, or create an unattended
install.

When you are installing SQL Server 2000, the primary component selections include,
respectively:

✦ Server processes, client tools, and connectivity

✦ Client tools and connectivity

✦ Only connectivity

05549359 ch03.F 11/21/02 9:22 AM Page 72

73Chapter 3 ✦ Installing and Configuring SQL Server

If this is the first installation of SQL Server on the server, then it’s likely that the default
instance will suffice. If SQL Server has already been installed at least once, the additional
instances will require a name.

The three types of installation are Typical, Minimum, and Custom, as listed in Table 3-6. In
most cases the typical installation will work fine.

Table 3-6: Installation Type

Installation Type Description

Typical Everything installed with defaults.

Minimum Appropriate when SQL Server must run with limited disk space: Upgrade tools,
client-management tools, Books On Line, and Development Tools are not
installed. Appropriate for large “server farms.”

Custom All options installed as specified by the user.

If you select Custom installation, you will be asked to select the specific components and fea-
tures you wish to install.

As the installation progresses, the Windows account for SQL Server and its services must be
identified. The authentication mode configures SQL Server to accept SQL Server user logins
as well as Windows user logins.

When the installation program has gathered enough information, SQL Server will be installed
onto the computer. The installer may shut down some tasks during the installation process.

Unattended Installations
You may have to deploy SQL Server throughout the world, at hundreds of client sites, or on
200 servers in a server farm. Fortunately, you can install SQL Server using a predefined unat-
tended-installation script. Performing unattended installations is basically a two-step pro-
cess: The first step is creating the unattended script file, and the second is performing the
unattended installation.

The unattended installation file, or Setup.IIS file, may be created manually, but the easiest
way to generate the file is by letting the SQL Server setup program create it from a sample
“mock” installation. Setup.IIS is automatically created during every installation. Selecting
Record Unattended .IIS File in the Advanced Options inside setup will only create the required
file and not actually install SQL Server. Setup.IIS is about two pages long; the first 10 lines
run as follows:

[InstallShield Silent]
Version=v5.00.000
File=Response File
[File Transfer]
OverwriteReadOnly=NoToAll
[DlgOrder]
Dlg0=DlgW2kReboot-0
Count=13
Dlg1=SdWelcome-0
Dlg2=DlgMachine-0
...

05549359 ch03.F 11/21/02 9:22 AM Page 73

74 Part I ✦ Laying the Foundation

Once the setup.iis file is created, a batch file can install SQL Server automatically from the
command prompt. The SQL Server CD-ROM contains sample .iis and batch files.

Installing Multiple Instances
SQL Server 2000 permits up to 16 instances of SQL Server running on a single physical server.
To install additional instances, simply rerun the setup program. Instead of installing the
default instance in the dialog page that asks for the server name, unselect the default
instance checkbox and enter the instance name.

Testing the Installation
The best way to test the installation is to connect to the SQL Server instance using Enterprise
Manager or Query Analyzer, and browse the Northwind or Master databases.

Installing Service Packs
Microsoft’s practice is to release minor upgrades and fixes in the form of service packs. SQL
Server 7.0 saw three service packs. At the time of this writing the first service pack has been
made available for SQL Server 2000. You can download it from www.microsoft.com/sql.

You can determine the current version of SQL Server by selecting the @@Version system vari-
able within T-SQL code, or by viewing the server properties in Enterprise Manager, as listed
in Table 3-7.

Table 3-7: SQL Server 2000 Service-Pack Versions

SQL Server Service-Pack Version @@Version

SQL Server 2000 RTM (release to manufacturing) 8.00.194

Database Components SP1 (released May 30, 2001) 8.00.384

SP2 8.00.534

Service Pack 1 only gives you the options of selecting a server and instance. If the server has
multiple instances the service pack must be applied to each individually. The service pack
upgrades the database engine, the client tools, and MDAC.

Service Pack 2 upgrades the database engine, the client tools, and Analysis Services.

When installing the service packs be sure to back up all databases, including system
databases, users databases, and Analysis Services data, and stop SQL Server. Microsoft
Knowledgebase article Q290211 includes a links to the list of SP2 fixes and the readme file.

05549359 ch03.F 11/21/02 9:22 AM Page 74

75Chapter 3 ✦ Installing and Configuring SQL Server

Upgrading from Previous Versions
Upgrading to a new database platform is potentially a major step in the life cycle of an appli-
cation. An upgrade to SQL Server 2000 is an opportunity to review other aspects of the appli-
cation and upgrade those as well.

Upgrading from SQL Server 7
As of this writing SQL Server 7 is even with SQL Server 2000 in the number of installations, but
many organizations are moving to SQL Server 2000.Because the two versions are architecturally
so similar, the upgrade from SQL Server 7 to SQL Server 2000 is relatively straightforward.

SQL Server 2000 can even coexist with SQL Server 7 on the same physical server. When
you’re installing SQL Server 2000 on a server that is already running SQL Server 7, the instal-
lation routine will enable you to either overwrite SQL Server 7 or add SQL Server 2000. If both
versions are installed on the same physical server, SQL Server 7 will have to be the default
instance, because it does not understand instance names. You can install multiple instances
of SQL Server 2000: Each will be installed as a named instance.

Only one version of each of the client tools (Enterprise Manager, Query Analyzer, and so on)
may be installed. This does not present a problem because the SQL Server 2000 client tools
will work fairly well with the SQL Server 7 engine. However, if you are supporting clients who
use SQL Server 7 tools, the differences may prove frustrating.

There are several methods available to upgrade the server or databases from SQL Server 7 to
SQL Server 2000:

✦ Upgrade an entire SQL Server 7 server and all databases during installation

✦ Back up databases from SQL Server 7 and restore on SQL Server 2000

✦ Detach a database from SQL Server 7 and attach it to SQL Server 2000

✦ Use the Copy Database Wizard

Upgrading from SQL Server 6.5
At the time of this writing, about 5 percent of SQL Server installations are still running SQL
Server Version 6.5. A wizard is available to aid in the move from SQL Server Version 6.5 to
SQL Server 2000.

The SQL Server Upgrade Wizard will perform the upgrade from SQL Server 6.5 to SQL Server
2000. The wizard can upgrade on the same server or from a different server. To upgrade on
the same server you need SQL Server 6.5 Service Pack 5a. You need Service Pack 3 or later to
upgrade from a different server. Both servers must use Named Pipes communication.

The wizard can move the databases using a direct pipeline or using multiple tapes. The tape
method is very slow. If at all possible, choose the direct pipeline.

The SQL Server Upgrade Wizard can move a significant amount of information during the
upgrade, including:

05549359 ch03.F 11/21/02 9:22 AM Page 75

76 Part I ✦ Laying the Foundation

✦ All or selected databases

✦ Logins

✦ Server-configuration properties (not recommended)

✦ SQL Executive settings (tasks, alerts, and jobs)

✦ Replication configuration (not recommended)

While moving the databases is the point of the upgrade, and moving logins may be a good
idea if you’re keeping the same login scheme, I urge you not to move the server and replica-
tion configurations. You’re much better off reconfiguring the server and taking advantage of
the increased administrative flexibility of SQL Server 2000.

It is possible to run SQL Server 6.5 and 2000 on the same server but not at the same time. SQL
Server 6.5 and SQL Server 2000 are not compatible services and will not run concurrently.
The Switch application (from the Start menu) will shut down whichever SQL Server version is
running, and start the other version. The client tools, menus, and engine will all be switched.
While this process is clumsy, at least it’s possible so you can develop SQL Server 2000
databases and maintain SQL Server 6.5 databases on one computer.

Upgrading from Versions Previous to 6.5
There is no direct path from SQL Server 4.2 or 6.0 to SQL Server 2000. A 4.2 database will
need to be upgraded to 6.5 and then upgraded to 2000. A 6.0 database can be upgraded to
SQL Server 6.5 or SQL Server 7.0 via the SQL Server Upgrade Wizard, and then upgraded to
SQL Server 2000 via the tools within SQL Server 2000.

After Upgrading
After upgrading from any previous SQL Server version, there are a few options that need to
be manually configured:

✦ Perform a full population on any full text search catalog

✦ Update the statistics for all indexes using the sp_updatestats system stored
procedure

✦ Re-establish replication using SQL Server 2000 replication

✦ Re-check all server-configuration properties

Database Compatibility Level
During a conversion cycle, each database’s compatibility level may be set to an earlier ver-
sion so that older code will still function. The compatibility level affects only the T-SQL code
syntax; all other SQL Server 2000 performance gains are still realized, even if the database is
executing version 6.5 T-SQL code.

Within Enterprise Manager you may set, or check, the compatibility level by viewing the
database properties, as shown in Figure 3-3. The compatibility level may also be set within
code by using the sp_dbcmptlevel system stored procedure. The following code will set the
OldOrderEntry database so that its T-SQL 7.0 code works correctly:

Exec sp_dbcmptlevel ‘OldOrderEntry’, 70

05549359 ch03.F 11/21/02 9:22 AM Page 76

77Chapter 3 ✦ Installing and Configuring SQL Server

Figure 3-3: Setting the compatibility level in Enterprise
Manager.

Upsizing from Access
Many businesses and developers are moving from Access to a combination of Access and
SQL Server. Moving to a client/server environment and taking advantage of the reliability
of SQL Server is a wise move for users with applications that use business-critical data.
To make the transition easier, Microsoft has included an Upsizing Wizard within Access.

I’ve heard developers say that Access is good for prototyping a database before moving it to
SQL Server. I disagree. Good development practices in Access do not make good client/server
applications. A working Access application must be rewritten for SQL Server.

Despite the ease of using the Upsizing Wizard, the conversion from Access to SQL Server is a
major process.

Converting to a Client/Server Design
From my experience, moving from Access to SQL Server is an opportunity to strengthen the
design of the database.

Access applications tend to be form-centric. Code is executed on the form level, and forms
are fed by queries, which often reference the form for filtering. Both of these practices make
poor client/server applications. The goal of a smooth-upsizing project is to morph the appli-
cation from an Access style into one that complies with the best practices of client/server
design by doing the following:

✦ Moving the process as close to the data as possible

✦ Returning only the data that is strictly required

05549359 ch03.F 11/21/02 9:22 AM Page 77

78 Part I ✦ Laying the Foundation

Specifically, consider the following issues when moving from Access to SQL Server:

✦ Moving code from forms to stored procedures or triggers

✦ Moving form-based data validation to SQL Server constraints

✦ Checking the normalization of the data schema

✦ Checking the integrity of the data and beginning to enforce referential integrity with
DRI (Access applications often do not include referential integrity)

✦ Moving data-import and -export procedures from Access code or macros to DTS
packages

✦ Moving Access crosstab queries to stored procedures or Analysis Services cubes

✦ Completely reevaluating indexing using the guidelines for SQL Server indexing

✦ Checking all form queries to eliminate selecting all rows (Access .adp project forms
that select a single row based on the value of a combo box are very fast)

✦ Applying SQL Server security

✦ Moving Access action queries to stored procedures

Having performed several Access upsizing projects, I have found that no aspect of the project
is untouched in the transition. I have used the following methodology when performing
Access to SQL Server conversion:

1. Re-analyze the current project requirements

2. Prepare the SQL Server server

3. Move the Access schema using the Access Upsizing Wizard

4. Modify the SQL Server database

5. Create SQL Server stored procedures, triggers, and constraints

6. Build a reusable DTS package to convert the Access data to the new SQL Server
database design

7. Build a new Access .adp file front end

8. Repeatedly convert the data and test the new database and front end during the devel-
opment and testing process. During this time, there’s nothing wrong with using the 120-
day Evaluation Edition of SQL Server to test your database with less financial risk.

9. Perform the final data conversion to SQL Server

10. Tune the SQL Server database

Using the Access Upsizing Wizard
The Access Upsizing Wizard is a slick utility that moves the data schema, data, rules, and ref-
erential integrity from Access to SQL Server. It can also build a client/server Access .adp
project as a new front end. While it can’t replace the database developer in making design
modifications and improving the application, it does a good job of handling the drudgery and
is a good start to upsizing a project.

05549359 ch03.F 11/21/02 9:22 AM Page 78

79Chapter 3 ✦ Installing and Configuring SQL Server

The Access Upsizing Wizard (Figure 3-4) must be installed with the Advanced Wizards option
during Access installation and is then located within Access under the Tools menu. The
Upsizing Wizard will move data and objects from a single Access database (not a split
database) to an Access/SQL Server client/server database. Tables and queries will be moved
to a SQL Server database. Access forms, reports, and code will be moved to a new Access
database project.

Figure 3-4: The Access Upsizing Wizard can move the
schema and data to a SQL Server database.

Because Access 2000 shipped before SQL Server 2000, Access 2000 is unaware of new fea-
tures in SQL Server 2000. The Upsizing Wizard in Access 2000 is intended to upsize the
database to SQL Server 7.0. A patch, located at http://office.Microsoft.com/2000/
downloaddetails/Accsql.htm, will modify an Office SR-1 copy of Access so that the
Upsizing Wizard can upsize to SQL 2000.

To run the Upsizing Wizard, select the wizard from within the Access database to be upsized.
The wizard will progress through the following options:

1. Create a new SQL Server database or upsize to an existing database. In organizations
with tight security, it may be easier to ask a DBA to create a database than to request
the necessary rights to permit the Upsizing Wizard to create the database.

2. Select the SQL Server/database and provide a SQL Server user name and password. To
use Windows Authentication mode, leave the user name and password blank.

If the Upsizing Wizard is unable to log in to SQL Server with the user name and pass-
word, a second login dialog box will appear and ask you to re-enter the user name and
password. This second dialog box includes an option for a trusted connection to SQL
Server that explicitly uses Windows Authentication.

3. Select the tables to upsize and the table upsizing options you want, including specify-
ing which table attributes to upsize (Indexes, Validation Rules, Defaults, and Referential
Integrity).

SQL Server 2000 indexing is dramatically more complex than Access indexing. I recom-
mend not moving the indexes from Access to SQL Server, and instead creating the
indexes manually in SQL Server.

05549359 ch03.F 11/21/02 9:22 AM Page 79

80 Part I ✦ Laying the Foundation

Referential integrity within the Access database can be transferred to the new SQL
Server database via one of two methods. The Upsizing Wizard can either create triggers
or SQL Server DRI (foreign keys) to enforce referential integrity. If Access referential
integrity includes cascading deletes it can present a problem. SQL Server 7.0 DRI did
not support cascading deletes and the Wizard will not move the cascading deletes even
though SQL Server 2000 can implement DRI with cascading deletes.

Therefore, the only way to move cascading deletes using the Upsizing Wizard is to use
triggers to enforce referential integrity in SQL Server 2000. I strongly recommend that
you do not move the cascading deletes to triggers. The trigger code will be difficult to
manage and slower than SQL Server 2000 DRI. Let the Wizard create DRI and recreate
the cascading deletes in SQL Server 2000 after the upsizing process.

The Wizard can add timestamps to the tables during the upsizing, which can aid in
detecting lost updates (see Chapter 11, “Transactional Integrity,” for more information
on lost updates).

By default the Wizard will move the data, but it can optionally move only the data
structure.

4. The final set of options concerns the resulting front-end application used to connect to
the new SQL Server database. The first option is to do nothing.

The second option is to modify the tables within the Access database so that they are
linked tables pointing to the new tables within SQL Server. This option retains the
Access .mdb file and Jet database. While this option keeps the Access queries that ref-
erence form controls intact, it fails to fully take advantage of client/server architecture.

Creating a new Access client/server project is the best option because it will create a
new Access .adp project front-end file sans Jet database engine.

When complete, the Upsizing Wizard will present an Access report of its success and failures,
including several warnings. This report can be very long, and it represents a one-time oppor-
tunity to see the issues the Upsizing Wizard didn’t handle. Don’t just close the report, review
it carefully or print it.

Access .adp Front-End Applications
Access 2000 introduced Access projects (.adp) as an alternative to Access databases (.mdb).
The primary difference between the two is that the Access project drops the Jet database
engine and becomes a relatively thin client on top of SQL Server, as shown in Table 3-8. I have
personally found Access projects to be fast and efficient, providing the proper connection to
SQL Server with the ease of Access form development.

Table 3-8: Access Projects versus Databases

Aspect Access Database Access Project

Database engine/architecture Jet/desktop database. Unless SQL Server/client/server. A thin
queries are specifically written OLE DB layer passes all query
as pass-through queries, the Jet work to SQL Server.
Engine retrieves all the data from
SQL Server and performs the
query locally.

05549359 ch03.F 11/21/02 9:22 AM Page 80

81Chapter 3 ✦ Installing and Configuring SQL Server

Aspect Access Database Access Project

File type .mdb .adp

Table relationships A single Relationship diagram Referential integrity established at
used to display and edit the table level with foreign keys, or
referential integrity. within multiple database diagrams.

Heterogeneous data Yes, the JET engine may link to Yes, SQL Server may link to other
other data sources and tables data sources and then the forms
outside the database. may access the data through SQL

Server.

Stored SQL statements Access Queries, precompiled, SQL Server Views, not
are stored in the .mdb and precompiled, are stored in the
may reference form controls. server and may not reference any

front-end forms or parameters.

Working with server-side code Unable to expose SQL Server All server-side code is available to
views, stored procedures, or the developer.
functions for development use.

Coding Efficient Access Project Forms

The key to building fast Access Projects is to code efficient forms that retrieve single rows from
SQL Server. Whereas an Access Database might open a form with the entire table and permit the
user to browse the data using the form, doing so works poorly in a client/server environment.

The best way to build an Access Project form is to code the form to retrieve only the selected row.
Here’s how to code such a form:

1. Enable the user to select a row by either entering a value into a textbox, selecting a row
from a combo box, or selecting a row from a separate search list box.

2. From the value entered or selected by the user, determine the primary key of the row to
be viewed in the form.

3. Update the form’s recordsource property to retrieve the selected row, using code simi-
lar to the following in the after update event of the control used to select the row:

Private Sub cboSelectCustomer_AfterUpdate()
Form.RecordSource =
“Select * from Customer

where CustomerID = “ & Str(cboSelectCustomer)
End Sub

In this example from the CHA2 sample database, when the user selects a customer in the
cboSelectCustomer dropdown list, the form quickly goes to that customer row and returns
only the required columns. Access Project forms developed in this manner produce very fast
database applications.

The Cape Hatteras Adventurers Access Project, CHA2.adp, demonstrates this form technique.
Refer to Appendix B, “Sample Databases,” for more information on the sample databases.

05549359 ch03.F 11/21/02 9:22 AM Page 81

82 Part I ✦ Laying the Foundation

Migrating to SQL Server
A recurring theme in database development is that most data has a history, and that baggage
comes along with any conversion project. If you’re moving to SQL Server from MySQL or
Oracle, here are a few thoughts on the differences and the conversion process.

Upgrading from MySQL
If you’re moving from MySQL to SQL Server, I think you’ll like what you find. Although MySQL
is a nice database, it lacks some of the server-side functionality expected in a client/server
database — namely stored procedures and triggers. For this reason, many of the same princi-
ples that apply to an Access conversion also apply to a MySQL conversion.

The most prominent conversion opportunity with the greatest gains in performance and data
integrity is to master T-SQL and move code from the front-end client or middle tier to the
server. You’ll also find that SQL Server provides more flexibility, and complexity, in its admin-
istration options than MySQL.

Migrating from Oracle
SQL Server and Oracle are comparable databases, and projects sometimes move from one to
another. If you’re moving a project from Oracle to SQL Server, here are a few differences you’ll
want to keep in mind:

✦ Oracle 7 and Oracle 8 do not recognize ANSI SQL 92 joins and are limited to ANSI SQL 89
syntax. As you move code to SQL Server you may want to begin writing in the newer,
more readable style. Neither style provides a performance gain over the other.

✦ The two databases handle transaction-isolation levels differently. Oracle avoids dirty
reads and non-repeatable reads with a read log, which ensures that other transactions
will read the data as it was prior to changes. This method encourages developers to
code with a style that permits long transactions.

SQL Server handles transaction isolation with the full set of four isolation levels, as
opposed to Oracle’s two levels; however, SQL Server takes a much more cautious posi-
tion than Oracle and prevents cross-transaction problems with locks instead of a read
log. For this reason, applications that are ported from Oracle to SQL Server tend to per-
form poorly, as they create lock contention.

Be sure to read the chapter 11, “Transactional Integrity,” for guidelines on avoiding perfor-
mance problems related to lock contention.

✦ Oracle’s PL-SQL is different from SQL Server’s Transact-SQL. One of the first differences
you’ll encounter is that transactions are implicit in Oracle but, by default, explicit in
SQL Server. SQL operations occur when they are issued and don’t require an explicit
commit trans.

✦ SQL Server triggers fire once per operation, not once per row, while Oracle triggers
may fire either per statement or per row. Be sure to write your code to handle the
entire multi-row set of inserts or updates. Additionally, Oracle triggers may fire on more
events (DDL commands) than SQL Server, and may be attached to system tables.

Cross-
Reference

05549359 ch03.F 11/21/02 9:22 AM Page 82

83Chapter 3 ✦ Installing and Configuring SQL Server

✦ It’s much easier to return record sets from T-SQL stored procedures than from Oracle
PL-SQL stored procedures.

✦ Oracle sequences are more robust than SQL Server identity columns.

✦ Of course, SQL Server and Oracle have different data types. In most cases SQL Server
offers greater variety and precision than Oracle, and so moving from Oracle to SQL
Server opens up more possibilities and resolves problems. Moving from SQL Server to
Oracle can create data-type problems.

If you’re migrating a serious project from Oracle to SQL Server, I recommend reading the 104-
page Microsoft white paper, Migrating Oracle Databases to SQL Server 2000, available at
http://www.microsoft.com/SQL/techinfo/deployment/2000/MigrateOracle.asp.
The paper is also published within the SQL Server 2000 Resource Kit.

As with any other conversion project, I recommend creating a DTS package to handle the
data transfer so that it’s a repeatable process.

Removing SQL Server
To remove SQL Server, use the Add/Remove Programs option in Window’s Control Panel.
Each instance of SQL Server is listed separately and may be uninstalled without affecting the
other instances. If you remove the default instance, any named instances will continue to
function properly.

User databases will not be deleted by the uninstall. If the databases are in the default data
directory under SQL Server’s program directories, those directories are left intact.

Copying a database to another server prior to removing an instance of SQL Server enables
continued access to the data. If that’s not possible, backup and restore the database to
another server or attach the orphaned database to another server.

Client Connectivity
In a client/server database, the server and client must be able to communicate. SQL Server
communicates directly with the client without depending on the operating system. The twin
network tools enable you to view and edit the current network protocol.

Server Network Utility
The network protocol used by the server is initially set during installation and may be
adjusted later via the SQL Server Network Utility (Figure 3-5). The utility may be launched
from either the Start menu or Enterprise Manager. To launch it from Enterprise Manager,
select the server and use the Action ➪ All Tasks ➪ Server Properties menu, or the right mouse
menu. In the General tab, click the Network Configuration button.

The Server Network Utility presents a list of all the available protocols and communication
options. The server must be restarted if the protocols are changed.

05549359 ch03.F 11/21/02 9:22 AM Page 83

84 Part I ✦ Laying the Foundation

Figure 3-5: The SQL Server Network Utility establishes the
connectivity protocols used by SQL Server to communicate
with clients.

Client Network Utility
The Client Network Utility establishes the protocol for the client. For nearly all installations
the default protocol will work fine and this utility isn’t necessary. But if the protocol varies
from the default then this utility establishes the protocol at the client side of the connection.
Its operation is similar to the Server Network Utility.

Exploring System Databases and Tables
When SQL Server is initially installed, it already contains several system and user objects.
Four system databases are used by SQL Server for self-management, two sample user
databases are available for experimentation, and every database includes several system
objects, including tables, views, stored procedures, and functions.

Within Enterprise Manager, the system objects might be hidden. In the Registered SQL Server
Properties page you can choose what to display using the “Show system database and sys-
tem objects” option, as shown in Figure 3-6.

System Databases
SQL Server uses three system databases to store system information, track operations, and
provide a temporary work area. In addition, the model database is a template for new user
databases. These four system databases are:

✦ Master — Contains information about the server’s databases. In addition, objects in
Master are available to other databases. For example, stored procedures in Master may
be called from a user database.

✦ MSDB — Maintains lists of activities, such as backups and jobs, and tracks which
database backup goes with which user database.

05549359 ch03.F 11/21/02 9:22 AM Page 84

85Chapter 3 ✦ Installing and Configuring SQL Server

Figure 3-6: Choosing if system objects are
hidden or displayed in the Registered SQL
Server Properties dialog box.

✦ Model — The template database from which new databases are created. Any object
placed in the Model database will be copied into any new database.

✦ Tempdb — Used for ad-hoc tables by all users, batches, stored procedures (including
Microsoft stored procedures), and the SQL Server engine itself. If SQL Server needs to
create temporary heaps or lists during query execution, it creates them in Tempdb.
Tempdb is completely cleared when SQL Server is restarted.

Pubs and Northwind
SQL Server ships with two small sample databases, Pubs and Northwind. Pubs, a database of
fictional authors, books, and publishers has been with SQL Server since the beginning.
Northwind, the database of a fictional distributor of fine foods, has been a sample database
within Access since Access version 1. It joined SQL Server with version 7.0.

These two Microsoft databases are valuable for three reasons:

✦ They are frequently referred to by Books On Line and other instructional publications.

✦ They are commonly installed on every server, and easy to rebuild, making them well
suited for experimentation. A SQL script to rebuild each sample database, instnwnd.
sql and instpubs.sql, is located in C:\Program Files\Microsoft SQL Server\
MSSQL\Install.

✦ They demonstrate numerous database features, relationships, and possible practices.

The last benefit listed is also a hindrance. In demonstrating a variety of possibilities,
Northwind includes several questionable database design practices. For example, the table
[Order Details] includes a space thus requiring the brackets, the tables have plural
names, no global unique identifies are used as primary keys, and the Customers table even
uses a meaningful char column as a primary key! In addition, the Region column exists in the
Customers, Employees, Orders, and Suppliers tables, yet none of these include foreign
keys to the Region table.

05549359 ch03.F 11/21/02 9:22 AM Page 85

86 Part I ✦ Laying the Foundation

While Pubs has a better relational model than Northwind, it is inconsistent and uses unfamil-
iar column names.

Aside from these issues, Northwind and Pubs are so commonly used for examples that it is
worth your while to become familiar with them and to keep them loaded on your server.

System Tables
Each database is defined by the information within the system tables listed in Table 3-9. SQL
Server, as a relational database, maintains information about the database in relational tables.
It’s generally considered a dangerous practice to directly update the system tables; however,
reading from the system tables can be useful. For example, DDL code commonly references
SysObjects code prior to creating or dropping an object to see if the object exists.

Table 3-9: SQL Server System Tables

System Table Description

SysColumns Table/column definitions

SysComments Code from views, stored procedures, triggers, and functions

SysDepends Dependencies between objects based on foreign keys

SysFilegroups Information about filgroups used by the database

SysFiles1 The files for the database

SysFiles The additional information about the database tables, including size

SysForeignKeys Listing of the foreign keys

SysFulltextCateglogs Listing of the full-text search catalogs

SysFullTextNotify Additional information required by full-text search

SysIndexes Information on the indexes within a table

SysIndexKeys Primary keys

SysMembers Users assigned to roles

SysObjects Listing of all objects in the database

SysPermissions Information about permissions granted and denied to users, groups,
and roles in the database for the tables, views, stored procedures, etc.
Also contains information about which users, groups, and roles have
been granted or denied the various CREATE statements.

Sysproperties Information on the processes currently running (only in the Master
database)

Sysprotects User object permissions (similar to SysPermissions)

Sysreferences Foreign-key listings for each table

Systypes System and user-defined data types

Sysusers Database users (Windows or SQL Server users)

05549359 ch03.F 11/21/02 9:22 AM Page 86

87Chapter 3 ✦ Installing and Configuring SQL Server

Information Schema Views
The design of system tables has changed before, and it’s likely that Microsoft will revise the
design in the future. Compounding the problem of future instability is the Microsoft-specific
design of SQL Server’s system tables. Building a system to read a database schema from any
relational database would require a standard and permanent method of getting to the system
tables.

The ANSI SQL 92 standard specifies several non-proprietary schema views with which to
examine the schema of a database. Views are stored SQL statements that enable the user to
refer to a complex SQL statement using the name of the view. The Information Schema views,
listed in Table 3-10, extract database-design information from SQL Server’s system tables.

Table 3-10: ANSI Information Schema Views

System Table Description

CHECK_CONSTRAINTS Check constraints in the database

COLUMN_DOMAIN_USAGE Columns in the database that reference user-defined data types

COLUMN_PRIVILEGES Column-security information

COLUMNS All columns in the database

CONSTRAINT_COLUMN_USAGE Columns with constraints

CONSTRAINT_TABLE_USAGE Table constraints

DOMAIN_CONSTRAINTS User-defined data types with bound rules

DOMAINS User defined data types

KEY_COLUMN_USAGE Primary keys

PARAMETERS Stored procedure and user-defined function parameters

REFERENTIAL_CONSTRAINTS Foreign keys

ROUTINE_COLUMNS Table-function columns

ROUTINES Stored procedures and functions

SCHEMATA Databases available to the current user

TABLE_CONSTRAINTS Table constraints including check constraints, unique constraints,
primary keys, and foreign keys

TABLE_PRIVILEGES User permissions and ownership for tables

TABLES All tables

VIEW_COLUMN_USAGE Table columns used in views

VIEW_TABLE_USAGE Tables used in views

VIEWS Views

05549359 ch03.F 11/21/02 9:22 AM Page 87

88 Part I ✦ Laying the Foundation

The Information Schema views are stored in the Master database and owned by information
schema. Because they are in the Master database they are available from any database and
will present the schema for the current database from which they are accessed.

The Information Schema views are strongly influenced by the permissions of the current user.
Nearly every view presents not all the information from the system tables, but only the infor-
mation the current user has permission to access.

Summary
SQL Server 2000 is easy to install; the work is in the planning. Most projects have a history
and the installation is probably another upgrade in the life of the project rather than a fresh
new database. Nevertheless, SQL Server installation and configuration are relatively smooth
processes.

With SQL Server installed, the next chapter examines SQL Server’s developer tools, Service
Manager, Enterprise Manager, and Query Analyzer.

✦ ✦ ✦

05549359 ch03.F 11/21/02 9:22 AM Page 88

Using SQL Server’s
Developer Tools

SQL Server provides a wealth of developer interfaces. The three
interfaces most commonly used by SQL developers and DBAs are

Service Manager, Enterprise Manager, and Query Analyzer. These
client tools enable the developer or DBA to control SQL Server and
develop database projects with either a GUI interface or T-SQL code.

This chapter’s purpose is not to explain the use of every option
within the tools, but to point out a few of the interesting features and
to help you get comfortable with navigating, exploring, and using the
developer interfaces.

Using Service Manager
Although the Service Manager is physically loaded on the server, it is
actually a client process that can start or stop several server pro-
cesses, as shown in Figure 4-1. Service Manager’s functionality comes
in addition to the operating-system interfaces within Administrative
Tools that can also start and stop services. SQL Server’s Service
Manager is nothing more than an additional tool for controlling SQL
Server. SQL Server does not require Service Manager to be loaded or
running; it is only an extra convenience.

By default, SQL Server adds Service Manager to the start-up menu
group so that it loads when the operating system starts. If Service
Manager is removed from the start-up menu group, SQL Server’s
server processes will still start and function normally.

Service Manager provides the following benefits:

✦ A DBA interface with which to define the SQL Server instances
and processes to start when the operating system loads.

✦ An easy method of starting and stopping any SQL Server pro-
cess, on any server.

✦ A visual indication of the run status of a process.

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using Service Manager

Using Enterprise
Manager

Using Query Analyzer

✦ ✦ ✦ ✦

06549359 ch04.F 11/21/02 9:22 AM Page 89

90 Part I ✦ Laying the Foundation

However, these minor benefits come at a high cost:

✦ The process sqlmanager.exe occupies about 3MB of memory.

✦ SQL Manager regularly polls the service, a cost which is insignificant compared to the
memory footprint.

My personal practice is to remove Service Manger from the start-up menu group and launch
it from the Start menu when I need it.

Figure 4-1: Service Manager can control any
server process for any SQL Server instance.

Every server process may be controlled within Service Manager. The system tray displays the
selected service (listed in Table 4-1). The default service may be selected within the options.

Table 4-1: SQL Server Processes

Server Process Description Count

SQL Server The database engine 1 per instance

SQL Server Agent Executes jobs 1 per instance

Microsoft Search Executes full-text searches 1 per physical server

Distributed Transaction Coordinator Controls multi-server transactions 1 per physical server

MSSQLServerOLAP Service Analysis Services 1 per physical server

SQL Server Service Manager will display the current running state of any server process in
the dialog box and in the system tray icon. By default, it displays the local server’s default
instance, but that may be changed in the options.

Service Manager has four tasks for SQL Server: starting SQL Server, pausing SQL Server,
resuming SQL Server, and stopping SQL Server:

✦ Starting a SQL Server instance — This action launches the SQL Server engine and per-
forms a recovery.

06549359 ch04.F 11/21/02 9:22 AM Page 90

91Chapter 4 ✦ Using SQL Server’s Developer Tools

✦ Pausing a SQL Server instance — A paused SQL Server instance will continue to com-
plete any current work; the only restriction is that new connections are prohibited.
Depending on the method used to program it, a pooled connection might be open for a
long time. The intention is that a paused server will allow time for a controlled shut-
down of the server and for notification to be sent to the users, perhaps by means of a
net send command.

✦ Resuming a paused SQL Server instance.

✦ Stopping a SQL Server instance — initiates the following shut-down procedure within
SQL Server:

1. All logins are disabled except for those of users assigned to the system-
administrator role.

2. Any running SQL transactions or stored procedures are allowed to finish execu-
tion. This is important for maintaining the ACID properties of the database.

3. A checkpoint is performed for every database. Checkpoints are important to the
recovery model.

4. The SQL Service stops execution.

To manage the processes, the user must be a Windows local administrator (or domain admin)
to start and stop processes.

SCM.exe is a command-line companion to Service Manager and, like Service Manager, can
start, pause, or stop services.

Using Enterprise Manager
Perhaps no other feature has welcomed more new DBAs to SQL Server more than Enterprise
Manager. Its well-organized, inviting, and powerful interface feels familiar and its very struc-
ture helps a new DBA explore and become familiar with the various aspects of SQL Server.

A common misconception among new DBAs is that Enterprise Manager is SQL Server. It’s not.
Enterprise Manager is a client front-end tool used to manage SQL Server. Enterprise Manager
sends T-SQL commands to SQL Server. It also inspects SQL Server and presents the data and
configuration for viewing. An important feature to organizations with multiple servers is that
Enterprise Manager can connect to, or register, multiple instances of SQL Server, reducing the
travel required to manage disparate servers.

It’s very interesting to watch the commands sent by Enterprise Manager to SQL Server.
Chapter 28, “Advanced Performance,” includes information about configuring SQL Profiler,
which can display nearly any detail of the traffic between the engine and its clients.

The Microsoft Management Console Add-In
The Microsoft Management Console (MMC) is employed throughout Windows operating sys-
tems as a standard plug-and-play container for several utilities and administrative tools. Its
familiar tree-and-list interface brings consistency to the look and feel of various system

Cross-
Reference

06549359 ch04.F 11/21/02 9:22 AM Page 91

92 Part I ✦ Laying the Foundation

administrative tasks. To experiment with MMC, try launching it as an empty shell with the fol-
lowing command: Run mmc.exe

You can build your own custom MMC console, one that includes the add-ins you use fre-
quently, with the Console ➪ Add/Remove Snap-in menu command and the Add button. Figure
4-2 shows a custom MMC. Additional menus will appear in the MMC depending on the current
add-in.

Interestingly, the SQL Server MMC add-in is also installed inside Administrative
Tools/Computer Management/Services, and Applications.

Figure 4-2: This custom MMC tree includes Enterprise Manager, Windows
users, and Performance Monitor.

Connecting to a Server
The first step in connecting to a server instance from Enterprise Manager is to register the
instance within Enterprise Manager. An instance may be registered using the Register Server
Wizard, or from the right-mouse menu under Server Groups.

Registering the server establishes the connection and user-authentication information so
Enterprise Manager can access the server, as shown in Figure 4-3. A key option in the
Registered SQL Server Properties dialog box is the “Show system databases and system
objects” checkbox, which enables or disables the display of system objects when viewing
tables, views, and stored procedures.

Within the Enterprise Manager tree, servers may be organized by server groups. There’s no
meaning whatsoever to these groups; their only purpose is to visually group the servers
within the tree.

06549359 ch04.F 11/21/02 9:22 AM Page 92

93Chapter 4 ✦ Using SQL Server’s Developer Tools

Because Enterprise Manager and SQL Server are communicating as client and server, the two
processes are not always in sync. Changes on the server are often not reflected in Enterprise
Manager unless Enterprise Manager is refreshed. Even then, Enterprise Manager will rarely
catch every change in SQL Server. The last resort is to disconnect from the server and recon-
nect, which forces a complete refresh.

Server Properties
Right-clicking on a server and selecting Properties will open the Server Property dialog. This
dialog collects in one location the necessary server-configuration options.

Figure 4-3: Registering a SQL Server within
Enterprise Manager so it can connect to the
server.

Navigating the Tree
In keeping with the Explorer metaphor, the tree on the left side of Enterprise Manager (Figure
4-4) is a hierarchical, expandable view of the objects available within the registered servers. A
tree is built of roots and nodes. For example, within the Windows Explorer tree, the desktop
is the root and all folders or devices expand under the desktop as nodes. Enterprise
Manager’s tree structure is standardized, or fixed, within a server. However, additional tree
nodes are added as servers are enabled for replication and articles are published.

The first two levels of the tree present the registered SQL Server instances and their relative
statuses, organized by server groups. The icons representing the server indicate the current
SQL Server instance status, as follows:

✦ Green indicates the server is running

✦ Green circle indicates Enterprise Manager is connected to the server

Under each server is a node for the server’s databases, DTS packages, server management,
replication, security, support services, and metadata services.

Caution

06549359 ch04.F 11/21/02 9:22 AM Page 93

94 Part I ✦ Laying the Foundation

Figure 4-4: Enterprise Manager’s tree structure invites the DBA to explore the
various components of SQL Server management.

The database node contains all the server’s databases. When you right-click on a database,
the menu includes a host of options and commands. If the database is in Taskpad view, the
right-side pane will provide the three Taskpad options of the database. Under each database
are standard nodes (Figure 4-5), which manage the following database objects:

✦ Diagrams — Illustrate several tables and their relationships. A database may contain
multiple diagrams, and each diagram does not need to display all the tables. This
makes it easy to organize large databases into modular diagrams.

✦ Tables — Used to create and modify the design of tables, view and edit the contents of
tables, and work with the tables’ indexes, permissions, and publications. Triggers,
stored procedures that respond to data-modification operations (insert, update, and
delete), may be created and edited here. The only way to launch the Query Designer is
from the table listing.

✦ Views — Stored SQL statements. They are listed, created, and edited, and the results
viewed, from this node.

✦ Stored procedures — Pre-compiled batches of T-SQL statements that are the fastest
means of programming SQL Server applications.

✦ Users — First declared as authorized within the server, but must be specifically autho-
rized for any given database in order to use it.

06549359 ch04.F 11/21/02 9:22 AM Page 94

95Chapter 4 ✦ Using SQL Server’s Developer Tools

✦ Roles — Similar to security groups, roles are used to assign database-object permis-
sions to sets of users in a consistent security design.

✦ Rules — May be predefined and then bound to table columns providing methods of
organizing rules. Alternately, table constraints may be used to restrict data entry.

✦ Defaults — Defined under this node and then bound to a data column. Default con-
straints may also be assigned directly within the tables.

✦ User-defined data types — SQL Server data types with pre-assigned lengths, nullability,
default, and data validation rules may be named as user-defined data types and then
consistently employed within data schemas.

✦ User-defined functions — New to SQL Server 2000, custom functions are extremely pow-
erful, compiled, and way cool. Chapter 14, “Building User-Defined Functions,” explains
how to create and reference user-defined Functions.

✦ Full-text catalogs — Full-text searches use catalogs, which are maintained by Search
Engine in Windows. This node helps organize those catalogs.

Figure 4-5: The simpler view of only the Cape Hatteras Adventures database.

Continuing on with the first level of the tree (refer back to Figure 4-4):

✦ Data Transformation Services — Lists the DTS packages for the server and the metadata
services used with DTS.

✦ Management — DBA functions, including SQL Server Agent’s alerts, operators, and jobs,
backup devices, processes and locks, maintenance plans, and logs, are organized under
this node.

✦ Replication — Articles (tables, views, and stored procedures) that are published for
replication or subscribed to, are organized under this node.

06549359 ch04.F 11/21/02 9:22 AM Page 95

96 Part I ✦ Laying the Foundation

✦ Security — User logins and server roles are organized under this node, as well as stand-
ing connections to linked servers and remote servers.

✦ Support services — The Distributed Transaction Coordinator, Full-Text Search Engine,
and SQL Mail item are organized under this node.

✦ Meta Data Services — Metadata are an advanced means of identifying the design of the
database, or information about the data, for data sharing. Metadata is defined and
maintained in this node.

The tree can be very busy on a server with multiple databases. To create a new tree with
nodes pertinent to your current task, right-click the node of interest and select New Window
from Here. Figure 4-5 shows Enterprise Manager displaying only the Cape Hatteras
Adventurers sample database in the window.

Taskpad
The Taskpad view (Figure 4-6), available for servers and databases, is enabled by selecting
Taskpad from the View menu. To turn off the Taskpad, reselect an icon or list view. The
Taskpad is turned on or off on a server-by-server, or database-by-database, basis.

While the Taskpad contains many excellent features, I have found it to be error-prone. If the
Taskpad begins to generate errors (often indicating that it can’t find its own internal vari-
ables), the only solution is to close and restart Enterprise Manager.

Figure 4-6: The Taskpad offers a means of quickly reviewing key database statistics and
launching common tasks.

06549359 ch04.F 11/21/02 9:22 AM Page 96

97Chapter 4 ✦ Using SQL Server’s Developer Tools

Menus and Toolbars
Enterprise Manager’s Toolbar interface consists of a menu bar and two toolbars. From left to
right, the interface contains:

✦ Action menu — Essentially the same as the right-click menu.

✦ View menu — Changes the view style (icon, detail list, and so on) of the item in the
right-hand pane.

✦ Tool menu — Presents many tasks and tools pertaining to SQL Server administration.

✦ Previous Item/Next Item/Up Level buttons — Performs the same tree navigation func-
tions as in Windows Explorer.

✦ Show/Hide Console Tree button — Shows or hides the left-hand pane containing the con-
sole tree.

✦ Delete button — No surprises here: This button deletes the currently selected item.

✦ Properties button — Opens the Properties page for the selected item.

✦ Refresh button — The right-click menu of most tree nodes includes a refresh command.
This button also refreshes the currently selected tree node.

✦ Export button — Not a Database Export Wizard tool. Instead, it exports to a text file the
contents of the Enterprise Manager list in the left-hand pane.

✦ Help button — Provides context-sensitive help.

✦ Wizards button — Opens the Wizards dialog box, which contains 23 wizards.

✦ New button — Creates a new object of whichever object type is selected in the tree.

The following four buttons launch wizards that perform basic “new installation” tasks. They
aren’t very useful for experienced DBAs or developers:

✦ Register Server

✦ New Database

✦ New Login

✦ New Job

The Right-Click Menu
In keeping with the Microsoft Windows interface standards, the right-click menu is the pri-
mary means of selecting actions or viewing properties throughout Enterprise Manager. The
right-click menu for a server or database includes submenus for new objects, and all tasks.
These are the workhorse menus within Enterprise Manager.

06549359 ch04.F 11/21/02 9:22 AM Page 97

98 Part I ✦ Laying the Foundation

The Wizards
Enterprise Manager includes 23 wizards, most of which are available from the Wizards button
on the toolbar or the Wizards command in the Tools menu. Both bring up a Select Wizard dia-
log box (Figure 4-7) that lists the wizards that are appropriate for the currently selected
object in the console tree in a tree structure. While the database wizards are not particularly
useful, the DTS, maintenance, and replication wizards are.

Figure 4-7: The Select Wizard dialog box
presents a tree containing 23 wizards.

The Taskpad view (discussed previously in this chapter), includes a tab that lists the appro-
priate wizards for the server or database selected, as well as other tasks suitable for the cur-
rently selected item. Several of the wizards are also available from individual actions.

An advantage of the Wizards dialog box is that a wizard is still available through it even if the
wizard’s “don’t use this wizard again” checkbox has been enabled, causing the standard
dialogs to open instead of the wizards.

Wizards of note include:

✦ DTS Import/Export Wizard — Creates a simple DTS package with which to move data
between SQL Server and an external database. Using this wizard is a good way to begin
exploring DTS.

✦ Copy Database Wizard — One of the best means of moving a database along with all
logins, permissions, and so on to another server.

06549359 ch04.F 11/21/02 9:22 AM Page 98

99Chapter 4 ✦ Using SQL Server’s Developer Tools

✦ Database Maintenance Plan Wizard — Generates a complete database-maintenance plan
including optimizations, backups, and integrity checks.

✦ Index Tuning Wizard — Analyzes a single query, or a full set of traffic captured by the
Profiler, and suggests useful indexes.

✦ Web Assistant Wizard — Creates a simple HTML page that lists data. The wizard can set
up a job or trigger to automatically recreate the HTML page when the underlying data
is changed.

✦ All the replication wizards are useful. Since setting up replication is probably not a
daily process, the wizards walk through what can be a complex task. Also, in my experi-
ence, disabling replication is nearly impossible without the assistance of the wizard.

The Table Design View
Creating a new table, or editing the design of an existing table, is easy with the Table Design
view. The Table Design view (Figure 4-8) is very similar to Access’s Relationship view and
other database design tool interfaces. A new table may be created by selecting the table node
in the tree, and then selecting New table from the right-click menu. The design of existing
tables may be edited by selecting the table, right-clicking, and selecting Design view from the
right-click menu.

Columns may be individually selected and edited in the top pane. The column properties for
the selected column are listed in the bottom pane.

Figure 4-8: Tables may be created or their designs edited using the Table
Design tool.

06549359 ch04.F 11/21/02 9:22 AM Page 99

100 Part I ✦ Laying the Foundation

Building Database Diagrams
The Database Designer takes the Table Design view up a notch by adding custom table design
views (Figure 4-9) and a multi-table view of the foreign-key relationships. The Database
Designer has its own node under each database. Each database may contain multiple dia-
grams, which makes working with very large databases easier because each module, or sec-
tion, of the database may be represented by a diagram.

Personally, I like the Database Designer, but some developers think it’s clumsy in two areas.
The major complaint is that the relationship lines connect the tables without pointing to the
primary- and foreign-key columns. This problem is compounded by another: the frustrating
tendency of the lines to become pretzels when tables or lines are moved. However, I find that
the Database Designer is most useful for working with very large databases. In this situation,
primary tables often have dozens of connecting lines. If the lines were automatically linked to
the primary key, the result would be an unreadable mess.

A major advantage to using the Database Designer, as I see it, is the customizable table-design
views (Figure 4-10), which are far superior to the standard Enterprise Manager Table Design
view. Different styles of database design require different column properties. The custom view
(available from the right mouse menu) presents only the selected column properties.

Figure 4-9: The Cape Hatteras Adventures database relationships viewed with the
Database Designer.

06549359 ch04.F 11/21/02 9:22 AM Page 100

101Chapter 4 ✦ Using SQL Server’s Developer Tools

Figure 4-10: The custom table view within Database Designer is one of the highlights of
Enterprise Manager.

The Query Designer
The Query Designer is a popular tool for data retrieval and modification, even though it’s
nearly hidden within Enterprise Manager. The only way to open the Query Designer is to drill
into the table listing under a database, select a table, and then select Open Table from the
Action menu or right-click menu. The Query Designer always opens with a single table, and
there’s no way to simply open the Query Designer without a table.

Unlike other query tools that alternate among a graphic view, a SQL text view, and the query
results, Enterprise Manager’s Query Designer simultaneously displays multiple panes (Figure
4-11) as selected with the view buttons in the toolbar:

✦ Diagram pane — Multiple tables or views may be added to the query and joined
together in this graphic representation of the select statement’s from clause.

✦ Grid pane — Lists the columns being displayed, filtered, or sorted.

✦ SQL pane — The raw SQL select statement may be entered or edited in this pane.

✦ Results pane — When the query is executed with the Run button (!), the results are cap-
tured in the Results pane. If the results are left untouched for too long, Enterprise
Manager will request permission to close the connection.

The Query Designer can perform DML (Data Manipulation Language —select, insert,
update, delete) queries besides select. Unlike Query Analyzer, it cannot perform batches
or non-DML commands.

06549359 ch04.F 11/21/02 9:22 AM Page 101

102 Part I ✦ Laying the Foundation

Figure 4-11: Enterprise Manger’s Query Designer.

The Query Designer may be used to edit data directly in the Results pane — a quick and dirty
way to correct or mock up data. Occasionally, you’ll see an error message that says, “Cannot
edit data while in Firehose mode.” This means that the Query Designer is still retrieving data.
Waiting a few seconds to give Enterprise Manager a chance to catch up with SQL Server will
normally resolve the error.

Navigating the Query Designer should feel familiar to experienced Windows users. While
Books On Line lists several pages of keyboard shortcuts, most are standard Windows naviga-
tion commands. The one that is worth repeating here is Control+zero, which enters a null
into the result pane.

Top 10 Enterprise Manager Annoyances

Every SQL Server developer spends a significant portion of his or her life using these tools. Since
programmers tend to think in terms of design and development, I imagine most developers have
their own pet peeves about whichever development tool they use. Here’s my Top 10 list of things
I hate about SQL Server’s development tools:

10. Query Analyzer and Enterprise Manager’s Query Designer are inconsistent in how com-
mon developer tasks are performed, for example:

✦ QA will execute a query with F5; QD won’t.

✦ QA permits changing the font; QD doesn’t.

06549359 ch04.F 11/21/02 9:22 AM Page 102

103Chapter 4 ✦ Using SQL Server’s Developer Tools

✦ QD automatically renders SQL keywords in caps; QA color-codes them.

✦ QA will save the code; QD won’t.

9. Launching Enterprise Manager’s Query Designer is clumsy. It’s a good tool and should be
promoted to the top layer of the interface, instead of being buried five clicks under the
database. It should be available directly from the database level with a dialog box for
selecting the first table in the query.

8. Double-clicking a table in Enterprise Manager should open either the design view or the
Query Designer. Opening a non-editable property page is useless, non-intuitive, and
inconsistent with the Windows standard that the double-click performs a task.

7. The Database Designer should have the option of connecting the relationship lines to the
columns. The connector style should be configurable (ER diagrams, Chen diagrams, etc.).

6. The Taskpad is incorrectly located in the menu. A check indicates that you can turn it off
by clicking the option again. But Taskpad is not an on-off option; it’s one of a series of
exclusive options including the icons. The Taskpad should be a Windows radio button
instead of a checkbox. This is a novice design flaw and causes developers to avoid the
Taskpad, thinking that it won’t go away when it’s turned off.

5. Enterprise Manager needs to handle automatic refreshes better. Often, Enterprise
Manager must be manually refreshed before it will show current information.

4. Enterprise Manager, in conjunction with the SQL Profiler, needs a wizard that performs a
consistency check to locate unused code or columns.

3. Enterprise Manager should provide developers with a way to view the security permis-
sions for any user or object that properly combines all the permissions a user might have
for an object or task and displays the effective permission level.

2. Other programming editors include code beautifiers that automatically aid developers in
formatting code according to the formatting options. SQL statements tend to be long and
consistent formatting improves the readability. I love a good formatting tool.

1. XML is becoming so important that DTS needs an XML import/export connector, and
both Query Analyzer and Enterprise Manager need a good XML viewer.

In addition to the current problems there are two issues that are solved with third-party tools. It’s
difficult to recommend that Microsoft incorporate features from third-party utilities, because it’s
healthy for us as a community for the add-on market to flourish. However, these utilities fill obvi-
ous voids in the SQL Server feature set:

✦ Enterprise Manager desperately needs a good database schema–reporting tool like FMS’s
Total SQL Server Analyzer.

✦ Viewing or understanding the Transaction Log is vital to T-SQL programming. A feature
similar to Lumigent’s Log Explorer to illuminate the T-Log would be wonderful.

Evaluation editions of both of these utilities are on the book’s CD.

06549359 ch04.F 11/21/02 9:22 AM Page 103

104 Part I ✦ Laying the Foundation

Using Query Analyzer
Query Analyzer (often called QA) is a dream tool for a SQL developer. I know several well-
respected SQL Server developers who make it their practice never to use Enterprise Manager.
They do all their work in Query Analyzer. While I use both tools and tend to like graphical
interfaces, I must admit to being fond of SQL Server 2000’s Query Analyzer. It is a well-
polished developer’s tool.

Connecting to a Server
Query Analyzer can maintain multiple open windows and connections, as demonstrated in
Figure 4-12. In fact, different windows may be connected as different users, which is very use-
ful for testing security.

When Query Analyzer first opens it will prompt for an initial login. To make further connec-
tions, use the File ➪ New Connection menu command. The window title displays the current
SQL Server and login user.

In Figure 4-12, the top window is logged in as Paul using Windows Authentication and the
code can select from the customer table. However, the second window is logged in as
James, who has been denied permission to select from the customer table.

Figure 4-12: Query Analyzer can open multiple connections to SQL Server.

06549359 ch04.F 11/21/02 9:22 AM Page 104

105Chapter 4 ✦ Using SQL Server’s Developer Tools

Executing SQL Batches
As a developer’s tool, QA is designed to execute T-SQL batches, which are collections of mul-
tiple T-SQL statements. To submit a batch to SQL Server for processing, use Query ➪ Execute
Query, click on the Run Query toolbar button, use the F5 key, or press control-E.

Because batches tend to be long, and it’s often desirable to execute a single T-SQL command
or a portion of the batch for testing or stepping through the code, the SQL Server team pro-
vides you with a convenient feature. If no text is highlighted, the entire batch is executed. If
text is highlighted, only that text is executed.

It’s worth pointing out that the Parse Query menu command and toolbar button only checks
the SQL code. It does not check object names (tables, columns, stored procedures, and so
on). This actually is a feature, not a bug. By not including object name–checking in the syntax
check, SQL Server permits batches that create objects and then references them.

The T-SQL batch will execute within the context of a database. The current database is dis-
played, and may be changed, within the database combo box in the toolbar. While each SQL
Server user may be assigned a default database, this is often ignored along with the current
Query Analyzer database. The result is that the user’s initial current database is the Master
system database, and it tends to collect junk that’s created in the Master database by acci-
dent by T-SQL commands running in Query Analyzer.

The results of the query are displayed in the bottom pane. The format may be either text or
grid; you can switch using Ctrl-T or Ctrl-D, respectively. The new format will be applied to the
next batch execution.

While working with T-SQL code in Query Analyzer, you can get Books On Line (BOL) keyword
help by pressing Shift+F1.

Opening and Saving Scripts
The development style based on Query Analyzer, as opposed to Enterprise Manager graphic
tools, tends to work heavily with saved scripts. It’s the repeatability of the code as it goes
through multiple iterations of improvement that draws developers to Query Analyzer.

As you would expect, the File Open, Save, and Save as commands open or save T-SQL scripts
as .sql files. These files are simple text files. The sample databases on the CD-ROM are
stored in this manner.

I recommend that you configure Windows file associations to open .sql files using
C:\Program Files\Microsoft SQL Server\80\Tools\Binn\isqlw.exe. This will enable
you to double-click an .sql file in Windows Explorer and open it with QA.

Object Browser
One of the exciting new features of SQL Server 2000 is the QA Object Browser, previously
shown in the left-hand side of Figure 4-12. This tree representation of the database objects
includes three significant features:

✦ The ability to generate scripts that modify objects. For example, the right-click menu
for a stored procedure enables you to launch a new window and generate the alter
command for that stored procedure.

✦ The stored-procedure debugger, also launched from the right-click menu inside the
Object Browser, is useful for tracing T-SQL code.

✦ Object names and functions can be dragged from the Object Browser to a batch window.

06549359 ch04.F 11/21/02 9:22 AM Page 105

106 Part I ✦ Laying the Foundation

Templates
The Query Analyzer templates (Figure 4-13) are worth mentioning even though they have
received mixed reviews. The ability to create a new object from a template is a good idea. It
helps make the code consistent.

Microsoft must love templates, because there’s a menu command and two buttons on the
toolbar for creating an object using a template. The first button, New Query, includes a drop-
down arrow that lists templates. The fourth button in the toolbar opens a template browser
that may be used to select a template file.

Figure 4-13: The Query Analyzer templates provide all of the syntax and code you need
to create an object.

Once the template is selected and the code is pasted into a Query Analyzer window, the code
options may be manually edited. Alternately, the Edit ➪ Replace Template Parameters menu
opens a dialog box with the code options for that current template.

The templates are simply stored SQL scripts within a directory structure, which means that
it’s easy to create your own templates or to modify the existing ones. The template directory
is specified in the General tab of the Options dialog box. This let’s several developers share a
common set of templates on a network drive.

For developers or organizations desiring consistency in their own development styles or
standards, I highly recommend taking advantage of Query Analyzer templates.

06549359 ch04.F 11/21/02 9:22 AM Page 106

107Chapter 4 ✦ Using SQL Server’s Developer Tools

Viewing Query Execution Plans
Since the name of the tool is Query Analyzer, one of the most significant features is the ability
to graphically view Query Execution Plans (Figure 4-14).

Figure 4-14: Query Analyzer’s ability to graphically display the execution plan of a query
is perhaps its most useful feature.

What makes the Query Execution Plans even more important is that SQL is a descriptive lan-
guage and does not tell the Query Optimizer exactly how to go get the data but only which
data to retrieve. While some performance tuning can be applied to the way the query is
stated, most of the tuning is accomplished by adjusting the indexes, which greatly affect how
the Query Optimizer can compile the query. The Query Execution Plan reveals how SQL
Server will optimize the query, take advantage of indexes, pull data from other data sources,
and perform joins. Reading the Query Execution Plans and understanding their interaction
with the database schema and indexes is both a science and an art.

Chapter 28, “Advanced Performance,” includes a full discussion on reading the Query
Execution Plan and tuning the underlying indexes.

Query Analyzer can display either an estimated Query Execution Plan prior to executing the
query, or the actual plan after the query is run.

Cross-
Reference

06549359 ch04.F 11/21/02 9:22 AM Page 107

108 Part I ✦ Laying the Foundation

Summary
Enterprise Manager and Query Analyzer are the two primary DBA and developer interfaces
for SQL Server. Mastering the navigation of both of these tools is vital to success with SQL
Server.

With this understanding of the development interfaces as a foundation, the next part of the
book discusses building the database, manipulating data, and coding T-SQL procedures, func-
tions, and triggers.

✦ ✦ ✦

06549359 ch04.F 11/21/02 9:22 AM Page 108

Developing SQL
Server Databases

When I was in the Navy, I learned more from Master Chief Miller
than he or I probably realized at the time. One of his theories

was that an application was half program and half data. In my twenty
some odd years of developing databases, my experience agrees with
the Master Chief.

The data, both the schema and the data itself, is often more critical to
the success of a project than the application code. The primary fea-
tures of the application are designed at the data schema level. If the
data schema supports a feature then the code will readily bring the
feature to life. But, if the feature is not designed in the tables, then
the front-end forms can jump through as many hoops as can be
coded and it will never work right.

Part II is all about developing the database, thinking inside the box,
and moving the processing as close to the data as possible.

✦ ✦ ✦ ✦

In This Part

Chapter 5
Implementing the
Physical Database
Schema

Chapter 6
Retrieving Data with
Select

Chapter 7
Merging Data Using
Relational Algebra

Chapter 8
Searching Full-Text
Indexes

Chapter 9
Creating Views

Chapter 10
Modifying Data

Chapter 11
Transactional Integrity

Chapter 12
Programming with
Transact-SQL

Chapter 13
Developing Stored
Procedures

Chapter 14
Building User-Defined
Functions

Chapter 15
Implementing Triggers

Chapter 16
Advanced Server-Side
Programming

✦ ✦ ✦ ✦

P A R T

IIII

07549359 PP02.F 11/21/02 9:22 AM Page 109

07549359 PP02.F 11/21/02 9:22 AM Page 110

Implementing the
Physical Database
Schema

Database performance begins with the design of the physical
database schema. This chapter could have been called,

“Advanced Performance - Step 1.”

The logical database schema, discussed in Chapter 2, “Modeling the
Logical Database Schema,” is a purely academic exercise designed to
ensure the business requirements are understood. A logical design
has never stored nor served up any data. In contrast, the physical
database schema is an actual data store, that must consider not only
data integrity and the user requirements, but also performance,
agility, query paths, and maintainability as the database is imple-
mented within the nitty-gritty syntax of the particular database
platform.

Every project team develops the physical database schema drawing
from these two disciplines (logical data modeling and physical
schema design) in one of the following possible combinations:

✦ A logical database schema is designed and then implemented
without the benefit of physical schema development.

This plan is a sure way to develop a slow and unweildy
database schema. The application code will be frustrating to
write and the code will not be able to overcome the perfor-
mance limitations of the design.

✦ A logical database schema is developed to ensure the business
requirements are understood. Based on the logical design, the
database development team develops a physical database
schema. This method can result in a fast, usable schema.

Developing the schema in two stages is a good plan if the
development team is large enough and one team is designing
and collecting the business requirements and a subsequent
team is developing the physical database schema. An area of
caution is to be sure that having a completed logical database
schema does not squelch the team’s brainstorming as the
physical database schema is designed.

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Designing a high-
performance physical
database schema

Creating the database
files

Creating the tables

Creating the primary
and foreign keys

Creating the user data
columns

Creating clustered and
non-clustered indexes

Documenting the
database schema

✦ ✦ ✦ ✦

08549359 ch05.F 11/21/02 9:22 AM Page 111

112 Part II ✦ Developing SQL Server Databases

✦ The third combination of logical and physical design methodologies combines the two
into a single development step as the database development team develops a physical
database schema directly from the business requirements.

This method can work well providing that the team fully understands both logical
database modeling, physical database modeling, and advanced query design.

The key task in designing a physical database schema is brainstorming multiple possible
designs that each meet the user requirements and ensure data integrity. Each design is
evaluated based on its simplicity, performance of possible query paths, flexibility, and
maintainability.

This chapter discusses designing the physical database schema and then focuses on the
data-definition language commands create, alter, and drop. These three commands are
used to build the physical database schema.

The actual implementation of the physical design involves these six components:

✦ Creating the database files.

✦ Creating the tables.

✦ Creating the primary and foreign keys.

✦ Creating the data columns.

✦ Adding data-integrity constraints.

✦ Creating indexes.

Translating the logical database schema into a physical database schema may involve the fol-
lowing changes:

✦ Converting complex logical designs into simpler, more agile table structures.

✦ Converting composite primary keys to computer-generated single-column primary
keys.

✦ Converting the business rules to constraints.

✦ Converting logical many-to-many relationships to two one-to-many relationships with a
junction table.

Designing the Physical Database Schema
When designing the physical design, the design team should begin with a clean logical design
and/or well-understood and documented business rules, and then brainstorm until a simple,
flexible design emerges that performs great.

The Designing for Simplicity and Agility
The great truths in life are simple. And the same is true of great database designs. To quote
Albert Einstein, “Things should be made as simple as possible — but no simpler.”

Complexity
Complexity tends to require additional complexity until it grows into an unwieldy mess.
Complex designs also tend to handle data as a series of exceptions, which limits the flexibility
and usefulness of those designs in the future.

08549359 ch05.F 11/21/02 9:22 AM Page 112

113Chapter 5 ✦ Implementing the Physical Database Schema

Tax codes are a perfect example of a system that handles every question as a complex series
of exceptions. We all know the additional frustration and cost of a system filled with unneces-
sarily excessive complexity.

Simplicity
The goal is to invent a flexible design that handles every case with a single simple method.
This type of design dramatically improves nearly every other aspect of the database includ-
ing the development cost. Because the design is simple, the data integrity constraints are
more easily understood, implemented, and evaluated.

A simple design shows its agility as the business requirements evolve. A single method
design will likely handle a new requirement with a slight change in the look-up data or a sin-
gle modification to the formula. A complex, by-exception, design will require a new set of
exception tables added to the database and/or a significant amount of new code.

I can’t overemphasize the benefit of the database development team brainstorming the
physical database structure. The goal of a simple, elegant, powerful design can be difficult to
achieve without numerous refinements to the design.

As an example of complexity versus simplicity, a complex manufacturing material specifica-
tion design might have a table for each type of material. As new material types were devel-
oped the design would require additional tables. Changes to how a material is specified
would necessitate altering the table structure and the application code. The front-end appli-
cation would have to examine different tables depending on the material, and maybe even the
material version. Such a design is more expensive to develop and maintain, and less agile for
the business.

On the other hand, a simple design creates a single method to describe any material regard-
less of its type or changes to how the materials are being specified. The cost of developing
the application is a fraction of the complex method. The business can alter the way it speci-
fies materials instantly.

The Material Specification database on the book’s CD includes a material specification
design populated with sample computer hardware data.

Simplicity and Normalization
Simplicity doesn’t mean violating data integrity. The forms of normalization are as basic to
database design as grammar is to writing. Good writing doesn’t have to break the rules of
grammar. In a manner of thinking, the primary principle of Strunk and White’s The Elements of
Style (be concise) is as fundamental to database design as it is to writing.

Refining the Data Patterns
The key to simplicity is refining the entity definition with lots of team brainstorming so that
each entity does more work — rearranging the data patterns until an elegant and simple pat-
tern emerges. This is where a broad repertoire of database experience aids the design process.

Often the solution is to view the data from multiple angles, finding the commonality between
them. Users are too close to the data and they seldom correctly identify the true entities.
What a user might see as multiple entities, a database design team might model as a single
entity with dynamic roles.

On the
CD-ROM

08549359 ch05.F 11/21/02 9:22 AM Page 113

114 Part II ✦ Developing SQL Server Databases

Combining this quest for simplicity with some dynamic/relational design methods can yield
normalized databases with higher data integrity, more flexibility/agility, and dramatically
fewer tables.

Designing for Performance
A normalized logical database design without the benefit of physical database schema opti-
mization will perform poorly, because the logical design alone doesn’t consider performance.
Issues like lock contention, composite keys, excessive joins for common queries, and table
structures that are difficult to update are just some of the problems a logical design might
bring to the database.

The key to designing a physical schema that performs well is to approach the database
design from the query point of view and to identify areas of the schema that require overly
complex or clumsy queries. As the team brainstorms multiple possible designs, it’s critical
that the team is able to see how queries could be built for each design.

The physical database schema is the foundation for the queries. Building a database without
planning for query performance is like building a foundation for a home without any idea of
the shape of the home.

Designing for performance is greatly influenced by the simplicity or complexity of the design.
Each unnecessary complexity requires additional code, extra joins, and breeds even more
complexity.

One particular decision regarding performance concerns the primary keys. Logical database
designs tend to create composite meaningful primary keys. The physical schema benefits
from redesigning these as single-column surrogate (computer-generated) keys. The section
on creating primary keys later in this chapter discusses this in more detail.

Designing for Security
Well-designed databases tend to split data vertically into several normalized tables.
Unfortunately, clients are prone to feeling possessive of their data on a row-by-row horizontal
basis. For example, a database might put all materials in a material table, but the various
department heads want exclusive rights to the materials in their own departments.

SQL Server security takes place on a vertical basis, by tables or columns. While replication
can publish data on a view basis, that’s a messy option. Views can provide row-level security,
but that option will either be complex and slow or hard-coded and troublesome to maintain.
If the requirement is to provide row-level security, I recommend building the security into
stored procedures or triggers.

The logical design does not deal with data security, but the physical design must include the
security requirements, which may affect the table design, the coding method, or both.

Designing for Maintainability
Maintenance over the life of the application will cost more than the initial development.
Therefore, during the initial development process you should consider as a primary objective

08549359 ch05.F 11/21/02 9:22 AM Page 114

115Chapter 5 ✦ Implementing the Physical Database Schema

making it as easy as possible to maintain the physical design, code, and data. The following
techniques may reduce the cost of database maintenance:

✦ Use a consistent naming convention.

✦ Avoid data structures that are overly complex, as well as unwieldy data structures,
when a simpler data structures will suffice.

✦ Develop with scripts instead of Enterprise Manager.

✦ Avoid non-portable non-ANSI T-SQL extensions.

✦ Enforce the data integrity constraints from the beginning. Polluted data is a bear to
clean up after a few years of loose data integrity rules.

✦ Develop the core feature first, and once that’s working then add the bells and whistles.

✦ Document not only how the procedure works, but also why it works.

Responsible Denormalization
Interestingly, the Microsoft Word spell checker suggests replacing “denormalization” with
“demoralization.” Within an OLTP database, I couldn’t agree more.

Denormalization is the technique of duplicating data within the data to make it easier to
retrieve the data. It’s purposefully breaking the normal forms described in Chapter 2,
“Modeling the Logical Database Schema.”

For some examples of denormalizing a data structure, including the customer name in an
[Order] table would allow retrieving the customer name when querying an order without join-
ing to the Customer table. Or, including the CustomerID in a ShipDetail table would allow join-
ing directly from the ShipDetail table to the Customer table while bypassing the OrderDetail
and [Order] tables. Both of these examples violate the normalization because the attributes
don’t depend on the primary key.

Some developers regularly denormalize portions of the database in an attempt to improve
performance. While it can reduce the number of joins required for a query, such a technique
can slow down an OLTP database overall because additional triggers must keep the dupli-
cated data in sync and the data integrity checks become more complex.

The reason for normalization is to ensure data consistency as data is entered. The recommen-
dation to denormalize a portion of the database therefore depends on the purpose of that
data within the database:

✦ If the data is being used in an OLTP manner — that is, the data is original and data
integrity is a concern. Never denormalize original data.

✦ Denormalize aggregate data, such as account balances, or inventory on-hand quantities
within OLTP databases for performance even though such data could be calculated
from the inventory transaction table or the account transaction ledge table.

✦ If the data is not original and is primarily there for OLAP or reporting purposes, data
consistency is not the primary concern. For performance, denormalization is a wise
move.

08549359 ch05.F 11/21/02 9:22 AM Page 115

116 Part II ✦ Developing SQL Server Databases

The architecture of the databases and which databases or tables are being used for which
purpose is the driving factor in any decision to denormalize a part of the database.

If the database requires both OLTP and OLAP, the best solution course might just be to create
a few tables that duplicate data for their own distinct purposes. The OLTP side might need its
own tables to maintain the data. But the reporting side might need that same data in a single,
wide, fast table from which it can retrieve data with any joins or locking concerns. The trick is
to correctly populate the denormalized data in a timely manner.

As part of one project I worked on, several analysts entered and massaged data to produce a
database that was published quarterly. The published database was static for a quarter and
used only for searches — a perfect example of a project that includes both OLTP and OLAP
requirements. As a way to improve search performance, a denormalized database was cre-
ated expressly for reporting purposes. A procedure ran for several hours to de-normalize all
the data and populated the OLAP database. Both sides of the equation were satisfied.

Indexed views are basically denormalized clustered indexes. Chapter 30, “Advanced
Scalability,” discusses setting up an indexed view. Chapter 31, “Analysis Services,” includes
advice on creating a de-normalized reporting database and data warehouse.

Creating Databases
The database is the physical container for all database schema, data, and all the server-side
programming. SQL Server’s database is a single logical unit, even though it may exist in sev-
eral files.

Database creation is one of those areas in which SQL Server can run fine with little adminis-
trative work, but you may decide instead to tune the database files with more sophisticated
techniques.

Creating a database using the default parameters is very simple. The following Data Definition
Language (DDL) command is taken from the Cape Hatteras Adventures sample database:

CREATE DATABASE CHA2

The create command will create a data file with the name provided and a .mdf file exten-
sion, as well as a transaction log with a .ldf extension.

Of course, more parameters and options exist than the previous basic create command sug-
gests. By default, the database is created as follows:

✦ Default collation: Server collation

✦ Initial size: 1MB

✦ Location: Both database and transaction log file in the same default directory

While these defaults might be acceptable for a sample or development database, they are
inadequate for a production database. Better alternatives will be explained as the create
database command is covered.

Using Enterprise Manager, creating a new database requires only that the database name be
entered in the new database form, as shown in Figure 5-1. You open the form by right-clicking
the database node under a server and selecting New Database.

Cross-
Reference

08549359 ch05.F 11/21/02 9:22 AM Page 116

117Chapter 5 ✦ Implementing the Physical Database Schema

Figure 5-1: The simplest way to create a new database
is by entering the database name in Enterprise
Manager’s new database form and clicking OK.

Database-File Concepts
A database consists of two files (or two sets of files): the data file and the transaction log. The
data file contains all system and user tables, indexes, views, stored procedures, user-defined
functions, triggers, and security permissions. The write-ahead transaction log is central to
SQL Server’s design. All updates to the data file are first written and verified in the transac-
tion log ensuring that all data updates are written to two places.

Never, ever store the transaction log on the same disk subsystem as the data file. For the
sake of the transactional-integrity ACID properties and the recoverability of the database, it’s
critical that a failing disk subsystem not be able to take out both the data file and the trans-
action file.

The transaction log contains not only user writes but also system writes such as index writes,
page splits, table reorganizations, and so on. After one intensive update test, I inspected the
log using Lumigent’s Log Explorer and was surprised to find that about 80 percent of all
entries represented system activities, not user updates. Because the transaction file contains
not only the current information but also all updates to the data file, it has a tendency to
grow and grow.

Administering the transaction log involves backing up and truncating it as part of the recov-
ery plan, discussed in Chapter 26, “Recovery Planning.” How SQL Server uses the transaction
log within transactions is covered in Chapter 11, “Transactional Integrity.”

Cross-
Reference

08549359 ch05.F 11/21/02 9:22 AM Page 117

118 Part II ✦ Developing SQL Server Databases

Configuring File Growth
Prior to SQL Server version 7, the data files required manual size adjustment to handle addi-
tional data. Fortunately, SQL Server today can automatically grow thanks to the following
options (see Figure 5-2):

✦ Automatically grow file (auto-grow) — As the database begins to hold more data, the file
size must grow. If auto-grow is not enabled, an observant DBA will have to manually
adjust the size. If auto-grow is enabled, SQL Server automatically adjusts the size
according to the following growth parameters:

• File growth in megabytes — When the data file needs to grow, this option will add
the specified number of megabytes to the file. Growing by a fixed size is a good
option for larger data files. Once file growth is predictable, setting this option to a
fixed number equal to the amount of growth per week is probably a sound plan.

• File growth by percent — When the data file needs to grow, this option will expand
it by the percent specified. Growing by percent is the best option for smaller
databases. With very large files, this option may add too much space in one oper-
ation and hurt performance while the data file is being resized. For example,
adding 10 percent to a 5GB data file will add 500MB; writing 500MB could take a
while.

✦ Maximum file size — Setting a maximum size can prevent the data file or transaction log
file from filling the entire disk subsystem, which would cause trouble for the operating
system.

Figure 5-2: With Enterprise Manager’s New Database
form, NewDB is configured for automatic file growth
and a maximum size of 2GB.

08549359 ch05.F 11/21/02 9:22 AM Page 118

119Chapter 5 ✦ Implementing the Physical Database Schema

Automatic file growth can be specified in code by adding the file options to the create
database DDL command. The file sizes can be specified in kilobytes (KB), megabytes (MB),
gigabytes (GB), or terabytes (TB). Megabytes is the default. The file growth can be set to a
size or a percent. The following code creates the NewDB database with an initial data-file size
of 10MB, a maximum size of 2GB, and a file growth of 10MB. The Transaction Log file is ini-
tially 5MB with a maximum size of 1GB and a growth of 10 percent:

CREATE DATABASE NewDB
ON
PRIMARY
(NAME = NewDB,
FILENAME = ‘c:\SQLData\NewDB.mdf’,
SIZE = 10MB,
MAXSIZE = 2Gb,
FILEGROWTH = 20)

LOG ON
(NAME = NewDBLog,
FILENAME = ‘d:\SQLLog\NewDBLog.ldf’,
SIZE = 5MB,
MAXSIZE = 1Gb,
FILEGROWTH = 10%)

If auto-grow is not enabled then the files will require manual adjustment if they are to handle
additional data. The file size can be adjusted in Enterprise Manager by editing it in the
database properties form.

The file sizes and growth options can be adjusted in code with the alter database DDL
command and the modify file option. The following code sets NewDB’s data file to manual
growth and sets the size to 25MB:

ALTER DATABASE NewDB
MODIFY FILE
(Name = NewDB,
SIZE = 25MB,
MAXSIZE = 2Gb,
FILEGROWTH = 0)

Using Multiple Files
Both the data file and the transaction log can be stored on multiple files for improved perfor-
mance and to allow for growth. Any additional, or secondary, data files have a .ndf file exten-
sion by default. If the database uses multiple data files, then the first, or primary, file will
contain the system tables.

While it does not enable control over the location of tables or indexes, this technique does
reduce the I/O load on each disk subsystem. SQL Server attempts to balance the I/O load by
splitting the inserts among the multiple files according to the free space available in each file.
As SQL Server balances the load, rows for a single table may be split among multiple loca-
tions. If the database is configured for automatic growth, all of the files will fill up before SQL
Server increases the size of the files.

08549359 ch05.F 11/21/02 9:22 AM Page 119

120 Part II ✦ Developing SQL Server Databases

Creating a Database with Multiple Files
To create a database with multiple files using Enterprise Manager, add the file name to the file
grid in either the Data Files tab or the Transaction Log tab in the Database Properties dialog
box (Figure 5-3).

Figure 5-3: Creating a database with multiple files
using Enterprise Manager.

To create a database with multiple data files from code, add the file locations to the create
database DDL command using the on option:

CREATE DATABASE NewDB
ON
PRIMARY
(NAME = NewDB,
FILENAME = ‘e:\SQLData\NewDB.mdf’),

(NAME = NewDB2,
FILENAME = ‘f:\SQLData\NewDB2.ndf’)

LOG ON
(NAME = NewDBLog,
FILENAME = ‘g:\SQLLog\NewDBLog.ldf’),

(NAME = NewDBLog2,
FILENAME = ‘h:\SQLLog\NewDBLog2.ldf’)

Result:

The CREATE DATABASE process is allocating
0.63 MB on disk ‘NewDB’.

The CREATE DATABASE process is allocating
1.00 MB on disk ‘NewDB2’.

08549359 ch05.F 11/21/02 9:22 AM Page 120

121Chapter 5 ✦ Implementing the Physical Database Schema

The CREATE DATABASE process is allocating
1.00 MB on disk ‘NewDBLog’.

The CREATE DATABASE process is allocating
1.00 MB on disk ‘NewDBLog2’.

Modifying the Files of an Existing Database
The number of files for an existing database may be easily modified. If the data is filling the
drive, another data file can be added to the database by adding it to the files grid. Add the
new file name and location to the database properties file grid in the same way that the files
were initially created.

I highly recommend spreading the data file over multiple disk subsystems. It improves the
effective throughput without replacing the server and requires less administrative overhead
than filegroups (our next topic). Just remember to separate the data files from the
Transaction Log files.

In code, a file can be added to an existing database using the alter database DDL command
and the add file option. The file syntax is identical to that which was used to create a new
database. The following code adds a third file to the NewDB:

ALTER DATABASE NewDB
ADD FILE
(NAME = NewDB3,
FILENAME = ‘i:\SQLData\NewDB3.ndf’,
SIZE = 10MB,
MAXSIZE = 2Gb,
FILEGROWTH = 20)

Result:

Extending database by 10.00 MB on disk ‘NewDB3’.

If a file is no longer desired because the disk subsystem is being retired or designated for
another use, one of the data or Transaction Log files can be deleted by shrinking the file using
DBCC ShrinkFile and then deleting it in Enterprise Manager by selecting the file and press-
ing Delete.

Using T-SQL code, you can remove additional files with the alter database remove file
DDL command. The following code removes the data file you added earlier:

DBCC SHRINKFILE (NewDB3, EMPTYFILE)
ALTER DATABASE NewDB
REMOVE FILE NewDB3

Result:

DbId FileId CurrentSize MinimumSize UsedPages EstimatedPages
---- ------ ----------- ----------- --------- --------------
12 5 1280 1280 0 0

The file ‘NewDB3’ has been removed.

08549359 ch05.F 11/21/02 9:22 AM Page 121

122 Part II ✦ Developing SQL Server Databases

Planning Multiple Filegroups
A filegroup is an advanced means of organizing the database objects. By default the database
has a single filegroup — the primary filegroup. By configuring a database with multiple file-
groups, new objects (tables, indexes, and so on) can be created on a specified filegroup. This
technique can support two main strategies:

✦ Using multiple filegroups can increase performance by separating heavily used tables
or indexes onto different disk subsystems.

✦ Using multiple filegroups can organize the backup and recovery plan by containing
static data in one filegroup and more active data in another filegroup.

An easy way to determine the files and file sizes for all databases from code is to query
Master.sysaltfiles.

Creating a Database with Filegroups
To create a database with multiple filegroups in Enterprise Manager, create a database with
multiple files and enter or select the filegroup in the rightmost column. You can also create a
filegroup in the Filegroup tab (Figure 5-4), but to assign a file to a filegroup requires that you
use the Data File tab. The Filegroups tab is available from the Database Properties dialog box,
but only after the database is created.

Figure 5-4: You can create a new group with the
Filegroups tab, which also reports the status of
current filegroups.

Note

08549359 ch05.F 11/21/02 9:22 AM Page 122

123Chapter 5 ✦ Implementing the Physical Database Schema

Using T-SQL, you can specify filegroups for new databases using the Filegroups option. The
following code creates the NewDB database with two data filegroups:

CREATE DATABASE NewDB
ON
PRIMARY
(NAME = NewDB,
FILENAME = ‘d:\SQLData\NewDB.mdf’,
SIZE = 50MB,
MAXSIZE = 5Gb,
FILEGROWTH = 25MB),

FILEGROUP GroupTwo
(NAME = NewDBGroup2,
FILENAME = ‘e:\SQLData\NewDBTwo.ndf’,
SIZE = 50MB,
MAXSIZE = 5Gb,
FILEGROWTH = 25MB)

LOG ON
(NAME = NewDBLog,
FILENAME = ‘f:\SQLLog\NewDBLog.ndf’,
SIZE = 100MB,
MAXSIZE = 25Gb,
FILEGROWTH = 25MB)

Modifying Filegroups
You modify filegroups in the same way that you modify files. Using Enterprise Manager, you
can add new filegroups, add or remove files from a filegroup, and remove the filegroup if it is
empty. Emptying a file group is more difficult than shrinking a file. If there’s data in the file-
group, shrinking a file will only move the data to another file in the filegroup. The tables and
indexes must be dropped from the filegroup before the filegroup can be deleted.

With Query Analyzer and T-SQL code, you can add or drop filegroups using the alter
database add filegroup or alter database remove filegroup command, much as you
would use the add or remove file command.

Dropping a Database
You can remove a database from the server by selecting the database in Enterprise Manager
and selecting Delete Database from the right-click menu or Action menu.

In code, you can remove a database with the drop database command:

DROP DATABASE NewDB

Creating Tables
Like all relational databases, SQL Server is table-oriented. Once the database is created
the next step is to create the tables. A SQL Server database may include up to 2,147,483,647
objects, including tables, so there’s effectively no limit to the number of tables you can
create.

08549359 ch05.F 11/21/02 9:22 AM Page 123

124 Part II ✦ Developing SQL Server Databases

Designing Tables Within Enterprise Manager
If you prefer working in a graphical environment, Enterprise Manager provides two primary
work surfaces for creating tables, both of which you can use to create new tables or modify
existing ones:

✦ The Table Designer tool (Figure 5-5) lists the table columns vertically and places the
column properties below the column grid.

✦ The Database Designer tool (Figure 5-6) is more flexible than the Table Designer form,
can display the properties for all columns in a grid, and can display foreign-key con-
straints as well.

Chapter 4, “Using SQL Server’s Developer Tools,” explains how to launch and navigate these
tools.

Each of these tools presents a graphical design of the table. Once the design is complete,
Enterprise Manager generates a script that applies the changes to the database. Often the
script must save the data in a temporary table, drop several items, create the new tables, and
reinsert the data.

Figure 5-5: Developing the customer table in the CHA2 sample database using
Enterprise Manager’s Table Designer.

Cross-
Reference

08549359 ch05.F 11/21/02 9:22 AM Page 124

125Chapter 5 ✦ Implementing the Physical Database Schema

Table Designer displays only the column name, data type, and length, and allows nulls in the
column grid. While these are the main properties of a column, I personally find it annoying to
have to select each column in order to inspect or change the rest of the properties.

Each data type is explained in detail later in this chapter. For some data types the length
property sets the data length while other data types have fixed lengths. Nulls are discussed in
the “Creating User-Data Columns” section, later in this chapter.

Once an edit is made to the table design, the Save Change Script toolbar button is enabled.
This button displays the actual code that the Table Designer will run if the changes are saved.
In addition, the Save Change Script button can save the script to a .sql file so the change can
be repeated on another server.

Figure 5-6: Developing the Customer table in the CHA2 sample database using
Enterprise Manager’s Database Designer.

Working with SQL Scripts
If you are developing a database for mass deployment or repeatable installations, the benefits
of developing the database schema in scripts become obvious:

✦ The code is all in one location. Working with SQL scripts is similar to developing an
application with Visual Basic or C.

✦ The script may be stored in Microsoft SourceSafe or another change-management system.

08549359 ch05.F 11/21/02 9:22 AM Page 125

126 Part II ✦ Developing SQL Server Databases

✦ The most current version of the database may be installed without running change
scripts or restoring a backup.

✦ An installation is a fresh new database as opposed to a backup or detached database
that may have residual test data.

Working with scripts does have its drawbacks, however:

✦ The T-SQL commands may be unfamiliar and the size of the script may become
overwhelming.

✦ If the foreign-key constraints are embedded within the table, the table-creation order is
very picky. If the constraints are applied after the tables are created, the table-creation
order is no longer a problem; however, the foreign keys are distanced from the tables in
the script.

✦ Enterprise Manager database diagrams are not part of the script.

The T-SQL commands for working with objects, including tables, are create, alter, and drop.
The following create table DDL command from the Outer Banks Kite Store sample
database creates the ProductCategory table. The table name, including the name of the
owner (dbo), is provided, followed by the table’s columns. The final code directs SQL Server
to create the table on the primary filegroup:

CREATE TABLE dbo.ProductCategory (
ProductCategoryID UNIQUEIDENTIFIER NOT NULL
ROWGUIDCOL DEFAULT (NEWID()) PRIMARY KEY NONCLUSTERED,

ProductCategoryName NVARCHAR(50) NOT NULL,
ProductCategoryDescription NVARCHAR(100) NULL
)
ON [Primary]

For extensive examples of building databases and tables with scripts, you can reference this
book’s sample databases, which are all developed with scripts and are available on the
book’s CD-ROM.

Table and Column Names
SQL Server is very liberal with table and column names, allowing up to 128 Unicode charac-
ters and spaces, as well as both upper- and lowercase letters. Of course, taking advantage of
that freedom with wild abandon will be regretted later when typing the lengthy column
names and having to place brackets around columns with spaces. It’s more dangerous to dis-
cuss naming conventions with programmers than it is to discuss politics in a mixed crowd.
Nevertheless, you paid for this book so here’s my two cents.

There is a huge debate over whether table names should be singular or plural. I’ve seen well-
meaning developers ask reasonable questions in the newsgroups and receive a barrage of
attacks over their table names.

The plural camp believes that a table is a set of rows and as such it should be named with a
plural name. The reasoning often used by this camp is, “A table of customers is a set of cus-
tomers. Sets include multiple items so the table should be named the Customers table,
unless you only have one customer, in which case you don’t need a database.”

08549359 ch05.F 11/21/02 9:22 AM Page 126

127Chapter 5 ✦ Implementing the Physical Database Schema

From my informal polling, the singular-name view is held by about three-fourths of SQL
Server developers. These developers hold that the customer table is the customer set, rather
than the set of customers. A set of rows is not called a rows set, but a row set. And because
tables are generally discussed as singular items, saying, “the Customer table” sounds cleaner
than “the Customers table.”

Most (but not all) developers would agree that consistency is more important than the nam-
ing convention itself.

Consistency is the database developer’s holy grail. The purpose of naming conventions, con-
straints, referential integrity, relational design, and even column data type is to bring order
and consistency to the data we use to model reality. Whenever you’re faced with a database
decision, asking, “which choice is the most consistent?” is a good step toward a solution.

Personally, I think that developers choose their naming conventions as a way to distance
themselves from sloppy designs they’ve had to work with in their past. Having worked on
poorly designed flat-file databases with plural names, I prefer singular names.

If a database is large enough that it will encompass several logical groupings of tables, I prefix
a two- or three-letter abbreviation to the table name to make it easier to navigate the
database. I’ve seen a system of numbering modules and tables that I don’t recommend.
InvItem is a good name for the item table in the inventory module. 0207_Item is too cryptic.

Another issue involving differences in naming is the use of underscores to indicate words
within the name. For example, some IT shops insist that the order-detail table be named
ORDER_DETAIL. Personally, I avoid underscores except in many-to-many resolution tables.
Studies have shown that the use of mixed case, such as in the name OrderDetail, is easier to
read than all lower- or all uppercase words. However, some databases do not permit lower-
case letters in names.

Here are the database-naming conventions I use when developing databases:

✦ Use singular table names with no numbers, and a module prefix if useful.

✦ For many-to-many resolution tables use table_mm_table.

✦ Set all names in MixedCase with no underscores or spaces.

✦ For the primary key, use the table name + ID. For example, the primary key for the
Customer table is CustomerID.

✦ Give foreign keys the same name as their primary key, unless the foreign key enforces a
reflexive/recursive relationship such as MotherID referring back to PersonID in the
Family sample database, or the secondary table has multiple foreign keys to the same
primary key, such as the many-to-many reflexive relationship in the Material sample
database (BillofMaterials.MaterialID to Material.MaterialID and
BillofMaterials.SourceMaterialID to Material.MaterialID).

✦ Avoid abbreviation.

✦ Use consistent table and column names across all databases. For example, always
LastName followed by FirstName.

08549359 ch05.F 11/21/02 9:22 AM Page 127

128 Part II ✦ Developing SQL Server Databases

Filegroups
Apart from the columns, the only information you normally supply when creating a table is
the name. However, you can create the table on a specific filegroup if the database has multi-
ple filegroups.

The OBX Kites database uses two filegroups for data-organization purposes. All data that are
modified on a regular basis go into the primary filegroup. This filegroup is backed up fre-
quently. Data that are rarely modified (such as the order priority look-up codes) go into the
static filegroup:

CREATE TABLE OrderPriority (
OrderPriorityID UNIQUEIDENTIFIER NOT NULL
ROWGUIDCOL DEFAULT (NEWID()) PRIMARY KEY NONCLUSTERED,

OrderPriorityName NVARCHAR (15) NOT NULL,
OrderPriorityCode NVARCHAR (15) NOT NULL,
Priority INT NOT NULL
)
ON [Static]

Creating Keys
The primary and foreign keys are the links that bind the tables into a working relational
database. I treat these columns as a domain separate from the user’s data column. The design
of these keys has a critical effect on the performance and usability of the physical database.

The database schema must transform from a theoretical logical design into a practical physi-
cal design, and the structure of the primary and foreign keys is often the crux of the redesign.
Keys are very difficult to modify once the database is in production. Getting the primary keys
right during the development phase is a battle worth fighting.

Primary Keys
The relational database depends on the primary key — the cornerstone of the physical
database schema. A physical-layer primary key has only two purposes:

✦ To uniquely identify the row

✦ To serve as a useful object for a foreign key

With these two purposes in mind, these are my rules for primary keys at the physical layer:

✦ The primary key should be meaningless to users. If a user sees the raw data of a many-
to-many junction table and complains that it’s useless, that’s one clue that the primary
keys are well designed.

✦ Primary keys should be single columns for fast joins and where clauses.

Two reasons are commonly given for a composite primary key and both are wrong. The
first reason is that some piece of meaningful data must be part of the primary key.
Adding meaning to a primary key is a sure way to invite humans to foul the data.

The second justification given for building a composite primary key is that it enables
the use of two foreign keys in a many-to-many junction table as the primary key. I’m

08549359 ch05.F 11/21/02 9:22 AM Page 128

129Chapter 5 ✦ Implementing the Physical Database Schema

opposed to this practice. Composite primary keys make vicious foreign keys. As the
junction table becomes the primary key to another secondary table, and so on, the bot-
tom table requires several columns in the primary keys.

I was asked to look at a database a client had purchased from a vendor, which was per-
forming unusually slowly. Besides some major indexing errors, I found secondary
tables with seven columns in the primary key! The SQL statements were over a page
long, and included horrendous joins on seven conditions. Avoiding such queries is the
reason for the primary key’s second purpose.

✦ Primary keys should never need updating. If a primary key in fact has no purpose other
than to uniquely identify the row, then there’s no reason to ever change the value. An
update to a primary key is a sure clue that the rule that the primary key should be
meaningless is being violated. An exception to this rule is that data often needs mas-
saging during data conversions or multiple-database mergers.

✦ Primary keys should not contain data that dynamically change, such as a timestamp
column, a date-created column, or a date-updated column.

✦ Primary keys should be computer-generated. If a human manages the creation of the
primary key, it will soon serve a purpose other than simply uniquely identifying the
row. Once that line is crossed the human will want to modify the primary key, and the
system used to link rows and manage relationships will be in the hands of people who
don’t understand database design.

Natural Primary Keys
Every week or so, someone in the SQL Yahoo Groups (where I often hang out) posts a mes-
sage saying, “I have a table with duplicate primary keys, how can I clean it up?” The root
cause of this problem is that someone used a natural, or reality-based, value for the primary
key. Probably what happened is that the database began with the primary key constraint that
was enforced, but one day the constraint objected to new data so it was removed.

There are values in reality that seem to uniquely identify a row, such as national identification
numbers, vehicle-identification numbers, and ID-badge numbers. Logical database schemas
tend to use these natural primary keys, although none of these natural keys are foolproof.
Given enough time and human involvement, each of these systems will fail. U.S. Social
Security numbers are not unique. However, they are excellent data columns, they should
obviously be indexed and used for searches in the user interface, and they may be candidates
for a unique constraint. But even though a Social Security number may look like a natural pri-
mary key, don’t use it as such. Let the user think it’s the primary column for finding and nam-
ing a row, but don’t make it an actual primary key.

If you must use a natural primary key, be sure to enable cascading updates on every foreign
key that refers to a natural primary key so that primary key modifications will not break refer-
ential integrity.

SQL Server Primary-Key Constraints
SQL Server implements primary keys and foreign keys as constraints. The purpose of a con-
straint is to ensure that new data meets certain criteria, or to block the data-modification
operation.

A primary-key constraint is effectively a combination of a unique constraint (not a null con-
straint) and either a clustered or non-clustered unique index.

08549359 ch05.F 11/21/02 9:22 AM Page 129

130 Part II ✦ Developing SQL Server Databases

Primary keys should be meaningless, single-column, computer-generated, non-editable, and
protected from users.

Divide each table into two discreet logical parts. The first part should contain the keys and
belong to you, the database developer. It’s the part of the database that links the rows and
keeps the relationships in line. It is the domain of the database developer and DBA. The sec-
ond part should consist of the columns containing user data. Users should be free to view
and manipulate those data. But if users think that they need to see or edit the keys, the pro-
ject is in big trouble. Defending the keys from the users is one of the primary goals of a suc-
cessful database developer.

Creating Primary Keys
Setting a column, or columns, as the primary key in Enterprise Manager is as simple as select-
ing the column and clicking the primary-key toolbar button, as previously shown in Figures
5-5 and 5-6. To build a composite primary key, select all the participating columns and press
the primary-key button.

Enterprise Manager creates primary keys with clustered indexes. This is a poor index choice
and a waste of the one clustered index (described in the index section later in this chapter)
available for a table. If you use the graphic tools to create the physical schema, you should
manually reset the primary-key index to non-clustered.

In code, you set a column as the primary key in one of two ways:

✦ Declare the primary-key constraint in the create table statement. The following code
from the Cape Hatteras Adventures sample database uses this technique to create the
Guide table and set GuideID as the primary key with a non-clustered index:

CREATE TABLE dbo.Guide (
GuideID INT IDENTITY NOT NULL PRIMARY KEY NONCLUSTERED,
LastName VARCHAR(50) NOT NULL,
FirstName VARCHAR(50) NOT NULL,
Qualifications VARCHAR(2048) NULL,
DateOfBirth DATETIME NULL,
DateHire DATETIME NULL
)
ON [Primary]

✦ Declare the primary-key constraint after the table is created using an alter table
command. Assuming the primary key was not already set for the Guide table, the fol-
lowing DDL command would apply a primary-key constraint to the GuideID column:

ALTER TABLE dbo.Guide ADD CONSTRAINT
PK_Guide PRIMARY KEY NONCLUSTERED(GuideID)
ON [PRIMARY]

Two data types are excellent for primary keys: identity columns and unique identifier
columns. So you can experience sample databases with both methods, the Family, Cape
Hatteras Adventures, and Material Specification sample databases use identity columns and
the Outer Banks Kite Store sample database uses unique identifiers.

08549359 ch05.F 11/21/02 9:22 AM Page 130

131Chapter 5 ✦ Implementing the Physical Database Schema

Using Identity Columns
By far the most popular method for building primary keys involves using an identity column.
Like an auto-number column or sequence column in other databases, the identity column
generates consecutive integers as new rows are inserted into the database. Optionally, you
can specify the initial seed number and interval.

Identity columns offer two advantages:

✦ Integers are easier to manually recognize and edit than GUIDs.

✦ Integers are small and fast. My informal testing shows that integers are about 10 per-
cent faster than GUIDs. Other published tests show integers as 10 to 33 percent faster.
However, this performance difference only shows up when you’re looping through a
thousand selects. A single select statement, retrieving a few rows from a large table as
a single operation, should show no performance benefit.

An identity column used as a primary key with a clustered index (a common, but poor,
practice) may be extremely fast when retrieving a single row with a single user.
However, that configuration will cause lock-contention hot spots on the database and
the effect will be like pouring molasses into the hard drive. There’s more to perfor-
mance than column width.

Identity-column values are created by SQL Server as the row is being inserted. Attempting to
insert a value into an identity column or update an identity column will generate an error
unless set insert_identity is set to true.

Chapter 10, “Modifying Data,” includes a full discussion of the problems of modifying data in
tables with identity columns.

The following DDL code from the Cape Hatteras Adventures sample database creates a table
that uses an identity column for its primary key (abbreviated code listing):

CREATE TABLE dbo.Event (
EventID INT IDENTITY NOT NULL PRIMARY KEY NONCLUSTERED,
TourID INT NOT NULL FOREIGN KEY REFERENCES dbo.Tour,
EventCode VARCHAR(10) NOT NULL,
DateBegin DATETIME NULL,
Comment NVARCHAR(255)
)
ON [Primary]

Using GUIDs
The uniqueidentifier data type is SQL Server’s counterpart to COM’s global unique identi-
fier (GUID, pronounced GOO-id or gwid). It’s a 16-byte hexadecimal number that is essentially
unique among all tables, all databases, all servers, and all planets. While both identity
columns and GUIDs are unique, the scope of the uniqueness is greater with GUIDs than iden-
tity columns, so while it is grammatically incorrect, GUIDs are more unique than identity
columns. The uniqueness is due to the GUID generator using several factors, including the
computer NIC code, the MAC address, the CPU internal ID, and the current tick of the CPU
clock. The last 6 bytes are from the node number of the NIC card.

Cross-
Reference

08549359 ch05.F 11/21/02 9:22 AM Page 131

132 Part II ✦ Developing SQL Server Databases

GUIDs offer several advantages:

✦ A database using GUID primary keys can be replicated without a major overhaul.
Replication will add a unique identifier to every table without a uniqueidentifier
column. While this makes the column globally unique for replication purposes, the
application code will still be identifying rows by the integer primary key only, and
therefore merging replicated rows from other servers will cause an error because there
will be duplicate primary key values.

✦ The randomness of the GUID helps reduce database hot spots by spreading new rows
around the table or index and avoiding lock contention.

✦ GUIDs discourage users from working with or assigning meaning to the primary keys.

✦ GUIDs eliminate join errors caused by joining the wrong tables but returning data
regardless, because rows that should not match share the same integer values in key
columns.

✦ GUIDs are forever. The table based on a typical integer-based identity column will hold
only 2,147,483,648 rows. Of course, the data type could be set to bigint or numeric, but
that lessens the size benefit of using the identity column.

✦ Because the GUID can be generated by either the column default, the select-statement
expression, or code prior to the select statement, it’s significantly easier to program
with GUIDs than with identity columns. Using GUIDs circumvents the data-modification
problems of using identity columns.

The Product table in the Outer Bank Kite Store sample database uses a uniqueidentifier
as its primary key. In the following script, the ProductID column’s data type is set to
uniqueidentifier. Its nullability is set to false. The column’s rowguidcol property is set to
true, enabling replication to detect and use this column. The default is a newly generated
uniqueidentifier. It’s the primary key, and it’s indexed with a non-clustered unique index.

CREATE TABLE dbo.Product (
ProductID UNIQUEIDENTIFIER NOT NULL
ROWGUIDCOL DEFAULT (NEWID())
PRIMARY KEY NONCLUSTERED,

ProductCategoryID UNIQUEIDENTIFIER NOT NULL
FOREIGN KEY REFERENCES dbo.ProductCategory,

ProductCode CHAR(15) NOT NULL,
ProductName NVARCHAR(50) NOT NULL,
ProductDescription NVARCHAR(100) NULL,
ActiveDate DATETIME NOT NULL DEFAULT GETDATE(),
DiscountinueDate DATETIME NULL
)
ON [Static]

Creating Foreign Keys
A secondary table that relates to a primary table uses a foreign key to point to the primary
table’s primary key. Referential integrity (RI) refers to the fact that the references have
integrity, meaning that every foreign key points to a valid primary key. Referential integrity is
vital to the consistency (from the ACID database principles discussed in Chapter 11,
“Transactional Integrity”) of the database. The database must begin, and end, every transac-
tion in a consistent state. This consistency must extend to the foreign-key references.

08549359 ch05.F 11/21/02 9:22 AM Page 132

133Chapter 5 ✦ Implementing the Physical Database Schema

SQL Server tables may have up to 253 foreign-key constraints. The foreign key can reference
primary keys, unique constraints, or unique indexes of any table except a temporary table.

That referential integrity is an aspect of the primary key is a common misconception. It’s the
foreign key that is constrained to a valid primary-key value, so the constraint is an aspect of
the foreign key, not the primary key.

Declarative Referential Integrity
SQL Server’s Declarative Referential Integrity (DRI) can enforce referential integrity without
writing custom triggers or code. DRI is handled inside the SQL Server engine, which executes
significantly faster than custom RI writing in triggers.

SQL Server implements referential integrity with foreign-key constraints. You can establish a
foreign-key constraint in Enterprise Manager in two ways:

✦ Using the Database Diagrammer, select the primary-key column and drag it to the foreign-
key column. A Create Relationship dialog box very similar to the Foreign Key Table
Properties dialog box will appear. Figure 5-7 shows a diagram from the Cape Hatteras
Adventures sample database with completed relationships.

You can modify the foreign key in the Database Diagrammer by right-clicking the rela-
tionship line and selecting Properties from the pop-up menu. This opens the table
properties to the selected relationship.

Figure 5-7: You can create foreign keys relationships by dragging the primary key to the
foreign key in the Database Diagrammer.

08549359 ch05.F 11/21/02 9:22 AM Page 133

134 Part II ✦ Developing SQL Server Databases

✦ Using the Table Properties dialog box, available from the Table Designer or the
Database Diagrammer, you can use the Relationships tab to create or modify a DRI for-
eign key. The Relationships tab, shown in Figure 5-8, displays the relationship settings
for the currently selected foreign key. You can create other relationships using the New
button, or select them using the “Selected relationship” combo box. The relationship’s
tables and columns are then presented in the column grid.

The foreign key can either check or ignore existing and replicated data. The important
option for declarative referential integrity is the “Enforce relationship for INSERTS and
UPDATES” option. If this option is not checked the foreign key has no effect. If DRI is
enforced, cascading deletes and cascading updates (described later in this section) are
available.

Figure 5-8: Enterprise Manager’s table
properties — you can use the Relationships
tab to define and maintain foreign-key
constraints.

Within a T-SQL script, you can declare foreign-key constraints are declared by either includ-
ing the foreign-key constraint in the table-creation code or applying the constraint after the
table is created. After the column definition, the phrase foreign key references, followed
by the primary table, and optionally the column(s), creates the foreign key, as follows:

ForeignKeyColumn FOREIGN KEY REFERENCES PrimaryTable(PKID)

The following code from the CHA sample database creates the tour_mm_guide many-to-many
junction table. As a junction table, tour mm guide has two foreign-key constraints: one to
the Tour table, and one to the Guide table. For demonstration purposes, the TourID foreign
key specifies the primary-key column, but the GuideID foreign key simply points to the table
and uses the primary key by default.

CREATE TABLE dbo.Tour_mm_Guide (
TourGuideID INT

08549359 ch05.F 11/21/02 9:22 AM Page 134

135Chapter 5 ✦ Implementing the Physical Database Schema

IDENTITY
NOT NULL
PRIMARY KEY NONCLUSTERED,

TourID INT
NOT NULL
FOREIGN KEY REFERENCES dbo.Tour(TourID)
ON DELETE CASCADE,

GuideID INT
NOT NULL
FOREIGN KEY REFERENCES dbo.Guide
ON DELETE CASCADE,

QualDate DATETIME NOT NULL,
RevokeDate DATETIME NULL
)
ON [Primary]

Some database developers prefer to include foreign-key constraints in the table definition,
while others prefer to add them after the table is created. If the table already exists, you can
add the foreign-key constraint to the table using the alter table add constraint DDL
command, as shown here:

ALTER TABLE SecondaryTableName
ADD CONSTRAINT ConstraintName
FOREIGN KEY (ForeignKeyColumns)
REFERENCES dbo.PrimaryTable (PrimaryKeyColumnName)

The person table in the family database must use this method because it uses a reflexive rela-
tionship, also called a unary or self-join relationship. A foreign key can’t be created before the
primary key exists. Since a reflexive foreign key refers to the same table, that table must be
created prior to the foreign key.

This code, copied form the family_create.sql file, creates the Person table and then
establishes the MotherID and FatherID foreign keys, as shown here:

CREATE TABLE dbo.Person (
PersonID INT NOT NULL PRIMARY KEY NONCLUSTERED,
LastName VARCHAR(15) NOT NULL,
FirstName VARCHAR(15) NOT NULL,
SrJr VARCHAR(3) NULL,
MaidenName VARCHAR(15) NULL,
Gender CHAR(1) NOT NULL,
FatherID INT NULL,
MotherID INT NULL,
DateOfBirth DATETIME NULL,
DateOfDeath DATETIME NULL
)

go
ALTER TABLE dbo.Person
ADD CONSTRAINT FK_Person_Father
FOREIGN KEY(FatherID) REFERENCES dbo.Person (PersonID)

ALTER TABLE dbo.Person
ADD CONSTRAINT FK_Person_Mother
FOREIGN KEY(MotherID) REFERENCES dbo.Person (PersonID)

08549359 ch05.F 11/21/02 9:22 AM Page 135

136 Part II ✦ Developing SQL Server Databases

Optional Foreign Keys
An important distinction exists between optional foreign keys and mandatory foreign keys.
Some relationships require a foreign key, as with an OrderDetail row that requires a valid
order row. But other relationships don’t require a value. The data are valid with or without a
foreign key, as determined in the logical design.

In the physical layer, the difference is the nullability of the foreign-key column. If the foreign
key is mandatory, the column should not allow nulls. An optional foreign key allows nulls. A
relationship with complex optionality will require either a check constraint or a trigger to
fully implement the relationship.

Cascading Deletes
A complication created by referential integrity is that RI will prevent you from deleting a pri-
mary row being referred to by secondary rows until those secondary rows have been deleted.
If the primary row is deleted and the secondary rows’ foreign keys are still pointing to the
now-deleted primary keys, referential integrity is violated.

The solution to this problem is to cascade the delete operation from the primary row down
to the related secondary rows, effectively deleting the secondary rows before deleting the pri-
mary rows and maintaining referential integrity. You can do this in code from the client appli-
cation; however, SQL Server DRI gives you the option of performing the secondary-row delete
as a step within the primary-row delete. If cascading delete is enabled, deleting a primary row
also deletes all related secondary rows. For example, if the order-detail foreign-key constraint
that points to the order table has cascading delete enabled, deleting an order will also delete
that order’s order-detail rows.

Cascading deletes are also discussed in the “Deleting Data” section in Chapter 10,
“Modifying Data.”

Cascading deletes may be enabled within Enterprise Manager by selecting the cascade delete
option in the Relationship tab of the Database Diagrammer Properties dialog shown previ-
ously in Figure 5-8. Within T-SQL code, adding the on delete cascade option to the foreign-
key constraint enables the cascade operation. The following code, extracted from the
OBXKites sample database’s OrderDetail table, uses the cascading delete option on the
OrderID foreign-key constraint:

CREATE TABLE dbo.OrderDetail (
OrderDetailID UNIQUEIDENTIFIER
NOT NULL
ROWGUIDCOL
DEFAULT (NEWID())
PRIMARY KEY NONCLUSTERED,

OrderID UNIQUEIDENTIFIER
NOT NULL
FOREIGN KEY REFERENCES dbo.[Order]
ON DELETE CASCADE,

ProductID UNIQUEIDENTIFIER
NULL
FOREIGN KEY REFERENCES dbo.Product,

Cross-
Reference

08549359 ch05.F 11/21/02 9:22 AM Page 136

137Chapter 5 ✦ Implementing the Physical Database Schema

Chapter 16, “Advanced Server-Side Programming,” shows how to create triggers that handle
custom referential integrity and cascading deletes for non-standard data schemas or cross-
database referential integrity.

Generally, cascading deletes are a part of the physical schema, not the logical schema. To
determine if cascading deletes are appropriate to a foreign key, use these rules of thumb:

✦ If the secondary table’s data is meaningless apart from the primary table’s data, cas-
cading the delete is useful.

✦ If the secondary table’s data has meaning on its own, cascading the delete is dangerous.

✦ If the foreign key is optional, cascading the delete should never be applied.

Creating User-Data Columns
A user-data column stores user data. These columns typically fall into two categories:
columns users use to identify a person, place, thing, event, or action, and columns that fur-
ther describe the person, place, thing, event, or action.

SQL Server tables may have up to 1,024 columns, but well-designed relational-database tables
seldom have more than 25, and most have only a handful.

Data columns are created during table creation by listing the columns as parameters to the
create table command. The columns are listed within parentheses as column name, data
type, and any column attributes such as constraints, nullability, or default value:

CREATE TABLE TableName (
ColumnName DATATYPE Attributes,
ColumnName DATATYPE Attributes
)

Data columns can be added to existing tables using the alter table add column command:

ALTER TABLE TableName
ADD ColumnName DATATYPE Attributes

An existing column may be modified with the alter table alter column command:

ALTER TABLE TableName
ALTER COLUMN ColumnName
NEWDATATYPE Attributes

Column Data Types
The column’s data type serves two purposes:

✦ It enforces the first level of data integrity. Character won’t be accepted into a datetime
or numeric column. I have seen databases with every column set to nvarchar to ease
data entry. What a waste. The data type is a valuable data-validation tool that should
not be overlooked.

✦ It determines the amount of disk storage allocated to the column.

Cross-
Reference

08549359 ch05.F 11/21/02 9:22 AM Page 137

138 Part II ✦ Developing SQL Server Databases

Character Data Types
SQL Server supports several character data types, listed in Table 5-1.

Table 5-1: Character Data Types

Data Type Description Size in Bytes

char Fixed-length character data up to 8,000 Defined length * 1 byte
characters length using collation character set

nchar Unicode fixed-length character data Defined length * 2 bytes

varchar Variable-length character data up to 8,000 1 byte per character
length using collation character set

nvarchar Unicode variable-length character data up 2 bytes per character
to 8,000 length using collation character set

text Variable-length character data up to 1 byte per character
2,147,483,647 length

ntext Unicode variable-length character data up 2 bytes per character
to 1,073,741,823 length

sysname A Microsoft user-defined data type used for 2 bytes per character
table and column names that is the equivalent
of nvarchar(128)

Unicode data types are very useful for storing multilingual data. The cost, however, is the
doubled size. Some developers use nvarchar for all their character-based columns, while
others avoid it at all costs. I recommend using Unicode data if the database might use foreign
languages; otherwise use char, varchar, or text.

Numeric Data Types
SQL Server supports several numeric data types, listed in Table 5-2.

Table 5-2: Numeric Data Types

Data Type Description Size in Bytes

bit 1 or 0 1 bit

tinyint Integers from 0 to 255 1 byte

smallint Integers from -32,768 to 32,767 2 bytes

int Integers from -2,147,483,648 to 2,147,483,647 4 bytes

bigint Integers from -2^63 to 2 ^63-1 8 bytes

decimal or Fixed-precision numbers up to -10^38 + 1 Varies according to length
numeric

08549359 ch05.F 11/21/02 9:22 AM Page 138

139Chapter 5 ✦ Implementing the Physical Database Schema

Data Type Description Size in Bytes

money Numbers from -2^63 to 2 ^63, accuracy to 8 bytes
one ten-thousandths (.0001)

smallmoney Numbers from -214,748.3648 through 4 bytes
+214,748.3647, accuracy to ten thousandths (.0001)

float Floating-point numbers ranging from -1.79E + 308 4 or 8 bytes
through 1.79E + 308, depending on the bit precision

real Float with 24-bit precision 4 bytes

When working with monetary values, be very careful with the data type. Using float or
real data types for money will cause rounding errors. The data types money and small-
money are accurate to one hundredth of a U.S. penny. For some monetary values, the client
may request precision only to the penny, in which case decimal is the more appropriate
data type.

Date/Time Data Types
SQL Server stores both the date and the time in a single column using the datetime and
smalldatetime data types, listed in Table 5-3. The primary differences between the two are
accuracy and history. If the column is to hold only the date and will not contain historical
data from before the twentieth century, smalldatetime is appropriate. If time is included in
the requirement, the precision of smalldatetime is usually insufficient.

Table 5-3: Date/Time Data Types

Data Type Description Size in Bytes

datetime Date and time values from January 1, 1753, 8 bytes
through December 31, 9999, accurate to
three milliseconds

smalldatetime Date and time values from January 1, 1900, 4 bytes
through June 6, 2079, accurate to one minute

The Julian calendar took effect on January 1, 1753. Since SQL Server doesn’t want to decide
which nation’s or religion’s calendar system to use for data from before 1753, it avoids the
issue and simply won’t accept any dates prior to 1753. While this is normally not a problem,
some historical and genealogy databases require earlier dates. As a workaround, I recom-
mend creating a date column from a char data type and using a trigger or stored procedure
to verify the date’s formatting and validity upon insertion.

Some programmers (non-DBAs) choose character data types for date columns. This can
cause a horrid conversion mess. Use the IsDate() function to sort through the bad data.

Caution

08549359 ch05.F 11/21/02 9:22 AM Page 139

140 Part II ✦ Developing SQL Server Databases

Other Data Types
Other data types, listed in Table 5-4, fulfill the needs created by unique values, binary large
objects, and variant data.

Table 5-4: Other Data Types

Data Type Description Size in Bytes

rowversion, timestamp Database-wide unique random value 8 bytes
generated with every update

uniqueidentifier System-generated 16-byte value 16 bytes

binary Fixed-length data up to 8,000 bytes Defined length

varbinary Variable-length binary data up to 8,000 bytes Bytes used

image Variable-length binary data up to
2,147,483,647 1bytes Bytes used

sql_variant Can store any data type up to Depends on data
2,147,483,647 bytes type and length

Rowversion is the new name for the SQL Server timestamp data type. It’s good that
Microsoft is changing to rowversion because the ANSI SQL standard uses timestamp as a
datetime data type. Rowversion is not used for datetime data; it’s simply a column that’s
updated to a new value every time the row is updated. This is useful for detecting lost
updates, as discussed in Chapter 11, “Transactional Integrity.”

The uniqueidentifier is a significant data type and it serves well as a primary key, espe-
cially when the database might be replicated. Uniqueidentifiers are discussed in detail in
the “Creating Keys” section earlier in this chapter.

Calculated Columns
A calculated column is powerful in that it presents the results of a predefined expression the
way a view (a stored SQL select statement) does, but without the overhead of a view. Such a
column does not actually store any data; instead the data is calculated when queried.

Calculated columns also improve data integrity by performing the calculation at the table
level rather than trusting that each query developer will get the calculation correct. They
may even be indexed.

The syntax is the opposite of that of a column alias:

ColumnName as Expression

The OrderDetail table from the OBX Kites sample database includes a calculated column for
the extended price (abbreviated code listing):

CREATE TABLE dbo.OrderDetail (
...
Quantity NUMERIC(7,2) NOT NULL,
UnitPrice MONEY NOT NULL,
ExtendedPrice AS Quantity * UnitPrice,

...

08549359 ch05.F 11/21/02 9:22 AM Page 140

141Chapter 5 ✦ Implementing the Physical Database Schema

)
ON [Primary]

Go

Column Constraints and Defaults
The database is only as good as the quality of the data. A constraint is a high-speed data-
validation check or business-logic check performed at the database-engine level. Besides the
data type itself, SQL Server includes five types of constraints:

✦ Primary-key constraint: Ensures a unique non-null key.

✦ Foreign-key constraint: Ensures value points to a valid key.

✦ Nullability: Whether the column can accept a null value.

✦ Check constraint: Custom Boolean constraint.

✦ Unique constraint: Ensures a unique value.

SQL Server also includes the column option:

✦ Column Default: Supplies a value if none is specified in the insert statement.

The column default is referred to as a type of constraint on one page of SQL Server SQL
Server Books Online, but not listed in the constraints on another page. I call it a column
option because it does not constrain user-data entry, nor does it enforce a data-integrity rule.
However, it serves the column as a useful option.

Column Nullability
A null value is an unknown value; typically it means that the column has not yet had a user
entry.

Chapter 6, “Retrieving Data with Select,” explains how to define, detect, and handle nulls.

Whether or not a column will even accept a null value is referred to as the nullability of the
column and is configured by the null or not null column attribute.

New columns in SQL Server default to not null, meaning that they do not accept nulls.
However, this option is normally overridden by the connection property
ansi_null_dflt_on. The ANSI standard is to default to null, which accepts nulls, in table
columns that aren’t explicitly created with a not null option.

Because the default column nullability differs between ANSI SQL and SQL Server, it’s best to
avoid relying on the default behavior and explicitly declare null or not null when creating
tables.

The following code demonstrates the ANSI default nullability versus SQL Server’s nullability.
The first test uses the SQL Server default by setting the database ansi null option to false
and the ansi_null_dflt_off connection setting to on:

USE TempDB
EXEC sp_dboption ‘TempDB’, ANSI_NULL_DEFAULT, ‘false’
SET ANSI_NULL_DFLT_OFF ON

Cross-
Reference

08549359 ch05.F 11/21/02 9:22 AM Page 141

142 Part II ✦ Developing SQL Server Databases

The NullTest table is created without specifying the nullability:

CREATE TABLE NullTest(
PK INT IDENTITY,
One VARCHAR(50)
)

The following code attempts to insert a null:

INSERT NullTest(One)
VALUES (NULL)

Result:

Server: Msg 515, Level 16, State 2, Line 1
Cannot insert the value NULL into column ‘One’,
table ‘TempDB.dbo.NullTest’;
column does not allow nulls. INSERT fails.
The statement has been terminated.

Because the nullability was set to the SQL Server default when the table was created, the col-
umn does not accept null values. The second sample will rebuild the table with the ANSI SQL
nullability default:

EXEC sp_dboption ‘TempDB’, ANSI_NULL_DEFAULT, ‘true’
SET ANSI_NULL_DFLT_ON ON

DROP TABLE NullTest

CREATE TABLE NullTest(
PK INT IDENTITY,
One VARCHAR(50)
)

Attempting to insert a null:

INSERT NullTest(One)
VALUES (NULL)

Result:

(1 row(s) affected)

Unique Constraints
A unique constraint is similar to a unique index or a primary-key constraint. Its purpose is to
ensure that every value is a unique value. This option is likely to be used when a column has
meaning to a user and is perceived as unique, such as an SSN or ID number.

In Enterprise Manager, a unique constraint is applied in the Index tab of the Table Properties
dialog box in the same way that an index is created, except that the unique constraint is
selected instead of index.

In code, a unique constraint may be applied to a column by specifying unique after the col-
umn definition, as follows:

CREATE TABLE Employee (
EmployeeID INT PRIMARY KEY NONCLUSTERED,
EmployeeNumber CHAR(8) UNIQUE,
LastName NVARCHAR(35),

08549359 ch05.F 11/21/02 9:22 AM Page 142

143Chapter 5 ✦ Implementing the Physical Database Schema

FirstName NVARCHAR(35)
)

Insert Employee (EmployeeID, EmployeeNumber, LastName, FirstName)
Values(1, ‘1’, ‘Wilson’, ‘Bob’)

Insert Employee (EmployeeID, EmployeeNumber, LastName, FirstName)
Values(2, ‘1’, ‘Smith’, ‘Joe’)

Result:

Server: Msg 2627, Level 14, State 2, Line 1
Violation of UNIQUE KEY constraint ‘UQ__Employee__68487DD7’.
Cannot insert duplicate key in object ‘Employee’.
The statement has been terminated.

To add a unique constraint to an existing table, use the alter table DDL command:

ALTER TABLE Employee
ADD CONSTRAINT EmpNumUnique
UNIQUE (EmployeeNumber)

Check Constraints
The check constraint is a fast row-level integrity check. It’s basically a small formula that ulti-
mately must return a Boolean true or false. A check constraint may access any data local to
the current row. It can’t check other table values or perform look-ups. Scalar functions (cov-
ered in Chapter 6, “Retrieving Data with Select”) may be included in the check constraint.

A check constraint can contain a user-defined scalar function, covered in Chapter 14,
“Building User-Defined Functions,” and the function can perform a range of T-SQL code. As a
result, calling a user-defined scalar function within a check constraint opens up a world of
possibilities, including the possiblity for complex look-ups. However, complex business-rule
checks are more commonly performed within after triggers.

Check constraints are useful for ensuring the enforcement of general data-validation rules or
simple business rules, such as checking that the termination date is greater than or equal to
the hire date, and that the hire date is greater than the birthdate plus 18 years.

A check constraint is significantly faster than a table trigger. If the data-validation rule can
be performed by a check constraint, use the check constraint instead of a trigger.

The following code applies the constraint that the EmployeeNumber must be other than “1”:

Drop Table Employee

CREATE TABLE Employee (
EmployeeID INT PRIMARY KEY NONCLUSTERED,
EmployeeNumber CHAR(8) CHECK (EmployeeNumber <> ‘1’),
LastName NVARCHAR(35),
FirstName NVARCHAR(35)
)

Insert Employee (EmployeeID, EmployeeNumber, LastName, FirstName)
Values(2, ‘1’, ‘Smith’, ‘Joe’)

Cross-
Reference

08549359 ch05.F 11/21/02 9:22 AM Page 143

144 Part II ✦ Developing SQL Server Databases

Result:

Server: Msg 547, Level 16, State 1, Line 1
INSERT statement conflicted with COLUMN CHECK constraint
‘CK__Employee__Employ__5FB337D6’.
The conflict occurred in database ‘tempdb’,
table ‘Employee’, column ‘EmployeeNumber’.
The statement has been terminated.

Use the alter database command to add a check constraint to an existing table:

ALTER TABLE Employee
ADD CONSTRAINT NoHireSmith
CHECK (Lastname <> ‘SMITH’)

Default Option
The default is the value SQL Server will insert into the table if no value is supplied by the
insert DDL command. Defaults become more important when the column does not permit
nulls, because failing to specify a value when inserting into a non-nullable column without a
default will cause the insert to be rejected.

The default value may be one of the following:

✦ A valid static numeric or character value, such as 123, or ‘local’

✦ A scalar system function, such as GetDate(), or newID()

✦ A user-defined scalar function

✦ A null

The default value must a data type compatible with the column.

If the table is being created using Enterprise Manager, the default is easily specified as one of
the column properties.

From code, the default is added as one of the column options as the table is first created, or
later as an alter table add constraint DDL command.

The following truncated code sample is taken from the product table of the OBX Kite Store
sample database. The ActiveDate column’s default is set to the current date:

CREATE TABLE dbo.Product (
...
ActiveDate DATETIME NOT NULL DEFAULT GETDATE(),

...
)

The same default can be set after the table is created. The following code runs sp_help to
determine the existing default constraint name, drop the constraint, and then re-establish the
default constraint using alter table:

sp_help Product

Result (abbreviated):

constraint_type constraint_name
------------------------ ------------------
DEFAULT on column ActiveDate

DF__Product__ActiveD__7F60ED59

08549359 ch05.F 11/21/02 9:22 AM Page 144

145Chapter 5 ✦ Implementing the Physical Database Schema

The alter table command removes the existing default constraint:

ALTER TABLE Product
DROP CONSTRAINT DF__Product__ActiveD__7F60ED59

The add constraint command re-applies the default:

ALTER TABLE Product
ADD CONSTRAINT ActiveDefault
DEFAULT GetDate() FOR ActiveDate

Data Catalog
While SQL Server lacks a formal data-catalog feature, the user-defined data types can serve as
a substitute. A user-defined data type is basically a named object with the following addi-
tional features:

✦ Defined data type and length

✦ Defined nullability

✦ Predefined rules that may be bound to the user-defined data types

✦ Predefined user-defaults that may be bound to the user-defined data types

For highly normalized databases that don’t have the same basic data in different tables, the
data-catalog concept may seem to be irrelevant. However, a good data-type standard within
an IT shop is very useful. For example, if every database shares the same specs for a last-
name column, coding at all levels becomes easier and less error-prone. To create a data cata-
log of rules, defaults, and user-defined data types, and apply it to multiple databases, the best
plan would be to create a DataCatalog.sql script and then run that script in each database,
or place them within the Model database.

User-Defined Rules
A rule is similar to a check constraint, except it’s created independently and then bound to a
column. Once a rule is created it may be bound to multiple columns or user-defined data
types. The rule consists only of a name and a Boolean expression. The Boolean expression
can refer to data using the @ character followed by the name of a data column.

The following code demonstrates creating a rule that tests the birthday column and makes
sure that future births aren’t entered:

-- User Defined Rules
CREATE RULE BirthdateRule AS @Birthdate <= Getdate()

To apply the rule to a table column or user-defined data type, use the sp_bindrule stored
procedure. The first parameter is the name of the rule and the second parameter is the object
to which the rule is being bound. This code applies BirthdateRule to the BirthDate col-
umn in the person table:

EXEC sp_bindrule
@rulename = ‘BirthdateRule’,
@objname = ‘Person.Birthdate’

Rules are considered a backward-compatibility feature, are not recommended by Microsoft
and might not be supported in a future version of SQL Server. Check constraints are placed
directly on the column, and using them is considered better coding practice than using
Rules.

08549359 ch05.F 11/21/02 9:22 AM Page 145

146 Part II ✦ Developing SQL Server Databases

Within Enterprise Manager, rules are created and bound within the Rules node under each
database. However, most developers who use rules will want to create them in a reusable
script.

User-Defined Default
Defaults are easily created directly in the table definition, although, like rules, they exist pri-
marily for backward compatibility. However, the default object is a named value that may be
consistently applied across multiple tables. The defaults may be created and bound to
columns in Enterprise Manager in the Defaults node under each database.

The following code creates a user-defined default of the current date. The default is then
bound to the Hiredate column:

CREATE DEFAULT HireDefault AS Getdate()
go
sp_bindefault ‘HireDefault’, ‘Contact.Hiredate’

User-Defined Data Type
A user-defined data type assigns a name to a system data type and nullability setting. The
named user-defined data type may then be used like a system data type within any table
definition.

The SysName data type is actually a Microsoft-supplied user-defined data type that should be
used whenever you are storing system names (table names, column names) in columns.

Using Enterprise Manager, user-defined data types may be created under the User-Defined
Data Type node under each database. User-defined data types may be defined with the
sp_addtype system stored procedure by passing the name, data type, and nullability as
parameters. The following example creates a user-defined data type, adds a default and a
rule, and then binds that rule to a table:

EXEC sp_addtype
@typename = Birthdate,
@phystype = SmallDateTime,
@nulltype = ‘NOT NULL’

go
EXEC sp_bindefault
@defname = ‘BirthdateDefault’,
@objname = ‘Birthdate’,
@futureonly = ‘futureonly’

EXEC sp_bindrule
@rulename = ‘BirthdateRule’,
@objname = ‘Person.Birthdate’

Creating Indexes
The Aesop’s Fable sample database, on the book’s CD, contains 25 very short stories. The
database is small enough that if you read through the stories, you can find any story within a
few seconds. SQL Server Books-Online (BOL) is a different matter. I have several BOL articles
in my Favorites tab, but my primary means of finding an article is the index.

The same is true of databases. Scanning the raw data is fine for small tables, but as the data
grow, you need indexes to navigate quickly.

08549359 ch05.F 11/21/02 9:22 AM Page 146

147Chapter 5 ✦ Implementing the Physical Database Schema

Indexing is one area where I really appreciate SQL Server. If you’re moving to SQL Server from
Access, you’ll be amazed at the level of control SQL Server gives you over indexes. If you’re
moving to SQL Server from another client/server database, I think you’ll like the administra-
tive features that make working with indexes enjoyable. But my favorite feature of SQL Server
indexes is their speed.

When creating indexes there’s a tension between improving search performance and
improving update performance. Indexes are great for reading data, but they cause extra work
in terms of writing data.

While this section explains the various types of indexes and the mechanics of creating them,
Chapter 28, “Advanced Performance,” covers the SQL Server Profiler, the Index Tuning
Wizard, and strategies for tuning indexes and queries.

SQL Server’s indexes are fast balanced-tree (b-tree) style indexes. In one test that I performed
at a client site several years ago, we used SQL Server 6.5 to set up two tables, one with a
thousand rows of sample data, and one with a million rows, both properly indexed. The client
didn’t know which table was which. From the query execution speed when retrieving a single
row the client was unable to tell the difference between the two tables. We got permission to
do the job in SQL Server.

As I wrote this chapter, I ran dbgencon, a utility included with the SQL Server Resource Kit
that generates random data, in the background, with the priority set to below average, for
about 24 hours to populate two tables. The first table now has 25,583,733 rows; Enterprise
Manager’s Taskpad reports 8.63GB in it. The second table has a thousand rows at 376KB.
Other than the number of rows, both tables have the same schema. With a non-clustered
index on each table, retrieving a single row from each table requires three logical reads and 0
milliseconds. The number of logical hits needed to navigate through the b-tree was identical,
and the performance difference was insignificant! Performing a join between the two tables
was equally impressive. (And it’s not my hardware — believe me.)

You can create an index on views; however this feature should be reserved for specific situa-
tions that require denormalizing. See Chapter 30, “Advanced Scalability,” for more informa-
tion on index views.

Creating Indexes with Enterprise Manager
Three main methods exist for creating and managing indexes graphically:

✦ The Create Index Wizard

✦ The Index tab of the Table Properties page

✦ The Index Manager

Creating indexes using T-SQL code is demonstrated as each type of index is explained in the
“Understanding Indexes” section later in this chapter.

The Create Index Wizard
The Create Index Wizard is launched from the Wizards list. It doesn’t add any functionality or
value; it simply breaks down the decisions into the following separate pages:

✦ Choose a database name and table.

✦ Select a current index or create a new index.

Cross-
Reference

Cross-
Reference

08549359 ch05.F 11/21/02 9:22 AM Page 147

148 Part II ✦ Developing SQL Server Databases

✦ Select the columns to be included in the index.

✦ Set the index as clustered and/or unique. Select the fill factor.

✦ Enter the name of the index and position the columns in the correct order.

✦ Finished.

Using the Index Manager
In contrast to the wizard, Enterprise Manager’s Index Manager (Figure 5-9) is an excellent tool
for viewing and administrating all the indexes on a table.

To open the Index Manager, select a table. From the right-mouse menu or the Action menu,
choose All Tasks ➪ Manage Indexes.

Figure 5-9: Enterprise Manager’s Index Manager is the best graphic tool for working with
indexes.

The Index Manager has two work surfaces. The first lists the current indexes, the index type
(clustered or non-clustered), and the columns in the index. The New and Edit buttons open
the Index dialog box with every index option available. The options are explained in the
upcoming “Understanding Indexes” section.

08549359 ch05.F 11/21/02 9:22 AM Page 148

149Chapter 5 ✦ Implementing the Physical Database Schema

Table-Design Properties
The most common method of working with indexes graphically is by using the Table
Properties dialog box in the Table Designer and Database Diagrammer. The Indexes/Keys tab
does the job, as shown in Figure 5-10, but the interface is slightly clumsy. The top combo box
is used to select an index to modify. There’s no OK or Apply button. Whatever is entered is
applied along with any changes in the table designer. Also, the New button instantly creates a
new index. If the index isn’t complete, the new index must be deleted before the dialog can be
closed.

Figure 5-10: The Indexes/Keys tab of the
Table Properties dialog box is the most
commonly used indexing tool.

Once the clumsy interface is conquered, the rest of the Indexes/Keys tab is useful. It may be
used to rename the index, assign any columns, and enable the options.

Understanding Indexes
SQL Server uses two basic types of indexes, clustered and non-clustered. Both types of
indexes may have multiple columns, in which case they are also considered composite
indexes. And depending on how the index is used by a query, it may be a covering index.

Non-Clustered Indexes
A typical desktop database uses a non-clustered index. The index is sorted and each index
node points to an unsorted data row, as illustrated in Figure 5-11. A SQL Server 2000 table
may have up to 255 non-clustered indexes.

The index in the back of this book is a good example of a non-clustered index. Any topic may
be easily found in the text by first finding the topic in the book index and then using the index
to point to a page in the book.

08549359 ch05.F 11/21/02 9:22 AM Page 149

150 Part II ✦ Developing SQL Server Databases

Figure 5-11: A non-clustered index is a fast b-tree structure that points to the
data page.

To create a non-clustered index in code, use the create index DDL command followed by
the index name. The index is created on a table and columns. This DDL command creates a
non-clustered index on the OrderNumber column of the [Order] table in the OBXKites sam-
ple database:

CREATE NONCLUSTERED INDEX IxOrderNumber
ON dbo.[Order] (OrderNumber)

An index may be created on a calculated column. The quoted_identifier setting must be
on to create or modify indexed views or indexes on calculated columns.

Clustered Indexes
A clustered index keeps the data in the same physical order as the index. A perfect example of
a clustered index is a telephone book. The data and the index are one and the same. Inside a
clustered index, SQL Server merges the leaf node of the index page with the data page, as
shown in Figure 5-12. The data can have only one physical order, and therefore only one clus-
tered index.

Figure 5-12: A clustered index merges the leaf nodes of
the index page with the data page keeping the data in
the same order as the index.

Smith

a-m
n-z

Root
Level

Intermediate
Level(s)

n-r
s-z

Leaf
Level

Data
Pages

S..
Smith

a-m
n-z

Root
Level

Intermediate
Level(s)

n-r
s-z

Leaf
Level

Data
Pages

S..
Smith

Smith

08549359 ch05.F 11/21/02 9:22 AM Page 150

151Chapter 5 ✦ Implementing the Physical Database Schema

The fact that the clustered-index leaf nodes are merged with the data page has two effects.
First, retrieving data via the clustered index requires one fewer logical read. Second, any
other non-clustered index will point to the clustered-index ID instead of to the data page.

Clustered indexes gather rows with the same index value to the smallest possible number of
data pages, thus reducing the number of data pages required to retrieve a set a rows.
Clustered indexes are therefore excellent for columns that are often used to select a range of
rows, such as secondary table foreign keys like OrderDetail.OrderID. For the same rea-
son, a clustered index adds no significant performance benefits for single-row searches.

Clustered indexes tend to be misunderstood. Common misconceptions are:

✦ A clustered index slows inserts because half the data must be moved down to make room
for the inserted row. This is false. The fill percentage allows room in the index page for
inserts. If a page does fill, SQL Server performs a page split, with the result that only
the first page is affected.

✦ A clustered index on a primary key with an identity column is the fastest possible table
design. This is false. It’s a waste of the clustered index. And, this method bunches every
new row into the same data page at the end of the table, thus causing database hot
spots and lock contention. A database I’ve seen with this scheme made customer-
service reps wait several minutes to confirm every new order.

Although row locking (introduced with SQL Server version 7) partially relieves the hot
spot problem (common with SQL Server 6.5 and earlier), depending on the number of
rows being locked, the number of rows on the page, and the number of users, the lock
manger may escalate rows locks to a page lock, and the hot spot is still a problem.

✦ Clustered indexes are like magic. If any search is slow, set that column to the clustered
index and the table will be fast. This is false. Clustered indexes are ever-so-slightly faster
than non-clustered indexes. Since each table can have only one clustered index, it’s a
precious performance resource and should be reserved for columns referenced by
searches that look for a range or group of rows.

Clustered indexes are created in code with the create index command, much like non-
clustered indexes. The following command creates a clustered index on the OrderID foreign
key of the OrderDetail table:

CREATE CLUSTERED INDEX IxOrderID
ON dbo.OrderDetail (OrderID)

To remove an index use the drop index command with both the table and index name:

DROP INDEX OrderDetail.IxOrderID

Composite Indexes
A composite index is a clustered or non-clustered index that is based on multiple columns.
Because composite indexes include multiple columns, they must be declared in a create
index DDL statement after the table is created. The following code sample creates a compos-
ite clustered index on the guide table in the CHA2 database:

CREATE CLUSTERED INDEX IxGuideName
ON dbo.Guide (LastName, FirstName)

The order of the columns in a composite index is important. For a search to take advantage of
a composite index it must include the index columns from left to right. If the composite index
is lastname, firstname, a search for firstname will not use the index, but a search for
lastname, or lastname and firstname, will.

08549359 ch05.F 11/21/02 9:22 AM Page 151

152 Part II ✦ Developing SQL Server Databases

Index Options
SQL Server indexes may have several options, including uniqueness, space allocation, and
performance options.

Unique Indexes
A unique index option is more than just an index with a unique constraint; index optimiza-
tions are available to unique indexes. A primary key or a unique constraint automatically cre-
ates a unique index.

In Enterprise Manager you create a unique index by checking the Unique option in the Create
Index wizard, the Index Manager, or the Indexes/Keys tab of the Table Properties dialog box.

In code, you set an index as unique by adding the unique keyword to the index definition, as
follows:

CREATE UNIQUE INDEX OrderNumber
ON [Order] (OrderNumber)

The Index Fill Factor and Pad Index
An index needs a little free space in the tree so that new entries don’t require restructuring of
the index. The fill factor is the percentage of space to be filled with data.

Because the index is a binary tree, each page must hold at least two rows. The fill factor and
the pad index affect both the intermediate pages and the leaf node, as listed in Table 5-5.

Table 5-5: Fill Factor and Pad Index

Fill Factor Intermediate Page(s) Leaf Node

0 One free entry 100% full

1-99 One free entry or <= fill factor if pad index <= Fill factor

100 One free entry 100% full

The fill factor only applies to the detail, or leaf, node of the index, unless the pad index
option is applied to the fill factor. The pad index option directs SQL Server to apply the
looseness of the fill factor to the intermediate levels of the b-tree as well.

The best fill factor depends on the purpose of the database. If the database is primarily for
data retrieval, a high fill factor will pack as much as possible in an index page. However, if the
table sees lots of inserts, leaving some space open will improve update-operation perfor-
mance. If the table will see a dramatic number of inserts, a mid-range fill factor and the pad
index option are appropriate.

You specify the fill factor and index pad as options after the create index command. The
following code example creates the OrderNumber index with 15 percent free space in both
the leaf nodes and the intermediate pages:

CREATE NONCLUSTERED INDEX IxOrderNumber
ON dbo.[Order] (OrderNumber)
WITH FILLFACTOR = 85, PAD_INDEX

08549359 ch05.F 11/21/02 9:22 AM Page 152

153Chapter 5 ✦ Implementing the Physical Database Schema

The Index Sort Order
SQL Server can create the index as a descending index although I don’t recommend changing
from the default ascending-index order. You won’t see a performance benefit and it can only
cause confusion later. Any query using an order by clause will still be sorted ascending
unless the query’s order by specifically states desc.

The asc or desc option follows the column name in the create index DDL command.

The Ignore Dup Key Index Option
The ignore duplicate key option doesn’t affect the index, but rather how the index affects
data modification operations later.

Normally, transactions are atomic, meaning that the entire transaction either succeeds or
fails as a logical unit. However, the ignore duplicate key option directs insert transac-
tions to succeed for all rows accepted by the unique index, and to ignore any rows that vio-
late the unique index.

This option does not break the unique index. Duplicates are still kept out of the table, so the
consistency of the database is intact, but the atomicity of the transaction is violated.
Although this option might make importing a zillion questionable rows easier, I personally
don’t like any option that weakens the ACID properties of the database.

The following command is the same as the previous create unique index command, but
with the ignore_duplicate_key option:

CREATE UNIQUE INDEX OrderNumber
ON [Order] (OrderNumber)
WITH IGNORE_DUP_KEY

The Drop Existing Index Option
The drop existing option directs SQL Server to drop the current index and rebuild the
new index from scratch. This may cause a slight performance improvement over rebuilding
every index if the index being rebuilt is a clustered index and the table also has non-clustered
indexes, because rebuilding a clustered index forces a rebuild of any non-clustered indexes.

The Statistics Norecompute Index Option
The SQL Server query optimizer depends on data-distribution statistics to determine which
index is most significant for the search criteria for a given table. Normally SQL Server updates
these statistics automatically. However, some tables may receive large amounts of data just
prior to being queried, and the statistics may be out of date. For situations that require manu-
ally initiating the statistics update, the statistics norecompute index option disables
automatic statistics. But for nearly all indexes, this option should be ignored.

Sort in Tempdb
This option modifies the only index-creation method by forcing it to use tempdb as opposed
to memory. If the index is routinely dropped and recreated, this option may shorten the
index-creation time. For most indexes, this option is neither required nor important.

Filegroup
If the database was created with multiple named filegroups, the index may be created on a
certain filegroup with the on filegroupname option:

ON filegroupname

08549359 ch05.F 11/21/02 9:22 AM Page 153

154 Part II ✦ Developing SQL Server Databases

This option is useful for spreading the disk I/O throughput for very heavily used databases.
For example, if a Web page is hit by a million users per minute, and the main pages use a
query that involves two tables and three indexes, and several disk subsystems are available,
then placing each table and index on its own disk subsystem will improve performance.
Remember that a clustered index must be in the same location as the table because the clus-
tered index pages and the data pages are merged.

Documenting the Database Schema
Several development errors can be averted by clearly documenting the database schema. I
recommend the following five documentation methods:

✦ To list information about an object run sp_help objectname. To report the indexes
and their sizes use sp_spaceused.

✦ Examine the information schema views (listed in Chapter 4, “Using SQL Server’s
Developer Tools”) and develop your own views to list the column attributes that inter-
est you.

✦ Organize the tables by module, creating a separate database diagram for each module.
If done correctly these diagrams will fit on an 8-1/2 by 11 page for inclusion in a project
binder.

✦ Use Total SQL Analyzer from FMS. This program loads information about your SQL
Server database into another database and then produces dozens of excellent reports,
lists of possible errors, performance suggestions, and more.

A 30-day trail version of Total SQL Analyzer Pro is on the book’s CD.

✦ And my personal favorite: Use Visio to reverse-engineer the database and produce a
database diagram that, once plotted, will cover the wall.

Summary
The logical database schema often requires tweaking in order to serve as a physical schema.
It’s in the nitty-gritty of the physical-database schema that the logical design takes shape and
becomes a working database within the restrictions of the data types, keys, and constraints
of the database product. Knowing the table-definition capabilities of SQL Server means that
you can implement some project features at the server-constraint level rather than in T-SQL
code in a trigger or stored procedure.

With the physical layer in place, the next tasks typically involve establishing a recovery plan,
moving the database to other servers, and securing the database. With that as the goal, the
next chapter tackles recovery models, backup, and restore.

✦ ✦ ✦

On the
CD-ROM

08549359 ch05.F 11/21/02 9:22 AM Page 154

Retrieving Data
with Select

Select is the most powerful word in SQL. Because select is so
common, it’s easy to take it for granted; however, no keyword in

any language I can think of is so flexible. Select can retrieve, twist,
shape, join, and group data in nearly any way imaginable, and it’s eas-
ily extended with the insert, update, and delete verbs for data
modification.

A lot can be said about select, the premier data-manipulation lan-
guage (DML) command. This chapter will first walk through the single
table select command in its syntax order. From this foundation,
advanced features are explained that add to the power of select,
incorporating complex expressions, multiple types of joins, sub-
queries, and groupings.

Admittedly, this is a huge chapter; however, understanding the multi-
ple options and creative techniques available with the select com-
mand is key to becoming a successful SQL Server developer or DBA.

One of the first things to understand is that SQL is a declarative lan-
guage. This means that the SQL code describes the SQL query to the
SQL optimizer, which then determines the best way to execute the
query. As you’ll see in this chapter, many ways of stating the query
often exist, but each method is usually optimized to the same query-
execution plan. This means you are free to express the SQL query in
the way that makes the most sense to you. In some cases one method
is considered cleaner or faster than another: I’ll point those instances
out as well.

Choosing Your Tool
SQL statements may be issued from multiple sources: Enterprise
Manger, Query Analyzer, MS Access, or one of many other user inter-
faces, including custom-written applications. Any of these graphic
tools, or a programming interface such as ADO, sends SQL-modifica-
tion statements to SQL Server for processing. From SQL Server’s
point of view, it doesn’t matter where the statement originates; each
statement is evaluated and processed as a SQL statement.

Regardless of which client tool you’re using, the command you send
to SQL Server to retrieve data is the select command. The two pri-
mary user interfaces within SQL Server, Enterprise Manager and the
Query Analyzer, are both excellent tools for developing and testing
select statements.

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Selecting the right rows

Returning the right
columns

Working with
expressions and scalar
functions

Working with nulls

Specifying the sort
order

Aggregrate functions

Grouping data

✦ ✦ ✦ ✦

09549359 ch06.F 11/21/02 9:22 AM Page 155

156 Part II ✦ Developing SQL Server Databases

Selecting Data with Enterprise Manager
Follow these steps to retrieve data using Enterprise Manager:

1. Open a database.

2. Select the Tables node.

3. Select a table.

4. Right-click the table.

5. Choose Open Table ➪ Return all rows.

The Enterprise Manager Query Designer (Figure 6-1) is comprised of four panes (descending):

✦ The Diagram pane is a graphical representation of the SQL from clause, including the
data sources and joins.

✦ The Grid pane is used to choose the specific columns for output, update, where condi-
tions, or sort order.

✦ The SQL pane uses the first two graphic panes to display the SQL statement as it is cre-
ated. You can edit the SQL code here to build the SQL statement directly. This pane will
prove to be an excellent transition tool as you become comfortable with SQL code.

✦ The Results pane displays the result set(s).

Figure 6-1: Building a select query in the Enterprise Manager Query Designer.

09549359 ch06.F 11/21/02 9:23 AM Page 156

157Chapter 6 ✦ Retrieving Data with Select

The panes may be enabled or hidden by selecting the desired pane in the toolbar. By default,
the Query Designer opens to a select query. To execute the SQL statement, click the excla-
mation-mark button (!) on the toolbar.

This is just a quick overview for the purpose of retrieving data. For more information about using
Enterprise Manger or Query Analyzer, refer to Chapter 4, “Using SQL Server’s Developer Tools.”

Don’t rely too heavily on Enterprise Manger if you intend to master T-SQL and write stored
procedures. Coding stored procedures requires SQL code with embedded variables, clean for-
matting, and joins arranged in a readable order. Enterprise Manager won’t generate suitable
SQL code for cutting and pasting into complex stored procedures and triggers.

Retrieving Data with Query Analyzer
Query Analyzer is an excellent tool for ad-hoc data retrieval because it gets out of the way
and lets the developer work as close to the SQL code as possible.

When selecting data using Query Analyzer, you enter the SQL statements as raw code in the
top pane, as shown in Figure 6-2. The bottom pane displays the results in Grid mode or Text
mode, and also displays any messages. The Object Browser presents a tree of all the objects
in SQL Server, as well as templates for creating new objects with code.

If text is highlighted in Query Analyzer, then QA will execute only that text when you hit the
Execute Query command button or the F5 key. This is an excellent way to test portions of
SQL code.

Figure 6-2: Building a select query in SQL Server’s Query Analyzer.

Tip

Cross-
Reference

09549359 ch06.F 11/21/02 9:23 AM Page 157

158 Part II ✦ Developing SQL Server Databases

Though it may vary depending on the user-security settings, the default database is probably
the Master database. Be sure to change to the appropriate user database using the Database
selector combo box in the toolbar, or the USE database command.

Selecting Data from a Single Table
In its basic form, the select statement tells SQL Server what data to retrieve, including
which columns, rows, and tables to pull from, and how to sort the data. This chapter begins
by describing the basic flow of the select statement and then adds options as the chapter
progresses.

Here’s an abbreviated syntax for the select command:

SELECT *, columns, or expressions
[FROM table]
[JOIN table
ON condition]

[WHERE conditions]
[GROUP BY columns]
[HAVING conditions]
[ORDER BY Columns]

The select statement begins with a list of columns or expressions. At least one expression is
required — everything else is optional. The simplest possible valid select statement is:

select 1

The from portion of the select statement assembles all the data sources into a result set,
which is then acted upon by the rest of the select statement. Within the from clause multi-
ple tables may be referenced by using one of several types of joins.

The different types of joins and how to use them are discussed in the next chapter, “Merging
Data Using Relational Algebra.”

The where clause acts upon the record set assembled by the from clause to filter certain
rows based upon conditions.

Aggregate functions perform summation-type operations across the dataset. The group by
clause can group the larger dataset into smaller datasets based upon the columns in the
group by. The aggregate functions are then performed on the new smaller groups of data.
The results of the aggregation can be restricted using the having clause.

And finally, the order by clause determines the sort order of the result set.

Basic Flow of the Select Statement
To see the basic flow of the select statement, open Query Analyzer, turn on Show Execution
Plan (Ctrl+K), and then run the following query:

SELECT LastName, FirstName
FROM Guide
WHERE Qualifications LIKE ‘%first aid%’
ORDER BY LastName, FirstName

Cross-
Reference

Tip

09549359 ch06.F 11/21/02 9:23 AM Page 158

159Chapter 6 ✦ Retrieving Data with Select

All the code for this chapter is on the CD in the file, \SQLServerBible\ChapterCode\
Ch 06 - Retreiving Data with Select.sql.

As illustrated in Figure 6-3, from right to left, the basic flow of the select statement is as follows:

1. The query begins with an Index Scan, which assembles the result set as specified in the
from portion of the select statement.

2. The filter process is actually the where clause selecting only those rows of which the
qualification includes the phrase “%First Aid%”.

3. Once the rows are available and filtered they are sorted according to the order by.

4. The final process exports the select columns, which presents the result set to the
client.

As more complexity is added to the SQL select, the flow will also become more complex.
The indexes and tables available to the SQL Server Query Optimizer also affect the Query
Execution Plan.

As you begin to think in terms of the SQL select statement rather than in terms of the graph-
ical user interface, understanding the flow of select and how to read the Query Execution
Plan will help you think through and debug difficult queries.

Figure 6-3: The Query Execution plan, read from right to left, shows the flow of the select
statement.

On the
CD-ROM

09549359 ch06.F 11/21/02 9:23 AM Page 159

160 Part II ✦ Developing SQL Server Databases

Select Distinct
The first predicate option in the select command is the keyword distinct, which elimi-
nates duplicate rows from the result set of the query. The duplications are based only on the
output columns, not the underlying tables.

The opposite of distinct is all. Because all is the default, it is typically ignored.

The following code sample demonstrates the distinct predicate. Joins are explained in
the next chapter, “Merging Data Using Relational Algebra,” but here the join between tour
and event is generating a row for each time a tour is run as an event. Because this select
statement returns only the tourname column, it’s a perfect example of duplicate rows for the
distinct predicate.

SELECT ALL TourName
FROM Event
JOIN Tour
ON Event.TourID = Tour.TourID

Result:

TourName
--
Amazon Trek
Amazon Trek
Appalachian Trail
Appalachian Trail
Appalachian Trail
Bahamas Dive
Bahamas Dive
Bahamas Dive
Gauley River Rafting
Gauley River Rafting
Outer Banks Lighthouses
Outer Banks Lighthouses
Outer Banks Lighthouses
Outer Banks Lighthouses
Outer Banks Lighthouses
Outer Banks Lighthouses

With the distinct predicate:

SELECT DISTINCT TourName
FROM Event
JOIN Tour
ON Event.TourID = Tour.TourID

Result:

TourName

Amazon Trek
Appalachian Trail
Bahamas Dive
Gauley River Rafting
Outer Banks Lighthouses

09549359 ch06.F 11/21/02 9:23 AM Page 160

161Chapter 6 ✦ Retrieving Data with Select

While the first query returned 16 rows, the distinct predicate in the second query elimi-
nated the duplicate rows and retuned only the 5 unique rows.

SQL Server’s distinct is different from MS Access’s distinctrow, which eliminates
duplicates based on data in the source table(s), not duplicates in the result set of the query.

Select distinct functions as if a group by clause (discussed later in this chapter, in the
“Summing and Grouping Data” section) exists on every output column. Examining the Query
Execution Plan for the two previous queries (Figure 6-4), you can clearly see the distinct as
a Stream Aggregate operation. So distinct does require another step in the Query Execution
Plan. The performance hit, however, is small, (the details of the operation reveal that only
.000006% of the query-execution time is used performing the Stream Aggregate operation); if
distinct is logically necessary, you should not avoid it because of its effect on performance.

Figure 6-4: Comparing the Query Execution Plan for the two queries reveals the Stream
Aggregate operation, which performs the distinct predicate and eliminates duplicate rows.

Note

09549359 ch06.F 11/21/02 9:23 AM Page 161

162 Part II ✦ Developing SQL Server Databases

Returning the Top Rows
By default, SQL Server will return all the rows from the select statement. The optional top
predicate tells SQL Server to return only a few rows (either a fixed number or a percentage),
based upon the options specified, as shown in Figure 6-5.

Top works hand in hand with order by. It’s the order by clause that determines which rows
are first. If the select statement does not have an order by clause, the top predicate still
works by returning an unordered sampling of the result set.

Figure 6-5: The top predicate is set within
Enterprise Manager’s Query Designer inside
the query’s Properties page.

The OBXKites sample database is a good place to test the top predicate. The following query
finds the most expensive 3 percent of prices in the price table. The price table allows each
product to have multiple prices, according to the effective date:

SELECT TOP 3 PERCENT Code, ProductName, Price,
CONVERT(VARCHAR(10),EffectiveDate,1) AS PriceDate

FROM Product
JOIN Price ON Product.ProductID = Price.ProductID

ORDER BY Price DESC

Result:

ProductCode ProductName Price PriceDate
------------ ---------------------- ---------- ----------
1018 Competition Pro 48” 284.9500 05/01/01
1018 Competition Pro 48” 264.9500 05/01/02
1017 Competition 36” 245.9500 05/20/03
1017 Competition 36” 225.9500 05/01/01

The next query locates the three cheapest prices in the price table:

SELECT TOP 3 Code, ProductName, Price,
CONVERT(VARCHAR(10),EffectiveDate,1) AS PriceDate

FROM Product
JOIN Price ON Product.ProductID = Price.ProductID

ORDER BY Price

09549359 ch06.F 11/21/02 9:23 AM Page 162

163Chapter 6 ✦ Retrieving Data with Select

Result:

ProductCode ProductName Price PriceDate
------------ ---------------------- ---------- ----------
1044 OBX Car Bumber Sticker .7500 05/01/01
1045 OBX Car Window Decal .7500 05/20/01
1045 OBX Car Window Decal .9500 05/20/02

The query looks clean, and the answers look good; unfortunately, it’s wrong. If you look at the
raw data sorted by price, you’ll see that there are actually three rows with a price of 95 cents.
The with ties option will solve this problem.

By the very nature of the formatting, computer-generated data tends to appear correct. Testing
the query against a subset of data and known results is the best way to check its quality.

The With Ties Option
The with ties option is important to the top predicate. It allows the last place to include
multiple rows if those rows have equal values in the columns used in the order by clause.
The following version of the previous query includes the with ties option and correctly
results in five rows from a top 3 predicate:

SELECT TOP 3 WITH TIES ProductCode,
ProductName, Price,
CONVERT(varchar(10),EffectiveDate,1) AS PriceDate

FROM Product
JOIN Price ON Product.ProductID = Price.ProductID

ORDER BY Price

Result:

ProductCode ProductName Price PriceDate
------------ ---------------------- ---------- ----------
1044 OBX Car Bumber Sticker .7500 05/01/01
1045 OBX Car Window Decal .7500 05/20/01
1045 OBX Car Window Decal .9500 05/20/02
1041 Kite Fabric #6 .9500 05/01/01
1042 Kite Fabric #8 .9500 05/01/01

If you are moving from Access to SQL Server, you should be aware that, by default, Access
adds the with ties option to the top predicate for you automatically.

Dynamic Top
The number or percentage of rows returned by the top predicate must be hard-coded into
the select statement. The top predicate won’t accept a variable or expression in place of
the number or percentage. As a workaround, the rowcount global variable may be used to set
the number of rows affected for all following DML statements. To turn off the rowcount
restriction, set rowcount to 0 and all rows will again be affected. In the following code sam-
ple, the rowcount variable is set to 3 to limit the rows returned by the select statement:

SET ROWCOUNT 3

SELECT ProductCode, ProductName, Price,
CONVERT(varchar(10),EffectiveDate,1) AS PriceDate
FROM Product
JOIN Price ON Product.ProductID = Price.ProductID

ORDER BY Price

Note

09549359 ch06.F 11/21/02 9:23 AM Page 163

164 Part II ✦ Developing SQL Server Databases

Result:

ProductCode ProductName Price PriceDate
------------ ---------------------- ---------- ----------
1044 OBX Car Bumber Sticker .7500 05/01/01
1045 OBX Car Window Decal .7500 05/20/01
1045 OBX Car Window Decal .9500 05/20/02

SET ROWCOUNT 0

While rowcount gives you the luxury of dynamically setting the number of rows returned, it
lacks the with ties option and can produce incomplete results.

Top is a Microsoft T-SQL extension to ANSI SQL and is not portable. If the database must be
migrated to another database platform, the use of top will become a conversion problem. In
contrast, the rowcount variable is portable. For more information about portability turn to
Chapter 32, “Advanced Portability.”

Alternately, you can code a dynamic SQL statement to handle the dynamic top value.
Dynamic SQL is discussed in Chapter 12, “Programming with Transact SQL.”

Columns, Stars, Aliases, and Expressions
The title of this section may read like a bad tabloid headline, but in all seriousness it refers to
the fact that the SQL select statement will return the columns in the order in which they’re
listed in the select statement. The source of a result column may be any expression or table
column.

The Star
The *, commonly called “star,” is a special wildcard that includes all columns in their table
order. If the query pulls from multiple tables, the * will include all columns from every table.
Alternately, tablename.* will include only the columns from the named table.

It’s better to list the columns returned by a select statement than to use the * and return
all rows. This is true for two reasons. First, it reduces the amount of data returned. Second,
specifying the columns prevents future errors that might otherwise be caused by table-
schema changes, and which would then break code expecting n columns but receiving n+1
columns.

Aliases
The name of the column in the underlying table will become the name of the column in the
result set. Optionally, you can provide a column alias. If two underlying table columns have
the same name, an alias will be required. Expressions and constants will have a blank column
heading in the result set unless an alias is provided.

The as keyword is optional, however using it is a good practice that improves the readability
of the code and helps prevent errors.

To use an alias that’s identical to a SQL Server keyword or that includes a space, enclose the
alias in square brackets, single quotes, or double quotes. Although the square brackets are
not technically required if the alias is the same as an object name (that is, table or column
name), I prefer to explicitly specify that the alias is not a keyword.

Cross-
Reference

Caution

09549359 ch06.F 11/21/02 9:23 AM Page 164

165Chapter 6 ✦ Retrieving Data with Select

The following code demonstrates adding aliases to columns:

SELECT ProductName AS Product,
‘abc’,
ActiveDate + 365 AS OneYearSalesDate

FROM Product

Result:

Product OneYearSalesDate
-------------------------- ---- ------------------------
Basic Box Kite 21 inch abc 2003-07-22 20:59:53.967
Dragon Flight abc 2003-07-22 20:59:54.000
Sky Dancer abc 2003-07-22 20:59:54.000
...

The first column’s name is changed from ProductName to Product by means of an alias. The
second column is an expression without an alias, so it has no column name. A better practice
is to name expression columns using an alias, as demonstrated in the third column.

Expressions
You can construct SQL expressions from a nearly limitless list of constants, operators, and
functions, as detailed in Table 6-1. Figure 6-6 illustrates an expression and an alias.

Figure 6-6: Building an expression and assigning an alias with Enterprise Manager’s
Query Designer.

09549359 ch06.F 11/21/02 9:23 AM Page 165

166 Part II ✦ Developing SQL Server Databases

Table 6-1: Building Expressions

Expression Components Examples

Numeric constants 1, 2, 3

String literals ‘LastName’, ‘Employee: ‘, ‘Life’’s
Great!’

Dates ‘1/6/80’, ‘Jan 6, 1980’, ‘19800106’

Mathematical operators (in order of precedence) *, /, % (remainder), +, -

String operator (concatenation) +

Bitwise operators and &, or |, exclusive or ^, not ~

Columns LastName, PrimaryKeyID

Case Expressions CASE Column1

WHEN 1 THEN ‘on’

ELSE ‘off’

END AS Status

Subqueries (Select 3)

User-defined variables @MyVariable

Global variables @@Error

Scalar functions GetDate(), SysUser()

User-defined functions dbo.MyUDF()

Case expressions are explained later in this chapter. Subqueries are covered in the next
chapter, Merging Data using Relational Algebra.” Variables are discussed in Chapter 12,
“Programming with Transact-SQL.” User-defined functions are detailed in Chapter 14,
“Building User-Defined Functions.”

While the meaning of many of these expression constants, operators, and expressions is obvi-
ous and common to other programming languages, a few deserve special mention:

✦ The Modulo mathematical operator (%) returns only the remainder of the division. The
floor() (that’s “deck” for sailors) and ceiling() mathematical functions, which
return the integer rounded down or up, are related to it. The floor function is the SQL
Server equivalent of the Basic int() function:

SELECT 15%4 as Modulo,
FLOOR(1.25) as [Floor], CEILING(1.25) as [Ceiling]

Result:

Modulo Floor Ceiling
----------- ----- -------
3 1 2

Cross-
Reference

09549359 ch06.F 11/21/02 9:23 AM Page 166

167Chapter 6 ✦ Retrieving Data with Select

✦ The + operator is used for both mathematical expressions and string concatenation.
This operator is different from the MS-DOS symbol for string concatenation, the amper-
sand (&).

SELECT 123 + 456 as Addition,
‘abc’ + ‘defg’ as Concatenation

Result:

Addition Concatenation
----------- -------------
579 abcdefg

Data from table columns and string literals may be concatenated together to return
custom data:

Select ‘Product: ‘ + ProductName as [Product]
From Product

Result:

Product

Product: Basic Box Kite 21 inch
Product: Dragon Flight
Product: Sky Dancer
...

✦ When working with string literals, it’s generally difficult to insert a quote into the string
without ending the string and causing a syntax error. SQL Server handles this situation
by accepting two single quotes and converting them into one single quote within the
string:

‘Life’’s Great!’ is stored as: Life’s Great!

Bitwise Operators
The bitwise operators are useful for binary manipulation. For example, one way to determine
which columns were updated in a trigger is to inspect the columns_updated() function,
which returns a binary representation of those columns. The trigger code can test
columns_updated() using bitwise operations and respond to updates on a column-by-
column basis.

Boolean bit operators (and, or, and not) are the basic building blocks of digital electronics
and binary programming. While digital-electronic Boolean gates operate upon single bits,
these bitwise operators work across every bit of the integer family data type (int, smallint,
tinyint, and bit) values.

Boolean And
A Boolean and, represented by the ampersand character (&), returns a value of true only
if both inputs are true. If either or both are false, the “and” will return a value of false,
as follows:

SELECT 1 & 1

Result:

1

09549359 ch06.F 11/21/02 9:23 AM Page 167

168 Part II ✦ Developing SQL Server Databases

Another “and” example:

SELECT 1 & 0

Result:

0

“And”ing two integers:

-- 3 = 011
-- 5 = 101
-- AND ---
-- 1 = 001

SELECT 3 & 5

Result:

1

Boolean Or
The Boolean “or” operator, the vertical pipe character (|), returns true if either input is true:

SELECT 1 | 1

Result:

1

The following select statement combines a set and a cleared bit using the bitwise or operator:

SELECT 1 | 0

Result:

1

“Or”ing two integers:

-- 3 = 011
-- 5 = 101
-- OR ---
-- 7 = 111

SELECT 3 | 5

Result:

7

Boolean Exclusive Or
The “exclusive or” bitwise operator, the carat (^), returns a value of true if either input is
true, but not if both are true. Using it is the same as “or”ing two “and”s, each with a “not” on
one input. While that’s simple to build in digital electronics, in code the operator is much eas-
ier to use, as shown here:

SELECT 1^1

09549359 ch06.F 11/21/02 9:23 AM Page 168

169Chapter 6 ✦ Retrieving Data with Select

Result:

0

A set bit “exclusive or”ed with a cleared bit results in a set bit:

SELECT 1^0

Result:

1

Bitwise Not
The last bitwise operator, denoted by the tilde (~), is a bitwise “not” function. Traditionally,
the “not” operates on a single bit and is used to alter the input of an “or” or “and” digital gate.
This bitwise “not” is a little different. The “not” performs a logical bit reversal for every bit in
the expression. The result depends on the data length of the expression. For example, the bit-
wise “not” of a set bit is a cleared bit:

DECLARE @A BIT
SET @A = 1
SELECT ~@A

Result:

0

The bitwise “not” is not suitable for use with Boolean expressions such as if conditions. The
following code, for example, is invalid:

SELECT * FROM Product WHERE ~(1=1)

Note that the “not” operator also serves as the “one’s complement” operator.

Case Expressions
SQL Server’s case command is a flexible and excellent means of building dynamic expres-
sions. If you’re a programmer, no doubt you use the case command in other languages. This
case command, however, is different. It’s not used for programmatic flow of control, but
rather to logically determine the value of an expression based on a condition, much like the
iif() function in other programming languages.

Like any other expression, a case expression won’t automatically have a column name.
Therefore, as a rule, always provide an alias for any case expression.

When programmers write procedural code, it’s often because part of the formula changes
depending on the data. To a procedural mind-set, the best way to handle this is to loop
through the rows and use multiple if statements to branch to the correct formula. However,
using a case expression to handle the various calculations and executing the entire operation
in a single query allows SQL Server to optimize the process and is dramatically faster.

Since the case expression returns an expressions, it may be used anywhere in the SQL DML
statement where an expression may be used, including, column expression, join condition,
where condition, having condition, or in the order by.

The case statement has two forms, simple and Boolean, described in the following sections.

09549359 ch06.F 11/21/02 9:23 AM Page 169

170 Part II ✦ Developing SQL Server Databases

Simple Case
With the simple case the value is presented first and then each test value is listed. However,
this case is limited in that it can perform only equal comparisons. The case expression
sequentially checks the when conditions and returns the then value of the first true when
condition.

In the following example, based on the OBX Kite Store database, one customertype is the
default for new customers and is set to true in the isdefault column. The case expression
compares the value in the default column with each possible bit setting and returns the char-
acter string ‘default type’ or ‘possible’ based on the bit setting.

USE OBXKites
SELECT CustomerTypeName,

CASE [IsDefault]
WHEN 1 THEN ‘default type’
WHEN 0 THEN ‘possible’
ELSE ‘-’

End as AssignStatus
From CustomerType

Result:

CustomerTypeName AssignStatus
-------------------------- ------------
Preferred possible
Wholesale possible
Retail default type

The case expression concludes with an end and an alias. In this example, the case expres-
sion evaluates the isdefault column, but produces the AssignStatus column in the SQL
select result set.

Boolean Case
The Boolean form of case is more flexible than the simple form in that each individual case
has its own Boolean expression. So not only can each when condition include comparisons
other than =, but the comparison may also reference different columns:

SELECT
CASE
WHEN 1<0 THEN ‘Reality is gone.’
WHEN GetDate() = ‘11/30/2005’
THEN ‘David gets his driver’’s license.’

WHEN 1>0 THEN ‘Life is normal.’
END AS RealityCheck

Result of the query when executed on David’s 16th birthday:

RealityCheck

David gets his driver’s license.

As with the simple case, the first true then condition halts evaluation of the case and
returns the when value. In this case (Ha! A pun!), if 1 is ever more than 0 the RealityCheck
case will accurately report ‘reality is gone.’ When my son turns 16, the realitycheck
will again accurately warn us of his legal driving status. If neither of these conditions is true,
and 1 is still greater than 0, all is well with reality and ‘Life is normal.’

09549359 ch06.F 11/21/02 9:23 AM Page 170

171Chapter 6 ✦ Retrieving Data with Select

The point of the preceding code is that the Boolean case expression offers more flexibility
than the simple case. This example mixed various conditional checks (<,=,>), and differing
data was checked by the when clause.

The Boolean case expression can handle complex conditions including Boolean and and or
operators. The following code sample uses a batch to set up the case expression (including
T-SQL variables which are explained in Chapter 12, “Programming with Transact SQL”), and
the case includes an and and a between operator:

DECLARE @b INT, @q INT

SET @b = 2007
SET @q = 25

Select CASE
WHEN @b = 2007 AND @q BETWEEN 10 AND 30 THEN 1
ELSE NULL

END AS Test

Result:

Test

1

From Datasets
The first component of the execution of a typical SQL select statement is the from clause. In
a simple SQL select statement the from clause will contain a single table. However, the from
clause can contain multiple joined tables, subqueries as derived tables, and views. The maxi-
mum number of tables that may be accessed within a single SQL select statement is 256.

The from clause is the foundation of the rest of the SQL statement. For a table column to be
in the output, or accessed in the where conditions, or in the order by, it must be in the from
clause.

Named Ranges
A table may be assigned a named range, or table alias, within the from clause. Once the table
has an alias, the table must be referred to by this new name. The keyword as is optional and
is commonly ignored. The following code accesses the Guide table, but refers to it within the
query as table G:

-- From Table [AS] Range Variable
USE CHA2
SELECT G.lastName, G.FirstName
FROM Guide AS G

[Table Name]
If the name of a database object, such as a table or column name, conflicts with a SQL key-
word, you can let SQL know that it’s the name of an object by placing it inside square brack-
ets. The [Order] table in the OBX Kites sample database is a common example of a table
name that’s also a keyword:

USE OBXKites
SELECT OrderID, OrderDate
FROM [Order]

09549359 ch06.F 11/21/02 9:23 AM Page 171

172 Part II ✦ Developing SQL Server Databases

Although it’s considered poor practice to include spaces within the names of database
objects, some database developers don’t follow this guideline. If this is the case, square
brackets are required when specifying the database object. The Order Details table in the
Northwind sample database illustrates this:

USE Northwind
SELECT OrderID, ProductID, Quantity
FROM [Order Details]

Four-Part Table Names
The full and proper name for a table is not just the table name but what’s called a four-part
name:

Server.Database.Owner.Table

If the table is in the current database, the server and database name are not required.
Although it is not required, it’s still good practice to specify the table’s owner, and here’s why.
It’s possible for a database to have multiple tables with the same name if the tables have dif-
ferent owners. In this case the tables have scope to their respective owner. If the database
owner creates a table called Customer, and Mary creates a table called Customer with herself
as the owner, then Mary will see Mary.Customer and everyone else will see dbo.Customer.
If the owner is not specified, SQL Server must check to see which table is actually being
referenced.

The use of the four-part name enables the reusability of the query-execution plan. Therefore,
it’s not only a cleaner programming practice; performance benefits also result from specifying
the table’s owner. Now that the four-part name has been explained, from here on sample code
in this book will include the owner in the name.

Chapter 28, “Advanced Performance,” discusses Query Execution Plan re-use in more detail.

The from clause is not limited to tables only in the current database or even on the current
server. Chapter 18, “Working with a Distributed Queries,” explains the many methods of
retrieving data from, and updating the data outside, the local database, and even outside
SQL Server.

Where Conditions
The where conditions filter the output of the from clause and restrict the rows that will be
returned in the result set. The conditions can refer to the data within the tables, expressions,
built-in SQL Server scalar functions, or user-defined functions. The where conditions can
make use of several possible comparison operators and wildcards, as listed in Table 6-2. Also,
you can specify multiple where conditions with Boolean and, or, and not operators.

One sure way to improve the performance of a client/server database is to let the database
engine do the work of restricting the rows returned rather than making the calling applica-
tion wade through unnecessary data. However, if the database design requires the use of
functions within the where clause to locate rows, the function will seriously degrade perfor-
mance, because the function is performed on each row. Because of this, well-written where
conditions, based on well-planned database designs, are some of the best performance
tools available to the SQL Server developer.

Cross-
Reference

Cross-
Reference

09549359 ch06.F 11/21/02 9:23 AM Page 172

173Chapter 6 ✦ Retrieving Data with Select

Table 6-2: Standard Comparison Operators

Description Operator Example

Equals = Quantity = 12

Greater than > Quantity > 12

Greater than or equal to >= Quantity >= 12

Less than < Quantity < 12

Less than or equal to <= Quantity<= 12

Not equal to <> , != Quantity <> 12 , Quantity != 12

Not less than !< Quantity !< 12

Not greater than !> Quantity !> 12

The comparison operators that include an exclamation point are not ANSI standard SQL. <>
is portable; != is not.

In addition to the standard comparison operators, which are no doubt familiar, SQL provides
four special comparison operators: between, in, like, and is. The first three are explained
in this section. Testing for nulls using the is keyword, and handling nulls, are explained in the
next section.

The best way to find a thing is to look for it, rather than to first eliminate everything it isn’t.
It’s far easier to locate a business in a city than it is to prove that the business doesn’t exist
somewhere in a city. The same is true of database searches. Proving that a row meets a con-
dition is faster than first eliminating every row that doesn’t meet that condition. As a guide-
line, restating a negative where condition as a positive condition will improve performance.

Using the Between Search Condition
The between search condition tests for values within a range. The range can be deceiving,
because the range is inclusive. For example, between 1 and 10 would test for 1 and 10.
When using the between search condition the first value must be less than the latter value
because in actuality, the between search condition is shorthand for “greater than or equal to
the first value, and less than or equal to the second value.”

The between search condition is commonly used with dates. The following code sample, also
shown in Figure 6-7, locates all events from the Cape Hatteras Adventures sample database
occurring during July 2001:

USE CHA2

SELECT EventCode, DateBegin
FROM dbo.Event
WHERE DateBegin BETWEEN ‘07/01/01’ AND ‘07/31/01’

Caution

09549359 ch06.F 11/21/02 9:23 AM Page 173

174 Part II ✦ Developing SQL Server Databases

Result:

EventCode DateBegin
---------- --------------------------
01-006 2001-07-03 00:00:00.000
01-007 2001-07-03 00:00:00.000
01-008 2001-07-14 00:00:00.000

Figure 6-7: You can set the where clause conditions in Enterprise Manager’s Query
Designer in the Grid or SQL pane.

The previous query returns an accurate result if the dates are stored without a time
value. But most applications grab the data and time using SQL Server’s GetDate() function,
with the time captured to within three milliseconds. If this is the case, every row has the
date and time stored. Therefore, the previous query would miss every row after the time
00:00:00.000 on ‘07/31/01’. If rows are to be properly selected by full date and time, the
end parameter must include the last time for the day. As the next code sample demonstrates,
the last time the SQL Server knows about is 12:59:59.998 pm:

CREATE TABLE dbo.DateTest(
PK INT IDENTITY,
OrderDate DATETIME
)

go
INSERT dbo.DateTest(OrderDate)
VALUES(‘1/1/01 00:00’)

INSERT dbo.DateTest(OrderDate)
VALUES(‘1/1/01 23:59’)

09549359 ch06.F 11/21/02 9:23 AM Page 174

175Chapter 6 ✦ Retrieving Data with Select

INSERT dbo.DateTest(OrderDate)
VALUES(‘1/1/01 11:59:59.995 pm’)

INSERT dbo.DateTest(OrderDate)
VALUES(‘1/2/01’)

The following query demonstrates the last valid time for the day:

SELECT *
FROM dbo.DateTest
WHERE OrderDate BETWEEN ‘1/1/1’ AND ‘1/1/1 11:59:59.998 PM’

Result:

PK OrderDate
----------- ------------------------
1 2001-01-01 00:00:00.000
2 2001-01-01 23:59:00.000
3 2001-01-01 23:59:59.997

SQL Server automatically adjusts this query to the next nearest three milliseconds, causing it
to return erroneous results:

SELECT *
FROM dbo.DateTest
WHERE OrderDate BETWEEN ‘1/1/1’ AND ‘1/1/1 11:59:59.999 PM’

Result:

PK OrderDate
----------- ------------------------
1 2001-01-01 00:00:00.000
2 2001-01-01 23:59:00.000
3 2001-01-01 23:59:59.997
4 2001-01-02 00:00:00.000

DROP TABLE DateTest

The second query’s end time is adjusted to the nearest three-millisecond mark and incor-
rectly selects any rows for the next day without a time.

The same issue is present with smalldatetime data-type columns, which are accurate only
to the minute. Selecting where column <= 11:59:30 pm rounds up to 12:00 am the next day.

The following query from the Family_Queries.sql script uses the between search condi-
tion to find mothers who bore children less than nine months after marrying.

Beginning with the from clause, the query gathers information about the mother, the mar-
riage, and the children, all from the person table. The where clause then restricts the results
to those with the child’s DateOfBirth within a certain time frame.

SELECT Person.FirstName + ‘ ‘ + Person.LastName AS Mother,
Convert(Char(12), Marriage.DateOfWedding, 107) as Wedding,
Child.FirstName + ‘ ‘ + Child.LastName as Child,
Convert(Char(12), Child.DateOfBirth, 107) as Birth
FROM Person
JOIN Marriage
ON Person.PersonID = Marriage.WifeID

JOIN Person Child
ON Person.PersonID = Child.MotherID

09549359 ch06.F 11/21/02 9:23 AM Page 175

176 Part II ✦ Developing SQL Server Databases

WHERE Child.DateOfBirth
BETWEEN Marriage.DateOfWedding
AND DATEADD(mm, 9, Marriage.DateOfWedding)

Result:

Mother Wedding Child Birth
---------------- ------------ --------------- ------------
Alysia Halloway Jan 01, 1975 James Halloway May 24, 1975

Using the In Search Condition
The in search condition is similar to the equals comparison operator, but the in search con-
dition searches for an exact match from a list. If the value is in the list, the comparison is
true. For instance, if region data was entered into the database, the following code finds any
Cape Hatteras Adventures’ base camps in North Carolina or West Virginia:

USE CHA2
SELECT BaseCampname
FROM dbo.BaseCamp
WHERE Region IN (‘NC’, ‘WV’)

Result:

BaseCampName

West Virginia
Cape Hatteras
Ashville NC

Effectively, the in search condition is the equivalent of multiple equals comparisons “or”ed
together:

USE CHA2
SELECT BaseCampname
FROM dbo.BaseCamp
WHERE Region = ‘NC’
OR Region = ‘WV’

Result:

BaseCampName

West Virginia
Cape Hatteras
Ashville NC

The in operator may be combined with not to exclude certain rows. For example, where not
in (‘NC’, ‘SC’) would return all rows except those in the Carolinas:

USE CHA2
SELECT BaseCampname
FROM dbo.BaseCamp
WHERE Region NOT IN (‘NC’, ‘SC’)

09549359 ch06.F 11/21/02 9:23 AM Page 176

177Chapter 6 ✦ Retrieving Data with Select

Result:

BaseCampName

FreePort
Ft Lauderdale
West Virginia

It’s difficult to prove a negative. Especially when a null value is involved. Since the meaning of
null is “unknown,” the value being searched for could be in the list. The code sample demon-
strates how a null in the list will make it impossible to prove that ‘A’ is not in the list.

SELECT ‘IN’ WHERE ‘A’ NOT IN (‘B’,NULL)

There’s no result, because the unknown null value just might be an “A.” Since SQL can’t logi-
cally prove that “A” is not in the list, the where clause returns a false. Any time a not in con-
dition is mixed with a null in the list, every row will be evaluated as false.

In is very powerful. Although the previous query used a hard-coded list of states, when com-
bined with a subquery (explained in the next chapter) to generate a dynamic list, in solves a
world of problems.

Using the Like Search Condition
The like search condition uses wildcards to search for patterns within the string. The wild-
cards, however, are very different from the MS-DOS wildcards you may be familiar with, as
shown in Table 6-3.

Table 6-3: SQL Wildcards

Description SQL Wildcard MS/DOS Wildcard Example

Multiple characters % * ‘Able’ LIKE ‘A%’

Single character _ ? ‘Able’ LIKE ‘Abl_’

Match in range of characters [] n/a ‘a’ LIKE ‘[a-g]’

‘a’ LIKE ‘[abcdefg]’

Match not in range of characters [^] n/a ‘a’ LIKE ‘[^w-z]’

‘a’ LIKE ‘[^wxyz] ‘

The next query uses the like search condition located all products that begin with “air” fol-
lowed by any number of characters:

USE OBXKites

SELECT ProductName
FROM dbo.Product
WHERE ProductName LIKE ‘Air%’

09549359 ch06.F 11/21/02 9:23 AM Page 177

178 Part II ✦ Developing SQL Server Databases

Result:

ProductName

Air Writer 36
Air Writer 48
Air Writer 66

The following query finds any productname beginning with a letter between a and d inclusive:

SELECT ProductName
FROM Product
WHERE ProductName LIKE ‘[a-d]%’

Result:

ProductName
--
Basic Box Kite 21 inch
Dragon Flight
Chinese 6” Kite
Air Writer 36
Air Writer 48
Air Writer 66
Competition 36”
Competition Pro 48”
Black Ghost
Basic Kite Flight
Advanced Acrobatics
Adventures in the OuterBanks
Cape Hatteras T-Shirt

To search for a pattern that contains a wildcard, there are two possible methods: Either
enclose the wildcard in square brackets, or put an escape character before it. The trick to the
latter workaround is that the escape character is defined within the like expression.

The following two examples search for the phrase “F-15” in the OBX Kites product table. The
first query encloses the hyphen, which is normally a wildcard, in square brackets, while the
second query defines the ampersand as the escape character:

SELECT ProductCode, ProductName
FROM Product
WHERE ProductName LIKE ‘%F[-]15%’

SELECT ProductCode, ProductName
FROM Product
WHERE ProductName LIKE ‘%F&-15%’ ESCAPE ‘&’

Both queries produce the same Result:

ProductCode ProductName
--------------- ------------
1013 Eagle F-15

Of the two methods of searching for wildcard characters, the square bracket method is T-SQL
specific and is not ANSI SQL standard. The escape method, however, is SQL standard and is
portable.

Caution

09549359 ch06.F 11/21/02 9:23 AM Page 178

179Chapter 6 ✦ Retrieving Data with Select

When using the like operator, be aware that the database collation’s sort order will deter-
mine both the case sensitivity and the sort order for the range of characters. You can option-
ally use the keyword collate to specify the collation sort order used by the like operator.

While the like operator can be very useful, it can also cause a performance hit. Indexes are
based on the beginning of the column, not on phrases in the middle of the column. If you
find that the application requires frequent use of the like operator, you should enable full-
text indexing — a powerful indexing method that can even take into consideration weighted
words and variations of inflections, and can even return the result set in table form with rank-
ing for joining. See Chapter 8, “Searching Full-Text Indexes,” for more details.

Multiple Where Conditions
You can combine multiple where conditions within the where clause using the Boolean logi-
cal operators: and, or, and not. Just as with the mathematical operators of multiplication and
division, an order of precedents exists with the Boolean logical operators: and comes first,
then or, and then not:

SELECT ProductCode, ProductName
FROM dbo.Product
WHERE

ProductName LIKE ‘Air%’
OR
ProductCode between ‘1018’ AND ‘1020’

AND
ProductName LIKE ‘%G%’

Result:

ProductCode ProductName
--------------- ---------------------
1009 Air Writer 36
1010 Air Writer 48
1011 Air Writer 66
1019 Grand Daddy
1020 Black Ghost

With the addition of parentheses, the result of the query is radically changed:

SELECT ProductCode, ProductName
FROM Product
WHERE

(ProductName LIKE ‘Air%’
OR
ProductCode between ‘1018’ AND ‘1020’)

AND
ProductName LIKE ‘%G%’

Result:

ProductCode ProductName
--------------- ---------------------
1019 Grand Daddy
1020 Black Ghost

09549359 ch06.F 11/21/02 9:23 AM Page 179

180 Part II ✦ Developing SQL Server Databases

While the two preceding queries are very similar, in the first query the natural precedence of
Boolean operators caused the and to be evaluated before the or. The or included the Air
Writers in the results.

The second query used parentheses to explicitly dictate the order of the Boolean operators.
The or collected the Air Writers and products with a ProductCode of 1018, 1019, or 1020.
This list was then anded with the Products that included the letter g in their names. Only
Products 1019 and 1020 passed both of those tests.

When coding complex Boolean or mathematical expressions, explicitly stating your inten-
tions with parentheses or detailed code reduces misunderstandings and errors based on
assumptions.

Select...Where
Amazingly, using the where clause in a select statement does not require you to use a from
clause, or any table reference at all. A select statement without a from clause operates as a
single row:

SELECT ‘abc’

Result:

abc

A where clause on a non-table select statement serves as a restriction to the entire select
statement. If the where condition is true, the select statement will function as expected:

SELECT ‘abc’ WHERE 1>0

Result:

abc

If the where condition is false, the select statement is not executed:

DECLARE @test NVARCHAR(15)
SET @test = ‘z’
SELECT @test = ‘abc’ WHERE 1<0
SELECT @test

Result:

z

Functionally, a where clause on a non-table select statement is shorthand for an if condi-
tion like the one that follows:

DECLARE @test NVARCHAR(15)
SET @test = ‘z’
IF 1<0
SELECT @test = ‘abc’

SELECT @test

Result:

z

09549359 ch06.F 11/21/02 9:23 AM Page 180

181Chapter 6 ✦ Retrieving Data with Select

Ordering the Result Set
Data in a SQL table takes the form of an unsorted list. The primary key’s purpose is to
uniquely identify the row, not sort the table. Other desktop databases may present the table
in the order of the primary key if no order by clause exists. However, it is not a good prac-
tice to depend on that behavior. If you do not specify an order by clause, the order of the
rows in the result set will have no defined meaning.

Having said that, if no order by clause exists, SQL Server will return the rows in the order in
which they are fetched. If a table has a clustered index, the rows will likely be returned
according to the clustered index. Other logical operations within the query may sort the data
to support the logical operation. For example, some joins will sort the data to make the join
easier to perform. So even without an order by clause the data result may appear to be
sorted, but this is merely a coincidence. Again, if the rows are required to be in that order,
good practice is to specify such within an order by clause, as demonstrated in Figure 6-8.

SQL can sort by multiple columns, and the sort columns don’t have to be columns that are
returned by the select, so there’s lots of flexibility in how the columns are specified.

Figure 6-8: Within Enterprise Manager’s Query Designer, you can define the sort order
by clicking the Ascending or Descending button on the toolbar, or by setting the sort
order in the Grid Pane.

09549359 ch06.F 11/21/02 9:23 AM Page 181

182 Part II ✦ Developing SQL Server Databases

Specifying the Order by Using Columns Names
The simplest way to sort the result set is to completely spell out the order by columns:

USE CHA2

SELECT FirstName, LastName
FROM dbo.Customer
ORDER BY LastName, FirstName

Result:

FirstName LastName
------------- --------------------
Joe Adams
Missy Anderson
Debbie Andrews
Dave Bettys
...

Specifying the Order by Using Expressions
In the case of sorting by an expression, the entire expression can be repeated in the order
by clause. This does not cause a performance hit, because the SQL Server query optimizer is
smart enough to avoid recomputing the expression.

SELECT LastName + ‘, ‘ + FirstName
FROM dbo.Customer
ORDER BY LastName + ‘, ‘ + FirstName

Result:

FullName

Adams, Joe
Anderson, Missy
Andrews, Debbie
Bettys, Dave
...

Using an expression in the order by clause can solve some headaches. Some database devel-
opers store titles in two columns, one column includes the full title, and the duplicate column
stores the title stripped of the leading “The.” For performance, such denormalization might
be a good idea. But using a case expression within the order by clause will sort correctly
without duplicating the title.

The Aesop’s Fables sample database includes a list of titles. If the Title includes a leading
“The” then the case expression removes it from the data and passes to the order by:

USE Aesop
SELECT Title, Len(FableText) AS TextLength
FROM Fable
ORDER BY
CASE
WHEN SubString(Title, 1,3) = ‘The’
THEN SubString(Title, 5, Len(Title)-4)

ELSE Title
END

09549359 ch06.F 11/21/02 9:23 AM Page 182

183Chapter 6 ✦ Retrieving Data with Select

Result:

FableName TextLength
--------------------------------- -----------
Androcles 1370
The Ant and the Chrysalis 1087
The Ants and the Grasshopper 456
The Ass in the Lion’s Skin 465
The Bald Knight 360
The Boy and the Filberts 435
The Bundle of Sticks 551
The Crow and the Pitcher 491
...

Specifying the Order by Using Column Aliases
Alternately, a column alias may be used to specify the columns used in the order by clause.
This is the preferred method for sorting by an expression, because it makes the code easier
to read. In addition, this example sorts in descending order rather than the default ascending
order:

SELECT LastName + ‘, ‘ + FirstName as FullName
FROM dbo.Customer
ORDER BY FullName DESC

Result:

FullName

Zeniod, Kent
Williams, Larry
Valentino, Mary
Spade, Sam
...

Notice that an alias is allowed in the order by clause, but not the where clause. That’s
because the where clause is logically executed near the beginning of the query execution,
while the order by clause is the last logical operation and follows the assembling of the
columns and aliases.

Specifying the Order by Using Column Ordinal Positions
The ordinal number (column position number) of the column can be used to indicate the
order by columns. I don’t recommend this method because if the columns are changed at
the beginning of the select statement the order by will function differently. However, I have
used the ordinal number to specify the sort for complex union queries, which are discussed
in the next chapter. The following query demonstrates sorting by ordinal position:

SELECT LastName + ‘, ‘ + FirstName as FullName
FROM dbo.Customer
ORDER BY 1

09549359 ch06.F 11/21/02 9:23 AM Page 183

184 Part II ✦ Developing SQL Server Databases

Result:

FullName

Adams, Joe
Anderson, Missy
Andrews, Debbie
Bettys, Dave
...

Order by and Collation
SQL Server’s collation order is vital to sorting data. Besides determining the alphabet, the col-
lation order also determines whether accents, case, and other alphabet properties are con-
sidered in the sort order. For example, if the collation is case-sensitive, the uppercase letters
are sorted before the lowercase letters. The following functions report the installed collation
options and the current collation server property:

SELECT * FROM ::fn_helpcollations()

Result:

name description
--------------------- -------------------------
Albanian_BIN Albanian, binary sort
Albanian_CI_AI Albanian, case-insensitive,

accent-insensitive,
kanatype-insensitive, width-insensitive

Albanian_CI_AI_WS Albanian, case-insensitive,
accent-insensitive,
kanatype-insensitive, width-sensitive

...
SQL_Latin1_General_CP1_CI_AI

Latin1-General, case-insensitive,
accent-insensitive,
kanatype-insensitive, width-insensitive
for Unicode Data, SQL Server Sort Order
54 on Code Page 1252 for non-Unicode
Data

...

The following query reports the current server collation:

SELECT SERVERPROPERTY(‘Collation’) AS ServerCollation

Result:

ServerCollation

SQL_Latin1_General_CP1_CI_AS

While the server collation setting was determined during setup, the collation property for a
database or column can be set using the collate keyword. The following code changes the
Family database collation so that it becomes case-sensitive:

ALTER DATABASE Family
COLLATE SQL_Latin1_General_CP1_CS_AS

09549359 ch06.F 11/21/02 9:23 AM Page 184

185Chapter 6 ✦ Retrieving Data with Select

SELECT DATABASEPROPERTYEX(Family,’Collation’)
AS DatabaseCollation

Result:

DatabaseCollation

SQL_Latin1_General_CP1_CS_AS

Not only can SQL Server set the collation at the server, database, and column levels, but the
collation can even be set at the individual query. The following query will be sorted accord-
ing to the Danish collation without regard to case or accents:

SELECT *
FROM dbo.Product
ORDER BY ProductName
COLLATE Danish_Norwegian_CI_AI

Not every query needs to be sorted, but for those that do, the order by clause combined
with the many possible collations yields tremendous flexibility in sorting the result set.

Working with Nulls
The relational database model represents missing data using null. Technically, null means
“value unknown.” In practice, null can indicate that the data has not yet been entered into the
database, or the column does not apply to the particular row.

Because null is unknown, the result of any expression that includes null will also be unknown.
If the contents of a bank account are unknown, and its funds are included in a portfolio, the
total value of the portfolio is also unknown. The same concept is true in SQL, as the following
code demonstrates. Phil Senn, a database developer, puts it this way: “Nulls zap the life out of
any other value.”

SELECT 1 + NULL

Result:

NULL

Because they have such a devastating effect on expressions, some developers detest the use
of nulls. They develop their databases so that nulls are never permitted and column defaults
supply surrogate nulls (blanks, 0’s, or ‘n/a’) instead. Other database developers argue that an
unknown value shouldn’t be represented by a zero or a blank just to make coding easier. I fall
in the latter camp. Nulls are valuable in a database because they provide important informa-
tion about the status of the data, so it’s worth your while to write code that checks for nulls
and handles them appropriately.

Testing for Null
Because null is unknown, null is not even equal to null. Going back to the bank account exam-
ple, if the value of account 123 is unknown and the value of account 234 is unknown, then it’s
logically impossible to prove that the two accounts are equal. Because the equal operator
can’t check for nulls, SQL includes a special operator, is, to test for equivalence to special
values, as follows:

WHERE Expression IS NULL

09549359 ch06.F 11/21/02 9:23 AM Page 185

186 Part II ✦ Developing SQL Server Databases

The is null SQL search condition is used to test for a null value:

IF NULL = NULL
SELECT ‘=’

ELSE
SELECT ‘!=’

Result:

!=

The is search condition, however, works as advertised:

IF NULL IS NULL
SELECT ‘Is’

ELSE
SELECT ‘Is Not’

Result:

Is

The is search condition may be used in the select statement’s where clause to locate rows
with null values. Most of the Cape Hatteras Adventures customers do not have a nickname in
the database. The following query retrieves only those customers with a null in the Nickname
column:

USE CHA2
SELECT FirstName, LastName, Nickname
FROM dbo.Customer
WHERE Nickname IS NULL
ORDER BY LastName, FirstName

Result:

FirstName LastName Nickname
------------ -------------- ----------------
Debbie Andrews NULL
Dave Bettys NULL
Jay Brown NULL
Lauren Davis NULL
...

The is operator may be combined with not to test for the presence of a value by restricting
the result set to those rows where Nickname is not null:

SELECT FirstName, LastName, Nickname
FROM dbo.Customer
WHERE Nickname IS NOT NULL
ORDER BY LastName, FirstName

Result:

FirstName LastName Nickname
------------ -------------- ----------------
Joe Adams Slim
Melissa Anderson Missy
Frank Goldberg Frankie
Raymond Johnson Ray
...

09549359 ch06.F 11/21/02 9:23 AM Page 186

187Chapter 6 ✦ Retrieving Data with Select

One exception to the rule that adding a null to a value results in null concerns nulls within
columns being added by an aggregate function. Aggregate functions (Sum(), Avg(), and so
on) tend to ignore nulls. Aggregates are covered in the “Summing and Grouping Data” section
later in this chapter.

Handling Nulls
When you are supplying data to reports, to end users, or to some applications, a null value
will be less than welcome. Often a null must be converted to a valid value so the data may be
understood, or so the expression won’t fail.

Nulls require special handling when used within expressions, and SQL includes a few func-
tions designed specifically to handle nulls. Isnull() and coalesce() convert nulls to usable
values, and nullif() will create a null if the specified condition is met.

To complicate matters further, SQL Server uses three-state logic when dealing with Boolean
expressions. Comparing a null with a true will yield null.

Using the IsNull() Function
The most common null-handling function is isnull(), which is different from the is null
search condition. This function accepts a single column or expression, and a substitution
value. If the source is a valid value (not null), the isnull() function passes the value on.
However, if the source is a null, the second parameter is substituted for the null, as follows:

IsNull(source_expression, replacement_value)

Functionally, isnull() is the same as the following case expression:

CASE
WHEN source_expression IS NULL THEN replacement_value
ELSE source_expression

END AS ISNULL

The following code sample builds on the previous queries by substituting the string (‘none’)
for a null for customers without a nickname:

SELECT FirstName, LastName, ISNULL(Nickname,’none’)
FROM Customer
ORDER BY LastName, FirstName

Result:

FirstName LastName Nickname
------------ -------------- ----------------
Joe Adams Slim
Melissa Anderson Missy
Debbie Andrews none
Dave Bettys none
...

If the row has a value in the Nickname column, that value is passed though the isnull()
function untouched. However, if the nickname is null for a row, the null is handled by the
isnull() function and converted to the value “none.”

The isnull() and nullif() functions are a T-SQL specific and are not ANSI standard SQL.Caution

09549359 ch06.F 11/21/02 9:23 AM Page 187

188 Part II ✦ Developing SQL Server Databases

Coalesce()
Coalesce() is rarely used, perhaps because it’s not well known. However, it’s a cool function.
Coalesce() accepts a list of expressions or columns and returns the first non-null value, as
follows:

Coalesce(expression, expression, ...)

Coalesce() is derived from the Latin words co + alescre, which mean to unite toward a com-
mon end, to grow together, or to bring opposing sides together for a common good. The SQL
keyword however, is derived from the alternate meaning of the term -- “to arise from the com-
bination of distinct elements.” In a sense, the coalesce() function brings together multiple,
differing values of unknown usefulness, and from them emerges a single valid value.

Functionally, coalesce() is the same as the following case expression:

CASE
WHEN expression1 IS NOT NULL THEN expression1
WHEN expression2 IS NOT NULL THEN expression2
WHEN expression3 IS NOT NULL THEN expression3
...

END AS COALESCE

The following code sample demonstrates the coalesce() function returning the first non-
null value. In this case it’s 1+2:

SELECT Coalesce(NULL, 1+NULL, 1+2, ‘abc’)

Result:

3

Coalesce() is excellent for merging messy data. For example, if a table has partial data in
several columns, the coalesce() function can help pull the data together. In one project I
worked on, the client had collected names and addresses from several databases and applica-
tions into a single table. The contact name and company name made it into the proper
columns, but some addresses were in Address1, some in Address2, and some in Address3.
Some rows had the second line of the address in Address2. If the address columns had an
address, then the SalesNote was a real note. But in many cases the addresses were in the
SalesNote column. Here’s the code to extract the address from such a mess:

SELECT Coalesce(
Address1 + str(13)+str(10) + Adress2,
Address1,
Address2,
Address3,
SalesNote) AS NewAddress

FROM TempSalesContacts

For each row in the TempSalesContacts table, the coalesce() function will search through
the listed columns and return the first non-null value. The first expression returns a value
only if there’s a value in both Address1 and Address2, because a value concatenated with a
null produces a null. So if a two-line address exists, it will be returned. Otherwise, a one-line
address in Address1, Address2, or Address3 will be returned. Failing those options, the
SalesNote column will be returned. Of course, the result from such a messy source table will
still need to be manually scanned and verified.

09549359 ch06.F 11/21/02 9:23 AM Page 188

189Chapter 6 ✦ Retrieving Data with Select

You won’t use the coalesce() function every day, but it’s a useful tool to have in your devel-
oper’s bag.

Nullif()
There are instances when a null should be created in place of surrogate null values. If a
database is polluted with n/a, blank, or - values where it should contain nulls, you can use
the nullif() function to replace the inconsistent values with nulls and clean the database.

The nullif() function accepts two parameters. If they are equal, it returns a null; otherwise
it returns the first parameter. Functionally nullif() is the same as the following case
expression:

CASE
WHEN Expression1 = Expression2 THEN NULL
ELSE Expression1

END AS NULLIF

The following code will convert any blanks in the Nickname column into nulls. The first state-
ment updates one of the rows to a blank for testing purposes.

UPDATE Customer
SET Nickname = ‘’
WHERE LastName = ‘Adams’

SELECT LastName, FirstName,
CASE NickName
WHEN ‘’ THEN ‘blank’
ELSE Nickname

END AS Nickname,
NullIf(Nickname,’’) as NicknameNullIf

FROM dbo.Customer
WHERE LastName IN (‘Adams’, ‘Anderson’, ‘Andrews’)
ORDER BY LastName, FirstName

Result:

LastName FirstName Nickname NicknameNullIf
----------- ----------- ---------- ------------
Adams Joe blank NULL
Anderson Melissa Missy Missy
Andrews Debbie NULL NULL

The third column uses a case expression to expose the blank value as “blank,” and indeed,
the nullif() function converts the blank value to a null in the fourth column. To test the
other null possibilities, Melissa’s Nickname was not affected by the nullif() function, and
Debbie’s null Nickname value was still in place.

Non-Default Null Behavior
Everything so far in discussing nulls is based on SQL Server’s default behavior with nulls.
However, SQL Server is highly flexible, and the null behaviors may be altered.

By all logic, concatenating a null with a value should produce a null. But that behavior can be
changed. The connection setting, concat_null_yields_null, determines the outcome of

09549359 ch06.F 11/21/02 9:23 AM Page 189

190 Part II ✦ Developing SQL Server Databases

concatenating a value with a null. The connection setting is initially determined by the
database default with the same name (concat_null_yields_null). Changing the null
behavior can be difficult to test because Query Analyzer also has a default set of connection
settings, which it applies with every new connection.

The following code sets the database option and the connection option to disable the default
behavior:

-- set database option
sp_dboption ‘CHA2’, CONCAT_NULL_YIELDS_NULL, ‘false’
-- examine the database option
SELECT DATABASEPROPERTYEX(‘CHA2’, ‘IsNullConcat’)

Result:

0

Setting the connection setting:

SET CONCAT_NULL_YIELDS_NULL OFF

Concatenating a null:

SELECT NULL + ‘abc’

Result:

abc

Normally in ANSI SQL (and SQL Server), a comparison to null will yield null. For example eval-
uating (1>null) results in a null. However, you can change that behavior by setting ANSI
nulls off in the connection. The greatest affect of this change is that nulls may be tested with
an equals condition instead of only with an is operator.

As with the previous concatenation option, the connection setting is the one that counts. The
following code sample sets the database default option and the connection settings to disable
ANSI null behavior:

-- set database option
sp_dboption ‘CHA2’, ANSI_NULLS, ‘false’
-- examine the database option
SELECT DATABASEPROPERTYEX(‘CHA2’,’IsAnsiNullsEnabled’)

Result:

0

Concatenating a null:

SET ANSI_NULLS OFF

Testing for a null with an equals sign:

SELECT ‘true’ WHERE (NULL = NULL)

Result:

true

09549359 ch06.F 11/21/02 9:23 AM Page 190

191Chapter 6 ✦ Retrieving Data with Select

Scalar Functions
A scalar function returns a single value. They are commonly used in expressions within the
select columns, the where clause, or T-SQL code. SQL Server includes dozens of functions,
as illustrated in Figure 6-9. In this section I’ll explain the functions I find most useful.

Figure 6-9: Exploring Query Analyzer’s Object Browser is the best way to discover all of SQL
Server’s functions.

Performance is as much a part of the data-schema design as it is a part of the query. Plan on
storing the data in the way they will be searched by a where condition, rather than depend-
ing upon manipulating the data with functions at query time. While using a function in an
expression in a result-set column may be unavoidable, using a function in a where condition
forces the function to be calculated for every row.

With SQL Server 2000 you can develop three types of user-defined functions, as explained in
Chapter 14, “Building User-Defined Functions.”

Cross-
Reference

09549359 ch06.F 11/21/02 9:23 AM Page 191

192 Part II ✦ Developing SQL Server Databases

Server Environment Information
System functions return information about the current environment. The section covers the
more commonly used system functions.

✦ GetDate(): Returns the current server date and time to the nearest three milliseconds.

✦ Db_name(): Returns the name of the current database, as in the following example:

SELECT GETDATE() AS ‘Date’,
DB_NAME() AS ‘Database’

Result:

Date Database
------------------------- -------
2001-11-15 18:38:50.250 CHA2

✦ GetUTCDate(): Returns the current Universal Time Coordinate time, or Greenwich
Mean Time. This is very useful for consistently recording times for applications that
span multiple time zones.

✦ ServerProperty(): Several useful pieces of information about the server may be
determined from the serverproperty (property) function, including:

• Collation: The collation type

• Edition: Enterprise, Developer, Standard, and so on

• EngineEdition: 1 — Personal or Desktop Engine, 2 — Standard, 3 — Enterprise

• InstanceName: Null if default instance

• ProductVersion: The version number of the SQL Server

• ProductLevel: “RTM” for the initial release-to-manufacturing version, “SPn” for
service packs, “Bn” for beta software

• ServerName: The full server and instance name

For example, the following code returns the engine edition and the product level for my
current instance of SQL Server:

SELECT
SERVERPROPERTY (‘ServerName’) AS ServerName,
SERVERPROPERTY (‘Edition’) AS Edition,
SERVERPROPERTY (‘EngineEdition’) AS EngineEdition,
SERVERPROPERTY (‘ProductLevel’) AS ProductLevel

Result:

ServerName Edition EngineEdition ProductLevel
----------- ------------------ -------------- -------------
NOLI Developer Edition 3 SP2

09549359 ch06.F 11/21/02 9:23 AM Page 192

193Chapter 6 ✦ Retrieving Data with Select

User Information Functions
In a client/server environment, it’s good to know who the client is. Toward that end, the fol-
lowing four functions are very useful, especially for gathering audit information.

✦ User_name(): Returns the name of the current user as he or she is known to the
database. When a user is granted access to a database, the user name different than
the server login name may be assigned.

✦ Suser_sname(): Returns the login name by which the user was authenticated to SQL
Server. If the user was authenticated as a member of a Windows user group, this func-
tion still returns the user’s Windows login name.

✦ Host_name(): Returns the name of the user’s workstation.

✦ App_name(): Returns the name of the application connected to SQL Server, as follows:

SELECT
USER_NAME() AS ‘User’,
SUSER_SNAME() AS ‘Login’,
HOST_NAME() AS ‘Workstation’,
APP_NAME() AS ‘Application’

Result:

User Login Workstation Appllication
------- ---------------- ------------ ------------------
dbo NOLI\Paul CHA2 NOLI SQL Query Analyzer

Data-Time Functions
Databases must often work with date-time data and SQL Server includes several useful date-
time functions. SQL Server stores both the data and the time in a single data type. For more
about data types refer to Chapter 5, “Implementing the Physical Database Schema.” The fol-
lowing four SQL Server date-time functions handle extracting or working with a specific por-
tion of the date or time stored within a datatime column:

✦ DateName(date portion, date): Returns the proper name for the selected portion
of the datetime value. The portions for datename() and datepart() are listed in
Table 6-4:

SELECT DATENAME(Year, GetDate()) as Year

Result:

Year

2001

The following code example assigns to Mr. Frank a date of birth and then retrieves the proper
names of some of the portions of that date of birth using the datename() function:

UPDATE Guide
SET DateOfBirth = ‘9/4/58’
WHERE lastName = ‘Frank’

09549359 ch06.F 11/21/02 9:23 AM Page 193

194 Part II ✦ Developing SQL Server Databases

Result:

SELECT LastName,
DATENAME(yy,DateOfBirth) AS [Year],
DATENAME(mm,DateOfBirth) AS [Month],
DATENAME(dd,DateOfBirth) AS [Day],
DATENAME(weekday, DateOfBirth) AS BirthDay

FROM dbo.Guide
WHERE DateOfBirth IS NOT NULL

LastName Year Month Day BirthDay
--------- ------ ----------- ----- ----------------
Frank 1958 September 4 Thursday

Table 6-4: Datetime Portions Used by Date Functions

Portion Abbreviation

Year yy, yyyy

Quarter qq, q

Month mm, m

DayofYear dy, d

Day dd, d

Week wk, ww

Weekday dw

Hour hh

Minute mi, n

Second ss, s

Millisecond ms

✦ DatePart(date portion, date): Returns the selected portion of the datetime
value. The following example retrieves the day of the year and the day of the week as
integers:

SELECT DATEPART(DayofYear, GetDate()) AS DayCount

Result:

DayCount

321

SELECT DATEPART(dw, GetDate()) AS DayWeek

Result:

DayWeek

7

09549359 ch06.F 11/21/02 9:23 AM Page 194

195Chapter 6 ✦ Retrieving Data with Select

The easiest way to get just the date -- stripping off the time, is to use a couple string
functions:

Select Cast(Char(10), GetDate(), 101) as DateTime

✦ DateAdd(date portion, amount, beginning date) and DateDiff(date
portion, amount, beginning date): Performs addition and subtraction on date-
time data. Databases must often perform addition and subtraction on datetime data.
The datediff() and the dateadd() functions are designed expressly for this purpose.
The datediff() doesn’t look at the complete date but just the date part being
extracted.

The following query calculates the number of years and days that my wife Melissa and I
have been married:

SELECT
DATEDIFF(yy,’1984/5/20’, Getdate()) AS MarriedYears,
DATEDIFF(dd,’1984/5/20’, Getdate()) AS MarriedDays

Result:

MarriedYears MarriedDays
------------ -----------
17 6390

The next query adds 100 hours to the millisecond of this writing:

SELECT DATEADD(hh,100, GETDATE()) AS [100HoursFromNow]

Result:

100HoursFromNow

2001-11-21 18:42:03.507

The following query is based on the Family sample database and calculates the
mother’s age at the birth of each child using the datediff() function:

USE Family
SELECT Person.FirstName + ‘ ‘ + Person.LastName AS Mother,

DATEDIFF(yy, Person.DateOfBirth,
Child.DateOfBirth) AS Age,Child.FirstName

FROM Person
JOIN Person Child
ON Person.PersonID = Child.MotherID

ORDER By Age DESC

The datediff function in this query returns the year difference between Person.
DateOfBirth, which is the mother’s birthdate, and the child’s date of birth. Because
the function is in a column expression, it’s calculated for each row in the result set:

Mother Age FirstName
------------------------------- ----------- ---------------
Audry Halloway 33 Corwin
Kimberly Kidd 31 Logan
Elizabeth Campbell 31 Alexia
Melanie Campbell 30 Adam
Grace Halloway 30 James
...

09549359 ch06.F 11/21/02 9:23 AM Page 195

196 Part II ✦ Developing SQL Server Databases

String Functions
Like most modern programming languages, T-SQL includes many string-manipulation
functions:

✦ SubString(string, starting position, length): Returns a portion of a string.
The first parameter is the string, the second parameter is the beginning position of the
substring to be extracted, and the third parameter is the length of the string extracted.

SELECT SUBSTRING(‘abcdefg’, 3, 2)

Result:

cd

✦ Stuff(string, insertion position, delete count, string inserted): The
inverse of substring(), the stuff() function inserts one string into another string.
The inserted string may delete a specified number of characters as it is being inserted.

SELECT STUFF(‘abcdefg’, 3, 2, ‘123’)

Result:

ab123efg

The following code sample uses nested stuff() functions to format a U.S. Social
Security Number:

SELECT STUFF(STUFF(‘123456789’, 4, 0, ‘-’), 7, 0, ‘-’)

Result:

123-45-6789

✦ CharIndex(search string, string, starting position): Returns the character
position of a string within a string:

SELECT CHARINDEX(‘c’, ‘abcdefg’, 1)

Result:

3

The TitleCase() user defined function later in this section uses the CharIndex() to
locate the spaces separating words.

✦ PatIndex(%pattern%, string): Searches for a pattern, which may include wildcards,
within a string. The following code locates the first position of either a c or d in the
string:

SELECT PATINDEX(‘%[cd]%’, ‘abdcdefg’)

Result:

3

✦ Right(string, count) and Left(string, count): Return the right- or leftmost part
of a string:

SELECT Left(‘Nielsen’,2) AS ‘[Left]’,
RIGHT(‘Nielsen’,2) AS [Right]

09549359 ch06.F 11/21/02 9:23 AM Page 196

197Chapter 6 ✦ Retrieving Data with Select

Result:

Left Right
----- ----
Ni en

✦ Len(string): Returns the length of a string:

SELECT LEN(‘Supercalifragilisticexpialidocious’) AS Len

Result:

Len

34

✦ Rtrim(string) and Ltrim(string): Remove leading or trailing spaces. While it’s diffi-
cult to see in print, the three leading and trailing spaces are removed from the follow-
ing string. I adjusted the column-header lines with the remaining spaces to illustrate
the functions.

SELECT RTRIM(‘ middle earth ‘) AS [RTrim],
LTRIM(‘ middle earth ‘) AS [LTrim]

Result:

RTrim LTrim
--------------- ---------------

middle earth middle earth

✦ Upper(string) and Lower(string): Convert the entire string to upper- or lowercase.
Minuscules, or lowercase letters, were first used in the ninth century to facilitate hand-
writing. With the advent of the printing press in the fifteenth century, printers manually
set the type for each page printed. They stored the letters in cases above the page box.
The uncials (capital letters) were stored above the minuscules. The terms “uppercase”
and “lowercase” stuck. Other than the history, there’s not much to know about these
two functions.

Select UPPER(‘one TWO tHrEe’) as [UpperCase],
LOWER(‘one TWO tHrEe’) as [LowerCase]

Result:

UpperCase LowerCase
------------- -------------
ONE TWO THREE one two three

✦ Replace(string, string): The replace() function operates as a global search and
replace within a string. Using replace() within an update DML command can quickly
fix problems in the data such as removing extra tabs, or correcting string patterns. The
following code sample removes apostrophes from the LastName column in the
OBXKites database’s Contact table:

USE OBXKites

UPDATE Contact
SET LastName = ‘Adam’’s’
WHERE LastName = ‘Adams’

09549359 ch06.F 11/21/02 9:23 AM Page 197

198 Part II ✦ Developing SQL Server Databases

SELECT LastName, REPLACE(LastName, ‘’’’, ‘’)
FROM Contact
WHERE LastName LIKE ‘%’’%’

UPDATE Contact
SET LastName = REPLACE(LastName, ‘’’’, ‘’)
WHERE LastName LIKE ‘%’’%’

✦ pTitleCase(source, search, replace): T-SQL lacks a function to convert text to
title case (first letter of each word in uppercase, and the remainder in lowercase).
Therefore the following user-defined function accomplishes this task:

CREATE FUNCTION pTitleCase (
@StrIn NVARCHAR(1024))

RETURNS NVARCHAR(1024)
AS
BEGIN
DECLARE
@StrOut NVARCHAR(1024),
@CurrentPosition INT,
@NextSpace INT,
@CurrentWord NVARCHAR(1024),
@StrLen INT,
@LastWord BIT

SET @NextSpace = 1
SET @CurrentPosition = 1
SET @StrOut = ‘’
SET @StrLen = LEN(@StrIn)
SET @LastWord = 0

WHILE @LastWord = 0
BEGIN
SET @NextSpace =
CHARINDEX(‘ ‘,@StrIn, @CurrentPosition+ 1)

IF @NextSpace = 0 -- no more spaces found
BEGIN

SET @NextSpace = @StrLen
SET @LastWord = 1

END
SET @CurrentWord =
UPPER(SUBSTRING(@StrIn, @CurrentPosition, 1))

SET @CurrentWord = @CurrentWord +
LOWER(SUBSTRING(@StrIn, @CurrentPosition+1,

@NextSpace - @CurrentPosition))
SET @StrOut = @StrOut +@CurrentWord
SET @CurrentPosition = @NextSpace + 1

END
RETURN @StrOut

END

09549359 ch06.F 11/21/02 9:23 AM Page 198

199Chapter 6 ✦ Retrieving Data with Select

Running a user-defined function requires including the owner name in the function
name:

Select dbo.pTitleCase(‘one TWO tHrEe’) as [TitleCase]

Result:

TitleCase

One Two Three

The pTitleCase function does not take into consideration surnames with nonstandard
capitalization, such as McDonald, VanCamp, or de Jonge. It would be inadequate to hard-
code a list of exceptions. Perhaps the best solution is to store a list of exception phrases (Mc,
Van, de, and so on) in an easily updateable list. Keep checking www.isnotnull.com to see
if I’ve updated the function, or if you’d like to submit further enhancements.

The code for the pTitleCase user-defined function is on the book’s CD in the
SQLServerBible\Utility directory.

Soundex Functions
Soundex is a phonetic pattern-matching system created for the American census. Franklin
Roosevelt directed the United States Bureau of Archives to develop a method of cataloging
the population that could handle the variations in spelling of similar surnames. Margaret K.
Odell and Robert C. Russell developed Soundex and were awarded U.S. patents 1261167
(1918) and 1435663 (1922) for their efforts. The census filing card for each household was
then filed under the Soundex method. Soundex has been applied to every census since and
has been post-applied to census records back to 1880.

The purpose of Soundex is to sort similar-sounding names together, which is very useful for
dealing with contact information in a database application. For example, if I call a phone bank
and give them my name (Nielsen), they invariably spell it “Nelson” in the contact look-up
form. But if the database uses Soundex properly I’ll still be in the search-result list box.

For more information concerning Soundex and its history, refer to the following Web sites:

✦ http://www.nara.gov/genealogy/coding.html

✦ http://www.amberskyline.com/treasuremaps/uscensus.html

✦ http://www.bluepoof.com/soundex/

Here’s how Soundex works. The first letter of a name is stored as the letter, and the following
three Soundex phonetic sounds are stored according to the following code:

1 - B, F, P, V
2 - C, G, J, K, Q, S, X, Z
3 - D, T
4 - L
5 - M, N
6 - R

On the
CD-ROM

Note

09549359 ch06.F 11/21/02 9:23 AM Page 199

200 Part II ✦ Developing SQL Server Databases

Double letters with the same Soundex code, A, E, I, O, U, H, W, Y, and some prefixes are disre-
garded. So “Nielsen” becomes “N425” via the following method:

1. The N is stored.

2. The i and e are disregarded.

3. The l sound is stored as the Soundex code 4.

4. The s is stored as the Soundex code 2.

5. The e is ignored.

6. The n is stored as the Soundex code 5.

By boiling them down to a few consonant sounds, Soundex assigns “Nielsen,” “Nelson,” and
“Neilson” the same code: “N425.”

Additional Soundex name examples:

✦ Brown = B650 (r — 6, n — 5)

✦ Jeffers = J162 (ff — 1, r — 6, s — 2)

✦ Letterman = L365 (tt — 3, r — 6, m — 5)

✦ Nelson = N425 (l — 4, s — 2, n — 5)

✦ Nicholson = N242 (c — 2, l — 4, s — 2)

✦ Nickols = N242 (c — 2, l — 4, s — 2)

Using the Soundex() Function
SQL Server includes two Soundex-related functions, soundex() and difference(). The
soundex(string) function calculates the Soundex code for a string as follows:

SELECT SOUNDEX(‘Nielsen’) AS Nielsen,
SOUNDEX(‘Nelson’) AS NELSON,
SOUNDEX(‘Neilson’) AS NEILSON

Result:

Nielsen NELSON NEILSON
------- ------ -------
N425 N425 N425

Other, more refined, soundex methods exist. Ken Henderson, in his book The Guru’s Guide
to Transact SQL (Addison-Wesley Pub Co; ISBN: 0201615762), provides an improved
soundex algorithm and stored procedure. If you are going to implement Soundex in a pro-
duction application, I recommend exploring his version. Alternately, you can research one of
the other refined Soundex methods on the Web sites listed previously and write your own
custom stored procedure.

There are two possible ways to add Soundex searches to a database. The simplest method is
to add the soundex() function within the where clause, as follows:

USE CHA2
SELECT LastName, FirstName
FROM dbo.Customer
WHERE SOUNDEX(‘Nikolsen’) = SOUNDEX(LastName)

Note

09549359 ch06.F 11/21/02 9:23 AM Page 200

201Chapter 6 ✦ Retrieving Data with Select

Result:

LastName FirstName
-------------- -------------------
Nicholson Charles
Nickols Bob

While this implementation has the smallest impact on the data schema, it will cause perfor-
mance issues as the data size grows because the soundex() function must execute for every
row in the database. A faster variation of this first implementation method pre-tests for
names with the same first letter, thus enabling SQL Server to use any indexes to narrow the
search, so the soundex() function must only be performed for a rows selected by the index:

SELECT LastName, FirstName
FROM dbo.Customer
WHERE SOUNDEX(‘Nikolsen’) = SOUNDEX(LastName)
AND LastName LIKE ‘N%’

The first query executes in 37.7 milliseconds on my test server, while the improved second
query executes in 6.5 milliseconds. I suspect that the performance difference would increase
with more data.

The second implementation method is to write the Soundex value in a column and index it
with clustered index. Because the Soundex value for each row is calculated during the write
the soundex() function does not need to be called for every row read by the select state-
ment. This is the method I would recommend for a database application that heavily depends
on Soundex for contact searches.

The OBX Kites sample database demonstrates this method. The pContact_AddNew stored
procedure calculates the Soundex code for every new contact and stores the result in the
SoundexCode column. Searching for a row, or all the matching rows, based on the stored
Soundex code is extremely fast:

First determine the Soundex for “Smith”:

USE OBXKites
SELECT SOUNDEX(‘Smith’)

S530

Knowing the Soundex value for “Smith,” the Soundex search is now a fast index seek without
ever calling the soundex() function for the row being read during the select statement:

SELECT LastName, FirstName, SoundexCode
FROM Contact
WHERE SoundexCode = ‘S530’

Result:

LastName FirstName SoundexCode
------------ -------------- -----------
Smith Ulisius S530
Smith Oscar S530

09549359 ch06.F 11/21/02 9:23 AM Page 201

202 Part II ✦ Developing SQL Server Databases

Using the Difference() Soundex Function
The second SQL Server Soundex function, difference(), returns the Soundex difference
between two strings in the form of a ranking from 1 to 4, with 4 representing a perfect
soundex match:

USE CHA2
SELECT LastName, DIFFERENCE (‘Smith’, LastName) AS NameSearch
FROM Customer
ORDER BY DIFFERENCE (‘Smyth’, LastName) DESC

Result:

LastName NameSearch
-------------------- -----------
Smythe 4
Spade 3
Zeniod 3
Kennedy 3
Kennedy 3
Quinn 2
...
Kemper 1
Nicholson 0
...

The advantage of the difference() function is that it broadens the search beyond the first
letters. The problem with the function is that it wants to calculate the Soundex value for both
parameters, which prevents it from taking advantage of prestored Soundex values.

Data-Type Conversion Functions
Converting data from a one data type to another data type is often handled automatically by
SQL Server. Many of those conversions are implicit, or automatic. (The exceptions are
detailed in Table 6-5.)

Table 6-5: Data-Type Conversion Exceptions

From Data Type(s) To Data Type(s) Conversion Issue

binary, varbinary float, real, ntext, text Conversion not allowed

char, varchar, nchar, binary, varbinary, money, Explicit conversion required
nvarchar smallmoney, timestamp

nchar, nvarchar image Conversion not allowed

datetime decimal, numeric, float, Explicit conversion required
smalldatatime real, bigint, int, smallint,

tinyint, money, smallmoney,
bit, timestamp

datetime uniqueidentifier, image, Conversion not allowed
smalldatatime, ntext, text
decimal, numeric,
float, real bigint,
int, smallint, tinyint,
money, smallmoney, bit

09549359 ch06.F 11/21/02 9:23 AM Page 202

203Chapter 6 ✦ Retrieving Data with Select

From Data Type(s) To Data Type(s) Conversion Issue

decimal, numeric decimal, numeric Requires explicit cast to
handle numeric precision
without data loss

float, real timestamp Conversion not allowed

money. smallmoney char, varchar, nchar, Explicit conversion required
nvarchar

timestamp nchar, nvarchar, float, Conversion not allowed
real, uniqueidentifier,
ntext, text sql_variant

uniqueidentifier datetime smalldatatime, Conversion not allowed
decimal, numeric, float,
real bigint, int, smallint,
tinyint, money, smallmoney,
bit, timestamp, image, ntext

image char, varchar, nchar, nvarchar, Conversion not allowed
datetime smalldatatime,
decimal, numeric, float,
real bigint, int, smallint,
tinyint, money, smallmoney,
bit, ntext, sql_variant

ntext, text binary, varbinary, Conversion not allowed
datetime smalldatatime,
decimal, numeric, float,
real bigint, int, smallint,
tinyint, money, smallmoney, bit,
timestamp, uniqueidentifier,
image, sql_variant

ntext char, varchar Explicit conversion required

text nchar, nvarchar Conversion not allowed

sql_variant timestamp, image, ntext, text Conversion not allowed

Those conversions that are explicit require a cast() or convert() function.

✦ Cast(Input as data type): The ANSI standard SQL means of converting from one
data type to another. Even if the conversion can be performed implicitly by SQL Server,
using the cast() function forces the desired data type.

Cast is actually programmed slightly differently from a standard function. Rather than
separating the two parameters with a comma (as most functions do), the data passed
to the cast function is followed by the as keyword and the requested output data type:

SELECT CAST(‘Away’ AS NVARCHAR(5)) AS ‘Tom Hanks’

Result:

Tom Hanks

Away

09549359 ch06.F 11/21/02 9:23 AM Page 203

204 Part II ✦ Developing SQL Server Databases

Another example:

SELECT CAST(123 AS NVARCHAR(15)) AS Int2String

Result:

Int2String

123

✦ Convert(datatype, expression, style): Returns a value converted to a different
data type with optional formatting. The first parameter of this non-ASNI SQL function is
the desired data type to be applied to the expression.

Convert (data type, expression[, style])

The style parameter refers to be optional date styles listed in Table 6-6. The style is
applied to the output during conversion from datetime to a character-based data type,
or to the input during conversion from text to datetime. Generally the one- or two-digits
style provides a two-digit year and its three-digit counterpart provides a four-digit year.
For example, style 1 provides 01/01/03, while style 101 provides 01/01/2003. The styles
marked with an asterisk (*) in Table 6-6 are the exceptions to this rule.

SQL Server also provides numeric formatting styles, however, numeric formatting is
typically the task of the user interface, not the database.

Table 6-6: Convert Function Date Styles

Style Description Format

0 / 100* Default mon dd yyyy hh:miAM (or PM)

1 /101 USA mm/dd/yy

2 /102 ANSI yy.mm.dd

3 / 103 British/French dd/mm/yy

4 / 104 German dd.mm.yy

5 / 105 Italian dd-mm-yy

6 / 106 - dd mon yy

7 / 107 - mon dd, yy

8 / 108 - hh:mm:ss

9 or 109* Default+milliseconds mon dd yyyy hh:mi:ss:mmmAM (or PM)

10 or 110 USA mm-dd-yy

11 or 111 Japan yy/mm/dd

12 or 112 ISO yymmdd

13 or 113* Europe default+milliseconds dd mon yyyy hh:mm:ss:mmm (24h)

14 or 114 - hh:mi:ss:mmm (24h)

20 or 120* ODBC canonical yyyy-mm-dd hh:mi:ss (24h)

09549359 ch06.F 11/21/02 9:23 AM Page 204

205Chapter 6 ✦ Retrieving Data with Select

Style Description Format

21 or 121* ODBC canonical + milliseconds yyyy-mm-dd hh:mi:ss.mmm (24h)

126 ISO8601 for XML use yyyy-mm-dd Thh:mm:ss:mmm (no spaces)

130 Kuwaiti dd mon yyyy hh:mi:ss:mmmAM (or PM)

131 Kuwaiti dd/mm/yy hh:mi:ss:mmmAM (or PM)

* Both styles return dates with centuries.

In a clean client/server design, the server provides the data without formatting and the client
application formats the data as required by the user. Unformatted data are more indepen-
dent than formatted data and can be used by more applications.

The following code demonstrates the convert() function:

SELECT GETDATE() AS RawDate,
CONVERT (NVARCHAR(25), GETDATE(), 100) AS Date100,
CONVERT (NVARCHAR(25), GETDATE(), 1) AS Date1

Result:

RawDate Date100 Date1
--------------------------- ---------------------- ----------
2001-11-17 10:27:27.413 Nov 17 2001 10:27AM 11/17/01

Two additional data-type conversion functions provide fast ways to move data between text
and numeric:

✦ Str(number, length, decimal): Returns a string from a number.

SELECT STR(123,5,2) AS [Str]

Result:

Str

123.0

Summing and Grouping Data
Turning raw lists of data and keys into useful information often involves summarizing data
and grouping them in meaningful ways. While a certain amount of summarization and analy-
sis can be performed with other tools, such as a report writer or Analysis Services, SQL is a
set-based language and a fair amount of summarizing and grouping can be performed very
well right inside the SQL select statement.

Aggregate Functions
SQL includes a set of aggregate functions that can perform a calculation across an entire
set of data producing a single row that summarizes the original data set, as illustrated in
Figure 6-10.

SQL aggregate functions are listed in Table 6-7.

09549359 ch06.F 11/21/02 9:23 AM Page 205

206 Part II ✦ Developing SQL Server Databases

Figure 6-10: The aggregate function produces a single row result from a
data set.

Table 6-7: Aggregate Functions

Aggregate Function Data Type Supported Description

sum() Numeric Totals all the non-null values in the
column.

avg() Numeric Averages all the non-null values in the
column. Input data type will be
returned by avg(), so the input is
often converted to a higher precision,
such as avg(cast col as
float).

min() numeric, string, datetime Returns the smallest number or the
first datetime or the first string
according to the current collation from
the column.

max() numeric, string, datetime Returns the largest number or the last
datetime or the last string according
to the current collation from the
column.

count Any data type (row-based) Performs a simple count of all the
([distinct] *) rows in the result set up

2,147,483,647. Will not count
uniqueidentifiers, or blobs.

count_big Any data type (row-based) Similar to the count() function, but
([distinct] *) the bigint datatype can handle up to

2^63-1 rows.

Aggregate
function

Single rowFrom/Where
clause

Data Set w/
multiple rows

09549359 ch06.F 11/21/02 9:23 AM Page 206

207Chapter 6 ✦ Retrieving Data with Select

Using the aggregate functions within a select statement is pretty straightforward. Here are a
few rules to keep in mind while using aggregate functions:

✦ Because SQL is now returning information from a set rather than building a record set
of rows, as soon as a query includes an aggregate function every column (in the col-
umn list, expression, or in the order by) must participate in an aggregate function. This
is logical because if a query returned the total number of order sales it could not return
a single order number on the same row.

✦ The aggregate (distinct) option serves the same purpose as select distinct
except that it eliminates duplicate values instead of duplicate rows — so it’s of ques-
tionable usefulness when used with sum() and avg().Count(distinct *) is invalid; a
column must be specified.

✦ Count(*) counts all the rows, but count(column) counts all the rows with a value in
that column.

✦ Because aggregate functions are expressions, an alias will provide a column name.

✦ Developers often use a primary key as the parameter in the count() function.
However, if the primary key is a uniqueidentifier, the count() function will fail.
Also, counting by all rows (using an asterisk) allows SQL Server’s Query Optimizer to
select the column or index counted, which could result in a performance enhancement.

Aggregate functions are enabled in Enterprise Manager’s Query Designer with the Group By
toolbar button, as illustrated in Figure 6-11. In SQL code, the following example counts the
number of contacts in the OBXKites database:

USE OBXKites
SELECT Count(*)
FROM dbo.Contact

Result:

21

The previous query ran because every column participated in the aggregate purpose of the
query. To test the rule, the next query adds a data column from the table:

SELECT LastName, Count(*)
FROM Contact

As expected, including LastName in the column list causes the query to return an error
message:

Server: Msg 8118, Level 16, State 1, Line 2
Column ‘Contact.LastName’ is invalid in the select list
because it is not contained in an aggregate function and
there is no GROUP BY clause.

To include non-aggregate descriptive columns either include the additional columns in the
group by clause (next topic), or perform the aggregate function in a subquery (explained in
the next chapter, “Merging Data Using Relational Algebra”) and include the additional
columns in the outer query.

The following query, still from the OBXKites database, uses the sum() function to calculate
the total quantity of products sold and the total dollar volume sold in the year 2001.
The query has to do a join to fetch the order date, but the point of the query is the sum()
function:

09549359 ch06.F 11/21/02 9:23 AM Page 207

208 Part II ✦ Developing SQL Server Databases

SELECT SUM(Quantity) AS QuantitySold,
SUM(Quantity*UnitPrice) AS DollarSold

FROM dbo.OrderDetail
JOIN [Order]
ON [Order].OrderID = OrderDetail.OrderID

WHERE OrderDate
Between ‘1/1/2001’ AND ‘12/31/2001 11:59.998PM’

Result:

QuantitySold DollarSold
--------------- ----------------------
206.00 1729.895000

Figure 6-11: Performing an aggregate query within Enterprise Manager’s Query Designer.

Grouping Within a Result Set
Aggregate functions are all well and good, but how often do you need a total for an entire
table? Most aggregate functions will be like the previous query and will use some kind of con-
dition to limit the aggregation to a certain date range, department, type of sale, region, or the
like. That presents a problem. If the only tool to restrict the aggregate function were the
where clause, database developers would waste hours replicating the same query, or writing
lots of dynamic SQL queries and the code to execute the aggregate queries in sequence.

09549359 ch06.F 11/21/02 9:23 AM Page 208

209Chapter 6 ✦ Retrieving Data with Select

Fortunately, aggregate functions are complemented by the group by function, which auto-
matically partitions the dataset into subsets based upon the values in certain columns. Once
the dataset is divided into subgroups, the aggreagate functions are performed on each sub-
group. The final result is one summation row for each group as shown in Figure 6-12.

Figure 6-12: The group by clause slices the dataset into multiple
subgroups.

For example, while the previous query uses the where clause, grouping the dataset by year
would automatically answer the question and prevent the query from becoming obsolescent
over time, as follows:

SELECT DatePart(yy,OrderDate) AS [Year], SUM(Quantity) AS QuantitySold,
SUM(Quantity*UnitPrice) AS DollarSold

FROM dbo.OrderDetail
JOIN dbo.[Order]
ON [Order].OrderID = OrderDetail.OrderID

GROUP BY DatePart(yy,OrderDate)

The first column of this query returns the year from the OrderDate column. While this col-
umn does not have an aggregate function, it still participates within the aggregate because
that’s the column the query is being grouped by. The result set lists every year with orders.
The aggregate sum function now calculates the quantity and dollar sold for each group sub-
set, in this case each year:

Year QuantitySold DollarSold
-------- --------------- -----------------
2001 152.00 612.600000
2002 54.00 1235.495000

Aggregate
function

Single row

Da
ta

 S
et

 w
/m

ul
tip

le
 ro

w
s Single row

Single row

Single row

Single row

Single row

Single row

From/Where
clause

Group by

09549359 ch06.F 11/21/02 9:23 AM Page 209

210 Part II ✦ Developing SQL Server Databases

SQL is not limited to grouping by one column. The previous query is enhanced with the addi-
tion of a grouping by ProductCategoryName, as follows:

SELECT DatePart(yy,OrderDate) AS [Year],
ProductCategoryName, SUM(Quantity) AS QuantitySold,
SUM(Quantity*UnitPrice) AS DollarSold

FROM dbo.OrderDetail
JOIN dbo.[Order]
ON [Order].OrderID = OrderDetail.OrderID

JOIN dbo.Product
ON OrderDetail.ProductID = Product.ProductID

JOIN dbo.ProductCategory
ON Product.ProductCategoryID =

ProductCategory.ProductCategoryID
GROUP BY DatePart(yy,OrderDate),ProductCategoryName

Result:

Year ProductCategoryName QuantitySold DollarSold
------ --------------------- --------------- -----------
2001 Accessory 6.00 10.530000
2001 Clothing 9.00 113.600000
2001 Kite 59.00 1499.902500
2001 Material 3.00 5.265000
2001 OBX 127.00 64.687500
2001 Video 2.00 35.910000

For the purposes of a group by nulls are considered equal to other nulls and will be grouped
together.

The group by all option passes through every group by output row, even if the where
clause eliminated all the rows for that group. For example, the eliminated group will be in the
result set with a count(*) of zero.

Filtering Grouped Results
Filtering, when combined with grouping, can be a problem. Are the row restrictions applied
before the group by or after the group by? Some databases use nested queries to properly
filter before or after the group by. SQL, however, uses the having clause to filter the groups.
At the beginning of this chapter you saw the simplified order of the SQL select statement’s
execution. A more complete order is as follows:

1. The from clause assembles the data from the data sources.

2. The where clause restricts the rows based on the conditions.

3. The group by clause assembles subsets of data.

4. Aggregate functions are calculated.

5. The having clause filters the subsets of data.

6. Any expressions are calculated.

7. The order by sorts the results.

Continuing to improve upon the previous OBX Kites sales-analysis aggregate query, the fol-
lowing query removes any employee sales from the analysis and requires that any group
reported must have sold more than two items during the year.

09549359 ch06.F 11/21/02 9:23 AM Page 210

211Chapter 6 ✦ Retrieving Data with Select

Relational databases segment data into multiple tables, and to retrieve a complete answer,
multiple joins are often required. To restrict the sales and remove the employee sales, the
contact table must now become involved in the from clause. The next chapter is dedicated
to exploring SQL select statements that work with multiple tables and data sources.

The polished sales analysis query also sorts by dollar volume sold:

SELECT DatePart(yy,OrderDate) AS [Year],
ProductCategoryName, SUM(Quantity) AS QuantitySold,
SUM(Quantity*UnitPrice) AS DollarSold

FROM dbo.OrderDetail
JOIN dbo.[Order]
ON [Order].OrderID = OrderDetail.OrderID

JOIN dbo.Product
ON OrderDetail.ProductID = Product.ProductID

JOIN dbo.ProductCategory
ON Product.ProductCategoryID =

ProductCategory.ProductCategoryID
JOIN dbo.Contact
ON [Order].ContactID = Contact.ContactID

WHERE Contact.IsEmployee = 0
GROUP BY DatePart(yy,OrderDate),ProductCategoryName
HAVING SUM(Quantity) > 2
ORDER BY SUM(Quantity*UnitPrice) DESC

Result:

Year ProductCategoryName QuantitySold DollarSold
------ --------------------- --------------- -----------
2001 Kite 59.00 1499.902500
2001 Clothing 9.00 113.600000
2001 OBX 127.00 64.687500
2001 Accessory 6.00 10.530000
2001 Material 3.00 5.265000

Not surprisingly, the majority of products sold are in the Kite category.

Moving to a real-life example of using the having clause, my grocery store holds seasonal
promotions — “Spend at least $40 a week in one shopping trip for 14 of the next 15 weeks and
get a free turkey and stuffing!” Every shopper who qualifies is given a coupon each week he
or she qualifies. When the 15 weeks are up, shoppers must turn in 14 coupons to win the
prize. My problem with this is that every shopper has a VIC card with a bar code, and the
card is scanned at the checkout counter so the customer can receive any special prices. I
asked the store manager why the VIC numbers couldn’t automatically track who had pur-
chased $40 for 14 of 15 weeks. He said he had previously checked with the IT department and
had been told that setting this up would be too difficult.

Because I hate to keep track of coupons for 15 weeks, here’s the answer. The Vic table con-
tains the VIC card number, the date, and the amount of purchase:

USE Tempdb

DROP TABLE Vic
go
CREATE TABLE Vic (

VICNumber INT,
PurchaseDate SMALLDATETIME,

09549359 ch06.F 11/21/02 9:23 AM Page 211

212 Part II ✦ Developing SQL Server Databases

Amount MONEY
)

go
INSERT Vic (VICNumber, PurchaseDate, Amount)
VALUES (123, ‘1/3/2003’, 55.24)

INSERT Vic (VICNumber, PurchaseDate, Amount)
VALUES (123, ‘1/12/2003’, 74.24)

INSERT Vic (VICNumber, PurchaseDate, Amount)
VALUES (123, ‘1/18/2003’, 102.24)

INSERT Vic (VICNumber, PurchaseDate, Amount)
VALUES (123, ‘1/23/2003’, 47.24)

INSERT Vic (VICNumber, PurchaseDate, Amount)
VALUES (123, ‘1/29/2003’, 55.24)

INSERT Vic (VICNumber, PurchaseDate, Amount)
VALUES (123, ‘2/3/2003’, 55.24)

INSERT Vic (VICNumber, PurchaseDate, Amount)
VALUES (123, ‘2/12/2003’, 74.24)

INSERT Vic (VICNumber, PurchaseDate, Amount)
VALUES (123, ‘2/18/2003’, 102.24)

INSERT Vic (VICNumber, PurchaseDate, Amount)
VALUES (123, ‘2/23/2003’, 47.24)

INSERT Vic (VICNumber, PurchaseDate, Amount)
VALUES (123, ‘2/28/2003’, 55.24)

INSERT Vic (VICNumber, PurchaseDate, Amount)
VALUES (123, ‘3/3/2003’, 75.24)

INSERT Vic (VICNumber, PurchaseDate, Amount)
VALUES (123, ‘3/12/2003’, 64.24)

INSERT Vic (VICNumber, PurchaseDate, Amount)
VALUES (123, ‘3/18/2003’, 62.24)

INSERT Vic (VICNumber, PurchaseDate, Amount)
VALUES (123, ‘3/23/2003’, 67.24)

INSERT Vic (VICNumber, PurchaseDate, Amount)
VALUES (123, ‘3/29/2003’, 65.24)

INSERT Vic (VICNumber, PurchaseDate, Amount)
VALUES (123, ‘4/3/2003’, 55.24)

INSERT Vic (VICNumber, PurchaseDate, Amount)
VALUES (123, ‘4/12/2003’, 74.24)

With the data loaded, the following query displays the week for each qualifying row:

SELECT DISTINCT VICNumber, DatePart(ww,PurchaseDate) AS [Week]
FROM Vic
WHERE Amount >=40

Result (abridged):

VICNumber Week
----------- -----------
123 1
123 3
123 4
...

With a where clause, a group by, and a having clause, the seasonal contest winners are easy
to produce. The where condition filters out any purchases of less than $40 prior to the group

09549359 ch06.F 11/21/02 9:23 AM Page 212

213Chapter 6 ✦ Retrieving Data with Select

by operation. The group by partitions the results by VIC number. Finally, the count() aggre-
gate function restricts the grouped results to those with at least 14 distinct weeks:

SELECT VICNumber AS Winner
FROM Vic
WHERE Amount >= 40
GROUP BY VICNumber
HAVING Count(Distinct DatePart(ww,PurchaseDate)) >= 14

And the winner is:

Winner

123

That’s not much code to solve the problem. Maybe my grocery store’s IT department will buy
this book and we won’t have to keep a bunch of coupons under a large magnet on our refrig-
erator door.

Generating Totals
I’ll admit that I’m not very excited about any of these last three options. I believe that subto-
tals and totals are best calculated in the client-side reporting tool or client application form
and should not be a part of the result set passed from SQL Server to the client application.
Nonetheless, certification tests tend to ask about these functions, so I’ll include them here for
your benefit.

The compute, cube, and rollup aggregate functions all generate subtotals and grand totals, and
supply a null in the group by column to indicate the grand total. They are all similar in syntax.
Rollup generates subtotal and total rows for the group by columns. Cube extends the capabili-
ties by generating subtotal rows for every group by column. A special function grouping() is
true when the row is a subtotal, or total row. Here I’ll demonstrate the rollup function.

The rollup option, placed after the group by clause, instructs SQL Server to generate an
additional total row. In this example, the grouping() function converts the total row to
something understandable. The order by clause uses an insull() function to sort the total
row to the end of the results:

USE OBXKites
SELECT

CASE Grouping(ProductCategoryName)
WHEN 0 THEN ProductCategoryName
WHEN 1 THEN ‘All Products’

END AS ProductCategory,
SUM(Quantity) AS QuantitySold,
SUM(Quantity*UnitPrice) AS DollarSold

FROM dbo.OrderDetail
JOIN dbo.[Order]
ON [Order].OrderID = OrderDetail.OrderID

JOIN dbo.Product
ON OrderDetail.ProductID = Product.ProductID

JOIN dbo.ProductCategory
ON Product.ProductCategoryID =

ProductCategory.ProductCategoryID
GROUP BY ProductCategoryName
WITH ROLLUP

ORDER BY ISNULL(ProductCategoryName, ‘zzz’)

09549359 ch06.F 11/21/02 9:23 AM Page 213

214 Part II ✦ Developing SQL Server Databases

The result includes the generated row with the grand total:

ProductCategory QuantitySold DollarSold
-------------------- ---------------- ---------------
Accessory 6.00 10.530000
Clothing 9.00 117.050000
Kite 59.00 1614.652500
Material 3.00 5.265000
OBX 127.00 64.687500
Video 2.00 35.910000
All Products 206.00 1848.095000

If you choose to pass back to the application programmer an additional row that includes the
total dollars and then expect the application program to filter out the total row and place the
value into a control below the grid, well, you’re on your own.

As useful as these aggregate functions are, they don’t eliminate the need for a good client-side
report writer. Besides being the wrong place in the client-server paradigm for generating
totals and subtotals, the aggregate functions just don’t do certain tasks very well by them-
selves, such as:

✦ Including descriptive data — Because every column must participate in the average
aggregate function, some developers simply slap group bys on additional descriptive
columns not needed for the group by, such as names, when grouping by customer ID.
A better solution is to perform the group by and aggregate functions in a subquery
and then reference the descriptive columns in the outer query. The next chapter talks
about subqueries.

✦ Running sums — While requesting running sums is not an uncommon topic on the SQL
Server Internet forums, I believe the task is better handled by the client report writer
than by SQL Server, which must use a cursor to step through the data to generate a
running sum.

✦ Crosstabs — While it’s possible to build crosstab result sets using cursors and stored
procedures, it’s inefficient. Several client-analysis tools, including access, perform
crosstab analysis very easily. Browsing an Analysis Services cube is by far the ultimate
crosstab. Any time spent developing a crosstab in a stored procedure would be much
better spent developing the OLAP cube.

Summary
While SQL contains several other keywords and commands, the heart of SQL is in its ability
to manipulate data, and the select command excels in this area. While this chapter did
include a few joins in some of the examples, every technique may be used in a single table
join. A wealth of power and flexibility is hidden in the simple select command. SQL is declar-
ative — you’re only phrasing a question. The query optimizer figures out how to execute the
query, so you have some flexibility in the development style of the query.

The next chapter takes the basic idea of the select statement and runs with it by adding
multiple types of joins, unions, and subqueries. By combining some of the cooler functions of
the select with subqueries, you can build some very creative and powerful queries.

✦ ✦ ✦

09549359 ch06.F 11/21/02 9:23 AM Page 214

Merging Data Using
Relational Algebra

In my introduction to this book I said that my purpose was to share
the fun of developing in SQL Server. This chapter is it. Making data

twist and shout, pulling an answer out of data with a creative query,
replacing a few hundred lines of slow looping VB code with a single
lightning fast SQL query — it’s all pure fun and covered here.

Relational databases, by their very nature, segment data into several
narrow, but long, tables. Seldom does looking at a single table pro-
vide meaningful data. Therefore, merging data from multiple tables is
an important task for SQL developers. The theory behind merging
data sets is relational algebra, as defined by E. F. Codd in 1970.

Relational algebra consists of eight relational operators:

✦ Restrict — Returns the rows that meet a certain criterion

✦ Project — Returns selected columns from a data set

✦ Product — Relational multiplication that returns all possible
combinations of data between two data sets

✦ Union — Relational addition and subtraction that merges two
tables vertically by stacking one table above another table and
lining up the columns

✦ Intersection — Returns the rows common to both data sets

✦ Difference — Returns the rows unique to one data set

✦ Join — Returns the horizontal merger of two tables, matching
up rows based on common data

✦ Divide — Returns exact matches between two data sets

In addition, as a method of accomplishing relational algebra, SQL has
developed:

✦ Subqueries — Similar to a join, but more flexible; the results of
the subquery are used in place of an expression, list, or data
set within an outer query.

In the formal language of relational algebra:

✦ A table, or data set, is a relation or entity

✦ A row is a tuple

✦ A column is an attribute

I’ll use these terms throughout this chapter.

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
relational algebra

Using inner, outer,
complex, and Θ (theta)
joins

Building simple and
correlated subqueries

Merging data vertically
with unions

Using relational division

✦ ✦ ✦ ✦

10549359 Ch07.F 11/21/02 9:23 AM Page 215

216 Part II ✦ Developing SQL Server Databases

Relational theory is now thirty-something and has become better defined over the years as
the database vendors compete with extensions and database theorists further define the
problem of representing reality within a data structure. However, E. F. Codd’s original work is
still the foundation of relational-database design and implementation.

To give credit where credit is due, this entire chapter is based on work of E. F. Codd and C. J.
Date. For information on relational theory, my library includes books by C. J. Date and Joe
Celko. You can find a complete listing of recommended resources in the Appendix or online
at www.isnotnull.com.

This chapter explains the multiple types of joins, simple and correlated subqueries, a few
types of unions, relational division, and more.

Using Joins
In relational algebra, a join is the multiplication of two data sets and a restriction of the result
so that only the intersection of the two data sets is returned. The whole purpose of the join is
to horizontally merge two data sets (usually tables) and produce a new result set from the
combination by matching rows in one data source to rows in the other data source, as illus-
trated in Figure 7-1. This section explains the various types of joins and how to use them to
select data.

Figure 7-1: A join merges rows from one data set with
rows from another data set, and creates a new set of
rows that includes columns from both.

By merging the data using the join, the rest of the SQL select statement, including the column
expressions, aggregate groupings, and where clause conditions, can access any of the
columns or rows from the joined tables. These abilities are the core and power of SQL.

I apologize if this sounds too much like your teenager’s math homework, but joins are based
on the idea of intersecting data sets. As Figure 7-2 illustrates, a relational join deals with two
sets of data that have common values, and it’s these common values that define how the
tables intersect.

These set diagrams are a type of Venn diagram. For more information about Venn set dia-
grams, visit http://www.combinatorics.org/Surveys/ds5/VennEJC.html.

Note

Name
Smith

Code
101

Name
Smith

Code
101

Code
101

Order
1

Order
1

Note

10549359 Ch07.F 11/21/02 9:23 AM Page 216

217Chapter 7 ✦ Merging Data Using Relational Algebra

Figure 7-2: Relational joins are based
on the overlap or common intersection
of two data sets.

The intersection simply represents the fact that some common attribute can connect a row
from the first data set to data in the second data set. The common values are typically a pri-
mary key and a foreign key, such as these examples from the OBX Kites sample database:

✦ CustomerID between the Customer and [Order] tables

✦ OrderID between the [Order] and OrderDetail tables

✦ ProductID between the Product and OrderDetail tables

SQL includes many types of joins that determine how the rows are selected from the different
sides of the intersection. Table 7-1 lists the join types (each is explained in further detail later
in this section).

Table 7-1: Join Types

Join Type Query Designer Symbol Definition

Inner join Includes only matching rows.

Left outer join Includes all rows from the left table regardless of
whether a match exists, and matching rows from the
right table.

Right outer join Includes all the rows from the right table regardless of
whether a match exists, and matching rows from the
left table.

Full outer join Matches rows using a non-equal condition.

Θ (theta) join Includes all the rows from both tables regardless of
whether a match exists.

Cross join No join connection Produces a cartisian product — a match between each
row in data source one with each row from data source
two without any conditions or restrictions.

Data Set BData Set A
Common

Intersection

10549359 Ch07.F 11/21/02 9:23 AM Page 217

218 Part II ✦ Developing SQL Server Databases

Inner Joins
The inner join is by far the most common join. In fact, it’s also referred to as a common join,
and was originally called a natural join by E. F. Codd. The inner join returns only those rows
that represent a match between the two data sets. An inner join is well named because it
extracts only data from the inner portion of the intersection of the two overlapping data sets,
as illustrated in Figure 7-3.

Figure 7-3: The inner join includes only those
rows from each side of the join that are
contained within the intersection of the two
data sources.

Inner joins are easily constructed within Enterprise Manager using the graphical Query
Designer tool, as shown in Figure 7-4. Once both tables have been placed in the Diagram pane
using the Add Table function, or by dragging the tables from the table list, the join is created
by dragging the common column from the first table to the second table. By default the join is
an inner join.

The Query Designer uses a different symbol for each type of join, as shown in Table 7-1. The
symbol for an inner join, the join diamond, is an accurate illustration of that type of join.

Figure 7-4: Building an inner join within Enterprise Manager’s Query Designer.

Data Set BData Set A
Common

Intersection

Inner Join

10549359 Ch07.F 11/21/02 9:23 AM Page 218

219Chapter 7 ✦ Merging Data Using Relational Algebra

Creating Inner Joins Within SQL Code
Within SQL code, joins are specified within the from portion of the select statement. The
keyword join identifies the second table, and on defines the common ground between the
two tables. The default type of join is an inner join, so the keyword inner is optional:

SELECT *
FROM Table1
[INNER] JOIN Table2
ON Table1.column = Table2.column

Because joins pull together data from two data sets, it makes sense that SQL needs to know
how to match up rows from those sets. SQL Server merges the rows by matching a value com-
mon to both tables. Typically, a primary key value from one table is being matched with a for-
eign key value from the secondary table. Whenever a row from the first table matches a row
from the second table, the two rows are merged into a new row containing data from both
tables.

The following code sample joins the Tour (secondary) and BaseCamp (primary) tables from
the Cape Hatteras Adventures sample database:

USE CHA2

SELECT Tour.TourName, Tour.BaseCampID,
BaseCamp.BaseCampID, BaseCamp.BaseCampName

FROM dbo.Tour
JOIN dbo.BaseCamp
ON Tour.BaseCampID = BaseCamp.BaseCampID

The query begins with the Tour table. For every Tour row, SQL Server will attempt to identify
matching BaseCamp rows by comparing the BasecampID columns in both tables. The Tour
table rows and BaseCamp table rows that match will be merged together into a new result:

Tour. Tour. Basecamp. Basecamp.
TourName BaseCampID BaseCampID BaseCampName
----------------------- ---------- ----------- ------------
Appalachian Trail 1 1 Ashville NC
Outer Banks Lighthouses 2 2 Cape Hatteras
Bahamas Dive 3 3 Freeport
Amazon Trek 4 4 Ft Lauderdale
Gauley River Rafting 5 5 West Virginia

Number of Rows Returned
In the preceding query every row in both the Tour and BaseCamp tables had a match. No
rows were excluded from the join. However, in real life this is seldom the case. Depending
upon the number of matching rows from each data source and the type of join, it’s possible to
reduce or increase the final number of rows in the result set.

To see how joins can alter the number of rows returned, look at the Contact and [Order]
tables of the OBX Kites databases. The initial row count of contacts is 21, yet when the cus-
tomers are matched with their orders, the row count changes to 10. The following code sam-
ple compares the two queries and their respective results side by side:

USE OBXKites

SELECT LastName SELECT ContactCode, OrderNumber
FROM dbo.Contact FROM dbo.Contact

10549359 Ch07.F 11/21/02 9:23 AM Page 219

220 Part II ✦ Developing SQL Server Databases

ORDER BY ContactCode JOIN dbo.[Order]
ON [Order].ContactID
= Contact.ContactID

ORDER BY ContactCode

Results from both queries:

ContactCode LastName ContactCode OrderNumber
----------- -------- ----------- -----------
101 Smith 101 1

101 2
101 5

102 Adams 102 6
102 3

103 Reagan 103 4
103 7

104 Franklin 104 8
105 Dowdry 105 9
106 Grant 106 10
107 Smith
108 Hanks
109 James
110 Kennedy
111 Williams
112 Quincy
113 Laudry
114 Nelson
115 Miller
116 Jamison
117 Andrews
118 Boston
119 Harrison
120 Earl
121 Zing

Only contacts 101 through 106 have matching orders. The rest of the contacts are excluded
from the join because they have no matching orders.

Joins can also appear to multiply rows. If a row on one side of the join matches with several
rows on the other side of the join, the result will include a row for every match. In the preced-
ing query, some contacts (Smith, Adams, and Reagan) are listed multiple times because they
have multiple orders.

Depending on the nullability of the keys and the presence of rows on both sides of the join,
joins tend to miss rows because one table or the other produces incorrect data. When
retrieving data from multiple tables, it’s a best practice to carefully select the correct type of
join (inner, left outer, or right outer) for the query, so that every valid row is returned.

Legacy Joins
A join is really nothing more than the act of selecting data from two tables for which a condi-
tion of equality exists between common columns. Join conditions are similar to where
clauses. In fact, before ANSI-92 standardized the join...on syntax, legacy style joins accom-
plished the same task by listing the tables within the from clause and specifying the join con-
dition in the where clause. SQL Server retains this legacy syntax for backward compatibility.

10549359 Ch07.F 11/21/02 9:23 AM Page 220

221Chapter 7 ✦ Merging Data Using Relational Algebra

The previous sample join between Contact and [Order] could be written as a legacy join, as
follows:

SELECT Contact.ContactCode, [Order].OrderNumber
FROM dbo.Contact, dbo.[Order]
WHERE [Order].ContactID = Contact.ContactID
ORDER BY ContactCode

Personally, I prefer to write joins using the ANSI SQL-92 join...on syntax. I believe it’s cleaner
to specify the join completely within the from clause. Legacy joins break up the join so that
the joined tables are in the from clause and the join condition is in the where clause, and that
seems error-prone to me. However, neither style results in a performance benefit because
SQL Server will create the exact same query execution plan regardless of whether the join is
constructed using the ANSI standard join or the legacy where clause method.

Multiple Table Joins
As some of the examples have already demonstrated, a select statement isn’t limited to one
or two tables; a SQL Server select statement may refer to up to 256 tables. That’s a lot of
joins. Because SQL is a declarative language, the order of the data sources is not important.
Multiple joins may be combined in multiple paths, or even circular patterns (A joins B joins C
joins A). Here’s where a large whiteboard and a consistent development style really pay off.

An interesting thing happens when joins across multiple tables are combined with a where-
clause restriction (that is, when the joins carry with them the where-clause restriction). A
restriction in any one table means that only those rows that meet the restriction condition
participate in the join.

The following query (first shown in Figure 7-5 and then worked out in code) answers the
question “Who purchased kites?” The answer must involve five tables:

1. The Contact table for the “who”

2. The [Order] table for the “purchased”

3. The OrderDetail table for the “purchased”

4. The Product table for the “kites”

5. The ProductCategory table for the “kites”

The following SQL select statement begins with the “who” portion of the question and speci-
fies the join tables and conditions as it works through the required tables. The query that is
shown graphically in Enterprise Manager (Figure 7-5) is listed as raw SQL in the following
code sample. Notice how the where clause restricts the ProductCategory table rows and yet
affects the contacts selected.

USE OBXKites
SELECT LastName, FirstName, ProductName
FROM dbo.Contact
JOIN dbo.[Order]
ON Contact.ContactID = [Order].ContactID

JOIN dbo.OrderDetail
ON [Order].OrderID = OrderDetail.OrderID

JOIN dbo.Product
ON OrderDetail.ProductID = Product.ProductID

JOIN dbo.ProductCategory
ON Product.ProductCategoryID = ProductCategory.ProductCategoryID

WHERE ProductCategoryName = ‘Kite’
ORDER BY LastName, FirstName

10549359 Ch07.F 11/21/02 9:23 AM Page 221

222 Part II ✦ Developing SQL Server Databases

Results:

LastName FirstName ProductName
----------------- -------------------- ---------------
Adams Terri Dragon Flight
Dowdry Quin Dragon Flight
...
Smith Ulisius Rocket Kite

Compared with the SQL code generated by Enterprise Manager’s Query Designer, the SQL
code in the previous query is easier to decipher. While the Query Designer makes queries
easier to initially develop, the code is more difficult to read. Sometimes the Query Designer
places the on conditions away from the join table, and the formatting is atrocious.

Figure 7-5: Answering the question “Who purchased kites?” using
Enterprise Manager’s Query Designer.

Outer Joins
While an inner join contains only the intersection of the two data sets, an outer join extends
the inner join by adding the non-matching data from the left or right data set, as illustrated in
Figure 7-6.

10549359 Ch07.F 11/21/02 9:23 AM Page 222

223Chapter 7 ✦ Merging Data Using Relational Algebra

Outer joins solve a significant problem for many queries by including all the data regardless
of a match. The previous customer-order query demonstrates this problem well. If the
requirement is to build a query that lists all customers plus their recent orders, an inner join
between customers and orders would miss every customer who had not placed a recent
order. This type of error is very common in database applications.

Figure 7-6: An outer join includes not only
rows from the two data sources with a match
but also unmatched rows from outside the
intersection.

Some of the data in the result set produced by an outer join will look just like the data from
an inner join. There will be data in columns that come from each of the data sources. But any
rows from the outer-join table that do not have a match in the other side of the join will
return data only from the outer-join table. In this case, columns from the other data source
will have null values.

When building queries using Query Designer, you can change the join type from the default,
inner join, to outer join via either the right-click mouse menu or the properties of the join, as
shown in Figure 7-7. The Query Designer, in my opinion, does an excellent job of illustrating
the types of joins with the join symbol (as previously detailed in Table 7-1).

Figure 7-7: The join Properties dialog box
displays the join columns, and is used to set
the join condition (=, >, <, etc.) and add the
left or right side of an outer join (all rows
from Product, all rows from OrderDetail).

In SQL code, an outer join is declared by the keywords left outer or right outer before
the join (technically, the keyword outer is optional):

SELECT *
FROM Table1
LEFT|RIGHT [OUTER] JOIN Table2
ON Table1.column = Table2.column

Data Set BData Set A
Common

Intersection

Right Outer Join

Left Outer Join

10549359 Ch07.F 11/21/02 9:23 AM Page 223

224 Part II ✦ Developing SQL Server Databases

Although several keywords in SQL are optional (such as inner and outer) or may be abbrevi-
ated (such as proc for procedure), explicitly stating the intent by spelling out the full syntax
improves the readability of the code. However, most developers omit the optional syntax.

There’s no trick to telling the difference between left and right outer joins. In code, left or
right refers to the table that will be included regardless of the match. The outer-join table
(sometimes called the driving table) is typically listed first, so left outer joins are more com-
mon than right outer joins. I suspect any confusion between left and right outer joins is
caused by the use of graphical-query tools to build joins, because the left and right refers to
the table’s listing in the SQL text, and the tables’ positions in the graphical-query tool are
moot.

To modify the previous contact-order query so that it returns all contacts regardless of any
orders, changing the join type from inner to left outer is all that’s required, as follows:

SELECT ContactCode, OrderNumber
FROM dbo.Contact
LEFT OUTER JOIN dbo.[Order]
ON [Order].ContactID = Contact.ContactID

ORDER BY ContactCode

The left outer join will include all rows from the Contact table and matching rows from
the [Order] table. The abbreviated result of the query is as follows:

Contact. [Order].
ContactCode OrderNumber
--------------- -----------
101 1
101 2
...
106 10
107 NULL
108 NULL
...

Because contact 107 and 108 do not have corresponding rows in the [Order] table, the
columns from the [Order] table return a null for those rows.

The T-SQL legacy join syntax uses a trick to specify an outer join — an asterisk is added to the
equals sign in the where clause condition:

✦ Left outer join: *=

✦ Right outer join: =*

For example, the previous outer-join query is written as follows using the legacy join style:

SELECT ContactCode, OrderNumber
FROM dbo.Contact, dbo.[Order]
WHERE Contact.ContactID *= Contact.ContactID
ORDER BY ContactCode

If you are maintaining existing code you may see some legacy-style joins. However, I advise
using the ANSI-style join syntax for all current development.

10549359 Ch07.F 11/21/02 9:23 AM Page 224

225Chapter 7 ✦ Merging Data Using Relational Algebra

Outer Joins and Optional Foreign Keys
Outer joins are often employed when a secondary table has a foreign-key constraint to the
primary table and also permits nulls in the foreign key column. The presence of this optional
foreign key means that if the secondary row refers to a primary row, the primary row must
exist. However, it’s perfectly valid for the secondary row to refrain from referring to the pri-
mary table at all.

Another example of an optional foreign key is an order alert or priority column. Many order
rows will not have an alert or special-priority status. However, those that do must point to a
valid row in the order-priority table.

The OBX Kite store uses a similar order-priority scheme, so reporting all the orders with their
optional priorities requires an outer join:

SELECT OrderNumber, OrderPriorityName
FROM dbo. [Order]
LEFT OUTER JOIN dbo.OrderPriority
ON [Order].OrderPriorityID =
OrderPriority.OrderPriorityID

The left outer join retrieves all the orders and any matching priorities. The
OBXKites_Populate.sql script sets two orders to rush priority:

OrderNumber OrderPriorityName
----------- -----------------
1 Rush
2 NULL
3 Rush
4 NULL
5 NULL
6 NULL
7 NULL
8 NULL
9 NULL
10 NULL

Reflexive relationships (also called recursive or self-joins relationship) also use optional for-
eign keys. In the Family sample database, the MotherID and FatherID are both foreign keys
that refer to the PersonID of the mother or father. The optional foreign key allows persons to
be entered without their father and mother already in the database. But if a value is entered
in the MotherID or FatherID columns, the data must point to valid persons in the database.

Full Outer Joins
A full outer join returns all the data from both data sets regardless of the intersection, as
shown in Figure 7-8. It is functionally the same as a union distinct operation from a left outer
join and a right outer join (unions are explained later in this chapter).

In real life, referential integrity reduces the need for a full outer join because every row from
the secondary table should have a match in the primary table (depending on the optionality
of the foreign key), so left outer joins are typically sufficient. Full outer joins are most useful
for cleaning up data that has not had the benefit of clean constraints to filter out bad data.

10549359 Ch07.F 11/21/02 9:23 AM Page 225

226 Part II ✦ Developing SQL Server Databases

Figure 7-8: The full outer join returns all the
data from both data sets, matching the rows
where it can and filling in the holes with nulls.

The following example mocks up such a situation and compares the full outer join with an
inner and a left outer join. Table One is the primary table. Table Two is a secondary table
with a foreign key that refers to table One. There’s no foreign-key constraint, so there may be
some non-matches for the outer join to find:

CREATE TABLE dbo.One (
OnePK INT,
Thing1 VARCHAR(15)
)

CREATE TABLE dbo.Two (
TwoPK INT,
OnePK INT,
Thing2 VARCHAR(15)
)

The sample data includes rows that would normally break referential integrity. The foreign
key (OnePK) for the plane and the cycle in table Two do not have a match in table One. And
two of the rows in table One do not have related secondary rows in table Two. The following
batch inserts the eight sample data rows:

INSERT dbo.One(OnePK, Thing1)
VALUES (1, ‘Old Thing’)

INSERT dbo.One(OnePK, Thing1)
VALUES (2, ‘New Thing’)

INSERT dbo.One(OnePK, Thing1)
VALUES (3, ‘Red Thing’)

INSERT dbo.One(OnePK, Thing1)
VALUES (4, ‘Blue Thing’)

INSERT dbo.Two(TwoPK, OnePK, Thing2)
VALUES(1,0, ‘Plane’)

INSERT dbo.Two(TwoPK, OnePK, Thing2)
VALUES(2,2, ‘Train’)

INSERT dbo.Two(TwoPK, OnePK, Thing2)
VALUES(3,3, ‘Car’)

INSERT dbo.Two(TwoPK, OnePK, Thing2)
VALUES(4,NULL, ‘Cycle’)

An inner join between table One and table Two will return only the two matching rows:

SELECT Thing1, Thing2
FROM dbo.One
JOIN dbo.Two
ON One.OnePK = Two.OnePK

Train
Red Thing

New Thing

Plane

Cycle
Car

Old Thing

Blue Thing

Full Outer Join

Table One Table Two

10549359 Ch07.F 11/21/02 9:23 AM Page 226

227Chapter 7 ✦ Merging Data Using Relational Algebra

Result:

Thing1 Thing2
--------------- ---------------
New Thing Train
Red Thing Car

A left outer join will extend the inner join and include the rows from table One without
a match:

SELECT Thing1, Thing2
FROM dbo.One
LEFT OUTER JOIN dbo.Two
ON One.OnePK = Two.OnePK

All the rows are now returned from table One, but two rows are still missing from Table two:

Thing1 Thing2
--------------- ---------------
Old Thing NULL
New Thing Train
Red Thing Car
Blue Thing NULL

A full outer join will retrieve every row from both tables, regardless of a match between
the tables:

SELECT Thing1, Thing2
FROM dbo.One
FULL OUTER JOIN dbo.Two
ON One.OnePK = Two.OnePK

The plane and cycle from table Two are now listed along with every row from table One:

Thing1 Thing2
--------------- ---------------
NULL Plane
New Thing Train
Red Thing Car
NULL Cycle
Blue Thing NULL
Old Thing NULL

As this example shows, full outer joins are an excellent tool for finding all the data, even bad
data. Set difference queries, explored later in this chapter, build on outer joins to zero in on
bad data.

Placing the Conditions Within Outer Joins
When working with inner joins a condition has the same effect whether it’s in the join clause
or the where clause, but that’s not the case with outer joins. When the condition is in the join
clause, SQL Server includes all rows from the outer table and then uses the condition to
include rows from the second table. When the restriction is placed in the where clause, the
join is performed and then the where clause is applied to the joined rows. The following two
queries demonstrate the effect of the placement of the condition.

10549359 Ch07.F 11/21/02 9:23 AM Page 227

228 Part II ✦ Developing SQL Server Databases

In the first query, the left outer join includes all rows from table One and then joins those
rows from table Two with an equal OnePK column and Thing1’s value is New Thing. The result
is the same rows from table One, but fewer rows from table Two:

SELECT Thing1, Thing2
FROM dbo.One
LEFT OUTER JOIN dbo.Two
ON One.OnePK = Two.OnePK
AND One.Thing1 = ‘New Thing’

Result:

Thing1 Thing2
--------------- ---------------
Old Thing NULL
New Thing Train
Red Thing NULL
Blue Thing NULL

The second query performs the left outer join producing four rows. The where clause
then restricts that result to those rows where Thing1 is equal to New Thing1.

SELECT Thing1, Thing2
FROM dbo.One
LEFT OUTER JOIN dbo.Two
ON One.OnePK = Two.OnePK

WHERE One.Thing1 = ‘New Thing’

Result:

Thing1 Thing2
--------------- ---------------
New Thing Train

A Join Analogy

When I teach how to build queries, I often use this story to explain the different types of joins.
Imagine a Pilgrim church in the 17th Century segmented by gender. The men all sit on one side
of the church and the women on the other. Imagine that each side of the church is a database
table and the combinations that leave the church represent the different types of joins.

If all the married couple stood up, joined hands and left the church, that would be an inner join
between the men and women. The result set leaving the church would include only matched
pairs.

If all the men stood, those who were married held hands with their brides, and they left as a
group that would be a left outer join. The line leaving the church would include some couples
and some bachelors.

Likewise, if all women with their husbands left the church that would be a right outer join. All the
bachelors would be left alone in the church.

A full outer join would be everyone leaving the church, but only the married couples could hold
hands.

10549359 Ch07.F 11/21/02 9:23 AM Page 228

229Chapter 7 ✦ Merging Data Using Relational Algebra

Self-Joins
A self-join is a join that refers back to the same table. This type of unary relationship is often
used to extract data from a reflexive (also called a recursive) relationship, such as a manufac-
turing databases with bill of materials data (build-from-material to material) and human-
resource databases (employee to boss).

The Family sample database uses two self-joins between a child and his or her parents, as
shown in the database diagram in Figure 7-9. The mothers and fathers are also people, of
course, and are listed in the same table. They link back to their parents and so on. The sam-
ple database is populated with five fictitious generations that can be used for sample queries.

The key to constructing a self-join is to include a second reference to the table using a named
range or table alias. Once the table is available twice to the select statement, the self-join
functions much like any other join.

The following query locates the children of Audry Halloway:

USE Family

SELECT Person.PersonID, Person.FirstName,
Person.MotherID, Mother.PersonID

FROM dbo.Person
JOIN dbo.Person Mother
ON Person.MotherID = Mother.PersonID

WHERE Mother.LastName = ‘Halloway’
AND Mother.FirstName = ‘Audry’

The query uses the Person table twice. The first reference without a named range is joined
with the second reference, which is restricted by the where clause to only Audry Halloway.
Only the rows with a MotherID that points back to Audry will be included in the inner join.
Audry’s PersonID is 6 and her children are as follows:

PersonID FirstName MotherID PersonID
----------- --------------- ----------- -----------
8 Melanie 6 6
7 Corwin 6 6
9 Dara 6 6
10 James 6 6

While the previous query adequately demonstrates a self-join, it would be more useful if the
mother weren’t hard-coded in the where clause, and if more information were provided about
each birth, as follows:

SELECT CONVERT(NVARCHAR(15),Person.DateofBirth,1) AS Date,
Person.FirstName AS Name, Person.Gender AS G,
ISNULL(F.FirstName + ‘ ‘ + F.LastName, ‘ * unknown *’)
as Father,

M.FirstName + ‘ ‘ + M.LastName as Mother
FROM dbo.Person
Left Outer JOIN dbo.Person F
ON Person.FatherID = F.PersonID

INNER JOIN dbo.Person M
ON Person.MotherID = M.PersonID

ORDER BY Person.DateOfBirth

10549359 Ch07.F 11/21/02 9:23 AM Page 229

230 Part II ✦ Developing SQL Server Databases

This query makes three references to the person table: the child, the father, and the mother.
The result is a better listing:

Date Name G Father Mother
-------- -------- --- ----------------- ---------------
5/19/22 James M James Halloway Kelly Halloway
8/05/28 Audry F Bryan Miller Karen Miller
8/19/51 Melanie F James Halloway Audry Halloway
8/30/53 James M James Halloway Audry Halloway
2/12/58 Dara F James Halloway Audry Halloway
3/13/61 Corwin M James Halloway Audry Halloway
3/13/65 Cameron M Richard Campbell Eizabeth Campbell
...

Figure 7-9: The Database Diagram of the Family database includes two unary
relationships (children to parents) on the left and a many-to-many unary relationship
(husband to wife) on the right.

Cross (Unrestricted) Joins
The cross join, also called an unrestricted join, is a pure relational algebra multiplication of
the two source tables. Without a join condition restricting the result set, the result set
includes every possible combination of rows from the data sources. Each row in data set one
is matched with every row in data set two, for example, if the first data source has five rows
and second data source has four rows, a cross join between them would result in 20 rows.
This type of result set is referred to as a Cartesian product.

10549359 Ch07.F 11/21/02 9:23 AM Page 230

231Chapter 7 ✦ Merging Data Using Relational Algebra

Using the one/two sample tables, a cross join is constructed in Enterprise Manager by omit-
ting the join condition between the two tables, as shown in Figure 7-10.

Figure 7-10: A graphical representation of a cross join is simply two tables without a
join condition.

In code, this type of join is specified by the keywords cross join and the lack of an on
condition:

SELECT Thing1, Thing2
FROM dbo.One
CROSS JOIN dbo.Two

The result of a join without restriction is that every row in table One matches with every row
from table Two:

Thing1 Thing2
--------------- ---------------
Old Thing Plane
New Thing Plane
Red Thing Plane
Blue Thing Plane
Old Thing Train
New Thing Train
Red Thing Train
Blue Thing Train
Old Thing Car

10549359 Ch07.F 11/21/02 9:23 AM Page 231

232 Part II ✦ Developing SQL Server Databases

New Thing Car
Red Thing Car
Blue Thing Car
Old Thing Cycle
New Thing Cycle
Red Thing Cycle
Blue Thing Cycle

Most cross joins are the result of forgetting to draw the join in a graphical-query tool; how-
ever, they are useful for populating databases with sample data, or for creating empty “pidgin
hole” rows for population during a procedure.

Understanding how a cross join multiplies data is also useful when studying relational divi-
sion, the inverse of a relational multiplication. Relational division requires subqueries, shown
in Figure 7-12, so it’s explained later in this chapter.

Exotic Joins
Nearly all joins are based on a condition of equality between the primary key of a primary
table and the foreign key of a secondary table, which is why the inner join is sometimes
called an equijoin. But while it’s commonplace to base a join on a single equal condition, it is
not a requirement. The condition between the two columns is not necessarily equal, nor is
the join limited to one condition.

The on condition of the join is in reality nothing more than a where condition restricting the
product of the two joined data sets. where-clause conditions may be very flexible and power-
ful, and the same is true of join conditions. This reasoning enables the use of three powerful
techniques; Θ (theta) joins, multiple-condition joins, and non-key joins.

Θ (theta) Joins
A Θ (theta) join is a join based on a non-equal on condition. In relational theory conditional
operators (=, >, <, >=, <=, <>) are called Θ operators. While the equals condition is technically
a Θ operator, it is commonly used; only joins that deviate from the equi-join are referred to as
Θ joins.

The Θ condition may be set within Enterprise Manager’s Query Designer using the Join
Properties dialog box, as previously shown in Figure 7-7.

Θ joins are often combined with multiple condition joins involving non-key columns, the rest
of the code samples in this section all use Θ joins.

Multiple-Condition Joins
If a join is nothing more than a condition between two data sets, it makes sense that multiple
conditions are possible at the join. In fact, multiple-condition joins and Θ joins go hand-in-
hand. Without the ability to use multiple-condition joins, Θ joins would be of little value.

Join conditions can refer to any table in the from clause, enabling interesting three-way joins.
For example:

From A
JOIN B
ON A.col = B.col

JOIN C
ON B.col = C.col
AND A.col = C.col

10549359 Ch07.F 11/21/02 9:23 AM Page 232

233Chapter 7 ✦ Merging Data Using Relational Algebra

Non-Key Joins
Joins are not limited to primary and foreign keys. The join can match a row in one data
source with a row in another data source using any column, as long as the columns share
compatible data types and the data match.

For example, an inventory allocation system would use a non-key join to find products that
are expected to arrive from the supplier before the customer’s required ship date. A non-key
join between the PurchaseOrder and OrderDetail tables with a Θ condition between
PO.DateExpected and OD.DateRequired will filter the join to those products that can be
allocated to the customer’s orders. The following code demonstrates the non-key join (this is
not in a sample database):

SELECT OD.OrderID, OD.ProductID, PO.POID
FROM OrderDetail OD
JOIN PurchaseOrder PO
ON OD.ProductID = PO.ProductID
AND OD.DateRequired > PO.DateExpected

When working with inner joins, non-key join conditions can be placed in the where clause or
in the join. Because the conditions compare similar values between two joined tables, I often
place these conditions in the join portion of the from clause rather than the where clause.
The critical difference lies in whether you view the conditions as a part of creating the record
set the rest of the SQL select statement is acting upon, or as a filtering task that follows the
from clause. Either way, the query-optimization plan is identical, so use the method that is
most readable and seems most logical to you. Note that when constructing outer joins the
placement of the condition in the join or in the where clause yields different results, as is
explained in the section on outer joins.

Looking at the Family sample database, the question “Who are twins?” uses all three exotic
join techniques in the join between person and twin. The join contains three conditions. The
Person.PersonID <> Twin.PersonID condition is a Θ join that prevents a person from
being considered his or her own twin. The join condition on MotherID, while a foreign key, is
non-standard because it’s being joined with another foreign key. The DateOfBirth condition
is definitely a non-key join condition. The where condition check for DateOfBirth is not
null simply removes from the query those who married into the family and thus have no
recorded parents:

SELECT Person.FirstName + ‘ ‘ + Person.LastName,
Twin.FirstName + ‘ ‘ + Twin.LastName as Twin,
Person.DateOfBirth

FROM dbo.Person
JOIN dbo.Person Twin
ON Person.PersonID <> Twin.PersonID
AND Person.MotherID = Twin.MotherID
AND Person.DateOfBirth = Twin.DateOfBirth

WHERE Person.DateOfBirth IS NOT NULL

The following is the same query, this time with the exotic join condition moved to the
where clause. Not surprisingly, SQL Server’s query optimizer produces the exact same
query-execution plan for each query.

SELECT Person.FirstName + ‘ ‘ + Person.LastName AS Person,
Twin.FirstName + ‘ ‘ + Twin.LastName as Twin,
Person.DateOfBirth

FROM dbo.Person

10549359 Ch07.F 11/21/02 9:23 AM Page 233

234 Part II ✦ Developing SQL Server Databases

JOIN dbo.Person Twin
ON Person.MotherID = Twin.MotherID
AND Person.DateOfBirth = Twin.DateOfBirth

WHERE Person.DateOfBirth IS NOT NULL
AND Person.PersonID != Twin.PersonID

Results:

Person Twin DateOfBirth
--------------- --------------- ------------------------
Abbie Halloway Allie Halloway 1979-08-14 00:00:00.000
Allie Halloway Abbie Halloway 1979-08-14 00:00:00.000

In Microsoft’s Northwind database, a non-key join could be created comparing the Region
columns of the Customers, Shippers, and Orders tables.

The difficult query scenarios at the end of this chapter also demonstrate exotic joins often
used with subqueries.

Using Subqueries
A subquery is an imbedded select statement within an outer query. The subquery provides
an answer to the outer-query in the form of a scalar value, a list of values, or a dataset, and
may be substituted for an expression, list, or table, respectively, within the outer-query. The
matrix of subquery types and select-statement usage is shown in Table 7-2. Because a sub-
query may only contain a select query, and not a data-modification query, subqueries are
sometimes referred to as subselects.

The subquery comes in two forms, simple and correlated. The simple subquery can be a
stand-alone query and can run by itself. It is executed once and the result is passed to the
outer query. A correlated subquery references at least one column in the outer query and so
it cannot run separately by itself. The outer query runs first and the correlated subquery
runs once for every row in the outer query.

Simple Subqueries
Simple subqueries are executed in the following order:

1. The simple subquery is executed once.

2. The results are passed to the outer query.

3. The outer query is executed once.

The most basic simple subquery returns a single (scalar) value, which is then used as an
expression in the outer query, as follows:

SELECT (SELECT 3) AS SubqueryValue

Result:

SubqueryValue

3

10549359 Ch07.F 11/21/02 9:23 AM Page 234

235Chapter 7 ✦ Merging Data Using Relational Algebra

Table 7-2: Subquery Usage

Subquery Returns:

Expression List Data Set
Select-Statement Subquery returns Subquery returns Subquery returns
Element scalar value list of values data source

Select (subquery) The subquery result X X
is used as an
expression supplying
the value for
the column.

From (data source) X X The subquery’s data set
as SQ is accepted as a derived

table source within the
outer-query.

Where x {=, >, The where clause
<, >=, <=, is true if the test X X
<>} (subquery) value compares

true with the
subquery’s
scalar value.

Where x In The where condition The where condition X
(subquery) is true if the test is true if the test

value is equal to value is found within
the scalar value the list returned by
returned by the the subquery.
subquery.

Where Exists The where condition The where condition The where condition
(Subquery) is true if the subquery is true if the subquery is true if the subquery

returns at least returns at least returns at least one row.
one row. one row.

The subquery (select 3) returns a single value of 3, which is passed to the outer select
statement. The outer select statement is then executed as if it were the following:

SELECT 3 AS SubqueryValue

Of course, a subquery with only hard-coded values is of little use. A useful subquery fetches a
date from a table, as follows:

USE OBXKites

SELECT ProductName
FROM dbo.Product
WHERE ProductCategoryID
= (Select ProductCategoryID

FROM dbo.ProductCategory
Where ProductCategoryName = ‘Kite’)

10549359 Ch07.F 11/21/02 9:23 AM Page 235

236 Part II ✦ Developing SQL Server Databases

To execute this query, SQL server first evaluates the subquery and returns a value to the
outer query (your unique identifier will be different from the one in this query):

Select ProductCategoryID
FROM dbo.ProductCategory
Where ProductCategoryName = ‘Kite’

Result:

ProductCategoryID

C38D8113-2BED-4E2B-9ABF-A589E0818069

The outer query then executes as if it were the following:

SELECT ProductName
FROM dbo.Product
WHERE ProductCategoryID
= ‘C38D8113-2BED-4E2B-9ABF-A589E0818069’

Result:

ProductName
--
Basic Box Kite 21 inch
Dragon Flight
Sky Dancer
Rocket Kite
...

If you think subqueries seem similar to joins, you’re right. Many joins may be rewritten as
subqueries.

Using Scalar Subqueries
If the subquery returns a single value it may then be used anywhere inside the SQL select
statement where an expression might be used, including column expressions, join conditions,
where conditions, or having conditions. Normal operators (+, =, between, and so on) will
work with single values returned from a subquery; data-type conversion using the cast() or
convert() function may be required, however.

The previous example used a subquery within a where condition. The following sample query
uses a subquery within a column expression to calculate the total sales so each row can cal-
culate the percentage of sales:

SELECT ProductCategoryName,
SUM(Quantity * UnitPrice) AS Sales,
Cast(SUM(Quantity * UnitPrice) /

(SELECT SUM(Quantity * UnitPrice)
FROM dbo.OrderDetail) *100 AS INT)

AS PercentOfSales
FROM dbo.OrderDetail
JOIN dbo.Product
ON OrderDetail.ProductID = Product.ProductID

JOIN dbo.ProductCategory
ON Product.ProductCategoryID = ProductCategory.ProductCategoryID

GROUP BY ProductCategoryName
ORDER BY Count(*) DESC

10549359 Ch07.F 11/21/02 9:23 AM Page 236

237Chapter 7 ✦ Merging Data Using Relational Algebra

The subquery, select sum(Quantity * UnitPrice) from OrderDetail, returns a value
of 1729.895, which is then passed to the outer query’s PercentageOfSales column. The
result lists the product categories, sales amount, and percentage of sales:

ProductCategoryName Sales PercentOfSales
--------------------- -------------- --------------
Kite 1499.902500 86.70
OBX 64.687500 3.74
Clothing 113.600000 6.57
Accessory 10.530000 0.61
Material 5.265000 0.30
Video 35.910000 2.08

The following select statement is extracted from the fGetPrice() user-defined function in
the OBXKites sample database. The OBXKites database has a price table that allows each
product to have a list of prices, each with an effective date. The OBX Kite store can pre-define
several price changes for a future date rather than enter all the price changes the night
before the new prices goes into effect. As an additional benefit, this data model maintains a
price history.

The fGetPrice() function returns the correct price for any product, any date, and any cus-
tomer-discount type. To accomplish this, the function must determine the effective date for
the date submitted. For example, if a user needs a price for July 16, 2002, and the current
price was made effective on July 1, 2002, then in order to look up the price the query needs to
know the most recent price date using max(effectivedate) where effectivedate is =
@orderdate. Once the subquery determines the effective date, the outer query can look up
the price. Some of the function’s variables are replaced with static values for the purpose of
this example.

SELECT @CurrPrice = Price * (1-@DiscountPercent)
FROM dbo.Price
JOIN dbo.Product
ON Price.ProductID = Product.ProductID

WHERE ProductCode = ‘1001’
AND EffectiveDate =
(SELECT MAX(EffectiveDate)
FROM dbo.Price
JOIN dbo.Product
ON Price.ProductID = Product.ProductID

WHERE ProductCode = ‘1001’
AND EffectiveDate <= ‘6/1/2001’)

Calling the function,

Select dbo.fGetPrice(‘1001’,’5/1/2001’,NULL)

the subquery determines that the effective price date is ‘05/01/2001’. The outer query can
then find the correct price based on the ProductID and effective date. Once the
fGetPrice() function calculates the discount, it can return @CurrPrice to the calling
select statement:

14.9500

10549359 Ch07.F 11/21/02 9:23 AM Page 237

238 Part II ✦ Developing SQL Server Databases

Using Subqueries as Lists
Subqueries begin to shine when used as lists. A single value, commonly a column, in the
outer query is compared with the list by means of the in operators. The subquery must
return only a single column.

The in operator returns a value of true if the column value is found anywhere in the list sup-
plied by the subquery, in the same way that where ... in returns a value of true when used
with a hard-coded list:

SELECT *
FROM dbo.Contact
WHERE HomeRegion IN (‘NC’, ‘SC’, ‘GA’, ‘AL’, ‘VA’)

A list subquery serves as a dynamic means of generating the where ... in condition list:

SELECT *
FROM dbo.Contact
WHERE Region IN (Subquery that returns a list of states)

The following query answers the question “When OBXKites sells a kite, what else does it sell
with the kite?” To demonstrate the use of subqueries, this query will use only subqueries —
no joins. All of these subqueries are simple queries, meaning that each can run as a stand-
alone query.

The subquery will find all orders with kites and pass those OrderID’s to the outer query. Four
tables are involved in providing the answer to this question: ProductCategory, Product,
OrderDetail, and Order. The nested subqueries are executed from the inside out, so they
read in the following order:

1. The subquery finds the one ProductCategoryID for the kites.

2. The subquery finds the list of products that are kites.

3. The subquery finds the list of orders with kites.

4. The subquery finds the list of all the products on orders with kites.

5. The outer query finds the product names.

SELECT ProductName
FROM dbo.Product
WHERE ProductID IN
-- 4. Find all the products sold in orders with kites
(SELECT ProductID
FROM dbo.OrderDetail
WHERE OrderID IN
-- 3. Find the Kite Orders
(SELECT OrderID -- Find the Orders with Kites
FROM dbo.OrderDetail
WHERE ProductID IN
-- 2. Find the Kite Products
(SELECT ProductID
FROM dbo.Product
WHERE ProductCategoryID =

-- 1. Find the Kite category
(Select ProductCategoryID
FROM dbo.ProductCategory
Where ProductCategoryName

= ‘Kite’))))

10549359 Ch07.F 11/21/02 9:23 AM Page 238

239Chapter 7 ✦ Merging Data Using Relational Algebra

You can highlight any of these subqueries and run it as a stand-alone query in Query
Analyzer by selecting the subquery and pressing F5.

Subquery 1 finds the ProductCategoryID for the kite category and returns a single value.

Subquery 2 uses subquery 1 as a where clause expression subquery that returns the kite
ProductCategoryID. Using this where-clause restriction, subquery 2 finds all products of
which the ProductCategoryID is equal to the value returned from subquery 2.

Subquery 3 uses subquery 2 as a where-clause list subquery by searching for all
OrderDetail rows that include any one of the productIDs returned by subquery 2.

Subquery 4 uses subquery 3 as a where clause list subquery that includes all orders that
include kites. The subquery then locates all OrderDetail rows for which the orderID is in
the list returned by subquery 3.

The outer query uses subquery 4 as a where clause list condition and finds all products of
which the ProductID is in the list retuned by subquery 4, as follows:

ProductName
--
Falcon F-16
Dragon Flight
OBX Car Bumper Sticker
Short Streamer
Cape Hatteras T-Shirt
Sky Dancer
Go Fly a Kite T-Shirt
Long Streamer
Rocket Kite
OBX T-Shirt

Drat! There are kites in the list. They’ll have to be eliminated from the query. To fix the error,
the outer query needs to find all the products where:

✦ The ProductID is in order that included a kite

and

✦ The ProductID is not in the list of kites

Fortunately, subquery 2 returns all the kite products. Adding a copy of subquery 2 with the
not in operator to the outer query will remove the kites from the list, as follows:

SELECT ProductName
FROM dbo.Product
WHERE ProductID IN
-- 4. Find all the products sold in orders with kites
(SELECT ProductID
FROM dbo.OrderDetail
WHERE OrderID IN
-- 3. Find the Kite Orders
(SELECT OrderID -- Find the Orders with Kites
FROM dbo.OrderDetail
WHERE ProductID IN
-- 2. Find the Kite Products
(SELECT ProductID
FROM dbo.Product

Tip

10549359 Ch07.F 11/21/02 9:23 AM Page 239

240 Part II ✦ Developing SQL Server Databases

WHERE ProductCategoryID =
-- 1. Find the Kite category
(Select ProductCategoryID
FROM dbo.ProductCategory
Where ProductCategoryName

= ‘Kite’)))
-- outer query continued
AND ProductID NOT IN
(SELECT ProductID
FROM dbo.Product
WHERE ProductCategoryID =

(Select ProductCategoryID
FROM dbo.ProductCategory
Where ProductCategoryName

= ‘Kite’)))

Result:

ProductName
--
OBX Car Bumber Sticker
Short Streamer
Cape Hatteras T-Shirt
Go Fly a Kite T-Shirt
Long Streamer
OBX T-Shirt

For comparison purposes, the following queries answer the exact same question but are writ-
ten with joins. The Product table is referenced twice, so the second reference that represents
only the kites has a named range of Kite. As with the previous subqueries, the first version of
the query locates all products and the second version eliminates the kites:

SELECT Distinct Product.ProductName
FROM dbo.Product
JOIN dbo.OrderDetail OrderRow
ON Product.ProductID = OrderRow.ProductID

JOIN dbo.OrderDetail KiteRow
ON OrderRow.OrderID = KiteRow.OrderID

JOIN dbo.Product Kite
ON KiteRow.ProductID = Kite.ProductID

JOIN dbo.ProductCategory
ON Kite.ProductCategoryID

= ProductCategory.ProductCategoryID
Where ProductCategoryName = ‘Kite’

The only change necessary to eliminate the kites is the addition of another condition to the
ProductCategory join. Previously, the join was a equi-join between Product and
ProductCategory. Adding a Θ-join condition of != between the Product table and the
ProductCategory table removes any products that are kites, as shown in the following code
sample:

SELECT Distinct Product.ProductName
FROM dbo.Product
JOIN dbo.OrderDetail OrderRow
ON Product.ProductID = OrderRow.ProductID

10549359 Ch07.F 11/21/02 9:23 AM Page 240

241Chapter 7 ✦ Merging Data Using Relational Algebra

JOIN dbo.OrderDetail KiteRow
ON OrderRow.OrderID = KiteRow.OrderID

JOIN dbo.Product Kite
ON KiteRow.ProductID = Kite.ProductID

JOIN dbo.ProductCategory
ON Kite.ProductCategoryID

= ProductCategory.ProductCategoryID
AND Product.ProductCategoryID

!= Kite.ProductCategoryID
Where ProductCategoryName = ‘Kite’

These two sets of queries, written using dramatically different syntax, provide the exact same
answers. So which is the best query? That’s up to you. Depending on complexity, subqueries
can be faster because they select fewer rows from step to step. More complex subqueries
tend to perform better than large join queries.

SQL is very flexible — there are often a dozen ways to express the same question. Your choice
of SQL method should be made according to your style and to which method enables you to
be legibly and logically correct, and then according to performance considerations. Slow and
correct beats fast and wrong every time.

Here’s another example of how a creative subquery can solve a problem. SQL handles finding
the top rows from a result set easily, but it’s a little trickier to find a middle range of rows. In
this day of Web searches that return hundreds of hits, finding rows 101 through 125 is a use-
ful, and frequently required, ability.

This example, based on the OBX Kite Store sample database, finds five products beginning
with the 26th product. The subquery finds the first 25 products, which are then skipped by
the outer query because of the where not in clause:

USE OBXKites
SELECT TOP 5 ProductName, ProductCode
FROM dbo.Product
WHERE ProductID NOT IN
(SELECT TOP 25 ProductID

FROM dbo.Product
ORDER BY ProductCode)

ORDER BY ProductCode

Result:

ProductName ProductCode
---------------------- ---------------
Handle 1026
Third Line Release 1027
High Performance Line 1028
Kite Bag 1029
Kite Repair Kit 1030

Using Subqueries as Tables
In the same way that a view may be used in the place of a table within the from clause of a
select statement, a subquery in the form of a derived table can replace any table, provided the
subquery has a named range. This technique is very powerful and is often used to break a dif-
ficult query problem down into smaller bite-sized chunks.

10549359 Ch07.F 11/21/02 9:23 AM Page 241

242 Part II ✦ Developing SQL Server Databases

Using a subquery as a derived table is an excellent solution to the aggregate-function prob-
lem. When you are building an aggregate query, every column must participate in the aggre-
gate function in some way, either as a group by column or as an aggregate function (sum(),
avg(), count(), max(), or min()). This stipulation makes returning additional descriptive
information difficult. However, performing the aggregate functions in a subquery and passing
the rows found to the outer query as a derived table enables the outer query to then return
any columns desired.

The question “How many of each product have been sold?” is easy to answer if only one col-
umn from the Product table is included in the result:

SELECT ProductCode, SUM(Quantity) AS QuantitySold
FROM dbo.OrderDetail
JOIN dbo.Product
ON OrderDetail.ProductID = Product.ProductID

GROUP BY ProductCode

Result:

ProductCode QuantitySold
--------------- --
1002 47.00
1003 5.00
1004 2.00
1012 5.00

The result includes ProductCode, but not the name or description. Of course it’s possible to
simply group by every column to be returned, but that’s sloppy. The following query per-
forms the aggregate summation in a subquery that is then joined with the Product table so
that every column is available without additional work:

SELECT Product.ProductCode, Product.ProductName,
Sales.QuantitySold

FROM dbo.Product
JOIN (SELECT ProductID, SUM(Quantity) AS QuantitySold

FROM dbo.OrderDetail
GROUP BY ProductID) Sales

ON Product.ProductID = Sales.ProductID
ORDER BY ProductCode

The query is fast and efficient, it provides the required aggregate data, and all the product
columns can be added to the output columns. The result is as follows:

ProductCode ProductName QuantitySold
----------- -------------------- ------------------
1002 Dragon Flight 47.00
1003 Sky Dancer 5.00
1004 Rocket Kite 2.00
1012 Falcon F-16 5.00
...

Another example of using a derived table to solve a problem answers the question “How
many children has each mother borne?” from the Family sample database:

USE Family
SELECT PersonID, FirstName, LastName, Children
FROM dbo.Person

10549359 Ch07.F 11/21/02 9:23 AM Page 242

243Chapter 7 ✦ Merging Data Using Relational Algebra

JOIN (SELECT MotherID, COUNT(*) AS Children
FROM dbo.Person
WHERE MotherID IS NOT NULL
GROUP BY MotherID) ChildCount

ON Person.PersonID = ChildCount.MotherID
ORDER BY Children DESC

The subquery performs the aggregate summation, and the columns are joined with the
Person table to present the final results, as follows:

PersonID FirstName LastName Children
----------- --------------- --------------- -----------
6 Audry Halloway 4
8 Melanie Campbell 3
12 Alysia Halloway 3
20 Grace Halloway 2

Correlated Subqueries
Correlated subqueries sound impressive, and they are. They are used in the same ways that
simple subqueries are used, the difference being that correlated subqueries reference
columns in the outer query. This ability to limit the subquery by the outer query makes these
queries powerful and flexible. Because correlated subqueries can reference the outer query,
they are especially useful for complex where conditions.

The ability to reference the outer query also means that correlated subqueries won’t run by
themselves because the reference to the outer query would cause the query to fail. The logi-
cal execution order is as follows:

1. The outer query is executed once.

2. The subquery is executed once for every row in the outer query, substituting the val-
ues from the outer query into each execution of the subquery.

3. The subquery’s results are integrated into the result set.

If the outer query returns 100 rows, SQL Server will execute the logical equivalent of 101
queries — one for the outer query, and one subquery for every row returned by the outer
query. In practice, the SQL Server query optimizer will likely figure out a way to perform the
correlated subquery without actually performing the 101 queries. In fact, I’ve sometimes seen
correlated subqueries outperform other query plans. If they solve your problem don’t avoid
them for performance reasons.

To explore correlated subqueries, the next few queries, based on the Outer Banks Adventures
sample database, use them to compare the locations of customers and tour base camps.
First, the following data-modification queries set up the data:

USE CHA2
UPDATE dbo.BaseCamp SET Region = ‘NC’ WHERE BaseCampID = 1
UPDATE dbo.BaseCamp SET Region = ‘NC’ WHERE BaseCampID = 2
UPDATE dbo.BaseCamp SET Region = ‘BA’ WHERE BaseCampID = 3
UPDATE dbo.BaseCamp SET Region = ‘FL’ WHERE BaseCampID = 4
UPDATE dbo.BaseCamp SET Region = ‘WV’ WHERE BaseCampID = 5

UPDATE dbo.Customer SET Region = ‘ND’ WHERE CustomerID = 1
UPDATE dbo.Customer SET Region = ‘NC’ WHERE CustomerID = 2
UPDATE dbo.Customer SET Region = ‘NJ’ WHERE CustomerID = 3

10549359 Ch07.F 11/21/02 9:23 AM Page 243

244 Part II ✦ Developing SQL Server Databases

UPDATE dbo.Customer SET Region = ‘NE’ WHERE CustomerID = 4
UPDATE dbo.Customer SET Region = ‘ND’ WHERE CustomerID = 5
UPDATE dbo.Customer SET Region = ‘NC’ WHERE CustomerID = 6
UPDATE dbo.Customer SET Region = ‘NC’ WHERE CustomerID = 7
UPDATE dbo.Customer SET Region = ‘BA’ WHERE CustomerID = 8
UPDATE dbo.Customer SET Region = ‘NC’ WHERE CustomerID = 9
UPDATE dbo.Customer SET Region = ‘FL’ WHERE CustomerID = 10

This sample set of data produces the following matrix between customer locations and base-
camp locations:

SELECT DISTINCT Customer.Region, BaseCamp.Region
FROM dbo.Customer
JOIN dbo.Event_mm_Customer
ON Customer.CustomerID = Event_mm_Customer.CustomerID

JOIN dbo.Event
ON Event_mm_Customer.EventID = Event.EventID

JOIN dbo.Tour
ON Event.TourID = Tour.TourID

JOIN dbo.BaseCamp
ON Tour.BaseCampID = BaseCamp.BaseCampID

WHERE Customer.Region IS NOT NULL
GROUP BY Customer.Region, BaseCamp.Region
ORDER BY Customer.Region, BaseCamp.Region

Result:

Customer BaseCamp
Region Region
------- --------
BA BA
BA FL
BA NC
FL FL
FL NC
FL WV
NC BA
NC FL
NC NC
NC WV
ND BA
ND FL
ND NC
NE FL
NE WV
NJ FL
NJ NC
NJ WV

With this data foundation, the first query asks, “Who lives in the same region as one of our
base camps?” The query uses a correlated subquery to locate base camps that share the
same Region as the customer. The subquery is executed for every row in the Customer table.
If a BaseCamp match exists for that row, the exists condition is true and the row is accepted
into the result set.

10549359 Ch07.F 11/21/02 9:23 AM Page 244

245Chapter 7 ✦ Merging Data Using Relational Algebra

SELECT C.FirstName, C.LastName, C.Region
FROM dbo.Customer C
WHERE EXISTS
(SELECT * FROM dbo.BaseCamp B

WHERE B.Region = C.Region)

The same query written with joins requires a distinct predicate to eliminate duplicate rows.
However, it can refer to columns in every referenced table — something a correlated sub-
query within a where exists can’t do.

SELECT DISTINCT C.FirstName, C.LastName, C.Region, B.Region
FROM Customer C
JOIN dbo.BaseCamp B
ON C.Region = B.Region

The result:

FirstName LastName Region
-------------- ------------------ ------------------
Jane Doe BA
Francis Franklin FL
Melissa Anderson NC
Lauren Davis NC
Wilson Davis NC
John Frank NC

A more complicated comparison asks, “Who has gone on a tour in his or her home region?”

The answer lies in the Event_mm_Customer table — a resolution (or junction) table between
the Event and Customer tables that serves to store the logical many-to-many relationship
between customers and events (multiple customers may attend a single event, and a single
customer may attend multiple events). The Event_mm_Customer table may be thought of as
analogous to a customer’s ticket to an event.

The outer query logically runs though every Event_mm_Customer row to see if there exists
any result from the correlated subquery. The subquery is filtered by the current EventID and
customer RegionID from the outer query.

In an informal way of thinking, the query checks every ticket and creates a list of events in a
customer’s home region that that customer has attended. If anything is in the list, the where
exists condition is true for that row. If the list is empty, where exists is not satisfied and
the customer row in question is eliminated from the result set:

USE CHA2
SELECT DISTINCT C.FirstName, C.LastName, C.Region AS Home
FROM dbo.Customer C
JOIN dbo.Event_mm_Customer E
ON C.CustomerID = E.CustomerID

WHERE C.Region IS NOT NULL
AND EXISTS

(SELECT *
FROM dbo.Event
JOIN dbo.Tour
ON Event.TourID = Tour.TourID

JOIN dbo.BaseCamp
ON Tour.BaseCampID = BaseCamp.BaseCampID

WHERE BaseCamp.Region = C.Region
AND Event.EventID = E.EventID)

10549359 Ch07.F 11/21/02 9:23 AM Page 245

246 Part II ✦ Developing SQL Server Databases

Result:

FirstName LastName Home

code:Francis Franklin FL
Jane Doe BA
John Frank NC
Lauren Davis NC
Melissa Anderson NC

The same query can be written using joins. Although it might be easier to read, the following
query took 131 milliseconds compared to only 80 milliseconds taken by the previous corre-
lated subquery:

SELECT Distinct C.FirstName, C.LastName, C.Region AS Home,
Tour.TourName, BaseCamp.Region

FROM dbo.Customer C
JOIN dbo.Event_mm_Customer
ON C.CustomerID = Event_mm_Customer.CustomerID

JOIN dbo.Event
ON Event_mm_Customer.EventID = Event.EventID

JOIN dbo.Tour
ON Event.TourID = Tour.TourID

JOIN dbo.BaseCamp
ON Tour.BaseCampID = BaseCamp.BaseCampID
AND C.Region = BaseCamp.Region
AND C.Region IS NOT NULL

ORDER BY C.LastName

The join query has the advantage of including the columns from the Tour table without hav-
ing to explicitly return them from the subquery. The join also lists Lauren and Frank twice,
once for each in-region tour. And yes, the Amazon Trek tour is based out of Ft. Lauderdale:

FirstName LastName Home TourName Region
er Banks Lighthouses NC
Lauren Davis NC Appalachian Trail NC
Lauren Davis NC Outer Banks Lighthouses NC
Jane Doe BA Bahamas Dive BA
John Frank NC Appalachian Trail NC
John Frank NC Outer Banks Lighthouses NC
Francis Franklin FL Amazon Trek FL

Although correlated subqueries can be mind-bending, the flexibility and potential perfor-
mance gains are worth it. Be careful that the correlated subquery returns the correct answer.

Using Unions
The union operation is different from a join. In relational algebra terms, a union is addition,
whereas a join is multiplication. Instead of extending a row horizontally as a join would, the
union stacks multiple result sets into a single long table, as illustrated in Figure 7-11. These
few rules must be followed when constructing a union query:

✦ The column names, or aliases, must be determined by the first select.

✦ Every select must have the same number of columns and each lineup of columns must
share the same data-type family.

10549359 Ch07.F 11/21/02 9:23 AM Page 246

247Chapter 7 ✦ Merging Data Using Relational Algebra

✦ Expressions may be added to the select statements to identify the source of the row so
long as the column is added to every select.

✦ The union may be used as part of a select into (a form of the insert verb covered
in Chapter 10, “Modifying Data”) but the into keyword must go in the first select
statement.

✦ While the select command will default to all unless distinct is specified, the union is the
opposite. By default, the union will perform a distinct; if you wish to change this behav-
ior you must specify the keyword all. (I recommend that you think of the union as
“union all” in the same way that the you might think of top as “top with ties.”)

✦ The order by clause sorts the results of all the selects and must go on the last select,
but uses the column names from the first select.

Unions are also used within partitioned views (explained in Chapter 30, “Advanced
Scalability”), a means of segmenting large tables into several smaller tables while retaining
the ability to insert or update data through the union.

Figure 7-11: A union vertically appends
the result of one select statement to the
results of another select statement.

In the following union query the order by clause references the Thing1 column in the first
select statement:

SELECT OnePK, Thing1, ‘from One’ as Source
FROM dbo.One

UNION ALL
SELECT TwoPK, Thing2, ‘from Two’
FROM dbo.Two

ORDER BY Thing1

Red Thing
New Thing

Old Thing

Blue Thing

Cycle
Train

Plane

Car

Table One

Table Two

Cross-
Reference

10549359 Ch07.F 11/21/02 9:23 AM Page 247

248 Part II ✦ Developing SQL Server Databases

The resulting record set uses the column names from the first select statement:

OnePK Thing1 Source
----------- --------------- --------
4 Blue Thing from One
3 Car from Two
4 Cycle from Two
2 New Thing from One
1 Old Thing from One
1 Plane from Two
3 Red Thing from One
2 Train from Two

Unions aren’t limited to two tables. The largest I’ve personally worked with had about 90
tables (I won’t try that again anytime soon). As long as the total number of tables referenced
by a query is 256 or less, SQL Server handles the load.

Intersection Union
An intersection union finds the rows common to both data sets. An inner join finds common
rows horizontally, while an intersection union finds common rows vertically. SQL Server
doesn’t handle intersection or difference unions natively, so they take a little work. To set up
the intersection query, these first two statements add rows to table Two so there will be an
intersection:

INSERT dbo.Two(TwoPK, OnePK, Thing2)
VALUES(5,0, ‘Red Thing’)

INSERT dbo.Two(TwoPK, OnePK, Thing2)
VALUES(6,0, ‘Blue Thing’)

The intersection union query wraps a group by around a union in a subquery. If the
count() is greater than 1, the row must be in both select statements. The select dis-
tinct eliminates duplicates within each select statement that would skew the intersection
union query. It’s important that the union be a union all and not a union distinct; other-
wise the union itself would eliminate duplicates and the intersection would be eliminated
before it could be counted:

SELECT DISTINCT U.Thing1
FROM
(SELECT DISTINCT Thing1
FROM dbo.One

UNION ALL
SELECT DISTINCT Thing2
FROM dbo.Two) U

GROUP BY Thing1
HAVING Count(*) > 1

Result:

Thing1

Blue Thing
Red Thing

To include more columns in the intersection query, you must add the columns to both the
union and the group by.

10549359 Ch07.F 11/21/02 9:23 AM Page 248

249Chapter 7 ✦ Merging Data Using Relational Algebra

Difference Union
The difference union is similar to the intersection union, but the having restriction permits
only those rows found in only one of the two data sets.

A difference union is similar to a set difference query (covered later in this chapter) in that it
locates all rows that are in one data set but not the other. While a set difference query is
interested only in the join conditions (typically the primary and foreign keys) and joins the
rows horizontally, a difference union is looking at the entire row (or, more specifically, all the
columns that participate in the union’s select statements) vertically.

This query is the first step in building a difference union query. It locates any row that is in
table One or in table Two, but not in both — sort of like a data set “exclusive or,” if there were
such a thing. Any row found by the union with a row count() of 1 must only exist in one of
the source tables.

SELECT Thing1
FROM
(SELECT DISTINCT Thing1
FROM dbo.One

UNION ALL
SELECT DISTINCT Thing2
FROM dbo.Two) U

GROUP BY Thing1
HAVING Count(*) =1

Result:

Thing1

Car
Cycle
New Thing
Old Thing
Plane
Train

A small adjustment to this technique locates the rows in table One that are not in table Two.
Because the result set is restricted to those rows having a count() of 2, the rows must be in
table One. If they were only in table Two the count() would be 1. If the row were in both
tables, the count would be 3.

SELECT DISTINCT Thing1
FROM
(SELECT DISTINCT Thing1
FROM dbo.One

UNION ALL
SELECT DISTINCT Thing1
FROM dbo.One

UNION ALL
SELECT DISTINCT Thing2
FROM dbo.Two) U

GROUP BY Thing1
HAVING Count(*) = 2

10549359 Ch07.F 11/21/02 9:23 AM Page 249

250 Part II ✦ Developing SQL Server Databases

The final difference union query solution now produces only those rows in table One that are
not found in table Two:

Thing1

New Thing
Old Thing

Relational Division
A cross join, discussed previously in this chapter, is relational multiplication — two data sets
are multiplied to create a Cartesian product. In theory, all joins are cross joins with some type
of conditional restriction. Even an inner join is the relational-multiplication product of two
tables restricted to those results that match keys.

Relational division complements relational multiplication just as basic math division comple-
ments multiplication. If the purpose of relational multiplication is to produce a product set
from two multiplier sets, the purpose of relational division is to divide one data set (the divi-
dend data set) by another data set (the divisor data set) to find the quotient data set, as shown
in Figure 7-12. In other words, if the Cartesian product is known, and one of the multiplier
data sets is known, relational division can deduce the missing multiplier set.

Figure 7-12: Relational division is the inverse of relational multiplication and deduces the
quotient set by dividing the dividend set by the divisor set.

While this may sound academic, relational division can be very practical. The classic example
of relational division answers the question “Which students have passed every required
course?” An exact relational division query would list only those students who passed the
required courses and no others. A relational division with a remainder, also called an approxi-
mate divide, would list all the students who passed the required courses and include students
who passed any additional courses. Of course, that example was both practical and academic.

Relational division is more complex than a join. A join simply finds any matches between two
datasets. Relational division finds exact matches between two datasets. Joins/subqueries and

a
b

Factor
c

a
a

Cartesian Product

a

1
2

Factor

Set Multiplication

3

1
2
3

b
b
b

1
2
3

c
c
c

1
2
3

b
c

Quotient
d

a
b

Dividend

c

2
3

Divisor

Set Division

1
2
3

d
e
f

2
4
5

10549359 Ch07.F 11/21/02 9:23 AM Page 250

251Chapter 7 ✦ Merging Data Using Relational Algebra

relational division solve different types of questions. For example, the following questions
apply to the sample databases and compare the two methods:

✦ Joins/subqueries:

• CHA2: Who has ever gone on a tour?

• CHA2: Who lives in the same region as a base camp?

• CHA2: Who has attended any event in his or her home region?

✦ Exact relational division:

• CHA2: Who has gone on every tour in his or her home state, but no tours outside
it?

• OBXKites: Who has purchased every kite but nothing else?

• Family: Which women (widows or divorcees) have married the same husbands
as each other, but no other husbands?

✦ Relational division with remainders:

• CHA2: Who has gone on every tour in his or her home state, and possibly other
tours as well?

• OBXKites: Who has purchased every kite and possibly other items as well?

• Family: Which women have married the same husbands and may have married
other men as well?

Relational Division with a Remainder
Relational division with a remainder essentially extracts the quotient while allowing some lee-
way for rows that meet the criteria but contain additional data as well. In real-life situations
this type of division is typically more useful than an exact relational division.

The previous OBX Kites sales question (“Who has purchased every kite and possibly other
items as well?”) is a good one to use to demonstrate relational division. Because it takes five
tables to go from contact to product category, and because the question refers to the join
between OrderDetail and Product, this question involves enough complexity that it simu-
lates a real-world relational-database problem.

The toy category will make a good example category because it contains only two toys and
no one has purchased a toy in the sample data. So the query will answer the question “Who
has purchased at least one of every toy sold by OBX Kites?” (And yes, my kids volunteered to
help test this query.)

First, the following data will mock up a scenario in the OBX Kites database. The only toys are
ProductCode 1049 and 1050. The OBX Kites database uses unique identifiers for primary
keys and therefore uses stored procedures for all inserts. The first Order and OrderDetail
inserts will list the stored procedure parameters so the following stored procedure calls are
easier to understand:

USE OBXKites
DECLARE @OrderNumber INT

10549359 Ch07.F 11/21/02 9:23 AM Page 251

252 Part II ✦ Developing SQL Server Databases

The first person, ContactCode 110, orders exactly all toys:

EXEC pOrder_AddNew
@ContactCode = ‘110’,
@EmployeeCode = ‘120’,
@LocationCode = ‘CH’,
@OrderDate= ‘6/1/2002’,
@OrderNumber = @OrderNumber output

EXEC pOrder_AddItem
@OrderNumber = @OrderNumber,
@Code = ‘1049’,
@NonStockProduct = NULL,
@Quantity = 12,
@UnitPrice = NULL,
@ShipRequestDate = ‘6/1/2002’,
@ShipComment = NULL

EXEC pOrder_AddItem
@OrderNumber, ‘1050’, NULL, 3, NULL, NULL, NULL

The second person, ContactCode 111, orders exactly all toys — toy 1050 twice:

EXEC pOrder_AddNew
‘111’, ‘119’, ‘JR’, ‘6/1/2002’, @OrderNumber output

EXEC pOrder_AddItem
@OrderNumber, ‘1049’, NULL, 6, NULL, NULL, NULL

EXEC pOrder_AddItem
@OrderNumber, ‘1050’, NULL, 6, NULL, NULL, NULL

EXEC pOrder_AddNew
‘111’, ‘119’, ‘JR’, ‘6/1/2002’, @OrderNumber output

EXEC pOrder_AddItem
@OrderNumber, ‘1050’, NULL, 6, NULL, NULL, NULL

The third person, ContactCode 112, orders all toys plus some other products:

EXEC pOrder_AddNew
‘112’, ‘119’, ‘JR’, ‘6/1/2002’, @OrderNumber output

EXEC pOrder_AddItem
@OrderNumber, ‘1049’, NULL, 6, NULL, NULL, NULL

EXEC pOrder_AddItem
@OrderNumber, ‘1050’, NULL, 5, NULL, NULL, NULL

EXEC pOrder_AddItem
@OrderNumber, ‘1001’, NULL, 5, NULL, NULL, NULL

EXEC pOrder_AddItem
@OrderNumber, ‘1002’, NULL, 5, NULL, NULL, NULL

The fourth person, ContactCode 113, orders one toy:

EXEC pOrder_AddNew
‘113’, ‘119’, ‘JR’, ‘6/1/2002’, @OrderNumber output

EXEC pOrder_AddItem
@OrderNumber, ‘1049’, NULL, 6, NULL, NULL, NULL

10549359 Ch07.F 11/21/02 9:23 AM Page 252

253Chapter 7 ✦ Merging Data Using Relational Algebra

So only customers 110 and 111 order all the toys and nothing else. Customer 112 purchases
all the toys as well as some kites. Customer 113 is an error check because she only bought
one toy.

At least a couple of methods exist for coding a relational-division query. The original method,
proposed by Chris Date, involves using nested correlated subqueries to locate rows in and
out of the sets. A more direct method has been popularized by Joe Celko: it involves compar-
ing the row count of the dividend and divisor datasets.

Basically, Celko’s solution is to rephrase the question as “For whom is the number of toys
ordered equal to the number of toys available?”

The query then is asking two questions. The outer query will group the orders with toys for
each contact and the subquery will count the number of products in the toy product cate-
gory. The outer query’s having clause will then compare the distinct count of contact prod-
ucts ordered that are toys against the count of products that are toys:

-- Is number of toys ordered...
SELECT Contact.ContactCode
FROM dbo.Contact
JOIN dbo.[Order]
ON Contact.ContactID = [Order].ContactID

JOIN dbo.OrderDetail
ON [Order].OrderID = OrderDetail.OrderID

JOIN dbo.Product
ON OrderDetail.ProductID = Product.ProductID

JOIN dbo.ProductCategory
ON Product.ProductCategoryID = ProductCategory.ProductCategoryID

WHERE ProductCategory.ProductCategoryName = ‘Toy’
GROUP BY Contact.ContactCode
HAVING COUNT(DISTINCT Product.ProductCode) =

-- equal to number of toys available?
(SELECT Count(ProductCode)
FROM dbo.Product
JOIN dbo.ProductCategory
ON Product.ProductCategoryID
= ProductCategory.ProductCategoryID

WHERE ProductCategory.ProductCategoryName = ‘Toy’)

Result:

ContactCode

110
111
112

Exact Relational Division
Exact relational division finds exact matches without any remainder. It takes the basic ques-
tion of relational division with remainder and tightens the method so that the divisor will
have no extra rows that would cause a remainder.

In practical terms it means that the example question now asks, “Who has ordered only
every toy?”

10549359 Ch07.F 11/21/02 9:23 AM Page 253

254 Part II ✦ Developing SQL Server Databases

If you address this query with a modified form of Joe Celko’s method, the pseudocode
becomes, “For whom is the number of toys ordered equal to the number of toys available,
and also equal to the total number of products ordered?” If a customer has ordered addi-
tional products other than toys, the third part of the question eliminates that customer from
the result set.

The SQL code contains two primary changes to the previous query. The first change is that
the outer query must find both the number of toys ordered and the number of all products
ordered. It does this by finding the toys purchased in a derived table and joining the two
datasets. The second change is modifying the having clause to compare the number of toys
available with both the number of toys purchased and the number of all products purchased,
as follows:

-- Exact Relational Division
-- Is number of all products ordered...
SELECT Contact.ContactCode
FROM dbo.Contact
JOIN dbo.[Order]
ON Contact.ContactID = [Order].ContactID

JOIN dbo.OrderDetail
ON [Order].OrderID = OrderDetail.OrderID

JOIN dbo.Product
ON OrderDetail.ProductID = Product.ProductID

JOIN dbo.ProductCategory P1
ON Product.ProductCategoryID = P1.ProductCategoryID

JOIN
-- and number of toys ordered
(SELECT Contact.ContactCode, Product.ProductCode

FROM dbo.Contact
JOIN dbo.[Order]
ON Contact.ContactID = [Order].ContactID

JOIN dbo.OrderDetail
ON [Order].OrderID = OrderDetail.OrderID

JOIN dbo.Product
ON OrderDetail.ProductID = Product.ProductID

JOIN dbo.ProductCategory
ON Product.ProductCategoryID =

ProductCategory.ProductCategoryID
WHERE ProductCategory.ProductCategoryName = ‘Toy’

) ToysOrdered

ON Contact.ContactCode = ToysOrdered.ContactCode

GROUP BY Contact.ContactCode

HAVING COUNT(DISTINCT Product.ProductCode) =
-- equal to number of toys available?

(SELECT Count(ProductCode)
FROM dbo.Product
JOIN dbo.ProductCategory
ON Product.ProductCategoryID
= ProductCategory.ProductCategoryID

WHERE ProductCategory.ProductCategoryName = ‘Toy’)

10549359 Ch07.F 11/21/02 9:23 AM Page 254

255Chapter 7 ✦ Merging Data Using Relational Algebra

-- AND equal to the total number of any product ordered?
AND COUNT(DISTINCT ToysOrdered.ProductCode) =
(SELECT Count(ProductCode)
FROM dbo.Product
JOIN dbo.ProductCategory
ON Product.ProductCategoryID
= ProductCategory.ProductCategoryID

WHERE ProductCategory.ProductCategoryName = ‘Toy’)

The result is a list of contacts containing the number of toys purchased (2), and the number
of total products purchased (2), both equal to the number of products available (2):

ContactCode

110
111

Set Difference
A similar query type that’s useful for analyzing the correlation between two datasets is a set
difference query, which finds the difference between the two datasets based on the condi-
tions of the join. In relational-algebra terms it removes the divisor from the dividend, leaving
the difference. This type of query is the inverse of an inner join. Informally, it’s called a find
unmatched rows query.

Set difference queries are great for locating out-of-place data or data that doesn’t match, such
as rows that are in dataset one and not in dataset two (Figure 7-13).

The ANSI SQL standard implements the set difference query with the keyword except,
which SQL Server does not support.

The set difference query is the same as the difference union, except that the difference union
is a row-based operation between tables with the same column definitions while a set differ-
ence query is concerned only with the columns in the join condition. In a sense, the set differ-
ence query is a difference union of only the join-condition columns.

Figure 7-13: The set difference query
finds data that are outside the
intersection between the two datasets.

Train
Red Thing

New Thing

Plane

Cycle
Car

Old Thing

Blue Thing

Set Difference

Table One Table Two

Set Difference

Note

10549359 Ch07.F 11/21/02 9:23 AM Page 255

256 Part II ✦ Developing SQL Server Databases

Using the One/Two sample tables, the following query locates all rows in table One without a
match in table Two, removing set two (the divisor) from set one (the dividend). The result will
be the rows from set one that do not have a match in set two.

The outer join already includes the rows outside the intersection, so to construct a set differ-
ence query use an outer join with an is null restriction on the second dataset’s primary
key. This will return all the rows from table One that do not have a match in table Two:

USE Tempdb

SELECT Thing1, Thing2
FROM dbo.One
LEFT OUTER JOIN dbo.Two
ON One.OnePK = Two.OnePK

WHERE Two.TwoPK IS NULL

Table One’s difference is as follows:

Thing1 Thing2
--------------- ---------------
Old Thing NULL
Blue Thing NULL

Taking the theory to a real-world scenario from the OBX Kites sample database, the following
code is a set difference query that locates all contacts who have not yet placed an order. The
Contact table is the divisor and the set difference query removes the contacts with orders
(the dividend). The left outer join produces a dataset with all contacts and matching
orders. The where condition restricts the result set to only those rows without a match in the
[Order] table.

USE OBXKites
SELECT LastName, FirstName
FROM dbo.Contact
LEFT OUTER JOIN dbo.[Order]
ON Contact.ContactID = [Order].ContactID

WHERE OrderID IS NULL

The result is the difference between the Contact table and the [Order] table — that is, all
contacts who have not placed an order:

LastName FirstName
------------ ---------------
Andrews Ed
Boston Dave
Earl Betty
Hanks Nickolas
Harrison Charlie
...

The set difference query could be written using a subquery. The where not in condition
removes the subquery rows (the divisor) from the outer query (the dividend), as follows:

SELECT LastName, FirstName
FROM dbo.Contact
WHERE ContactID NOT IN
(SELECT ContactID FROM dbo.[Order])

ORDER BY LastName, FirstName

10549359 Ch07.F 11/21/02 9:23 AM Page 256

257Chapter 7 ✦ Merging Data Using Relational Algebra

Either form of the query (left outer join or not in subquery) works well. The query
optimization plans and performance of the two are very similar, though the subquery form is
slightly faster, as shown in Figure 7-14.

Figure 7-14: The subquery form of the set difference join uses a left anti semi join, which
proves faster than the left outer join.

10549359 Ch07.F 11/21/02 9:23 AM Page 257

258 Part II ✦ Developing SQL Server Databases

I often use a modified version of this technique to clean up bad data during conversions. A
full set difference query is the logical opposite of an inner join. It identifies all rows outside the
intersection from either data set by combining a full outer join with a where restriction
that accepts only nulls in either primary key:

SELECT Thing1, Thing2
FROM One
FULL OUTER JOIN Two
ON One.OnePK = Two.OnePK

WHERE Two.TwoPK IS NULL
OR One.OnePK IS NULL

The result is every row without a match in the One/Two sample tables:

Thing1 Thing2
--------------- ---------------
NULL Plane
NULL Cycle
Blue Thing NULL
Old Thing NULL

Three Query Scenarios
I like to teach by example, so while writing this book I asked a few of the SQL-oriented Yahoo!
groups to send me some interesting query problems (without solutions). Their contributions
helped produce some of the queries in this book, as well as these three stimulating query
problems.

Traditional programming tends to involve handling problems with loops performing the
same calculation on each record one row at a time. Unlearning this style of programming is
the single most important hurdle for a programmer moving to SQL.

SQL wants to work with sets so that the entire query is solved in one large “kachunka.” SQL
Server can be programmed with cursors to loop through the rows, and sometimes (rarely)
that’s necessary, but most problems can be solved with a single creative SQL query. In one
consulting project I compared a row-based cursor with a set-based query, and found the cur-
sor to be 77 times slower than the query.

Scenario #1: Northwind’s Inventory Problem
Northwind (a sample database that installs with SQL Server 2000) has an inventory problem.
The warehouse personnel frequently attempt to pull a product for shipment only to find the
product is out of stock. They’d like to discover out-of-stock situations from the database
instead of the shelf so that the purchasing agent can solve the problem before the ship date.

Asking the question, “Of what product is there not enough inventory to fill current orders?” of
the Microsoft Northwind database can include a Θ join to compare the quantity available
with the quantity required.

10549359 Ch07.F 11/21/02 9:23 AM Page 258

259Chapter 7 ✦ Merging Data Using Relational Algebra

The first step is to determine the demand for the product. A simple aggregate query can
sum() the total demand. The where clause filters out all orders that have been shipped prior
to the grouping and summation:

USE Northwind
SELECT ProductID, sum(Quantity)
FROM dbo.Orders
JOIN dbo.[Order Details]
ON Orders.OrderID = [Order details].OrderID

Where ShippedDate Is Null
GROUP BY ProductID

Once the demand query is known, it may be joined with the availability using a derived table
and a Θ join. By joining on ProductID to line up the rows and also join on the condition that
demand is greater than available stock, the join returns only those products with a shortfall
in inventory.

SELECT Products.ProductName,
Demand.TotalDemand
- (Products.Unitsinstock + Products.UnitsOnOrder)
AS Short

FROM dbo.Products
JOIN (SELECT ProductID, SUM(Quantity) AS TotalDemand

FROM dbo.Orders
JOIN dbo.[Order Details]
ON Orders.OrderID = [Order details].OrderID
WHERE ShippedDate IS NULL
GROUP BY ProductID) Demand

ON Products.ProductID = Demand.ProductID
AND Demand.TotalDemand
> Products.Unitsinstock + Products.UnitsOnOrder

ORDER BY Short DESC

Northwind’s purchasing agent needs to restock the following products ASAP:

ProductName Short
-- -----------
Rössle Sauerkraut 72
Camembert Pierrot 54
Wimmers gute Semmelknödel 30
Konbu 20
Pavlova 17
Alice Mutton 12
Guaraná Fantástica 10
Perth Pasties 10
Ipoh Coffee 9
Chang 5
Steeleye Stout 4
Manjimup Dried Apples 4
Audit Test 1
Uncle Bob’s Organic Dried Pears 1

10549359 Ch07.F 11/21/02 9:23 AM Page 259

260 Part II ✦ Developing SQL Server Databases

Scenario #2: Denormalizing Time Sequences
It’s common to store time-clock records or manufacturing-activity data with the current time.
Because SQL is set-based, calculating the duration between two time events a can be difficult.

The goal is to develop a system that can easily join the begin time with the end time so that
the activity data can be handled as datasets rather than sequentially calculated row by row. A
self-join optional foreign key that connects each end-event row with its corresponding begin-
event row is a perfect solution.

The following example activity log sets up an excellent test scenario. Each row in the Event
table represents Joe or Sue starting or ending an activity. The Start bit and the time is the
only information Joe and Sue are providing to the database:

USE Tempdb

DROP TABLE Event

CREATE TABLE dbo.Event (
EventID INT Identity(1,1) PRIMARY KEY NONCLUSTERED,
Person CHAR(3),
Start BIT, -- true if begin, false if end
[Time] DATETIME,
EndEventID INT
)

go

ALTER TABLE dbo.Event ADD CONSTRAINT
FK_Event_End FOREIGN KEY (EndEventID)
REFERENCES dbo.Event (EventID)

To make the data easier to follow, the comments at the start entry indicate the start and end
EventIDs for that entry.

Day one:

INSERT dbo.Event(Person, Start, [Time]) -- start 1 end 2
VALUES (‘Sue’, 1, ‘20011029 8:00’)

INSERT dbo.Event(Person, Start, [Time])
VALUES (‘Sue’, 0, ‘20011029 13:10’)

INSERT dbo.Event(Person, Start, [Time]) -- 3, 4
VALUES (‘Joe’, 1, ‘20011029 8:01’)

INSERT dbo.Event(Person, Start, [Time])
VALUES (‘Joe’, 0, ‘20011029 11:58’)

INSERT dbo.Event(Person, Start, [Time]) -- 5, null
VALUES (‘Joe’, 1, ‘20011029 12:41’)

Notice that Joe forgot to record an end-activity entry.

Day two:

INSERT dbo.Event(Person, Start, [Time]) -- 6, 9
VALUES (‘Joe’, 1, ‘20011030 8:00’)
-- Joe forgot to logout last night

10549359 Ch07.F 11/21/02 9:23 AM Page 260

261Chapter 7 ✦ Merging Data Using Relational Algebra

INSERT dbo.Event(Person, Start, [Time]) -- 7, 8
VALUES (‘Sue’, 1, ‘20011030 8:00’)

INSERT dbo.Event(Person, Start, [Time])
VALUES (‘Sue’, 0, ‘20011030 12:00’)

INSERT dbo.Event(Person, Start, [Time])
VALUES (‘Joe’, 0, ‘20011030 12:00’)

INSERT dbo.Event(Person, Start, [Time]) -- 10, 12
VALUES (‘Sue’, 1, ‘20011030 12:36’)

INSERT dbo.Event(Person, Start, [Time]) -- 11, 13
VALUES (‘Joe’, 1, ‘20011030 13:05’)

INSERT dbo.Event(Person, Start, [Time])
VALUES (‘Sue’, 0, ‘20011030 16:30’)

INSERT dbo.Event(Person, Start, [Time])
VALUES (‘Joe’, 0, ‘20011030 15:15’)

Check the inserts:

SELECT * FROM dbo.Event

Result:

EventID Person Start Time EndEventID
------- ------ ----- ----------------------- -----------
1 Sue 1 2001-10-29 08:00:00.000 NULL
2 Sue 0 2001-10-29 13:10:00.000 NULL
3 Joe 1 2001-10-29 08:01:00.000 NULL
...

This join begins the process of building the solution query by matching all starts with ends
for each person. It’s a beginning but there’s still more to work out. This query matches every
start with every end for each person, so Sue’s first start time is matched with every one of
Sue’s end times:

SELECT *
FROM dbo.Event A
JOIN (SELECT *

FROM dbo.Event
WHERE Start = 0) B

ON A.Person = B.Person
WHERE A.Start = 1

Adding a Θ join condition to the query filters only those ends that are after the correspond-
ing start:

SELECT A.EventID, MIN(B.EventID) as MinEvent
FROM dbo.Event A
JOIN (
SELECT *
FROM dbo.Event
WHERE Start = 0) B

ON A.Person = B.Person
AND A.[Time] <= B.[Time]

WHERE A.Start = 1
GROUP BY A.EventID

10549359 Ch07.F 11/21/02 9:23 AM Page 261

262 Part II ✦ Developing SQL Server Databases

Result:

EventID MinEvent
----------- -----------
1 2
3 4
5 9
6 9
7 8
10 12
11 13

There’s still a problem: start events 5 and 6 both end with event 9. Only the last start event
before an end should have an end event. Another group by will select the max() from the
previous query, now nested as a subquery:

SELECT MAX(C.StartID) AS MaxStart, C.EndID
FROM (
SELECT A.EventID AS StartID, Min(B.EventID) AS EndID
FROM dbo.Event A
JOIN (SELECT *

FROM dbo.Event
WHERE Start = 0) B

ON A.Person = B.Person
AND A.[Time] <= B.[Time]

WHERE A.Start = 1
GROUP BY A.EventID) C

GROUP BY C. EndID

Result:

MaxStart EndID
----------- -----------
1 2
3 4
7 8
6 9
10 12
11 13

This is the solution to the problem. But repeatedly performing this query on thousands of
rows is a waste. Writing the end-event row’s EventID to the start-event row provides two ben-
efits. First, the matched start and end rows are known and can be ignored in future calcula-
tions. Secondly, it becomes trivial to join the start rows with the end rows for more
calculations.

The update command will be covered in Chapter 10, “Modifying Data,” but here the previous
query is modified to match only events without an entry in EndeventID. The query is then
joined as a derived table with the Event table, and the Update command writes the end
EventID into the start-event row:

UPDATE dbo.Event
SET EndEventID = D.EndID
FROM dbo.Event
JOIN (SELECT MAX(C.StartID) AS StartID, C.EndID

FROM (SELECT A.EventID AS StartID,

10549359 Ch07.F 11/21/02 9:23 AM Page 262

263Chapter 7 ✦ Merging Data Using Relational Algebra

Min(B.EventID) AS EndID
FROM dbo.Event A
JOIN (SELECT *

FROM dbo.Event
WHERE Start = 0) B

ON A.Person = B.Person
AND A.[Time] <= B.[Time]

WHERE A.Start = 1
AND A.EndEventID IS NULL

GROUP BY A.EventID) C
GROUP BY C.EndID) D

ON Event.EventID = D.StartID

Check the effect of the update by selecting the start rows:

SELECT * FROM dbo.Event where Start = 1

Result:

EventID Person Start Time EndEventID
------- ------ ----- ------------------------- -----------
1 Sue 1 2001-10-29 08:00:00.000 2
3 Joe 1 2001-10-29 08:01:00.000 4
5 Joe 1 2001-10-29 12:41:00.000 NULL
6 Joe 1 2001-10-30 08:00:00.000 9
7 Sue 1 2001-10-30 08:00:00.000 8
10 Sue 1 2001-10-30 12:36:00.000 12
11 Joe 1 2001-10-30 13:05:00.000 13

From this data it’s now easy to calculate the elapsed time:

SELECT S.EventID, S.Person, S.[Time] as Start,
DateDiff(mi,S.[Time],E.[Time]) as ElapsedMinutes

FROM dbo.Event AS S
JOIN dbo.Event AS E

ON S.EndEventID = E.EventID

Solution:

EventID Person Start ElapsedMinutes
----------- ------ ------------------------- --------------
1 Sue 2001-10-29 08:00:00.000 310
3 Joe 2001-10-29 08:01:00.000 237
6 Joe 2001-10-30 08:00:00.000 240
7 Sue 2001-10-30 08:00:00.000 240
10 Sue 2001-10-30 12:36:00.000 234
11 Joe 2001-10-30 13:05:00.000 130

Of course, Joe is upset because he didn’t get credit for one of his days. The following cooper-
ative query finds open start times:

SELECT *
FROM dbo.Event
WHERE EndEventID IS NULL
AND Start = 1

10549359 Ch07.F 11/21/02 9:23 AM Page 263

264 Part II ✦ Developing SQL Server Databases

Result:

EventID Person Start Time EndEventID
----------- ------ ----- ----------------------- -----------
5 Joe 1 2001-10-29 12:41:00.000 NULL

Once Joe learns to punch out on time, this technique will run flawlessly.

Scenario #3: The Stockbroker Problem
A stock firm combines information from multiple places. The programmers are faced with
several tables of daily buy-sell-hold recommendations from multiple sources. Each table
holds the day’s recommendations for one broker. Not every broker makes a recommendation
for every stock. The goal is to build a cross-tab–type view across these tables so the recom-
mendations may be easily viewed.

To set up the story, the following three tables hold sample data:

CREATE TABLE dbo.RatingsBroker1(
PK INT IDENTITY,
Ticker VARCHAR(10),
Rating VARCHAR(10)
)

CREATE TABLE dbo.RatingsBroker2(
PK INT IDENTITY,
Ticker VARCHAR(10),
Rating VARCHAR(10)
)

CREATE TABLE dbo.RatingsBroker3(
PK INT IDENTITY,
Ticker VARCHAR(10),
Rating VARCHAR(10)
)

INSERT dbo.RatingsBroker1(Ticker, Rating)
VALUES(‘ABC’, ‘Buy’)

INSERT dbo.RatingsBroker1(Ticker, Rating)
VALUES(‘MSFT’, ‘Buy’)

INSERT dbo.RatingsBroker1(Ticker, Rating)
VALUES(‘UAL’, ‘Sell’)

INSERT dbo.RatingsBroker2(Ticker, Rating)
VALUES(‘ABC’, ‘Buy’)

INSERT dbo.RatingsBroker2(Ticker, Rating)
VALUES(‘GENE’, ‘Hold’)

INSERT dbo.RatingsBroker3(Ticker, Rating)
VALUES(‘ABC’, ‘Hold’)

INSERT dbo.RatingsBroker3(Ticker, Rating)
VALUES(‘MSFT’, ‘Buy’)

INSERT dbo.RatingsBroker3(Ticker, Rating)
VALUES(‘GENE’, ‘Sell’)

10549359 Ch07.F 11/21/02 9:23 AM Page 264

265Chapter 7 ✦ Merging Data Using Relational Algebra

The data presented here are completely useless and should not be read as secret insider tips or
recommendations. If you buy or sell based on this sample data, you’ll earn what you deserve.

The key to achieving this goal is building a common list of all brokers. By default, union is
distinct and eliminates duplicate rows, so the following union query generates a useable
list of brokers:

SELECT Ticker
FROM dbo.RatingsBroker1

UNION
SELECT Ticker
FROM dbo.RatingsBroker2

UNION
SELECT Ticker
FROM dbo.RatingsBroker3

Result:

Ticker

ABC
GENE
MSFT
UAL

The union is the center of the following query even though it’s a subquery as a derived table
with the named range U. Each broker table is left outer joined with the union list of brokers.
This allows each stock rating to be listed under each broker:

SELECT U.Ticker,
RatingsBroker1.Rating AS B1,
RatingsBroker2.Rating AS B2,
RatingsBroker3.Rating AS B3

FROM (SELECT Ticker
FROM dbo.RatingsBroker1

UNION
SELECT Ticker
FROM dbo.RatingsBroker2

UNION
SELECT Ticker
FROM dbo.RatingsBroker3) U

LEFT JOIN RatingsBroker1
ON U.Ticker = RatingsBroker1.Ticker

LEFT JOIN RatingsBroker2
ON U.Ticker = RatingsBroker2.Ticker

LEFT JOIN RatingsBroker3
ON U.Ticker = RatingsBroker3.Ticker

ORDER BY U.Ticker

The result is exactly what the client was looking for:

Ticker B1 B2 B3
---------- ---------- ---------- ----------
ABC Buy Buy Hold
GENE NULL Hold Sell
MSFT Buy NULL Buy
UAL Sell NULL NULL

Note

10549359 Ch07.F 11/21/02 9:23 AM Page 265

266 Part II ✦ Developing SQL Server Databases

For a known set of values such as this, the union left outer join solution is workable. For a
more dynamic crosstab solution, I recommend an Analysis Services cube, an Access crosstab,
or another client-application pivot table. Having said that, Chapter 12, “Programming with
Transact SQL,” shows several ways to generate a crosstab dataset.

Summary
Merging data is the heart of SQL, and it shows in the depth of relational algebra as well as the
power and flexibility of SQL. From natural joins to correlated subqueries, SQL is excellent at
selecting sets of data from multiple data tables. The challenge for the SQL Server database
developer is to master the theory of relational algebra and the many T-SQL techniques to
effectively manipulate the data. The reward is the fun.

You are now over the hump of this book’s explanation of the techniques of retrieving data
using SQL Server. The previous chapter covered the select statement, while this chapter
expanded the select with joins, unions, and subqueries, including some advanced techniques.
The next chapter continues to describe the repertoire of data-retrieval techniques with full-
text search. Leveraging the full-text search engine built into Windows, full-text search indexes
every significant word and provides powerful search capabilities far beyond those of the sim-
ple SQL-like operator.

✦ ✦ ✦

Note

10549359 Ch07.F 11/21/02 9:23 AM Page 266

Searching Full-Text
Indexes

Several years ago I wrote a word search for a large database of
legal texts. For word searches, the system parsed all the docu-

ments and built a word-frequency table as a many-to-many junction
between the word table and the document table. It worked well, and
word searches became lightning-fast. While I found coding the string
manipulation fun, fortunately, you have a choice.

The server versions of Windows include a structured word/phrase
indexing system called MS Search. More than just a word parser, MS
Search actually performs linguistic analysis by determining base
words, word boundaries, and conjugating verbs for different lan-
guages. SQL Server leverages MS Search on a row and column basis
as full-text search catalogs.

ANSI Standard SQL uses the like operator to perform basic word
searches and even wildcard searches. For example, the following
code uses the like operator to query the Aesop’s Fables sample
database:

-- SQL Where Like
SELECT Title
FROM Fable
WHERE Fabletext LIKE ‘%lion%’
AND Fabletext LIKE ‘%bold%’

Result:

Title
--
The Hunter and the Woodman

All the code samples in this chapter use the Aesop’s Fables sample
database. The Aesop_Create.sql script will create the database
and populate it with 25 of Aesop’s fables. All the code within this
chapter is in Ch08.sql.

The main problem with performing SQL Server where...like
searches is the slow performance. Indexes are searchable from the
beginning of the word, so searching for like ‘word%’ is fast, but
like ‘%word%’ is terribly slow. Searching for strings within a string
can’t use the b-tree structure of an index to perform a fast index seek
so it must perform a table scan instead, as demonstrated in Figure 8-1.
It’s like looking for all the “Paul”s in the telephone book. The phone
book isn’t indexed by first name, so each page must be scanned.

On the
CD-ROM

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Setting up full-text index
catalogs with Enterprise
Manager or T-SQL code

Maintaining full-text
indexes

Using full-text indexes in
queries

Performing fuzzy word
searches

Searching text stored in
binary objects

✦ ✦ ✦ ✦

11549359 ch08.F 11/21/02 9:23 AM Page 267

268 Part II ✦ Developing SQL Server Databases

Figure 8-1: A search for words in the middle of the FableText column using Like
requires a table scan logical operation, which consumes 99.9999 percent of the
resources used to solve this query.

Full-text indexing builds an index of every significant word and phrase and thus solves the
performance problem. In addition, the full-text search engine adds advanced features such as
the following:

✦ Searching for one word near another word

✦ Searching with wildcards

✦ Searching for inflectional variations of a word (such as run, ran, running)

✦ Weighting one word or phrase as more important to the search than another word or
phrase

✦ Performing fuzzy word/phrase searches

✦ Searching character data with embedded binary objects stored with SQL Server

Since full-text search exists in a service separate from SQL Server, it takes a little work to set
up a full-text search catalog. And because the indexes are external to SQL Server, MS Search
doesn’t automatically know about data written to SQL Server, so the full-text search catalog
must be initially populated and then periodically updated.

11549359 ch08.F 11/21/02 9:23 AM Page 268

269Chapter 8 ✦ Searching Full-Text Indexes

Configuring Full-Text Search Catalogs
A full-text search catalog is a collection of full-text indexes for a single SQL Server database.
Each catalog may store multiple full-text indexes for multiple tables, but each table is limited
to only one catalog. Typically a single catalog will handle all the full-text searches for a
database, although dedicating a single catalog to a very large table (one with over a million
rows) will improve performance.

Catalogs may only index user tables, not views, temporary tables, table variables, or system
tables.

Enabling Full-Text Search on the Server
Full-text search uses the MS Search service included with workstation-class and server-class
operating systems but not with home versions of Windows. MS Search may not be installed,
although it is possible to force an install of MS Search on professional editions from the SQL
Server installation by using add/remove components and selecting the full-text search option.

Full-text search is not included with the Personal Edition of SQL Server, nor can it be installed
on any version of Windows 9x or Windows XP Home.

If the MS Search service is installed, it can be managed (start, stop, view status, set to auto-
matically start) with either the Windows Services/Components tool or SQL Server’s Service
Manager.

To configure a catalog you must belong to the database-owner or system-administrator role.

Creating a Catalog with the Wizard
Although creating and configuring a full-text search catalog with code is relatively easy, the
task is usually done once and then forgotten. Unless the repeatability of a script is important
for redeploying the project, the Full-Text Wizard is sufficient for configuring full-text search.

Once the wizard is launched it will begin with the database and table based on the selected
database or table in Enterprise Manager, and may skip the first one or two steps. So it’s a
good idea to select the database or table prior to launching the wizard.

The wizard may be launched from within Enterprise Manager by any of these locations:

✦ From the Tools menu, select Full-Text Indexing.

✦ Select Wizards on the toolbar, open the database wizards, and then select the Full-Text
Indexing Wizard.

✦ In a database Taskpad view, select the Wizards page and then select the Full Text
Indexing Wizard.

If the Full-Text Indexing Wizard is not available, it means either that the MS Search service is
not installed, or that the edition of SQL Server you are using does not support full-text search.

11549359 ch08.F 11/21/02 9:23 AM Page 269

270 Part II ✦ Developing SQL Server Databases

The Full-Text Indexing Wizard works through multiple steps to configure the full-text catalog,
as follows:

1. A catalog must belong to a single database.

2. Select the table to add to the catalog.

3. Specify a unique index that MS Search can use to identify the rows indexed with MS
Search. The primary key is typically the best choice for this index; however, any non-
nullable, unique, single-column index is sufficient. If the table uses composite primary
keys, another unique index must be created to use full-text search.

4. Choose the columns to be full-text indexed, as shown in Figure 8-2. Valid column data
types are character data types (char, nchar, varchar, nvarchar, text, and ntext)
and image. (Indexing binary images is an advanced topic covered later in this chapter.)
You may need to specify the language used for parsing the words, although the com-
puter default will likely handle this automatically. Computed columns may not be full-
text indexed.

Full-text search can also read documents stored in image columns. (Using full-text
search with embedded blobs is covered later in this chapter.)

Figure 8-2: Any valid columns are listed by the Full-
Text Indexing Wizard and may be selected for indexing.

5. Select a catalog or opt to create a new catalog.

6. Skip creating a population schedule, there’s a better way to keep the catalog up to date.
(The strategies for maintaining a full-text index are discussed later in the chapter.)

7. Finish.

When the wizard is finished, the catalog is created but still empty. To initially populate the
catalog, right-click on the table and select Full-Text Index Table ➪ Start Full Population. This
directs SQL Server to begin passing data to MS Search for indexing. Depending on the amount
of data in the indexed columns, the population will take a few seconds, a few minutes, or a
few hours to complete.

11549359 ch08.F 11/21/02 9:23 AM Page 270

271Chapter 8 ✦ Searching Full-Text Indexes

Creating a Catalog with T-SQL Code
To implement full-text search using a method that can be easily replicated on other servers,
your best option is to create a SQL script. Creating a catalog with code means following the
same steps as the Full-Text Indexing Wizard. A set of system-stored procedures handles con-
figuring and maintaining full-text indexes. The following steps configure a full-text search cata-
log for the Aesop’s Fables sample database:

1. Enable the database for full-text search:

USE AESOP
EXEC sp_fulltext_database ‘enable’

Every one of these steps will take a few seconds to complete. SQL Server is the client initiat-
ing the process, but it doesn’t wait for the conclusion. If the configuration is being written as
a script, the waitfor delay T-SQL command can insert the required pause.

2. Create the full-text catalog:

EXEC sp_fulltext_catalog ‘AesopFable’, ‘create’

3. Mark a table for full-text search:

EXEC sp_fulltext_table
‘Fable’, ‘create’, ‘AesopFable’, ‘FablePK’

4. Add columns to the full-text catalog:

EXEC sp_fulltext_column ‘Fable’, ‘Title’, ‘add’
EXEC sp_fulltext_column ‘Fable’, ‘Moral’, ‘add’
EXEC sp_fulltext_column ‘Fable’, ‘FableText’, ‘add’

The sp_fulltext_column stored procedure has two other parameters, which specify
the word-parsing language and image-indexing information, respectively. The full syn-
tax of the stored procedure is as follows:

sp_fulltext_column
@tabname =’table_name’,
@colname =’column_name’,
@action = ‘action’,
@Language = ‘language’,
@type_colname =’type_column_name’

The action parameter indicates ‘add’ or ‘drop’.

Full-text search can automatically parse the following languages:

• Neutral — 0

• Chinese_Simplified — 0x0804, 2052

• Chinese_Traditional — 0x0404, 1028

• Dutch — 0x0413, 1043

• English_UK — 0x0809, 2057

• English_US — 0x0409, 1033

Note

11549359 ch08.F 11/21/02 9:23 AM Page 271

272 Part II ✦ Developing SQL Server Databases

• French — 0x040c, 1036

• German — 0x0407, 1031

• Italian — 0x0410, 1040

• Japanese — 0x0411, 1041

• Korean — 0x0412, 1042

• Spanish_Modern — 0x0c0a, 3082

• Swedish_Default — 0x041d, 1053

The language determines the word break points and how the words are parsed for
inflections (run, ran, running) and phrases. (Use Neutral for multiple languages or an
unsupported language.) The corresponding hex code or integer is passed as a parame-
ter to sp_fulltext_columns. All columns in a table must use the same language.

5. Activate the full-text catalog:

EXEC sp_fulltext_table ‘Fable’,’activate’

Although the full-text catalog has been defined, it’s not yet populated. To initially populate
the catalog with code, run the following stored procedure:

EXEC sp_fulltext_table ‘Fable’, ‘start_full’

Pushing Data to the Full-Text Index
Full-text indexes are off-line indexes maintained by an external service and are updated only
when SQL Server passes new data to MS Search. That’s both a benefit and a drawback. On
one hand it means that updating the full-text index doesn’t slow down large-text updates. On
the other hand, it means that the full-text index is not real-time the way SQL Server data are.
If a user enters a résumé and then searches for it using full-text search before the full-text
index has been updated, the résumé won’t be found.

Every full-text index begins empty, and if data already exist in the SQL Server tables they must
be pushed to the full-text index by means of a full population. A full population re-initializes the
index and passes data for all rows to the full-text index. A full population may be performed
with Enterprise Manager or T-SQL code. Because the data push is driven by SQL Server, data
is sent from one table at a time regardless of how many tables might be full-text indexed in a
catalog. If the full-text index is created for an empty SQL Server table, a full population is not
required.

Two primary methods of pushing ongoing changes to a full-text index exist:

✦ Incremental populations — An incremental population uses a timestamp to pass any
rows that have changed since the last population. This method can be performed man-
ually from Enterprise Manager or by means of T-SQL code, or scheduled as a SQL
Server Agent job (typically for each evening). Incremental population requires a
rowversion (timestamp) column in the table.

Incremental populations present two problems. First, a built-in delay occurs between
the time the data are entered and the time the user can find the data using full-text
search. Second, incremental populations consolidate all the changes into a single pro-
cess that consumes a significant amount of CPU time during the incremental change. In
a heavily used database the choice is between performing incremental populations each
evening and forcing a one-day delay each time, or performing incremental populations
at scheduled times throughout the day and suffering performance hits at those times.

11549359 ch08.F 11/21/02 9:23 AM Page 272

273Chapter 8 ✦ Searching Full-Text Indexes

✦ Change tracking and background population — SQL Server can watch for data changes in
columns that are full-text indexed and then send what is effectively a single-row incre-
mental population every time a row changes. While this method seems costly in terms
of performance, in practice the effect is not noticeable. The full-text update isn’t fired
by a trigger, so the update transaction doesn’t need to wait for the data to be pushed to
the full-text index. Instead, the full-text update occurs in the background slightly
behind the SQL DML transaction. The effect is a balanced CPU load and a full-text index
that appears to be near real-time.

If the database project incorporates searching for words within columns, using full-text
search with change tracking and background population is the best overall way to balance
search performance with update performance.

Maintaining a Catalog with Enterprise Manager
Within Enterprise Manager, the full-text search catalogs are maintained with the right-click
menu for each table. The menu offers the following maintenance options under Full-Text
Index Table:

✦ Define Full-Text Indexing on Table...: Launches the Full-Text Indexing Wizard to create a
new catalog as described earlier in the chapter.

✦ Edit Full-Text Indexing...: Launches the Full-Text Indexing Wizard to modify the catalog
for the selected table.

✦ Remove Full-Text Indexing from a Table...: Drops the selected table from its catalog.

✦ Start Full Population: Initiates a data push of all rows from the selected SQL Server
table to its full-text index catalog.

✦ Start Incremental Population: Initiates a data push of rows that have changed since the
last population in the selected table from SQL Server to the full-text index.

✦ Stop Population: Halts any currently running full-text population push.

✦ Change Tracking: Performs a full or incremental population and then turns on change
tracking so that SQL Server can update the index.

✦ Update Index in Background: Pushes updates of rows that have been flagged by change
tracking to the full-text index as the changes occur.

✦ Update Index: Pushes an update of all rows that change tracking has flagged to the full-
text index.

Maintaining a Catalog in T-SQL Code
Each of the previous Enterprise Manager full-text maintenance commands can be executed
from T-SQL code. The following examples demonstrate full-text catalog-maintenance com-
mands applied to the Aesop’s Fables sample database:

✦ Full population:

EXEC sp_fulltext_table ‘Fable’, ‘start_full’

✦ Incremental population:

EXEC sp_fulltext_table ‘Fable’, ‘start_incremental’

11549359 ch08.F 11/21/02 9:23 AM Page 273

274 Part II ✦ Developing SQL Server Databases

✦ Remove a full-text catalog:

EXEC sp_fulltext_catalog ‘AesopFable’, ‘drop’

✦ Change tracking and background updating:

EXEC sp_fulltext_table Fable, ‘Start_change_tracking’
EXEC sp_fulltext_table Fable,

‘Start_background_updateindex’

In addition, T-SQL stored procedures include the following enhanced maintenance features:

✦ Rebuild — This command essentially drops and redefines the full-text catalog, but does
not repopulate the new full-text index. Rebuilding should be followed with a full popula-
tion. The benefit of rebuilding the catalog is that it automatically reconfigures the table
and columns, ensuring that the internal structure of the full-text catalog is clean.

EXEC sp_fulltext_catalog ‘AesopFable’, ‘rebuild’

✦ Clean up unused full text catalogs — This stored procedure removes any vestiges of
unused catalogs:

EXEC sp_fulltext_service ‘clean_up’

Throughout SQL Server 2000, the sp_help stored procedure is a welcome means of reporting
system information. The full-text search versions of sp_help are as follows:

✦ sp_help_fulltext_catalogs— This system-stored procedure returns information
about a catalog, including the current population status:

EXEC sp_help_fulltext_catalogs ‘AesopFable’

Result:

NUMBER
FULLTEXT

ftcatid NAME PATH STATUS TABLES
------- ----------- -------------------- ------ ------
5 AesopFable C:\Program Files 0 1

\Microsoft SQL Server
\MSSQL\FTDATA

The population status column returns the current activity of the catalog as follows:

• 0 - Idle

• 1 - Full population in progress

• 2 - Paused

• 3 - Throttled

• 4 - Recovering

• 5 - Shutdown

• 6 - Incremental population in progress

• 7 - Building index

• 8 - Disk is full. Paused

• 9 - Change tracking

11549359 ch08.F 11/21/02 9:23 AM Page 274

275Chapter 8 ✦ Searching Full-Text Indexes

✦ sp_help_fulltext_tables— Information about the tables included in the catalog is
returned by this variation of sp_help:

EXEC sp_help_fulltext_tables ‘AesopFable’

Result (formatted):

FULLTEXT
KEY FULLTEXT FULLTEXT FULLTEXT

TABLE TABLE INDEX KEY INDEX CATALOG
OWNER NAME NAME COLID ACTIVE NAME
----- ----- -------- --------- --------- -----------
dbo Fable FablePK 1 1 AesopFable

✦ sp_help_fulltext_columns— Information about the columns included in the full-text
catalog:

EXEC sp_help_fulltext_columns ‘fable’

Result (formatted and truncated):

TABLE_ FULLTEXT BLOBTP
OWNER NAME COLUMNNAME COLNAME LANGUAGE
----- ----- ----------- --------- ----------
dbo Fable Title NULL 1033
dbo Fable Moral NULL 1033
dbo Fable FableText NULL 1033

Noise Files
When I built my custom word-search procedure several years ago, one of the optimizations
that dramatically improved performance was the exclusion of common words such as a, the,
and of. As soon as a word was parsed, the first check was to see if the word was in what I
called the “weed list.” If it was, the procedure parsed the next word without any handling of
the weed word. The time required to parse a legal cite was reduced by more than half, and
the size of the word-frequency table was significantly smaller.

MS Search uses a similar technique by storing lists of ignored words in a noise file. Noise
words are completely ignored by full-text search; in fact, if a query’s search depends on noise
words it generates an error.

The decision to include a word in the noise list is made according to its frequency of use and
its relative search importance. If a word is very common it’s not a good search candidate and
the frequency of its occurrence will hurt performance, so it should be in the noise list.

Alternately, the project may need to search for words in the noise list. For example, if a
search for “C language” is important to the database, the letter “C” should be removed from
the noise file.

Because noise files are plain-text files, they may be tweaked to meet the needs of certain
applications. The file name is noise, and the file extension designates the language: .enu is
U.S. English. You must stop MS Search prior to editing the noise file. The difficulty is locating
the correct noise file. On my system, a Windows Explorer search for noise.enu found seven
copies with at least three variations of the file.

11549359 ch08.F 11/21/02 9:23 AM Page 275

276 Part II ✦ Developing SQL Server Databases

Assuming a default installation directory, the copy used by SQL Server’s full-text search is
located in:

C:\Program Files\Microsoft SQL Server
\MSSQL\FTDATA\SQLServer\Config\noise.enu

To test the noise file, stop MS Search using SQL Server Service Manager, add a word to the
file, and then try a full-text search for that word. If the query produces the following error, the
word was added to the correct noise file:

Server: Msg 7619, Level 16, State 1, Line 1
A clause of the query contained only ignored words

Word Searches
Once the catalog is created, full-text search is ready for word and phrase queries. Word
searches are performed with the contains keyword. The effect of contains is to pass the
word search to MS Search and await the reply. Word searches can be used within a query in
one of two means, contains and ContainsTable.

The Contains Function
Contains operates within the where clause, much like a where in (subquery). The param-
eters within the parentheses are passed to MS Search, which returns a list of primary keys
that meet the criteria.

The first parameter passed to MS Search is the column name to be searched, or an asterisk
for a search of all columns from one table. If the from clause includes multiple tables, the
table must be specified in the contains parameter. The following basic full-text query
searches all indexed columns for the word “Lion”:

USE Aesop
SELECT Title
FROM Fable
WHERE CONTAINS (Fable.*,’Lion’)

The following fables contain the word “Lion” in either the fable title, moral, or text:

Title
--
The Dogs and the Fox
The Hunter and the Woodman
The Ass in the Lion’s Skin
Androcles

ContainsTable
Not only will full-text search work within the where clause, but the ContainsTable function
operates as a table or subquery and returns the result set from MS Search. This SQL Server
feature opens up the possibility of powerful searches.

ContainsTable returns a result set with two columns. The first column, Key, identifies the
row using the unique index that was defined when the catalog was configured.

11549359 ch08.F 11/21/02 9:23 AM Page 276

277Chapter 8 ✦ Searching Full-Text Indexes

The second column, Rank, reports the ranking of the rows using values from 1 (low) to 1000
(high). There is no high/median/low meaning or fixed range to the rank value; the rank only
compares the row with other rows with regard to the following factors:

✦ The frequency/uniqueness of the word in the table

✦ The frequency/uniqueness of the word in the column

Therefore, a rare word will be ranked as statistically more important than a common word.

The same parameters that define the full-text search for contains also define the search for
ContainsTable. The following query returns the raw data from MS Search:

SELECT *
FROM CONTAINSTABLE (Fable, *, ‘Lion’)

Results:

KEY RANK
----------- -----------
3 86
4 80
20 48
14 32

The key by itself is useless to a human, but joining the ContainsTable results with the Fable
table, as if ContainsTable were a derived table, allows the query to return the Rank and the
fable’s Title, as follows:

SELECT Fable.Title, FTS.Rank
FROM Fable
JOIN CONTAINSTABLE (Fable, *, ‘Lion’) FTS
ON Fable.FableID = FTS.[KEY]

ORDER BY FTS.Rank DESC

Result:

Title Rank
--------------------------------- -----------
Androcles 86
The Butt in the Lion’s Skin 80
The Hunter and the Woodman 48
The Dogs and the Fox 32

A fourth ContainsTable parameter, top n limit, reduces the result set from the full-text
search engine much as the SQL select top predicate does. The limit is applied assuming
that the result set is sorted descending by rank so that only the highest ranked results are
returned. The following query demonstrates the top n limit throttle:

SELECT Fable.Title, Rank
FROM Fable
JOIN CONTAINSTABLE (Fable, *, ‘Lion’, 2) FTS
ON Fable.FableID = FTS.[KEY]

ORDER BY FTS.Rank DESC

11549359 ch08.F 11/21/02 9:23 AM Page 277

278 Part II ✦ Developing SQL Server Databases

Result:

Title Rank
--------------------------------- -----------
Androcles 86
The Ass in the Lion’s Skin 80

The advantage to using the top n limit option is that the full-text search engine can pass fewer
data back to the query. It’s more efficient than returning the full result set and then perform-
ing a SQL top in the select statement. It illustrates the principle of performing the data work
at the server instead of the client. In this case, MS Search is the server process and SQL
Server is the client process.

Since MS Search is a separate component from SQL Server, it competes for CPU cycles.
Therefore, the addition of a serious full-text search feature to a SQL Server database project
is a compelling justification for using a multiple-CPU server. MS Search is also memory- and
Windows–swap-file intensive. A heavily used database that sees regular updates and
searches of full-text–enabled columns should run on a stout server.

Advanced Search Options
Full-text search is powerful, and you can add plenty of options to the search string. These
options work with contains and ContainsTable.

Multiple Word Searches
Multiple words may be included in the search by means of the or and and conjunctions. The
following query finds any fables containing both the word “Tortoise” and the word “Hare” in
the text of the fable:

SELECT Title
FROM Fable
WHERE CONTAINS (FableText,’Tortoise AND Hare’)

Result:

Title
--
The Hare and the Tortoise

One significant issue pertains to the search for multiple words: While full-text search can eas-
ily search across multiple columns for a single word, it only searches for multiple words if
those words are in the same column. For example, the fable “The Ants and the Grasshopper”
includes the word “thrifty” in the moral and the word “supperless” in the text of the fable
itself. But searching for “thrifty and supperless” across all columns yields no results, as
shown here:

SELECT Title
FROM Fable
WHERE CONTAINS (*,’ “Thrifty AND supperless” ‘)

Result:

(0 row(s) affected)

11549359 ch08.F 11/21/02 9:23 AM Page 278

279Chapter 8 ✦ Searching Full-Text Indexes

Two solutions exist, and neither one is pretty. The query can be reconfigured so the and con-
junction is at the where-clause level rather than within the contains parameter. The problem
with this solution is performance. The following query requires two remote scans to the full-
text search engine, as shown in Figure 8-3, each of which requires 363 milliseconds of the
total 811-millisecond query-execution time:

SELECT Title
FROM Fable
WHERE CONTAINS (*,’Thrifty’)
AND CONTAINS(*,’supperless’)

Result:

Title
--
The Ants and the Grasshopper

Figure 8-3: Each contains function requires a separate remote call to MS Search; the
result from the full-text search engine is then scanned by SQL Server.

The other solution to the multiple-column search problem consists of adding an additional
column to hold all the text to be searched and duplicating the data from the original columns
to a FullTextSearch column within an after trigger. This solution is not smooth either. It
duplicates data and costs performance time during inserts and updates. The crux of the deci-
sion on how to solve the multiple-column is the conflict between fast reads and fast writes —
OLAP versus OLTP.

11549359 ch08.F 11/21/02 9:23 AM Page 279

280 Part II ✦ Developing SQL Server Databases

Searches with Wildcards
Because MS Search is part of the OS and not a SQL Server–developed component, its wild-
cards use the standard DOS conventions (asterisks and double quotes) instead of SQL-style
wildcards.

The other thing to keep in mind about full-text wildcards is that they only work at the end of a
word, not at the beginning. Indexes search from the beginning of strings, as shown here:

SELECT Title
FROM Fable
WHERE CONTAINS (*,’ “Hunt*” ‘)

Result:

Title
--
The Hunter and the Woodman
The Ass in the Lion’s Skin
The Bald Knight

If the phrase search includes a wildcard, the wildcard applies to every word in the phrase.
For example, the query

CONTAINS (*,’He pulled out the thorn*’)

is the equivalent of the query

CONTAINS (*,’He* pulled* out* the* thorn*’)

Phrase Searches
Full-text search can attempt to locate full phrases if those phrases are surrounded by double
quotes. For example, to search for the fable about the boy who cried wolf, searching for
“Wolf! Wolf!” does the trick:

SELECT Title
FROM Fable
WHERE CONTAINS (*,’ “Wolf! Wolf!” ‘)

Result:

Title
--
The Shepherd’s Boy and the Wolf

Word-Proximity Searches
When searching large documents it’s nice to be able to specify the proximity of the search
words. Full-text search implements a proximity switch by means of the near option. The rela-
tive distance between the words is calculated and, if the words are close enough (within
about 30 words, depending on the size of the text), full-text search returns a true for the row.

The story of Androcles, the slave who pulls the thorn from the lion’s paw, is one of the longer
fables in the sample database, so it’s a good test sample.

11549359 ch08.F 11/21/02 9:23 AM Page 280

281Chapter 8 ✦ Searching Full-Text Indexes

The following query attempts to locate the fable “Androcles” based on the proximity of the
words “pardoned” and “forest” in the fable’s text:

SELECT Title
FROM Fable
WHERE CONTAINS (*,’pardoned NEAR forest’)

Result:

Title
--
Androcles

The proximity switch can handle multiple words. The following query tests the proximity of
the words “lion,” “paw,” and “bleeding”:

SELECT Title
FROM Fable
WHERE CONTAINS (*,’lion NEAR paw NEAR bleeding’)

Result:

Title
--
Androcles

The proximity feature can be used with ContainsTable to return a rank from 0–64, which
indicates relative proximity. The following query ranks the fables that mention the word “life”
near the word “death” in order of proximity:

SELECT Fable.Title, Rank
FROM Fable
JOIN CONTAINSTABLE (Fable, *,’life NEAR death’) FTS
ON Fable.FableID = FTS.[KEY]

ORDER BY FTS.Rank DESC

Result:

Title Rank
--------------------------------- -----------
The Serpent and the Eagle 7
The Eagle and the Arrow 1
The Woodman and the Serpent 1

Word-Inflection Searches
The full-text search engine can actually perform linguistic analysis and base a search for dif-
ferent words on a common root word. This enables you to search for words without worrying
about number or tense. For example, the inflection feature makes possible a search for the
word “flying” that finds a row containing the word “flew.” The language you specify for the
table is critical in a case like this. Something else to keep in mind is that the word base will
not cross parts of speech, meaning that a search for a noun won’t locate a verb form of the
same root. The following query demonstrates inflection by locating the fable with the word
“flew” in “The Crow and the Pitcher”:

SELECT Title
FROM Fable
WHERE CONTAINS (*,’FORMSOF(INFLECTIONAL,fly)’)

11549359 ch08.F 11/21/02 9:23 AM Page 281

282 Part II ✦ Developing SQL Server Databases

Result:

Title
--
The Crow and the Pitcher
The Bald Knight

A nice front-end client program will give the user the option of highlighting the search words
in the display of the found documents. Inflection searches will create a difficulty: If the user
enters “fly” and the word that was found is “flew,” a simple find-and-replace with HTML for-
matting will miss the found word. The webhits.dll script in Index Server can help solve
this problem.

Variable-Word–Weight Searches
In a search for multiple words the relative weight may be assigned, making one word critical
to the search and another word much less important. The weights are set on a scale of 0.0
to 1.0.

The isabout option enables weighting and any hit on the word allows the rows to be
returned, so it functions as an implied Boolean or operator.

The following two queries use the weight option with ContainsTable to highlight the differ-
ence between the words “lion,” “brave,” and “eagle” as the weighting changes. The query will
examine only the fabletext column to prevent the results from being skewed by the shorter
lengths of the text found on the title and moral columns. The first query weights the three
words evenly:

SELECT Fable.Title, FTS.Rank
FROM Fable
JOIN CONTAINSTABLE
(Fable, FableText,

‘ISABOUT (Lion weight (.5),
Brave weight (.5),
Eagle weight (.5))’,20) FTS

ON Fable.FableID = FTS.[KEY]
ORDER BY Rank DESC

Result:

Title Rank
--------------------------------- --------
Androcles 92
The Eagle and the Fox 85
The Hunter and the Woodman 50
The Serpent and the Eagle 50
The Dogs and the Fox 32
The Eagle and the Arrow 21
The Ass in the Lion’s Skin 16

When the relative importance of the word “eagle” is elevated, it’s a different story:

SELECT Fable.Title, FTS.Rank

Note

11549359 ch08.F 11/21/02 9:23 AM Page 282

283Chapter 8 ✦ Searching Full-Text Indexes

FROM Fable
JOIN CONTAINSTABLE
(Fable, FableText,

‘ISABOUT (Lion weight (.2),
Brave weight (.2),
Eagle weight (.8))’,20) FTS

ON Fable.FableID = FTS.[KEY]
ORDER BY Rank DESC

Result:

Title Rank
--------------------------------- -----------
The Eagle and the Fox 102
The Serpent and the Eagle 59
The Eagle and the Arrow 25
Androcles 25
The Hunter and the Woodman 14
The Dogs and the Fox 9
The Ass in the Lion’s Skin 4

When all the columns participate in the full-text search, the small size of the moral and the
title make the target words seem relatively more important within the text. The next query
uses the same weighting as the previous query but includes all columns (*):

SELECT Fable.Title, FTS.Rank
FROM Fable
JOIN CONTAINSTABLE
(Fable, *,

‘ISABOUT (Lion weight (.2),
Brave weight (.2),
Eagle weight (.8))’,20) FTS

ON Fable.FableID = FTS.[KEY]
ORDER BY Rank DESC

Result:

Title Rank
--------------------------------- -----------
The Wolf and the Kid 408
The Hunter and the Woodman 408
The Eagle and the Fox 102
The Eagle and the Arrow 80
The Serpent and the Eagle 80
Androcles 25
The Ass in the Lion’s Skin 23
The Dogs and the Fox 9

The ranking is very relative and is based on word frequency, word proximity, and the relative
importance of a given word within the text. “The Wolf and the Kid” does not contain an eagle
or a lion, but two factors favor bravado. First, “brave” is a rarer word than “lion” or “eagle” in
both the column and the table. Secondly, the word “brave” appears in the moral as one of
only 10 words. So even though “brave” was weighted less, it rises to the top of the list. It’s all
based on word frequencies and statistics (and sometimes, I think, the phase of the moon!).

11549359 ch08.F 11/21/02 9:23 AM Page 283

284 Part II ✦ Developing SQL Server Databases

Fuzzy Searches
While the contains predicate and ContainsTable-derived table perform exact word
searches, the freetext predicate expands on the contains functionality to include fuzzy, or
approximate, full-text searches from free-form text.

Instead of searching for two or three words and adding the options for inflection and weights,
the fuzzy search handles the complexity of building searches that make use of all the MS
Search options and tries to solve the problem for you. Internally, the free-form text is broken
down into multiple words and phrases and the full-text search with inflections and weighting
is then performed on the result.

Freetext
Freetext works within a where clause just like contains, but without all the options. The
following query uses a fuzzy search to find the fable about the big race:

SELECT Title
FROM Fable
WHERE FREETEXT
(*,’The tortoise beat the hare in the big race’)

Result:

Title
--
The Hare and the Tortoise

FreetextTable
Fuzzy searches benefit from the freetext-derived table that returns the ranking in the same
way that ContainsTable does. The two queries shown in this section demonstrate a fuzzy
full-text search using the freetext-derived table. Here is the first query:

SELECT Fable.Title, FTS.Rank
FROM Fable
JOIN FREETEXTTABLE
(Fable, *, ‘The brave hunter kills the lion’,20) FTS
ON Fable.FableID = FTS.[KEY]

ORDER BY Rank DESC

Result:

Title Rank
--------------------------------- -----------
The Hunter and the Woodman 257
The Ass in the Lion’s Skin 202
The Wolf and the Kid 187
Androcles 113
The Dogs and the Fox 100
The Goose With the Golden Eggs 72
The Shepherd’s Boy and the Wolf 72

11549359 ch08.F 11/21/02 9:23 AM Page 284

285Chapter 8 ✦ Searching Full-Text Indexes

Here is the second query:

SELECT Fable.Title, FTS.Rank
FROM Fable
JOIN FREETEXTTABLE
(Fable, *, ‘The eagle was shot by an arrow’,20) FTS
ON Fable.FableID = FTS.[KEY]

ORDER BY Rank DESC

Result:

Title Rank
--------------------------------- -----------
The Eagle and the Arrow 288
The Eagle and the Fox 135
The Serpent and the Eagle 112
The Hunter and the Woodman 102
The Father and His Two Daughters 72

Binary Object Indexing
SQL Server can store any binary object up to 2GB, which definitely qualifies as a binary large
object (blob) in an image column. Full-text search can index words from within those binary
objects if the following criteria are met:

✦ Windows must have a filter installed for the object type. SQL Server installs the filters
for file types .doc, .xls, .ppt, .txt, and .htm in the file offfilt.dll.

✦ A separate column, char(3), must store the document extension for the blob stored in
that row.

✦ The column must be added to the full-text search catalog as a blob search and the doc-
ument type (eg. .txt, .doc, .xls) must be stored in an accompanying column.

✦ The full-text search catalog must be populated with full and incremental populations.
The Change-tracking and Update-in-the-background options will not support indexing
the blobs.

✦ The object must be properly initialized as it is loaded into SQL Server using the Bulk
Image Insert program.

Even when full-text search is carefully setup for blobs, I have found that this technology is
less than perfect and it takes some tinkering to make it work.

The following stored-procedure call sets up the blob column for full-text search:

EXEC sp_fulltext_column
‘Fable’,’Blob’,’add’,0x0409,’BlobType’

The parameters are the same as those for adding a text column, except that the last parame-
ter identifies the column used to specify the blob document type.

SQL Server includes Bulk Image Insert or BII.exe, a modified version of the Bulk Copy
Program that initializes the blob files and loads them into SQL Server. It’s zipped in the file
unzip_util.zip in the C:\Program Files\Microsoft SQL Server\80\Tools\DevTools\
Samples\utils directory. Once unzipped, it creates the bii subdirectory and unzips the
utility files.

11549359 ch08.F 11/21/02 9:23 AM Page 285

286 Part II ✦ Developing SQL Server Databases

The Bulk Image Insert utility copies data from a text file into SQL Server. The text file must be
semicolon-delimited (despite the documentation’s claim that it must be comma-delimited).
Within the text file, an at sign (@) indicates the blob name.

The following sample text file loads the MS Word document fox.doc into the Aesop’s Fables
sample database. The sixth column loads the blobtype and the seventh column points to
fox.doc (the single line is word-wrapped to fit on the page):

Sample.txt:
26; Test Fable; Persistence Pays Off;

Try, try again.;doc;@fox.doc

Calling the bii utility at the command prompt, the utility will move data into the fable table
from sample.txt. The other parameters specify the server name, the database, the user
name (using SQL Server users), and the password. The -v parameter directs bii.exe to
report the details of the operation as follows (formatted to fit):

>bii “fable” in “sample.txt”
-S”Noli” -D”Aesop” -U”sa” -P”sa” -v

Result:

BII - Bulk Image Insert Program for Microsoft SQL Server.
Copyright 2000 Microsoft Corporation, All Rights Reserved.
Version: V1.0-1
Started at 2001-12-07 16:28:09.231 on NOLI
Table Noli.Aesop.sa.fable

FableID int (4)
Title varchar (50)
Moral varchar (100)
FableText varchar (1536)
BlobType char (3) null
Blob image (16) null

Inserted 1 rows Read 1 rows 0 rows with errors
Total Bytes = 19508 inserted 19456 File Bytes

Total Seconds = 0.02 Kb Per Second = 952.539063
BII - Bulk Image Insert Program for Microsoft SQL Server.
Copyright 2000 Microsoft Corporation, All Rights Reserved.
Version: V1.0-1
Finished at 2001-12-07 16:28:09.332 on NOLI

Once the twenty-sixth fable is loaded into the database and the full-text catalog is populated
you can use the following command to search the Word document within SQL Server:

EXEC sp_fulltext_table ‘Fable’, ‘start_full’

The following query looks for the word “jumped,” which is found in the twenty-sixth fable:

SELECT Title, BlobType
FROM Fable
WHERE CONTAINS (*,’jumped’)

Result:

Title BlobType
--------------------------------- -----------
Test Fable doc

11549359 ch08.F 11/21/02 9:23 AM Page 286

287Chapter 8 ✦ Searching Full-Text Indexes

Summary
SQL Server indexes are not designed for searching for words in the middle of a column. If the
database project requires flexible word searches, full-text search is the best tool, even though
it requires additional development and administrative work.

The second part of this book, “Developing SQL Server Databases,” deals with managing data,
beginning with a description of the basic select statement. This chapter explained how to
make retrieving data with the select statement even better by adding full-text search. The
next chapter also addresses the subject of data retrieval, by describing how to store prede-
fined SQL statements as views.

✦ ✦ ✦

11549359 ch08.F 11/21/02 9:23 AM Page 287

11549359 ch08.F 11/21/02 9:23 AM Page 288

Creating Views

Aview is a stored SQL select statement that may be referenced as
a table — no more, no less. Microsoft Access programmers who

move up to SQL Server tend to develop using views, thinking of them
as the SQL Server equivalent to Access Queries. This makes sense
because using pre-compiled Queries is a best practice in Access.
While SQL Server views are similar to Access Queries, they bring with
them both new features and a new set of performance problems.

Views are sometimes described as “virtual tables.” This isn’t an
accurate description, because views don’t store data, and no actual
data is stored anywhere specifically for a standard view. Views
merely refer to the data stored in tables.

With this in mind, it’s important to fully understand how views work,
and the pros and cons of using views, before you plan your project
architecture.

Why Use Views?
When it comes to views three general opinions, or development
styles, prevail. The first and most popular opinion is that views
should be avoided like the plague. Developers in this camp cite
performance issues and problems with updating, and their
applications tend to be clean and fast, but their users miss out
on the benefits of views.

At the other extreme, some developers love views and will develop
a project based entirely on them. Every access from the client
application hits a view. These applications work well in development
but begin to fail as the database sees heavier usage.

I recommend a moderate approach. Views can play a useful role in a
database project, but overusing them will cause problems.

Use views to simplify complex joins or aggregate queries, denor-
malize data, or rename columns to support ad hoc queries and
reports. When used in this way, views add to the consistency of
the database. But don’t use views to support the main user appli-
cation, or to simulate security.

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Planning views wisely

Creating views with
Enterprise Manager and
Query Analyzer

Updating through views

Performance and views

Nesting views

✦ ✦ ✦ ✦

12549359 ch09.F 11/21/02 9:47 AM Page 289

290 Part II ✦ Developing SQL Server Databases

SQL Server includes two advanced forms of views: partitioned views and federated
databases (distributed partition views). Both of these types of views enable you to split, or
partition, huge tables across multiple smaller tables or separate servers to improve perfor-
mance. The partitioned view then spans the multiple tables or servers and even enables
updates to the correct underlying table. These advanced views are explained in Chapter 30,
“Advanced Scalability.”

Creating Views
Since a view is nothing more than a saved SQL select, the creation of a view begins with a
working select statement. A SQL select statement, as long as it’s a valid SQL select
statement (with a few minor exceptions), can be cut and pasted from nearly any other tool
into a view.

Creating Views with Enterprise Manager
Views are listed in their own node under each database. The right-click menu for a view is
similar to the right-click menu for a table. The New View command in the right-click menu will
launch the View Designer in a mode that creates views, as shown in Figure 9-1.

Tables or other views can be added to the new view by means of dragging them to the
Diagram pane from Enterprise Manager’s main window, or using the Add Table toolbar but-
ton. (The actual placement of the table or view in the Diagram pane is not saved, so there’s
little point in making it look great.)

Figure 9-1: Creating a view in Enterprise Manager’s View Designer.

Cross-
Reference

12549359 ch09.F 11/21/02 9:47 AM Page 290

291Chapter 9 ✦ Creating Views

The View Designer functions similarly to Enterprise Manager’s Query Designer, which is also
used to query tables. Columns may be added to the view by means of the Diagram pane, the
Grid pane, or the SQL pane. Editing the raw SQL query in the SQL pane will extend the SQL
query beyond the graphic capabilities of the diagram pane and in this manner the view may
include subqueries.

For more details on using Enterprise Manager’s Query Designer, refer to Chapter 4, “Using
SQL Server’s Developer Tools.”

The Verify SQL button in the toolbar only verifies the SQL syntax and does not verify the
names of tables, views, or columns in the SQL select statement.

The Run right-click menu item, or the ! toolbar button, executes the query and displays the
answer in the Result pane. Because the view will be executed again from other code, testing is
imperative.

The Save toolbar button, or the Save item or Save As item in the right-click menu, actually
creates the view. Unlike other Enterprise Manager save features, these do not offer the option
of previewing the script used to actually create or alter the view. Note that the view must be a
valid, error-free SQL select statement in order to be saved.

Once the view is created, it may be edited within Enterprise Manager by means of selecting
the view and selecting the Design item from the right-click menu.

The view can be run from within Enterprise Manger in the same way that a table’s contents
can be viewed. Select the view and select one of the Open items from the right-click menu.
Because the view is now being executed, or called, from a select statement, the view itself
now appears within the Diagram pane as a data source.

The SQL pane will show the view in the from clause of the select statement. This is how the
view will be referenced by users:

SELECT * FROM dbo.vEventList

When views are called from user applications, a where condition is typically used to retrieve
the correct data from the view. The where condition may be entered in the Grid pane or the
SQL pane. For example:

SELECT * FROM dbo.vEventList WHERE (EventCode = ‘101’)

Views may be deleted from the database using Enterprise Manager by selecting the view and
deleting it.

Creating Views with DDL Code
Views may be managed within Query Analyzer or SQL scripts with the Data Definition
Language (DDL) commands: create, alter, and drop. The basic syntax for creating a view is
as follows:

CREATE dbo.ViewName
As
SQL Select Statement

For example, to create the view vEventList in code, the following command would be
executed in Query Analyzer:

Cross-
Reference

12549359 ch09.F 11/21/02 9:47 AM Page 291

292 Part II ✦ Developing SQL Server Databases

CREATE VIEW dbo.vEventList
AS
SELECT dbo.CustomerType.CustomerTypeName,

dbo.Customer.LastName, dbo.Customer.FirstName,
dbo.Customer.Nickname,
dbo.Event_mm_Customer.ConfirmDate, dbo.Event.EventCode,
dbo.Event.DateBegin, dbo.Tour.TourName,
dbo.BaseCamp.BaseCampName, dbo.Event.Comment
FROM dbo.Tour

INNER JOIN dbo.Event
ON dbo.Tour.TourID = dbo.Event.TourID

INNER JOIN dbo.Event_mm_Customer
ON dbo.Event.EventID = dbo.Event_mm_Customer.EventID

INNER JOIN dbo.Customer
ON dbo.Event_mm_Customer.CustomerID

= dbo.Customer.CustomerID
LEFT OUTER JOIN dbo.CustomerType

ON dbo.Customer.CustomerTypeID
= dbo.CustomerType.CustomerTypeID

INNER JOIN dbo.BaseCamp
ON dbo.Tour.BaseCampID = dbo.BaseCamp.BaseCampID

Attempting to create a view that already exists will cause an error. Once a view has been
created, the SQL select statement may be easily edited by means of the alter command:

ALTER dbo.ViewName
As
SQL Select Statement

The alter command supplies a new SQL select statement for the view.

Here’s where the Query Analyzer’s Object Browser earns its keep. To automatically generate
an alter statement from an existing view, drill down to the list of views in the Object Browser
and select “Script Object to New Windows As... Alter” from the right-click menu.

Altering a view is preferable to dropping and re-creating it, because dropping the view will
also drop any security-object permissions that have been established.

To remove a view from the database, use the drop command:

Drop View dbo.ViewName

View Restrictions
Although a view can contain nearly any valid select statement, a few basic restrictions
do apply:

✦ Views may not include the select into option that creates a new table from the
selected columns. Select into fails if the table already exists, and it does not return
any data, so it’s not a valid view.

SELECT * INTO Table

✦ Views may not refer to a temporary table (one with a # in the name) or a table variable,
because these types of tables are very transient.

12549359 ch09.F 11/21/02 9:47 AM Page 292

293Chapter 9 ✦ Creating Views

✦ Views may not contain compute or compute by columns. Instead use standard aggregate
functions and groupings. (Compute and computer by are obsolete and included for
backward compatibility only.)

Creating Views for Ad Hoc Queries
Based on the premise that views are best used for ad hoc queries, and not as a central part of
the application, here are some ideas for building ad hoc–query views:

✦ Use views to denormalize or flatten complex joins and hide the mysterious keys used to
link data within the database schema. A well-designed view will invite the user to get
right to the data of interest.

Without views to pre-build some of the complex joins, ad hoc queries pose a potential
data integrity problem. Even if users understand joins, they rarely understand when to
use an inner join versus an outer join. Getting that aspect of the join wrong will
lead to incorrect results. The vEventList view created earlier in this chapter is a good
example of a six-table join turned into a single-user recognizable record set.

✦ Save complex aggregate queries as views. Because every column must participate in an
aggregate function or group by, many complex aggregate queries tend to involve
subqueries so they will be able to present non-aggregated columns. Ad hoc query users
might be grateful to you for composing these complex queries in advance.

✦ Use aliases to change cryptic column names to recognizable column names. Just as the
SQL select statement can use column aliases or named ranges (table aliases) to
modify the names of columns or tables, these features may be used within a view to
present a more readable record set to the user. For example, the column au_lname in
the Microsoft Pubs database could use the alias LastName:

SELECT au_lname AS LastName FROM Pubs.dbo.Author

A view based on the previous select statement would list the author’s last name
column as LastName instead of au_lname.

✦ Include only the columns of interest to the user. When columns that don’t concern users
are left out of the view the view is easier to query. The columns that are included in the
view are called projected columns, meaning that they project only the selected data
from the entire underlying table.

✦ Plan generic, dynamic views that will have long, useful lives; single-purpose views will
quickly become obsolete and clutter the database. Build the view intending that it be
used with a where clause to select a subset of data. The view should return all the rows
if the user does not supply a where restriction. For example, the vEventList view
returns all the events; the user should use a where clause to select the local events, or
the events in a certain month.

If a view is needed to return a restricted set of data, such as the next month’s events,
then the view should calculate the next month so that it will continue to function over
time. Hard-coding values such as = Dec would be poor practice.

The goal when developing views is two-fold — to enable users to get to the data easily, and
to protect the data from the users. By building views that provide the correct data, you are
protecting the data from mis-queries and misinterpretation.

12549359 ch09.F 11/21/02 9:47 AM Page 293

294 Part II ✦ Developing SQL Server Databases

The With Check Option
The with check option causes the where clause of the view to check the data being
inserted or updated through the view in addition to the data being retrieved. In a sense,
it makes the where clause a two-way restriction.

This option is useful when the view should limit inserts and updates with the same restrictions
applied to the where clause.

To understand the need for the with check option, it’s important to first understand how
views function without the check option. The following view will generate a list of tours for
the Cape Hatteras base camp:

CREATE VIEW dbo.vCapeHatterasTour
AS
SELECT TourName, BaseCampID

FROM dbo.Tour
WHERE BaseCampID = 2

SELECT * FROM dbo.vCapeHatterasTour

TourName BaseCampID
---------------------------- -----------
Outer Banks Lighthouses 2

If the Ashville base camp adds a Blue Ridge Parkway Hike tour and inserts it through the view
without the check option, the insert is permitted:

INSERT dbo.vCapeHatterasTour (TourName, BaseCampID)
VALUES (‘Blue Ridge Parkway Hike’, 1)

(1 row(s) affected)

The insert worked and the new row is in the database, but the row is not visible through the
view because the where clause of the view filters out the inserted row. This is a phenomenon
called disappearing rows.

SELECT * FROM dbo.vCapeHatterasTour

TourName BaseCampID
---------------------------- -----------
Outer Banks Lighthouses 2

If the purpose of the view was to give the users at the Cape access to their tours alone, the
view failed. Although they can see only the Cape’s tours, they successfully modified another
base camp’s tours.

The with check option would have prevented this fault. The following code will back out
the insert and redo the same scenario, but this time the view will include the with check
option:

DELETE dbo.vCapeHatterasTour
WHERE TourName = ‘Blue Ridge Parkway Hike’

ALTER VIEW dbo.vCapeHatterasTour
AS
SELECT TourName, BaseCampID

FROM dbo.Tour

12549359 ch09.F 11/21/02 9:47 AM Page 294

295Chapter 9 ✦ Creating Views

WHERE BaseCampID = 2
WITH CHECK OPTION

INSERT dbo.vCapeHatterasTour (TourName, BaseCampID)
VALUES (‘Blue Ridge Parkway Hike’, 1)

Server: Msg 550, Level 16, State 1, Line 1
The attempted insert or update failed because the target view either
specifies WITH CHECK OPTION or spans a view that specifies WITH CHECK
OPTION and one or more rows resulting from the operation did not qualify
under the CHECK OPTION constraint.
The statement has been terminated.

This time the insert failed and the error message attributed the cause to the with check
option in the view, which is exactly the effect desired.

Some developers will employ views and the with check option as a means of providing row-
level security — a technique called horizontally positioned views. As in the base-camp–view
example, they will create a view for each department, or each sales branch, and then give
users security permission to the view that pertains to them. While this method does achieve
row-level security it also has a high maintenance cost.

A better way to achieve row-level security is to build the security into user-access tables and
stored procedures, as demonstrated in Chapter 16, “Advanced Server-Side Programming.”

Within Enterprise Manager’s View Designer, the with check option can be enabled within
the View Properties page, which is available from the right-click menu.

Order By and Views
Views don’t normally include a sort order. The order by clause is typically added to the SQL
statement that refers to the view. For example, the following code selects data from the
vEventList view and orders it by EventCode and name. The order by is not a part of
vEventList, but is applied to the view by the calling SQL statement.

SELECT EventCode, LastName, FirstName, IsNull(NickName,’’)
FROM dbo.vEventList
ORDER BY EventCode, LastName, FirstName

However, SQL Server permits the top predicate in views and the top predicate is generally
useless without an order by. So if the view includes top 100 percent, it can include an
order by:

ALTER VIEW dbo.vCapeHatterasTour
AS
SELECT TOP 100 PERCENT TourName, BaseCampID

FROM dbo.Tour
WHERE BaseCampID = 2
ORDER BY TourName

I like this capability because it fits perfectly with my reason for recommending that you use
views in your project. Managers and other users who typically create ad hoc queries and
reports tend to be unfamiliar with SQL syntax. Even if they use a graphic tool to select from
the view, your performing the most likely sort in the view means one less thing for them to
worry about.

Cross-
Reference

12549359 ch09.F 11/21/02 9:47 AM Page 295

296 Part II ✦ Developing SQL Server Databases

If the SQL select statement referring to the view does include an order by clause,
the calling order by overrides the view’s order by.

Protecting the View
Two final options protect views from data-schema changes and prying eyes. These options
are simply added to the create command and applied to the view, much as the with check
option is applied.

Database code is fragile and tends to break when the underlying data structure changes.
Because views are nothing more than stored SQL select queries, changes to the referenced
tables will break the view. Even adding new columns to an underlying table may cause the
view to break.

Creating a view with schema binding locks the underlying tables to the view and prevents
changes, as demonstrated in the following code sample:

CREATE TABLE Test (
[Name] NVARCHAR(50)
)

go

CREATE VIEW vTest
WITH SCHEMABINDING
AS
SELECT [Name] FROM dbo.Test
Go

ALTER TABLE Test
ALTER COLUMN [Name] NVARCHAR(100)

Server: Msg 4922, Level 16, State 1, Line 1
ALTER TABLE ALTER COLUMN Name failed
because one or more objects access this column.

Some restrictions apply to the creation of schema-bound views. The select statement
must include the owner name for any referenced objects, and select all columns (*) is not
permitted.

The with encryption option is another simulated-security feature. When views or stored
procedures are created the text is stored in the SysComments system table. The code is
therefore available for viewing. The view may contain a where condition that should be kept
confidential, or some other reason for encrypting the code. The with encryption option
encrypts the code in SysComments and prevents anyone from viewing the original code.

In the following code example, the text of the view is inspected within SysComments, the
view is encrypted, and SysComments is again inspected. As you would expect, the select
statement for the view is then no longer readable.

SELECT Text
FROM SysComments
JOIN SysObjects

ON SysObjects.ID = SysComments.ID
WHERE Name = ‘vTest’

12549359 ch09.F 11/21/02 9:47 AM Page 296

297Chapter 9 ✦ Creating Views

The result is the text of the vText view:

Text

CREATE VIEW vTest
WITH SCHEMABINDING
AS
SELECT [Name] FROM dbo.Test

The following alter command rebuilds the view with encryption:

ALTER VIEW vTest
WITH ENCRYPTION
AS
SELECT [Name] FROM dbo.Test

Rerunning the previous select from SysComments returns unreadable text:

Text

Be careful with this option. Once the code is encrypted, the Query Analyzer Object Browser
can no longer produce a script to alter the view, and will instead generate this message:

/****** Encrypted object is not transferable,
and script cannot be generated. ******/

Just as with stored procedure encryption, view encryption is easily broken. Refer to Chapter
13, “Developing Stored Procedures,” for more information.

Within Enterprise Manager’s View Designer, the with schema binding and with encryption
options can be enabled within the View Properties page.

Updatable Views
One of the main complaints concerning views as that they are often not updatable. In fact, if
the view is much more than a simple select, chances are that data can’t be updated through
the view.

Any of these factors may cause a view to be non-updatable:

Of course the other standard potential difficulties with updating and inserting data still apply.
The next chapter, “Modifying Data,” discusses modifying data in more detail.

Cross-
Reference

Cross-
Reference

12549359 ch09.F 11/21/02 9:47 AM Page 297

298 Part II ✦ Developing SQL Server Databases

✦ Only one table may be updated. If the view includes joins, the update statement that
references the view must attempt to update only one table.

✦ An instead of trigger on the view or an underlying table will modify the data-
modification operation. The code inside the instead of trigger will be executed
instead of the submitted data update.

✦ Aggregate functions or group bys in the view will cause the view to be non-updatable.
SQL Server wouldn’t be able to determine which of the summarized rows should be
updated.

✦ If the view includes a subquery as a derived table, none of the derived table’s columns
may be in the output of the view. However, aggregates are permitted in a subquery that
is being used as a derived table.

✦ If the view includes the with check option, the insert or update operation must
meet the view’s where-clause conditions.

✦ The update or insert columns must refer to a single column in the underlying tables.
If the same column name appears in two tables, use the designation table.column in
the column list.

As you can see, it’s easy to create a non-updatable view. However, if the project is using views
for ad hoc queries and reporting only, updatability isn’t a serious issue.

One way to work around non-updatable views is to build an instead of trigger that
inspects the modified data and then performs a legal update operation based on that data.
Chapter 15, “Implementing Triggers,” explains how to create an instead of trigger.

Performance Problems with Views
By far the most critical problem with views is one of performance. Developers who shun views
rightly point out that views are not pre-compiled and that they cause a performance hit.

When a view is referenced by a SQL select statement several steps are taken to resolve the
query:

1. The calling SQL select statement and the referenced view are combined into a new
single query.

2. The new query’s tables must be resolved. If the table name does not indicate an owner,
the proper table must be determined. For example, if there are two tables, dbo.Client
and bob.Client, then Client will mean bob.Client to Bob’s query and dbo.Client
to everyone else’s query.

3. Security must be processed and checked. If the ownership chain from the view to the
underlying tables is consistent, the user may reference the tables through the view
(assuming that the view’s owner has permission to the tables) if he or she has
permission to the view regardless of the permission to the table. However, if the
ownership chain is broken or changes from the view to the underlying tables, the user
must have permission to every object in the chain. So checking security may extract a
performance hit.

Cross-
Reference

12549359 ch09.F 11/21/02 9:47 AM Page 298

299Chapter 9 ✦ Creating Views

4. If a previous query with the same types of parameters has been executed, and the
query and view included the owner name, the query can take advantage of auto-
parameterization, and the stored query-execution plan may be reused.

If either the query or the view includes a table without the owner’s name, or it is the
first time the query-and-view combination has been executed, the query optimizer
must determine a query-execution plan.

5. The query is executed.

So how much of a performance hit is exacted by a view? From my experience, a well-written
stored procedure will be about 10–20 percent faster than a well-written view. Of course, many
variables exist.

The following batch will retrieve data through the vEventList view created previously in a
1,000-iteration loop:

DECLARE @pCounter INT
SET @pCounter = 0

WHILE @pCounter < 1000
BEGIN
SET @pCounter = @pCounter + 1
SELECT * FROM vEventlist

END

On my computer the view batch took 99 seconds to complete. The following code will create
a version of the same select statement as a stored procedure and then run the same loop:

CREATE PROC GetEventList
AS
SET NOCOUNT ON
SELECT dbo.CustomerType.CustomerTypeName,

dbo.Customer.LastName, dbo.Customer.FirstName,
dbo.Customer.Nickname,
dbo.Event_mm_Customer.ConfirmDate, dbo.Event.EventCode,
dbo.Event.DateBegin, dbo.Tour.TourName,
dbo.BaseCamp.BaseCampName, dbo.Event.Comment
FROM dbo.Tour

INNER JOIN dbo.Event
ON dbo.Tour.TourID = dbo.Event.TourID

INNER JOIN dbo.Event_mm_Customer
ON dbo.Event.EventID = dbo.Event_mm_Customer.EventID

INNER JOIN dbo.Customer
ON dbo.Event_mm_Customer.CustomerID

= dbo.Customer.CustomerID
LEFT OUTER JOIN dbo.CustomerType

ON dbo.Customer.CustomerTypeID
= dbo.CustomerType.CustomerTypeID

INNER JOIN dbo.BaseCamp
ON dbo.Tour.BaseCampID = dbo.BaseCamp.BaseCampID

SP_SQLEXEC GetEventList -- test the proc

DECLARE @pCounter INT

12549359 ch09.F 11/21/02 9:47 AM Page 299

300 Part II ✦ Developing SQL Server Databases

SET @pCounter = 0

WHILE @pCounter < 1000
BEGIN
SET @pCounter = @pCounter + 1
EXEC GetEventList

END

The stored procedure loop completed in 88 seconds. That’s a 12 percent increase in
performance. Is that significant? Only you can decide.

Whether the overhead associated with views is acceptable in a project depends on the load
and the frequency with which the view will be called. If the view is supporting a form used to
update a look-up table once a month, a view is sufficient. However, if the majority of users are
constantly reviewing and updating the data, such as in an order-processing form, you’ll want
to use a stored procedure to instead of a view.

Indexed views, discussed in Chapter 30, “Advanced Scalability,” and included with the
Enterprise Edition of SQL Server 2000, are a powerful feature that creates an index over a
denormalized set of data as defined by a view. The index may then be applied when executing
queries that join across that set of data, regardless of whether the view is in the query, so the
name is slightly confusing.

A related performance issue involving views concerns the locks that views can place on the
data. There’s nothing inherently wrong with the way views lock the data, and if data is selected
through a view and the select is immediately completed the locks will be immediately
dropped. The problem is that users have a tendency to use views to browse data using a
front-end application that opens all the data and keeps it open for the length of the browse
session. For this reason views have garnered an undeservedly poor reputation for holding
locks. The issue is not the view, but the front-end code or tool. I mention it here in defense of
views and to alert you to this potential performance problem.

Nested Views
Since a view is nothing more than a SQL select statement, and a SQL select statement may
refer to a view as if it were a table, then views may themselves refer to other views. Views
referred to by other views are sometimes called nested views.

The following view uses vEventList and adds a where clause to restrict the results to those
events taking place in the next 30 days:

CREATE VIEW dbo.vEventList30days
AS
SELECT dbo.vEventList.EventCode, LastName, FirstName

FROM dbo.vEventList
JOIN dbo.Event

ON vEventList.EventCode = Event.EventCode
WHERE Event.DateBegin

BETWEEN GETDATE() and GETDATE() + 30

In this example, the view vEventList is nested within vEventList30Days. Another way to
express the relationship is to say that vEventList30Days depends on vEventList. (Within
Enterprise Manager, the dependencies of an object may be viewed by means of selecting All
Tasks ➪ Display Dependencies from the right-click menu for the object.) Figure 9-2 shows the
Dependencies dialog boxes for both of the views.

Cross-
Reference

12549359 ch09.F 11/21/02 9:47 AM Page 300

301Chapter 9 ✦ Creating Views

Figure 9-2: The dependency chain for the nested views is easily discerned from the
Dependencies dialog boxes for the calling view: (a) vEventList30Days, and (b) the nested
view vEventList.

Another high-end specialized view is a partitioned view that unions data that has been split
into several segmented tables for performance reasons. Partitioned views are explained in
Chapter 30, “Advanced Scalability.”

Views aren’t the only means of nesting select statements. Subqueries supplying data as if they
were tables, or derived tables, may also be nested, which will likely improve performance. The
nested view in the preceding code sample could be rewritten as nest-derived tables, as follows
(the subquery is the code enclosed in parentheses):

Cross-
Reference

(b)(a)

Alternatives to Views

If your development style involves a lot of views, this may have been a depressing chapter.
Fortunately, SQL Server 2000 provides several other cool alternatives.

Stored procedures and functions, assuming a well-designed security scheme, skip directly to Step
4 (of the five steps mentioned previously to execute a view) the first time they are executed and
to Step 5 thereafter. Stored procedures do not offer schema binding (a very attractive benefit),
while views do; however, user-defined functions provide the compiled speed and input parame-
ters of a stored procedure with the schema binding of a view. If you like building modular SQL
statements such as views, as I do, you’ll find user-defined functions to your liking.

Chapters 12 – 14 discuss T-SQL, stored procedures, and functions.

If you are using views to support ad hoc queries, as I suggest you do, you may also want to
explore providing Analysis Services cubes for those users who need to perform complex explo-
rations of the data. Cubes pre-aggregate, or summarize, the data along multiple dimensions. The
user may then browse the cube and compare the different data dimensions. For the developer,
providing one cube can often eliminate several queries or reports.

Chapter 31, “Analysis Services,” explains creating cubes.

12549359 ch09.F 11/21/02 9:47 AM Page 301

302 Part II ✦ Developing SQL Server Databases

SELECT E.EventCode, LastName, FirstName
FROM
(SELECT dbo.CustomerType.CustomerTypeName,

dbo.Customer.LastName, dbo.Customer.FirstName,
dbo.Customer.Nickname,
dbo.Event_mm_Customer.ConfirmDate, dbo.Event.EventCode,
dbo.Event.DateBegin, dbo.Tour.TourName,
dbo.BaseCamp.BaseCampName, dbo.Event.Comment

FROM dbo.Tour
INNER JOIN dbo.Event
ON dbo.Tour.TourID = dbo.Event.TourID

INNER JOIN dbo.Event_mm_Customer
ON dbo.Event.EventID = dbo.Event_mm_Customer.EventID

INNER JOIN dbo.Customer
ON dbo.Event_mm_Customer.CustomerID

= dbo.Customer.CustomerID
LEFT OUTER JOIN dbo.CustomerType
ON dbo.Customer.CustomerTypeID

= dbo.CustomerType.CustomerTypeID
INNER JOIN dbo.BaseCamp
ON dbo.Tour.BaseCampID = dbo.BaseCamp.BaseCampID

) E
JOIN dbo.Event

ON E.EventCode = Event.EventCode
WHERE Event.DateBegin BETWEEN GETDATE()

and GETDATE() + 30

The subquery is given the names range, or table alias, of E. From then on it’s referred to by
the outer query as E. Granted, this is not a suitable technique for end-user ad hoc queries,
but if you’re a developer who has been using nested views and you want to regain some lost
performance, nested derived tables are worth trying.

Chapter 7, “Merging Data Using Relational Algebra,” explains using subqueries.

Summary
Views are nothing more than stored SQL select queries. There’s no magic in a view. Any
valid SQL select statement may be saved as a view including subqueries, complex joins, and
aggregate functions.

The previous chapters have discussed retrieving data using the powerful select statement.
Views store the select statement for ad hoc queries. The next chapter will show you how to
add data-modification verbs to insert, update, and delete data.

✦ ✦ ✦

Cross-
Reference

12549359 ch09.F 11/21/02 9:47 AM Page 302

Modifying Data

Things change. Life moves on. Since the purpose of a database is
to accurately represent reality, the data must change along with

reality. For SQL programmers, that means inserting, updating, and
deleting rows — using the basic Data Manipulation Language (DML)
commands. But these operations aren’t limited to writing single rows
of data. Working with SQL means thinking in terms of datasets. The
process of modifying data with SQL draws upon the entire range of
SQL Server data-retrieval capabilities — the powerful select, joins,
full-text searches, subqueries, and views.

The SQL insert, update, and delete commands are really verb
extensions of the basic select command. The full potential of the
select command lies within each data-modification operation.
Even when modifying data, you should think in terms of sets rather
than single rows.

This chapter is all about modifying data within SQL Server using the
insert, update, and delete SQL commands. Modifying data raises
issues that need to be addressed, or at least considered. Inserting
primary keys requires special methods. Table constraints may
interfere with the data modification. Referential integrity demands that
some delete operations cascade to other related tables. This chapter
will help you understand these concerns and offer some ways of
dealing with them. Because these potential obstacles affect inserts,
updates, and, to some degree, deletes, they are addressed in their
own sections after the sections devoted to the individual commands.

The ACID database properties (Atomic, Consistent, Isolated, and
Durable) are critical to the modification of data. Within the big
picture of SQL Server, the next chapter, “Transactional Integrity,”
continues with the data-modification theme as it digs into SQL
Server’s architecture and explains how data modifications occur
within transactions to meet the ACID requirements, and how SQL
Server manages data locks.

Data-modification commands may be submitted to SQL Server from
any one of several interfaces. This chapter is concerned more with the
strategy and use of the insert, update, and delete commands than
with the interface used to submit a given command to SQL Server.

Two main interfaces are provided with SQL Server for submitting SQL
commands: Query Analyzer and Enterprise Manager’s Query Designer.
Query Analyzer, while lacking the visual representation of joins and
columns, has a richer set of features for working with T-SQL commands.
Query Designer has the advantage of enabling you to build data-
manipulation commands both visually and in code, as shown in
Figure 10-1. Either interface is suitable for learning data-modification

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Inserting data from
expressions, other result
sets, and stored
procedures

Updating data

Deleting data

Avoiding and solving
data-modification
problems

✦ ✦ ✦ ✦

13549359 ch10.F 11/21/02 9:47 AM Page 303

304 Part II ✦ Developing SQL Server Databases

SQL commands, but because Query Analyzer is better for working with SQL scripts,
I recommend you use Query Analyzer as you work through this chapter.

For more details on using Enterprise Manager’s Query Designer and Query Analyzer, see
Chapter 4, “Using SQL Server’s Developer Tools.”

Inserting Data
SQL offers four forms of insert and select/into as the primary methods of inserting data
(as shown in Table 10-1). The most basic method simply inserts a row of data, while the most
complex builds a dataset from a complex select statement and creates a table from the result.

Table 10-1: Insert Forms

Insert Form Description

insert/values Inserts a single row of values; commonly used to insert data from a user
interface.

insert/select Inserts a result set; commonly used to manipulate sets of data.

insert/exec Inserts the results of a stored procedure; used for complex data
manipulation.

insert default Creates a new row with all defaults; used for pre-populating pigeonhole
data rows.

select/into Creates a new table from the result set of a select statement.

Figure 10-1: Enterprise Manager’s Query Designer is amazingly
well-suited to modifying data.

Cross-
Reference

13549359 ch10.F 11/21/02 9:47 AM Page 304

305Chapter 10 ✦ Modifying Data

Each of these insert forms is useful for a unique task, often depending on the source of the
data being inserted.

SQL Server complements the SQL insert commands with other tools to aid in moving large
amounts of data or in performing complex data conversions. The venerable Bulk Copy and
the Copy Database Wizard are introduced in Chapter 17, “Transferring Databases.” The Copy
Database Wizard actually creates a simple Data Transformation Service (DTS) package.
Chapter 19, “Migrating Data with DTS,” details DTS, a very powerful tool that can move and
manipulate large sets of data between/among nearly any data sources.

When inserting new data, primary keys must be generated to identify the new rows. While
identity columns and GUIDs both make excellent primary keys, each requires special
handling during the insertion of rows. This section covers how to create identity-column
values and GUIDs.

Inserting One Row of Values
The simplest and most direct method of inserting data is the insert/values method.
Because this form accepts a single set of values, it’s limited to inserting data one row at a
time. Since user interfaces tend to accept one row of data at a time, this is the preferred
method for inserting data from a user interface.

INSERT [INTO] owner.Table [(columns,...)]
VALUES (value,...)

Building an insert/values statement is pretty straightforward, although you do have a few
options. The into keyword is optional and is commonly ignored. The key to building an
insert statement is getting the columns listed correctly and ensuring that the data type of
the value is valid for the inserting column.

When the values are inserted into a new row, each value corresponds to an insert column.
The insert columns may be in any order — the order of the columns within the table is
irrelevant — as long as the insert columns and the value columns in the SQL insert command
are in the same order.

The file Ch 10 - Modifying Data.sql on this book’s CD contains all the sample code
for this chapter. Additional examples of data-modification statements may be found in any
of the sample database “populate” scripts, or in the stored procedures of the OBX Kites
sample database.

The following insert commands reference the columns in varying order:

USE CHA2

INSERT INTO dbo.Guide (LastName, FirstName, Qualifications)
VALUES (‘Smith’, ‘Dan’, ‘Diver, Whitewater Rafting’)

INSERT INTO dbo.Guide (FirstName, LastName, Qualifications)
VALUES (‘Jeff’, ‘Davis’, ‘Marine Biologist, Diver’)

INSERT INTO dbo.Guide (FirstName, LastName)
VALUES (‘Tammie’, ‘Commer’)

On the
CD-ROM

Cross-
Reference

13549359 ch10.F 11/21/02 9:47 AM Page 305

306 Part II ✦ Developing SQL Server Databases

The following select command verifies the insert:

SELECT * FROM dbo.Guide

Result (your listing may be different depending on the data loaded into the database):

GuideID LastName FirstName Qualifications
-------- ---------- ----------- -----------------------------
1 Smith Dan Diver, Whitewater Rafting
2 Davis Jeff Marine Biologist, Diver
3 Commer Tammie NULL

Not every column in the table has to be listed, but if the column is listed, then a value has to
be available for the insert command. The third insert statement in the previous sample
code left off the qualifications column. The insert operation worked nonetheless, and
inserted a null into the omitted column.

If the Qualifications column had default constraint, the default value would have been
inserted instead of the null. When a column has both no default and a Not Null constraint,
and when no value is provided in the insert statement, the insert operation will fail.
(There’s more about inserting defaults and nulls in the “Potential Data-Modification
Obstacles” section later in this chapter.)

It’s possible to explicitly force the insert of a default without knowing the default value.
If the keyword DEFAULT is provided in the value-column list, SQL Server will store the default
value for the column. This is a good practice because it documents the intention of the code
rather than leaving the code blank and assuming the default.

Explicitly listing the columns is a good idea. It prevents an error if the table schema changes,
and it helps document the insert. However, the insert-column list is optional. In this case, the
values are inserted into the table according to the order of the columns in the table (ignoring
an identity column). It’s critical that every table column receive valid data from the value list.
Omitting a column in the value list will cause the insert operation to fail.

Just as when the columns are explicitly listed within the insert/values command,
an identity column can’t receive a value, so the identity column is also ignored in the value
list when the columns are assumed. The rest of the values are in the same order as the
columns of the Guide table, as follows:

INSERT Guide
VALUES (‘Jones’, ‘Lauren’,

‘First Aid, Rescue/Extraction’,’6/25/59’,’4/15/01’)

To view the inserted data, the following select command pulls data from the Guide table:

SELECT GuideID, LastName, FirstName, Qualifications
FROM dbo.Guide

Result:

GuideID LastName FirstName Qualifications
-------- ---------- ----------- -----------------------------
1 Smith Dan Diver, Whitewater Rafting
2 Davis Jeff Marine Biologist, Diver
3 Commer Tammie NULL
4 Jones Lauren First Aid, Rescue/Extraction

13549359 ch10.F 11/21/02 9:47 AM Page 306

307Chapter 10 ✦ Modifying Data

So far in the sample code, values have been hard-coded string literals. Alternately, the value
could be returned from an expression. This is useful when a data type requires conversion,
or when data need to be altered, calculated, or concatenated:

INSERT dbo.Guide (FirstName, LastName, Qualifications)
VALUES (‘Greg’, ‘Wilson’,

‘Rock Climbing’ + ‘, ‘ + ‘First Aid’)

The next select statement verifies Greg’s insert:

Select * FROM dbo.Guide

Result:

GuideID LastName FirstName Qualifications
-------- ---------- ----------- ----------------------------
1 Smith Dan Diver, Whitewater Rafting
2 Davis Jeff Marine Biologist, Diver
3 Commer Tammie NULL
4 Jones Lauren First Aid, Rescue/Extraction
5 Wilson Greg Rock Climbing, First Aid
(5 row(s) affected)

When the data to be inserted, usually in the form of variables sent from the user interface, are
known, inserting using the insert/values form is the best insert method. But this method
isn’t very dynamic. If data already exists in the database, the most efficient and flexible
method is using the insert/select form.

Inserting a Result Set from Select
Data may be moved and massaged from one result set into a table by means of the
insert/select statement. The real power of this method is that the select command can
pull data from nearly anywhere and reshape it to fit the current needs. It’s this flexibility the
insert/select statement exploits. Because select can return an infinite number of rows,
this form can insert an infinite number of rows. The syntax is as follows:

INSERT [INTO] owner.Table
SELECT columns
FROM data sources
[WHERE conditions]

For a comprehensive discussion of the select portion of this command, turn to Chapter 6,
“Retrieving Data with Select.”

As with the insert/values statement, the data columns must line up and the data types
must be valid. If the optional insert columns are ignored, every table column (except an
identity column) must be populated in the table order.

The following code sample uses the OBX Kites database. It selects all the guides from the
Cape Hatteras Adventures database and inserts them into the OBX Kites’ Contact table. The
name columns are pulled from the Guide table, while the company name is a string literal.
(Note that the Guide table is specified by means of a three-part name: database.
owner.table.)

Cross-
Reference

13549359 ch10.F 11/21/02 9:47 AM Page 307

308 Part II ✦ Developing SQL Server Databases

USE OBXKites
-- Using a fresh copy of OBXKites without population

INSERT dbo.Contact (FirstName, LastName, CompanyName)
SELECT FirstName, LastName, ‘Cape Hatteras Adventures’
FROM CHA2.dbo.Guide

To verify the insert, the following select statement reads the data from the Contact table:

SELECT FirstName AS First, LastName AS Last, CompanyName
FROM dbo.Contact

Result:

First Last CompanyName
--------- --------- ----------------------
Dan Smith Cape Hatteras Adv.
Jeff Davis Cape Hatteras Adv.
Tammie Commer Cape Hatteras Adv.
Lauren Jones Cape Hatteras Adv.
Greg Wilson Cape Hatteras Adv.

(5 row(s) affected)

The key to using the insert/select statement is selecting the correct result set. It’s a good
idea to run the select statement by itself to test the result set prior to executing the insert.
Measure twice, cut once.

Inserting the Result Set from a Stored Procedure
The insert/exec form of the insert operation pulls data from a stored procedure and
inserts them into a table. Behind these inserts are the full capabilities of T-SQL. The basic
function is the same as that of the other insert forms. The columns have to line up between
the insert columns and the stored-procedure result set. Here’s the basic syntax of the
insert/exec command:

INSERT [INTO] owner.Table [(Columns)]
EXEC StoredProcedure Parameters

Be careful though, because stored procedures can easily return multiple record sets. In which
case, the insert attempts to pull data from each of the result sets, and the columns from
every result set must line up with the insert columns.

For more about programming stored procedures, refer to Chapter 13, “Developing Stored
Procedures.”

The following code sample builds a stored procedure that returns the first and last names
of all guides from both the Cape Hatteras Adventures database and Microsoft’s Northwind
sample database. Next, the code creates a table as a place to insert the result sets. Once the
stored procedure and the receiving table are in place, the sample code performs the
insert/exec statement:

Use CHA2

CREATE PROC ListGuides
AS
SET NOCOUNT ON

Cross-
Reference

13549359 ch10.F 11/21/02 9:47 AM Page 308

309Chapter 10 ✦ Modifying Data

-- result set 1
SELECT FirstName, LastName
FROM dbo.Guide

-- result set 1
SELECT FirstName, LastName
FROM northwind.dbo.employees

RETURN

When the ListGuides stored procedure is executed, two result sets should be produced:

Exec ListGuides

Result:

FirstName LastName
----------------------- ------------------------
Dan Smith
Jeff Davis
Tammie Commer
Lauren Jones
Wilson Greg

FirstName LastName
---------- --------------------
Nancy Davolio
Andrew Fuller
Janet Leverling
Margaret Peacock
Steven Buchanan
Michael Suyama
Robert King
Laura Callahan
Anne Dodsworth

The following DDL command creates a table that matches the structure of the procedure’s
result sets:

CREATE TABLE dbo.GuideSample
(FirstName VARCHAR(50),
LastName VARCHAR(50))

With the situation properly setup, here’s the insert/exec command:

INSERT dbo.GuideSample (FirstName, LastName)
EXEC ListGuides

A select command can read the data and verify that 14 rows were inserted:

SELECT * FROM dbo.GuideSample

Result:

FirstName LastName
-------------------- --------------------
Dan Smith
Jeff Davis
Tammie Commer
Lauren Jones

13549359 ch10.F 11/21/02 9:47 AM Page 309

310 Part II ✦ Developing SQL Server Databases

Wilson Greg
Nancy Davolio
Andrew Fuller
Janet Leverling
Margaret Peacock
Steven Buchanan
Michael Suyama
Robert King
Laura Callahan
Anne Dodsworth

Insert/exec does require more work than insert/values or insert/select, but because
the stored procedure can contain complex logic, it’s the most powerful of the three.

The insert/exec and select/into forms will not insert data into table variables. Table
variables are covered in Chapter 12, “Programming with Transact SQL.”

Creating a Default Row
SQL includes a special form of the insert command that creates a new row with only default
values. The only parameter of the new row is that the table name, data, and column names
are neither required nor accepted. The syntax is very simple as this code sample shows:

INSERT owner.Table DEFAULT VALUES

I have never used this form of insert in any real-world applications. Nevertheless, if you
ever need to pre-populate a table with numerous default rows, insert default may be
of use.

Creating a Table While Inserting Data
The last method of inserting data is a variation on the select command. The into select
option will take the results of a select statement and create a new table containing the
results. Select/into is often used during data conversions and within utilities that must
dynamically work with a variety of source-table structures. The full syntax includes every
select option. Here’s an abbreviated syntax to highlight the function of the into option:

SELECT Columns
INTO NewTable
FROM DataSources
[WHERE conditions]

The data structure of the newly created table might be less of an exact replication of the
original table structure than expected because the new table structure is based on a
combination of the original table and the result set of the select statement. String lengths
and numerical digit lengths may change. If the select/into command is pulling data from
only one table and the select statement contains no data-type conversion functions, there’s
a good chance that the table columns and null settings will remain intact. However, keys,
constraints, and indexes will be lost.

Select/into is a bulk-logged operation, similar to bulk insert and bulk copy. Bulk-logged
operations may enable SQL Server to quickly move data into tables by skipping the transaction-
logging process (depending on the database’s recovery model). Therefore, the database

Caution

13549359 ch10.F 11/21/02 9:47 AM Page 310

311Chapter 10 ✦ Modifying Data

options and recovery model affect select/into and the other bulk-logged operations. If the
database-recovery model is other than full, the select/into operation will not be logged.

For more about bulk insert and bulk copy, refer to Chapter 17, “Transferring
Databases.” For details on recovery models refer to Chapter 26, “Recovery Planning.”

The following code sample demonstrates the select/into command as it creates the new
table GuideList by extracting data from Guide (some results abridged):

USE CHA2

-- sample code for setting the bulk-logged behavior
Alter DATABASE CHA2 SET RECOVERY FULL
SP_DBOPTION ‘CHA2’, ‘select into/bulkcopy’, ‘TRUE’

-- the select/into statement
SELECT *
INTO dbo.GuideList
FROM dbo.Guide
ORDER BY Lastname, FirstName

The sp_help command can display the structure of a table. Here it’s being used to verify the
structure that was created by the select/into command:

sp_help GuideList

Results (some columns abridged):

Name Owner Type Created_datetime
------------ -------- ------------ -----------------------
GuideList dbo user table 2001-08-01 16:30:02.937

Column_name Type Length Prec Scale Nullable
----------------- ---------- --------- ----- ----- --------
GuideID int 4 10 0 no
LastName varchar 50 no
FirstName varchar 50 no
Qualifications varchar 2048 yes
DateOfBirth datetime 8 yes
DateHire datetime 8 yes

Identity Seed Increment Not For Replication
--------------- -------- ----------- ----------------------
GuideID 1 1 0

RowGuidCol

No rowguidcol column defined.

Data_located_on_filegroup

Cross-
Reference

13549359 ch10.F 11/21/02 9:47 AM Page 311

312 Part II ✦ Developing SQL Server Databases

PRIMARY

The object does not have any indexes.

No constraints have been defined for this object.

No foreign keys reference this table.
No views with schema binding reference this table.

The following insert adds a new row to test the identity column that was created by the
select/into:

INSERT Guidelist (LastName, FirstName, Qualifications)
VALUES(‘Nielsen’, ‘Paul’, ‘trainer’)

To view the data that was inserted using the select/into command and the row that was
just added with the insert/values command, the following select statement extracts data
from the GuideList table:

SELECT GuideID, LastName, FirstName
FROM dbo.GuideList

Result:

GuideID LastName FirstName
----------- ------------ --------------------------
12 Nielsen Paul
7 Atlas Sue
11 Bistier Arnold
3 Commer Tammie
2 Davis Jeff
10 Fletcher Bill
5 Greg Wilson
4 Jones Lauren
1 Smith Dan

In this case, the select/into command retained the column lengths and null settings.
The identity column was also carried over to the new table, although this may not always be
the case. I recommend that you build tables manually, or at least carefully check the data
structures created by select/into.

Select/into can serve many useful functions, such as:

✦ If zero rows are selected from a table, select/into will create a new table with only
the data schema.

✦ If select reorders the columns, or includes the cast() function, the new table will
retain the data within a modified data schema.

✦ When combined with a union query, select/into can combine data from multiple
tables vertically. The into goes in the first select statement of a union query.

✦ Select/into is especially useful for de-normalizing tables. The select statement can
pull from multiple tables and create a new flat-file table.

✦ Select/into can create a copy of the inserted and deleted tables with a trigger, to
pass them to a stored procedure or dynamic SQL statement. This technique is one way
to build a dynamic audit trigger, and is demonstrated in Chapter 16, “Advanced Server-
Side Programming.”

13549359 ch10.F 11/21/02 9:47 AM Page 312

313Chapter 10 ✦ Modifying Data

One caveat concerning select/into and development style is that the select/into
statement should not replace the use of joins or views. When the new table is created it’s a
snapshot in time — a second copy of the data. Databases containing multiple copies of old
datasets are a sure sign of trouble. If you need to de-normalize data for ad-hoc analysis, or to
pass to a user, creating a view is likely a better alternative.

Updating Data
Without being overly dramatic, SQL’s update command is an incredibly powerful tool. What
used to take dozens of lines of code with multiple nested loops now takes a single statement.
What’s even cooler is that SQL is not a true command language; it’s a declarative language.
The SQL code is only describing to the Query Optimizer what you want to do. The Query
Optimizer then develops a cost-based optimized query-execution plan to accomplish the
task. It figures out which tables to fetch and in which order, how to merge the joins, and
which indexes to use. And it does this based on several factors, including the current
data-population statistics, the indexes available and how they relate to the data population
within the table, and table sizes. The Query Optimizer even considers the current CPU
performance, memory capacity, and hard-drive performance when designing the plan. Writing
code to perform the update row by row could never result in that level of optimization.

Updating a Single Table
The update command in SQL is straightforward and simple. The update command can
update one column of one row in a table, or every column in every row in the updated table,
but the optional from clause enables that table be a part of a complete complex data source
with all the power of the SQL select.

Here’s how the update command works:

UPDATE dbo.Table
SET column = value or expression or column,
column = value...

Caution

Developing a Data Style Guide

There are potential data troubles that go beyond data types, nullability, and check constraints.
Just as MS Word’s spelling checker and grammar checker can weed out the obvious errors but
also create poor (or libelous) literature, a database can only protect against gross logical errors.
Publishers use manuals of style and style guides for consistency. For example, should Microsoft
be referred to as MS, Microsoft Corp., or Microsoft Corporation in a book or article? The pub-
lisher’s chosen style manual provides the answer.

Databases can also benefit from a data style guide that details your organization’s preferences
about how data should be formatted. Do phone numbers include parentheses around the area
codes? Are phone extensions indicated by “x.” or “ext.”?

One way to begin developing a style guide is to spend some time just looking at the data and
observing the existing inconsistencies. Having done that, try to find consensus about a common
data style. Picking up a copy of The Chicago Manual of Style, 14th Edition will also provide some
ideas. There’s no magical right or wrong style — the goal is simply data consistency.

13549359 ch10.F 11/21/02 9:47 AM Page 313

314 Part II ✦ Developing SQL Server Databases

[FROM data sources]
[WHERE conditions]

The update command can update multiple rows, but only one table. The set keyword is used
to modify data in any column in the table to a new value. The new value can be a hard-coded
string literal, a variable, an expression, or even another column from the data sources listed
in the from portion of the SQL update statement.

For a comprehensive listing of expression possibilities see Chapter 6, “Retrieving Data With
Select.”

The where clause is vital to any update statement. Without it the entire table is updated. If a
where clause is present, every row not filtered out by the where clause is updated. Be sure to
check and double-check the where clause. Measure twice, cut once.

The following sample update resembles a typical real-life operation and will alter the value of
one column for a single row. The best way to perform a single-row update is to filter the
update operation by referencing the primary key.

USE CHA2

UPDATE dbo.Guide
SET Qualifications = ‘Spelunking, Cave Diving,

First Aid, Navigation’
Where GuideID = 6

The following select statement confirms the previous update command:

SELECT GuideID, LastName, Qualifications
FROM dbo.Guide
WHERE GuideID = 6

Result:

GuideID LastName Qualifications
----------- ---------------------- ---------------
6 Bistier Spelunking, Cave Diving,

First Aid, Navigation

Performing Global Search and Replaces
Cleaning up bad data is a common database developer task. Fortunately, SQL includes a
replace() function, which when combined with the update command can serve as a global
search and replace.

In this code sample, which references the Family sample database, every occurrence of “ll” in
the LastName column is updated to “qua”:

Use Family

Update Person
Set LastName = Replace(Lastname, ‘ll’, ‘qua’)

The following select statement examines the result of the replace() function:

Select lastname from Person

Cross-
Reference

13549359 ch10.F 11/21/02 9:47 AM Page 314

315Chapter 10 ✦ Modifying Data

Result (abbreviated):

lastname

Haquaoway
Haquaoway
Miquaer
Miquaer
Haquaoway
...

Referencing Multiple Table While Updating Data
A more powerful function of the SQL update command is setting a column to an expression
that can refer to the same column, other columns, or even other tables.

While expressions are certainly available within a single-table update, expressions often need
to reference data outside the updated table. The optional from clause enables joins between
the table being updated and other data sources. Only one table can be updated, but when the
table is joined to the corresponding rows from the joined tables the data from the other
columns are available within the update expressions.

One way to envision the from clause is to picture the joins merging all the tables into a new
super-wide result set. Then the rest of the SQL statement sees only that new result set. And
while that’s what’s happening in the from clause, the actual update operation is functioning
not on the new result set, but only on the declared update Table.

The update from syntax is a T-SQL extension and not standard ASNI SQL 92. If the
database will possibly be ported to another database platform in the future, use a subquery
to update the correct rows:

DELETE FROM Table1 a
WHERE EXISTS (SELECT *

FROM Table2 b
WHERE

EMPL_STATUS = ‘A’
AND
a.EMPLID = b.EMPLID

)

For a real-life example, all employees will soon be granted a generous across-the-board raise
(OK, I confess, it’s not real life) based on department, time in position, performance rating, and
time with the company. If the percentage for each department is stored in the Department
table, SQL can adjust the salary for every employee with a single update statement by joining
the Employee table with the Department table and pulling the Department raise factor from
the joined table. Assume the formula is as follows:

2 + (((Years in Company * .1) + (Months in Position * .02)
+ ((PerformanceFactor * .5) if over 2))
* Department RaiseFactor)

The sample code will set up the scenario by creating a couple of tables, populating them, and
testing the formula before the code finally performs the update:

Caution

13549359 ch10.F 11/21/02 9:47 AM Page 315

316 Part II ✦ Developing SQL Server Databases

CREATE TABLE dbo.Dept (
DeptID INT IDENTITY NOT NULL PRIMARY KEY NONCLUSTERED,
DeptName VARCHAR(50) NOT NULL,
RaiseFactor NUMERIC(4,2)
)

ON [Primary]
go

Create TABLE dbo.Employee (
EmployeeID INT IDENTITY NOT NULL PRIMARY KEY NONCLUSTERED,
DeptID INT FOREIGN KEY REFERENCES Dept,
LastName VARCHAR(50) NOT NULL,
FirstName VARCHAR(50) NOT NULL,
Salary INT,
PerformanceRating NUMERIC(4,2),
DateHire DATETIME,
DatePosition DATETIME
)

ON [Primary]
go
-- build the sample data
INSERT dbo.Dept VALUES (‘Engineering’, 1.2)
INSERT dbo.Dept VALUES (‘Sales’,.8)
INSERT dbo.Dept VALUES (‘IT’,2.5)
INSERT dbo.Dept VALUES (‘Manufacturing’,1.0)
go
INSERT dbo.Employee
VALUES(1,’Smith’,’Sam’,54000, 2.0,’1/1/97’,’4/1/2001’)

INSERT dbo.Employee
VALUES(1,’Nelson’,’Slim’,78000,1.5,’9/1/88’,’1/1/2000’)

INSERT dbo.Employee
VALUES(2,’Ball’,’Sally’,45000,3.5,’2/1/99’,’1/1/2001’)

INSERT dbo.Employee
VALUES(2,’Kelly’,’Jeff’,85000,2.4,’10/1/83’,’9/1/1998’)

INSERT dbo.Employee
VALUES(3,’Guelzow’,’Jo’,120000,4.0,’7/1/95’,’6/1/2001’)

INSERT dbo.Employee
VALUES(3,’Anderson’,’Missy’,95000,1.8,’2/1/99’,’9/1/97’)

INSERT dbo.Employee
VALUES(4,’Reagan’,’Frank’,75000,2.9,’4/1/00’,’4/1/2000’)

INSERT dbo.Employee
VALUES(4,’Adams’,’Hank’,34000,3.2,’9/1/98’,’9/1/1998’)

Assuming 5/1/2002 is the effective date of the raise, this query tests the sample data:

SELECT LastName, Salary,
DateDiff(yy, DateHire, ‘5/1/2002’) as YearsCo,
DateDiff(mm, DatePosition, ‘5/1/2002’) as MonthPosition,
CASE
WHEN Employee.PerformanceRating >= 2
THEN Employee.PerformanceRating

ELSE 0
END as Performance,
Dept.RaiseFactor AS ‘Dept’

13549359 ch10.F 11/21/02 9:47 AM Page 316

317Chapter 10 ✦ Modifying Data

FROM dbo.Employee
JOIN dbo.Dept
ON Employee.DeptID = Dept.DeptID

Result:

LastName Salary YearsCo MonthPosition Performance Dept
--------- ------- ------- ------------- ----------- ------
Smith 54000 5 13 2.00 1.20
Nelson 78000 14 28 .00 1.20
Ball 45000 3 16 3.50 .80
Kelly 85000 19 44 2.40 .80
Guelzow 120000 7 11 4.00 2.50
Anderson 95000 3 56 .00 2.50
Reagan 75000 2 25 2.90 1.00
Adams 34000 4 44 3.20 1.00

Based on the sample data, the following query tests the formula that calculates the raise:

SELECT LastName,
(2 + (((DateDiff(yy, DateHire, ‘5/1/2002’) * .1)
+ (DateDiff(mm, DatePosition, ‘5/1/2002’) * .02)
+ (CASE

WHEN Employee.PerformanceRating >= 2
THEN Employee.PerformanceRating

ELSE 0
END * .5))

* Dept.RaiseFactor))/100 as EmpRaise
FROM dbo.Employee
JOIN dbo.Dept
ON Employee.DeptID = Dept.DeptID

Result:

LastName EmpRaise
--------------------- ----------------------------
Smith .041120000
Nelson .043520000
Ball .038960000
Kelly .051840000
Guelzow .093000000
Anderson .055500000
Reagan .041500000
Adams .048800000

With the data in place and the formulas verified, the update command is ready to adjust the
salaries:

UPDATE Employee SET Salary = Salary * (1 +
(2 + (((DateDiff(yy, DateHire, ‘5/1/2002’) * .1)
+ (DateDiff(mm, DatePosition, ‘5/1/2002’) * .02)
+ (CASE

WHEN Employee.PerformanceRating >= 2
THEN Employee.PerformanceRating

ELSE 0
END * .5))

* Dept.RaiseFactor))/100)

13549359 ch10.F 11/21/02 9:47 AM Page 317

318 Part II ✦ Developing SQL Server Databases

FROM dbo.Employee
JOIN dbo.Dept
ON Employee.DeptID = Dept.DeptID

The next select statement views the fruits of the labor:

SELECT FirstName, LastName, Salary
FROM Employee

Result:

FirstName LastName Salary
----------- ----------------------- -----------
Sam Smith 56220
Slim Nelson 81394
Sally Ball 46753
Jeff Kelly 89406
Dave Guelzow 131160
Missy Anderson 100272
Frank Reagan 78112
Hank Adams 35659

The final step of the exercise is to clean up the sample tables:

DROP TABLE dbo.Employee
DROP TABLE dbo.Dept

This sample code pulls together techniques from many of the previous chapters: creating and
dropping tables, case expressions, joins, and date scalar functions, not to mention the
inserts and updates from this chapter. The previous example is long because it demonstrates
more than just the update statement. It also shows the typical process of developing a
complex update, which includes:

1. Checking the available data — The first select joins employee and dept, and lists all
the columns required for the formula.

2. Testing the formula — The second select is based on the initial select and assembles
the formula from the required rows. From this data, a couple of rows can be hand-tested
against the specs and the formula verified.

3. Performing the update — Once the formula is constructed and verified, the formula is
edited into an update statement and executed.

The SQL update command is powerful. I have replaced terribly complex record sets and
nested loops that were painfully slow and error-prone with update statements and creative
joins that worked well, and seen execution times reduced from minutes to a few seconds.
I cannot over-emphasize the importance of approaching the selection and updating of data in
terms of datasets instead of data rows.

Deleting Data
The delete command is dangerously simple. In its basic form it deletes all the rows from a
table, and because the delete command is a row-based operation it doesn’t require specifying
any column names. The first from is optional, as are the second from and the where conditions.
However, even though the where clause is optional, it is the primary subject of concern when
you’re using the delete command. Here’s an abbreviated syntax for the delete command:

13549359 ch10.F 11/21/02 9:47 AM Page 318

319Chapter 10 ✦ Modifying Data

DELETE FROM] owner.Table
[FROM data sources]
[WHERE condition(s)]

Notice that everything is optional except the actual delete command and the table name.
The following command would delete all data from the product table — no questions asked
and no second chances:

DELETE
FROM OBXKites.dbo.Product

SQL Server has no inherent “undo” command. Once a transaction is committed, that’s it.
That’s why the where clause is so important when you’re deleting.

Log Explorer by Lumigent is a transaction-log viewer that enables you to select and roll
back transactions. Using Log Explorer is a possible workaround for an accidental delete.
An evaluation copy of Log Explorer is on the book’s CD.

By far the most common use of the delete command is to delete a single row. The primary
key is usually the means of selecting the row:

USE OBXKites
DELETE FROM dbo.Product
WHERE ProductID = ‘DB8D8D60-76F4-46C3-90E6-A8648F63C0F0’

Referencing Multiple Tables While Deleting
The update command uses the from clause to join the updated table with other tables for
more flexible row selection. The delete command uses the exact same technique. What
makes it look confusing is that first optional from. To improve readability and consistency,
I recommend that you leave out the first from in your code.

For example, the following delete statement ignores the first from clause and uses the
second from clause to join Product with ProductCategory so the where clause can filter the
delete based on the ProductCategoryName. This query removed all videos from the
Product table:

DELETE Product
FROM dbo.Product
JOIN ProductCategory
ON Procduct.ProductCategoryID
= ProductCategory.ProductCategoryID

WHERE ProductcategoryName = ‘Video’

As with the update command’s from clause, the delete command’s second from clause
is no ANSI standard. If portability is important to your project, use a subquery to reference
additional tables.

Cascading Deletes
Referential integrity (RI) refers to the fact that no secondary row may point to a primary row
unless that primary row does in fact exist. This means that attempting to delete a primary
row will fail if a foreign-key value somewhere points to that primary row.

Caution

On the
CD-ROM

13549359 ch10.F 11/21/02 9:47 AM Page 319

320 Part II ✦ Developing SQL Server Databases

For more about referential integrity and when to use it, turn to Chapter 2, “Modeling the
Logical Database Schema.”

RI will block any delete operation that would violate it. The way around this is to first delete
the secondary rows that point to the primary row, and then delete the primary row. This
technique is called cascading the delete to the lower level. In large databases the cascade
might bounce down several levels before working its way back up to the original row being
deleted.

Implementing cascading deletes manually is a lot of work. Because foreign-key constraints are
checked before triggers, cascading-delete triggers don’t work with SQL Server Declared
Referential Integrity (DRI) via foreign keys. Therefore, not only will triggers have to handle
the cascading delete, but they will have to perform RI checks as well.

Fortunately, SQL Server 2000 offers cascading deletes as a function of the foreign key.
Cascading deletes may be enabled via Enterprise Manager (as shown in Figure 10-2) or
SQL code.

Figure 10-2: Setting foreign keys to cascade
delete in Enterprise Manager.

The sample script that creates the Cape Hatteras Adventures version 2 database
(CHA2_Create.sql) provides a good example of setting the cascade-delete option for
referential integrity. In this case, if either the event or the guide is deleted, the rows in the
event-guide many-to-many table are also deleted. The on delete cascade foreign-key
option is what actually specifies the cascade action:

CREATE TABLE dbo.Event_mm_Guide (
EventGuideID
INT IDENTITY NOT NULL PRIMARY KEY NONCLUSTERED,

EventID
INT NOT NULL

Cross-
Reference

13549359 ch10.F 11/21/02 9:48 AM Page 320

321Chapter 10 ✦ Modifying Data

FOREIGN KEY REFERENCES dbo.Event ON DELETE CASCADE,
GuideID
INT NOT NULL
FOREIGN KEY REFERENCES dbo.Guide ON DELETE CASCADE,

LastName
VARCHAR(50) NOT NULL,

)
ON [Primary]

As a caution, cascading deletes, or even referential integrity, are not for every relationship.
It depends on the permanence of the secondary row. If deleting the primary row makes the
secondary row moot or meaningless, then cascading the delete makes good sense. But if the
secondary row is still a valid row after the primary row is deleted, referential integrity and
cascading deletes would cause the database to break its representation of reality.

For a couple of examples of determining the usefulness of cascading delete from the Cape
Hatteras Adventures database, if a tour is deleted, all scheduled events for that tour become
meaningless, as are the many-to-many schedule tables between event and customer, and
between event and guide.

On the other hand, a tour must have a base camp, so referential integrity is required on the
Tour.BaseCampID foreign key. However, if a base camp is deleted, the tours originating from
that base camp might still be valid (if they can be rescheduled to another base camp),
so cascading a base-camp delete down to the tour is not a reasonable action. If RI is on and
cascading deletes are off, a base camp with tours cannot be deleted until all tours for that
base camp are either manually deleted or reassigned to other base camps.

Alternatives to Physically Deleting Data
Many developers choose to completely avoid deleting data. Instead they build systems to
remove the data from the user’s view while retaining them for safekeeping. This can be done
in several different ways:

✦ A logical-delete bit flag in the row may indicate that the row is deleted. This makes
deleting or restoring a single row a straightforward matter of setting or clearing a bit.
But because relational database involves multiple related tables, there’s more work to
it than that. All queries must check the logical-delete flag and filter out logically deleted
rows. In addition, since the rows still physically exist in SQL Server, and the SQL Server
referential-integrity system does not know about the logical-delete flag, custom
referential integrity and cascading of logical deletes might also be required, depending
on how far you want to take the logical-delete system. This method offers fast logical
deletes but can slow down selects. Cascading logical deletes can become very
complex, and restoring cascaded logical deletes can become a nightmare.

✦ Another alternative to physically deleting rows is to archive the deleted rows in a
second table or database. This method is best implemented by a stored procedure that
inserts the deleted rows into the archive location and then deletes them from the main
production database.

This method offers several advantages. Data is physically removed from the database
so there’s no need to artificially modify select queries. Using partitioned views,
or a federated database scheme makes archiving data easier by allowing queries to
automatically gather data from multiple databases. Physically removing the data lets
SQL Server referential integrity remain in effect. Also, the database is not burdened
with unnecessary data. Retrieving archived data remains relatively straightforward.
On the down side, using the archive method requires maintaining an archive location.

13549359 ch10.F 11/21/02 9:48 AM Page 321

322 Part II ✦ Developing SQL Server Databases

See Chapter 30, “Advanced Scalability,” for more on partitioned views and federated
databases. Chapter 31, “Analysis Services,” contains some strategies for data warehousing
archived data.

✦ The most complete alternative to deleting rows is using a full audit trail of all data
modifications. An audit trail is not only useful for viewing a history of updates, but can
be used for restoring deleted rows as well. Audit trails have their own cost in terms of
complexity, performance, and storage space.

Chapter 16, “Advanced Server-Side Programming,” explains how to build triggers that
perform cascading deletes, manage custom referential integrity, build audit trails, archive
data, and logically delete rows.

Potential Data-Modification Obstacles
Even assuming that the logic is correct and that the data-modification command is in fact
modifying the correct rows with the correct values, plenty can still go wrong. This section is a
survey of several types of potential problems and how to avoid them.

As Table 10-2 illustrates, insert and update operations face more obstacles than delete
operations because they are creating new data in the table that must pass multiple validation
rules. The delete operation only removes data and is therefore only faced with a few
possible obstacles.

Table 10-2: Potential Data Modification Obstacles

Potential Problem Insert Operation Update Operation Delete Operation

Data Type/Length X X

Primary Key X X

Foreign Key X X X

Unique Index X X

Not Null and No Default X X

Check Constraint X X

Instead of Trigger X X X

After Trigger X X X

Non-Updatable Views X X X

Views with check option X X

Security X X X

Data Type/Length Obstacles
Column data type/length may affect insert and update operations.

Cross-
Reference

Cross-
Reference

13549359 ch10.F 11/21/02 9:48 AM Page 322

323Chapter 10 ✦ Modifying Data

One the first checks the new data must pass is that of data type and data length. Often,
a data type error is caused by missing or extra quotes. SQL Server is particular about
implicit, or automatic, data-type conversion. Conversions that function automatically in other
programming languages often fail in SQL Server, as shown in the following code sample:

USE OBXKites
INSERT Price (ProductID, Price, EffectiveDate)

Values (‘DB8D8D60-76F4-46C3-90E6-A8648F63C0F0’,
‘15.00’, 6/25/2002)

Server: Msg 260, Level 16, State 1, Line 1
Disallowed implicit conversion from data type varchar
to data type money, table ‘OBXKites.dbo.Price’,
column ‘Price’.
Use the CONVERT function to run this query.

The problem with the preceding code is the quotes around the new price value, which SQL
Server doesn’t automatically convert from string to numeric. If this is the problem, using the
cast() or convert() function is the best means of handling the data

For more details about data types and tables refer to Chapter 5, “Implementing the Physical
Database Schema.” Data-type conversion and conversion scalar functions are discussed in
Chapter 6, “Retrieving Data with Select.”

Working with very large data objects such as ntext, text, or image columns can sometimes
present difficulties. If the object is less than 8,000 bytes in size then you can handle it as
standard data. However, larger data objects must often be retrieved or updated in smaller
units by the calling API interface. ADO, for example uses a getchunk method to retrieve a
portion of a BLOB (Binary Large Object).

Primary Key Obstacles
Primary keys may affect insert and update operations.

Primary keys, by definition, must be unique. Attempting to insert a primary key that’s already
in use will cause an error.

Technically speaking, updating a primary key to a value already in use will also cause an
error. However, if you are following good design practices the primary key is meaningless to
humans, and there should be no reason ever to update a primary key.

Updating a primary key may also break referential integrity, causing the update to fail. In this
case, however, it’s not a primary-key constraint that’s the obstacle, but the foreign-key
constraint that references the primary key.

For more about the design of primary keys refer to Chapter 2, “Modeling the Logical
Database Schema.” For details on creating primary keys refer to Chapter 5, “Implementing
the Physical Database Schema.”

One particular issue related to inserting is the creation of primary-key values for the new
rows. SQL Server provides two excellent means of generating primary keys: identity columns
and GUIDs. Each method has its pros and cons, and its rules for safe handling.

Identity columns are SQL Server–generated incrementing integers. SQL Server generates
them at the time of the insert and the SQL insert statement can’t interfere with that process
by supplying a value for the identity column.

Cross-
Reference

Cross-
Reference

13549359 ch10.F 11/21/02 9:48 AM Page 323

324 Part II ✦ Developing SQL Server Databases

The fact that identity columns refuse to accept data can be a serious issue if you’re inserting
existing data whose primary key is already referenced by secondary tables. In the Aesop’s
Fables sample database, for example, the primary keys are hard-coded into the insert/
value statements in the populate scripts, much as the primary keys are already known
during data conversions.

The solution is to use the identity_insert database option. When set on it temporarily
turns off the identity column and permits the insertion of data into an identity column. This
means that the insert has to explicitly provide the primary-key value. The identity_insert
option may only be set on for one table at a time within a database. The following SQL batch
uses the identity_insert when supplying the primary key:

USE CHA2

-- attempt to insert into an identity column
INSERT dbo.Guide (GuideID, FirstName, LastName)
VALUES (10, ‘Bill’, ‘Fletcher’)

Result:

Server: Msg 544, Level 16, State 1, Line 1
Cannot insert explicit value for identity column in table
‘Guide’ when IDENTITY_INSERT is set to OFF.

The next step in the batch sets the identity_insert option and attempt some more inserts:

SET IDENTITY_INSERT Guide On

INSERT Guide (GuideID, FirstName, LastName)
VALUES (10, ‘Bill’, ‘Mays’)

INSERT dbo.Guide (GuideID, FirstName, LastName)
VALUES (7, ‘Sue’, ‘Atlas’)

To see what value the identity column is now assigning, the following code re-enables the
identity column and inserts another row, and then selects the new data:

SET IDENTITY_INSERT Guide Off

INSERT Guide (FirstName, LastName)
VALUES (‘Arnold’, ‘Bistier’)

SELECT GuideID, FirstName, LastName
FROM dbo.Guide

Result:

GuideID FirstName LastName
----------- ------------- ------------------------
1 Dan Smith
2 Jeff Davis
3 Tammie Commer
4 Lauren Jones
5 Greg Wilson
10 Bill Mays
7 Sue Atlas
11 Arnold Bistier

13549359 ch10.F 11/21/02 9:48 AM Page 324

325Chapter 10 ✦ Modifying Data

As this code demonstrated, manually inserting a GuideID of “10” set the identity column next
value to “11.”

Another potential problem when working with identity columns is in determining the value of
the identity that was just created. Because the new identity value is created with SQL Server
at the time of the insert, the code causing the insert is unaware of the identity value. The
insert works fine, the problem occurs when the code inserts a row and then tries to display
the row on a user-interface grid within an application, because the code is unaware of the
new data’s database assigned primary key.

SQL Server provides three methods of determining the identity value.

✦ @@identity— This venerable global variable returns the last identity value generated
by SQL Server for any table, connection, or scope. If another insert takes place between
the time of your insert and the time when you check @@identity, @@identity will
return not your insert, but the last insert.

✦ scope_identity ()— New to SQL Server 2000, this system function returns the last
generated identity value within the scope of the calling batch or procedure. I recom-
mend using this method, as it is the safest way to determine the identity value you last
generated.

✦ ident_current (table)— Also new to SQL Server 2000, the ident_current ()
function returns the last identity value per table. While this option seems similar to
scope_identity(), ident_current() returns the identity value for the given table
regardless of inserts to any other tables that may have occurred. This prevents another
insert, buried deep within a trigger, from affecting the identity value returned by the
function.

Global unique identifiers (GUIDs) make excellent primary keys. With regard to the insertion
of new rows, the major difference between identity columns and GUIDs is that GUIDs are
generated by the SQL code or by a column default rather than automatically at the time of the
insert. This means that the developer has more control over the GUID creation. If a value is
inserted into a column with a default, it’s no problem: The inserted value is placed into the
new row. The default is only used when no value is provided by the insert statement. While
GUIDs are a good choice for other reasons as well, the ease of working with a GUID default is
certainly a good reason by itself.

For more about the design issues that pertain to primary keys, and for more about GUIDs
versus identity columns, see Chapter 5, “Implementing the Physical Database Schema.”

GUIDs are created by the newid() function. If the default of the primary key is set to NewID()
a new GUID is generated for any new row. In addition, the newid() function may be declared
within an insert/values list. The newid() function will even work as an expression in an
insert/select that selects multiple rows. Within stored procedures or front-end code the
function may be called and the GUID stored in a variable. The variable is then used in the
insert/values statement and inserted into the new row. Any of these options will work well,
and they may be combined within an application.

The advantage of predetermining the GUID in code and then sending it with the insert/
values command is that the program then already knows the primary key of the new row
and can continue working with it without having to figure out the primary key of the row it
just inserted. The flexibility of the GUID is that if the situation warrants predetermining the
GUID, that’s great, while if there’s no reason to predetermine the GUID, the default newid ()
works just as well.

Cross-
Reference

13549359 ch10.F 11/21/02 9:48 AM Page 325

326 Part II ✦ Developing SQL Server Databases

The following sample code demonstrates various methods of generating GUID primary keys
during the addition of new rows to the ProductCategory table in the OBXKites database.
The first query simply tests the newid() function:

USE OBXKites

Select NewID()

Result:

5CBB2800-5207-4323-A316-E963AACB6081

The next three queries insert GUID, each using a different method of generating the GUID:

-- GUID from Default (the columns default is NewID())
INSERT dbo.ProductCategory
(ProductCategoryID, ProductCategoryName)
VALUES (DEFAULT, ‘From Default’)

-- GUID from function
INSERT dbo.ProductCategory

(ProductCategoryID, ProductCategoryName)
VALUES (NewID(), ‘From Function’)

-- GUID in variable
DECLARE @NewGUID UniqueIdentifier
SET @NewGUID = NewID()

INSERT dbo.ProductCategory
(ProductCategoryID, ProductCategoryName)

VALUES (@NewGUID, ‘From Variable’)

To view the results of the previous three methods of inserting GUID, the following select
statement is filtered to those rows that are like “from %”:

SELECT ProductCategoryID, ProductCategoryName
FROM dbo.ProductCategory
WHERE ProductCategoryName LIKE ‘From %’

Result:

ProductCategoryID ProductCategoryName
------------------------------------ -----------------------
25894DA7-B5BB-435D-9540-6B9207C6CF8F From Default
393414DC-8611-4460-8FD3-4657E4B49373 From Function
FF868338-DF9A-4B8D-89B6-9C28293CA25F From Variable

This insert statement uses the newid() function to insert multiple GUIDs:

INSERT dbo.ProductCategory
(ProductCategoryID, ProductCategoryName)
Select NewID(), LastName
From CHA2.dbo.Guide

The following select statement retrieves the new GUIDs:

SELECT ProductCategoryID, ProductCategoryName
FROM dbo.ProductCategory

13549359 ch10.F 11/21/02 9:48 AM Page 326

327Chapter 10 ✦ Modifying Data

Result:

ProductCategoryID ProductCategoryName
------------------------------------ --------------------
1B2BBE15-B415-43ED-BCA2-293050B7EFE4 Kite
23FC5D45-8B60-4800-A505-D2F556F863C9 Accessory
3889671A-F2CD-4B79-8DCF-19F4F4703693 Video
...
5471F896-A414-432B-A579-0880757ED097 Fletcher
428F29B3-111B-4ECE-B6EB-E0913A9D34DC Atlas
E4B7D325-8122-48D7-A61B-A83E258D8729 Bistier

SQL Server provides the flexibility of two excellent candidates for primary key generation.
Whether the database relies on identity columns or GUIDs may be based on other factors.
Either way, there are multiple methods for inserting new rows. And you, as the SQL developer,
or DBA, are in control.

Foreign Key Obstacles
Foreign keys may affect insert, update, and delete operations.

A foreign key may cause block inserts, updates, and deletes. Inserting a new secondary
table row with a foreign key value that doesn’t match an existing primary key will cause the
secondary row insert to fail.

In the following insert example, the ProductCategoryID supplied does not exist in the
ProductCategory table. This causes the foreign-key constraint to block the insert
operation, as the error message indicates:

-- Foreign Key: Insert Obstacle
INSERT Product (ProductID, Code,

ProductCategoryID, ProductName)
VALUES (‘9562C1A5-4499-4626-BB33-E5E140ACD2AC’,
‘999’
‘DB8D8D60-76F4-46C3-90E6-A8648F63C0F0’,
‘Basic Box Kite 21”’)

Server: Msg 547, Level 16, State 1, Line 1
INSERT statement conflicted with COLUMN FOREIGN KEY
constraint ‘FK__Product__Product__7B905C75’.
The conflict occurred in database ‘OBXKites’,
table ‘ProductCategory’, column ‘ProductCategoryID’.
The statement has been terminated.

Note that since every GUID is unique, the GUIDs you will use on your system will be different.

Foreign key constraints can also block updates to either the primary or secondary table.
If the primary key is updated and a foreign key is pointed to that primary key, the update
will fail.

In the following sample code the update is blocked because the secondary table update is
trying to set the foreign key, ProductCategoryID, to a value that does not exist in the
ProductCategory table:

-- Foreign Key: Secondary table Update Obstacle
UPDATE Product
SET ProductCategoryID =

13549359 ch10.F 11/21/02 9:48 AM Page 327

328 Part II ✦ Developing SQL Server Databases

‘DB8D8D60-76F4-46C3-90E6-A8648F63C0F0’
WHERE ProductID = ‘67804443-7E7C-4769-A41C-3DD3CD3621D9’

Server: Msg 547, Level 16, State 1, Line 1
UPDATE statement conflicted with COLUMN FOREIGN KEY
Constraint ‘FK__Product__Product__7B905C75’.
The conflict occurred in database ‘OBXKites’,
table ‘ProductCategory’, column ‘ProductCategoryID’.
The statement has been terminated.

Updating a primary key to a new value, if foreign keys are pointing to it, has the same effect
as deleting a primary-table row with an existing secondary-table row referring to it. In both
cases the error is caused not by the primary key but by the foreign key referencing the
primary key.

In the following code the error is generated not by the ProductCategory table, even though
it’s the table being updated, but by the Product table. This is because the Product table has
the foreign key reference constraint and the row that will be violated if the primary key value
no longer exists:

-- Foreign Key: Primary table Update Obstacle
UPDATE ProductCategory
SET ProductCategoryID =
‘DB8D8D60-76F4-46C3-90E6-A8648F63C0F0’

WHERE ProductCategoryID =
‘1B2BBE15-B415-43ED-BCA2-293050B7EFE4’

Server: Msg 547, Level 16, State 1, Line 1
UPDATE statement conflicted with COLUMN REFERENCE constraint
‘FK__Product__Product__7B905C75’. The conflict occurred
in database ‘OBXKites’, table ‘Product’,
column ‘ProductCategoryID’.
The statement has been terminated.

For more about referential integrity in the design of foreign keys refer to Chapter 2,
“Modeling the Logical Database Schema.” For more about creating foreign keys refer to
Chapter 5, “Implementing the Physical Database Schema.”

Unique Index Obstacles
Unique indexes may affect insert and update operations.

If a column has a unique index (even if it’s not a key) attempting to insert a new value, or an
update to a new value that’s already in use, will fail.

Typically the entire transaction, including all the inserted or updated rows, will fail. However,
there’s an index option, ignore dup key, that will allow the transaction to succeed with only
a warning, and just skip any duplicate rows.

For more about creating unique indexes refer to Chapter 5, “Implementing the Physical
Database Schema.”

Cross-
Reference

Cross-
Reference

13549359 ch10.F 11/21/02 9:48 AM Page 328

329Chapter 10 ✦ Modifying Data

Null and Default Obstacles
Column nullability and defaults may affect insert and update operations.

An insert or update operation can send one of four possible values to a table column: data
values, null, default, or nothing at all. The table column can be configured with a default
value and nullability. Table 10-3 indicates the result of the operation, according to the column
configuration and the new value to be inserted or updated. For example, if the column
properties are set so that the column has a default and accept nulls (in the far-right column)
and the SQL insert or update sends a null the result is an error.

Table 10-3: Data Modifications, Defaults, and Nulls

Column Properties:

Column Default: no default no default has default

has default

Column Nullability: null not null null not null

SQL Sent: Result:

data data data data data

null null error null error

default null error default default

nothing sent null most common error default default

By far the most common error in the preceding table is submitting nothing when no default
exists and nulls are not permitted.

For more about creating defaults and null constraints refer to Chapter 5, “Implementing the
Physical Database Schema.” For more information about dealing with nulls when retrieving
data, see Chapter 6, “Retrieving Data with Select.”

Check Constraint Obstacles
Check constraints may affect insert and update operations.

Each table column may have multiple check constraints. These are fast Boolean operations
that determine if the update will pass or fail.

The following check constraint permits Dr. Johnson’s insert, but blocks Greg’s insert (note
that the check constraint is already applied to the database by the Create_CHA2.sql script):

USE CHA2
go
ALTER TABLE dbo.Guide ADD CONSTRAINT
CK_Guide_Age21 CHECK (DateDiff(yy,DateOfBirth, DateHire)
>= 21)

Cross-
Reference

13549359 ch10.F 11/21/02 9:48 AM Page 329

330 Part II ✦ Developing SQL Server Databases

The following query inserts Dr. Johnsons’ data. Since she is 26 years old, her row is accepted
by the check constraint:

INSERT Guide(lastName, FirstName, Qualifications, DateOfBirth,
DateHire)
VALUES (‘Johnson’, ‘Mary’,

‘E.R. Physician’, ‘1/14/71’, ‘6/1/97’)

Greg, on the other hand, is only 19, so his insert is rejected by the check constraint:

INSERT Guide (lastName, FirstName,
Qualifications, DateOfBirth, DateHire)

VALUES (‘Franklin’, ‘Greg’,
‘Guide’, ‘12/12/83’, ‘1/1/2002’)

Server: Msg 547, Level 16, State 1, Line 1
INSERT statement conflicted with TABLE CHECK constraint
‘CK_Guide_Age21’.
The conflict occurred in database ‘CHA2’, table ‘Guide’.
The statement has been terminated.

For more about creating check constraints, their benefits and limitations, refer to Chapter 5,
“Implementing the Physical Database Schema.”

Instead of Trigger Obstacles
Instead of triggers may affect insert, update, and delete operations.

Triggers are special stored procedures that are attached to a table and that fire when certain
data-modification operations hit that table. Two types of triggers exist: instead of and after.
They differ both in their timing and in how they handle the data-modification operation.

An instead of trigger always causes the insert, update, or delete operation to be
canceled. The SQL command submitted to SQL Server is discarded by the instead of
trigger; the code within the instead of trigger is executed instead of the submitted SQL
command, hence the name. The instead of trigger might be programmed to repeat the
requested operation so that it looks like it went through, or it could do something else
altogether.

The problem with the instead of trigger is that it reports back “one row affected” when in
fact nothing is written to database. There is no error warning because the instead of trigger
works properly; however, the operation doesn’t go through.

In the following code sample, the InsteadOfDemo trigger causes the insert operation to
disappear into thin air:

USE CHA2
go

CREATE TRIGGER InsteadOfDemo
ON Guide
INSTEAD OF INSERT
AS
Print ‘Instead of trigger demo’

Return

Cross-
Reference

13549359 ch10.F 11/21/02 9:48 AM Page 330

331Chapter 10 ✦ Modifying Data

With the instead of trigger in place, the following query inserts a test row:

INSERT Guide(lastName, FirstName,
Qualifications, DateOfBirth, DateHire)

VALUES (‘Jamison’, ‘Tom’,
‘Biologist, Adventurer’, ‘1/14/56’, ‘9/1/99’)

Result:

Instead of trigger demo
(1 row(s) affected)

The insert operation appears to have worked, but is the row in the table?

SELECT GuideID
FROM Guide
WHERE LastName = ‘Jamison’

Result:

GuideID

(0 row(s) affected)

Building triggers is explained in detail in Chapter 15, “Implementing Triggers.” The flow of
data-modification transactions and the timing of triggers are also discussed in Chapter 11,
“Transactional Integrity.”

Note that the sample code for this chapter on the CD drops the InsteadOfDemo trigger
before moving on.

After Trigger Obstacles
After triggers may affect insert, update, and delete operations.

After triggers are often used for complex data validation. These triggers can roll back, or
undo, the insert, update, or delete, if the code inside the trigger doesn’t like the operation
in question. The code can then do something else, or it can just fail the transaction. But if the
trigger doesn’t explicitly rollback the transaction, the data-modification operation will go
through as originally intended. Unlike instead of triggers, after triggers normally report
an error code if an operation is rolled back.

As the next chapter will discuss in greater detail, every DML command implicitly occurs
within a transaction even if no transaction begin command exists. The after trigger takes
place after the write but before the implicit commit, so the transaction is still open when the
after trigger is fired. Therefore, a transaction rollback command in the trigger will roll back
the command that fired the trigger.

This code sample creates the AfterDemo after trigger on the Guide table, which includes
raiserror and rollback transaction commands:

USE CHA2

CREATE TRIGGER AfterDemo
ON Guide
AFTER INSERT, UPDATE

Cross-
Reference

13549359 ch10.F 11/21/02 9:48 AM Page 331

332 Part II ✦ Developing SQL Server Databases

AS
Print ‘After Trigger Demo’
-- logic in a real trigger would decide what to do here
RAISERROR (‘Sample Error’, 16, 1)
ROLLBACK TRAN

Return

With the after trigger applied to the Guide table, the following insert will result:

INSERT Guide(lastName, FirstName,
Qualifications, DateOfBirth, DateHire)

VALUES (‘Harrison’, ‘Nancy’,
‘Pilot, Sky Diver, Hang Glider,
Emergency Paramedic’, ‘6/25/69’, ‘7/14/2000’)

Result:

After Trigger Demo
Server: Msg 50000, Level 16, State 1,

Procedure AfterDemo, Line 7
Sample Error

A select searching for Nancy Harrison would find no such row because the after trigger rolled
back the transaction.

For more information on after triggers, see Chapter 15, “Implementing Triggers.” Additional
trigger strategies are discussed in Chapter 16, “Advanced Server-Side Programming.”

Note that the sample code on the book’s CD for this chapter drops the AfterDemo trigger so
the code in the remainder of the chapter will function.

Non-Updateable View Obstacles
Non-updateable views may affect insert, update, and delete operations.

Several factors will cause a view to become non-updateable. The most common causes of
non-updateable views are aggregate functions (including distinct), group bys, and joins.
If the view includes other nested views, any nested view that is non-updateable will cause the
final view to be non-updateable as well.

The view vMedGuide, created in the following sample code, is non-updateable because the
distinct predicate eliminates duplicates making it impossible for SQL to be sure of which
underlying row should be updated:

CREATE VIEW dbo.vMedGuide
AS
SELECT DISTINCT GuideID, LastName, Qualifications
FROM dbo.Guide
WHERE Qualifications LIKE ‘%Aid%’
OR Qualifications LIKE ‘%medic%’
OR Qualifications LIKE ‘%Physician%’

To test the updateability of the view, the next query attempts to perform an update command
through the view:

UPDATE dbo.vMedGuide
SET Qualifications = ‘E.R. Physician, Diver’
WHERE GuideID = 1

Cross-
Reference

13549359 ch10.F 11/21/02 9:48 AM Page 332

333Chapter 10 ✦ Modifying Data

Result:

Server: Msg 4404, Level 16, State 1, Line 1
View or function ‘dbo.vMedGuide’ is not updatable
because the definition contains the DISTINCT clause.

For more about creating views, and a more complete list of the causes of non-updateable
views, refer to Chapter 9, “Creating Views.”

A related issue to non-updateable views involves updating calculated columns. Just like
non-updateable views, these will block updates to the column.

Views With-Check-Option Obstacles
Views with check option may affect insert, update operations.

Views can cause two specific problems, both related to the with check option. A special
situation called disappearing rows occurs when rows are returned from a view and then
updated such that they no longer meet the where clause’s requirements for the view. The
rows are still in the database but they are no longer visible in the view.

For more about disappearing rows, the with check option, and their implications for
security, refer to Chapter 9, “Creating Views.” SQL Server security roles are discussed in
Chapter 27, “Securing Databases.”

Adding the with check option to a view prohibits disappearing rows, but causes another
problem. A view that includes the with check option will apply the where-clause condition
to both data being retrieved through the view and data being inserted or updated through
the view. If the data being inserted or updated will not be retrievable through the view
after the insert or update of the operation, the with check option will cause the data-
modification operation to fail.

The following code sample modifies the previous view to add the with check option and
then attempts two updates. The first update passes the where clause requirements. The
second update would remove the rows from the result set returned by the view, so it fails.

ALTER VIEW dbo.vMedGuide
AS
SELECT GuideID, LastName, Qualifications
FROM dbo.Guide
WHERE Qualifications LIKE ‘%Aid%’
OR Qualifications LIKE ‘%medic%’
OR Qualifications LIKE ‘%Physician%’

WITH CHECK OPTION

The following queries test the views with check option. The first one will pass because the
qualifications includes “Physician,” but the second query will fail:

UPDATE dbo.vMedGuide
SET Qualifications = ‘E.R. Physician, Diver’
WHERE GuideID = 1

UPDATE dbo.vMedGuide
SET Qualifications = ‘Diver’
WHERE GuideID = 1

Cross-
Reference

Cross-
Reference

13549359 ch10.F 11/21/02 9:48 AM Page 333

334 Part II ✦ Developing SQL Server Databases

Server: Msg 550, Level 16, State 1, Line 1
The attempted insert or update failed because the target
view either specifies WITH CHECK OPTION or spans a view
that specifies WITH CHECK OPTION and one or more rows
resulting from the operation did not qualify
under the CHECK OPTION constraint.
The statement has been terminated.

Security Obstacles
Security may affect insert, update, and delete operations.

A number of security settings and roles will cause any operation to fail. Typically security is
not an issue during development; however, for production databases, security is often
paramount. Documenting the security settings and security roles will help you to solve
data-modification problems caused by security.

For more about security and roles, refer to Chapter 27, “Securing Databases.”

Every data-modification obstacle is easily within the SQL developer’s or DBA’s ability to sur-
mount. Understanding SQL Server and documenting the database, as well as being familiar
with the database schema, stored procedures, and triggers, will prevent most data-modification
problems.

Summary
Data retrieval and data modification are primary tasks of a database application. This chapter
examined the insert, update, and delete DML commands and how they may be blocked by
the database.

While this chapter detailed the syntax and use of the data-modification commands, the next
chapter studies transactional theory and SQL Server architecture to see how SQL Server
manages transactions and locks so that data-modification operations function properly.

✦ ✦ ✦

Cross-
Reference

13549359 ch10.F 11/21/02 9:48 AM Page 334

Transactional
Integrity

Every operation that involves data occurs within a transaction.
The way in which a database handles transactions is as critical

to the database industry as the aerodynamic curve of a wing is to the
aircraft industry. This chapter, more than any other in the book, is
about what makes SQL Server fly.

A gold heist can be a complicated task. But to illustrate transactions,
let me tell you a tale about a ring of gold thieves, their plan, and the
database transaction that might catch them.

The gold thief ring has cased the depository and they’ve learned that
the gold is tracked by a computer database. To get the gold they’re
planning to unplug the server during a gold transfer and then steal
the transferred gold. That way they figure that there won’t be a com-
puter trail to alert anyone to the fact that the gold is missing.

Next Thursday, one ton of gold bars is being moved from Vault A to
Vault 12. The gold bar inventory system will record the move as sub-
tracting gold from Vault A and then adding gold to Vault 12. The plan
is to unplug the SQL Server after the subtraction but before the addi-
tion, making it look as if the ton of gold bars isn’t even in the system.
Will the thieves get away with the gold? That depends on how well
the database developer understood transactional integrity. And, I
suppose, on whether the database developer is in on the heist.

This chapter explains the database theory behind transactions, how
SQL Server accomplishes transactional integrity, and how to get the
best performance while maintaining data integrity.

Transactional Basics
A transaction is a sequence of tasks that together constitute a logical
unit of work. All the tasks must complete or fail as a single unit. In the
gold heist example the inventory subtraction and addition must both
be written to the disk, or neither will be written to the disk.

In SQL Server, every DML operation is a transaction whether it has a
begin transaction or not. An insert command that inserts 25
rows is a logical unit of work. Each and every one of the 25 rows must
be updated. An update to even a single row operates within a transac-
tion so that the data, and all indexes, are updated or rolled back.

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The basics of
transactions and
transactional integrity

The transaction log and
why it’s important

SQL Server locks and
performance

Handling and
preventing deadlocks

Implementing optimistic
and pessimistic locking

✦ ✦ ✦ ✦

14549359 ch11.F 11/21/02 9:48 AM Page 335

336 Part II ✦ Developing SQL Server Databases

To wrap multiple commands within a single transaction, a little code is needed. Two
markers — one at the beginning of the transaction, and the other at its completion, at which
time the transaction is committed to disk — define the perimeter of a transaction. If the code
detects an error the transaction can be rolled back, or undone. The following three com-
mands appear simple, but a volume of sophistication is behind them:

✦ begin transaction

✦ commit transaction

✦ rollback transaction

The following example demonstrates a typical transaction. The sequence of work is wrapped
inside a begin transaction and a commit transaction. Each task in the sequence is fol-
lowed by basic error-handling code and aborts the transaction with a rollback transac-
tion command if a problem arises. If the first task (the subtraction) executes fine, but the
second task (the addition) fails, the rollback transaction will undo the first and second
tasks. The transaction log will even roll back the transaction if the plug is pulled halfway
through the transaction. This is how the gold bar–inventory system should handle the inven-
tory move:

BEGIN TRANSACTION
INSERT GoldInventory (InventoryID, Location, Quantity)
VALUES (101, ‘Vault A’, -2000)

IF @@error <> 0
BEGIN
ROLLBACK TRANSACTION
RAISERROR(‘There was an error’, 16, 1)
RETURN

END
INSERT GoldInventory (InventoryID, Location, Quantity)
VALUES (101, ‘Vault 12’, 2000)

IF @@error <> 0
BEGIN
ROLLBACK TRANSACTION
RAISERROR(‘There was an error’, 16, 1)
RETURN

END
COMMIT TRANSACTION

Program flow control (if, begin, end, return) and error handling (@@error and rais-
error) are explained in Chapter 12, “Programming with Transact SQL.”

Transactions can be nested, although as soon as one transaction is rolled back, all pending
transactions are rolled back as well. Attempting to commit or rollback a transaction if no
pending transactions exist will cause an error.

While SQL Server requires an explicit begin transaction to initiate a transaction, this
behavior can be modified so that every batch assumes a transaction. The following code
alone will not update the Nickname column in the CHA2 database:

USE CHA2
SET Implicit_Transactions ON

Cross-
Reference

14549359 ch11.F 11/21/02 9:48 AM Page 336

337Chapter 11 ✦ Transactional Integrity

UPDATE CUSTOMER
SET Nickname = ‘Nicky’
WHERE CustomerID = 10

Adding a commit transaction to the end of the batch commits the transaction and the
update actually takes place:

COMMIT TRANSACTION

Implicit transaction is the default behavior for Oracle, and the adjustment takes getting used
to for Oracle developers moving up to SQL Server.

It is also possible to declare a save point within the sequence of tasks and then roll back to
that save point only. However, I believe that this mixes program flow of control with transac-
tion handling. If an error makes it necessary to redo a task within the transaction, it’s cleaner
to handle the error with standard error handling than to jury-rig the transaction handling.

Transactional Integrity
Transactional integrity refers to the quality of a transaction as measured by its ACID proper-
ties. There are three types of problems that violate transactional integrity; dirty reads, non-
repeatable reads, and phantom rows. Solving these three problems involves enforcing various
levels of integrity or isolation between the transactions.

The ACID Properties
The quality of a database product is measured by its transactions’ adherence to the ACID
properties. ACID is an acronym for four interdependent properties — atomicity, consistency,
isolation, and durability. Much of the architecture of SQL Server is founded on these proper-
ties. Understanding the ACID properties of a transaction is a prerequisite for understanding
SQL Server.

The nemesis of transactional integrity is concurrency — multiple users simultaneously attempt-
ing to retrieve and modify data. Isolation is less of an issue in small databases, but in a pro-
duction database with thousands of users, concurrency competes with transactional integrity.
You must carefully balance the two, or either data integrity or performance will suffer.

SQL Server’s architecture meets all the transactional-integrity ACID properties, providing that
you as the developer understand them and develop the database to take advantage of SQL
Server’s capabilities, and that the DBA implements a sound recovery plan. A synergy exists
among SQL Server, the hardware, the database design, the code, the database-recovery plan,
and the database-maintenance plan. When the database developer and DBA cooperate to
properly implement all these components, the database performs well and transactional
integrity is high.

Atomicity
The transaction must be atomic, meaning all or nothing. At the end of the transaction either
all of the transaction is successful, or all of the transaction fails. If a partial transaction is writ-
ten to disk the atomic property is violated.

Note

14549359 ch11.F 11/21/02 9:48 AM Page 337

338 Part II ✦ Developing SQL Server Databases

Consistency
The transaction must preserve database consistency, which means that the database must
begin in a state of consistency and return to a state of consistency once the transaction is
complete. For the purposes of ACID, consistency means that every row and value must agree
with the reality being modeling, and every constraint must be enforced. If the order rows are
written to disk but the order detail rows are not written, the consistency between the Order
and OrderDetail tables is violated.

Isolation
Each transaction must be isolated or separated from the effects of other transactions.
Regardless of what any other transaction is doing, a transaction must be able to continue
with the exact same data sets it started with. Isolation is the fence between two transactions.
A proof of isolation is the ability to replay a serialized set of transactions on the same original
set of data and always receive the same end result.

For example, assume Joe is updating 100 rows. While Joe’s transaction is under way, Sue
deletes one of the rows Joe is working on. If the delete takes place, Joe’s transaction is not
sufficiently isolated from Sue’s transaction. This property is less critical in a single-user
database than in a multi-user database.

Durability
The durability of a transaction refers to its permanence regardless of system failure. Once a
transaction is committed it stays committed. The database product must be constructed so
that even if the data drive melts, the database can be restored up to the last transaction that
was committed a split second before the hard drive died.

Transactional Faults
The isolation between transactions can be less than perfect in one of three ways: dirty reads,
non-repeatable reads, and phantom rows. These transactional faults can potentially affect the
integrity of the transactions.

Dirty Reads
The most egregious fault is a transaction’s work being visible to other transactions before the
transaction even commits its changes. When a transaction can read another transaction’s
uncommitted updates, this is called a dirty read, illustrated in Figure 11-1.

To illustrate a dirty-read transactional fault, the following code represents a setup that uses
two transactions (transaction one is on the left, and transaction two is on the right). The sec-
ond transaction will see the first transaction’s update before that update is committed.

BEGIN TRANSACTION
SET TRANSACTION ISOLATION LEVEL
READ COMMITTED

USE CHA2

-- Transaction 1
USE CHA2
BEGIN TRANSACTION
UPDATE Customer
SET Nickname = ‘Transaction Fault’
WHERE CustomerID = 1

14549359 ch11.F 11/21/02 9:48 AM Page 338

339Chapter 11 ✦ Transactional Integrity

Figure 11-1: A dirty read occurs
when transaction two can read
uncommitted changes made by
transaction one.

In a separate Query Analyzer window, as shown in Figure 11-2, execute another transaction in
its own connection window. This transaction will set its isolation level to permit dirty reads.
(The isolation level must be set here if the dirty read is to be demonstrated. The isolation-
level command will be explained further in the next section.)

-- Transaction 2
SET TRANSACTION ISOLATION LEVEL
READ UNCOMMITTED

USE CHA2
SELECT Nickname
FROM Customer
WHERE CustomerID = 1

Result:

NickName

Transaction Fault

Transaction one isn’t done working with the dataset, but transaction two was able to read
“Transaction Fault.” That’s a violation of transactional integrity.

To finish the task, the first window still needs to commit the transaction:

-- Transaction 1
COMMIT TRANSACTION

t1

Update

Commit

t2

Select

Isolation

14549359 ch11.F 11/21/02 9:48 AM Page 339

340 Part II ✦ Developing SQL Server Databases

Figure 11-2: Opening two windows in Query Analyzer is the best way to experiment
with two transactions.

Non-Repeatable Reads
A non-repeatable read is similar to a dirty read, but a non-repeatable read occurs when a
transaction can see the committed updates from another transaction (Figure 11-3). True isola-
tion means that one transaction never affects another transaction. If the isolation is complete,
then no data changes from outside the transaction should be seen by the transaction.
Reading a row inside a transaction should produce the same results every time. If reading a
row twice results in different values, that’s a non-repeatable read type of transaction fault.

Figure 11-3: When transaction one’s committed
changes are seen by transaction two, that’s a non-
repeatable read transaction fault.

t1

Update

Commit

t2

Isolation

Select

14549359 ch11.F 11/21/02 9:48 AM Page 340

341Chapter 11 ✦ Transactional Integrity

The following sequence sets up two transactions. Transaction one updates the nickname and
commits the changes. Transaction two is able to read the row and sees the values from trans-
action one’s update. First, transaction two will check the initial value:

SET TRANSACTION ISOLATION LEVEL
READ COMMITTED

BEGIN TRANSACTION
USE CHA2
SELECT NickName
FROM Customer
WHERE CustomerID = 1

Result:

Nickname

Transaction Fault

-- Transaction 1
USE CHA2
BEGIN TRANSACTION
UPDATE Customer
SET Nickname = ‘Non-Repeatable Read’
WHERE CustomerID = 1

COMMIT TRANSACTION

With transaction one’s update committed, transaction two re-selects the same row:

-- Transaction 2
USE CHA2
SELECT Nickname
FROM Customer
WHERE CustomerID = 1

Result:

Nickname

Non-Repeatable Read

To complete the work, transaction two commits its changes:

COMMIT TRANSACTION

Sure enough, transaction two’s read was not repeatable. The second select reflected trans-
action one’s update.

Phantom Rows
The least severe transactional-integrity fault is a phantom row. Like a non-repeatable read, a
phantom row is when updates from another transaction affect not only the result set’s data
values, but causes the select to return a different set of rows, as shown in Figure 11-4.

14549359 ch11.F 11/21/02 9:48 AM Page 341

342 Part II ✦ Developing SQL Server Databases

Figure 11-4: When the rows
returned by a select are altered
by another transaction, the
phenomenon is called a
phantom row.

In the following code, transaction one will update a nickname to ‘Missy’ while transaction
two is selecting rows with that nickname value:

-- Transaction 2
BEGIN TRANSACTION
USE CHA2
SELECT CustomerID, LastName
FROM Customer
WHERE NickName = ‘Missy’

Result:

CustomerID LastName
---------- ----------------
2 Anderson

-- Transaction 1
USE CHA2
BEGIN TRANSACTION
UPDATE Customer
SET Nickname = ‘Missy’
WHERE CustomerID = 1

COMMIT TRANSACTION

If the isolation between the transactions is complete, transaction two’s result set will contain
the same row set as the previous select:

-- Transaction 2
USE CHA2
SELECT CustomerID, LastName
FROM Customer
WHERE Nickname = ‘Missy’

t1

Update

Commit

Isolation

Rows

t2

Select
Where

14549359 ch11.F 11/21/02 9:48 AM Page 342

343Chapter 11 ✦ Transactional Integrity

Result:

CustomerID LastName
---------- ----------------
1 Adams
2 Anderson

Adams is a phantom row because it appears for the first time in the second result set because
of a change in the data based on another transaction’s data modification.

The final line of code in this series closes transaction two’s transaction:

COMMIT TRANSACTION

Of these transactional faults, dirty reads are the most dangerous, while non-repeatable reads
are less so, and phantom rows are the least dangerous of all.

Isolation Levels
Databases deal with the three transactional faults by establishing isolation between transac-
tions. The level of isolation, or the height of the fence between transactions, can be adjusted
to control which transactional faults are permitted. The ANSI SQ-92 committee has specified
four isolation levels, listed in Table 11-1.

Table 11-1: ANSI SQL-92 Isolation Levels

Phantom Row
Dirty Read Non-Repeatable Read Seeing rows
Seeing another Seeing another selected by where
transaction’s transaction’s clause change as
non-committed committed a result of another

Isolation Level changes changes transaction

Read Uncommitted Possible Possible Possible
(least restrictive)

Read Committed
(SQL Server default; Prevented Possible Possible
moderately restrictive)

Repeatable Read Prevented Prevented Possible

Serializable Prevented Prevented Prevented
(most restrictive)

SQL Server implements isolation levels with locks. Since locks affect performance, there’s a
trade-off between tight transaction isolation and performance. SQL Server’s default isolation,
read committed, is a balance appropriate for most OLTP projects.

You can set the isolation level within a connection or batch. Alternately, you can declare the
isolation level for a single DML statement by using table-lock hints in the from clause.

14549359 ch11.F 11/21/02 9:48 AM Page 343

344 Part II ✦ Developing SQL Server Databases

Level 1 — Read Uncommitted
The least restrictive isolation level is read uncommitted, which doesn’t prevent any of the
transactional faults. It’s like having no fence at all because it provides no isolation between
transactions. Setting the isolation level to read uncommitted is the same as setting SQL
Server’s locks to no locks. This mode is best for reporting and data-reading applications.
Because this mode has just enough locks to prevent data corruption, but not enough to
handle row contention, it’s not very useful for databases whose data is updated regularly.

Level 2 — Read Committed
Read committed prevents the worst transactional fault, but doesn’t bog the system down with
excessive lock contention. For this reason, it’s the SQL Server default isolation level and an
ideal choice for most OTLP projects.

Level 3 — Repeatable Read
By preventing dirty reads and non-repeatable reads, the repeatable read isolation level pro-
vides an increase in transaction isolation without the extreme lock contention of serializable
isolation.

Level 4 — Serializable
This most restrictive isolation level prevents all transactional faults and passes the serialized-
transaction test mentioned in the definition of isolation. This mode is useful for databases for
which absolute transactional integrity is more important than performance. Banking,
accounting, and high-contention sales databases, such as the stock market, typically use seri-
alized isolation.

Using the serializable isolation level is the same as setting locks to hold locks, which holds
even share locks for the length of the transaction. While this setting provides absolute trans-
action isolation, it can cause serious lock contention and performance delays.

Transaction-Log Architecture
SQL Server’s design meets the transactional-integrity ACID properties, largely because of its
write-ahead transaction log. The write-ahead transaction log ensures the durability of every
transaction.

Transaction Log Sequence
Every data-modification operation goes through the same sequence, in which it writes first to
the transaction log and then to the data file. The following sections describe the 12 steps in a
transaction.

Database Beginning State
Before the transaction begins, the database is in a consistent state. All indexes are complete
and point to the correct row. The data meet all the enforced rules for data integrity. Every for-
eign key points to a valid primary key.

Some data pages are likely already cached in memory. Additional data pages or index pages
are copied into memory as needed.

14549359 ch11.F 11/21/02 9:48 AM Page 344

345Chapter 11 ✦ Transactional Integrity

1. The database is in a consistent state.

Data-Modification Command
The transaction is initiated by a submitted query, batch, or stored procedure, as shown in
Figure 11-5.

2. The code issues a begin transaction command. Even if the DML command is a
stand-alone command without a begin transaction and commit transaction, it is
still handled as a transaction.

Figure 11-5:The SQL DML commands are performed
in memory as part of a transaction.

3. The code issues a single DML insert, update, or delete command, or a series of
them.

To give you an example of the transaction log in action, the following code initiates a
transaction and then submits two update commands:

BEGIN TRANSACTION

UPDATE Product
SET ProductDescription = ‘Transaction Log Test A’,

DiscontinueDate = ‘12/31/2003’
WHERE Code = ‘1001’

UPDATE Product
SET ProductDescription = ‘Transaction Log Test B’,

DiscontinueDate = ‘4/1/2003’
WHERE Code = ‘1002’

4. The query-optimization plan is either generated or pulled from memory. Any required
locks are applied and the data modifications, including index updates, page splits, and
any other required system operation, are performed in memory.

Data Pages
In

RAM

T Update

Data File

T-Log

Delete
Insert

6) Confirm

5) Write
Ahead

1) Begin in
Consistent State

4) Write to
Data Page

Update Confirmed

2) Begin Tran

3) Update

SQL Update

14549359 ch11.F 11/21/02 9:48 AM Page 345

346 Part II ✦ Developing SQL Server Databases

Transaction Log Recorded
The most important feature of the transaction log is that all data modifications are written to
it and confirmed prior to being written to the data file, as shown in Figure 11-6.

5. The data modifications are written to the transaction log.

SQL Server 2000 does not include a viewer for the transaction log, so Lumigent’s Log Explorer
fills the void. The begin transaction log entry is a system entry that is not visible in the
Lumigent Log Explorer unless the User Data Only option is unchecked and Begin XACT is
enabled in the Log Filter.

Figure 11-6: Using Lumigent’s Log Explorer to view the transaction log, the data
modifications are written to the log.

A 30-day trial version of Lumigent’s Log Explorer version 3.0 is on the CD included with this
book. I highly recommend loading it and observing the transaction log to better understand
SQL Server and how to deal with transactional issues.

6. The transaction-log DML entries are confirmed. This ensures that the log entries are in
fact written to the transaction log.

The write-ahead nature of the transaction log is what makes it critical that the transaction log
be stored on a different disk subsystem from the data file. If they are stored separately and
either disk subsystem fails, the database will still be intact and you will be able to recover it
to the split second before the failure. But if they are on the same drive, a drive failure will
require you to restore from the last backup.

On the
CD-ROM

14549359 ch11.F 11/21/02 9:48 AM Page 346

347Chapter 11 ✦ Transactional Integrity

Transaction Commit
When the sequence of tasks is complete, the commit transaction closes the transaction.
Even this task is written to the transaction log, as shown in Figure 11-7.

Figure 11-7: The commit
transaction command
launches another insert into
the transaction log.

7. The code closes the transaction:

COMMIT TRANSACTION

8. The commit entry is written to the transaction log (Figure 11-8).

Figure 11-8: The commit entry is written to the transaction log, just as the data
modifications were.

Data Pages
In

RAM

T Commit

Data File

T-Log

Delete
Insert

Commit

9) Confirm

8) Write
Ahead

1) Begin in
Consistent State

4) Write to
Data Page

2) Begin Tran

3) Update

7) Commit Tran

SQL Update

14549359 ch11.F 11/21/02 9:48 AM Page 347

348 Part II ✦ Developing SQL Server Databases

9. The transaction-log commit entry is confirmed.

Data-File Update
With the transaction safely stored in the transaction log, the last disk operation writes the
data modification to the data file, as shown in Figure 11-9.

Figure 11-9: As one of the last steps, the data
modification is written to the data file.

10. In the background, SQL Server writes the data modifications to the data file.

11. When SQL Server performs a checkpoint, it marks the oldest open transaction. All
older, committed transaction and therefore confirmed in the transaction log. The DBCC
OpenTran command reports the oldest open transaction.

Transaction Complete
The sequence comes full circle and returns the database to a consistent state.

12. The database finishes in a consistent state.

In ancient Hebrew poetry, an inclusion is a line or phrase that begins a poem and is repeated
at the close of the poem, providing a theme or wrapper for the poem. In the same way, the
beginning consistent state and ending consistent state together provide a stable wrapper, or
bookends, for the database transaction.

Transaction-Log Rollback
If the transaction is rolled back, the DML operations are reversed in memory, and a transac-
tion-abort entry is made in the log. Figure 11-10 shows the transaction-log entries made if a
rollback transaction command is substituted for the commit transaction of Step 7.

Transaction-Log Recovery
The primary benefit of a write-ahead transaction log is that it maintains the atomic transac-
tional property in the case of system failure.

Data Pages
In

RAM

T Data File Write

Data File

T-Log

Delete
Insert

Commit

9) Confirm

8) Write
Ahead

1) Begin in
Consistent State

11) Transaction is
marked as written

to the data file

10) Write when
it gets time,
tag in T-LOG 12) Finish in

Consistent State

4) Write to
Data Page

2) Begin Tran

3) Update

7) Commit Tran

SQL Update

14549359 ch11.F 11/21/02 9:48 AM Page 348

349Chapter 11 ✦ Transactional Integrity

Figure 11-10: The rollback transaction command initiates DML commands to undo the
transaction and closes the transaction with an xact abort entry in the log.

If SQL Server should cease functioning the transaction log is automatically examined once it
recovers, as follows:

✦ If any entries are in the log as DML operations but are not committed, they are rolled
back.

To test this feature you must be brave. Begin a transaction and unplug the server
before issuing a commit transaction. The server must be physically turned off.
Simply closing Query Analyzer won’t do it; Query Analyzer will request permission to
commit the pending transactions, and will roll back the transaction if permission isn’t
given. If SQL Server is shut down normally, it will wait for any pending tasks to com-
plete before stopping. You have to turn off the server to see the transaction log recover
from a failed transaction.

If you have followed the steps outlined previously, and you disable the system just
before Step 7, the transaction-log entries will be identical to those shown in Figure
11-10. SQL Server will recover from the crash very nicely and roll back the unfinished
transaction.

✦ If any entries are in the log as DML operations and committed but not marked as writ-
ten to the data file, they are written to the data file. This feature is nearly impossible to
demonstrate.

14549359 ch11.F 11/21/02 9:48 AM Page 349

350 Part II ✦ Developing SQL Server Databases

Understanding SQL Server Locking
SQL Server implements the isolation property with locks that protect a transaction’s rows
from being affected by another transaction. SQL Server locks are not just a “page lock on”
and “page lock off” scheme. These are serious locks. Before they can be controlled, they must
be understood.

Within SQL Server, you can informally picture two processes: a query processor and a lock
manager. The goal of the lock manager is to maintain transactional integrity as efficiently as
possible by creating and dropping locks.

Every lock has the following three properties:

✦ Granularity — The size of the lock.

✦ Mode — The type of lock.

✦ Duration — The isolation mode of the lock.

Locks are not impossible to view, but some tricks will make viewing the current set of locks
easier. Also, lock contention, or the compatibility of various locks to exist or block other
locks, can adversely affect performance if it’s not understood and controlled.

Lock Granularity
A size of the data controlled by a lock can vary from only a row to the entire database, as
shown in Table 11-2. Several combinations of locks, depending on the lock granularity, could
satisfy a locking requirement.

Table 11-2: Lock Granularity

Lock Size Description

Row Lock Locks a single row. This is the smallest lock available. SQL Server does not lock
columns.

Page Lock Locks a page, or 8KB. One or more rows may exist on a single page.

Extent Lock Locks eight pages, or 64KB.

Table Lock Locks the entire table.

Database Lock Locks the entire database. This lock is used primarily during schema changes.

Key Lock Locks nodes on an index.

The SQL Server lock manager tries to balance the size of the lock against the number of locks
for performance. The struggle is between concurrency (smaller locks allow more transactions
to access the data) and performance (fewer locks are faster). To achieve that balance, the
lock manager dynamically swaps one set of locks for another set. For example:

14549359 ch11.F 11/21/02 9:48 AM Page 350

351Chapter 11 ✦ Transactional Integrity

1. Twenty-five row locks might be escalated to a single page lock.

2. Then, if 25 more rows are locked that extend over four other pages on the same extent,
the page lock and 25 row locks might be escalated to an extent lock because more than
50 percent of the pages on the extent are affected.

3. If enough extents are affected, the entire set of locks might be escalated to a table lock.

Dynamic locking brings significant benefits for SQL Server developers:

✦ It automatically provides the best performance/concurrency balance without custom
programming.

✦ The performance of the database is preserved as the database grows and the lock man-
ager continually applies the appropriate lock granularity.

✦ Dynamic locking simplifies administration.

Lock Mode
Locks not only have granularity, or size, but also a mode that determines their purpose. SQL
Server has a rich set of lock modes (such as shared, update, exclusive). Failing to understand
lock modes will almost guarantee that you will develop a poorly performing database.

Lock Contention
The interaction and compatibility of the locks plays a vital role in SQL Server’s transactional
integrity and performance. Certain lock modes block other lock modes, as detailed in
Table 11-3.

Table 11-3: Lock Compatibility

T2 Requests:

T1 has: IS S U IX SIX X

Intent shared (IS) Yes Yes Yes Yes Yes Yes

Shared (S) Yes Yes Yes No No No

Update (U) Yes Yes No No No No

Intent exclusive (IX) Yes No No Yes No No

Shared with intent exclusive (SIX) Yes No No No No No

Exclusive (X) No No No No No No

14549359 ch11.F 11/21/02 9:48 AM Page 351

352 Part II ✦ Developing SQL Server Databases

Shared Lock (S)
By far the most common and most abused lock, a shared lock (listed as an “S” in SQL Server)
is a simple “read lock.” If a transaction gets a shared lock it’s saying, “I’m looking at this data.”
Multiple transactions are typically allowed to view the same data, depending on the isolation
mode.

Be careful with shared locks. I believe that misused share locks are a common cause of
update-performance problems. Applications should grab the data in a way that doesn’t
hold the shared lock. This is one compelling reason to use stored procedures to retrieve data.

Exclusive Lock (X)
An exclusive lock means that the transaction is performing a write to the data. As the name
implies, an exclusive lock means that only one transaction may hold an exclusive lock at a
time, and that no transactions may view the data during the exclusive lock.

Update Lock (U)
An update lock can be confusing. It’s not applied while a transaction is performing an
update — that’s an exclusive lock. Instead, the update lock means that the transaction is get-
ting ready to perform an exclusive lock and is currently scanning the data to determine the
row(s) it wants for that lock. Think of the update lock as a shared lock that’s about to morph
into an exclusive lock.

To help prevent deadlocks (explained later in this chapter), only one transaction may hold an
update lock at a time.

Intent Locks
An intent lock is a yellow flag or a warning lock that alerts other transactions to the fact that
something more is going on. The primary purpose of an intent lock is to improve perfor-
mance. Because an intent lock is used for all types of locks and for all lock granularities, SQL
Server has many types of intent locks. The following is a sampling of the intent locks:

✦ Intent Shared Lock (IS)

✦ Shared with Intent Exclusive Lock (SIX)

✦ Intent Exclusive Lock (IX)

Intent locks serve to stake a claim for a shared or exclusive lock without actually being a
shared or exclusive lock. In doing so they solve two performance problems, hierarchical lock-
ing and permanent lock block.

Without intent locks, if transaction one holds a shared lock on a row, and transaction two
wants to grab an exclusive lock on the table, transaction two would need to check for table
locks, extent locks, page locks, row locks, and key locks.

Instead, SQL Server uses intent locks to propagate a lock to higher levels of the data’s hierar-
chical levels. So when transaction one gains a row lock, it also places an intent lock on the
row’s page and table.

The intent locks move the overhead from the checking transaction to the establishing trans-
action by allowing the transaction gaining the lock to place intent locks on the greater scope
of its lock. That one-time write of three locks potentially saves hundreds of searches later as
other transactions check for locks.

14549359 ch11.F 11/21/02 9:48 AM Page 352

353Chapter 11 ✦ Transactional Integrity

The intent locks also prevent a serious shared-lock contention problem — what I call “perma-
nent lock block.” As long as a transaction has a shared lock, another transaction can’t gain an
exclusive lock. What would happen if someone grabbed a shared lock every 5 seconds and
held it for 10 seconds while a transaction was waiting for an exclusive lock? The update
transaction could theoretically wait forever. However, once the transaction has an intent
exclusive lock (IX), no other transaction can grab a shared lock. The intent exclusive lock
isn’t a full exclusive lock, but it lays claim to gaining an exclusive lock in the future.

Schema Lock (Sch-M, Sch-S)
Schema locks protect the database schema. SQL Server will apply a schema stability (Sch-S)
lock during any query to prevent Data Definition Language (DDL) commands.

A schema modification lock (Sch-M) is applied only when SQL Server is adjusting the physical
schema. If SQL Server is in the middle of adding a column to a table, the schema lock will pre-
vent any other transactions from viewing or modifying the data during the schema-modifica-
tion operation.

Lock Duration
The third lock property, lock duration, is determined by the isolation level of the transactions
involved — the tighter the isolation, the longer the locks will be held. SQL Server implements
all four previously described transaction-isolation levels. An absolute level of isolation (serial-
ization) will create the strictest locks. At the other extreme, a low level of transaction isola-
tion (read uncommitted) will effectively turn off locks, as detailed in Table 11-4.

Table 11-4: Isolation Levels and Lock Duration

Isolation Level Share-Lock Duration Exclusive-Lock Duration

Read Uncommitted None. Only long enough to prevent physical
corruption; otherwise exclusive locks are
neither applied nor honored.

Read Committed Held while the transaction Held until transaction commit.
is reading the data.

Repeatable Read Held until the transaction Held until transaction commit.
is committed.

Serializable Held until transaction Held until transaction commit. The
commit. exclusive lock also uses a keylock (also called

a range lock) to prevent inserts.

Viewing Locks
Without the ability to see the lock, the various types of locks and their durations may seem
like pure theory. Fortunately, SQL Server is a relatively open environment, and it’s easy to
inspect the current locks.

14549359 ch11.F 11/21/02 9:48 AM Page 353

354 Part II ✦ Developing SQL Server Databases

With Enterprise Manager, the locks may be viewed in the current activity node under each
server, as shown in Figure 11-11.

Figure 11-11: Enterprise Manager displays a wealth of information about the current locks.

The first node under current activity lists the processes currently running in SQL Server.
Most processes are user connections, but some are system processes. The details available
for each process include application, wait time, wait type, wait resource, CPU, physical I/O,
memory usage, login time, last batch time, host, network library, network address, blocked
by, and blocking.

The second node lists the locks by process and reports the object locked, lock type, lock
mode, lock status, owner, index, and resource of each. The third node lists the same informa-
tion, but by object rather than by process.

Locks are very fluid — they change with nearly every operation. The Enterprise Manager view
of locks, however, is static. The information listed is only current as of the last refresh.

A system stored procedure, sp_lock, also lists the current locks. By default, Query Analyzer
has Ctrl+2 set to sp_lock for ready use. Unfortunately, sp_lock reports cryptic raw data
rather than useful information, as demonstrated in this sample execution of sp_lock:

sp_lock

Caution

14549359 ch11.F 11/21/02 9:48 AM Page 354

355Chapter 11 ✦ Transactional Integrity

Result:

spid dbid ObjId IndId Type Resource Mode Status
---- ---- -------- ------ ---- ------------- -------- ------
51 8 0 0 DB S GRANT
51 8 85575343 1 PAG 3:22 IX GRANT
51 1 85575343 0 TAB IS GRANT
51 8 85575343 0 TAB IX GRANT
51 8 85575343 1 KEY (530050d8f078) X GRANT
52 4 0 0 DB S GRANT
53 4 0 0 DB S GRANT
54 4 0 0 DB S GRANT
55 4 0 0 DB S GRANT
56 4 0 0 DB S GRANT
60 8 0 0 DB S GRANT

Because I like locks, I’ve written a stored procedure that grabs the information from sp_lock,
looks up the database, user, and object information, and presents a view more to my liking.
pGetLocks (in the /Utility directory on the book’s CD) reports the loginname, spid,
database, object, cmd, locksize, lockmode, blocked, and waittime.

EXEC pGetLocks

Result (abbreviated and formatted):

LoginName spid db Object Cmd LSize LMode Status
--------- ---- -------- ------- ------ ----- ----- ------
NOLI\Paul 60 OBXKites Contact SELECT TAB IS GRANT

Continued:

Blocked Waittime
------- --------
0 0

Controlling SQL Server Locking
If you’ve written manual locking schemes in other database languages to overcome their lock-
ing deficiencies (as I have), you may feel as if you still need to control the locks. Let me
assure you that the SQL Server lock manager can be trusted. Nevertheless, SQL Server
exposes several methods of controlling locks, which are detailed in this section.

Don’t apply lock hints or adjust the isolation level casually — trust the SQL Server lock man-
ager to balance concurrency and transaction integrity. Only after you’re positive that the
database schema is well tuned and the code is polished should you consider tweaking the
lock manager to solve a specific problem. When this is the case, setting select queries to
no lock solves most problems.

Setting the Isolation Level
The isolation level determines the duration of the share lock or exclusive lock for the connec-
tion. Setting the isolation level affects all queries and all tables for the duration of the connec-
tion, or until the isolation level is changed again. The following code sets a
tighter-than-default isolation level and prevents non-repeatable reads:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

14549359 ch11.F 11/21/02 9:48 AM Page 355

356 Part II ✦ Developing SQL Server Databases

The valid isolation levels are the following:

✦ read uncommitted

✦ read committed

✦ repeatable read

✦ serializable

The current isolation level may be verified with the database consistency checker (DBCC):

DBCC USEROPTIONS

Results (abbreviated):

Set Option Value
----------------- ------------------
isolation level repeatable read

The isolation levels may also be set on a query and table level by means of locking hints.

Using Locking Hints
Locking hints enable you to make minute adjustments in the locking strategy. While the isola-
tion level affects the entire connection, locking hints are specific to one table within one
query (Table 11-5). The with (locking hint) option is placed after the table in the from
clause of the query. You can specify multiple locking hints by separating them with commas.

Table 11-5: Locking Hints

Locking Hint Description

ReadUnCommitted Isolation level. Doesn’t apply or honor locks. Same as no lock.

ReadCommitted Isolation level. Uses the default transaction-isolation level.

RepeatableRead Isolation level. Holds share and exclusive locks until transaction commit.

Serializable Isolation level. Applies the serializable transaction isolation–level durations to
the table which holds the shared lock until the transaction is complete.

ReadPast Skips locked rows instead of waiting.

RowLock Forces row-level locks instead of page, extent, or table locks.

PagLock Forces the use of page locks instead of a table lock.

TabLock Automatically escalates row, page, or extent locks to the table-lock granularity.

NoLock Doesn’t apply or honor locks. Same as ReadUnCommitted.

TablockX Forces an exclusive lock on the table. This prevents any other transaction from
working with the table.

HoldLock Holds the share lock until the commit transaction. (Same as Serializable.)

Updlock Uses an update lock instead of a shared lock and holds the lock. This blocks any
other writes to the data between the initial read and a write operation.

XLock Holds an exclusive lock on the data until the transaction is committed.

14549359 ch11.F 11/21/02 9:48 AM Page 356

357Chapter 11 ✦ Transactional Integrity

The following query uses a locking hint in the from clause of an update query to prevent the
lock manager from escalating the granularity of the locks:

USE OBXKites
UPDATE Product
FROM Product WITH (RowLock)
SET ProductName = ProductName + ‘ Updated’

If a query includes subqueries, don’t forget that each query’s table references will generate
locks and can be controlled by locking hint.

Index-Level Locking Restrictions
Isolation levels and locking hints are applied from the connection and query perspective. The
only way to control locks from the table perspective is to restrict the granularity of locks on a
per-index basis. Using the sp_indexoption system stored procedure, rowlocks and/or page-
locks may be disabled for a particular index, as follows:

sp_indexoption
‘indexname’,
AllowRowlocks or AllowPagelocks,
1 or 0

This is useful for a couple of specific purposes. If a table frequently causes waiting because of
page locks, setting allowpagelocks to off will force rowlocks. The decreased scope of the
lock will improve concurrency. Also, if a table is seldom updated but frequently read, row-
and page-level locks are inappropriate. Allowing only table locks is suitable during the major-
ity of table accesses. For the infrequent update a table-exclusive lock is not a big issue.

Sp_indexoption is for fine-tuning the data schema; that’s why it’s on an index level. To
restrict the locks on a table’s primary key, use sp_help tablename to find the specific name
for the primary-key index.

The following commands configure the ProductCategory table as an infrequently updated
look-up table. First, sp_help will report the name of the primary key index:

sp_help ProductCategory

Result (abridged):

index index index
name description keys
----------------------------- ------------- ----------------
PK__ProductCategory__79A81403 nonclustered, ProductCategoryID

unique,
primary key
located
on PRIMARY

Having identified the actual name of the primary key, the sp_indexoption system stored
procedure can now set the index lock options:

EXEC sp_indexoption
‘ProductCategory.PK__ProductCategory__79A81403’,
‘AllowRowlocks’, FALSE

EXEC sp_indexoption
‘ProductCategory.PK__ProductCategory__79A81403’,
‘AllowPagelocks’, FALSE

14549359 ch11.F 11/21/02 9:48 AM Page 357

358 Part II ✦ Developing SQL Server Databases

Controlling Lock Timeouts
If a transaction is waiting for a lock, it will continue to wait until the lock is available. By
default no timeout exists — it can theoretically wait forever.

Fortunately, you can set the lock time using the set lock_timeout connection option. You
can set the option to a number of milliseconds, or set it to infinity (the default) by setting it to
-1. Setting the lock_timeout to 0 means that the transaction will instantly give up if any lock
contention occurs at all. The application will be very fast, and very ineffective.

The following query sets the lock timeout to two seconds (2,000 milliseconds):

SET Lock_Timeout 2000

When a transaction does time out while waiting to gain a lock, a 1222 error is raised.

I do recommend that you set a lock timeout in the connection. The length of the wait you
should specify depends on the typical performance of the database. I usually set a five-
second timeout.

Evaluating Database Concurrency Performance
It’s easy to build a database that doesn’t exhibit lock contention and concurrency issues
when tested with a handful of users. The real test is when several hundred users are all
updating orders.

Multi-user concurrency should be tested during the development process several times.
To quote the MCSE exam guide, “...don’t let the real test be your first test.”

Concurrency testing requires a concerted effort. At one level, it can involve everyone avail-
able running the same front-end form concurrently. A VB program that constantly simulates a
user viewing data and updating data is also useful. A good test is to run 20 instances of the
script that constantly pounds the database and then let the test crew use the application.
Performance monitor (covered in Chapter 28, “Advanced Performance”) can watch the num-
ber of locks.

Application Locks
SQL Server uses a very sophisticated locking scheme. Sometimes a process or a resource
other than data requires locking. For example, a procedure might need to run that would be
ill affected if another user started another instance of the same procedure.

Several years ago, I wrote a program that routed cables for nuclear power plant designs. After
the geometry of the plant (what’s where) was entered and tested, the design engineers entered
the cable-source equipment, destination equipment, and type of cable to be used. Once sev-
eral cables were entered, a procedure wormed each cable through the cable trays so that
cables were as short as possible. The procedure also considered cable failsafe routes and
separated incompatible cables. While I enjoyed writing that database, if multiple instances of
the worm procedure ran simultaneously, each instance attempted to route the cables and the
data became fouled. An application lock is the perfect solution to that type of problem.

14549359 ch11.F 11/21/02 9:48 AM Page 358

359Chapter 11 ✦ Transactional Integrity

Application locks open up the whole world of SQL Server locks for custom uses within appli-
cations. Instead of using data as a locked resource, application locks use any named user
resource declared in the sp_GetAppLock stored procedure.

Application locks must be obtained within a transaction. The lock mode (Shared, Update,
Exclusive, IntentExclusive, or IntentShared) may be declared. The return code indi-
cates whether or not the procedure was successful in obtaining the lock, as follows:

✦ 0— Lock was obtained normally.

✦ 1— Lock was obtained after another procedure released it.

✦ -1— Lock request failed (timeout).

✦ -2— Lock request failed (canceled).

✦ -3— Lock request failed (deadlock).

✦ -999— Lock request failed (other error).

The sp_ReleaseAppLock stored procedure releases the lock. The following code shows how
the application lock can be used in a batch or procedure:

DECLARE @ShareOK INT
EXEC @ShareOK = sp_GetAppLock

@Resource = ‘CableWorm’,
@LockMode = ‘Exclusive’

IF @ShareOK < 0
...Error handling code

... code ...

EXEC sp_ReleaseAppLock @Resource = ‘CableWorm’
Go

When the application locks are viewed using Enterprise Manager or sp_Lock the lock
appears as an “APP”-type lock. The following is an abbreviated listing of sp_lock executed at
the same time as the previous code:

Sp_Lock

Result:

spid dbid ObjId IndId Type Resource Mode Status
----- ----- ------ ------ ---- -------------- ----- ------
57 8 0 0 APP Cabl1f94c136 X GRANT

A couple of minor differences from the way application locks are handled by SQL Server are:

✦ Deadlocks are not automatically detected.

✦ If a transaction gets a lock several times, it will have to release that lock the same num-
ber of times.

14549359 ch11.F 11/21/02 9:48 AM Page 359

360 Part II ✦ Developing SQL Server Databases

Deadlocks
A deadlock is a special situation that occurs only when transactions with multiple tasks com-
pete for the same data resource. For example:

✦ Transaction one has a lock on data A and needs to lock data B to complete its
transaction.

and

✦ Transaction two has a lock on data B and needs to lock data A to complete its
transaction.

Each transaction is stuck waiting for the other to release its lock, and neither can complete
until the other does. Unless an outside force intercedes, or one of the transactions gives up
and quits, this situation could last until the end of time.

In earlier days a deadlock was a serious problem. Fortunately, SQL Server handles deadlocks
refreshingly well.

Creating a Deadlock
It’s easy to create a deadlock situation in SQL Server using two connections in Query
Analyzer, as illustrated in Figure 11-12. Transaction one and transaction two will simply try to
update the same rows but in the opposite order. Using a third window to run pGetLocks will
help you monitor the locking situation.

Figure 11-12: Creating a deadlock situation in Query Analyzer using two connections
tiled vertically.

14549359 ch11.F 11/21/02 9:48 AM Page 360

361Chapter 11 ✦ Transactional Integrity

To execute the code, you’ll need to do the following:

1. Create a second window in Query Analyzer.

2. Move the code in Step 2 to the second window.

3. In the first window, select the code in Step 1 and execute it by pressing F5.

4. In the second window, execute Step 2.

5. Back in the first window, execute Step 3.

6. After a short moment, SQL Server will detect the deadlock and automatically resolve it.

Here’s the code:

-- Transaction 1
-- Step 1
USE OBXKites
BEGIN TRANSACTION
UPDATE Contact
SET LastName = ‘Jorgenson’
WHERE ContactCode = ‘101’

Transaction one now has an exclusive lock on ContactCode “101.” Transaction two will gain
an exclusive lock on ProductCode “1001” and then also try to grab an exclusive lock on
ContactCode “101,” but transaction one already has it locked:

-- Transaction 2
-- Step 2
USE OBXKites
BEGIN TRANSACTION
UPDATE Product
SET ProductName
= ‘DeadLock Repair Kit’

WHERE ProductCode = ‘1001’
UPDATE Contact
SET FirstName = ‘Neals’
WHERE ContactCode = ‘101’

COMMIT TRANSACTION

It’s not a deadlock yet, because although transaction two is waiting for transaction one, trans-
action one is not waiting for transaction two. At this point, if transaction one finished its work
and issued a commit transaction, the data resource would be freed; transaction two could
get its lock on the contact row and be on its way as well.

The trouble begins when transaction one tries to update ProductCode “1001.” It can’t get an
exclusive lock because transaction two already has an exclusive lock:

-- Transaction 1
-- Step 3
UPDATE Product
SET ProductName

= ‘DeadLock Identification Tester’
WHERE ProductCode = ‘1001’

COMMIT TRANSACTION

14549359 ch11.F 11/21/02 9:48 AM Page 361

362 Part II ✦ Developing SQL Server Databases

Transaction one returns the following friendly error message in about two seconds:

Server: Msg 1205, Level 13,
State 50, Line 1
Transaction (Process ID 51) was
deadlocked on lock resources with
another process and has been chosen
as the deadlock victim. Rerun the
transaction.

Transaction two completes as if there’s no problem. Result:

(1 row(s) affected)
(1 row(s) affected)

Automatic Deadlock Detection
As the previous deadlock code demonstrated, SQL Server will automatically detect a dead-
lock situation by examining the blocking processes and rolling back the transaction that has
performed the least amount of work. A process within SQL Server is constantly checking for
cross-blocking locks. The deadlock-detection delay is typically instantaneous to two seconds.
The longest I’ve waited for a deadlock to be detected is about five seconds.

SQL Server does not always detect more complex deadlocks. A three-way deadlock occurs
when T1 is waiting for T2, which is waiting for T3, which is waiting for T1. Books Online
claims that SQL Server will recursively search the blocking processes until it detects a cycle.
However, in my experience, SQL Server only rarely detects a three-way deadlock because the
blocking report typically lists only one process as the blocking process. These situations will
wait forever if the lock timeout is set to the default (infinite), or time out waiting for the lock
if the lock timeout time has been set.

Handling Deadlocks
Once a deadlock occurs, the connection that’s selected as the deadlock victim will need to re-
perform the transaction again. Since the work will need to be redone, it’s good that the trans-
action that has completed the least amount of work is the transaction that has to go back to
the beginning and try again.

The error code 1205 will need to be trapped by the client application and the transaction
should be re-executed. If all goes well, users will not be aware that a deadlock occurred.

Instead of letting SQL Server decide which transaction will be the “deadlock victim,” a trans-
action can volunteer to serve as the deadlock victim. The following code inside a transaction
will inform SQL Server that the transaction should be rolled back in case of a deadlock:

SET DEADLOCK_PRIORITY LOW

Minimizing Deadlocks
Even though deadlocks can be detected, it’s better to avoid them altogether. The following
practices will help prevent deadlocks:

✦ Keep the transaction short and to the point. Any code that doesn’t have to be in the
transaction shouldn’t be in the transaction.

✦ Never code a transaction to depend on user input.

Caution

14549359 ch11.F 11/21/02 9:48 AM Page 362

363Chapter 11 ✦ Transactional Integrity

✦ Try to write batches and procedures so that they obtain locks in the same order — for
example, TableA, then TableB, then TableC. This way one procedure will wait for the
next, and a deadlock will be avoided.

✦ Plan the physical scheme to keep data that might be selected simultaneously close on
the data page by normalizing the schema and carefully selecting the clustered indexes.
Reducing the spread of the locks will help prevent lock escalation. Smaller locks will
help prevent lock contention.

✦ Don’t increase the isolation level unless it’s necessary. A stricter isolation level will
increase the duration of the lock.

Application Locking Design
Aside from SQL Server locks, another locking issue deserves to be addressed. How the front-
end application holds locks and deals with multi-user contention is important to the user’s
experience and to the integrity of the data.

Implementing Optimistic Locking
The two basic means of dealing with multi-user access are optimistic locking and pessimistic
locking. The one you use determines the coding methods of the application.

Optimistic locking assumes that no one else will attempt to change the data while a user is
working on the data in a form. Therefore, optimistic locking does not apply locks while a user
is working with data in the front-end application. The disadvantage of optimistic locking is
that it can result in lost updates.

The pessimistic (or “Murphy”) method takes a different approach. If anything can go wrong it
will. So while a user is working on some data, a pessimistic locking scheme locks those data.

While pessimistic locking may work in small workgroup applications on desktop databases,
large client/server applications require higher levels of concurrency. If SQL Server locks are
held while a user has data open in a VB or Access form, the application will be unreasonably
slow.

The best method is to implement an optimistic locking scheme using minimal SQL Server
locks as well as a method for preventing lost updates.

Lost Updates
A lost update occurs when two users edit the same row, complete their edits, and save the
data, and the second user’s update overwrites the first user’s update. For example:

1. Joe opens Product “1001,” 21-inch box kite, in the Visual Basic front-end application.
SQL Server applies a shared lock for a split second while retrieving the data for VB.

2. Sue also opens the Product “1001” using the front-end application.

3. Joe and Sue both make edits to the box-kite data. Joe rephrases the product descrip-
tion, and Sue fixes the product category.

4. Joe saves the row from VB to SQL Server. The update command replaces the old prod-
uct description with Joe’s new description.

14549359 ch11.F 11/21/02 9:48 AM Page 363

364 Part II ✦ Developing SQL Server Databases

5. Sue presses the “save and close” button and her data are sent to SQL Server in an
update statement. The product category is now fixed, but the old description was in
Sue’s form, so Joe’s new description was overwritten with the old description.

6. Joe discovers the error and complains to the IT vice president during the next round of
golf about the unreliability of that new SQL Server–based database.

Because lost updates only occur when two users edit the same row at the same time, the
problem might not occur for months. Nonetheless, it’s a flaw in the transactional integrity of
the database and it needs to be prevented.

Minimizing Lost Updates
If the application is going to use an optimistic locking scheme, try to minimize the chance
that a lost update can occur, as well as minimize the effects of a lost update, using the follow-
ing methods:

✦ Normalize the database so that it has many long, narrow tables. With fewer columns in
a row the chance of a lost update is reduced. For example, the OBXKites database has a
separate table for prices. A user can work on product pricing and not interfere with
another user working on other product data.

✦ If the update statement is being constructed by the front-end application, have it check
the controls and send an update for only those columns that are actually changed by
the user. This technique alone would prevent the lost update in the previous example
of Joe and Sue’s updates, and most lost updates in the real world. As an added benefit,
it reduces client/server traffic and the workload on SQL Server.

✦ If an optimistic locking scheme is not preventing lost updates, the application is using a
“he who writes last, writes best” scheme. Although lost updates may occur, a data-
audit trail can minimize the effect by exposing updates to the same row within minutes,
and tracking the data changes.

Building a data-audit trail is discussed in Chapter 16, “Advanced Server-Side Programming.”

Preventing Lost Updates
A stronger solution to the lost update problem than just minimizing the effect is to block lost
updates using the rowversion method. The rowversion data type, previously known as a
timestamp in earlier versions of SQL Server, automatically provides a new value every time
the row is updated. By comparing the rowversion value retrieved during the row select and
the rowversion value at the time of update, it’s trivial for code to detect a lost update.

The rowversion method can be used in select and update statements by adding the
rowversion value in the where clause of the update statement.

The following sequence demonstrates the rowversion technique using two user updates.
Both users begin by opening the 21-inch box kite in the front-end application. Both select
statements retrieve the RowVersion column and ProductName:

SELECT RowVersion, ProductName
FROM Product
WHERE ProductCode = ‘1001’

Cross-
Reference

14549359 ch11.F 11/21/02 9:48 AM Page 364

365Chapter 11 ✦ Transactional Integrity

Result:

RowVersion ProductName
------------------ --------------------------
0x0000000000000077 Basic Box Kite 21 inch

Both front-end applications can grab the data and populate the form. Joe edits the
ProductName to “Joe’s Update.” When Joe is ready to update the database, the “save and
close” button executes the following SQL statement.

UPDATE Product
SET ProductName = ‘Joe’’s Update’
WHERE ProductCode = ‘1001’
AND RowVersion = 0x0000000000000077

Once SQL Server has processed Joe’s update, it automatically updates the RowVersion value
as well. Checking the row again, Joe sees that his edit took effect:

SELECT RowVersion, ProductName
FROM Product
WHERE ProductCode = ‘1001’

Result:

RowVersion ProductName
------------------ --------------------------
0x00000000000000B9 Joe’s Update

If the update procedure checks to see if any rows were affected, it can detect that Joe’s edit
was accepted:

SELECT @@ROWCOUNT

Result:

1

Although the RowVersion columns’ value was changed, Sue’s front-end application isn’t
aware of the new value. When Sue attempts to save her edit, the update statement won’t find
any rows meeting that criterion:

UPDATE Product
SET ProductName = ‘Sue’’s Update’
WHERE ProductCode = ‘1001’
AND RowVersion = 0x0000000000000077

If the update procedure checks to see if any rows were affected, it can detect that Sue’s edit
was ignored:

SELECT @@ROWCOUNT

Result:

0

This method can also be incorporated into applications driven by stored procedures. The
fetch or get stored procedure returns the rowversion along with the rest of the data for the

14549359 ch11.F 11/21/02 9:48 AM Page 365

366 Part II ✦ Developing SQL Server Databases

row. When the VB application is ready to update and calls the update stored procedure, it
includes the rowversion as one of the required parameters. The update stored procedure
can then check the rowversion and raise an error if the two don’t match. If the method is
sophisticated, the stored procedure or the front-end application can check the audit trail to
see whether or not the columns updated would cause a lost update or report back the last
user in the error message.

Summary
A transaction is a logical unit of work. Although SQL Server can work well automatically using
the default locks, there are several means of manipulating and controlling the locks. To
develop a serious SQL Server application, your understanding of the ACID database princi-
ples, SQL Server’s transaction log, and locking will contribute to the quality, performance,
and reliability of the database.

The next chapter adds programming structure to the DML commands that have been used so
far, so that a series of commands can be controlled as a batch.

✦ ✦ ✦

14549359 ch11.F 11/21/02 9:48 AM Page 366

Programming with
Transact-SQL

Standard SQL Data Manipulation Language (DML) commands only
modify or return data. SQL DML lacks both the programming

structure to develop procedures and algorithms, and the database-
specific commands to control and tune the server. To compensate,
each full-featured database product must complement the SQL stan-
dard with some proprietary SQL language extension.

Transact-SQL, better known as T-SQL, is Microsoft’s implementation
of SQL plus its collection of extensions to SQL. The purpose of T-SQL
is to provide a set of procedural tools for the development of a trans-
actional database.

T-SQL is often thought of as synonymous with stored procedures. In
reality it’s much more than that. It may be employed in several differ-
ent ways within a SQL Server client/server application:

✦ T-SQL is used within expressions as part of DML commands
(insert, update, and delete) submitted by the client process.

✦ T-SQL is used within blocks of code submitted to SQL Server
from a client as a batch or script.

✦ T-SQL functions are used as expressions within check
constraints.

✦ T-SQL code is used within batches of code that have been
packaged within SQL Server as stored procedures, functions,
or triggers.

Truth be told, this book has been covering T-SQL programming since
Chapter 6, “Retrieving Data with Select.” The DML commands are the
heart of T-SQL. This chapter merely adds the programmatic elements
required to develop server-side procedural code. The language fea-
tures explained in this chapter are the foundation for developing
stored procedures, user-defined functions, and triggers.

Transact-SQL Fundamentals
T-SQL is designed to add structure to the handling of sets of data.
Because of this, it does not provide several language features that
Visual Basic and C need. If you do a lot of VB-style development,
you’ll find that T-SQL is in many ways the exact opposite of VB.

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The basics of T-SQL and
batches

Working with local
variables

Controlling the flow of
the batch

Exploring SQL Server
objects with code

Working with temporary
tables and table
variables

Building dynamic SQL
queries

Using recursive select
statements

When and how to use
cursors

Trapping and handling
errors

✦ ✦ ✦ ✦

15549359 ch12.F 11/21/02 9:48 AM Page 367

368 Part II ✦ Developing SQL Server Databases

T-SQL Batches
A query is a single SQL DML statement, and a batch is a collection of one or more T-SQL state-
ments. The entire collection is sent to SQL Server from the front-end application as a single
unit of code.

SQL Server parses the entire batch as a unit. Any syntax error will cause the entire batch to
fail, meaning that none of the batch will be executed. However, the parsing does not check
any object names or schemas because a schema may change by the time the statement is
executed.

Terminating a Batch
A SQL script file or a Query Analyzer window may contain multiple batches. If this is the case,
a batch-separator keyword terminates each batch. By default, the batch-separator keyword is
go. (Similar to how the Start button is used to shut down Windows.) The batch-separator key-
word must be the only keyword in the line. Any other characters, even a comment, on the
same line will neutralize the batch separator.

The batch separator is actually a function of the Query Analyzer, not SQL Server. It can be
modified in the Query Analyzer options, but I wouldn’t recommend creating a custom batch
separator (at least not for your friends).

Terminating a batch will kill all local variables, temporary tables, and cursors created by that
batch.

Switching Databases
The current database is indicated in the Query Analyzer toolbar and can be changed there. In
code the current database is selected with the use command. Use can be inserted within a
batch to specify the database from that point on.

It’s a good practice to explicitly use the correct database with the use command, rather than
to assume that the user will select the correct database.

DDL Commands
Certain T-SQL commands must be in their own batch, or must be separated from other com-
mands. As a rule, data definition language commands (create, alter, and delete) should be
in their own batch.

Executing Batches
A batch can be executed in several ways:

✦ All the batches in a SQL script may be executed by means of opening the .sql file with
Query Analyzer and pressing F5 or selecting Query ➪ Execute. I have altered my
Windows file settings so that double-clicking a .SQL file opens Query Analyzer.

✦ Selected T-SQL statements may be executed within Query Analyzer by means of high-
lighting those commands and pressing F5 or selecting Query ➪ Execute.

✦ An application can submit a T-SQL batch using ADO or ODBC for execution.

✦ A SQL script may be executed by means of running the OSQL command-line application
and passing the SQL script file as a parameter (as demonstrated in Figure 12-1). ISQL
can be found in the C:\Program Files\Microsoft SQL Server\80\Tools\Binn
directory. The basic syntax for executing isql is as follows:

15549359 ch12.F 11/21/02 9:48 AM Page 368

369Chapter 12 ✦ Programming with Transact-SQL

osql - Iscript_filename -Ooutput_file_name -Uuser_name
-Ppassword -Sservername

OSQL, which uses ODBC, replaces the older ISQL, which uses DB Library to communi-
cate with SQL Server.

Figure 12-1: Executing the CHA_Create.sql script using OSQL in the
command prompt.

Executing a Stored Procedure
When calling a stored procedure within a SQL batch the exec command executes the stored
procedure with a few special rules. In a sense, because line returns are meaningless to SQL
Server, the exec command is serving to terminate the previous T-SQL command.

If the stored-procedure call is the first line of a batch (and if it’s the only line then it’s also the
first line), the stored-procedure call doesn’t require the exec command. However, including
the exec command anyway won’t cause any problems and prevents an error if the code is cut
and pasted later.

The following two system-stored–procedure calls demonstrate the use of the exec command
within a batch:

sp_help
EXEC sp_help

This section covered the batch aspects of exec. More about creative ways to use exec can be
found in the “Dynamic SQL” section later in this chapter.

SQL Server is configurable on three levels: the server level, the database level, and the con-
nection, or batch, level. For more information about configuring the current connection, turn
to Chapter 23, “Configuring SQL Server.”

T-SQL Formatting
Throughout this book, T-SQL code has been formatted for readability, which means that T-SQL
formatting has been observed. This section specifies the details of formatting T-SQL code.

Line Continuation
T-SQL commands, by their nature, tend to be long. Some of the queries in the last chapter,
with multiple joins and subqueries, were over a page long. I like that T-SQL ignores spaces

Cross-
Reference

15549359 ch12.F 11/21/02 9:48 AM Page 369

370 Part II ✦ Developing SQL Server Databases

and end-of-line returns. This smart feature means that long lines can be continued without a
special line-continuation character, which makes T-SQL code significantly more readable.

Other SQL implementations, Access for example, require a semicolon to terminate a SQL
query. SQL Server will accept a semicolon, but does not require one.

Comments
T-SQL accepts both ANSI-standard comments and C-style comments within the same batch.

The ANSI-standard comment begins with two hyphens and concludes with an end-of-line:

-- This is an ANSI-style comment

ANSI-style comments may be embedded within a single SQL command:

Select FirstName, LastName -- selects the columns
FROM Persons -- the source table
Where LastName Like ‘Hal*’ -- the row restriction

Query Analyzer can apply or remove ANSI-style comments to all selected lines with the Edit ➪
Advanced ➪ Comment Out (Ctrl+Shift+C) and Edit ➪ Advanced ➪ Remove Comments
(Ctrl+Shift+R) menu commands.

C language–style comments begin with /* and conclude with */. These comments are useful
for commenting out a block of lines:

/*
Order table Insert Trigger
Paul Nielsen
ver 1.0 Sept 1, 1998
Logix: etc.
ver 1.1: Nov. 19, 1998
*/

The problem is that Query Analyzer will still read a go batch terminator within a C-style com-
ment if it’s the only word on the line, and that will terminate variables and cause other prob-
lems as well.

/*
go
*/

Result:

Server: Msg 113, Level 15, State 1, Line 1
Missing end comment mark ‘*/’.
Server: Msg 170, Level 15, State 1, Line 1
Line 1: Incorrect syntax near ‘*’.

This sure looks odd, but the go batch separator within the comment block terminates the
first batch. Query Analyzer therefore submits this three-line script as two distinct batches.
The first batch is only a begin-comment mark that is missing an end-comment mark. The sec-
ond batch begins with an end-comment mark that is seen as a syntax error by SQL Server.

Debugging Commands
Often the error won’t occur at the exact word that is reported as the error. The word reported
is simply how far SQL Server or the parser got before it detected the error. Usually the actual

15549359 ch12.F 11/21/02 9:48 AM Page 370

371Chapter 12 ✦ Programming with Transact-SQL

error is somewhere just before or after the reported error. Nevertheless, the error messages
are generally close.

The Query Analyzer will display the error and the line number of the error within the batch.
Double-clicking on the error message will place the cursor on the offending line.

SQL Server offers a few commands that aid in debugging T-SQL batches.

The print command sends a message without generating a result set. I find print messages
useful progress notifications. With Query Analyzer in grid mode, execute the following batch:

Select 3
Print 6

The result is a record set displayed in the grid with a single row containing “3.” The Messages
tab displays the following result:

(1 row(s) affected)
6

It is sometimes useful to slow down the code to check for locks or contention. The waitfor
command can pause the code for a specified time. When the following batch executes, the
output from the batch is displayed after a two-second pause:

Print ‘Beginning’
waitfor delay ‘00:00:02’
Print ‘Done’

Result:

Beginning
Done

Variables
Every language requires variables to temporarily store values in memory. T-SQL variables are
created with the declare command. The declare command is followed by the variable name
and data type. The available data types are identical to those used to create tables with the
addition of the table and the SQLvariant data types. Multiple comma-separated variables
can be declared with a single declare command.

Variable Default and Scope
The scope, or application and duration, of the variable is only the current batch. Newly
declared variables default to null and must be initialized before they are included in an
expression.

The following script creates two test variables and demonstrates their initial value and scope.
The entire script is a single execution, even though it’s technically two batches (separated by
a go), so the results of the three select statements appear at the conclusion of the script.

DECLARE @Test INT,
@TestTwo NVARCHAR(25)

SELECT @Test, @TestTwo

SET @Test = 1
SET @TestTwo = ‘a value’

15549359 ch12.F 11/21/02 9:48 AM Page 371

372 Part II ✦ Developing SQL Server Databases

SELECT @Test, @TestTwo
Go

SELECT @Test as BatchTwo, @TestTwo

Result of the entire script:

----------- -------------------------
NULL NULL

(1 row(s) affected)

value
----------- -------------------------
1 a value

(1 row(s) affected)

Server: Msg 137, Level 15, State 2, Line 2
Must declare the variable ‘@Test’.

The first select returned two null values. After the variables have been initialized they
properly return the sample values. When the batch concludes (due to the go terminator), so
do the variables. Error message 137 is the result of the final select statement.

Using the Set and Select Commands
Both the set command and the select command can assign the value of an expression to a
variable. The main difference between the two is that a select can retrieve data from a table,
subquery, or view and can include the other select clauses as well, while a set is limited to
retrieving data from expressions. Both set and select can include functions.

Of course, a select statement may retrieve multiple columns. Each column may be assigned
to a variable. If the select statement retrieves multiple rows, the values from the last row
will be stored in the variables. No error will be reported.

The following SQL batch creates two variables and initializes one of them. The select state-
ment will retrieve 32 rows, ordered by PersonID. The PersonID and the LastName of the last
person returned by the select will be stored in the variables:

Declare @TempID INT,
@TempLastName VARCHAR(25)

SET @TempID = 99
SELECT @TempID = PersonID,

@TempLastName = LastName
FROM Person
ORDER BY PersonID

SELECT @TempID, @TempLastName

Result:

----------- -------------------------
32 Campbell

15549359 ch12.F 11/21/02 9:48 AM Page 372

373Chapter 12 ✦ Programming with Transact-SQL

If no rows are returned from the select statement, the select does not affect the variables.
In the following query, there is no person with a PersonID of 100, so the select statement
does not affect the @TempID variable:

Declare @TempID INT,
@TempLastName VARCHAR(25)

SET @TempID = 99
SELECT @TempID = PersonID,

@TempLastName = LastName
FROM Person
WHERE PersonID = 100
ORDER BY PersonID

SELECT @TempID, @TempLastName

The final select statement reports the value of @TempID, and indeed, it’s still “99.” The first
select did not alter its value:

----------- -------------------------
99 NULL

Conditional Select
Because the select statement includes a where clause, the following syntax works well,
although those not familiar with it may be confused:

SELECT @Variable = expression WHERE BooleanExpression

The where clause functions as a conditional if statement. If the Boolean expression is true
the select takes place. If not, the select is not performed, and the @variable is not altered
in any way because the select command is not executed.

Using Variables Within SQL Queries
One of my favorite features of T-SQL is that variables may be used with SQL queries without
having to build any complex dynamic SQL strings to concatenate the variables into the code.
Dynamic SQL still has its place, but the single value can simply be modified with a variable.

Anywhere an expression can be used within a SQL query, a variable may be used in its place.
The following code demonstrates using a variable in a where clause:

USE OBXKites

DECLARE @ProductCode CHAR(10)
SET @ProductCode = ‘1001’

SELECT ProductName
FROM Product
WHERE Code = @ProductCode

Result:

Name
--
Basic Box Kite 21 inch

15549359 ch12.F 11/21/02 9:48 AM Page 373

374 Part II ✦ Developing SQL Server Databases

Procedural Flow
At first glance it would appear that T-SQL is weak in procedural-flow options. While it’s less
rich than some other languages, it suffices. The data-handling Boolean extensions — such as
exists, in, and case— offset the limitations of if and while.

If
This is your grandfather’s if. What’s odd about the T-SQL if command is that it determines
the execution of only the next single statement — one if, one command. Also, there’s no
then and no end if command to terminate the if block.

IF Condition
Statement

In the following script, the if condition should return a false, preventing the next command
from executing:

IF 1 = 0
PRINT ‘Line One’

PRINT ‘Line Two’

Result:

Line Two

Begin/End
An if command that can control only a single command is less than useful. However, a
begin/end block can make multiple commands appear to the if command as the next single
command:

IF Condition
Begin
Multiple lines

End

I confess. Early one dreary morning a couple of years ago, I spent an hour trying to debug a
stored procedure that always raised the same error no matter what I tried, only to realize that
I had omitted the begin and end, causing the raiserror to execute regardless of the actual
error condition. It’s an easy mistake to make.

If Exists()
While the if command may seem limited, the condition clause can include several powerful
SQL features similar to a where clause, such as if exists() and if ...in().

The if exists() structure uses the presence of any rows returned from a SQL select state-
ment as a condition. Because it looks for any row, the select statement should select all
columns (*). This method is faster then checking an @@rowount >0 condition, because the
total number of rows isn’t required. As soon as a single row satisfies the if exists(), the
query can move on.

The following example script uses the if exists() technique to process orders only if any
open orders exist:

USE OBXKITES
IF EXISTS(SELECT * FROM [ORDER] WHERE Closed = 0)

15549359 ch12.F 11/21/02 9:48 AM Page 374

375Chapter 12 ✦ Programming with Transact-SQL

BEGIN
Print ‘Process Orders’

END

Placing select * inside the exists() function is preferable to selecting the primary key for
two reasons. One, the * might be faster because SQL Server is free to select the fastest index.
Two, depending on the service pack level of SQL Server 2000, selecting the primary key will
fail if the table is using a GUID as the primary key.

If/Else
The optional else command defines code that is executed only when the if condition is
false. Like if, else controls only the next single command or begin/end block.

IF Condition
Single line or begin/end block of code

ELSE
Single line or begin/end block of code

While
The while command is used to loop through code while a condition is still true. Just like the
if command, the while command will determine only the execution of the following single
T-SQL command. To control a full block of commands the begin/end is used.

Some looping methods differ in the timing of the conditional test. The T-SQL while works in
the following order:

1. The while command tests the condition. If the condition is true while executes the fol-
lowing command or block of code; if not it skips the following command or block of
code, and moves on.

2. Once the following command or block of code is complete, flow of control is returned
to the while command.

The following short script demonstrates using the while command to perform a loop:

Declare @Temp Int
Set @Temp = 0

While @Temp <3
Begin
Print ‘tested condition’ + Str(@Temp)
Set @Temp = @Temp + 1

End

Result:

tested condition 0
tested condition 1
tested condition 2

The continue and break commands enhance the while command for more complex loops.
The continue immediately jumps back to the while command. The condition is tested as
normal.

15549359 ch12.F 11/21/02 9:48 AM Page 375

376 Part II ✦ Developing SQL Server Databases

The break command immediately exits the loop and continues with the script as if the while
condition were false. The following pseudo-code (not intended to actually run) demonstrates
the break command:

CREATE PROCEDURE MyLife()
AS
WHILE Not @@Eyes2blurry = 1
BEGIN
EXEC Eat
INSERT INTO Book(Words)
FROM Brain(Words)
WHERE Words
IN(‘Make sense’, ‘Good Code’, ‘Best Practice’)

IF @StarTrekEnterprise_Status = ‘On the tube’
BREAK

END

Goto
Before you associate the T-SQL goto command with bad memories of 1970s-style spaghetti-
BASIC, this goto command is limited to jumping to a label within the same batch or proce-
dure and is rarely used for anything other than jumping to an error handler at the close of the
batch or procedure.

The label is created by means of placing a colon after the label name:

LabelName:

The following code sample uses the goto command to branch to the errorhandler: label,
bypassing the ‘more code’:

GOTO ErrorHandler
Print ‘more code’
ErrorHandler:
Print ‘Logging the error’

Result:

Logging the error

If you explore the Microsoft-developed system stored procedures you’ll see a few develop-
ment styles, most of which use goto and labels to create a structured procedure.

Examining SQL Server with Code
One of the benefits of using SQL Server is the variety of interfaces with which to develop and
administer the database. Enterprise Manager is great for graphically exploring a database; T-SQL
code, while more complex, exposes even more detail within a programmer’s environment.

sp_help
Sp_help, and its 84 variations, return information regarding the server, the database, objects,
connections, and more. The basic sp_help lists the available objects in the current database
and the other variations provide detailed information about the various objects or settings.

15549359 ch12.F 11/21/02 9:48 AM Page 376

377Chapter 12 ✦ Programming with Transact-SQL

Adding an object name as a parameter to sp_help returns further appropriate information
about the object.

Information on the schema is also available from the system tables and the information-
schema views, as detailed in Chapter 3, “Installing and Configuring SQL Server.”

Global Variables
In most programming languages, a global variable is a variable with greater scope; not so in
T-SQL. Global variables should be called system variables. They are read-only windows into
the system status for the current connection and/or batch.

Global variables can’t be created. There’s a fixed set of 33 global variables, all beginning with
two @ signs (listed in Table 12-1). The most commonly used global variables are @@Error,
@@Identity, @@NestLevel, and @@ServerName.

Table 12-1: Global Variables

Global Variable Returns Scope

@@Connections The total number of attempted connections Server
since SQL Server started.

@@CPU_Busy The total amount of CPU time, in milliseconds, Server
since SQL Server started.

@@Cursor_Rows The number of rows returned by the last Connection
cursor to be opened.

@@DateFirst The day of the week currently set as the first Connection
day of the week; 1 represents Monday, 2
represents Tuesday, and so on. For example,
if Sunday is the first day of the week @DateFirst
returns a 7.

@@DBTS Current database-wide timestamp value. Database

@@Error The error value for the last T-SQL Connection
statement executed.

@@Fetch_Status The row status from the last cursor fetch Connection
command.

@@Identity The last identity value generated for the Connection
current connection.

@@Idle The total number of milliseconds SQL Server Server
has been idle since it was started.

@@IO_Busy The total number of milliseconds SQL Server Server
has been performing disk operations since
it was started.

@@LangID The language ID used by the current connection. Connection

@@Language The language, by name, used by the Connection
current connection.

Continued

Cross-
Reference

15549359 ch12.F 11/21/02 9:48 AM Page 377

378 Part II ✦ Developing SQL Server Databases

Table 12-1: (continued)

Global Variable Returns Scope

@@Lock_TimeOut The lock timeout setting for the current Connection
connection.

@@Max_Connections The current maximum number of concurrent Server
connections for SQL Server.

@@Max_Precision The decimal and numeric maximum precision Server
setting.

@@Nestlevel The current number of nested stored Connection
procedures.

@@Options A binary representation of all the current Connection
connection options.

@@Pack_Received The total number of network communication Server
packets received by SQL Server since it was started.

@@Pack_Sent The total number of network-communication Server
packets sent by SQL Server since it was started.

@@Packet_Errors The total number of network communication– Server
packets errors recognized by SQL Server since
it was started.

@@ProcID The stored procedure identifier for the current Connection
stored procedure. This can be used with
SysObjects to determine the name of the
current stored procedure, as follows:

SELECT Name

FROM SysObjects

WHERE id = @@ProcID

@@RemServer The name of the login server when running Connection
remote stored procedures.

@@RowCount The number of rows returned by the last Connection
T-SQL statement.

@@ServerName The name of the current server. Server

@@ServiceName SQL Server’s Windows service name. Server

@@SPID The current connection’s server-process Connection
identifier — the ID for the connection.

@@TextSize The current maximum size of BLOB data Connection
(text, ntext, or image)

@@TimeTicks The number of milliseconds per tick. Server

@@Total_Errors The total number of disk errors committed Server
by SQL Server since it was started.

15549359 ch12.F 11/21/02 9:48 AM Page 378

379Chapter 12 ✦ Programming with Transact-SQL

Global Variable Returns Scope

@@Total_Read The total number of disk reads by SQL Server Server
since it was started.

@@Total_Write The total number of disk reads by SQL Server Server
since it was started.

@@TranCount The number of active transactions for the Connection
current connection.

@@Version The SQL Server edition, version, and service pack. Server

Temporary Tables and Table Variables
Temporary tables and table variables play a different role from standard user tables. By their
temporary nature, these objects are useful as a vehicle for passing data between objects or as
a short-term scratch-pad table intended for very temporary work.

Local Temporary Tables
A temporary table is created the same way as a standard user-defined table, except the tem-
porary table must have a pound (hash sign) sign (#) preceding its name. Temporary tables
are actually created on the disk in tempdb.

CREATE TABLE #ProductTemp (
ProductID INT PRIMARY KEY
)

A temporary table has a short life. When the batch or stored procedure that created it ends,
the temporary table is deleted. If the table is created during an interactive session (such as a
Query Analyzer window), it survives only until the end of that session. Of course, a tempo-
rary table can also be normally dropped within the batch.

The scope of a temporary table is also limited. Only the connection that created the local
temporary table can see it. Even if a thousand users all create temporary tables with the
same name, each user will only see his or her own temporary table. The temporary table is
created in the tempdb with a unique name that combines the assigned table name and the
connection identifier. Most objects can have names up to 128 characters in length, but tempo-
rary tables are limited to 116, so that the last 12 characters can make the name unique. To
demonstrate the unique name, the following code creates a temporary table and then exam-
ines the name stored in sysobjects:

SELECT Name
FROM TempDB.dbo.SysObjects
WHERE Name Like ‘#Pro%’

Result (shortened to save space; the real value is 128 characters wide):

Name

#ProductTemp____________________________________00000000002D

Despite the long name in sysobjects, SQL queries still reference any temporary tables with
the original name.

15549359 ch12.F 11/21/02 9:48 AM Page 379

380 Part II ✦ Developing SQL Server Databases

Global Temporary Tables
Global temporary tables are similar to local temporary tables, but have a broader scope. All
users can reference a global temporary table, and the life of the table extends until the last
session accessing the table disconnects.

To create a global temporary table, begin the table name with two pound signs,
(##TableName). The following code sample tests to see if the global temporary table exists,
and creates one if it doesn’t:

IF NOT EXISTS(
SELECT * FROM Tempdb.dbo.Sysobjects
WHERE Name = ‘##TempWork’)

CREATE TABLE ##TempWork(
PK INT,
Col1 INT

)

When a temporary table is required, it’s likely being used for a work in progress. Another alterna-
tive is to simply create a standard user table in tempdb. Every time the SQL Server is restarted it
dumps and rebuilds tempdb, effectively clearing the alternative temporary worktable.

Table Variables
Table variables are similar to temporary tables, but offer the benefit of existing only in mem-
ory. Table variables have the same scope and life as a variable. They are only seen by the
batch, procedure, or function that creates them. They cease to exist when the batch, proce-
dure, or function concludes. Table variables do have a few limitations:

✦ Table variables may not be created by means of the select * into or insert into
@tablename exec table syntax.

✦ Table variables may not be created within functions.

✦ Table variables are limited in their allowable constraints: no foreign keys or check con-
straints are allowed. Primary keys, defaults, nulls, and unique constraints are OK.

✦ Table variables may not have any dependent objects, such as triggers or foreign keys.

Table variables are declared as variables rather than created with SQL DDL statements. When
a table variable is being referenced with a SQL query, the table is used as a normal table but
named as a variable. The following script must be executed as a single batch, or it will fail:

DECLARE @WorkTable TABLE (
PK INT PRIMARY KEY,
Col1 INT NOT NULL)

INSERT INTO @WorkTable (PK, Col1)
VALUES (1, 101)

SELECT PK, Col1
FROM @WorkTable

Result:

PK Col1
----------- -----------
1 101

15549359 ch12.F 11/21/02 9:48 AM Page 380

381Chapter 12 ✦ Programming with Transact-SQL

Dynamic SQL
The term dynamic SQL has a couple conflicting definitions. Some say it describes any SQL
query submitted by a client other than a stored procedure. It’s more accurate to say that it
describes any SQL DML statement assembled dynamically at runtime as a string and then
submitted.

Dynamic SQL is very useful for doing the following:

✦ Assembling a custom where clause from multiple possible query criteria.

✦ Assembling a custom from clause that includes only the tables and joins required to
meet the where conditions.

✦ Creating a dynamic order by clause sorting the data differently depending on the user
request.

Executing Dynamic SQL
The execute command, or exec for short, in effect creates a new instance of the batch as if
the code executed were a called stored procedure. While the execute command is normally
used to call a stored procedure, it can also be used to execute a T-SQL query or batch:

EXEC[UTE] (‘T-SQL batch)
WITH RECOMPILE

The with recompile option forces SQL Server to perform a fresh compile and not reuse any
existing query-execution plans. If the T-SQL string and its parameters greatly change, the
with recompile option will prevent a mismatched query-execution plan from performing
poorly. But if the T-SQL string is a similar query, the needless recompile process will slow the
execution. Most dynamic SQL procedures create extremely different SQL queries, so the with
recompile option is generally appropriate.

For example, the following exec command executes a simple select statement:

USE Family
EXEC (‘Select LastName from Person Where PersonID = 12’)

Result:

LastName

Halloway

A problem with the execute command is that the SQL string is executed using the security
context (login rights) of the user executing the stored procedure, rather than the user who
created the stored procedure. This is in sharp contrast to the normal way that a stored pro-
cedure uses the security context of its owner if the ownership chain is unbroken. This fact
alone can defeat the purpose of using dynamic SQL, depending on your security scheme.

sp_excecuteSQL
A newer method of executing dynamic SQL is to use the sp_executeSQL system stored pro-
cedure. It offers greater compatibility with complex SQL queries than the straight execute
command. In several situations I have found that the execute command would fail to execute
the dynamic SQL, but that sp_executeSQL worked flawlessly.

Caution

15549359 ch12.F 11/21/02 9:48 AM Page 381

382 Part II ✦ Developing SQL Server Databases

EXEC Sp_ExecuteSQL
‘T-SQL query’,
Parameters Definition,
Parameter, Parameter...

Concatenating strings is not allowed within ‘T-SQL query’, so parameters fill the need. The
query and the definition must be Unicode strings.

Parameters provide optimization. If the T-SQL query has the same parameters for each execu-
tion, these parameters can be passed to sp_executeSQL so that the SQL query plan can be
stored and future executions are optimized. The following example executes the same query
from the Person table in the Family database, but this example uses parameters. (The N
before the parameters is necessary because sp_executeSQL requires Unicode strings.)

EXEC sp_executeSQL
N’Select LastName

From Person
Where PersonID = @PersonSelect’,

N’@PersonSelect INT’,
@PersonSelect = 12

Result:

LastName

Halloway

Developing Dynamic SQL Code
Building a dynamic SQL string usually entails combining a select columns literal string with
a more fluid from clause and where clause.

Once the SQL string is complete, the SQL statement is executed by means of the exec com-
mand. The following example builds both a custom from and where clause based on the
user’s requirements.

Within the batch, the NeedsAnd bit variable tracks the need for an and separator between
where-clause conditions. If the product category is specified, the initial portion of the select
statement includes the required joins to fetch the Product Category table. The where clause
portion of the batch examines each possible user criterion. If the user has specified a crite-
rion for that column, the column, with its criterion, is added to the @SQLWhere string.

Real-world dynamic SQL sometimes includes dozens of complex options. This example uses
three possible columns for optional user criteria:

USE OBXKites

DECLARE
@SQL NVARCHAR(1024),
@SQLWhere NVARCHAR(1024),
@NeedsAnd BIT,

-- User Parameters
@ProductName VARCHAR(50),
@ProductCode VARCHAR(10),
@ProductCategory VARCHAR(50)

15549359 ch12.F 11/21/02 9:48 AM Page 382

383Chapter 12 ✦ Programming with Transact-SQL

-- Initialize Variables
SET @NeedsAnd = 0
SET @SQLWhere = ‘’

-- Simulate User’s Requirements
SET @ProductName = NULL
SET @ProductCode = 1001
SET @ProductCategory = NULL

-- Assembly Dynamic SQL

-- Set up initial SQL Select
IF @ProductCategory IS NULL
SET @SQL = ‘Select ProductName from Product’

ELSE
SET @SQL = ‘Select ProductName

from Product
Join ProductCategory
on Product.ProductCategoryID
= ProductCategory.ProductCategoryID’

-- Build the Dynamic Where Clause
IF @ProductName IS NOT NULL
BEGIN
SET @SQLWhere = ‘ProductName = ‘ + @ProductName
SET @NeedsAnd = 1

END

IF @ProductCode IS NOT NULL
BEGIN
IF @NeedsAnd = 1
SET @SQLWhere = @SQLWhere + ‘ and ‘

SET @SQLWhere = ‘Code = ‘ + @ProductCode
SET @NeedsAnd = 1

END

IF @ProductCategory IS NOT NULL
BEGIN
IF @NeedsAnd = 1
SET @SQLWhere = @SQLWhere + ‘ and ‘

SET @SQLWhere = ‘ProductCategory = ‘ + @ProductCategory
SET @NeedsAnd = 1

END

-- Assemble the select and the where portions of the dynamic SQL
IF @SQLWhere <> ‘’
SET @SQL = @SQL + ‘ where ‘ + @SQLWhere

Print @SQL
EXEC sp_executeSQL @SQL
WITH RECOMPILE

15549359 ch12.F 11/21/02 9:48 AM Page 383

384 Part II ✦ Developing SQL Server Databases

The results seen are both the printed text of the dynamic SQL and the data returned from the
execution of the dynamic SQL statement:

Select Name from Product where Code = 1001

Name
--
Basic Box Kite 21 inch

The dynamic audit-trail method uses a complex dynamic SQL method in its stored proce-
dure. The audit trail is covered in Chapter 16, “Advanced Server-Side Programming.”

Recursive Select Variables
A recursive select variable is a fascinating method that appends a variable to itself using a
select statement and a subquery. I’ve traced this method back to B. P. Margolin, and
applaud the creative use of the SQL select. This section demonstrates two real-world uses
of recursive select variables, but because it’s an unusual use of the select statement here it
is in its basic form:

SELECT @variable = @variable + d.column
FROM (Derived Table) as d

Each row from the derived table is appended to the variable, changing the vertical column in
the underlying table into a horizontal list. This makes some of the uses of a cursor obsolete.
For example, cursors are traditionally required for denormalizing a list or creating a dynamic
crosstab query, but a recursive select variable handles the job dramatically faster and with
less code.

Denormalizing a List
This type of data retrieval is quite common. Often a vertical list of values is better reported
as a single comma delimited horizontal list than as a subreport or another subheading level
several inches long. A short horizontal list is more readable and saves space.

The following example builds a list of event dates for the Outer Banks Lighthouses tour
offered by Cape Hatteras Adventures in the sample database:

USE CHA2
DECLARE
@EventDates VARCHAR(1024)

SET @EventDates = ‘’

SELECT @EventDates = @EventDates
+ CONVERT(VARCHAR(15), a.d,107) + ‘; ‘

FROM (select DateBegin as [d]
from Event
join Tour
on Event.TourID = Tour.TourID

WHERE Tour.[Name] = ‘Outer Banks Lighthouses’) as a

SELECT Left(@EventDates, Len(@EventDates)-1)
AS ‘Outer Banks Lighthouses Events’

Cross-
Reference

15549359 ch12.F 11/21/02 9:48 AM Page 384

385Chapter 12 ✦ Programming with Transact-SQL

Result:

Outer Banks Lighthouses Events

Feb 02, 2001; Jun 06, 2001; Jul 03, 2001; Aug 17, 2001;
Oct 03, 2001; Nov 16, 2001

Dynamic Crosstab Queries
Another complex database task is generating crosstabs. Chapter 7, “Merging Data Using
Relational Algebra,” discussed how to build crosstabs with fixed columns. Building a crosstab
with dynamic columns requires more than just a well-written query, because the X values, or
columns, are unknown before the query is executed. A dynamic crosstab, much like Microsoft
Access’s crosstab, has the benefits of flexibility and reduced maintenance.

There are several crosstab options, but very few dynamic-crosstab options. Traditionally cur-
sors have been used to brute-force through the data, or to assemble the columns so that
dynamic SQL can execute the dynamic crosstab query.

To set the goal of the following code sample, this first query is a copy of the case-style
crosstab used in Chapter 7 for a fixed-column crosstab:

SELECT Y,
SUM(Case X WHEN ‘A’ THEN Data ELSE 0 END) AS A,
SUM(Case X WHEN ‘B’ THEN Data ELSE 0 END) AS B,
SUM(Case X WHEN ‘C’ THEN Data ELSE 0 END) AS C,
SUM(Case X WHEN ‘D’ THEN Data ELSE 0 END) AS D,
SUM(Data) as Total
FROM RawData
GROUP BY Y
ORDER BY Y

The job of the dynamic query code is to assemble the fixed-code crosstab query without
specifying the X, or column, values. The subquery returns a list of X values. The recursive
select variable appends the values, along with the other text required to build the dynamic
crosstab query, to the @XColumns variable. The final set statement builds the completed
dynamic-SQL string:

USE TempDB

DECLARE @XColumns NVARCHAR(1024)
SET @XColumns = ‘’
SELECT @XColumns
= @XColumns
+ ‘ SUM(Case X

WHEN ‘’’ + [a].[Column] + ‘’’ THEN Data
ELSE 0
END) AS ‘

+ [a].[Column] + ‘,’
FROM
(SELECT DISTINCT X as [Column]
FROM RawData) as a

SET @XColumns = ‘SELECT Y,’ + @XColumns
+ ‘ SUM(Data) as Total FROM RawData GROUP BY Y ORDER BY Y’

EXEC sp_executesql @Xcolumns

15549359 ch12.F 11/21/02 9:48 AM Page 385

386 Part II ✦ Developing SQL Server Databases

Result:

Y A B C D Total
---- ---- --- --- --- -----
X 6 2 3 0 11
Y 12 5 0 56 73
Z 7 8 9 10 34

If dynamic crosstabs are important to your project, you should consider Steve Dassin’s free-
ware program, Relational Application Companion (RAC). It’s a very impressive crosstab-
generating stored procedure for SQL Server 2000. A trial copy is on the book’s CD.

Cursors
SQL is designed to handle sets of rows. However, some situations require that the code work
with individual rows. For these cases, SQL provides cursors to step through the set of rows
one row at a time.

Cursors are appropriate for very few situations:

✦ To step through a complex series of row-dependent processes.

That’s a short list. I used to include dynamic crosstabs, denormalizing lists, and stepping
through recursive relationships in my list of tasks that required cursors, but advanced
queries and the recursive select variable technique solves those problems significantly faster
than a cursor. I included them in this section anyway, as additional examples of real-world
tasks that can be solved with cursors.

To quote a genuine programming hero, Bill Vaughn, “Cursors are evil!” (VBits 97 Conference
at The Dolphin, DisneyWorld, Orlando, Florida).

In my informal testing, row-based cursors are 50–70 times slower than set-based SQL
selects. Never use a cursor unless it is absolutely required and you’ve proven after days of
trying and posting messages to the SQL forums that the job can’t be done with a set-based
query. In all my SQL programming days I’ve resorted to using a cursor in a production
database twice: once to traverse an object-class hierarchy, and once when allocating inven-
tory during an MRPII process. And, today I think I could do both with set-based queries.

Procedural programmers tend to think in terms of rows and loops. Unlearning this style of
programming and learning to solve problems using a set-based mindset is the biggest chal-
lenge to procedural programmers who become database developers.

A server-side T-SQL cursor is different from a client-side ADO cursor. The T-SQL cursor
occurs inside the server before any data is ever sent to the client. Client-side cursors are
used to scroll through the rows in a record set.

Cursor Basics
A cursor establishes a result set from a select statement and then fetches a single row at a
time. The five steps in the life of a cursor are:

1. Declaring the cursor establishes the select statement the cursor will pull data from.
Declaring the cursor doesn’t retrieve any data; it only sets up the select statement.
This is the one time that declare doesn’t require an ampersand:

On the
CD-ROM

15549359 ch12.F 11/21/02 9:48 AM Page 386

387Chapter 12 ✦ Programming with Transact-SQL

DECLARE CursorName CURSOR CursorOptions
FOR Select Statement

2. Opening the cursor retrieves the data and fills the cursor:

OPEN CursorName

3. Fetching moves to the next row and assigns the values from each column returned by
the cursor into a local variable. The variables must have been previously declared.

FETCH CursorName INTO @Variable1, @Variable2

Fetch can optionally move to an absolute position in the result set, or move forward or
backward n number of rows. However, I don’t recommend doing that much work with a
cursor.

Typically the batch will use a while loop to repeatedly fetch rows from the cursor until
the cursor doesn’t return any more rows. The top of the cursor loop examines the
@@Fetch_Status global variable to tell if the cursor is done:

WHILE @@Fetch_Status = 0

4. Closing the cursor releases the data but retains the select statement. The cursor
can be opened again at this point. (Close is the counterpart to open.)

Close CursorName

5. Deallocating the cursor releases the memory and removes the definitions of the cur-
sor. (Deallocate is the counterpart to create.)

DEALLOCATE CursorName

The next few examples will also help illustrate how to create a cursor.

Cursor Options
Cursors have a few additional features that extend their capability to manage data and
update data. These features include dynamic cursors, scrollable cursors, the option to pass
cursors as parameters, and the option to store cursors in variables. However, if you limit cur-
sors to reading the data and the one legitimate purpose previously discussed, the additional
options are of little value.

Cursors have too many options such as scrollable and updateable. SQL grew out of the
old ISAM databases and cursors are like the gnarly old roots that won’t go away. Many of the
cursor options are left over from SQL implementations that required the database devel-
oper to build a cursor to perform work or return a data set. Ignore them.

The complexity of cursors deceives developers into thinking, “Cursors must be good. This
looks just like an ADO record set. Look at all the cool options available to optimize the
cursor.”

For the sake of reducing locks and improving performance, I suggest using only read-only
fast-forward cursors. If the data requires updating, do it with an update statement inside the
procedure. If cursor options are required to perform the task, you’re probably overlooking a
better set-based approach.

Cursor Scope
The scope of the cursor determines whether the cursor lives only in the batch in which it
was created, or the scope of a cursor extends to any called procedures. The scope can be
configured as the cursor is declared:

15549359 ch12.F 11/21/02 9:48 AM Page 387

388 Part II ✦ Developing SQL Server Databases

DECLARE CursorName CURSOR Local or Global
FOR Select Statement

The default cursor scope is set at the database level with the cursor_default option:

ALTER DATABASE Family SET CURSOR_DEFAULT LOCAL

The current cursor scope is important to the execution of the procedure. To examine the cur-
rent default setting use the database property’s examine function:

SELECT DATABASEPROPERTYEX(‘Family’, ‘IsLocalCursorsDefault’)

Result:

1

Working with Cursors
Two global variables are essential for working with a cursor. @@cursor_rows will return the
number of rows in the cursor. If the cursor is populated asynchronously then @@cursor_rows
will return a negative number.

The @@Fetch_Status global variable reports the state of the cursor after the last fetch com-
mand. This information is useful to control the flow of the cursor as it reaches the end of the
result set. The possible @@Fetch_Status values indicate the following:

✦ 0 — The last fetch successfully retrieved a row.

✦ 1 — The last fetch reached the end of the result set.

✦ 2 — The last row fetched was not available; the row has been deleted.

Combining @@Fetch_Status with the while command builds a useful loop with which to
move through the rows.

Denormalizing a List with a Cursor
The first example of a cursor in action solves the Outer Banks Lighthouses tour date problem
that was previously solved with the recursive select variable. The cursor locates all dates for
the tours. The while loop repeatedly fetches the date and appends each fetched date to the
@EventDates local variable. The @SemiColon bit local variable determines whether a semi-
colon separator is required between the dates. At the end of the batch, the select statement
returns the denormalized list of dates.

USE CHA2
DECLARE
@EventDates VARCHAR(1024),
@EventDate DATETIME,
@SemiColon BIT

SET @Semicolon = 0
SET @EventDates = ‘’

DECLARE cEvent CURSOR FAST_FORWARD
FOR SELECT DateBegin

FROM Event
JOIN Tour
ON Event.TourID = Tour.TourID

WHERE Tour.[Name] = ‘Outer Banks Lighthouses’

15549359 ch12.F 11/21/02 9:48 AM Page 388

389Chapter 12 ✦ Programming with Transact-SQL

OPEN cEvent
FETCH cEvent INTO @EventDate -- prime the cursor

WHILE @@Fetch_Status = 0
BEGIN
IF @Semicolon = 1
SET @EventDates
= @EventDates + ‘; ‘
+ Convert(VARCHAR(15), @EventDate, 107)

ELSE
BEGIN
SET @EventDates

= Convert(VARCHAR(15), @EventDate,107)
SET @SEMICOLON = 1

END

FETCH cEvent INTO @EventDate -- fetch next
END

CLOSE cEvent
DEALLOCATE cEvent

SELECT @EventDates

Result:

Feb 02, 2001; Jun 06, 2001; Jul 03, 2001; Aug 17, 2001;
Oct 03, 2001; Nov 16, 2001

Building a Dynamic-Crosstab Query with a Cursor
While using the recursive select variable is a much more elegant solution to the dynamic-
crosstab problem than using a cursor, it’s still an excellent example of building a cursor. This
batch uses the same set of data as the fixed-column crosstab example in Chapter 7, “Merging
Data Using Relational Algebra.”

The batch creates a cursor that will step though each X-dimension value. As the cursor is
fetching each X value, a set command assembles the dynamic SQL for the columns of the
crosstab query. The final set command near the end concatenates the initial portion of the
crosstab query (select Y) with the dynamic columns and the conclusion of the query. By
assembling the dynamic SQL query code into a variable, the code can be inspected for debug-
ging. The last line executes the dynamic string:

DECLARE
@XColumns NVARCHAR(1024),
@XColumn VARCHAR(50),
@SemiColon BIT

SET @Semicolon = 0
SET @XColumns = ‘’

DECLARE ColNames CURSOR FAST_FORWARD
FOR
SELECT DISTINCT X as [Column]
FROM RawData
ORDER BY X

15549359 ch12.F 11/21/02 9:48 AM Page 389

390 Part II ✦ Developing SQL Server Databases

OPEN ColNames

FETCH ColNames INTO @XColumn
WHILE @@Fetch_Status = 0
BEGIN
SET @XColumns = @XColumns +
‘, SUM(Case X WHEN ‘’’ + @XColumn + ‘’’
THEN Data ELSE 0 END) AS ‘ + @XColumn

FETCH ColNames INTO @XColumn -- fetch next
END

CLOSE ColNames
DEALLOCATE ColNames

SET @XColumns = ‘SELECT Y’ + @XColumns
+ ‘, SUM(Data) as Total FROM RawData GROUP BY Y ORDER BY Y’

EXEC sp_executesql @Xcolumns

Result:

Y A B C D Total
---- ---- --- --- --- -----
X 6 2 3 0 11
Y 12 5 0 56 73
Z 7 8 9 10 34

Navigating a Tree with a Recursive Cursor
Another case in which a cursor is typically employed is navigating a reflexive relationship,
sometimes called a recursive or self-join relationship, which creates a hierarchical tree struc-
ture. This type of structure is often used in human-resource organizational charts, genealo-
gies, and bill-of-materials databases. It’s also used to navigate the class hierarchy in an
object-oriented database.

Using a Standard Select Statement
Generating a result listing is difficult because the number of generations is dynamic, whereas
a SQL select query requires a known set of tables. A select query can handle a fixed num-
ber of generations. But, when the number of generations isn’t known, a pre-coded select
statement can’t handle the flexibility. As a sample, the following query returns the grandfa-
ther and two generations:

USE Family
SELECT

Person.FirstName + ‘ ‘ + IsNull(Person.SrJr,’’)
as Grandfather,

Gen1.FirstName + ‘ ‘ + IsNull(Gen1.SrJr,’’) as Gen1,
Gen2.FirstName + ‘ ‘ + IsNull(Gen2.SrJr,’’) as Gen2

FROM Person
LEFT JOIN Person Gen1
ON Person.PersonID = Gen1.FatherID

LEFT JOIN Person Gen2
ON Gen1.PersonID = Gen2.FatherID

WHERE Person.PersonID = 2

15549359 ch12.F 11/21/02 9:48 AM Page 390

391Chapter 12 ✦ Programming with Transact-SQL

Result:

Grandfather Gen1 Gen2
------------------- ------------------- -------------------
James 1 James 2 Melanie
James 1 James 2 Corwin
James 1 James 2 Dara
James 1 James 2 James 3

Alternately, the query could report every parent and every child by joining two instances of
the Person table. However, that still doesn’t produce a useful tree.

Using a Recursive Cursor
To produce a tree, the cursor examines each child and prints the child indented to the
generation level. The cursor does this by selecting all the children of the current person
(persons whose MotherID or FatherID matches the current person). Once the cursor is
declared and opened each fetch will print the child and recursively call another instance of
the procedure to see if the current person has any children. If so, the children will be exam-
ined — and so on, and so on.

For every person, the recursive routine is called to check for any children.

The recursive nature of the routine will cause it to run straight down the tree, finding each
firstborn child (“5”, “8”, “15”), followed by finding the siblings of “15” (“16”, “29”). The recur-
sive routine then moves back up to the siblings of “8” and finds “10.” “10”’s children are
examined and the firstborn is found to be “19.” The recursive routine is called for “19”’s
children and “22” and “21” are returned. The recursive routine is called for “22” and “2” but
no children are found.

This example of a cursor creates a stored procedure so the cursor may be called recursively.
Saving batches as stored procedures is covered in Chapter 13, “Developing Stored Procedures.”

By default, the scope of a cursor extends to any called procedures. But the recursive tree
problem requires that each called cursor fetch its own results. Setting the cursor option to
local restricts the scope of the cursor and allows a recursive cursor. The option can be set
in the cursor declaration or as a database option. The following example demonstrates both
methods:

ALTER DATABASE Family SET CURSOR_DEFAULT LOCAL
SELECT DATABASEPROPERTYEX(‘Family’, ‘IsLocalCursorsDefault’)

Return:

1

The following batch creates the ExamineChild procedure, which includes the cursor that
tests for children of the current Person row. If children are detected, the stored procedure
calls itself recursively:

CREATE PROCEDURE ExamineChild
(@ParentID INT)

AS
SET Nocount On
DECLARE @ChildID INT,
@Childname VARCHAR(25)

Cross-
Reference

15549359 ch12.F 11/21/02 9:48 AM Page 391

392 Part II ✦ Developing SQL Server Databases

DECLARE cChild CURSOR LOCAL FAST_FORWARD
FOR SELECT PersonID,

Firstname + ‘ ‘ + LastName + ‘ ‘ + IsNull(SrJr,’’)
as PersonName

FROM Person
WHERE Person.FatherID = @ParentID
OR Person.MotherID = @ParentID

ORDER BY Person.DateOfBirth
OPEN cChild
FETCH cChild INTO @ChildID, @ChildName -- prime the cursor
WHILE @@Fetch_Status = 0
BEGIN
PRINT
SPACE(@@NestLevel * 2) + ‘+ ‘
+ Cast(@ChildID as VARCHAR(4))
+ ‘ ‘ + @ChildName

-- Recursively find the grandchildren
EXEC ExamineChild @ChildID
FETCH cChild INTO @ChildID, @ChildName

END
CLOSE cChild

DEALLOCATE cChild

The recursive cursor stored procedure is called passing to it PersonID 2, James Halloway
the First. The cursor will locate all of his descendents:

EXEC ExamineChild 2

Result:

+ 5 James Halloway 2
+ 8 Melanie Campbell
+ 15 Shannon Ramsey
+ 16 Jennifer Ramsey
+ 29 Adam Campbell

+ 10 James Halloway 3
+ 19 James Halloway 4
+ 22 Chris Halloway
+ 21 James Halloway 5

+ 18 Abbie Halloway
+ 17 Allie Halloway

+ 9 Dara Halloway
+ 23 Joshua Halloway
+ 24 Laura Halloway

+ 7 Corwin Halloway
+ 14 Logan Halloway

Using a cursor is an adequate solution to the recursive tree problem when the data set is
small, but it fails for large data sets for two reasons. First, SQL Server limits the stored proce-
dures nesting level to 32 level deep, so for recursive trees with more than 32 levels (less any
code used to call the recursive cursor code) will fail. The second concern is performance
(which is generally the case with any cursor solution).

15549359 ch12.F 11/21/02 9:48 AM Page 392

393Chapter 12 ✦ Programming with Transact-SQL

A recursive tree data set with five million rows organized into 12 tree levels will work, but it
will have five million iterations of the cursor and the equivalent of five million single row
select statements.

Using a Set-Based Solution
Nearly all cursors can be replaced with creative set-based solutions. In this case, the set-based
solution handles each level, or generation, in a single insert/select. The performance gains
are dramatic.

The batch begins with a single person and stuffs that into the #FamilyTree temp table. Then,
the batch steps though each generation and appends every person with a parent in the previ-
ous generation to the temp table using a multi-condition join.

For each person in the #FamilyTree temp table, the FamilyLine column contains the parent’s
FamilyLine data concatenated with the parent’s PersonID. The FamilyLine column provides
the data required to sort the tree.

When no new people are found, the while condition is no longer satisfied and the batch is
complete. So, here’s the set-based code that makes the cursor obsolete for solving recursive
tree problems:

CREATE TABLE #FamilyTree (
PersonID INT,
Generation INT,
FamilyLine VarChar(25) Default ‘’
)

DECLARE
@Generation INT,
@FirstPerson INT

SET @Generation = 1
SET @FirstPerson = 2

-- prime the temp table with the top person(s) in the queue
INSERT #FamilyTree (PersonID, Generation, FamilyLine)
SELECT @FirstPerson, @Generation, @FirstPerson

WHILE @@RowCount > 0
BEGIN
SET @Generation = @Generation + 1

INSERT #FamilyTree (PersonID, Generation, FamilyLine)
SELECT Person.PersonID,

@Generation,
#FamilyTree.FamilyLine
+ ‘ ‘ + Str(Person.PersonID,5)

FROM Person
JOIN #FamilyTree
ON #FamilyTree.Generation = @Generation - 1
AND
(Person.MotherID = #FamilyTree.PersonID
OR
Person.FatherID = #FamilyTree.PersonID)

END

15549359 ch12.F 11/21/02 9:48 AM Page 393

394 Part II ✦ Developing SQL Server Databases

With the #FamilyTree temp table populated, the following query examines the raw data:

SELECT PersonID, Generation, FamilyLine
FROM #FamilyTree
Order by FamilyLine

Result (abridged):

PersonID Generation FamilyLine
----------- ----------- -------------------------
2 1 2
5 2 2 5
7 3 2 5 7
14 4 2 5 7 14
...
22 5 2 5 10 19 22

Similar to the previous cursor solution, the next query uses the same space() function to
format the result and it joins with the Person table so it can display the name:

SELECT SPACE(Generation * 2) + ‘+ ‘
+ Cast(#FamilyTree.PersonID as VARCHAR(4)) + ‘ ‘
+ FirstName + ‘ ‘ + LastName
+ IsNull(SrJr,’’) AS FamilyTree

FROM #FamilyTree
JOIN Person
ON #FamilyTree.PersonID = Person.PersonID

ORDER BY FamilyLine

Result:

FamilyTree
--
+ 2 James Halloway 1
+ 5 James Halloway 2
+ 7 Corwin Halloway
+ 14 Logan Halloway

+ 8 Melanie Campbell
+ 15 Shannon Ramsey
+ 16 Jennifer Ramsey
+ 29 Adam Campbell

+ 9 Dara Halloway
+ 23 Joshua Halloway
+ 24 Laura Halloway

+ 10 James Halloway 3
+ 17 Allie Halloway
+ 18 Abbie Halloway
+ 19 James Halloway 4
+ 21 James Halloway 5
+ 22 Chris Halloway

In a dramatic contrast to the cursor based solution to the recursive tree problem, if the recur-
sive tree was loaded with five million rows in 12 hierarchical levels, the set-based solution
would perform 12 iterations and 12 optimizable queries.

While cursors may seem to be the standard computer science method of handling data, the
previous examples have demonstrated that, for the majority of cases, a set-oriented solution
will do the same job with greater performance and scalability.

15549359 ch12.F 11/21/02 9:48 AM Page 394

395Chapter 12 ✦ Programming with Transact-SQL

Error Handling
Of course, all robust programming languages provide some method for trapping, logging, and
handling errors. In this area, T-SQL is a mixed bag. The error handling works well (aside from
a few quirks), but some fatal errors cause the code to simply bomb out of T-SQL without giv-
ing you the opportunity to test for the error or handle it.

Using @@Error
The @@Error global variable contains the error status for the previous T-SQL command in the
code. 0 indicates success.

The difficulty is that @@Error is not like other languages that hold the last error in a variable
until another error occurs. @@Error is updated for every command, so even testing its value
updates it.

The following code sample attempts to update the primary key to a value already in use. This
violates the marriage foreign-key constraint and generates an error. The two print commands
demonstrate how @@Error is reset by every T-SQL command. The first print command dis-
plays the success or failure of the update. The second print command displays the success or
failure of the first:

USE Family
UPDATE Person
SET PersonID = 1
Where PersonID = 2

Print @@Error
Print @@Error

Result:

Server: Msg 547, Level 16, State 1, Line 1
UPDATE statement conflicted with COLUMN REFERENCE constraint
‘FK__Marriage__Husband__7B905C75’. The conflict occurred in
database ‘Family’, table ‘Marriage’, column ‘HusbandID’.
The statement has been terminated.

547
0

The solution to the last error status problem is to save the error status to a local variable.
This method retains the error status so it may be properly tested and then handled. The
following batch uses @err as a temporary error variable:

USE Family
DECLARE @err INT

UPDATE Person
SET PersonID = 1
Where PersonID = 2

SET @err = @@Error

IF @err <> 0
Begin
-- error handling code
Print @err

End

15549359 ch12.F 11/21/02 9:48 AM Page 395

396 Part II ✦ Developing SQL Server Databases

Result:

Server: Msg 547, Level 16, State 1, Line 1
UPDATE statement conflicted with COLUMN REFERENCE constraint
‘FK__Marriage__Husband__7B905C75’. The conflict occurred in database
‘Family’, table ‘Marriage’, column ‘HusbandID’.
The statement has been terminated.
547

Using @@RowCount
Another way to determine if the query was a success is to check the number of rows affected.
Even if no error was generated it’s possible that the data didn’t match and the operation
failed. The @@RowCount global variable is useful for checking the effectiveness of the query.

The reset issue that affects @@Error also affects @@RowCount. However, there’s no need to
store the 0 value.

The following batch uses @@RowCount to check for rows updated. The failure results from the
incorrect where clause condition. No row with PersonID = 100 exists. @@RowCount is used
to detect the query failure.

USE FAMILY
UPDATE Person
SET LastName = ‘Johnson’
WHERE PersonID = 100

IF @@RowCount = 0
Begin
-- error handling code
Print ‘no rows affected’

End

Result:

no rows affected

T-SQL Fatal Errors
If T-SQL encounters a fatal error the batch will immediately abort without giving you the
opportunity to test @@Error, handle the error, or correct the situation.

Fatal errors are rare enough that they shouldn’t pose much of a problem. Generally, if the
code works once it should continue to work unless the schema is changed or SQL Server is
reconfigured. The most common fatal errors are those caused by the following:

✦ Data-type incompatibilities

✦ Unavailable SQL Server resources

✦ Syntax errors

✦ Incompatible SQL Server advanced settings that are incompatible with certain tasks

✦ Missing objects or misspelled object names

15549359 ch12.F 11/21/02 9:48 AM Page 396

397Chapter 12 ✦ Programming with Transact-SQL

For a list of most of the fatal error messages, run the following query:

SELECT Error, Severity, Description
FROM Master.dbo.SysMessages
WHERE Severity >= 19
ORDER BY Severity, Error

@@Error does a good job of handling typical day-to-day user errors, such as constraint-violation
errors. Nevertheless, to be safe, the front-end application developers should also include error-
handling code in their programs.

Raiserror
To return custom error messages to the calling procedure or front-end application, use the
raiserror command. Two forms for raiserror exist: a legacy simple form and the recom-
mended complete form.

The Simple Raiserror Form
The simple form, which dates from the Sybase days, passes only a hard-coded number and
message. The severity level is always passed back as 16— user error severe.

RAISERROR ErrorNumber, ErrorMessage

For example, this code passes back a simple error message:

RAISERROR 5551212 ‘Unable to update customer.’

Result:

Server: Msg 5551212, Level 16, State 1, Line 1
‘Unable to update customer.’

The Complete Raiserror Form
The improved form incorporates the following four new useful features into the raiserror
command:

✦ Specifies the severity level

✦ Dynamically modifies the error message

✦ Uses server-wide stored messages

✦ May optionally log the error to the event log

The syntax for the Windows raiserror adds parameters for the severity level, state (seldom
used), and message-string arguments:

RAISERROR (
message or number, severity, state, optional arguments
) With Log

Error Severity
Windows has established standard error-severity codes, listed in Table 12-2. The other sever-
ity codes are reserved for Microsoft use.

15549359 ch12.F 11/21/02 9:48 AM Page 397

398 Part II ✦ Developing SQL Server Databases

Table 12-2: Available Severity Codes

Severity Code Description

10 Status message: Does not raise an error, but returns a message,
such as a print statement.

11–13 No special meaning.

14 Informational message.

15 Warning message: Something may be wrong.

16 Critical error: The procedure failed.

Adding Variable Parameters to Messages
The error message can be a fixed-string message or the error number of a stored message.
Either type can work with optional arguments.

The arguments are substituted for placeholders within the error message. While several
types and options are possible, the placeholders I find useful are %s for a string and %i for a
signed integer. The following example uses one string argument:

RAISERROR (‘Unable to update %s.’, 14, 1, ‘Customer’)

Result:

Server: Msg 50000, Level 14, State 1, Line 1
Unable to update Customer.

Stored Messages
The Windows raiserror command can also pull a message from the Master.dbo.
SysMessages table. Message numbers 1–50,000 are reserved for Microsoft. Higher message
numbers are available for user-defined messages. The benefit of using stored messages is that
any messages are forced to become consistent and numbered.

An issue with SysMessages stored messages is that the message-number scheme is server-
wide. If two vendors or two databases use overlapping messages then no division exists
between databases, and there’s no solution beyond recoding all the error handling on one
of the projects. The second issue is that when migrating a database to a new server, the
messages must also be moved.

Messages can be added to the SysMessages table in two ways. As illustrated in Figure 12-2,
Enterprise Manager has an interface for searching for, modifying, and managing system
messages. You can get to the dialog box by selecting a server and then choosing All Tasks ➪
Manage SQL Server Messages from the right-click menu.

The SysMessages table includes columns for the MessageId, Message, Severity and
whether the error should be logged. However, the severity of the raiserror command is
used instead of the Severity from the SysMessage table, so SysMessage.Severity is moot.

To manage messages in code use the sp_addmessage system stored procedure:

EXEC sp_addmessage 50001, 16, ‘Unable to update %s’

For database projects that may be deployed in multiple languages, the optional @lang parame-
ter can be used to specify the language for the error message.

15549359 ch12.F 11/21/02 9:48 AM Page 398

399Chapter 12 ✦ Programming with Transact-SQL

Figure 12-2: Enterprise Manager can be used to manage
user-defined error messages.

If the message already exists, a replace parameter must be added to the system stored
procedure call, as follows:

EXEC sp_addmessage 50001, 16,
‘Still unable to update %s’, @Replace = ‘Replace’

To move messages between servers do any one of the following:

✦ Use the Copy Database Wizard or DTS.

✦ Save the script that was originally used to load the messages.

✦ Use the following query to generate a script that adds the messages:

SELECT ‘EXEC sp_addmessage, ‘
+ Cast(Error as VARCHAR(7))
+ ‘, ‘ + Cast(Severity as VARCHAR(2))
+ ‘, ‘’’ + [Description] + ‘’’’

FROM Master.dbo.SysMessages
WHERE Error > 50000

Result:

EXEC sp_addmessage, 50001, 16, ‘Still unable to update %s’

To drop a message use the sp_dropmessage system stored procedure with the error number:

EXEC sp_dropmessage 50001

Logging the Error
Another advantage of using the Windows form of the raiserror command is that it can log
the error to the Windows NT Application Event Log and the SQL Server event log. The down-
side to the Application Event Log is that it’s stored on individual workstations. While they’re
great places to log front-end “unable to connect” errors, they’re inconvenient places to store
database errors.

15549359 ch12.F 11/21/02 9:48 AM Page 399

400 Part II ✦ Developing SQL Server Databases

There are two ways to specify that an event should be logged:

✦ If the stored message is created with the @with_log = ‘with_log’ option, or the
“always log” checkbox is selected during the addition of a new message with Enterprise
Manager, the error will be logged.

✦ From the raiserror command, the with log option causes the current error message
to be logged.

The following raiserror command writes the error to the event log:

RAISERROR (‘Unable to update %s.’, 14, 1, ‘Customer’)
WITH LOG

Result:

Server: Msg 50000, Level 14, State 1, Line 1
Unable to update Customer.

To view errors in the Application Event Log (Figure 12-3), select Control Panel ➪ Administrative
Tools ➪ Event Viewer. The Event Viewer might also be available in a program menu.

SQL Server Log
SQL Server also maintains a series of log files. Each time SQL Server starts, it creates a new
log file. Six archived log files are retained for a total of seven log files; you can view them
using Enterprise Manager by selecting a server ➪ Management ➪ SQL Server Logs, as shown
in Figure 12-4.

Figure 12-3: Viewing a SQL Server raiserror error in the Windows Event Log.

15549359 ch12.F 11/21/02 9:48 AM Page 400

401Chapter 12 ✦ Programming with Transact-SQL

Figure 12-4: Viewing an error in the SQL log using Enterprise Manager.

Error-Handling
When an error does occur, the typical way to handle it is to do the following:

1. If the batch is using logical transactions (begin tran/commit tran) then the error
handler should roll back the transaction. I recommend rolling back the transaction as
the first action so that any locks the transaction might be holding are released.

2. If the error is one that the stored procedure logic detects, and it’s not a SQL Server
error, raise the error message so the user, or front-end application, is informed. If it’s an
error that SQL Server detects then SQL Server will automatically raise the error.

3. Optionally, log the error to an error table.

4. Terminate the batch. If it’s a stored procedure, user-defined function, or trigger, termi-
nate it with a return command.

The following stored procedure from the OBX Kites sample database demonstrates handling
errors. If a SQL Server error occurs while selecting the customer type or inserting the new con-
tact, the error is stored in @err and the error-handler at the end of the procedure handles the
error. If the procedure is called with an invalid customer type, that error is trapped and a cus-
tom error message is raised that includes the name of the customer type that wasn’t found.

CREATE PROCEDURE pContact_AddNew(
@ContactCode NVARCHAR(20),
@LastName NVARCHAR(50),
@FirstName NVARCHAR(50),
@CompanyName NVARCHAR(50) = NULL,

15549359 ch12.F 11/21/02 9:48 AM Page 401

402 Part II ✦ Developing SQL Server Databases

@Name NVARCHAR(50) = NULL
)

AS
SET NOCOUNT ON
DECLARE
@CustomerTypeID UNIQUEIDENTIFIER,
@Err INT

SELECT @CustomerTypeID = CustomerTypeID
FROM dbo.CustomerType
WHERE Name = @Name

SET @Err = @@ERROR
IF @Err <> 0 GOTO ErrorHandler

IF @CustomerTypeID IS NULL
SELECT @CustomerTypeID = CustomerTypeID
FROM dbo.CustomerType
WHERE [Default] = 1

IF @CustomerTypeID IS NULL
BEGIN
RAISERROR
(‘Customer Type: ‘’%s’’ not found’, 15,1,@Name)

RETURN -100
END

INSERT dbo.Contact (
ContactCode,SoundexCode, LastName,
FirstName, CompanyName, CustomerTypeID)

VALUES (
@ContactCode, SOUNDEX(@LastName), @LastName,
@FirstName, @CompanyName, @CustomerTypeID)

SET @Err = @@ERROR
IF @Err <> 0 GOTO ErrorHandler

RETURN 0

ErrorHandler:
-- if using begin tran: ROLLBACK TRANSACTION
-- optional: log error to error table
RETURN -100

go

Summary
T-SQL extends the SQL query with a set of procedural commands. While it’s not the most
advanced programming language, T-SQL gets the job done. T-SQL batch commands can be
used in expressions or packaged as stored procedures, user-defined functions, or triggers.

The next three chapters discuss packaging T-SQL batches inside stored procedures, user-
defined functions, and triggers.

✦ ✦ ✦

15549359 ch12.F 11/21/02 9:48 AM Page 402

Developing Stored
Procedures

The primary purpose of client/server development is to move the
processing as close to the data as possible. Moving data process-

ing from a client application to the server reduces network traffic and
improves both performance and data integrity.

One of the most popular methods of moving the processing closer to
the data is developing stored procedures, sometimes called procs, or
sprocs. Stored procedures aren’t mysterious. All the features of T-SQL
queries and batches are in full force. In the same way that a view is a
SQL query saved under a view name, a stored procedure is a batch
that has been stored with a name so it can be pre-compiled.

Within a client-server database project, code can be created in any of
several places. One of the distinctive differences about the various
places is how close to the data the code is executed. On the contin-
uum between “close to the data” and “separate from the data,” illus-
trated in Figure 13-1, stored procedures mix the benefits of
server-side code with custom programmability.

As server-side code, stored procedures offer several benefits:

✦ Stored procedures are compiled and are the fastest possible
means of executing a batch or query.

✦ Executing the processing at the server instead of the desktop
greatly reduces network traffic.

✦ Stored procedures offer modularity and are an easy means of
deploying features and code changes. If the front-end applica-
tion calls a stored procedure to perform some processing,
modifying a stored procedure in a single location upgrades
all users.

✦ Stored procedures can be an important component in database
security. If all user access goes through stored procedures,
direct access to the tables can be denied and all access to the
data can be controlled.

To write an efficient stored procedure, don’t start with this chapter.
A well-written stored procedure is based on a well-written batch
(Chapter 12) consisting of well-written set-oriented SQL queries
(Chapters 6 and 7). This chapter explains how to pull together the
batch and wrap it as a stored procedure.

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating and managing
stored procedures

Passing data to and
from stored procedures

Using stored procedures
within ad hoc queries

Using the Query
Analyzer stored-
procedure debugger

Executing stored
procedures on linked
SQL servers

An order-entry stored-
procedure scenario

✦ ✦ ✦ ✦

16549359 ch13.F 11/21/02 9:48 AM Page 403

404 Part II ✦ Developing SQL Server Databases

Figure 13-1: On the continuum of processing, the closer
the processing is to the data, the better.

Managing Stored Procedures
The actual management of stored procedures is simple compared to the logic within them.
Once you know the basic facts and syntax, managing stored procedures should present no
problems.

Create, Alter, and Drop
Stored procedures are managed by means of the Data Definition Language (DDL) commands:
create, alter, and drop.

Create must be the first command in a batch; the termination of the batch ends the creation
of the stored procedure. The following example creates a simple stored procedure that
retrieves data from the ProductCategory table in the OBXKites database:

USE OBXKites
go

CREATE PROCEDURE CategoryList
AS
SELECT ProductCategoryName, ProductCategoryDescription
FROM dbo.ProductCategory

As this chapter progresses, more features will be added to the CategoryList example
stored procedure.

Dropping a stored procedure removes it from the database. Altering a stored procedure
replaces the entire existing stored procedure with new code. When modifying a stored
procedure, altering it is preferable to dropping and recreating it, because the latter method
removes any permissions.

SQL Server

Processing Continuum

Data

Improved
integrity and
performance

Data Ty
pe

Constr
aint

Afte
r T

rig
ger

Stored Procedure
View

Submitte
d Batch

Fro
nt-E

nd

Applic
atio

n

User

16549359 ch13.F 11/21/02 9:48 AM Page 404

405Chapter 13 ✦ Developing Stored Procedures

Returning a Record Set
If a stored procedure is a saved batch, then whatever a batch can do, a stored procedure can
do. Just as a batch returns a record set from a SQL select query, a stored procedure will also
return a record set from a query.

Referring back to the stored procedure that was created in the previous section, when the
CategoryList stored procedure is executed, the query within the stored procedure returns
all rows from the productcategory table:

EXEC CategoryList

Result:

ProductCategoryName ProductCategoryDescription
--------------------- ------------------------------
Accessory kite flying accessories
Book Outer Banks books
Clothing OBX t-shirts, hats, jackets

Compiling Stored Procedures
Compiling a stored procedure is an automatic process. Stored procedures compile and are
stored in memory the first time they are executed. If the server reboots, all the compiled
stored procedures are lost. They are again compiled when they are called.

SQL Server uses the Master.dbo.SysCacheObjects table to track compiled objects. To view
the compiled stored procedures, run the following query:

SELECT cast(C.sql as Char(35)) as StoredProcedure, cacheobjtype,
usecounts as Count
FROM Master.dbo.SysCacheObjects C
JOIN Master.dbo.SysDatabases D
ON C.dbid = C.dbid

WHERE D.Name = DB_Name()
AND ObjType = ‘Proc’

ORDER BY StoredProcedure

Result (abridged):

StoredProcedure cacheobjtype Count
----------------------------------- ----------------- ------
CategoryList Executable Plan 20
CategoryList Compiled Plan 1
fGetPrice Executable Plan 32
fGetPrice Compiled Plan 1
...
pContact_AddNew Executable Plan 21
pOrderPriority_AddNew Compiled Plan 1
pPrice_AddNew Executable Plan 122

16549359 ch13.F 11/21/02 9:48 AM Page 405

406 Part II ✦ Developing SQL Server Databases

The compiled stored procedure includes any query plans for SQL statements within the
stored procedure. If the data distribution changes radically, or indexes are created or
dropped, recompiling the stored procedure will result in improved performance. To manually
force a recompile of a stored procedure, use the sp_recompile system stored procedure. It
flags the stored procedure (or trigger) so that it will be compiled the next time it’s executed.

EXEC sp_recompile CategoryList

Result:

Object ‘CategoryList’ was successfully marked
for recompilation.

Stored Procedure Encryption
When the stored procedure is created, the text of the stored procedure is saved in the
SysComments table. The text is not stored for the execution of the stored procedures, but
only so that it may be retrieved later if the stored procedure needs to be modified.

The sp_helptext system stored procedure will extract the original text of the stored
procedure:

sp_helptext CategoryList

Result:

Text
--
CREATE PROCEDURE CategoryList
AS
SELECT *
FROM dbo.ProductCategory

If the stored procedure is created with the with encryption option, the stored procedure
text in SysComments is not directly readable. It’s common practice for third-party vendors to
encrypt their stored procedures. The following alter command stores the CategoryList
procedure with with encryption and then attempts to read the code:

ALTER PROCEDURE CategoryList
WITH ENCRYPTION
AS
SELECT *
FROM dbo.ProductCategory

sp_helptext CategoryList

Result:

The object comments have been encrypted.

The problem with this scheme is that the encryption does not require a key, so it’s easily
hacked. The dSQLSRVD freeware utility, shown in Figure 13-2 from dOMNAR, enables any user
in the SysAdmin role to decrypt encrypted objects. dSQLSRVD is available at http://www.
geocities.com/d0mn4r/.

16549359 ch13.F 11/21/02 9:48 AM Page 406

407Chapter 13 ✦ Developing Stored Procedures

Figure 13-2: The dSQLSRVD utility by dOMNAR easily decrypts encrypted stored
procedures, functions, and views.

Once dSQLSRVD has decrypted the object, it saves the script to a .sql file. The following
script was created from the encrypted CategoryList stored procedure:

/***/
/* File written by SQL Server SysComments Decryptor v1.1 */
/* Copyright (C) 2001 dOMNAR */
/***/

USE OBXKites
go

-- Type: Stored Procedure
-- Name: CategoryList

CREATE PROCEDURE CategoryList
WITH ENCRYPTION
AS
SELECT *
FROM dbo.ProductCategory

16549359 ch13.F 11/21/02 9:48 AM Page 407

408 Part II ✦ Developing SQL Server Databases

System Stored Procedures
The basic SQL syntax includes only 10 commands: select, insert, update, delete, create,
alter, drop, grant, revoke, and deny. Microsoft performs hundreds of tasks with system
stored procedures stored in the master database. To make these procedures available to all
databases, special rules govern the scope of system stored procedures. Any procedures
beginning with sp_ that are in the master database can be executed from any database. If a
name conflict exists between a system stored procedure and a stored procedure in the local
user database, the system stored procedure in the local database is executed.

When creating stored procedures, use a consistent naming convention other than sp_ to
name your stored procedures. Using sp_ can only cause name conflicts and confusion. I
prefix the names of stored procedures with p, but even no prefix is better than sp_.

Passing Data to Stored Procedures
A stored procedure is more useful if it can be manipulated by parameters. The CategoryList
stored procedure created previously returns all the product categories, but a procedure that
performs a task on an individual row will require a method for passing the row ID to the
procedure.

SQL Server stored procedures may have numerous input and output parameters (up to 2,100
to be exact).

Input Parameters
You can add input parameters that pass data to the stored procedure by listing the
parameters after the procedure name in the create procedure command. Each parameter
must begin with an @ sign, and becomes a local variable within the procedure. Like local
variables, the parameters must be defined with valid data types. When the stored procedure
is called the parameter must be included (unless the parameter has a default value).

The following code sample creates a stored procedure that returns a single product category.
The @CategoryName parameter can accept a unicode character input upto 35 charaters in
length. The value passed by means of the parameter is available within the stored procedure
as the variable @CategoryName in the where clause:

USE OBXKites

go
CREATE PROCEDURE CategoryGet
(@CategoryName NVARCHAR(35))

AS
SELECT ProductCategoryName, ProductCategoryDescription
FROM dbo.ProductCategory
WHERE ProductCategoryName = @CategoryName

In the following code sample, when executed, the string literal ‘Kite’ is passed to the stored
procedure and substituted for the variable in the where clause:

EXEC CategoryGet ‘Kite’

16549359 ch13.F 11/21/02 9:48 AM Page 408

409Chapter 13 ✦ Developing Stored Procedures

Result:

ProductCategoryName ProductCategoryDescription
---------------------- ----------------------------------
Kite a variety of kites, from simple to

stunt, to Chinese, to novelty kites

If multiple paramenters are involved, the paramenter name can be specified or the parame-
ters listed in order. If the two methods are mixed, then as soon as the parameter is provided
by name all the following parameters must be as well.

The following three examples each demonstrate calling a stored procedure and passing the
parameters by original position and by name:

EXEC StoredProcedure
@Parameter1 = n,
@Parameter2 = ‘n’

EXEC StoredProcedure n, ‘n’

EXEC StoredProcedure n, @Parameter2 = ‘n’

Parameter Defaults
You must supply every parameter when calling a stored procedure, unless that parameter
has been created with a default value. You establish the default by appending an equals sign
and the default to the parameter, as follows:

CREATE PROCEDURE StoredProcedure (
@Variable DataType = DefaultValue
)

The following code, extracted from the OBX Kites sample database, demonstrates a stored-
procedure default. If a product category name is passed in this stored procedure, the stored
procedure returns only the selected product category. However, if nothing is passed, the
null default is used in the where clause to return all the product categories.

CREATE PROCEDURE pProductCategory_Fetch(
@Search NVARCHAR(50) = NULL

)
-- If @Search = null then return all ProductCategories
-- If @Search is value then try to find by Name
AS
SET NOCOUNT ON
SELECT ProductCategoryName, ProductCategoryDescription
FROM dbo.ProductCategory
WHERE ProductCategoryName = @Search
OR @Search IS NULL

IF @@RowCount = 0
RAISERROR(
‘Product Category ‘’%s’’ Not Found.’,14,1,@Search)

The first execution passes a product category:

EXEC pProductCategory_Fetch ‘OBX’

16549359 ch13.F 11/21/02 9:48 AM Page 409

410 Part II ✦ Developing SQL Server Databases

Result:

ProductCategoryName ProductCategoryDescription
---------------------- ----------------------------------
OBX OBX stuff

When pProductCategory_Fetch executed without a parameter, the @Search parameter’s
default of null allows every row to be seen as true within the where clause, as follows:

EXEC pProductCategory_Fetch

Result:

ProductCategoryName ProductCategoryDescription
---------------------- ----------------------------------
Accessory kite flying accessories
Book Outer Banks books
Clothing OBX t-shirts, hats, jackets
Kite a variety of kites, from simple to

stunt, to Chinese, to novelty kites
Material Kite construction material
OBX OBX stuff
Toy Kids stuff
Video stunt kite contexts and lessons,

and Outer Banks videos

Returning Data from Stored Procedures
SQL Server provides four means of returning data from a stored procedure. A batch can
return data via a select statement or a raiserror command. Stored procedures inherit
these from batches and add output variables and the return command.

Output Parameters
Output parameters enable a stored procedure to return data to the calling client procedure.
The keyword output is required both when the procedure is created and when it is called.
Within the stored procedure the output parameter appears as a local variable. In the calling
procedure or batch, a variable must have been created to receive the output parameter.
When the stored procedure concludes, its current value is passed to the calling procedure’s
local variable.

Although output parameters are typically used solely for output they are actually two-way
parameters.

Output parameters are useful for returning single units of data when a whole record set is not
required. For returning a single row of information, using output parameters is significantly
faster then preparing a record set.

The next code sample uses an output parameter to return the product name for a given
product code from the Product table in the OBX Kites sample database. To set up for the
output parameter:

1. The batch declares the local variable @ProdName to receive the output parameter.

2. The batch calls the stored procedure, using @Prod Name in the exec call to the stored
procedure.

16549359 ch13.F 11/21/02 9:48 AM Page 410

411Chapter 13 ✦ Developing Stored Procedures

3. Within the stored procedure the @ProductName output parameter/local variable is cre-
ated in the header of the stored procedure. The initial value is null.

With everything in place, the process continues. The data path for the @ProductName
output parameter is as follows:

4. The select statement inside the stored procedure sets @ProductName to Basic Box
Kite 21 inch, the product name for the product code “1001.”

5. The stored procedure finishes and execution is passed back to the calling batch. The
value is transferred to the batch’s local variable, @ProdName.

6. The calling batch uses the print command to send @ProdName to the user.

This is the stored procedure:

USE OBXKites
go
CREATE PROC GetProductName (
@ProductCode CHAR(10),
@ProductName VARCHAR(25) OUTPUT)

AS
SELECT @ProductName = ProductName
FROM dbo.Product
WHERE Code = @ProductCode

This is the calling batch:

USE OBXKITES
DECLARE @ProdName VARCHAR(25)
EXEC GetProductName ‘1001’, @ProdName OUTPUT
PRINT @ProdName

Result:

Basic Box Kite 21 inch

Later in this chapter, in “The Complete Stored Procedure” section, is a more complex exam-
ple taken from the OBX Kites sample database that uses an output parameter to pass the
order number from the pOrder_AddNew stored procedure to the pOrder_AddItem stored
procedure.

Using the Return Command
A return command unconditionally terminates the procedure and returns a value to the
calling batch or client. Technically, a return can be used with any batch, but it can only return
a value from a stored procedure or a function.

A return value of 0 indicates success and is the default. Microsoft reserves -99 to -1 for SQL
Server use. It’s recommended that you use -100 or lower to pass back a failure status.

When calling a stored procedure, the exec command must use a local integer variable if the
returned status value is to be captured:

EXEC @IntLocalVariable = StoredProcedureName

The following basic stored procedure returns a success or failure depending on the
parameter:

16549359 ch13.F 11/21/02 9:48 AM Page 411

412 Part II ✦ Developing SQL Server Databases

CREATE PROC IsItOK (
@OK VARCHAR(10))

AS
IF @OK = ‘OK’
RETURN 0

ELSE
RETURN -100

The calling batch:

DECLARE @ReturnCode INT
EXEC @ReturnCode = IsITOK ‘OK’
PRINT @ReturnCode
EXEC @ReturnCode = IsItOK ‘NotOK’
PRINT @ReturnCode

Return:

0
-100

Path and Scope of Returning Data
Any stored procedure has four possible methods of returning data (select, raiserror, out-
put parameters, and return). Deciding which method is right for a given stored procedure
depends on the quantity and purpose of the data to be returned, and the scope of the scope
of the method used to return the data. The return scope for the four methods is as follows:

✦ return and output parameters are both passed to local variables in the immediate
calling procedure or batch within SQL Server.

✦ raiserror and a selected record set are both passed to the end-user client applica-
tion. The immediate calling procedure or batch is completely unaware of the
raiserror or selected record set.

If Query Analyzer executes a batch that calls stored procedure A, which then calls stored pro-
cedure B, stored procedure A will not see any raiserrors or record sets returned by proce-
dure B, as shown in Figure 13-3.

If a stored procedure needs to work with a result set generated by a stored procedure it’s call-
ing, a temporary table can be used to pass the data. If the calling procedure creates the tem-
porary table, the scope of the temporary table will make it available within any called
procedures.

In Figure 13-3, procedure B can execute DML statements against any temporary table created
in procedure A. When procedure B is complete, the data are ready for procedure A.

With every returned record set, SQL Server will by default also send a message stating the
number of rows affected or returned. Not only is this a nuisance, but I have found in my
informal testing that it can slow a query by up to 17 percent.

Therefore, by habit, begin every stored procedure with the following code:

AS
SET NoCount ON

There’s more about configuring the connection in Chapter 23, “Configuring SQL Server.”

16549359 ch13.F 11/21/02 9:48 AM Page 412

413Chapter 13 ✦ Developing Stored Procedures

Figure 13-3: The path and scope of return methods
differs among the four possible methods of returning
data.

Using Stored Procedures Within Queries
Stored procedures are typically executed with the exec command or submitted by the client
application. However, a stored procedure can be used within the from portion of a query if
the stored procedure is called from within an openquery() function.

Openquery() is a distributed query function that sends a pass-through query to an external
data source for remote execution. When the openquery() function includes a stored proce-
dure, it simply submits the stored procedure to the local server.

The openquery() function is explained in more detail in Chapter 18, “Working with
Distributed Queries.”

Since the result set of the stored procedure is returned via a function being used by a data
source in the from clause of the select statement, a where clause can further reduce the
output of the stored procedure.

While this technique enables the use of stored procedures within a select statement, it’s not
as optimized as the technique of passing any row restrictions to the stored procedure for pro-
cessing within the stored procedure. The only benefit of using openquery() is that it enables
a complex stored procedure to be called from within an ad hoc query.

For the purpose of the following code, assume that a linked server connection has been
established to the local server with the name NOLI:

SELECT * FROM OpenQuery(
NOLI
‘EXEC OBXKites.dbo.pProductCategory_Fetch’)
WHERE ProductCategoryDescription Like ‘%stuff%’

Cross-
Reference

Query
Analyzer

Proc A

Temp Table

Result Set

Proc B

DML

EXEC

EXEC

Raiserror

Raiserror

Result Set

Return
Output Parameters

Return
Output Parameters

Return Method Scope

16549359 ch13.F 11/21/02 9:48 AM Page 413

414 Part II ✦ Developing SQL Server Databases

Result:

ProductCategoryName ProductCategoryDescription
---------------------- ----------------------------------
OBX OBX stuff
Toy Kids stuff

If you need to call complex code within a select statement, using openquery() to call a
stored procedure works, but it’s a bit bizarre. A better method is to use a case expression or
to create a user-defined function.

Debugging Stored Procedures
Query Analyzer includes a stored-procedure debugger similar to the debugging environment
found in Visual Studio. While it is limited to debugging saved stored procedures, and a proce-
dure cannot be edited within the debugger, it does offer several useful features, including:

✦ The ability to watch local and global variables.

✦ The ability to watch the execution flow when working with a complex while loop or
cursor.

✦ The ability to observe the call stack, which is very useful when you are debugging a
complex set of nested stored procedures and triggers.

To use the debugger, follow these steps:

1. Open the Object Browser pane by either (1) clicking the object browser toolbar button,
(2) pressing F8, or (3) selecting Tools ➪ Object Browser ➪ Show/Hide.

2. In the Object Browser, select the stored procedure to be debugged.

3. Right-click the stored procedure and select Debug from the bottom of the menu.

4. Enter any parameters into the Debug Procedure dialog box, as shown in Figure 13-4.

Figure 13-4: The stored-procedure debugger
first gathers any required parameters.

To enter the parameters, select each individual parameter in the list and enter the value in
the Value text box. A null may be passed to the parameter using the “Set to null” checkbox.
Query Analyzer will retain the parameters for subsequent debugging runs of the stored
procedure.

16549359 ch13.F 11/21/02 9:48 AM Page 414

415Chapter 13 ✦ Developing Stored Procedures

Because the debugger might be used repeatedly to test a procedure with the same parameter
data, you can, by checking the “Auto roll back” checkbox, set the debugger to automatically
roll back all the work done by the stored procedure during debugging.

Once the parameters are set, the debugger opens a new connection window for interactive
debugging. The debugging window (Figure 13-5) adds a Debugging toolbar to the code pane
as well as three new panes: the Local Variable pane, the Global Variable pane, and the Call
Stack pane.

Most of the toolbar buttons are self-explanatory. However, go (F5), which executes the stored
procedure, can also start the debugger if the “stepping through the procedure” toolbar but-
ton appears unavailable.

The whole point of the debugger is to execute the stored procedure one command at a time.
This process of stepping through the code can be controlled using the toolbar buttons. When
stepping through the procedure, the “Step into” button executes a single command and steps
into any called procedures. “Stepping over” executes any called code without stepping
through the called code. “Step to cursor” runs until the cursor fetches a new row.

The local variables are automatically listed in the Local Variable pane. The value can be
manipulated in the pane. Additional valid global variables may be added to the global vari-
able pane, but, of course, their values will be read-only.

The debugger actually runs sp_sdidebug, a system stored procedure that simulates the SQL
Server T-SQL environment. If you don’t have permission to execute sp_sdidebug, the debug-
ger won’t work.

Figure 13-5: Query Analyzer’s Stored Procedure Debugger can step through a stored
procedure and expose the variables and execution flow.

16549359 ch13.F 11/21/02 9:48 AM Page 415

416 Part II ✦ Developing SQL Server Databases

Executing Remote Stored Procedures
Two methods exist for calling a stored procedure located on another server: a four-part name
reference and a distributed query. Both methods require that the remote server be a linked
server. Stored procedures may only be called remotely; they may not be created remotely.

Establishing security links to external data servers is covered in Chapter 18, “Working with
Distributed Queries.”

The remote stored procedure may be executed by means of the four-part name:

server.database.owner.procedurename

For example, the following code adds a new product category to the OBX Kites database on
Noli’s (my development server) second instance of SQL Server:

EXEC [Noli\SQL2].OBXKites.dbo.pProductCategory_AddNew
‘Food’, ‘Eatables’

Alternately, the OpenQuery() function can be used to call a remote stored procedure:

OpenQuery(linked server name, ‘exec stored procedure’)

The next code sample executes the pCustomerType_Fetch stored procedure in the default
database for the user login being used to connect to Noli\SQL2. If the default database is
incorrect, a three-part name can be used to point to the correct database.

SELECT CustomerTypeName, DiscountPercent, [Default]
FROM OPENQUERY(
[Noli\SQL2], ‘OBXKites.dbo.pCustomerType_Fetch’)

Result:

CustomerTypeName DiscountPercent Default
------------------- --------------- -------
Preferred 10 0
Retail 00 1
Wholesale 15 0

As with any other distributed query, the Distributed Transaction Coordinator service must be
running if the transaction updates data in more than one server.

The Complete Stored Procedure
This section presents a complete stored procedure scenario from the OBX Kites sample
database. The three stored procedures, pGetPrice, pOrder_AddNew, and pOrder_AddItem,
work together to add orders to the database. They demonstrate many features of T-SQL pro-
gramming and stored procedures. Each of these headings explains the stored procedure and
then lists the code.

The code for these three stored procedures and the batch files that call them can be found
within the OBXKites_Create.sql and OBXKites_Populate.sql files.

On the
CD-ROM

Cross-
Reference

16549359 ch13.F 11/21/02 9:48 AM Page 416

417Chapter 13 ✦ Developing Stored Procedures

The pGetPrice Stored Procedure
The pGetPrice stored procedure demonstrates parameter defaults, output parameters, error
handling, lock timeout, and deadlock handling. It accepts a product code, optional date, and
optional customer-contact code. Using that information, it determines the correct price and
returns that price as an output variable.

A contact may be assigned to a customer type, and each customer type may have a standing
discount. If the customer’s contact code was supplied, the first task of the stored procedure is
to locate the discount. If no contact code was supplied, the discount percentage is set to zero.

The OBX Kites database uses a price table in which each product may have a different price
each day. This method stores a history of prices and enables the store to enter price changes
in advance. If pGetPrice is run with a null data parameter, the current date is used. In either
case, the procedure must locate the most recent price. To do that it must determine the effec-
tive date of the price by finding the max price date that’s less than or equal to the required
date. Once the effective price date is determined, locating the correct price is easy.
pGetPrice uses a subquery to determine the effective date.

Every SQL DML statement is followed by a general error check that passes control to an error
handler. If the error is a lock timeout or deadlock, the error handler waits for .25 seconds and
goes to the LockTimeOutRetry: label at the beginning of the procedure to try again to gain
the lock and complete the procedure. If after five attempts the lock can’t be gained, the error
handler reports the error and bombs out of the procedure. Here’s the actual code:

CREATE PROCEDURE pGetPrice(
@Code CHAR(10),
@PriceDate DATETIME = NULL,
@ContactCode CHAR(15) = NULL,
@CurrPrice MONEY OUTPUT
)

AS
-- Will return the current price for the product
-- for today or any other date
-- The customer type determines the discount percentage
-- the output parameter, @CurrPrice, will contain
-- the effective price

-- example code for calling this sproc
-- Declare @Price money
-- EXEC GetPrice ‘1006’, NULL, @Price OUTPUT
-- Select @Price

SET NOCOUNT ON
DECLARE
@DiscountPercent NUMERIC (4,2),
@Err INT,
@ErrCounter INT

SET @ErrCounter = 0
SET @CurrPrice = NULL

LockTimeOutRetry:

16549359 ch13.F 11/21/02 9:48 AM Page 417

418 Part II ✦ Developing SQL Server Databases

IF @PriceDate IS NULL
SET @PriceDate = GETDATE()
-- set the discount percent
-- if no customer lookup then it’s zilch discount
SELECT @DiscountPercent = CustomerType.DiscountPercent
FROM dbo.Contact
JOIN dbo.CustomerType
ON contact.CustomerTypeID = CustomerType.CustomerTypeID

WHERE ContactCode = @ContactCode
SET @Err = @@ERROR
IF @Err <> 0 GOTO ErrorHandler

IF @DiscountPercent IS NULL
SET @DiscountPercent = 0

SELECT @CurrPrice = Price * (1-@DiscountPercent)
FROM dbo.Price
JOIN dbo.Product
ON Price.ProductID = Product.ProductID

WHERE Code = @Code
AND EffectiveDate =
(SELECT MAX(EffectiveDate)
FROM dbo.Price
JOIN dbo.Product
ON Price.ProductID = Product.ProductID

WHERE Code = @Code
AND EffectiveDate <= @PriceDate)

IF @CurrPrice IS NULL
BEGIN
RAISERROR(
‘Code: ‘’%s’’ has no established price.’,15,1, @Code)
RETURN -100

END

SET @Err = @@ERROR
IF @Err <> 0 GOTO ErrorHandler

RETURN 0

ErrorHandler:
IF (@Err = 1222 OR @Err = 1205) AND @ErrCounter = 5
BEGIN
RAISERROR (
‘Unable to Lock Data after five attempts.’, 16,1)

RETURN -100
END

IF @Err = 1222 OR @Err = 1205 -- Lock Timeout / Deadlock
BEGIN
WAITFOR DELAY ‘00:00:00.25’
SET @ErrCounter = @ErrCounter + 1
GOTO LockTimeOutRetry

END
-- else unknown error
RAISERROR (@err, 16,1) WITH LOG
RETURN -100

16549359 ch13.F 11/21/02 9:48 AM Page 418

419Chapter 13 ✦ Developing Stored Procedures

The pOrder_AddNew Stored Procedure
An order consists of data in two tables, the [Order] table and the OrderDetail table. The
[Order] table holds header information and the OrderDetail table contains the products
on the order. Initiating an order involves collecting and validating the header information,
generating an OrderNumber, and inserting a row in the [Order] table.

The pOrder_AddNew stored procedure accepts the customer-contact code, the employee code
for the salesperson responsible for the sale, the location of the sale, and the date of the sale.

Sales are sometimes after the fact, so pOrder_AddNew can’t assume the current date is the
sales date. If the order date is the default (null), the insert statement uses the current date.

The customer code is also optional. If a customer-contact code is not provided, the default
sets it to 0, which is then converted to a ContactID of null. The database schema accepts a
null as the customer, recognizing that some sales are anonymous.

Every entry is in human-recognizable codes, but the database uses GUIDs for replication, and
therefore the procedure looks up the GUID for the customer, location, and employee, validat-
ing the codes during the lookup.

When all the codes are validated, the procedure finds the current order number and increases
it by one. The order is finally inserted within the same transaction in which the order number
is gathered. This occurs within a serialized transaction to prevent duplicates. (Real-world
applications typically have a more complex method of generating an invoice number or order
number that handles generating order numbers at multiple sites.)

The procedure uses a similar error-handling scheme as pGetPrice. One notable difference is
that the error-detection code within the transaction rolls back the transaction prior to jump-
ing to the error handler.

The last act of the stored procedure is to return the order number as an output variable, per-
mitting the calling batch to use the order number when adding items to the order. The follow-
ing code creates the pOrder_AddNew stored procedure:

CREATE PROC pOrder_AddNew (
@ContactCode CHAR(15) = 0,

-- if default then non-tracked customer
@EmployeeCode CHAR(15),
@LocationCode CHAR(15),
@OrderDate DATETIME = NULL,
@OrderNumber INT OUTPUT
)

AS
-- Logic:
-- If supplied, check CustomerID valid
SET NOCOUNT ON
DECLARE
@ContactID UNIQUEIDENTIFIER,
@OrderID UNIQUEIDENTIFIER,
@LocationID UNIQUEIDENTIFIER,
@EmployeeID UNIQUEIDENTIFIER,
@Err INT,
@ErrCounter INT

SET @ErrCounter = 0

16549359 ch13.F 11/21/02 9:48 AM Page 419

420 Part II ✦ Developing SQL Server Databases

LockTimeOutRetry:

-- Set Customer ContactID
IF @ContactCode = 0
SET @ContactID = NULL

ELSE
BEGIN
SELECT @ContactID = ContactID
FROM dbo.Contact
WHERE ContactCode = @ContactCode

SET @Err = @@ERROR
IF @Err <> 0 GOTO ErrorHandler

IF @ContactID IS NULL
BEGIN -- a customer was submitted but not found
RAISERROR(
‘CustomerCode: ‘’%s not found’,15,1, @ContactCode)

RETURN -100
END

END

-- Set LocationID
SELECT @LocationID = LocationID
FROM dbo.Location
WHERE LocationCode = @LocationCode

SET @Err = @@ERROR
IF @Err <> 0 GOTO ErrorHandler

IF @LocationID IS NULL
BEGIN -- Location not found
RAISERROR(
‘LocationCode: ‘’%s’’ not found’,15,1, @LocationCode)

RETURN -100
END

IF EXISTS(SELECT *
FROM dbo.Location
WHERE LocationID = @LocationID
AND IsRetail = 0)

BEGIN -- Location not found
RAISERROR(
‘LocationCode: ‘’%s’’ not retail’,15,1, @LocationCode)
RETURN -100

END

-- Set EmployeeID
SELECT @EmployeeID = ContactID
FROM dbo.Contact
WHERE ContactCode = @EmployeeCode

SET @Err = @@ERROR
IF @Err <> 0 GOTO ErrorHandler

IF @EmployeeCode IS NULL
BEGIN -- Location not found
RAISERROR(
‘EmployeeCode: ‘’%s’’ not found’,15,1, @EmployeeCode)

RETURN -100
END

16549359 ch13.F 11/21/02 9:48 AM Page 420

421Chapter 13 ✦ Developing Stored Procedures

-- OrderNumber
SET @OrderID = NEWID()
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
BEGIN TRANSACTION
SELECT @OrderNumber = Max(OrderNumber) + 1
FROM [Order]

SET @OrderNumber = ISNULL(@OrderNumber, 1)
SET @Err = @@ERROR
IF @Err <> 0
BEGIN
ROLLBACK TRANSACTION
GOTO ErrorHandler

END
-- All OK Perform the Insert
INSERT dbo.[Order] (

OrderID, ContactID, OrderNumber,
EmployeeID, LocationID, OrderDate)

VALUES (
@OrderID, @ContactID,@OrderNumber,
@EmployeeID, @LocationID, ISNULL(@OrderDate,GETDATE()))

IF @Err <> 0
BEGIN
ROLLBACK TRANSACTION
GOTO ErrorHandler

END
COMMIT TRANSACTION

RETURN -- @OrderNumber already set

ErrorHandler:
IF (@Err = 1222 OR @Err = 1205) AND @ErrCounter = 5
BEGIN
RAISERROR (‘Unable to Lock Data after five attempts.’, 16,1)
RETURN -100

END
IF @Err = 1222 OR @Err = 1205 -- Lock Timeout / Deadlock
BEGIN
WAITFOR DELAY ‘00:00:00.25’
SET @ErrCounter = @ErrCounter + 1
GOTO LockTimeOutRetry

END
-- else unknown error
RAISERROR (@err, 16,1) WITH LOG
RETURN -100

The pOrder_AddItem Store Procedure
With the order inserted, the third procedure in the set adds items to the order. Sales and
inventory have to be flexible, so this procedure has lots of defaults. The order number and
the quantity are the only required parameters. The item is identified by either the product
code or a description. The unit price can be either passed to the stored procedure or looked
up with the pGetPrice procedure. Lastly, if the item is going to be shipped, a requested ship
date and ship comment can be entered. If the ship information is null, the procedure
assumes the item was delivered at the time of the sale.

16549359 ch13.F 11/21/02 9:48 AM Page 421

422 Part II ✦ Developing SQL Server Databases

As with the other stored procedures, pOrder_AddItem begins by validating every parameter
and fetching the associated GUID to be inserted in the OrderDetail table.

The code that handles the unit price only calls pGetPrice if the unit-price parameter is not
null. (The following chapter, Chapter 14, “Building User-Defined Functions,” will develop an
fGetPrice function.) For the purpose of comparison this procedure also illustrates retriev-
ing the price using the function, but that part of the code is commented out. Here’s the code:

CREATE PROCEDURE pOrder_AddItem(
@OrderNumber CHAR(15),
@Code CHAR(15) = 0, -- if default then non-stock Product
@NonStockProduct NVARCHAR(256) = NULL,
@Quantity NUMERIC(7,2),
@UnitPrice MONEY = 0, -- If Default then lookup the Price
@ShipRequestDate DATETIME = NULL, --default to Today
@ShipComment NVARCHAR(256) = NULL -- optional
)

AS

DECLARE
@OrderID UNIQUEIDENTIFIER,
@ProductID UNIQUEIDENTIFIER,
@ContactCode CHAR(15),
@PriceDate DATETIME,
@Err INT,
@ErrCounter INT

SET @ErrCounter = 0

LockTimeOutRetry:

-- Fetch OrderID
SELECT @OrderID = OrderID
FROM dbo.[Order]
WHERE OrderNumber = @OrderNumber

SET @Err = @@ERROR
IF @Err <> 0 GOTO ErrorHandler

-- Fetch ProductID
SELECT @ProductID = ProductID
FROM Product
WHERE Code = @Code

SET @Err = @@ERROR
IF @Err <> 0 GOTO ErrorHandler

--- Fetch Contact Code / PriceDate
SELECT @ContactCode = ContactCode, @PriceDate = OrderDate

FROM dbo.[Order]
LEFT JOIN Contact
ON [Order].ContactID = Contact.ContactID

SET @Err = @@ERROR
IF @Err <> 0 GOTO ErrorHandler

16549359 ch13.F 11/21/02 9:48 AM Page 422

423Chapter 13 ✦ Developing Stored Procedures

-- Fetch UnitPrice
IF @UnitPrice IS NULL
EXEC pGetPrice
@Code, @PriceDate, @ContactCode, @UnitPrice OUTPUT
-- Alternate GetPrice function method
-- SET @UnitPrice = dbo.fGetPrice (
-- @Code,@PriceDate, @ContactCode)

SET @Err = @@ERROR
IF @Err <> 0 GOTO ErrorHandler

IF @UnitPrice IS NULL
BEGIN
RAISERROR(
‘Code: ‘’%s’’ has no established price.’,15,1, @Code)

RETURN -1
END

-- Set ShipRequestDate
IF @ShipRequestDate IS NULL
SET @ShipRequestDate = @PriceDate

-- Do the insert
INSERT OrderDetail(
OrderID, ProductID, NonStockProduct, Quantity,
UnitPrice, ShipRequestDate, ShipComment)

VALUES (
@OrderID, @ProductID, @NonStockProduct, @Quantity,
@UnitPrice, @ShipRequestDate, @ShipComment)

SET @Err = @@ERROR
IF @Err <> 0 GOTO ErrorHandler

RETURN 0

ErrorHandler:
IF (@Err = 1222 OR @Err = 1205) AND @ErrCounter = 5
BEGIN
RAISERROR (
‘Unable to Lock Data after five attempts.’, 16,1)

RETURN -100
END

IF @Err = 1222 OR @Err = 1205 -- Lock Timeout / Deadlock
BEGIN
WAITFOR DELAY ‘00:00:00.25’
SET @ErrCounter = @ErrCounter + 1
GOTO LockTimeOutRetry

END
-- else unknown error
RAISERROR (@err, 16,1) WITH LOG
RETURN -100

Adding an Order
So you can see the stored procedures in action, the following batch from OBXKites_Populate.
sql illustrates creating two orders. This is the exact code that would be sent to SQL Server to
by the front-end application to insert two orders.

16549359 ch13.F 11/21/02 9:48 AM Page 423

424 Part II ✦ Developing SQL Server Databases

The pOrder_AddNew stored procedure creates a new order row and returns the order number
to the calling batch. The calling batch can then create order detail rows using the same order
number by calling the pOrder_AddItem stored procedure. The batch’s @OrderNumber local
variable is used to capture the order number from pOrder_AddNew and pass it to each call of
pOrder_AddItem.

The first order explicitly names the parameters. The second order is entered and provides
the parameters by order.

DECLARE @OrderNumber INT

--Order 1
EXEC pOrder_AddNew
@ContactCode = ‘101’,
@EmployeeCode = ‘120’,
@LocationCode = ‘CH’,
@OrderDate=NULL,
@OrderNumber = @OrderNumber output

EXEC pOrder_SetPriority @OrderNumber, ‘1’

EXEC pOrder_AddItem
@OrderNumber = @OrderNumber,
@Code = ‘1002’,
@NonStockProduct = NULL,
@Quantity = 12,
@UnitPrice = NULL,
@ShipRequestDate = ‘11/15/01’,
@ShipComment = NULL

-- Order 2
EXEC pOrder_AddNew
‘101’, ‘120’, ‘CH’, NULL, @OrderNumber output

EXEC pOrder_AddItem
@OrderNumber, ‘1002’, NULL, 3, NULL, NULL, NULL

EXEC pOrder_AddItem
@OrderNumber, ‘1003’, NULL, 5, NULL, NULL, NULL

EXEC pOrder_AddItem
@OrderNumber, ‘1004’, NULL, 2, NULL, NULL, NULL

EXEC pOrder_AddItem
@OrderNumber, ‘1044’, NULL, 1, NULL, NULL, NULL

Summary
Using stored procedures is a way to save and optimize batches. Stored procedures are com-
piled and stored in memory the first time they are executed. No method is faster at executing
SQL commands, or more popular for moving the processing close to the data. Like a batch, a
stored procedure can return a record set by simply executing a select command.

The next chapter covers user-defined functions, which combine the benefits of stored proce-
dures with the benefits of views at the cost of portability.

✦ ✦ ✦

16549359 ch13.F 11/21/02 9:48 AM Page 424

Building User-
Defined Functions

SQL Server 2000 introduces user-defined functions, which offer
the benefits of both views and stored procedures at the cost of

portability.

User-defined functions offer the benefits of views because they can
be used within the from clause of a select statement or an expres-
sion, and they can be schema-bound. In addition, user-defined func-
tions can accept parameters while views cannot.

User-defined functions offer the benefits of stored procedures
because they are compiled and optimized in the same way.

The chief argument against developing with user-defined functions
has to do with their portability. User-defined functions are not in the
ANSI SQL 92 Standard and, while they are included in the ANSI SQL 99
Standard, they have by no means been adopted by the industry. As a
result, any user-defined function will have to be rewritten as a view or
stored procedure if the database must be ported to another database
platform in the future. To complicate matters further, any client-side
code that references a user-defined function within a select state-
ment will have to be rewritten and likely redesigned as well.

If your IT shop is committed to Microsoft database technologies,
user-defined functions offer several compelling benefits. However,
if there’s a chance that the database may be ported to a different
database platform in the future, I recommend avoiding user-
defined functions for portability reasons.

User-defined functions come in three distinct types:

✦ Scalar functions that return a single value.

✦ Updatable inline table functions similar to views.

✦ Multi-statement table functions that build a result set with
code.

Scalar Functions
A scalar function is one that returns a single specific value. The func-
tion can accept multiple parameters, perform a calculation, and then
return a single value. These user-defined functions may be used
within any expressions within SQL Server, even expressions within
check constraints. The value is passed back through the function by

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating scalar
functions

Replacing views with
inline table-valued
functions

Using complex code
within multistatement
table-valued functions to
generate a result set

✦ ✦ ✦ ✦

17549359 ch14.F 11/21/02 9:48 AM Page 425

426 Part II ✦ Developing SQL Server Databases

means of a return command. The return command should be the last command in the user-
defined function.

The scalar function must be deterministic, meaning that it must repeatedly return the same
value for the same input parameters. For this reason, certain functions and global variables
that return variable data — such as @@connections, getdate(), rasd(), newid(), and
others — are not allowed within scalar functions.

User-defined scalar functions are not permitted to update the database, but they may work
with a local temporary table. They cannot return BLOB data such as text, ntext, or image
data-type variables, nor can they return table variables or cursor data types.

Creating a Scalar Function
User-defined functions are created, altered, or dropped with the same DDL commands used
for other objects, although the syntax is slightly different to allow for the returned value:

CREATE FUNCTION FunctionName (InputParameters)
RETURNS DataType
AS
BEGIN
Code
RETURN Expression

END

The input parameters include a data-type definition and may optionally include a default
value similar to stored procedure parameters. Function parameters differ from stored proce-
dure parameters in that even if the default is desired, the parameter is required to call the
function. Parameters with defaults don’t become optional parameters. To request the default
when calling the function, pass the keyword default to the function.

The following user-defined scalar function performs a simple mathematical function. The
second parameter includes a default value:

CREATE FUNCTION dbo.Multiply (@A INT, @B INT = 3)
RETURNS INT
AS
BEGIN

RETURN @A * @B
End
go

SELECT dbo.Multiply (3,4)
SELECT dbo.Multiply (7, DEFAULT)

Result:

12
21

Microsoft-developed system functions are stored in the master database and must be called
with a prefix of two colons, as in::fnFunctionName.

For a more complex scalar user-defined function, the pGetPrice stored procedure from the
OBX Kites sample database returns a single result via an output parameter. The fGetPrice

Note

17549359 ch14.F 11/21/02 9:48 AM Page 426

427Chapter 14 ✦ Building User-Defined Functions

stored procedure or function has to determine the correct price for any given date and for
any customer discount. Because it returns a single value, it’s a prime candidate for a scalar
user-defined function.

The function uses the same internal code as the stored procedure, except that the
@CurrPrice is passed back through the final return instead of an output variable. The func-
tion uses a default value of null for the contact code. Another difference between the two is
that the stored-procedure version of fGetPrice can accept a null default for the data and
assume the current date for the sale, whereas user-defined functions must be deterministic
and don’t allow getdate() within the function, meaning that the date must always be passed
to the function. Here is the code for the fGetPrice user-defined scalar function:

CREATE FUNCTION fGetPrice (
@Code CHAR(10),
@PriceDate DATETIME,
@ContactCode CHAR(15) = NULL)

RETURNS MONEY
As
BEGIN
DECLARE @CurrPrice MONEY
DECLARE @DiscountPercent NUMERIC (4,2)
-- set the discount percent
-- if no customer lookup then it’s zilch discount

SELECT @DiscountPercent = CustomerType.DiscountPercent
FROM dbo.Contact
JOIN dbo.CustomerType
ON contact.CustomerTypeID =

CustomerType.CustomerTypeID
WHERE ContactCode = @ContactCode

IF @DiscountPercent IS NULL
SET @DiscountPercent = 0

SELECT @CurrPrice = Price * (1-@DiscountPercent)
FROM dbo.Price

JOIN dbo.Product
ON Price.ProductID = Product.ProductID

WHERE Code = @Code
AND EffectiveDate =
(SELECT MAX(EffectiveDate)

FROM dbo.Price
JOIN dbo.Product
ON Price.ProductID = Product.ProductID

WHERE Code = @Code
AND EffectiveDate <= @PriceDate)

RETURN @CurrPrice
END

Calling a Scalar Function
Scalar functions may be used anywhere within any expression that accepts a single value.
User-defined scalar functions must always be called by means of at least a two-part name
(owner.name). The following script demonstrates calling the fGetPrice() function within
OBX Kites:

USE OBXKites
SELECT dbo.fGetPrice(‘1006’,GetDate(),DEFAULT)

17549359 ch14.F 11/21/02 9:48 AM Page 427

428 Part II ✦ Developing SQL Server Databases

SELECT dbo.fGetPrice(‘1001’,’5/1/2001’,NULL)

Result:

125.9500

14.9500

dbo.GenColUpdated is a user-defined scalar function used within the dynamic audit trail
that is covered in Chapter 16, “Advanced Server-Side Programming.” The user-defined scalar
function, dbo.TitleCase, is created in Chapter 6, “Retrieving Data with Select.”

Creating Functions with Schema Binding
All three types of user-defined functions may be created with the significant benefit of
schema binding. Views may be schema-bound, but this feature is not available for stored pro-
cedures. Schema binding prevents altering or dropping of any object the function depends
upon. If a schema-bound function references TableA, columns may be added to TableA, but
no existing columns can be altered or dropped and neither can the table itself.

To create a function with schema binding, add the option after returns and before as during
the function creation, as shown here:

CREATE FUNCTION FunctionName (Input Parameters)
RETURNS DataType
WITH SCHEMA BINDING
AS
BEGIN
Code
RETURNS Expression

END

Schema binding not only alerts the developer that the change will affect an object, it prevents
the change. To remove schema binding so that changes can be made, alter the function so
that schema binding is no longer included.

Enterprise Manager’s table designer removes schema binding without notification in order to
make object changes.

Inline Table-Valued Functions
The second type of user-defined function is very similar to a view. Both are wrapped for a
stored select statement. An inline table-valued user-defined function retains the benefits of a
view, and adds compilation and parameters. As with a view, if the select statement is
updateable, the function will be updateable.

Creating an In-Line Table-Valued Function
The inline table-valued user-defined function has no begin/end body. Instead, the select
statement is returned as a table data type:

Caution

Cross-
Reference

17549359 ch14.F 11/21/02 9:48 AM Page 428

429Chapter 14 ✦ Building User-Defined Functions

CREATE FUNCTION FunctionName (InputParameters)
RETURNS Table
AS
RETURN (Select Statement)

The following inline table-valued user-defined function is functionally the equivalent to the
vEventList view created in Chapter 9, “Creating Views.”

USE CHA2
go
CREATE FUNCTION fEventList ()
RETURNS Table
AS
RETURN(
SELECT dbo.CustomerType.Name AS Customer,

dbo.Customer.LastName, dbo.Customer.FirstName,
dbo.Customer.Nickname,
dbo.Event_mm_Customer.ConfirmDate, dbo.Event.Code,
dbo.Event.DateBegin, dbo.Tour.Name AS Tour,
dbo.BaseCamp.Name, dbo.Event.Comment
FROM dbo.Tour

INNER JOIN dbo.Event
ON dbo.Tour.TourID = dbo.Event.TourID

INNER JOIN dbo.Event_mm_Customer
ON dbo.Event.EventID = dbo.Event_mm_Customer.EventID

INNER JOIN dbo.Customer
ON dbo.Event_mm_Customer.CustomerID

= dbo.Customer.CustomerID
LEFT OUTER JOIN dbo.CustomerType

ON dbo.Customer.CustomerTypeID
= dbo.CustomerType.CustomerTypeID

INNER JOIN dbo.BaseCamp
ON dbo.Tour.BaseCampID = dbo.BaseCamp.BaseCampID)

Calling an Inline Table-Valued Function
To retrieve data through fEventList, call the function within the from portion of a select
statement:

SELECT LastName, Code, DateBegin
FROM dbo.fEventList()

Result:

LastName Code DateBegin
------------ ---------- ----------------------------
Anderson 01-003 2001-03-16 00:00:00.000
Brown 01-003 2001-03-16 00:00:00.000
Frank 01-003 2001-03-16 00:00:00.000

As with stored procedures, a significant performance hit occurs the first time the function is
called while the code is being compiled and stored in memory. The subsequent calls are fast.

In comparison to an inline table-valued user-defined function to other SQL Server objects, the
performance of an inline function is similar to that of a stored procedure and about 5–10 per-
cent faster than a view.

17549359 ch14.F 11/21/02 9:48 AM Page 429

430 Part II ✦ Developing SQL Server Databases

Using Parameters
An advantage of inline table-valued functions over views is the function’s ability to include
parameters within the pre-compiled select statement. Views, on the other hand, do not
include parameters, and restricting the result at runtime is typically done by means of adding
a where clause to the select statement that calls the view.

The following examples compare adding a restriction to the view to using a function para-
meter. The following view returns the current price list for all products:

USE OBXKites
go

CREATE VIEW vPricelist
AS
SELECT Code, Price.Price
FROM dbo.Price
JOIN dbo.Product P
ON Price.ProductID = P.ProductID

WHERE EffectiveDate =
(SELECT MAX(EffectiveDate)
FROM dbo.Price
WHERE ProductID = P.ProductID
AND EffectiveDate <= GetDate())

To retrieve the current price for a single product, the calling select statement adds a where
clause restriction when calling the view:

SELECT *
FROM vPriceList
WHERE Code = ‘1001’

Result:

Code Price
--------------- ---------------------
1001 14.9500

SQL Server internally creates a new SQL statement from vPricelist and the calling select
statement’s where-clause restriction and then generates a query execution plan.

In contrast, a function allows the restriction to be passed as a parameter to the pre-compiled
SQL select statement:

CREATE FUNCTION dbo.fPriceList (
@Code CHAR(10) = Null, @PriceDate DateTime)

RETURNS Table
AS
RETURN(
SELECT Code, Price.Price
FROM dbo.Price
JOIN dbo.Product P
ON Price.ProductID = P.ProductID

WHERE EffectiveDate =
(SELECT MAX(EffectiveDate)
FROM dbo.Price

17549359 ch14.F 11/21/02 9:48 AM Page 430

431Chapter 14 ✦ Building User-Defined Functions

WHERE ProductID = P.ProductID
AND EffectiveDate <= @PriceDate)

AND (Code = @Code
OR @Code IS NULL)

)

If the function is called with a default code, the price for the entered date is returned for all
products:

SELECT * FROM dbo.fPriceList(DEFAULT, ‘2/20/2002’)

Result:

Code Price
--------------- ---------------------
1047 6.9500
1049 12.9500
...

If a product code is passed in the first input parameter, the pre-compiled select statement
within the function returns the single product row:

SELECT * FROM dbo.fPriceList(‘1001’, ‘2/20/2002’)

Result:

Code Price
--------------- ---------------------
1001 14.9500

Multistatement Table-Valued Functions
The multistatement table-valued user-defined function combines the scalar function’s ability
to contain complex code with the inline table-valued function’s ability to return a result set.
This type of function creates a table variable and then populates it within code. The table is
then passed back from the function so that it may be used within select statements.

The primary benefit of the multistatement table-valued user-defined function is that complex
result sets may be generated within code and then easily used with a select statement.
Because of this, these functions may be used in place of stored procedures that return
result sets.

Creating a Multistatement Table-Valued Function
The syntax to create the multistatement table-valued function is very similar to that of the
scalar user-defined function:

CREATE FUNCTION FunctionName (InputParamenters)
RETURNS @TableName TABLE (Columns)
AS
BEGIN
Code to populate table variable
RETURN

END

17549359 ch14.F 11/21/02 9:48 AM Page 431

432 Part II ✦ Developing SQL Server Databases

The following example builds a multistatement table-valued user-defined function that
returns a basic result set:

1. The function first creates a table variable called @Price within the create function
header.

2. Within the body of the function, two insert statements populate the @Price table
variable.

3. When the function completes execution, the @Price table variable is passed back as
the output of the function.

The fPriceAvg function returns every price in the Price table and the average price for
each product:

USE OBXKite
go

CREATE FUNCTION fPriceAvg()
RETURNS @Price TABLE
(Code CHAR(10),
EffectiveDate DATETIME,
Price MONEY)

AS
BEGIN
INSERT @Price (Code, EffectiveDate, Price)
SELECT Code, EffectiveDate, Price
FROM Product
JOIN Price
ON Price.ProductID = Product.ProductID

INSERT @Price (Code, EffectiveDate, Price)
SELECT Code, Null, Avg(Price)
FROM Product
JOIN Price
ON Price.ProductID = Product.ProductID

GROUP BY Code
RETURN

END

Calling the Function
To execute the function, refer to it within the from portion of a select statement. The follow-
ing code retrieves the result from the fPriceAvg function:

SELECT *
FROM dbo.fPriceAvg()

Result:

Code EffectiveDate Price
------ ------------------------- --------
1001 2001-05-01 00:00:00.000 14.9500
1001 2002-06-01 00:00:00.000 15.9500
1001 2002-07-20 00:00:00.000 17.9500

17549359 ch14.F 11/21/02 9:48 AM Page 432

433Chapter 14 ✦ Building User-Defined Functions

Summary
User-defined functions expand the capabilities of SQL Server objects and open up a world
of flexibility within expressions and the select statement, but at the steep price of non-
portability.

Scalar user-defined functions return a single value and must be deterministic. Inline table-val-
ued user-defined functions are very similar to views and return the results of a single select
statement. Multistatement table-valued user-defined functions use code to populate a table
variable, which is then returned.

T-SQL code can be packaged in stored procedures, user-defined functions, and triggers. The
next chapter delves into triggers, specialized T-SQL procedures that fire in response to table-
level events.

✦ ✦ ✦

17549359 ch14.F 11/21/02 9:48 AM Page 433

17549359 ch14.F 11/21/02 9:48 AM Page 434

Implementing
Triggers

Triggers are special stored procedures attached to table events.
They can’t be directly executed; they fire only in response to an

insert, update, or delete event on a table. In the same way that
attaching code to a form or control event in Visual Basic or Access
causes that code to execute on the form or control event, triggers fire
on table events.

Users can’t bypass a trigger, and unless the trigger sends a message
to the client the end user is unaware of the trigger.

Developing triggers involves several SQL Server topics.
Understanding transaction flow and locking, T-SQL, and stored proce-
dures is a prerequisite for developing smooth triggers. Triggers con-
tain a few unique elements, and require careful planning, but provide
rock-solid execution of complex business rules and data validation.

Some DBAs oppose the use of triggers because they are proprietary
in nature. If the database is ported to another platform, all triggers
have to be rewritten. Triggers are also accused of hindering perfor-
mance. In defense of triggers, if a rule is too complex for a constraint,
a trigger is the only other acceptable location for it. A business rule
implemented outside the server is not a rule; it’s a suggestion. If a
trigger is poorly written, it will have a significant negative effect on
performance. However, a well-written trigger ensures data integrity
and provides good performance.

Trigger Basics
SQL Server triggers fire once per DML operation, not once per
affected row. This is different from Oracle, which can fire a trigger
once per operation, or once per row. While this may seem at first
glance to be a limitation, being forced to develop set-based triggers
actually helps ensure clean logic as well as fast performance.

Triggers may be created for the three table events that correspond to
the three data-modification commands: insert, update, and delete.

SQL Server 2000 has two kinds of triggers: instead of triggers and after
triggers. They differ in their purpose, timing, and effect, as detailed in
Table 15-1.

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating instead of and
after triggers

Using the transaction’s
data within the trigger

Integrating multiple
triggers

✦ ✦ ✦ ✦

18549359 ch15.F 11/21/02 9:48 AM Page 435

436 Part II ✦ Developing SQL Server Databases

Table 15-1: Trigger Type Comparison

Instead of Trigger After Trigger

DML statement Automatically rolled back Executed unless trigger rolls back
the transaction

Timing Before PK and FK constraints After the transaction is complete,
but before it’s committed

Number possible per One Multiple
table event

May be applied to views? Yes No

Nested? Depends on server option Depends on server option

Recursive? No Depends on database option

Transaction Flow
Developing triggers requires understanding the overall flow of the transaction; otherwise
conflicts between constraints and triggers can cause designing and debugging nightmares.

Every transaction moves through the various checks and code in the following order:

1. Identity insert check.

2. Nullability constraint.

3. Data-type check.

4. Instead of trigger execution. If an instead of trigger exists, execution of the DML
stops here. Instead of triggers are not recursive. Therefore, if the insert trigger
executes a DML command that fires the same event (insert, update or delete), the
instead of trigger will be ignored the second time around.

5. Primary-key constraint.

6. Check constraints.

7. Foreign-key constraint.

8. DML execution and update to the transaction log.

9. After trigger execution.

10. Commit transaction.

11. The data file is written.

Based on SQL Server’s transaction flow, a few points concerning developing triggers are
worth noting:

✦ An after trigger occurs after all constraints. Because of this it can’t correct data, and
therefore the data must pass any constraint checks, including foreign-key constraint
checks.

✦ An instead of trigger can circumvent foreign-key problems, but not nullability, data
type, or identity-column problems.

18549359 ch15.F 11/21/02 9:48 AM Page 436

437Chapter 15 ✦ Implementing Triggers

✦ An after trigger can assume that the data has passed all the other built-in data-integrity
checks.

✦ The after trigger occurs before the DML transaction is committed so it can roll back
the transaction if the data is unacceptable.

Creating Triggers
Triggers are created and modified with the standard DDL commands, create, alter, and
drop, as follows:

CREATE TRIGGER TriggerName ON TableName
AFTER Insert, Update Delete
AS
Trigger Code

Prior to SQL Server 2000, SQL Server only had after triggers. Because no distinction between
after and instead of was necessary, the old syntax was to create the trigger for insert,
update, or delete. So that the old after triggers will still work, after triggers can be created
by means of using the keyword for in place of after.

Triggers may be created with encryption, just like stored procedures. However, the encryption
is just as easily broken.

After Triggers
A table may have several after triggers for each of the three table events. After triggers may
only be applied to tables.

The traditional trigger is an after trigger that fires after the transaction is complete, but
before the transaction is committed. After triggers are useful for the following:

✦ Complex data validation

✦ Enforcing complex business rules

✦ Recording data-audit trails

✦ Maintaining modified date columns

✦ Enforcing custom referential-integrity checks and cascading deletes

Use after triggers if the transaction will likely be accepted because the work is complete
and waiting only for a transaction commit. For this reason after triggers are excellent for vali-
dating data or enforcing a complex rule.

When learning a new programming language, the first program written is traditionally a “hello
world” application that does nothing more than compile the program and prove that it runs
buy printing “hello world”. The following after trigger simply prints after trigger when
the trigger is executed:

CREATE TRIGGER TriggerOne ON Person
AFTER Insert
AS
PRINT ‘In the After Trigger’

18549359 ch15.F 11/21/02 9:48 AM Page 437

438 Part II ✦ Developing SQL Server Databases

With the after trigger enforced, the following code will insert a sample row:

INSERT Person(PersonID, LastName, FirstName, Gender)
VALUES (50, ‘Ebob’, ‘Bill’,’M’)

Result:

In the After Trigger

(1 row(s) affected)

The insert worked and the trigger printed its “hello world” message.

Instead of Triggers
Instead of triggers execute “instead of” (as a substitute for) the submitted transaction, so
that the submitted transaction does not occur. It’s as if the presence of an instead of trig-
ger is an automatic rollback on the submitted transaction.

As a substitution procedure, each table is limited to only one instead of trigger per table
event. In addition, instead of triggers may be applied to views as well as tables.

Don’t confuse instead of triggers with before triggers or before update events. They’re not
the same. A before trigger, if such a thing existed in SQL Server, would not interfere with the
transaction unless code in the trigger executed a transaction rollback.

Instead of triggers are useful when it’s known that the DML statement firing the trigger will
always be rolled back and some other logic executed instead of the DML statement. For example:

✦ When the DML statement attempts to update a non-updatable view, the instead of
trigger updates the underlying tables instead.

✦ When the DML statement attempts to directly update an inventory table, an instead
of trigger updates the inventory transaction table instead.

✦ When the DML statement attempts to delete a row, an instead of trigger moves the
row to an archive table instead.

The following code creates a test instead of trigger and then attempts to insert a row:

CREATE TRIGGER TriggerTwo ON Person
INSTEAD OF Insert
AS
PRINT ‘In the Instead of Trigger’
go

INSERT Person(PersonID, LastName, FirstName, Gender)
VALUES (51, ‘Ebob’, ‘’,’M’)

Result:

In the Instead of Trigger

(1 row(s) affected)

The result includes the instead of trigger’s “hello world” declaration and a report that one
row was affected. However, selecting personID 51 will prove that no rows were in fact
inserted:

18549359 ch15.F 11/21/02 9:48 AM Page 438

439Chapter 15 ✦ Implementing Triggers

SELECT LastName
FROM Person
WHERE PersonID = 51

Result:

LastName

(0 row(s) affected)

The insert statement worked as if one row had been affected, although the effect of the
insert statement was blocked by the instead of trigger. The print command was exe-
cuted instead of the rows being inserted. Also, the after trigger is still in effect, but its print
message failed to print.

Trigger Limitations
Owing to the nature of triggers (code attached to tables), they have a few limitations. The
following SQL commands are not permitted within a trigger:

✦ Create, alter, or drop database

✦ Reconfigure

✦ Restore database or log

✦ Disk resize

✦ Disk init

Disabling Triggers
A user’s DML statement can never bypass a trigger, but a system administrator can temporar-
ily disable it, which is better than dropping it and then re-creating it if the trigger gets in the
way of a data-modification task.

To temporarily turn off a trigger, use the alter table DDL command with the enable
trigger or disable trigger option:

ALTER TABLE TableName ENABLE or DISABLE TRIGGER TriggerName

For example, the following code disables the instead of trigger (TriggerOne on the Person
table):

ALTER TABLE Person
DISABLE TRIGGER TriggerOne

To view the enabled status of a trigger, use the objectproperty() function, passing to it the
object ID of the trigger and the ExecIsTriggerDisabled option:

SELECT OBJECTPROPERTY(
OBJECT_ID(‘TriggerOne’),’ExecIsTriggerDisabled’)

Listing Triggers
Since triggers tend to hide in the table structure, the following query lists all the triggers in
the database. It also examines the sysobjects table for tr type objects and then joins the
Trigger table row with the parent object row to report the table name. The query uses a

18549359 ch15.F 11/21/02 9:48 AM Page 439

440 Part II ✦ Developing SQL Server Databases

correlated subquery to call the objectproperty() function for each row. The result of the
correlated subquery is passed to a case expression so it can be converted to a string:

SELECT SubString(S2.Name,1,30) as [Table],
SubString(S.Name, 1,30) as [Trigger],
CASE (SELECT -- Correlated subquery

OBJECTPROPERTY(OBJECT_ID(S.Name),
‘ExecIsTriggerDisabled’))

WHEN 0 THEN ‘Enabled’
WHEN 1 THEN ‘Disabled’

END AS Status
FROM Sysobjects S
JOIN Sysobjects S2
ON S.parent_obj = S2.ID

WHERE S.Type = ‘TR’
ORDER BY [Table], [Trigger]

Result:

Table Trigger Status
-------------- -------------------- --------
Person Person_Parents Enabled
Person TriggerOne Disabled
Person TriggerTwo Enabled

Triggers and Security
Only users who are members of the sysadmin fixed server role, or in the dbowner or ddld-
min fixed database roles, or the table’s owners, have permission to create, alter, drop, enable,
or disable triggers.

Code within the trigger is executed assuming the security permissions of the owner of the
trigger’s table.

Working with the Transaction
A DML insert, update, or delete statement causes a trigger to fire. It’s important that the
trigger have access to the changes being caused by the DML statement so it can test the
changes or handle the transaction. SQL Server provides four ways for code within the trigger
to determine the effects of the DML statement. The inserted and deleted images contain the
before and after datasets, and the updated() and columns_updated() functions may be
used to determine which columns were affected by the DML statement.

Determining the Updated Columns
SQL Server provides two methods of detecting which columns are being updated. The
update() function returns true for a single column if that column is affected by the DML
transaction:

IF UPDATE(ColumnName)

An insert will affect all columns, and an update will report the column as affected if the
DML statement addresses the column. The following example demonstrates the update()
function:

18549359 ch15.F 11/21/02 9:48 AM Page 440

441Chapter 15 ✦ Implementing Triggers

ALTER TRIGGER TriggerOne ON Person
AFTER Insert, Update
AS
IF Update(LastName)
PRINT ‘You modified the LastName column’

ELSE
PRINT ‘The LastName column is untouched.’

With the trigger looking for changes to the LastName column, the following DML statement
will test the trigger:

UPDATE Person
SET LastName = ‘Johnson’
WHERE PersonID = 25

Result:

You modified the LastName column

This function is generally used to execute data checks only when needed. There’s no reason
to test the validity of Column A’s data if Column A isn’t updated by the DML statement.
However, the update() function will report the column as updated according to the DML
statement alone, not the actual data. So if the DML statement modifies the data from ‘abc’
to ‘abc’ the update() will still report it as updated.

The columns_updated() function returns a bitmapped varbinary data type representation
of the columns updated. If the bit is true the column is updated. The result of
columns_updated() can be compared with integer or binary data by means of any of the
bitwise operators to determine if a given column is updated.

The documentation states that the columns are represented by bits going from left to right,
which is not entirely accurate. The columns are represented by right-to-left bits within left-to-
right bytes. A further complication is that the size of the varbinary data retuned by
columns_updated() depends on the number of columns in the table.

The following function simulates the actual behavior of the columns_updated() function.
Passing the column to be tested and the total number of columns in the table will return the
column bitmask for that column.

CREATE FUNCTION dbo.GenColUpdated
(@Col INT, @ColTotal INT)

RETURNS INT
AS
BEGIN
-- Copyright 2001 Paul Nielsen
-- This function simulates the Columns_Updated() behavior
DECLARE
@ColByte INT,
@ColTotalByte INT,
@ColBit INT

-- Calculate Byte Positions
SET @ColTotalByte = 1 + ((@ColTotal-1) /8)
SET @ColByte = 1 + ((@Col-1)/8)
SET @ColBit = @col - ((@colByte-1) * 8)

RETURN Power(2, @colbit + ((@ColTotalByte-@ColByte) * 8)-1)
END

18549359 ch15.F 11/21/02 9:48 AM Page 441

442 Part II ✦ Developing SQL Server Databases

This function is used within the dynamic audit-trial trigger/stored procedure by means of per-
forming a bitwise and (&) between columns_updated() and GenColUpdated(). If the bitwise
and is equal to GenColUpdated(), then the column in question is indeed updated:

Set @Col_Updated = Columns_Updated()
...
Set @ColUpdatedTemp =dbo.GenColUpdated(@ColCounter,@ColTotal)
If (@Col_Updated & @ColUpdatedTemp) = @ColUpdatedTemp

The dynamic audit trail trigger code is explained in Chapter 16, “Advanced Server-Side
Programming.” The DynamicAudit.sql script, on the book’s CD, applies the code to the
Northwind database.

Inserted and Deleted Logical Tables
SQL Server enables code within the trigger to access the effects of the transaction that
caused the trigger to fire. The Inserted and Deleted logical tables are read-only images of
the data. They can be considered views to the transaction log.

The Deleted table contains the rows before the effects of the DML statement and the Inserted
table contains the rows after the effects of the DML statement, as shown in Table 15-2.

Table 15-2: The Inserted and Deleted Tables

DML Statement Inserted Table Deleted Table

Insert Inserted rows Empty

Update Rows in the database after the update Rows in the database before the update

Delete Empty Rows to be deleted

The Inserted and Deleted tables have a very limited scope. They are visible only within the
trigger. Stored procedures called by the trigger will not see the Inserted or Deleted tables.

If the table includes text, ntext, or image data-type columns, those columns may not be
accessed in the Inserted or Deleted tables. Attempting to access them will cause an error.

The following example uses the Inserted table to report any new values for the LastName
column:

ALTER TRIGGER TriggerOne ON Person
AFTER Insert, Update
AS
SET NoCount ON
IF Update(LastName)
SELECT ‘You modified the LastName column to ‘
+ Inserted.LastName

FROM Inserted

With TriggerOne implemented on the Person table, the following update will modify a
LastName value:

Cross-
Reference

18549359 ch15.F 11/21/02 9:48 AM Page 442

443Chapter 15 ✦ Implementing Triggers

UPDATE Person
SET LastName = ‘Johnson’
WHERE PersonID = 32

Result:

You modified the LastName column to Johnson
(1 row(s) affected)

Developing Multi-Row Enabled Triggers
Many triggers I see in production are not written to handle the possibility of multiple-row
inserts, updates, or deletes. They take a value from the Inserted or Deleted table and
store it in a local variable for data validation or processing. This technique only checks the
last row affected by the DML statement and is a serious data integrity flaw. I’ve also seen
databases that use cursors to step though each affected row. This is the type of slow code
that gives triggers a bad name.

Because SQL is a set-oriented environment, every trigger must be written to handle DML
statements that affect multiple rows. The best way to deal with multiple rows is to work with
the Inserted and Deleted tables with set-oriented operations.

A join between the Inserted table and the Deleted or underlying table will return a
complete set of the rows affected by the DML statement. Table 15-3 lists the possible join
combinations for creating multi-row enabled triggers.

Table 15-3: Multi-Row Enabled FROM Clauses

DML Type FROM Clause

Insert FROM Inserted

Update FROM Inserted

JOIN Deleted

ON Inserted.PK = Deleted.PK

Insert, Update FROM Inserted

LEFT OUTER JOIN Deleted

ON Inserted.PK = Deleted.PK

Delete FROM Deleted

The following trigger sample alters TriggerOne to look at the inserted and deleted tables:

ALTER TRIGGER TriggerOne ON Person
AFTER Insert, Update
AS
SELECT D.LastName + ‘ changed to ‘ + I.LastName
FROM Inserted I
JOIN Deleted D
ON I.PersonID = D.PersonID

18549359 ch15.F 11/21/02 9:48 AM Page 443

444 Part II ✦ Developing SQL Server Databases

UPDATE Person
SET LastName = ‘Carter’
WHERE LastName = ‘Johnson’

Result:

--
Johnson changed to Carter
Johnson changed to Carter
(2 row(s) affected)

The following after trigger, extracted from the Family sample database, enforces a rule that
the FatherID must not only point to a valid person (that’s covered by the foreign key), but
that the person must be male:

CREATE TRIGGER Person_Parents
ON Person
AFTER INSERT, UPDATE
AS
IF UPDATE(FatherID)
BEGIN
-- Incorrect Father Gender
IF EXISTS(

SELECT *
FROM Person
JOIN Inserted
ON Inserted.FatherID = Person.PersonID

WHERE Person.Gender = ‘F’)
BEGIN
ROLLBACK
RAISERROR(‘Incorrect Gender for Father’,14,1)
RETURN

END
END

Multiple-Trigger Interaction
Without a clear plan, database that employs multiple triggers can quickly become disorga-
nized and extremely difficult to troubleshoot.

Trigger Organization
In SQL Server 6.5, each trigger event could have only one trigger and a trigger could apply only
to one trigger event. The coding style that was required to develop such limited triggers lingers
on. However, SQL Server 7 and SQL Server 2000 allow multiple after triggers per table event and
a trigger can apply to more than one event. This enables more flexible development styles.

After developing databases that included several hundred triggers, I recommend organizing
triggers not by table event, but by the trigger’s task. For example:

✦ Data validation

✦ Complex business rules

✦ Audit trail

18549359 ch15.F 11/21/02 9:48 AM Page 444

445Chapter 15 ✦ Implementing Triggers

✦ Modified date

✦ Complex security

These tasks are covered in more detail in Chapter 16, “Advanced Server-Side Programming.”

Nested Triggers
Trigger nesting is whether or not a trigger that executes a DML statement will cause another
trigger to fire. For example, if the Nested Triggers server option is enabled, and a trigger
updates TableA, and TableA also has a trigger, then any triggers on TableA will also fire, as
demonstrated in Figure 15-1.

Figure 15-1: The Nested Triggers configuration option
enables a DML statement within a trigger to fire
additional triggers.

By default, the Nested Triggers option is enabled. The following configuration command is
used to enable trigger nesting:

EXEC sp_configure ‘Nested Triggers’, 1
Reconfigure

If the database is developed with extensive server-side code, it’s likely that a DML will fire a
trigger, which will call a stored procedure, which will fire another trigger, and so on.

SQL Server triggers have a limit of 32 levels of recursion. For safety reasons it is useful to test
the trigger-recursion level within the trigger. The Trigger_NestLevel() function returns the
level of nesting. If the limit is reached SQL Server generates a fatal error.

Recursive Triggers
A recursive trigger is a unique type of nested after trigger. If a trigger executes a DML state-
ment that causes itself to fire, it’s a recursive trigger, as shown in Figure 15-2. If the database
recursive triggers option is off, the recursive iteration of the trigger won’t fire.

A trigger is considered recursive only if it directly fires itself. If the trigger executes a stored
procedure that then updates the trigger’s table, that is an indirect recursive call and is not
covered by the recursive-trigger database option.

Recursive triggers are enabled by means of the alter database command:

ALTER DATABASE DatabaseName SET RECURSIVE_TRIGGERS ON | OFF

DML

Trigger1

TableA

Trigger2

TableB

Cross-
Reference

18549359 ch15.F 11/21/02 9:48 AM Page 445

446 Part II ✦ Developing SQL Server Databases

Figure 15-2: A recursive trigger is a self-referencing trigger — one that
executes a DML statement that causes itself to be fired again.

An example of a useful recursive trigger is the ModifiedDate trigger. This trigger writes the
current date and time to the modified column for any row that’s updated. Using the OBX Kites
sample database, the script first adds a Created and Modified column to the product table:

USE OBXKites

ALTER TABLE dbo.Product
ADD
Created DateTime Not Null DEFAULT GetDate(),
Modified DateTime Not Null DEFAULT GetDate()

The trigger first prints the TriggerNest() level. This is very helpful for debugging nested or
recursive triggers. The first if statement prevents the Created and Modified date from
being directly updated by the user. If the trigger is fired by a user the nest level is 1.

The first time the trigger is executed the update is executed. Any subsequent executions of
the trigger return because the trigger nest level is greater than 1. This prevents runaway
recursion. Here’s the trigger DDL code:

CREATE TRIGGER Products_ModifiedDate ON dbo.Product
FOR UPDATE
AS
SET NoCount ON

PRINT Trigger_NestLevel()

If Trigger_NestLevel() > 1
Return

If (Update(Created) or Update(Modified))
AND Trigger_NestLevel() = 1

Begin
Raiserror(‘Update failed.’, 16, 1)
Rollback
Return

End

-- Update the Modified date
UPDATE Product
SET Modified = getdate()
FROM Product
JOIN Inserted
ON Product.ProductID = Inserted.ProductID

DML

Trigger1

TableA

18549359 ch15.F 11/21/02 9:48 AM Page 446

447Chapter 15 ✦ Implementing Triggers

To test the trigger, the next update command will cause the trigger to update the Modified
column. The select returns the Created and Modified date and time:

UPDATE PRODUCT
SET [Name] = ‘Modifed Trigger’
WHERE Code = ‘1002’

SELECT Code, Created, Modified
FROM Product
WHERE Code = ‘1002’

Result:

Code Created Modified
------ ------------------------ ------------------------
1002 2002-02-18 09:48:31.700 2002-02-18 15:19:34.350

Recursive triggers are required for replicated databases.

Instead of and After Triggers
If a table has both an instead of trigger and an after trigger for the same event, the follow-
ing sequence is possible:

1. The DML statement initiates a transaction.

2. The instead of trigger fires in place of the DML.

3. If the instead of trigger executes DML against the same table event the process
continues.

4. The after trigger fires.

Multiple After Triggers
If the same table event has multiple after triggers they will all execute. The order of the
triggers is less important than it may at first seem.

Every trigger has the opportunity to rollback the transaction. If the transaction is rolled
back, all the work done by the initial transaction and all the triggers are rolled back.

Nevertheless, it is possible to designate an after trigger to fire first or last in the list of
triggers. I recommend doing this only if one trigger is likely to roll back the transaction and,
for performance reasons, you want that trigger to execute before other demanding triggers.
Logically, however, the order of the triggers has no effect.

The sp_settriggerorder system stored procedure is used to assign the trigger order using
the following syntax:

sp_settriggerorder
@triggername = ‘TriggerName’,
@order = ‘first’ or ‘last’ or ‘none’,
@stmttype = ‘INSERT’ or ‘UPDATE’ or ‘DELETE’

The effect of setting the trigger order is not cumulative. For example, setting TriggerOne to
first and then setting TriggerTwo to first does not place TriggerOne in second place. In
this case TriggerOne returns to being unordered.

Note

18549359 ch15.F 11/21/02 9:48 AM Page 447

448 Part II ✦ Developing SQL Server Databases

Summary
Triggers are a key feature in client/server databases. It’s the trigger that enables the developer
to create complex custom business rules that are strongly enforced at the database-engine
level. SQL Server 2000 has two types of triggers, instead of triggers and after triggers.

The last four chapters have presented T-SQL programming and how to package the code
within stored procedures, user-defined functions, and triggers. The next chapter draws on all
of these chapters to present ideas for advanced server-side code.

✦ ✦ ✦

18549359 ch15.F 11/21/02 9:48 AM Page 448

Advanced Server-
Side Programming

The U.S. Navy has a saying: “Not on my watch.” It means that the
individual sailor is accepting responsibility, without excuse, and

that orders will be followed. The same attitude should apply to busi-
ness rules. If a business rule isn’t enforced 100 percent, it’s not a
rule — it’s a suggestion.

As the logical schema is implemented, many business rules and
entity relationships are implemented as constraints.

But some of the business rules may be too complex to implement as
constraints. These rules may be implemented either in the front-end
application, in a middle tier, or in the database server. Of these three
possible locations, only the database server offers absolute compli-
ance. There’s no guarantee that future users will access the data
solely through the current middle-tier object or front-end application.

Implementing business rules at the database-server level using T-SQL
in triggers, stored procedures, and functions offers the same com-
pelling benefits as constraints:

✦ The rules are absolute, and may not be ignored or bypassed by
any DML request.

✦ The rules are as close to the data as possible, improving data-
access speed and reducing network round trips.

Constraints, triggers, and stored procedures stand watch over the
integrity of the data.

The past several chapters have discussed specific techniques for
developing server-side code. A recurring theme in these chapters has
been that processing should be moved as close to the data as possi-
ble. This chapter draws on all those techniques and suggests meth-
ods for developing databases that benefit from server-side code.

The methodology of the server-side–code database provides a stored
procedure for every data-access requirement of the front-end applica-
tion and implements all business rules in the server in either stored
procedures or triggers. While this method is development-intensive,
it provides several benefits:

✦ All access is through a consistent programmer interface.

✦ All database code is compiled and optimized.

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

A methodology for
developing server-
side–code databases

Enforcing complex data
validation

Implementing complex
custom referential
integrity

Enforcing custom row-
level security

Creating a data-audit
trail

Handling complex
transactions

Logically deleting and
archiving old data

✦ ✦ ✦ ✦

19549359 ch16.F 11/21/02 9:48 AM Page 449

450 Part II ✦ Developing SQL Server Databases

✦ Security is improved.

✦ All actions, even reads, may be audited.

✦ Complex rules and processing are removed from the front-end application.

✦ Query errors are eliminated.

Developing Application Stored Procedures
The database processing (insert, update, and delete) will take place on the server. Moving
the application code to the server enables the code to be compiled on the server, and pro-
vides a consistent programmer method for performing database operations. Rather than han-
dling some updates in ADO code, some in dynamic SQL generated in VB, and others in T-SQL
batches, a database developed using the server-side–code methodology places all database
operations in T-SQL code within stored procedures and triggers. Every database requirement
from the front-end program is handled by means of calling a stored procedure.

Stored procedures must be written for the following:

✦ Inserting data

✦ Updating data

✦ Deleting data

✦ Fetching single rows and lists for every user-recognizable object

✦ Some stored procedures, such as an AllocateProduct stored procedure, may handle
complex tasks that deal with multiple tables.

This section provides walks through stored procedures from the OBX Kites database, which
demonstrate some of these tasks.

The AddNew Stored Procedure
The addnew stored procedure handles inserting new rows into the database. The stored pro-
cedure’s main tasks are to validate the data, convert any codes to foreign keys, and perform
the insert operation. The addnew procedure might also handle lock-timeout issues. Here’s
the code for the sample stored procedure from the OBX Kites database:

CREATE PROCEDURE pProduct_AddNew(
@ProductCategoryName NVARCHAR(50),
@Code CHAR(10),
@Name NVARCHAR(50),
@ProductDescription NVARCHAR(100) = NULL
)

AS
SET NOCOUNT ON
DECLARE
@ProductCategoryID UNIQUEIDENTIFIER

SELECT @ProductCategoryID = ProductCategoryID
FROM dbo.ProductCategory
WHERE ProductCategoryName = @ProductCategoryName

IF @@Error <> 0 RETURN -100

19549359 ch16.F 11/21/02 9:48 AM Page 450

451Chapter 16 ✦ Advanced Server-Side Programming

IF @ProductCategoryID IS NULL
BEGIN
RAISERROR
(‘Product Category: ‘’%s’’ not found’,
15,1,@ProductCategoryName)

RETURN -100
END

INSERT dbo.Product
(ProductCategoryID, Code,

ProductName, ProductDescription)
VALUES (@ProductCategoryID, @Code, @Name,

@ProductDescription)
IF @@Error <> 0 RETURN -100
RETURN 0

To test the procedure, the following command passes product code “999,” thus inserting
product code “999” in the Product table:

EXEC pProduct_AddNew
@ProductCategoryName = ‘OBX’,
@Code = ‘999’,
@Name = ‘Test Kit’,
@ProductDescription

= ‘official kite testing kit for contests.’

To make sure the insert worked, the following select string returns product code “999”:

SELECT ProductName, ProductCategoryName
FROM dbo.Product
JOIN ProductCategory
ON Product.ProductCategoryID

= ProductCategory. ProductCategoryID
WHERE Code = ‘999’

Result:

Name ProductCategoryName
---------------- ----------------------
Test Kit OBX

The Fetch Stored Procedure
The fetch stored procedure retrieves the data. A sophisticated fetch procedure can accept
various parameters and respond with a single row, filtered rows, or all rows, depending on
the requirement and the parameters, so multiple fetch procedures are not necessary for vari-
ous scopes of data. The null default is used in the where clause to effectively nullify the crite-
rion if the parameter is not supplied.

This stored procedure also handles lock-timeout and deadlock issues using the techniques
covered in Chapter 11, “Transactional Integrity.” The following sample fetch stored proce-
dure retrieves product information for the OBX Kites database:

CREATE PROCEDURE pProduct_Fetch(
@ProductCode CHAR(15) = NULL,
@ProductCategory CHAR(15) = NULL)

AS

19549359 ch16.F 11/21/02 9:48 AM Page 451

452 Part II ✦ Developing SQL Server Databases

SET NoCount ON

SELECT Code, ProductName, ProductDescription, ActiveDate,
DiscontinueDate, ProductCategoryName, [RowVersion] --,

-- Product.Created, Product.Modified
FROM dbo.Product
JOIN dbo.ProductCategory
ON Product.ProductCategoryID

= ProductCategory.ProductCategoryID
WHERE (Product.Code = @ProductCode

OR @ProductCode IS NULL)
AND (ProductCategory.ProductCategoryName

= @ProductCategory
OR @ProductCategory IS NULL)

IF @@Error <> 0 RETURN -100

RETURN

The following command executes the pProduct_Fetch stored procedure and retrieves data
for all the products when called without any parameters:

EXEC pProduct_Fetch

Result (columns and rows abridged):

Code Name Modified
----- ------------------------------- -----------------------
1001 Basic Box Kite 21 inch 2002-02-18 09:48:31.700
1002 Dragon Flight 2002-02-18 15:19:34.350
1003 Sky Dancer 2002-02-18 09:48:31.700
...

With a @ProductCode parameter, the fetch stored procedure returns only the selected
product:

EXEC pProduct_Fetch
@ProductCode = ‘1005’

Result (columns abridged):

Code Name Modified
----- ------------------------------- -----------------------
1005 Eagle Wings 2002-02-18 09:48:31.700

The second parameter causes the stored procedure to return all the products within a single
product category:

EXEC pProduct_Fetch
@ProductCategory = ‘Book’

Result (rows and columns abridged):

Code Name Modified
----- ------------------------------- -----------------------
1036 Adventures in the OuterBanks 2002-02-25 17:13:15.430
1037 Wright Brothers Kite Designs 2002-02-25 17:13:15.430
1038 The Lighthouses of the OBX 2002-02-25 17:13:15.430
1039 Outer Banks Map 2002-02-25 17:13:15.430
1040 Kiters Guide to the Outer Banks 2002-02-25 17:13:15.430

19549359 ch16.F 11/21/02 9:48 AM Page 452

453Chapter 16 ✦ Advanced Server-Side Programming

The Update Stored Procedure
The update stored procedure accepts the primary method of identifying the row (in this case
the product code) and the new data. Based on the new data, it performs a SQL DML update
statement.

Updates are vulnerable to lost updates as discussed in Chapter 11, “Transactional Integrity.”
You can work around the lost update problem with timestamps or with minimal updates.
Each technique is demonstrated in this section with a sample stored procedure.

The first example procedure handles lost updates by checking the rowversion timestamp
column. Each time the row is updated, SQL Server automatically updates the rowversion
value. If the rowversion is different, the row must have been updated by another transaction
and the rowversion condition in the where clause prevents the update.

Update with RowVersion
This version of the update procedure updates all the columns of the row, so all the para-
meters must be supplied even if that column is not being updated. The procedure assumes
that the rowversion column was selected when the data was originally retrieved.

If the rowversion value differs from the one retrieved during the select, the update fails to
take place. The procedure senses that using the @@rowcount global variable and reports the
error to the calling object.

As a sample update procedure, here’s the code for the pProduct_Update_RowVersion
stored procedure from the OBX Kites database:

CREATE PROCEDURE pProduct_Update_RowVersion (
@Code CHAR(15),
@RowVersion Rowversion,
@Name VARCHAR(50),
@ProductDescription VARCHAR(50),
@ActiveDate DateTime,
@DiscontinueDate DateTime)

AS
SET NoCount ON

UPDATE dbo.Product
SET
ProductName = @Name,
ProductDescription = @ProductDescription,
ActiveDate = @ActiveDate,
DiscontinueDate = @DiscontinueDate

WHERE Code = @Code
AND [RowVersion] = @RowVersion

IF @@ROWCOUNT = 0
BEGIN
IF EXISTS (SELECT * FROM Product WHERE Code = @Code)
BEGIN
RAISERROR (‘Product failed to update because

another transaction updated the row since your
last read.’, 16,1)

RETURN -100
END

ELSE

19549359 ch16.F 11/21/02 9:48 AM Page 453

454 Part II ✦ Developing SQL Server Databases

BEGIN
RAISERROR (‘Product failed to update because

the row has been deleted’, 16,1)
RETURN -100

END
END

RETURN

To test the timestamp version of the update stored procedure, the pProduct_Fetch
procedure will return the current timestamp for product code “1001”:

EXEC pProduct_Fetch 1001

Result (columns abridged):

Code Name RowVersion
-------- ----------------------- ------------------------
1001 Basic Box Kite 21 inch 0x0000000000000077

The pProduct_Update_Rowversion stored procedure must be called with the exact same
rowversion value to perform the update:

EXEC pProduct_Update_Rowversion
1001,
0x0000000000000077,
‘updatetest’,
‘new description’,
‘1/1/2002’,
NULL

The procedure updates all the columns in the row and in the process the rowversion column
is reset to a new value.

Minimal-Update
The second version of the update stored procedure demonstrates the minimal-update
method of minimizing lost updates. By updating only the specific column requiring update,
you reduce the chance of overwriting another user’s update significantly. The column-level
update is like a surgical strike, hitting only where it’s needed and reducing collateral damage.

The stored procedure does not use dynamic SQL to build a custom update, although that
could easily be done. However, dynamic SQL executes using the security profile of the user
and not the stored procedures, and it introduces a re-compile issue that causes performance
to suffer. These problems may make using dynamic SQL within production stored procedures
an unhealthy choice.

The minimal-update procedure simply performs a single-column update for each parameter
provided to the stored procedure:

CREATE PROCEDURE pProduct_Update_Minimal (
@Code CHAR(15),
@Name VARCHAR(50) = NULL,
@ProductDescription VARCHAR(50) = NULL,
@ActiveDate DateTime = NULL,
@DiscontinueDate DateTime = NULL)

AS
SET NoCount ON

19549359 ch16.F 11/21/02 9:48 AM Page 454

455Chapter 16 ✦ Advanced Server-Side Programming

IF EXISTS (SELECT * FROM dbo.Product WHERE Code = @Code)
BEGIN
BEGIN TRANSACTION
IF @Name IS NOT NULL
BEGIN
UPDATE dbo.Product
SET
ProductName = @Name

WHERE Code = @Code
IF @@Error <> 0
BEGIN
ROLLBACK
RETURN -100

END
END

IF @ProductDescription IS NOT NULL
BEGIN
UPDATE dbo.Product
SET
ProductDescription = @ProductDescription

WHERE Code = @Code
IF @@Error <> 0
BEGIN
ROLLBACK
RETURN -100

END
END

IF @ActiveDate IS NOT NULL
BEGIN
UPDATE dbo.Product
SET
ActiveDate = @ActiveDate

WHERE Code = @Code
IF @@Error <> 0
BEGIN
ROLLBACK
RETURN -100

END
END

IF @DiscontinueDate IS NOT NULL
BEGIN
UPDATE dbo.Product
SET
DiscontinueDate = @DiscontinueDate

WHERE Code = @Code
IF @@Error <> 0
BEGIN
ROLLBACK

19549359 ch16.F 11/21/02 9:48 AM Page 455

456 Part II ✦ Developing SQL Server Databases

RETURN -100
END

END
COMMIT TRANSACTION

END
ELSE
BEGIN
RAISERROR
(‘Product failed to update because the row has

been deleted’, 16,1)
RETURN -100

END
RETURN

When the minimal-update stored procedure is being called, only the columns requiring
update are needed. The procedure first checks to see if the row exists; once that check is
complete, the parameters that were passed to the procedure are updated in the table. In the
following example, the product description for product code “1001” is updated:

EXEC pProduct_Update_Minimal
@Code = ‘1001’,
@ProductDescription = ‘a minimal update’

The pProduct_Fetch procedure can test the minimal-update procedure:

EXEC pProduct_Fetch 1001

Result (abridged):

Code Name ProductDescription
--------- ---------------- ------------------------
1001 updatetest 2 a minimal update

The Delete Stored Procedure
The delete stored procedure executes the delete DML command. This procedure can be the
most complex stored procedure, depending upon the level of data-archival and logical dele-
tion implemented within the database (covered later in this chapter). This sample delete pro-
cedure taken from the OBX Kites database transforms the @ProductCode into a @ProductID,
verifies that the product does in fact exist, and then deletes it.

CREATE PROCEDURE pProduct_Delete(
@ProductCode INT

)
AS
SET NOCOUNT ON
DECLARE @ProductID UniqueIdentifier

SELECT @ProductID = ProductID
FROM Product
WHERE Code = @ProductCode

If @@RowCount = 0
BEGIN
RAISERROR
(‘Unable to delete Product Code %i

- does not exist.’, 16,1, @ProductCode)

19549359 ch16.F 11/21/02 9:48 AM Page 456

457Chapter 16 ✦ Advanced Server-Side Programming

RETURN
END

ELSE
DELETE dbo.Product
WHERE ProductID = @ProductID

RETURN

To test the pProduct_Delete store procedure, the following store procedure attempts to call
a product. Since there is no product code “99,” the error trapping raises the error:

EXEC pProduct_Delete 99

Result:

Unable to delete Product Code 99 - does not exist.

Complex Business Rule Validation
The common answer to implementing data validation is check constraints; however, check
constraints (sans user-defined functions) are limited to the current row.

Complex data validation deals with two concerns:

✦ Data validation that requires the access of data other than the current row, thus elimi-
nating a check constraint as a possible means of implementing data validation.

✦ Data validation that must be dynamic, based on requirements that vary by installation,
company, department, or some other data, or just varying over time. Data-validation
routines that can pull the requirements from a configuration table enable the local
administrator to alter the data requirements without physically changing the schema.

Complex data validation is best implemented within a trigger. Triggers are powerful, flexible,
and 100 percent enforced. A user’s DML statement cannot bypass a trigger.

The basic tactic when constructing a trigger to enforce complex data validation is to check
for the existence of any data in the inserted table that does not meet the rule, and, if any is
found, to roll back the transaction. It’s important that the trigger test for invalid data. If the
trigger tested for the existence of valid data and some rows of multi-row update were valid
but some were not then the trigger would let the bad in with the good.

Alternately, if the existence of invalid data is simply too difficult to code, the trigger could
compare the @@Rowcount of the transaction with the count() of valid data in the Inserted
table. But checking for invalid data will typically be faster and easier.

As an example of a need for complex data validation, the following business rule is from the
Cape Hatteras Adventures database: any lead guide for a tour event must be qualified as a
guide for that tour.

Guides are assigned to the event in the Event_mm_Guide table, so the trigger will check data
being inserted into the Event_mm_Guide table.

To check for data that violates the rule, a select statement joins the triggers’ Inserted table
with the event table to determine the TourID, and then joins with the Tour_mm_Guide table
so the guide’s qualifications can be checked. Notice that the Event_mm_Guide table is not
required in the join; the Inserted table has the required data. The select is then restricted
to any rows in which the guide is the lead guide, and in which either the qualification date
has not yet occurred or the qualification has been revoked.

19549359 ch16.F 11/21/02 9:48 AM Page 457

458 Part II ✦ Developing SQL Server Databases

If this select statement returns any rows, the insert or update DML operation will be
rolled back and an error raised to the client software. Here’s the code:

CREATE TRIGGER LeadQualified ON Event_mm_Guide
AFTER INSERT, UPDATE
AS
SET NoCount ON
IF EXISTS(
SELECT *
FROM Inserted
JOIN dbo.Event
ON Inserted.EventID = Event.EventID

LEFT JOIN dbo.Tour_mm_Guide
ON Tour_mm_Guide.TourID = Event.TourID
AND Inserted.GuideID = Tour_mm_Guide.GuideID

WHERE
Inserted.IsLead = 1
AND

(QualDate > Event.DateBegin
OR

RevokeDate IS NOT NULL
OR

QualDate IS NULL)
)

BEGIN
RAISERROR(‘Lead Guide is not Qualified.’,16,1)
ROLLBACK TRANSACTION

END

The follow two queries test the complex rule validation method by attempting to schedule a
qualified guide and an unqualified guide. First, John Johnson is scheduled to lead a Gauley
River Rafting trip:

INSERT Event_mm_Guide (EventID, GuideID, IsLead)
VALUES (10, 1, 1)

Result:

Lead Guide is not Qualified.

When Ken Frank is scheduled for the class 5 rapids of the Gauley River, the trigger allows the
insert:

INSERT Event_mm_Guide (EventID, GuideID, IsLead)
VALUES (10, 2, 1)

Result:

(1 row(s) affected)

Complex Referential Integrity
Implementing declarative referential integrity via foreign-key constraints is definitely the right
way to implement referential integrity.

That said, it’s useful to see the code for a standard referential-integrity trigger before building
a complex referential-integrity trigger. The code for a basic referential-integrity trigger would

19549359 ch16.F 11/21/02 9:48 AM Page 458

459Chapter 16 ✦ Advanced Server-Side Programming

perform a set difference query joining the secondary table’s foreign key and the primary
table’s primary key to locate any foreign-key values in the Inserted table that don’t have a
match in the primary table. In this example, TableB has a foreign key that points to TableA.
Note that this generic code doesn’t apply to any specific database:

CREATE TRIGGER RICheck ON Tour
AFTER INSERT, UPDATE
AS
SET NoCount ON
IF Exists(SELECT *

FROM Inserted
LEFT OUTER JOIN BaseCamp
ON Inserted.BaseCampID

= BaseCamp.BaseCampID
WHERE BaseCamp.BaseCampID IS NULL)

BEGIN
RAISERROR
(‘Inappropriate Foreign Key: Tour.BaseCampID’, 16, 1)

ROLLBACK TRANSACTION
RETURN

END

The following code attempts to assign the “Amazon Trek” tour to BaseCampID 99. Since
there is no base camp “99” the referential integrity trigger will block the update:

UPDATE Tour
SET BaseCampID = 99
WHERE TourID = 1

Indeed, the result is that the trigger raises an error:

Inappropriate Foreign Key: Tour.BaseCampID

However rare, some creative advanced physical-data schemas require referential integrity
that can’t be enforced by the standard foreign key constraint. These schemas tend to involve
multiple-way relationships.

An example of complex referential integrity is from an MRP II system I worked on. The system
could allocate a product to fill an order detail from either an inventory item or from a
purchase-order detail. One of the designs we experimented with allowed the Allocation
table to use two foreign keys. The first foreign key pointed to the OrderDetail row and
handled the Product requirement. The second foreign key pointed to the fulfillment source,
which could either be a PurchaseOrderDetail GUID or an InventoryItem GUID. Because
the foreign-key column could relate to either the purchase order or an inventory item a
standard foreign-key constraint would not do the job.

To implement the complex referential integrity, a trigger on the Allocation table checked for
either a valid PurchaseOrderDetailID or a valid InventoryItemID using a set difference
query that checked for any rows in the Inserted table with a SourceID that was in neither
the Inventory table nor the PurchaseOrderDetail table:

CREATE TRIGGER AllocationCheck ON Allocation
AFTER INSERT, UPDATE
AS
SET NoCount ON
-- Check For invalid Inventory Item
IF Exists(SELECT *

19549359 ch16.F 11/21/02 9:48 AM Page 459

460 Part II ✦ Developing SQL Server Databases

FROM Inserted I
LEFT OUTER JOIN InventoryItem
ON I.SourceID = InventoryItem.InventoryItemID

LEFT OUTER JOIN PurchaseOrderDetail
ON I.SourceID = PurchaseOrderDetail.PODID

WHERE Inventory.InventoryID IS NULL
AND PurchaseOrderDetail.PODID IS NULL)

BEGIN
RAISERROR
(‘Invalid product allocation source’, 16, 1)

ROLLBACK TRANSACTION
RETURN

END

Alternately, having two foreign keys in the allocation table, one pointing to the inventory-item
table and one pointing to the purchase-order–detail table, could also solve the same problem
with a less creative approach. The twist is that one, and only one, of the two foreign keys
must be null — similar to a logical exclusive or. A standard check constraint could handle that
requirement:

ALTER TABLE Allocation
ADD CONSTRAINT AllocationSourceExclusive CHECK
(PurchaseOrderID IS NULL AND InventoryID IS NOT NULL)
OR

(PurchaseOrderID IS NOT NULL AND InventoryID IS NULL)

The choice between the two complex referential-integrity methods should be made based on
the ease of selecting the correct information and the comfort level of the developers. Both
methods would require extensive use of left outer joins and the coalesce() function when
calculating product allocation.

Row-Level Custom Security
SQL Server is excellent at vertical security (tables and columns) but it lacks the ability to
dynamically check row-level security. Views, with check option, can provide a hard-coded
form of row-level security, but basing a database on views used in this manner would create a
performance and maintenance headache.

Enterprise databases often include data that is sensitive on a row level. Consider these four
real-life business-security rules:

✦ Material data, inventory-cost data, and production scheduling are owned by a depart-
ment and should not be available to those outside that department. However, the MRP
system contains materials and inventory tracking for all locations and all departments
in the entire company.

✦ HR data for each employee must be available to only the HR department and an
employee’s direct supervisors.

✦ A company-wide purchasing system permits only lumber buyers to purchase lumber,
and hardware buyers to purchase hardware.

✦ Each bank branch should be able to read any customer’s data file, but only edit those
customers who frequent that branch.

19549359 ch16.F 11/21/02 9:48 AM Page 460

461Chapter 16 ✦ Advanced Server-Side Programming

A row-based security solution is to develop the database using server-side code. This is a
good idea for the following reasons:

✦ A security table can contain the list of users and their departments, or branch read and
write rights.

✦ A security procedure checks the user’s rights against the data being requested and
returns an approved or a denied.

✦ The fetch procedure checks the security procedure for permission to return the data.

✦ Triggers call the security procedure to check the user’s right to perform the DML
statement on the requested rows.

To demonstrate this design, the following topics implement row-level security to the OBX
Kites database. Each employee in the Contact table can be granted read, write, or administer
privileges for each location’s inventory and sales data. With this row-based security scheme,
security can be checked by means of a stored procedure, function, NT login, or trigger.

The Security Table
The Security table serves as a many-to-many associative table (junction table) between the
Contact and Location tables. The security levels determine the level of access:

0 or no row — No access

1 — Read access

2 — Write access

3 — Admin access

Alternately, three bit columns could be used for read, write, and administer rights, but the
privileges are cumulative, so an integer column seems appropriate.

Creating the Table
The security table has two logical foreign keys. The foreign key to the location table is han-
dled by a standard foreign key constraint; however, the reference to the contact table should
only allow contacts who are flagged as employees, and therefore a trigger is used to enforce
that complex referential-integrity requirement. The security assignment is meaningless with-
out its contact or location, so both foreign keys are cascading deletes. A constraint is applied
to the security-level column to restrict any entry to the valid security codes (0–3), and
another constraint ensures that a contact may only have one security code per location.

USE OBXKites

CREATE TABLE dbo.Security (
SecurityID UniqueIdentifier NOT NULL
Primary Key NonClustered,

ContactID UniqueIdentifier NOT NULL
REFERENCES Contact ON DELETE CASCADE,

LocationID UniqueIdentifier NOT NULL
REFERENCES Location ON DELETE CASCADE,

SecurityLevel INT NOT NULL DEFAULT 0
)

19549359 ch16.F 11/21/02 9:48 AM Page 461

462 Part II ✦ Developing SQL Server Databases

The following three commands add the constraints to the security table:

CREATE TRIGGER ContactID_RI
ON dbo.Security
AFTER INSERT, UPDATE
AS
SET NoCount ON
IF EXISTS(SELECT *

FROM Inserted
LEFT OUTER JOIN dbo.Contact
ON Inserted.ContactID = Contact.ContactID

WHERE Contact.ContactID IS NULL
OR Contact.IsEmployee = 0)

BEGIN
RAISERROR
(‘Foreign Key Constraint: Security.ContactID’, 16, 1)

ROLLBACK TRANSACTION
RETURN

END

ALTER TABLE dbo.Security
ADD CONSTRAINT ValidSecurityCode CHECK
(SecurityLevel IN (0,1,2,3))

ALTER TABLE dbo.Security
ADD CONSTRAINT ContactLocation UNIQUE
(ContactID, LocationID)

Because OBX Kites uses GUIDs for primary keys, it’s easier to use stored procedures to enter
data. The chapter script (ch16 - Advanced Server Side Code.sql) on the book’s CD
has stored procedures similar to those used previously in this chapter to enter data into the
security table. The chapter script also includes sample data.

Security Fetch
So that the Security table can be viewed, the first procedure created is pSecurity_Fetch.
This procedure returns all the row-based security permissions or can be restricted to return-
ing those permissions for a single user or a single location:

CREATE PROCEDURE pSecurity_Fetch(
@LocationCode CHAR(15) = NULL,
@ContactCode CHAR(15) = NULL)

AS
SET NoCount ON
SELECT Contact.ContactCode,

Location.LocationCode,
SecurityLevel

FROM dbo.Security
JOIN dbo.Contact
ON Security.ContactID = Contact.ContactID

JOIN dbo.Location
ON Security.LocationID = Location.LocationID
WHERE (Location.LocationCode = @LocationCode

On the
CD-ROM

19549359 ch16.F 11/21/02 9:48 AM Page 462

463Chapter 16 ✦ Advanced Server-Side Programming

OR @LocationCode IS NULL)
AND (Contact.ContactCode = @ContactCode

OR @ContactCode IS NULL)

Assigning Security
Row-based security permissions are set by means of adding or altering rows in the security
table, which serves as a junction between contact and location. In keeping with the theme of
server-side code, this stored procedure assigns a security level to the contact/location com-
bination. There’s nothing new about this procedure. It accepts a contact code and location
code, converts the codes into GUID IDs, and then performs the insert:

CREATE PROCEDURE pSecurity_Assign(
@ContactCode VARCHAR(15),
@LocationCode VARCHAR(15),
@SecurityLevel INT
)

AS
SET NOCOUNT ON
DECLARE
@ContactID UNIQUEIDENTIFIER,
@LocationID UNIQUEIDENTIFIER

-- Get ContactID
SELECT @ContactID = ContactID
FROM dbo.Contact
WHERE ContactCode = @ContactCode

IF @@ERROR <> 0 RETURN -100
IF @ContactID IS NULL
BEGIN
RAISERROR
(‘Contact: ‘’%s’’ not found’, 15,1,@ContactCode)

RETURN -100
END

-- Get LocationID
SELECT @LocationID = LocationID
FROM dbo.Location
WHERE LocationCode = @LocationCode

IF @@ERROR <> 0 RETURN -100
IF @LocationID IS NULL
BEGIN
RAISERROR
(‘Location: ‘’%s’’ not found’, 15,1,@LocationCode)

RETURN -100
END

-- Insert
INSERT dbo.Security (ContactID,LocationID, SecurityLevel)
VALUES (@ContactID, @LocationID, @SecurityLevel)

IF @@ERROR <> 0 RETURN -100
RETURN

19549359 ch16.F 11/21/02 9:48 AM Page 463

464 Part II ✦ Developing SQL Server Databases

With the pSecurity_Fetch and pSecurity_Assign stored procedures created, the following
batch adds some test data. The first two queries return some valid data for the test:

SELECT ContactCode
FROM Contact
WHERE IsEmployee = 1

Result:

ContactCode

118
120
119

The next query returns valid locations:

SELECT LocationCode FROM Location

Result:

LocationCode

CH
Clt
ElC
JR
KH
W

Based on this data, the next four procedure calls assign security:

EXEC pSecurity_Assign
@ContactCode = 118,
@LocationCode = CH,
@SecurityLevel = 3

EXEC pSecurity_Assign
@ContactCode = 118,
@LocationCode = Clt,
@SecurityLevel = 2

EXEC pSecurity_Assign
@ContactCode = 118,
@LocationCode = Elc,
@SecurityLevel = 1

EXEC pSecurity_Assign
@ContactCode = 120,
@LocationCode = W,
@SecurityLevel = 2

The following two commands test the data inserts using the pSecurity_Ffetch procedure.
The first test examines the security settings for the “W” location:

EXEC pSecurity_Fetch @LocationCode = ‘W’

19549359 ch16.F 11/21/02 9:48 AM Page 464

465Chapter 16 ✦ Advanced Server-Side Programming

Result:

ContactCode LocationCode SecurityLevel
--------------- --------------- -------------
120 W 3

The next batch examines the security setting for “Dave Boston” (Contact Code “118”):

EXEC pSecurity_Fetch @ContactCode = ‘118’

Result:

ContactCode LocationCode SecurityLevel
--------------- --------------- -------------
118 Clt 2
118 CH 3
118 ElC 1

The row-based security schema includes several constraints. The following commands test
those constraints using the stored procedures.

Testing the unique constraint:

EXEC pSecurity_Assign
@ContactCode = 120,
@LocationCode = W,
@SecurityLevel = 2

Result:

Server: Msg 2627, Level 14, State 2,
Procedure pSecurity_Assign, Line 35

Violation of UNIQUE KEY constraint ‘ContactLocation’.
Cannot insert duplicate key in object ‘Security’.
The statement has been terminated.

Testing the valid security-code check constraint:

EXEC pSecurity_Assign
@ContactCode = 118,
@LocationCode = W,
@SecurityLevel = 5

Result:

Server: Msg 547, Level 16, State 1,
Procedure pSecurity_Assign, Line 35

INSERT statement conflicted with COLUMN CHECK constraint
‘ValidSecurityCode’. The conflict occurred in database
‘OBXKites’, table ‘Security’, column ‘SecurityLevel’.

The statement has been terminated.

Testing the employees-only complex-business-rule trigger:

Select ContactCode FROM Contact WHERE IsEmployee = 0
EXEC pSecurity_Assign
@ContactCode = 102,
@LocationCode = W,
@SecurityLevel = 3

19549359 ch16.F 11/21/02 9:48 AM Page 465

466 Part II ✦ Developing SQL Server Databases

Result:

Foreign Key Constraint: Security.ContactID

Testing the contact foreign-key constraint, which is first checked by the stored procedure:

EXEC pSecurity_Assign
@ContactCode = 999,
@LocationCode = W,
@SecurityLevel = 3

Result:

Server: Msg 50000, Level 15, State 1, Procedure pSecurity_Assign, Line
19

Contact: ‘999’ not found

Testing the location-code foreign-key constraint. It’s also checked within the stored procedure:

EXEC pSecurity_Assign
@ContactCode = 118,
@LocationCode = RDBMS,
@SecurityLevel = 3

Result:

Server: Msg 50000, Level 15, State 1, Procedure pSecurity_Assign, Line
30
Location: ‘RDBMS’ not found

Handling Security-Level Updates
The pSecurity_Assign procedure used in the previous examples handles new security
assignments, but fails to accept adjustments to an existing security setting.

The following alteration to the procedure checks to see if the security combination of contact
and location is already in the security table, and then performs either the appropriate insert
or update. Security permissions may be created or adjusted with the new version of the pro-
cedure and the same parameters. Here’s the improved procedure:

ALTER PROCEDURE pSecurity_Assign(
@ContactCode CHAR(15),
@LocationCode CHAR(15),
@SecurityLevel INT
)

AS
SET NOCOUNT ON
DECLARE
@ContactID UNIQUEIDENTIFIER,
@LocationID UNIQUEIDENTIFIER

-- Get ContactID
SELECT @ContactID = ContactID
FROM dbo.Contact
WHERE ContactCode = @ContactCode

IF @ContactID IS NULL
BEGIN
RAISERROR
(‘Contact: ‘’%s’’ not found’, 15,1,@ContactCode)

19549359 ch16.F 11/21/02 9:48 AM Page 466

467Chapter 16 ✦ Advanced Server-Side Programming

RETURN -100
END

-- Get LocationID
SELECT @LocationID = LocationID
FROM dbo.Location
WHERE LocationCode = @LocationCode

IF @LocationID IS NULL
BEGIN
RAISERROR
(‘Location: ‘’%s’’ not found’, 15,1,@LocationCode)
RETURN -100

END
-- IS Update or Insert?
IF EXISTS(SELECT *

FROM dbo.Security
WHERE ContactID = @ContactID
AND LocationID = @LocationID)

-- Update
BEGIN
UPDATE dbo.Security
SET SecurityLevel = @SecurityLevel
WHERE ContactID = @ContactID
AND LocationID = @LocationID

IF @@ERROR <> 0 RETURN -100
END

-- Insert
ELSE
BEGIN
INSERT dbo.Security

(ContactID,LocationID, SecurityLevel)
VALUES (@ContactID, @LocationID, @SecurityLevel)

IF @@ERROR <> 0 RETURN -100
END

RETURN

The following script tests the new procedure’s ability to modify a security permission for
a contact/location combination. The first command modifies contact 120’s security for
location W:

EXEC pSecurity_Assign
@ContactCode = 120,
@LocationCode = W,
@SecurityLevel = 2

EXEC pSecurity_Fetch
@ContactCode = 120

Result:

ContactCode LocationCode SecurityLevel
--------------- --------------- -------------
120 W 2

19549359 ch16.F 11/21/02 9:48 AM Page 467

468 Part II ✦ Developing SQL Server Databases

The following two commands issue a new security permission as well as edit an existing secu-
rity permission. The third command fetches the security permissions for contact code “120”:

EXEC pSecurity_Assign
@ContactCode = 120,
@LocationCode = CH,
@SecurityLevel = 1

EXEC pSecurity_Assign
@ContactCode = 120,
@LocationCode = W,
@SecurityLevel = 3

EXEC pSecurity_Fetch
@ContactCode = 120

Result:

ContactCode LocationCode SecurityLevel
--------------- --------------- -------------
120 W 3
120 CH 1

The Security-Check Stored Procedure
The security-check stored procedure is central to the row-based security system. It’s
designed to return a true or false for a security request for a user, a location, and a requested
security level.

The procedure selects the security level of the user for the given location and then compares
that value with the value of the requested security level. If the user’s permission level is suffi-
cient, a 1 (indicating true) is returned; otherwise a 0 (for false) is returned:

CREATE PROCEDURE p_SecurityCheck (
@ContactCode CHAR(15),
@LocationCode CHAR(15),
@SecurityLevel INT,
@Approved BIT OUTPUT)

AS
SET NoCount ON

DECLARE @ActualLevel INT

SELECT @ActualLevel = SecurityLevel
FROM dbo.Security
JOIN dbo.Contact
ON Security.ContactID = Contact.ContactID

JOIN dbo.Location
ON Security.LocationID = Location.LocationID

WHERE ContactCode = @ContactCode
AND LocationCode = @LocationCode

IF @ActualLevel IS NULL
OR
@ActualLevel < @SecurityLevel

19549359 ch16.F 11/21/02 9:48 AM Page 468

469Chapter 16 ✦ Advanced Server-Side Programming

OR
@ActualLevel = 0

SET @Approved = 0
ELSE
SET @Approved = 1

RETURN 0

The following batch calls the p_SecurityCheck procedure and uses the @OK local variable
to capture the output parameter. When testing this from the script on the CD, try several dif-
ferent values. Use the pSecurity_Fetch procedure to determine possible parameters. The
following code checks to see if contact code 118 has administrative privileges at the Charlotte
warehouse:

DECLARE @OK BIT
EXEC p_SecurityCheck
@ContactCode = 118,
@LocationCode = Clt,
@SecurityLevel = 3,
@Approved = @OK OUTPUT

SELECT @OK

Result:

0

The Security-Check Function
The security-check function includes the same logic as the pSecurity_Check stored proce-
dure. The advantage of a function is that it can be used directly within an if command with-
out a local variable being used to store the output parameter. The function uses the same
three input parameters as the stored-procedure version and the same internal logic, but it
returns the approved bit as the return of the function rather than as an output parameter.
Here’s the function’s code:

CREATE FUNCTION dbo.fSecurityCheck (
@ContactCode CHAR(15),
@LocationCode CHAR(15),
@SecurityLevel INT)

RETURNS BIT
BEGIN
DECLARE @ActualLevel INT,
@Approved BIT

SELECT @ActualLevel = SecurityLevel
FROM dbo.Security
JOIN dbo.Contact
ON Security.ContactID = Contact.ContactID

JOIN dbo.Location
ON Security.LocationID = Location.LocationID

WHERE ContactCode = @ContactCode
AND LocationCode = @LocationCode

IF @ActualLevel IS NULL
OR @ActualLevel < @SecurityLevel

19549359 ch16.F 11/21/02 9:48 AM Page 469

470 Part II ✦ Developing SQL Server Databases

OR @ActualLevel = 0
SET @Approved = 0

ELSE
SET @Approved = 1

RETURN @Approved
END

The next batch demonstrates how to call the function to test security within a stored proce-
dure. If the function returns a 0, the user does not have sufficient security and the procedure
terminates:

-- Check within a Procedure
IF dbo.fSecurityCheck(118, ‘Clt’, 3) = 0
BEGIN
RAISERROR(‘Security Violation’, 16,1)
ROLLBACK TRANSACTION
RETURN -100

END

Using the NT Login
Some applications are designed so that the user logs in with the application, and the row-
based security code so far has assumed that the user name is supplied to the procedures.
However, if the SQL Server instance is using NT authentication, the security routines can use
that identification.

Rather than request the contact code as a parameter, the security procedure or function can
automatically use suser_sname() the NT login to identify the current user. The login name
(domain and user name) must be added to the Contact table. Alternately, a secondary table
could be created to hold multiple logins per user. Some wide-area networks require users to log
in with different domain names according to location, so a ContactLogin table is a good idea.

The following function is modified to check the user’s security based on his or her NT login and
a ContactLogin table. The first query demonstrates retrieving the login within T-SQL code:

SELECT suser_sname()

Result:

NOLI\Paul

The following code creates the secondary table to store the logins:

CREATE TABLE dbo.ContactLogin(
ContactLogin UNIQUEIDENTIFIER
PRIMARY KEY NONCLUSTERED DEFAULT NewId(),

ContactID UniqueIdentifier NOT NULL
REFERENCES dbo.Contact ON DELETE CASCADE,

NTLogin VARCHAR(100))

With the table in place, a simple insert will populate a single row using my login so the code
can be tested:

INSERT CONTACTLOGIN (ContactID, NTLogin)
SELECT ContactID, ‘NOLI\Paul’
FROM dbo.Contact
WHERE ContactCode = 118

19549359 ch16.F 11/21/02 9:48 AM Page 470

471Chapter 16 ✦ Advanced Server-Side Programming

Check the data:

SELECT ContactCode, NTLogin
FROM dbo.Contact
JOIN ContactLogin
ON Contact.ContactID = ContactLogin.ContactID

Result:

ContactCode NTLogin
--------------- --------------
118 Paul/NOLI

The security-check function is modified to join the contactlogin table and to restrict the
rows returned to those that match the NT login name. Since the contact code is no longer
required, this select can skip the contact table and join the Security table directly with the
ContactLogin table:

CREATE FUNCTION dbo.fSecurityCheckNT (
@LocationCode CHAR(15),
@SecurityLevel INT)

RETURNS BIT
BEGIN
DECLARE @ActualLevel INT,
@Approved BIT

SELECT @ActualLevel = SecurityLevel
FROM dbo.Security
JOIN dbo.Location
ON Security.LocationID = Location.LocationID

JOIN dbo.ContactLogin
ON Security.ContactID = ContactLogin.ContactID

WHERE NTLogin = suser_sname()
AND LocationCode = @LocationCode

IF @ActualLevel IS NULL
OR @ActualLevel < @SecurityLevel
OR @ActualLevel = 0
SET @Approved = 0

ELSE
SET @Approved = 1

RETURN @Approved
END

To test the new function, the following batch will repeat the security check performed in the
last section, but this time the user will be captured from the NT login instead of being passed
to the function:

IF dbo.fSecurityCheckNT(‘Clt’, 3) = 0
BEGIN
RAISERROR(‘Security Violation’, 16,1)
ROLLBACK TRANSACTION
RETURN -100

END

The function did not return an error, so I’m allowed to complete the procedure.

19549359 ch16.F 11/21/02 9:48 AM Page 471

472 Part II ✦ Developing SQL Server Databases

The Security-Check Trigger
The security-check stored procedure and function both work well when included within a
stored procedure, such as the fetch, addnew, update, or delete procedures mentioned in
the beginning of this chapter. But to implement row-based security in a database that allows
access from views, ad hoc queries, or direct table DML statements, you must handle the row-
based security with a trigger. The trigger can prevent updates, but will not be able to check
data reads. If row-based security is a requirement for reads, all reads must go through a
stored procedure.

The following trigger is similar to the security-check function. It differs in that the trigger
must allow for multiple orders with potential multiple locations. The joins have to match up
[Order] rows and their locations with the user’s security level for each location. The join can
go directly from the ContactLogin table to the Security table. Since this is an insert and
update trigger, any security level below 2 for any order being written will be rejected and a
security-violation error will be raised. The rollback transaction command will undo the
original DML command that fired the trigger:

CREATE TRIGGER OrderSecurity ON [Order]
AFTER INSERT, UPDATE
AS
IF EXISTS (
SELECT *
FROM dbo.Security
JOIN dbo.ContactLogin
ON Security.ContactID = ContactLogin.ContactID

JOIN Inserted
ON Inserted.LocationID = Security.LocationID

WHERE NTLogin = suser_sname()
AND SecurityLevel < 2)

BEGIN
RAISERROR(‘Security Violation’, 16,1)
ROLLBACK TRANSACTION

END

Auditing Data Changes
Data auditing is added to a database to increase its data-integrity level. A full data-audit trail
can answer many questions, such as by doing the following:

✦ Showing all data changes to a row since it was inserted.

✦ Showing all data changes made by a specific user last week.

✦ Showing all data changes from a certain workstation during lunch.

✦ Showing all data changes made from an application other than the standard front-end
application.

Data-audit trails solve significant problems for DBAs as well as users. My consulting firm had
developed a legal compliance/best-practices document-management system for a Fortune 100
company and its law firm was populating the database with regulatory laws. The law firm fell
behind on its schedule and claimed that it was unable to enter data for two weeks because of
software problems. When we provided a list of the 70,000+-column–level data changes made
during those two weeks from the data-audit trail, the claim vanished.

19549359 ch16.F 11/21/02 9:48 AM Page 472

473Chapter 16 ✦ Advanced Server-Side Programming

I’ve seen published methods of auditing data that add a few columns to the table, or dupli-
cate the table, to store the last change. Neither of these methods is worth doing. A partial
audit, or a last-value audit, is of no real value. A data-audit trail must permanently record the
data changes, or anyone who understands the system can just make another change and
erase the original values.

Lumigent’s Log Explorer can be used to view the transaction log, and data can be selected on
a table basis, making Log Explorer similar to a data-audit trail. However, the Log Explorer is
limited to viewing only a single transaction log file at a time. Assembling a complete data-
audit trail of every change to a certain row might require searching through hundreds or
thousands of transaction log files. Log Explorer is excellent for debugging transactions, but I
don’t recommend it as a replacement for a trigger-based data-audit trail.

The Audit Table
The Audit table’s purpose is to provide a single location in which to record the data changes
for the database. The following audit-trail table can store all non-BLOB changes to any table.
The Operation column stores an I, U, or D, depending on the DML statement.

CREATE TABLE dbo.Audit (
AuditID UNIQUEIDENTIFIER RowGUIDCol NOT NULL
CONSTRAINT DF_Audit_AuditID DEFAULT (NEWID())
CONSTRAINT PK_Audit PRIMARY KEY NONCLUSTERED (AuditID),

AuditDate DATETIME NOT NULL,
SysUser VARCHAR(50) NOT NULL,
Application VARCHAR(50) NOT NULL,
TableName VARCHAR(50)NOT NULL,
Operation CHAR(1) NOT NULL,
PrimaryKey VARCHAR(50) NOT NULL,
RowDescription VARCHAR(50) NULL,
SecondaryRow VARCHAR (50) NULL,
[Column] VARCHAR(50) NOT NULL,
OldValue VARCHAR(50) NULL,
NewValue VARCHAR(50) NULL
)

The PrimaryKey column stores the pointer to the row that was modified, and the
RowDescription column records a readable description of the row. These two columns allow
the audit trail to be joined with the original table or viewed directly. The PrimaryKey column
is important because it can quickly find all changes to a single row regardless of how the
description has changed over time.

The Fixed Audit Trail Trigger
The brute-force method of auditing data uses a trigger on every table, which examines every
column using the updated() function and writes any changes to the audit table.

The insert statement joins the Inserted and Deleted tables to correctly handle multiple-
row inserts and updates. The join is a left outer join so that an insert operation, with
only rows in the Inserted table, can still be recorded. The join is also restricted with a
theta join condition so that when a multiple-row update only affects some of the rows for a
given column, only those rows that are actually changed are recorded to the audit trail.

Note

19549359 ch16.F 11/21/02 9:48 AM Page 473

474 Part II ✦ Developing SQL Server Databases

For an example of a fixed audit-trail trigger, the following code audits the Product table for
the OBX Kites database:

CREATE TRIGGER Product_Audit
ON dbo.Product
AFTER Insert, Update
NOT FOR REPLICATION
AS

DECLARE @Operation CHAR(1)

IF EXISTS(SELECT * FROM Deleted)
SET @Operation = ‘U’
ELSE
SET @Operation = ‘I’

IF UPDATE(ProductCategoryID)
INSERT dbo.Audit
(AuditDate, SysUser, Application, TableName, Operation,
PrimaryKey, RowDescription, SecondaryRow, [Column],
OldValue, NewValue)
SELECT GetDate(), suser_sname(), APP_NAME(), ‘Product’,

@Operation, Inserted.ProductID, Inserted.Code,
NULL, ‘ProductCategoryID’,
OPC.ProductCategoryName, NPC.ProductCategoryName

FROM Inserted
LEFT OUTER JOIN Deleted
ON Inserted.ProductID = Deleted.ProductID
AND Inserted.ProductCategoryID

<> Deleted.ProductCategoryID
-- fetch ProductCategory Names
LEFT OUTER JOIN dbo.ProductCategory OPC
ON Deleted.ProductCategoryID

= OPC.ProductCategoryID
JOIN dbo.ProductCategory NPC
ON Inserted.ProductCategoryID

= NPC.ProductCategoryID

IF UPDATE(Code)
INSERT dbo.Audit
(AuditDate, SysUser, Application, TableName, Operation,
PrimaryKey, RowDescription, SecondaryRow, [Column],
OldValue, NewValue)
SELECT GetDate(), suser_sname(), APP_NAME(),

‘Product’, @Operation, Inserted.ProductID,
Inserted.Code, NULL, ‘Code’,
Deleted.Code, Inserted.Code

FROM Inserted
LEFT OUTER JOIN Deleted
ON Inserted.ProductID = Deleted.ProductID
AND Inserted.Code <> Deleted.Code

IF UPDATE(ProductName)
INSERT dbo.Audit

19549359 ch16.F 11/21/02 9:48 AM Page 474

475Chapter 16 ✦ Advanced Server-Side Programming

(AuditDate, SysUser, Application, TableName, Operation,
PrimaryKey, RowDescription, SecondaryRow, [Column],
OldValue, NewValue)

SELECT GetDate(), suser_sname(), APP_NAME(),
‘Product’, @Operation,
Inserted.ProductID, Inserted.Code, NULL, ‘Name’,
Deleted.ProductName, Inserted.ProductName

FROM Inserted
LEFT OUTER JOIN Deleted
ON Inserted.ProductID = Deleted.ProductID
AND Inserted.ProductName <> Deleted.ProductName

IF UPDATE(ProductDescription)
INSERT dbo.Audit
(AuditDate, SysUser, Application, TableName, Operation,
PrimaryKey, RowDescription, SecondaryRow, [Column],
OldValue, NewValue)
SELECT GetDate(), suser_sname(), APP_NAME(), ‘Product’,

@Operation, Inserted.ProductID, Inserted.Code,
NULL, ‘ProductDescription’,
Deleted.ProductDescription,
Inserted.ProductDescription

FROM Inserted
LEFT OUTER JOIN Deleted
ON Inserted.ProductID = Deleted.ProductID
AND Inserted.ProductDescription
<> Deleted.ProductDescription

IF UPDATE(ActiveDate)
INSERT dbo.Audit
(AuditDate, SysUser, Application, TableName, Operation,
PrimaryKey, RowDescription, SecondaryRow, [Column],
OldValue, NewValue)
SELECT GetDate(), suser_sname(), APP_NAME(), ‘Product’,

@Operation, Inserted.ProductID, Inserted.Code,
NULL, ‘ActiveDate’,
Deleted.ActiveDate, Inserted.ActiveDate

FROM Inserted
LEFT OUTER JOIN Deleted
ON Inserted.ProductID = Deleted.ProductID
AND Inserted.ActiveDate != Deleted.ActiveDate

IF UPDATE(DiscontinueDate)
INSERT dbo.Audit
(AuditDate, SysUser, Application, TableName, Operation,
PrimaryKey, RowDescription, SecondaryRow, [Column],
OldValue, NewValue)
SELECT GetDate(), suser_sname(), APP_NAME(), ‘Product’,

@Operation, Inserted.ProductID, Inserted.Code,
NULL, ‘DiscontinueDate’,
Deleted.DiscontinueDate, Inserted.DiscontinueDate

FROM Inserted
LEFT OUTER JOIN Deleted

19549359 ch16.F 11/21/02 9:48 AM Page 475

476 Part II ✦ Developing SQL Server Databases

ON Inserted.ProductID = Deleted.ProductID
AND Inserted.DiscontinueDate
!= Deleted.DiscontinueDate

With the fixed audit tail trigger installed, the following batch exercises it by inserting and
updating product data using both DML statements and the previously created stored proce-
dures. The first trigger test uses the pProduct_AddNew procedure:

EXEC pProduct_AddNew ‘Kite’, 200, ‘The MonstaKite’,
‘Man what a big Kite!’

SELECT TableName, RowDescription, [Column], NewValue
FROM dbo.Audit

Result:

TableName RowDescription
Column NewValue

--------- ----- ---------------------- ---------------------Product
200 ProductCategoryID Kite
Product 200 Code 200
Product 200 Name The MonstaKite
Product 200 ProductDescription Man what a big Kite!
Product 200 ActiveDate Mar 1 2002 1:35PM
Product 200 DiscontinueDate NULL

The trigger is the right place to implement an audit trail because it will catch all the changes,
even those made directly to the table with DML commands. This example is a non-stored pro-
cedure direct DML update. The audit trail can show the original value as well as the new
value:

UPDATE dbo.Product
SET ProductDescription = ‘Biggie Sized’
WHERE Code = 200

The following query pinpoints the data history of the product-description column for
product 200:

SELECT AuditDate, OldValue, NewValue
FROM dbo.Audit
WHERE TableName = ‘Product’
AND RowDescription = ‘200’
AND [Column] = ‘ProductDescription’

Result:

AuditDate OldValue NewValue
------------------------- ---------------- -------------
2002-03-01 13:35:17.093 NULL Man what a

big Kite!
2002-03-01 15:10:49.257 Man what a Biggie Sized

big Kite!

19549359 ch16.F 11/21/02 9:48 AM Page 476

477Chapter 16 ✦ Advanced Server-Side Programming

Rolling Back from the Audit Trail
If the audit system is complete, all the changes for a given row since its creation are easily
listed for the user. From this list, the user can select a data modification and roll back that
modification. Once an audit trail row is selected, rolling back the change is simply a matter of
submitting an update statement based on the data in the audit trail.

The following code demonstrates rolling back a change from the audit table. The
pAudit_RollBack stored procedure accepts an Audit table primary key and from that builds
a dynamic SQL update DML command for the correct table, row, column, and rollback value.

CREATE PROCEDURE pAudit_RollBack (
@AuditID UNIQUEIDENTIFIER)

AS
SET NoCount ON

DECLARE
@SQLString NVARCHAR(4000),
@TableName NVARCHAR(50),
@PrimaryKey NVARCHAR(50),
@Column NVARCHAR(50),
@NewValue NVARCHAR(50)

SELECT
@TableName = TableName,
@PrimaryKey = PrimaryKey,
@Column = [Column],
@NewValue = OldValue
FROM dbo.Audit
WHERE AuditID = @AuditID

SET @SQLString =
‘UPDATE ‘ + @TableName
+ ‘ SET ‘ + @Column + ‘ = ‘’’ + @NewValue +’’’’
+ ‘ WHERE ‘ + @TableName + ‘ID = ‘’’ + @PrimaryKey + ‘’’’

EXEC sp_executeSQL @SQLString
Return

With the procedure in place, the following script simulates the logic needed to roll back an
update. The original product description value for product 200 was “Man what a big Kite,”
and during testing of the fixed audit trail trigger it was changed to “Biggie Sized.” The script
finds the audit-trail row for that change and passes the GUID to pAudit_RollBack, which
rolls back the previous change:

DECLARE @AuditRollBack UNIQUEIDENTIFIER

SELECT @AuditRollBack = AuditID
FROM dbo.Audit
WHERE TableName = ‘Product’
AND RowDescription = ‘200’
AND OldValue = ‘Man what a big Kite!’

19549359 ch16.F 11/21/02 9:48 AM Page 477

478 Part II ✦ Developing SQL Server Databases

EXEC pAudit_RollBack @AuditRollBack

SELECT ProductDescription
FROM dbo.Product
WHERE Code = 200

Result:

ProductDescription

Man what a big Kite!

This procedure undoes a single specific change. The procedure could be modified to roll back
a row to a certain point in time by selecting the history of the row from the audit trail and
then looping through each change in a descending order.

Auditing Complications
Besides the additional development time, adding auditing can present several complications.

Develop the entire database and prove that the data scheme is correct prior to implement-
ing a data-audit trail. Changes to the data schema are more complex once audit-trail triggers
are in place.

Auditing Related Data
The most significant complication involves auditing related data such as secondary rows. For
example, a change to an OrderDetail row is actually a change to the order. A user will want to
see the data history of the order and see all changes to any of the data related to the order.
Therefore, a change to the OrderDetail table should be recorded as a change to the [Order]
table, and the line number of the order detail item that was changed is recorded in the
SecondaryRow column.

Recording foreign key changes is another difficult aspect of a full audit trail. A user does not
want to see the new GUID or identity value for a foreign-key update. If the order-ship–method
foreign key is changed from “Slow Boat” to “Speedy Express,” the audit-trail trigger should
look up the foreign key and record a readable value. In the Product_Audit sample fixed audit
trail trigger, changes to the ProductCategoryID column write the product category name to
the Audit table.

Date Created and Date Modified
When you are using a full data-audit trail, the row’s creation date and last-modified date can
easily be derived from the audit table. In reality, if an application displays the created and
modified date for a table in a large user-interface grid, I strongly recommend de-normalizing
the row’s created and modified dates and storing the columns directly in the audited table.

Chapter 15, “Implementing Triggers,” includes a trigger that updates the created and modi-
fied columns while preventing problems with recursion.

Auditing Select Statements
Data-audit triggers are limited to auditing insert, update, and delete DML statements. To
audit data reads, implement the read audit in the fetch stored procedure. Use SQL Server
security to limit access to the table so that all reads must go through a stored procedure or a
function.

Cross-
Reference

19549359 ch16.F 11/21/02 9:48 AM Page 478

479Chapter 16 ✦ Advanced Server-Side Programming

Data Auditing and Security
Another concern for those creating a full data-audit history is the security of the data-audit
trail. Anyone who has read rights to the audit table will be able to effectively see all the data
from every audited table. If users will have the ability to see the data history for a given row,
use a stored procedure to fetch the audit data so that security can be persevered.

Data Auditing and Performance
A full data audit trail will add some level of overhead to the system. A single row insert to a
20-column–wide table will add 20 inserts to the audit table. To reduce the performance
impact of the audit trail, do the following:

✦ Limit the indexes on the audit table.

✦ Locate the audit table on its own filegroup and disk subsystem. A separate filegroup
will make backups easier as well.

✦ Using the fixed audit trigger, limit the auditing to those columns that require such a
high level of data integrity.

The Dynamic Audit-Trail Trigger and Procedure
Having spent several months writing fixed audit trail triggers for a project with hundreds of
tables, I felt driven to develop a dynamic auditing system.

The dynamic audit trail is implemented with small triggers on every table. All the trigger does
is copy the Inserted and Deleted tables to temporary tables and pass a few variables to a
stored procedure where the real work is done. It examines the Columns_Updated binary
value, determines the right value to use instead of nulls, and generates a dynamic SQL
statement to write the audit trail.

That’s the catch: to execute a dynamic SQL statement, sp_execSQL is required and it functions
as nested T-SQL batch. The scope of the Inserted and Deleted tables is limited to the
trigger—they aren’t available to any called stored procedure or dynamic SQL statement.
That’s why the temporary tables are used to pass the changes to the stored procedure and
then to the dynamic SQL. The temporary table’s scope includes called stored procedures and
execs, and that makes the dynamic audit trigger possible.

Every method has its trade-off. On the pro side, this trigger/stored procedure/dynamic SQL
method is extremely easy to implement. It works with nearly any table. The limitations of this
version of the dynamic audit trigger are:

✦ It uses a temporary table to pass the Inserted and Deleted tables to the stored proce-
dure, so it isn’t the fastest method possible. In addition, the temporary tables are created
using a select ... into syntax which causes further performance and locking issues.

✦ The current dynamic audit trail doesn’t automatically audit related data or secondary
tables. Nor does it audit tables with composite primary keys.

✦ It doesn’t audit any tables with BLOB columns (image, text, or ntext) because these
can’t be selected from the Inserted and Deleted tables.

Because of these limitations, use the dynamic audit trail method for tables that aren’t
updated frequently, during the early life stages of a database, or for databases that have
acceptable performance when the dynamic audit trail is enabled. For high performance, it’s
better to employ the fixed audit trigger and brute-force through the columns. However, the
fixed audit trigger involves significantly more code and maintenance.

19549359 ch16.F 11/21/02 9:48 AM Page 479

480 Part II ✦ Developing SQL Server Databases

With those disclaimers, here is the code for the dynamic audit trail:

/*
Dynamic Audit Trigger Table and Code
Paul Nielsen www.IsNotNull.com
This sample script adds the dynamic audit trigger to
Northwind Customers and Products table.

Version 1.1 - Aug 6, 2001
*/

USE Northwind

-- Create the table to store the Audit Trail

IF Exists (SELECT * FROM sysobjects WHERE NAME = ‘Audit’)
DROP TABLE Audit

Go
CREATE TABLE dbo.Audit (
AuditID UNIQUEIDENTIFIER ROWGUIDCOL NOT NULL
CONSTRAINT DF_Audit_AuditID DEFAULT (NEWID())
CONSTRAINT PK_Audit PRIMARY KEY NONCLUSTERED (AuditID),

AuditDate DATETIME NOT NULL,
SysUser VARCHAR(50) NOT NULL,
Application VARCHAR(50) NOT NULL,
TableName VARCHAR(50)NOT NULL,
Operation CHAR(1) NOT NULL,
PrimaryKey VARCHAR(50) NOT NULL,

-- RowDescription VARCHAR(50) NULL,
SecondaryRow VARCHAR(50) NULL,
[Column] VARCHAR(50) NOT NULL,
OldValue VARCHAR(50) NULL,
NewValue VARCHAR(50) NULL
)

GO

-- Create function to simulate the Columns_Updated() value

IF EXISTS (SELECT *
FROM sysobjects
WHERE NAME = ‘GenColUpdated’)

DROP FUNCTION GenColUpdated
Go

CREATE FUNCTION dbo.GenColUpdated
(@Col INT, @ColTotal INT)

RETURNS INT
AS
BEGIN
-- Copyright 2001 Paul Nielsen
-- This function simulates Columns_Updated()

19549359 ch16.F 11/21/02 9:48 AM Page 480

481Chapter 16 ✦ Advanced Server-Side Programming

DECLARE
@ColByte INT,
@ColTotalByte INT,
@ColBit INT

-- Calculate Byte Positions
SET @ColTotalByte = 1 + ((@ColTotal-1) /8)
SET @ColByte = 1 + ((@Col-1)/8)
SET @ColBit = @col - ((@colByte-1) * 8)

-- gen Columns_Updated() value for given column position
RETURN
POWER(2, @colbit + ((@ColTotalByte-@ColByte) * 8)-1)

END
go

-- Create the Dynamic Audit Stored Procedures

IF EXISTS (SELECT * FROM SysObjects WHERE NAME = ‘pAudit’)
DROP PROC pAudit

Go

CREATE PROCEDURE pAudit (
@Col_Updated VARBINARY(1028),
@TableName VARCHAR(100),
@PrimaryKey SYSNAME)

AS
-- dynamic auto-audit trigger/stored procedure
-- Copyright 2001 Paul Nielsen
SET NoCount ON
DECLARE
@ColTotal INT,
@ColCounter INT,
@ColUpdatedTemp INT,
@ColName SYSNAME,
@BlankString CHAR(1),
@SQLStr NVARCHAR(1000),
@ColNull NVARCHAR(50),
@SysUser NVARCHAR(100),
@ColumnDataType INT,
@IsUpdate BIT,
@tempError INT

SET @SysUser = suser_sname()
SET @BlankString = ‘’

-- Initialize Col variables
SELECT @ColCounter = 0
SELECT @ColTotal = Count(*)
FROM SysColumns
JOIN SysObjects
ON SysColumns.id = SysObjects.id

WHERE SysObjects.name = @TableName

19549359 ch16.F 11/21/02 9:48 AM Page 481

482 Part II ✦ Developing SQL Server Databases

-- Set IsUpdated Flag
IF EXISTS(SELECT * FROM #tempDel)
SELECT @IsUpdate = 1

ELSE
SELECT @IsUpdate = 0

-- Column Updates
WHILE ((SELECT @ColCounter) != @ColTotal)
-- run through some columns
BEGIN
SELECT @ColCounter = @ColCounter + 1
SET @ColUpdatedTemp

= dbo.GenColUpdated(@ColCounter,@ColTotal)

-- bitwise AND between updated bits
-- and the selected column bit
IF (@Col_Updated & @ColUpdatedTemp) = @ColUpdatedTemp
BEGIN
SET @ColNull = null
SELECT

@ColName = SysColumns.[name],
-- get the column name & Data Type
@ColumnDataType = SysColumns.xtype

FROM SysColumns
JOIN SysObjects
ON SysColumns.id = SysObjects.id

WHERE SysObjects.[NAME] = @TableName
and SysColumns.ColID = @ColCounter

IF @ColName NOT IN (‘Created’, ‘Modified’)
BEGIN
-- text columns
IF @ColumnDataType IN

(175, 239, 99, 231, 35, 231, 98, 167)
SET @ColNull = ‘’’’’’

-- numeric + bit columns
ELSE IF @ColumnDataType IN

(106, 62, 56, 60, 108, 59, 52, 122, 104)
SET @ColNull = ‘0’

-- date columns
ELSE IF @ColumnDataType IN (61, 58)
SET @ColNull = ‘’’1/1/1980’’’

-- uniqueidentifier columns
ELSE IF @ColumnDataType IN (36)
SET @ColNull = ‘’’’’’

IF @ColNull IS NOT NULL
BEGIN
IF @IsUpdate = 1

-- had to adjust indenting
SET @SQLStr =
‘ Insert Audit(TableName, PrimaryKey, SysUser, [Column],’
+’ AuditDate, Application, OldValue, NewValue,Operation)’
+’ Select ‘’’+ @TableName + ‘’’,
#tempIn.[‘+ @PrimaryKey + ‘],

19549359 ch16.F 11/21/02 9:48 AM Page 482

483Chapter 16 ✦ Advanced Server-Side Programming

‘’’ + @SysUser + ‘’’, ‘ +
‘’’’ + @ColName + ‘’’, GetDate(), App_Name(),’ +
‘ IsNull(convert(nvarchar(100),

#tempDel.[‘ + @ColName + ‘]),’’<null>’’), ‘ +
‘ IsNull(convert(nvarchar(100),

#tempIn.[‘ + @ColName + ‘]),’’<null>’’),’’U’’’ +
‘ From #tempIn’ +
‘ Join #tempDel’ +
‘ On #tempIn.[‘+ @PrimaryKey + ‘]

= #tempDel.[‘+ @PrimaryKey + ‘]’ +
‘ AND isnull(#tempIn.’ + @ColName + ‘,’ + @ColNull + ‘)
!= isnull(#tempDel.’ + @ColName + ‘,’ + @ColNull + ‘)’

+ ‘ Where Not (#tempIn.[‘ + @ColName + ‘] Is Null
and #tempDel.[‘ + @ColName + ‘] Is Null)’

ELSE -- Insert
SET @SQLStr =
‘ Insert Audit(TableName, PrimaryKey, SysUser, [Column],’
+’ AuditDate, Application, OldValue, NewValue,Operation)’
+’ Select ‘’’+ @TableName + ‘’’,#tempIn.[‘+ @PrimaryKey
+ ‘], ‘’’ + @SysUser + ‘’’, ‘ +
‘’’’ + @ColName + ‘’’, GetDate(), App_Name(),’ +
‘ Null, ‘ +
‘ IsNull(convert(nvarchar(100),
#tempIn.[‘ + @ColName +’]),’’<null>’’),’’I’’’ +
‘ From #tempIn’ +
‘ Where Not (#tempIn.[‘ + @ColName + ‘] Is Null)’

EXEC sp_executesql @SQLStr
SET @TempError = @@Error
IF @TempError <> 0
BEGIN
-- turn rollback on only if you want a
-- failure to record audit to cancel
-- the data modification operation
-- Rollback
RAISERROR (‘Audit Trail Error’, 15, 1)

END
END END END END RETURN
Go

--
-- sample Table Triggers
-- this will need to be added to every table
-- and the Table and Primary Key settings

-- Products Trigger

IF EXISTS (SELECT *
FROM sysobjects
WHERE NAME = ‘Products_Audit’)

DROP TRIGGER Products_Audit
Go

19549359 ch16.F 11/21/02 9:48 AM Page 483

484 Part II ✦ Developing SQL Server Databases

CREATE TRIGGER Products_Audit
ON dbo.Products
AFTER Insert, Update
NOT FOR REPLICATION
AS
-- Dynamic Audit Trail Code Begin
-- (c)2001 Paul Nielsen
DECLARE
@Col_Updated VARBINARY(1028),
@TableName VARCHAR(100),
@PrimaryKey SYSNAME

SET NoCount ON

-- Set up the Audit data
-- set to the table name
SET @TableName = ‘Products’
-- set to the column to identify the row
SET @PrimaryKey = ‘ProductID’
SET @Col_Updated = Columns_Updated()
SELECT * INTO #TempIn FROM Inserted
SELECT * INTO #TempDel FROM Deleted

-- call the audit stored procedure
EXEC pAudit @Col_Updated, @TableName, @PrimaryKey

Go

-- Customer Trigger

IF EXISTS (SELECT *
FROM SysObjects
WHERE [NAME] = ‘Customers_Audit’)

DROP TRIGGER Customers_Audit
Go

CREATE TRIGGER Customers_Audit
ON dbo.Customers
AFTER Insert, Update
NOT FOR REPLICATION
AS
-- Dynamic Audit Trail
-- (c)2001 Paul Nielsen
DECLARE
@Col_Updated VARBINARY(1028),
@TableName VARCHAR(100),
@PrimaryKey SYSNAME

SET NoCount ON
SET @TableName = ‘Customers’
SET @PrimaryKey = ‘CustomerID’
SET @Col_Updated = Columns_Updated()
SELECT * INTO #TempIn FROM Inserted
SELECT * INTO #TempDel FROM Deleted
EXEC pAudit @Col_Updated, @TableName, @PrimaryKey

19549359 ch16.F 11/21/02 9:48 AM Page 484

485Chapter 16 ✦ Advanced Server-Side Programming

The sample script on the CD, DynamicAudit.sql, includes several test inserts and updates
as well as example queries for retrieving data from the audit table and joining the audit table
with the products table. As I continue to develop these utility procedures, new versions are
posted on www.IsNotNull.com.

Transaction-Aggregation Handling
Stored procedures are excellent for maintaining de-normalized aggregate data. A common
example of this is an inventory system that records all transactions in an inventory-
transaction table, calculates the inventory quantity on hand, and stores the calculated
quantity in the inventory table for performance.

To protect the integrity of the inventory table, the following logic rules should typically be
implemented with triggers:

✦ The inventory table should not be updateable by any process other than the inventory
transaction table triggers. Any attempt to directly update the inventory table’s quantity
should be recorded as a manual adjustment in the inventory-transaction table.

✦ Inserts in the inventory-transaction table should write the current on-hand value to the
inventory table.

✦ The inventory-transaction table should not allow updates.

The OBX Kites database includes a simplified inventory system. To demonstrate transaction
aggregation handling, the following triggers implement the required rules.

The first script creates a sample valid inventory item for test purposes:

USE OBXKites

DECLARE
@ProdID UniqueIdentifier,
@LocationID UniqueIdentifier

SELECT @ProdID = ProductID
FROM dbo.Product
WHERE Code = 1001

SELECT @LocationID= LocationID
FROM dbo.Location
WHERE LocationCode = ‘CH’

INSERT dbo.Inventory (ProductID, InventoryCode, LocationID)
VALUES (@ProdID,’A1’, @LocationID)

SELECT Product.Code, InventoryCode, QuantityOnHand
FROM dbo.Inventory
JOIN dbo.Product
ON Inventory.ProductID = Product.ProductID

Result:

Code InventoryCode QuantityOnHand
--------------- --------------- --------------
1001 A1 0

On the
CD-ROM

19549359 ch16.F 11/21/02 9:48 AM Page 485

486 Part II ✦ Developing SQL Server Databases

The Inventory-Transaction Trigger
The inventory-transaction trigger performs the aggregate function of maintaining the current
quantity–on-hand value in the Inventory table. With each row inserted into the
InventoryTransaction table, the trigger updates the Inventory table. The join between
the Inserted image table and the Inventory table lets the trigger handle multiple-row
inserts.

CREATE TRIGGER InvTrans_Aggregate
ON dbo.InventoryTransaction
AFTER Insert
AS

UPDATE dbo.Inventory
SET QuantityOnHand

= Inventory.QuantityOnHand + Inserted.Value
FROM dbo.Inventory
JOIN Inserted
ON Inventory.InventoryID = Inserted.InventoryID

Return

The next batch tests the InvTrans_Aggregate trigger by inserting a transaction and
observing the inventory transaction and the inventory tables:

INSERT InventoryTransaction (InventoryID, Value)
SELECT InventoryID, 5
FROM dbo.Inventory
WHERE InventoryCode = ‘A1’

INSERT InventoryTransaction (InventoryID, Value)
SELECT InventoryID, -3
FROM dbo.Inventory
WHERE InventoryCode = ‘A1’

INSERT InventoryTransaction (InventoryID, Value)
SELECT InventoryID, 7
FROM dbo.Inventory
WHERE InventoryCode = ‘A1’

The following query views the data within the InventoryTransaction table:

SELECT InventoryCode, Value
FROM dbo.InventoryTransaction
JOIN dbo.Inventory
ON Inventory.InventoryID

= Inventorytransaction.InventoryID

Result:

InventoryCode Value
--------------- ------
A1 5
A1 -3
A1 7

19549359 ch16.F 11/21/02 9:48 AM Page 486

487Chapter 16 ✦ Advanced Server-Side Programming

The InvTrans_Aggregate trigger should have maintained a correct quantity on-hand value
through the inserts to the InventoryTransaction table. Indeed, the next query proves the
trigger functioned correctly:

SELECT Product.Code, InventoryCode, QuantityOnHand
FROM dbo.Inventory
JOIN dbo.Product
ON Inventory.ProductID = Product.ProductID

Result:

Code InventoryCode QuantityOnHand
--------------- --------------- --------------
1001 A1 9

The Inventory Trigger
The quantity values in the Inventory table should never be directly manipulated. Every
quantity adjust must go through the InventoryTransaction table. However, some
users will want to make manual adjustments to the Inventory table. The gentlest solution
to the problem is to use server-side code to perform the correct operations regardless
of the user’s method. Therefore, the inventory trigger has to redirect direct updates
intended for the Inventory table to the InventoryTransaction table, while permitting
the InvTrans_Aggregate trigger to update the Inventory table.

As a best practice the trigger must accept multiple-row updates. The goal then is to undo the
original DML update command while keeping enough of the data to write the change as an
insert to the InventoryTransaction table.

Rolling back the DML update won’t work because that would obliterate the data within the
Inserted and Deleted images, as well as any inserts to a temporary table created within the
trigger. Neither can the values be stored in local variables because a single variable couldn’t
handle a multiple-row update.

The solution is to undo the original DML update command by writing the pre-update values
from the Deleted table back into the Inventory table. Then the difference between the
Deleted table QuantityOnHand and the Inserted table QuantityOnHand can be written to
the InventoryTransaction table as a manual adjustment.

The trigger logic is only executed if the QuantityOnHand column is updated and the trigger is
being called by a user’s DML statement. If the Inventory table’s QuantityOnHand column is
being updated by the InvTrans_Aggregate trigger, the NestLevel() will be higher than 1.
Here’s the Inventory table side of the Inventory - InventoryTransaction table trigger
solution:

CREATE TRIGGER Inventory_Aggregate
ON Inventory
AFTER UPDATE
AS
-- Redirect direct updates
If Trigger_NestLevel() = 1 AND Update(QuantityOnHand)
BEGIN
UPDATE Inventory
SET QuantityOnHand = Deleted.QuantityOnHand
FROM Deleted
JOIN dbo.Inventory
ON Inventory.InventoryID = Deleted.InventoryID

19549359 ch16.F 11/21/02 9:48 AM Page 487

488 Part II ✦ Developing SQL Server Databases

INSERT InventoryTransaction
(Value, InventoryID)
SELECT
Inserted.QuantityOnHand - Inventory.QuantityOnHand,
Inventory.InventoryID
FROM dbo.Inventory
JOIN Inserted
ON Inventory.InventoryID = Inserted.InventoryID

END

To demonstrate the trigger, the following update attempts to change the quantity on
hand from “9” to “10.” The new Inventory_Aggregate trigger traps the update and
resets the quantity on hand back to “9.” But it also writes a transaction of “+1” to the
InventoryTransaction table. (If the transaction table had transaction type and comment
columns, the transaction would be recorded as a manual adjustment by User X.) The
inventory transaction table’s InvTrans_Aggregate trigger sees the insert and
properly adjusts the Inventory.QuantityOnHand to “10”:

-- Trigger Test
Update dbo.Inventory
SET QuantityOnHand = 10
Where InventoryCode = ‘A1’

Having performed the manual adjustment, the following query examines the
InventoryTransaction table:

SELECT InventoryCode, Value
FROM dbo.InventoryTransaction
JOIN dbo.Inventory
ON Inventory.InventoryID

= Inventorytransaction.InventoryID

Sure enough, the manual adjustment of 1 has been written to the InventoryTransaction table:

InventoryCode Value
--------------- --------------------------------
A1 5
A1 -3
A1 7
A1 1

As the adjustment was being inserted into the InventoryTransaction table, the
InvTrans_Aggregate trigger posted the transaction to the Inventory table. The following
query double checks the QuantityOnHand for inventory item “A1”:

SELECT Product.Code, InventoryCode, QuantityOnHand
FROM dbo.Inventory
JOIN dbo.Product
ON Inventory.ProductID = Product.ProductID

Result:

Code InventoryCode QuantityOnHand
--------------- --------------- --------------
1001 A1 10

19549359 ch16.F 11/21/02 9:48 AM Page 488

489Chapter 16 ✦ Advanced Server-Side Programming

Logically Deleting Data
To further increase data integrity, many database developers prohibit the physical deletion of
data. Instead, they enable the logical deletion of data. The most common method is to use a
delete flag bit column. When the user deletes a row in the front-end application, a trigger
actually marks the row as deleted by setting the delete flag to true. A logical delete flag can
be implemented in several ways:

✦ The front-end application can set the delete flag to true.

✦ The delete stored procedure can set the delete flag to true.

✦ An instead of trigger can trap the delete DML command and set the delete flag
instead of physically deleting the row.

A logical delete flag is not as advanced as it seems. dbase III used a delete flag to mark rows
as deleted until the file compress command purged the deleted rows.

The ability to logically delete data is a cool high-end feature that is desirable in mature
databases. I would caution you, however, to let logical deletions be among the last features
you implement because doing so can be very time-consuming and can open a huge can of
worms. Here, my goal is to demonstrate a single-table logical delete system, and also to
explain the problems with logically deleted data and suggest some strategies to work around
those problems.

Logical Delete Triggers
An instead of trigger implements the logical delete system at the table level and ensures
that it’s always enforced. The trigger has two goals: converting physical deletes into logical
deletes, and enabling some method of physically deleting the row.

This trigger allows the sa user to physically delete any row, so there is some method of physi-
cally purging the database. An instead of trigger will not recursively fire, so the delete
DML command within the trigger will execute. The first command alters the Product table
and adds the IsDeleted bit flag:

ALTER TABLE Product
ADD IsDeleted BIT NOT NULL DEFAULT 0

CREATE Trigger Product_LogicalDelete
On dbo.Product
INSTEAD OF Delete
AS

IF (suser_sname() = ‘sa’)
BEGIN
PRINT ‘physical delete’
DELETE FROM dbo.Product
FROM dbo.Product
JOIN Deleted
ON Product.ProductID = Deleted.ProductID

END
ELSE
BEGIN
PRINT ‘logical delete’

Note

19549359 ch16.F 11/21/02 9:49 AM Page 489

490 Part II ✦ Developing SQL Server Databases

UPDATE Product
SET IsDeleted = 1
FROM dbo.Product
JOIN Deleted
ON Product.ProductID = Deleted.ProductID

END

To test the logical delete trigger, the next query deletes from the Product table while I’m
logged in as Noli\Paul:

DELETE Product
WHERE Code = ‘1053’

Result:

logical delete

To following select views the logical deleted flag:

SELECT Code, IsDeleted
FROM dbo.Product
WHERE Code = 1053

Result:

Code IsDeleted
--------------- ---------
1053 1

Having reconnected as the sa user, I again issued the same delete command:

DELETE dbo.Product
WHERE Code = ‘1053’

Result:

physical delete

(1 row(s) affected)

(1 row(s) affected)

The first (1row(s) affected) result is the DML delete statement. Even though it was inter-
cepted by the Instead Of trigger and the initial delete was ignored, it is still reported as an
affected row. The second (1row(s) affected) result is the delete statement within the
Product_LogicalDelete trigger. This delete was effective and physically deleted the row.

Undeleting a Logically Deleted Row
Prior to being physically deleted by the sa user, the row can easily be undeleted by means of
updating the IsDeleted column back to false. If the row-based custom security method
described earlier in this chapter is implemented, an after update trigger could test that the
user has administrative privileges to the row to update the IsDeleted column to 0.

19549359 ch16.F 11/21/02 9:49 AM Page 490

491Chapter 16 ✦ Advanced Server-Side Programming

Filtering out Logically Deleted Rows
An issue with a logical delete system is that every select statement must consider the
IsDeleted flag, otherwise deleted data may erroneously affect the result. The best way to
ensure that the front-end application retrieves only current and correct data is to use stored
procedures for fetching data.

The problem is that when the user issues an ad hoc query there’s no guarantee that he or she
is aware of the IsDeleted flag or that every query is correct. A solution is to create views or,
better still, table-valued user-defined functions for data retrieval, and to limit the users to
those views or functions using SQL Server security.

Cascading Logical Deletes
This is where logically deleting data becomes a potential nightmare. If a primary row is physi-
cally deleted, the secondary rows that have no meaning without the primary row should also
be deleted. Should logical deletes cascade as well?

If an order is logically deleted, the associated order-detail rows must be logically deleted
either in the write or in every future read. Both methods have problems.

Cascading During the Read
If an order is logically deleted, its order-detail rows must be excluded from any calculations
that are considering open order details. One possible method is to join the order table and
include order.isdeleted in the where clause. This can become very complex as logical
deletes cascade through multiple levels. From my experience, implementing cascading logical
deletes in the read end of the process can kill performance as the number of tables, joins, and
where conditions multiply exponentially to cover all the logical delete combinations.

Cascading During the Write
If the secondary rows are logically deleted during the primary table’s logical delete opera-
tion, the advantage is that the secondary rows are already marked for deletion, so the read
operation won’t have to check the primary table for logically deleted rows. The problem is
determining whether the logically deleted secondary row has been logically deleted itself, or
because its primary row was logically deleted.

It’s possible to use two flags, one for the row logical delete, and one for a cascade logical
delete. In keeping with the saying that today’s solution is tomorrow’s problem, even this
causes headaches. Assume an order is logically deleted, and the logical delete is cascaded
to the order-detail table. One of the order-detail rows pointed to a product that has been logi-
cally deleted. When the order is undeleted and the order-detail rows are undeleted, the order-
detail row that was logically deleted because of the product logical delete should stay
logically deleted.

There are two possible solutions. The first solution is to add a logical cascade delete flag for
each foreign key relationship for a table. This makes the code less than generic and poten-
tially very messy, so I don’t like this solution.

The second solution is to use a single logical delete cascade flag, but to build a very compre-
hensive undelete system that examines every primary-table relationship before undeleting a
row. While this method entails the most work, it’s the best solution.

19549359 ch16.F 11/21/02 9:49 AM Page 491

492 Part II ✦ Developing SQL Server Databases

Logical Deletes and Referential Integrity
Implementing a complete logical delete method also creates a potential referential-integrity
problem. It would violate referential integrity to refer to a row that has been logically deleted.
However, SQL Server’s declarative referential integrity does not consider whether the row is
logically deleted, only if it’s physically in the table.

A database with a logical delete system therefore requires a complex referential-integrity
trigger that not only determines whether the primary key value exists in the primary table,
but also checks the row’s IsDeleted bit flag.

Degrees of Inactivity
A system that incorporates logical deletions often also includes some other measure of row
inactivity such as an active flag or a retired flag. These flags enable the user to mark a row as
less significant without deleting the data. For example, an R&D lab is most concerned with the
current formulae or material revisions, so its researchers don’t want to wade through the thou-
sands of obsolete formula revisions. However, they don’t want to delete the data either. Marking
a formula inactive serves to hide it, but the user can still select the inactive data if desired.

Archiving Data
Old data is often no longer required for day-to-day activities, and can be safely archived or
moved to a separate database location. The easiest way to archive data yet keep it easily
available to the user is to move it to a separate table with an identical structure within the
same database or within another database.

Archiving data is a good alternative to logically deleting it. The issues of referential integrity
and cascading logical deletes are no longer problems if logically deleted data is moved to an
archive.

A stored procedure can easily perform the move by inserting the data into the archive table
and deleting it form the current table:

CREATE PROCEDURE pProduct_Archive (
@Code CHAR(15))

AS
SET NoCount ON

BEGIN TRANSACTION

INSERT Product_Archive
SELECT *
FROM dbo.Product
WHERE Code = @Code

IF @@ERROR <> 0
BEGIN
ROLLBACK TRANSACTION
RETURN

END

19549359 ch16.F 11/21/02 9:49 AM Page 492

493Chapter 16 ✦ Advanced Server-Side Programming

DELETE dbo.Product
WHERE Code = @Code

IF @@ERROR <> 0
BEGIN
ROLLBACK TRANSACTION

END

COMMIT TRANSACTION
RETURN

The stored procedure will likely have to move more than just one table’s rows. For example,
archiving an order involves both the [Order] table and the OrderDdetail table.

Partitioned views, discussed in Chapter 30, “Advanced Scalability,” are an excellent means of
retrieving a combination of both current and archived data.

Summary
Complex business rules and processing are best implemented as server-side code. Only when
the rule is implemented in the server is it 100 percent enforced. A rule implemented outside the
server isn’t a rule, it’s a suggestion. Server-side code is excellent for insert, update, delete,
and fetch procedures, complex business rules, complex referential integrity, data-audit trails,
and logical deletions.

This chapter concludes Part II of the book, “Developing SQL Server Databases.” From here,
Part III, “Data Connectivity,” discusses connecting with data outside SQL Server, from the
sophisticated Data Transformation Services to the building of distributed queries with code.

✦ ✦ ✦

Cross-
Reference

19549359 ch16.F 11/21/02 9:49 AM Page 493

19549359 ch16.F 11/21/02 9:49 AM Page 494

Data Connectivity

If a tree falls in the forest and no one hears it, the tree may as well
be a null.

The same is true of the data. If it’s not delivered on time to those who
need it, then the database has failed. It’s not the existence of the data
that matters but the delivery.

Part III is about thinking outside the box, and delivering the data to
the rest of the world using more connectivity options than ever
before.

✦ ✦ ✦ ✦

In This Part

Chapter 17
Transferring Databases

Chapter 18
Working with
Distributed Queries

Chapter 19
Migrating Data
with DTS

Chapter 20
Replicating Databases

Chapter 21
ADO and ADO.NET

Chapter 22
XML and Web
Publishing

✦ ✦ ✦ ✦

P A R T

IIIIII

20549359 PP03.F 11/21/02 9:49 AM Page 495

20549359 PP03.F 11/21/02 9:49 AM Page 496

Transferring
Databases

Transferring data may be a mundane task, but SQL Server databases
are often developed on one server and deployed on other servers.

Without a reliable and efficient method of moving database schemas
and whole databases, the project won’t get very far.

SQL Server enables multiple means of moving databases. As a
database developer or DBA, you should have basic skills in the
following topics, three of which are covered in this chapter:

✦ Copy Database Wizard

✦ SQL scripts

✦ Detach/attach

✦ Backup/restore (covered in Chapter 26, “Recovery Planning”)

The keys to deciding the best way to move a database are knowing
how much of it needs to be moved, and knowing whether or not the
servers are directly connected by a fast network. Table 17-1 lists the
copy requirements and the various methods of moving a database.

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using the Copy
Database Wizard

Generating SQL scripts

Detaching and
attaching databases

✦ ✦ ✦ ✦

21549359 ch17.F 11/21/02 9:49 AM Page 497

498 Part III ✦ Data Connectivity

Table 17-1: Database Transfer Methods

Copy Database Detaching
Requirement Wizard SQL Scripts Attaching Backup Restore

Requires Exclusive Yes No Yes No
Access to the
Database

Copies Between No Yes Yes Yes
Disconnected
Servers

Copies Database Yes Yes Yes Yes
Schema

Copies Data Yes No Yes Yes

Copies Security Server logins, Depends on Database users, Database users,
database users, the script security roles, security roles,
security roles, and permissions and permissions
and permissions

Copies Jobs/ Yes Depends on No No
User-Defined the script
Error Messages

Copy Database Wizard
The Copy Database Wizard actually generates a Data Transformation Service package that
can copy or move one or more databases from one server to another. If the database is being
moved to a server on the same network server, this is the premiere method. The Copy
Database Wizard offers the most flexibility and capability. The only limitation is that it
requires exclusive access to the database.

On pages 1 and 2 of the Copy Database Wizard, the wizard begins by gathering the name of
the source and destination servers and the required security information to log into the
server.

On page 3 the wizard displays the default locations for the database files on the destination
server. You can also modify the locations here if needed. The wizard will move all the objects
and data.

On page 4 (Figure 17-1) you can optionally direct the wizard to move the following:

✦ All logins, or only those that have access to the database.

✦ All or selected non-system stored procedures in the Master database that are used by
the database.

✦ All or selected SQL Agent jobs (automated and optionally scheduled tasks).

✦ All or selected user-defined error messages (used by the raiserror T-SQL command).

21549359 ch17.F 11/21/02 9:49 AM Page 498

499Chapter 17 ✦ Transferring Databases

Figure 17-1: The Copy Database Wizard can move
server-related information as it moves the database.

Depending on the options selected, the wizard may offer pages to select the Master database
non-system stored procedures, the SQL Server Agent jobs, and the user-defined error
messages.

The Schedule the DTS Package page, shown in Figure 17-2, directs the wizard to either run
the package once upon completion of the wizard, run it once later, or set it up on a regular
schedule. Optionally, the DTS package’s name can be changed to something other than
CDW_sourceserver_destinationserver.

Figure 17-2: The Copy Database Wizard can run the
DTS package once now, once later, or on a schedule.

When finished, the wizard generates and runs a DTS package (Figure 17-3) and saves it on the
destination server.

21549359 ch17.F 11/21/02 9:49 AM Page 499

500 Part III ✦ Data Connectivity

Figure 17-3: When the Copy Database Wizard
executes the DTS package, it displays its
progress as it works its way through the steps.

You may open the generated DTS package, shown in Figure 17-4, by opening the Local
Packages node under Data Transformation Services in the console tree, and then double-
clicking on the package. If the name was not edited in the wizard’s schedule page, then the
name should be CDW followed by the two server names and an integer. The creation date is
also listed.

Figure 17-4: The DTS package is a workflow sequence of five tasks.

21549359 ch17.F 11/21/02 9:49 AM Page 500

501Chapter 17 ✦ Transferring Databases

Each of the five tasks, if double-clicked, will open a dialog to gather information about how
that task should run. The blue lines between the tasks are workflow connections that launch
the next task only after the previous task is complete.

You may run the DTS package by clicking the Run tool in the toolbar or by pressing F5.

For more details on creating and executing DTS packages, refer to Chapter 19, “Migrating
Data with DTS.”

Working with SQL Script
Of the four methods of moving a database, running a SQL Script, or batch, is the only method
that creates a new database. Perhaps it’s false logic, but the idea of starting with a fresh
installation at a client site, without any residue from test data, is a reassuring thought.

Scripts are smaller than databases. They often fit on a floppy, and they can be edited with
Notepad. As an example, the sample databases for this book are distributed by means of
scripts.

Scripts are useful for distributing the following:

✦ Database schema (databases, tables, views, stored procedures, functions, and so on)

✦ Security roles

✦ Database jobs

✦ Limited sample data or priming data

Though it’s possible, I wouldn’t recommend creating a script to move the following:

✦ Data — A script can insert rows, but this is a difficult method of moving data.

✦ Server logins — A script can easily create server logins, but server logins tend to be
domain-specific, so this option is only useful within a single domain.

✦ Server Jobs — Server specific jobs generally require specific tweaking. While a script
may be useful to copy jobs, they will likely require editing prior to execution.

Scripts may also be used to implement a change to a database. The easiest way to modify a
client database is to write a script. The change script can be tested on a backup of the
database.

Scripts may be generated in several ways:

✦ The database can be developed initially in Query Analyzer using a hand-written DDL
script. Chapter 5, “Implementing the Physical Database Schema,” explains how to cre-
ate such a script. Also, the sample databases on the book’s CD are all created using a
DDL script. This is my prefered method.

✦ Enterprise Manager can generate a script to create the entire database or a change
script for schema changes made with the Table Designer or the Database Diagrammer.

✦ Most third-party database-design tools generate scripts to create the database or apply
changes.

Cross-
Reference

21549359 ch17.F 11/21/02 9:49 AM Page 501

502 Part III ✦ Data Connectivity

Focusing in on generating scripts with Enterprise Manager, to open the Enterprise Manager
script generator, select the database in the console tree, right-click, and select All Tasks ➪
Generate SQL Script.

In Enterprise Manager’s Generate SQL Scripts tool, use the General tab (Figure 17-5) to select
the objects to be included in the script.

Figure 17-5: Enterprise Manager can generate scripts for
any object in the database.

The Formatting tab (Figure 17-6) is ill named. Only one option offered here is truly a formatting
option. Most of the options direct the SQL Script Generator as to which additional object to
script. The “Generate the DROP <object> command for each object” option generates a DROP
command for each object before that object is created. The “Generate scripts for all depen-
dent objects” option includes any dependent object that was omitted in the previous tab.

The Options tab (Figure 17-7) includes additional database features that might be included in
the script, such as security, users, login, roles, indexes, triggers, and keys. I recommend
including all of the table options.

21549359 ch17.F 11/21/02 9:49 AM Page 502

503Chapter 17 ✦ Transferring Databases

Figure 17-6: The critical options in the Formatting tab are
the “Generate the DROP <object> command for each object”
and the “Generate scripts for all dependent objects” options.

Figure 17-7: Additional items may be added to the script
by means of the Options tabs.

21549359 ch17.F 11/21/02 9:49 AM Page 503

504 Part III ✦ Data Connectivity

Detaching and Attaching
Though it is often overlooked, one of the easiest ways to move a database from one computer
to another is to detach the database, copy the files, and attach the database to SQL Server on
the destination computer.

For developers who frequently move databases between notebooks and servers, this is
the recommended method. Detaching a database effectively deletes the database from SQL
Server’s awareness, but leaves the files intact. The database must have no current connec-
tions and not be replicated if it is to be detached. Only members of the SysAdmins Fixed
Server Role (see Chapter 27, “Securing Databases,” for more details on the security roles)
may detach and attach databases.

Detaching and attaching the database will carry with it any database users, security roles,
and permissions, but it will not replicate server logins. These will need to be resolved manu-
ally on the destination server. It’s best to coordinate security with the network administra-
tion folks and leverage their security groups. If the source and destination servers have
access to the same network security groups, this will alleviate the security login issues
for most installations.

Using Enterprise Manager, right-click the database to be copied and select All Tasks ➪ Detach
Database. The Detach Database dialog box is shown in Figure 17-8.

Figure 17-8: The Detach Database feature
removes the database from SQL Server’s list of
databases and frees the files for copying.

Once the file is detached, it will disappear from the list of databases in Enterprise Manager.
The files may be copied or moved like regular files.

To reattach the database file, select Databases in the Enterprise Manger console tree and All
Tasks ➪ Attach Database from the action menu or the right-click menu. The Attach Database
dialog box (Figure 17-9) simply offers a place to select the file and verify the file locations and
names.

21549359 ch17.F 11/21/02 9:49 AM Page 504

505Chapter 17 ✦ Transferring Databases

Figure 17-9: The database may be reattached
by means of Enterprise Manager’s Attach
Database tool.

In code the database is detached by means of running the sp_detach_db system stored pro-
cedure. The first parameter is the database to be detached. A second optional parameter sim-
ply turns off automatic updating of the index statistics. The following command detaches the
OBX Kites sample database:

sp_detach_db ‘OBXKites’

If you wish to reattach a database with code, the counterpart to sp_detach_db is the
sp_attach_db system stored procedure. Attaching a database requires specifying the files’
locations as well as the database name, as follows:

EXEC sp_attach_db @dbname = ‘OBXKites’,
@filename1 = ‘e:\SQLData\OBXKites.mdf’,
@filename2 = ‘f:\SQLData\OBXKitesStatic.ndf’,
@filename3 = ‘g:\SQLLOG\OBXKites.ldf’

Summary
When you need to move a database, don’t back it up; there are better ways to move it.
Choose the right transfer method based on the network proximity of the servers and the
objects and/or data to be moved.

Part III of this book, “Data Connectivity,” addresses the multiple means of moving data or con-
necting to data outside of SQL Server. The next chapter moves outside the realm of the single
database to distributed data, covering retrieving and modifying data in other SQL Server
databases, other SQL Server instances, and even other data formats, including Access and
Excel.

✦ ✦ ✦

21549359 ch17.F 11/21/02 9:49 AM Page 505

21549359 ch17.F 11/21/02 9:49 AM Page 506

Working with
Distributed Queries

Data is seldom in one place. In today’s distributed world, most
new projects enhance or at least connect to existing data.

That’s not a problem. SQL Server can read and write data to most
other data sources. Heterogeneous joins can even merge SQL Server
data with an Excel spreadsheet.

SQL Server offers several methods of accessing data external to the
current database. From simply referencing another local database to
executing pass-through queries that engage another client/server
database, SQL Server can handle it.

Chapter 11, “Transactional Integrity,” explored the ACID properties
of a database and transactions. SQL Server uses the Distributed
Transaction Coordinator to escalate a transaction to a two-phase
commit, meaning that data modifications that affect multiple SQL
servers still have atomicity.

The code listings in this chapter are also in the ch18.sql script
file. In addition, the Cape Hatteras Adventures conversion script
(CHA2_Convert.sql) uses distributed queries exclusively to
convert the data from Access and Excel to SQL Server.

In this chapter, I refer to the two data sources as local and exter-
nal. Other descriptions of distributed queries might refer to the
same two servers as local and remote, or sending and receiving.

Distributed Query Concepts
Linking to an external data source is nothing more than configuring
the name of the linked server, along with the necessary location and
login information, so that SQL Server can access data on the linked
server.

Linking is a one-way configuration, as illustrated in Figure 18-1. If
Server A links to Server B, it means that Server A knows how to
access and log into Server B. As far as Server B is concerned, Server
A is just another user.

Note

On the
CD-ROM

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
distributed queries

Making the connection
with remote data
sources

T-SQL distributed
queries

Pass-through queries

Two-phase commits and
distributed transactions

✦ ✦ ✦ ✦

22549359 ch18.F 11/21/02 9:49 AM Page 507

508 Part III ✦ Data Connectivity

Figure 18-1: A linked server is a one-way direct connection
and is not dependent on Enterprise Manager’s registering the
servers. In this diagram, SQL Server Instance A sees SQL Server
Instance B as a linked server so A can access B’s data.

If linking a server is a new concept to you it could easily be confused with registering a server
in Enterprise Manager. As illustrated in Figure 18-1, Enterprise Manager is only communicat-
ing with the servers as a client application. Linking the servers enables SQL Server Instance A
to communicate directly with SQL Server instance B.

Links can be established in Enterprise Manager or with T-SQL code. The latter has the advan-
tage of repeatability in case a hasty rebuild is necessary, although building the links in code
requires more steps.

A linked server can be a SQL server or any other data source with either an OLE DB provider
or ODBC drivers. Distributed queries can select data and modify (insert, update, delete) it,
according to the features of the OLE DB provider or ODBC driver.

SQL Server queries can reference external data by referring to the pre-configured linked
server or specifying the link in the query code.

In a sense, linking to an external data source only moves declaring the link from the query
code to a server administration task. Because queries can refer to the named link without
concern for the location or security particulars of the link, queries that use linked servers are
more portable and easier to maintain than queries that declare the external data source in
the query code. If the database is moved to a new server, once the database administrator
creates the appropriate links, the queries will work without modification.

Enterprise
Manager

Register
Servers

Linked Server

SQL Server
Instance A

Query

SQL Server
Instance B

Login Information

22549359 ch18.F 11/21/02 9:49 AM Page 508

509Chapter 18 ✦ Working with Distributed Queries

In the case of a distributed query, SQL Server is the client process receiving the results from
the external data source. Distributed queries can either pull the data into SQL Server for pro-
cessing, or pass the query to the external data source for processing.

There’s more than one way to distribute data. You might want to consider replication
(Chapter 20, “Replicating Databases”), using a federated database (Chapter 30, “Advanced
Scalability”), or setting up a standby server as a reporting server (Chapter 29, “Advanced
Availability”).

Accessing a Local SQL Server Database
When you access a second database on a single server, the same SQL Server engine pro-
cesses the data. So although the data is outside the local database, the query’s not actually a
distributed query.

A SQL Server query may access another database on the same server by referring to the table
using the database name:

Server.Database.Owner.ObjectName

Because the database is on the same server, the server name is optional. Typically the tables
are owned by the database owner (dbo). If that’s the case, then dbo can be assumed:

USE CHA2
SELECT LastName, FirstName
FROM OBXKites.dbo.Contact

The previous query is the functional equivalent of this one:

SELECT LastName, FirstName
FROM OBXKites..Contact

Result (abbreviated):

LastName FirstName
------------ ------------
Adams Terri
Andrews Ed
...

Linking to External Data Sources
SQL Server is also capable of establishing a link to any other data source that is ODBC- or
OLE-DB-compatible. The link can be created using Enterprise Manager or T-SQL code.

Linking with Enterprise Manager
A link to another SQL server can be established by means of Enterprise Manager or code.
Within Enterprise Manager, linked servers are listed under the security node, which makes
sense because a link is really defining how to log onto another server. Right-click the security
node under the server and select New Linked Server to open the Linked Server Properties
form (Figure 18-2).

Cross-
Reference

22549359 ch18.F 11/21/02 9:49 AM Page 509

510 Part III ✦ Data Connectivity

Figure 18-2: The General tab of Enterprise
Manager’s Linked Server Properties form is
used to name the link and specify the
data-source type.

Linking to non–SQL Server data sources is covered later in this chapter.

Selecting the Server
In the General tab of the Linked Server Properties form, enter the name of the external SQL
server in the Linked server field, and click the SQL Server button in the Server Type section.
To link to a named instance of SQL Server, enter the instance name as server\instance with-
out square brackets. In Figure 18-2, the linked server is Noli\SQL2.

SQL Server 2000 can link to any other SQL Server 2000 instance, or a SQL Server 7 server, but
SQL Server 2000 won’t link to a SQL Server 6.5 server without going through an OBDC driver.

Configuring the Logins
The whole point of linked servers is to enable local users to run queries that access data from
other data sources. If the external data source is SQL Server, it will require some type of user
authentication, which is accomplished via mapping logins, and, for those local users whose
logins are not mapped, via setting the default behavior.

The login map will either pass the user along without translating the login name if the imper-
sonate option is checked, or translate any user’s login to a remote login and password if the
impersonate option is not checked. Of course, on the external server, the login must be a
valid login and must have been granted security rights for the link to be effective.

The default connection options for a user not mapped are as follows:

✦ Connection: Not be made. Restricts the ability to run distributed queries to those users
in the user mapping list. If a user not on the user mapping list attempts to run a dis-
tributed query he or she will receive the following error:

22549359 ch18.F 11/21/02 9:49 AM Page 510

511Chapter 18 ✦ Working with Distributed Queries

Server: Msg 7416, Level 16, State 1, Line 1
Access to the remote server is denied
because no login-mapping exists.

✦ Connection: Be made without using a security context. This option is for non–SQL Server
external-data sources and is not useful for SQL Server. SQL Server will attempt to
connect as the user SQL without a password. If a user not on the user mapping list
attempts to run a distributed query he or she will receive the following error:

Server: Msg 18456, Level 14, State 1, Line 1
Login failed for user ‘SQL’.

This is the default for Enterprise Manager.

✦ Connection: Be made using the login’s current security context. When the local SQL server
connects to the external SQL Server, it can delegate security, meaning that the local
SQL Server will connect to the external SQL Server using the local user’s login. Using
this method is similar to listing the user and selecting the impersonate option except
that this uses security delegation, and to pass the security context, the login must be
the exact same account, not just the same login and password.

The user’s rights and roles for the distributed query will be those assigned at the exter-
nal SQL Server.

To use security deligation every server must run Windows 2000,and both Kerberos and
Active Directory must be enabled.

This is the default when creating the link usign T-SQL code.

For most SQL Server–to–SQL Server distributed queries, the local login’s security context is
the best linked-server security option because it preserves the user’s identity and conforms
to the SQL Server security plan. If the infrastructure doesn’t support Kerberos and Active
Directory, then map the users.

✦ Connection: Be made using this security context. The final option simply assigns every
non-mapped local user to a hard-coded external SQL Server login. While this may be
the simplest method, it also allows every local user the same access to the external
SQL Server. Using this option should violate any responsible security plan. It would cer-
tainly exclude the external SQL Server from achieving C2-level security certification.

Configuring the Options
The third tab, Server Options, in the Linked Server Properties form presents the following
options, which control how SQL Server expects to receive data from the external SQL Server:

✦ Collation Compatibility — Set this option to true if the two servers are using the same
collation (character set and sort order).

✦ Data Access — If this option is set to false, this option disables distributed queries to
the external server.

✦ RPC — If this option is set to true, remote-procedure calls may be made to the external
server.

✦ RPC Out — If this option is set to true, remote-procedure calls may be made from the
external server.

22549359 ch18.F 11/21/02 9:49 AM Page 511

512 Part III ✦ Data Connectivity

✦ Use Remote Collation — If this option is set to true, distributed queries will use the col-
lation of the external SQL Server rather than that of the local server.

✦ Collation Name — Specifies a collation for distributed queries. This option cannot be
chosen if collation compatibility is set.

✦ Connection Timeout — The connection timeout in milliseconds.

✦ Query Timeout — The distributed query timeout in milliseconds.

Once the link is properly established, a table listing will likely be available in the table node
under the linked server. The tables listed will be those of the login’s default database. If the
default database is the master, and Enterprise Manager is configured in the local server regis-
tration to hide system objects, no tables should appear.

Deleting a linked server in Enterprise Manager will also delete all security-login mappings.

Linking with T-SQL
Enterprise Manager handles the connection and the login information in a single form.
However, if you choose to establish a linked server with T-SQL code, the server connection
and the login information are handled by separate commands.

Establishing the Link
To establish the server link with code, use the sp_addlinkedserver system stored proce-
dure. If the link is being made to another SQL Server, and the name of the other SQL Server
instance is acceptable as the name for the link, then only two parameters are required: the
linked server name and the server product. The following command creates a link to the SQL2
instance on my test server (Noli):

EXEC sp_addlinkedserver
@server = ‘Noli\SQL2’,
@srvproduct = ‘SQL Server’

To link to another SQL Server instance using a linked server name other than the SQL Server
instance name, two parameters are added. The provider parameter must specify SQLOLEDB,
and the @datasrc (data source) parameter passes the actual SQL Server instance name of
the linked server. The @srvproduct (server product) parameter is left blank. The @server
parameter will be the name the linked server will be known by. The example links to the SQL2
instance on Noli, but the linked server will be referred to as Yonder in queries:

EXEC sp_addlinkedserver
@server = ‘Yonder’,
@datasrc = ‘Noli\SQL2’,
@srvproduct = ‘’,
@provider=’SQLOLEDB’

The sp_linkedservers system stored procedure also provides basic information about the
current linked servers:

EXEC sp_linkedservers

22549359 ch18.F 11/21/02 9:49 AM Page 512

513Chapter 18 ✦ Working with Distributed Queries

Result (abridged):

SRV_NAME SRV_PROVIDERNAME SRV_PRODUCT V_DATASOURCE
---------- ----------------- ------------- -------------
NOLI SQLOLEDB SQL Server
NOLI\SQL2 SQLOLEDB SQL Server NOLI\SQL2
Yonder SQLOLEDB NOLI\SQL2
...

To drop an existing linked server, which only severs the link and does not affect the external
server, use the sp_dropserver system stored procedure:

EXEC sp_DropServer @server = ‘Yonder’

If any login mappings exist for the linked server, they too will be dropped.

Distributed Security and Logins
In Enterprise Manager the security question was broken down into two parts, login mapping
and what to do with non-mapped logins. T-SQL uses the sp_addlinkedsrvlogin system
stored procedure to handle both parts, as follows:

sp_addlinkedsrvlogin
@rmtsrvname = ‘rmtsrvname’,
@useself = ‘useself’, (default True)
@locallogin = ‘locallogin’, (default Null)
@rmtuser = ‘rmtuser’, (default Null)
@rmtpassword = ‘rmtpassword’ (default Null)

If the linked server was added using T-SQL instead of Enterprise Manager, then the security
option for non-mapped logins is already configured to use the login’s current security context.

If the @locallogin is null, the setting applies to all non-mapped users. The useself option is
the same as impersonate.

The following stored procedure call enables the Noli\Paul login to access the Noli\SQL2
server as the sa user with the password secret:

sp_addlinkedsrvlogin
@rmtsrvname = ‘NOLI\SQL2’,
@useself = ‘false’,
@locallogin = ‘NOLI\Paul’,
@rmtuser = ‘sa’,
@rmtpassword = ‘secret’

The next example sets all non-mapped users to connect using their own security context (the
recommended option). The local user is null so this linked server login applies to all non-
mapped users. The @useself option is not specified, so the default setting, true, will apply,
causing the users to use the local security context.

EXEC sp_addlinkedsrvlogin
@rmtsrvname = ‘NOLI\SQL2’

22549359 ch18.F 11/21/02 9:49 AM Page 513

514 Part III ✦ Data Connectivity

The third example will prevent all non-mapped users from executing distributed queries. The
second parameter, @useself, is set to false, and the mapping user login and password are
left as null:

EXEC sp_addlinkedsrvlogin ‘NOLI\SQL2’, ‘false’

To list the current mapped logins for a linked server, a variation of sp_help (of course) pro-
vides the information:

sp_helplinkedsrvlogin

Result:

Linked server Local Login Is Self Mapping Remote Login
-------------- ------------- ----------------- --------------
NOLI NULL 1 NULL
Noli\SQL2 NULL 1 NULL
Noli\SQL2 NOLI\Paul 0 sa

To drop a linked server login, use the sp_droplinkedsrvlogin system stored procedure:

sp_droplinkedsrvlogin
@rmtsrvname = ‘rmtsrvname’, (no default)
@locallogin = ‘locallogin’ (no default)

The following code example will remove the Noli\Paul login that’s mapped to NOLI\SQL2:

EXEC sp_droplinkedsrvlogin
@rmtsrvname = ‘NOLI\SQL2’,
@locallogin = ‘NOLI\Paul’

To remove the non-mapped user’s default mapping, run the same procedure, but specify a
null local login, as follows:

EXEC sp_droplinkedsrvlogin ‘NOLI\SQL2’, NULL

Linked Server Options
The linked server options shown in the Server Options tab of the Linked Server Properties
form may be set in code using the sp_serveroption system stored procedure. The proce-
dure must be called once for each option setting:

sp_serveroption
@server = ‘server’,
@optname = ‘option_name’,
@optvalue = ‘option_value’

The options are the same as those in the form, with the addition of lazy schema valida-
tion, which disables the checking of the table schema for distributed queries. You may want
to use lazy schema validation when you’re sure of the schema but want to reduce net-
work overhead.

The linked servers’ options are reported by the sp_helpserver system stored procedure.
This rendition of sp_help returns the server logical name and physical location, as well as
the options:

EXEC sp_helpserver

22549359 ch18.F 11/21/02 9:49 AM Page 514

515Chapter 18 ✦ Working with Distributed Queries

Result (abridged — the actual listing also includes the linked server’s ID, collation_name,
connect_timeout, and query_timeout):

name network_name status
-------------- -------------- ------------------------
[Noli\SQL2] [Noli\SQL2] rpc,rpc out,data access,

use remote collation
CHA1_Customers NULL data access,

use remote collation
CHA1_Schedule NULL data access,

use remote collation
NOLI NOLI rpc,rpc out,

use remote collation
Yonder NULL rpc,rpc out,

use remote collation

An optional sp_helpserver parameter, @show_topology = ‘t’, causes sp_helpserver to
display the topological relationship between the local server and the external server.

Linking with Non-SQL Server Data Sources
If the external data source isn’t SQL Server, SQL Server can likely still access the data. It
depends on the availability and the features of the ODBC drivers or OLE DB providers. SQL
Server uses OLE DB for external data, and several OLE DB providers are included with SQL
Server. If for some reason OLE DB isn’t available for the external data source, use the
“Microsoft OLE DB Provider for ODBC Drivers” provider. Nearly every data-source type
has an ODBC driver.

To set up the linked server, either with code or via Enterprise Manager, data source (or loca-
tion) and possibly a provider string to supply additional information are required, in addition
to the name of the linked server, the provider name, and the product name, to establish the
link. Some common data-source settings are listed in Table 18-1.

Table 18-1: Common Other Data Source Settings

Link To: Provider Name Product Name Data Source Provider String

Access MS Jet 4.0 OLE DB Access 2000 Database File Location null

Excel MS Jet 4.0 OLE DB Excel Spreadsheet File Location Excel 5.0

Oracle MS OLE Provider for Oracle Oracle Oracle System Identifier null

As two examples of linking to non–SQL Server data sources, the Cape Hatteras Adventures
sample database uses distributed queries to pull data from both Access and Excel. The sam-
ple database models a typical small business that is currently using Access and Excel to store
its customer list and schedule.

Linking to Excel
The code samples used in this section are taken directly from the CHA2_Convert.sql script,
which moves the data from the old version 1 (Access and Excel) to version 2 (SQL Server).
The Cape Hatteras Adventures folks have been keeping their tour schedule in Excel, as shown
in Figure 18-3.

22549359 ch18.F 11/21/02 9:49 AM Page 515

516 Part III ✦ Data Connectivity

Figure 18-3: Prior to the conversion to SQL Server, the Cape Hatteras Adventures
company had been managing its tour schedule in the CHA1_Schedule.xls spreadsheet.

Within Excel, each spreadsheet page and named range appears as a table when accessed
from an external data provider. Within Excel, the named ranges are set up by means of the
Insert ➪ Name ➪ Define menu command. The Excel Define Name dialog box is used to create
new named ranges and edit the existing named ranges. The CHA1_Schedule spreadsheet has
five named ranges (as shown in Figure 18-4), which overlap much like SQL Server views. Each
of the five named ranges appears as a table when SQL Server links to the spreadsheet. SQL
Server can select, insert, update, and delete rows just as if this table were a SQL Server
table.

Figure 18-4: Tables are defined within the
Excel spreadsheet as named ranges. The
CHA1_Schedule spreadsheet has five
named ranges.

22549359 ch18.F 11/21/02 9:49 AM Page 516

517Chapter 18 ✦ Working with Distributed Queries

The following code sample sets up the Excel spreadsheet as a linked server:

Execute sp_addlinkedserver
@server = ‘CHA1_Schedule’,
@srvproduct = ‘Excel’,
@provider = ‘Microsoft.Jet.OLEDB.4.0’,
@datasrc = ‘C:\SQLServerBible\CHA1_Schedule.xls’,
@provstr = ‘Excel 5.0’

Once the linked server to Excel is established the named ranges appear as tables in
Enterprise Manager, as shown in Figure 18-5.

Figure 18-5: The Excel spreadsheet pages and named ranges appear as tables under
the linked server in Enterprise Manager.

Excel spreadsheets are not multi-user spreadsheets. SQL Server can’t perform a distributed
query that accesses an Excel spreadsheet while that spreadsheet is open in Excel.

Linking to MS Access
Not surprisingly, SQL Server links easily to MS Access databases. SQL Server uses the OLE DB
Jet provider to connect to Jet and request data from the MS Access .mdb file.

Since Access is a database, there’s no trick to preparing it for linking, as there is with Excel.
Each Access table will appear as a table under the linked-server node in Enterprise Manager.

Note

22549359 ch18.F 11/21/02 9:49 AM Page 517

518 Part III ✦ Data Connectivity

The Cape Hatteras Adventures customer/prospect list was stored in Access prior to upsizing
the database to SQL Server. The following code from the CHA2_Convert.sql script links to
the CHA1_Customers.mdb Access database so SQL Server can retrieve the data and populate
the SQL Server tables:

EXEC sp_addlinkedserver
‘CHA1_Customers’,
‘Access 2000’,
‘Microsoft.Jet.OLEDB.4.0’,
‘C:\SQLServerBible\CHA1_Customers.mdb’

If you are having difficult with a distributed query, one of the first places I check is the secu-
rity context. Excel expects that connections do not establish a security context so the non-
mapped user login should be set to no security context:

EXEC sp_addlinkedsrvlogin
@rmtsrvname = ‘CHA1_Schedule’,
@useself = ‘false’

Developing Distributed Queries
Once the link to the external data source is established, SQL Server can reference the exter-
nal data within queries. Table 18-2 shows the four basic syntax methods that are available,
which differ in query-processing location and setup method.

Table 18-2: Distributed Query Method Matrix

Link Setup Query-Execution Location

Local SQL Server External Data Source
(Pass-Through)

Linked Server Four-part name Four-part name

OpenQuery()

Ad Hoc Link Declared in the Query OpenDataSource() OpenRowSet()

Distributed Queries and Enterprise Manager
Enterprise Manager doesn’t supply a graphic method of initiating a distributed query. There’s
no way to drag a linked server or remote table into the Query Designer. However, the dis-
tributed query can be entered manually in the SQL pane (as shown in Figure 18-6) and then
executed as a query.

22549359 ch18.F 11/21/02 9:49 AM Page 518

519Chapter 18 ✦ Working with Distributed Queries

Figure 18-6: A distributed query may be executed from Enterprise Manager if the
distributed query source is manually entered in the SQL pane ([Noli\SQL2].Family.
dbo.Person).

Distributed Views
Views are saved SQL select statements. While I don’t recommend building a client/server
application based on views, they are useful for ad hoc queries. Because most users (and
even developers) are unfamiliar with the various methods of performing distributed queries,
wrapping a distributed query inside a view might be a good idea.

Local-Distributed Queries
A local-distributed query sounds like an oxymoron, but it’s a query that pulls the external
data into SQL Server and then processes the query at the local SQL Server. Because the pro-
cessing occurs at the local SQL Server, local-distributed queries use T-SQL syntax and are
sometimes called T-SQL distributed queries.

Using the Four-Part Name
If the data is in another SQL Server a complete four-part name is required. The four-part
name may be used in any select or data-modification query. On my writing computer is a
second instance of SQL Server called [Noli\SQL2]. The object’s owner name is required if
the query accesses an external SQL Server.

22549359 ch18.F 11/21/02 9:49 AM Page 519

520 Part III ✦ Data Connectivity

The following query retrieves the Person table from the SQL2 instance:

SELECT LastName, FirstName
FROM [NOLI\SQL2].Family.dbo.person

Result:

LastName FirstName
--------------- ---------------
Halloway Kelly
Halloway James

When performing an insert, update, or delete command as a distributed query, either the
four-part name, or a distributed query function, must be substituted for the table name. For
example, the following SQL code, extracted from the CHA2_Convert.sql script that popu-
lates the CHA2 sample database, uses the four-part name as the source for an insert com-
mand. The query retrieves base camps from the Excel spreadsheet and inserts them into SQL
Server.

INSERT BaseCamp(Name)
SELECT DISTINCT [Base Camp]
FROM CHA1_Schedule...[Base_Camp]
WHERE [Base Camp] IS NOT NULL

If you’ve already executed CHA2_Convert.sql and populated your copy of CHA2, then you
may want to re-execute CHA2_Create.sql so you’ll start with an empty database.

As another example of using the four-part name for a distributed query, the following code
updates the family database on the second SQL Server instance:

UPDATE [Noli\SQL2].Family.dbo.Person
SET LastName = ‘Wilson’
WHERE PersonID = 1

OpenDataSource()
Using the OpenDataSource() function is functionally the same as using a four-part name to
access a linked server, except that the OpenDataSource() function defines the link within
the function instead of referencing a pre-defined linked server. While defining the link in code
bypasses the linked server requirement, if the link location changes the change will effect
every query that uses OpenDataSource(). And OpenDataSource() won’t accept a variables
as parameters.

The OpenDataSource() function is substituted for a server in the four-part name and may be
used within any DML statement.

The syntax for the OpenDataSource() function seems simple enough:

OPENDATASOURCE (provider_name, init_string)

However, there’s more to it than the first appearance betrays. The init string is a semicolon-
delimited string containing several parameters (the exact parameters used depending on the
external data source). The potential parameters within the init string include data source,
location, extended properties, connection timeout, user ID, password, and catalog. The init

Note

22549359 ch18.F 11/21/02 9:49 AM Page 520

521Chapter 18 ✦ Working with Distributed Queries

string must define the entire external data-source connection, and the security context,
within a function. No quotes are required around the parameters within the init string. The
common error committed in building OpenDataSource() distributed queries is mixing the
commas and semicolons.

If OpenDataSource() is connecting to another SQL Server using Windows, authentication
delegation via Kerberos security is required.

A relatively straightforward example of the OpenDataSource() function is as a means of
accessing a table within another SQL Server instance:

SELECT FirstName, Gender
FROM OPENDATASOURCE(

‘SQLOLEDB’,
‘Data Source=NOLI\SQL2;User ID=Joe;Password=j’
).Family.dbo.Person

Result:

FirstName Gender
--------------- ------
Adam M
Alexia F

The following example of a distributed query that uses OpenDataSource() references the
Cape Hatteras Adventures sample database. Since an Access location contains only one
database and the tables don’t require the owner to specify the table, the database and owner
are omitted from the four-part name.

SELECT ContactFirstName, ContactLastName
FROM OPENDATASOURCE(
‘Microsoft.Jet.OLEDB.4.0’,
‘Data Source =

C:\SQLServerBible\CHA1_Customers.mdb’
)...Customers

Result:

ContactFirstName ContactLastName
------------------- ---------------------
Neal Garrison
Melissa Anderson
Gary Quill

As an example of OpenDataSource() used in an update query, the following query example
will update any rows inside the CHA1_Schedule.xls Excel 2000 spreadsheet. A named range
was previously defined as Tours ‘=Sheet1!E5:E24’, which now appears to the SQL
query as a table within the data source. Rather than update an individual spreadsheet cell,
this query performs a update operation that affects every row in which the tour column is
equal to “Gauley River Rafting” and updates the Base Camp column to the value “Ashville.”

The distributed SQL Server query will use OLE DB to call the Jet engine, which will open the
Excel spreadsheet. The OpenDataSource() function supplies only the server name in a four-
part name; as with Access, the database and owner values are omitted.

22549359 ch18.F 11/21/02 9:49 AM Page 521

522 Part III ✦ Data Connectivity

UPDATE OpenDataSource(
‘Microsoft.Jet.OLEDB.4.0’,
‘Data Source=C:\SQLServerBible\CHA1_Schedule.xls;
User ID=Admin;Password=;Extended properties=Excel 5.0’
)...Tour

SET [Base Camp] = ‘Ashville’
WHERE Tour = ‘Gauley River Rafting’

Figure 18-7 illustrates the query-execution plan for the distributed update query, beginning at
the left with a Remote Scan that returns all 19 rows from the Excel named range. The data is
then processed within SQL Server. The details of the Remote Update logical operation reveal
that the distributed update query actually only updated two rows.

Figure 18-7: The query-execution plan for the distributed query using OpenDataSource().

To complete the example, the following query reads from the same Excel spreadsheet and
verifies that the update took place. Again the OpenDataSource() function is only pointing
the distributed query to an external server.

SELECT *
FROM OpenDataSource(
‘Microsoft.Jet.OLEDB.4.0’,
‘Data Source=C:\SQLServerBible\CHA1_Schedule.xls;
User ID=Admin;Password=;Extended properties=Excel 5.0’
)...Tour

WHERE Tour = ‘Gauley River Rafting’

22549359 ch18.F 11/21/02 9:49 AM Page 522

523Chapter 18 ✦ Working with Distributed Queries

Result:

Base Camp Tour
---------------- -----------------------
Ashville Gauley River Rafting
Ashville Gauley River Rafting

Pass-Through Distributed Queries
A pass-through query executes a query at the external data source and returns the result to
SQL Server. The primary reason for using a pass-through query is to reduce the amount of
data being passed from the server (the external data source) and the client (SQL Server).
Rather than pull a million rows into SQL Server so that it can use 25 of them, it may be better
to select those 25 rows from the external data source.

Be aware that the pass-through query will use the query syntax of the external data source. If
the external data source is Oracle or Access, PL/SQL or Access SQL must be used in the pass-
through query.

In the case of a pass-through query that modifies data, the remote data type determines
whether the update is performed locally or remotely:

✦ When another SQL Server is being updated, the remote SQL Server will perform the
update.

✦ When non–SQL Server data is being updated, the data providers determine where the
update will be performed. Often, the pass-through query merely selects the correct
rows remotely. The selected rows are returned to SQL Server, modified inside SQL
Server, and then returned to the remote data source for the update.

Two forms of local distributed queries exist, one for linked servers and one for external data
sources defined in the query, and two forms of explicitly declaring pass-through distributed
queries exist as well. OpenQuery() uses an established linked server, and OpenRowSet()
declares the link within the query.

Using the Four-Part Name
If the distributed query is accessing another SQL Server, the four-part name becomes a
hybrid distributed query method. Depending on the from clause and the where clause, SQL
Server will attempt to pass as much of the query as possible to the external SQL Server to
improve performance.

When building complex distributed query using the four-part name it’s difficult to predict
how much of the query SQL Server will pass-through. I’ve seen SQL Server take a single query
and depending on the where clause, the whole query was passed through, each table became
a separate pass-through query, or only one table was pass-through.

Of the four distributed-query methods, the best two use the four-part name and the
OpenQuery() function, respectively. Both offer the administrative benefit of pre-defined
links, making the query more robust if the server configuration changes.

The decision between the four-part name and OpenQuery() will depend on the amount of
data, the selection of data, and the performance of the server. I would recommend that you
test both methods and compare the query execution plans to determine the one that works
best in your situation with your data. If both are similar, then use the four-part name to
enable SQL Server to automatically optimize the distributed query.

22549359 ch18.F 11/21/02 9:49 AM Page 523

524 Part III ✦ Data Connectivity

OpenQuery()
For pass-through queries, the OpenQuery() function leverages a linked server, so it’s the easi-
est to develop. It also handles changes in server configuration without changing the code.

The OpenQuery() function is used within the SQL DML statement as a table. The function
accepts only two parameters, the name of the linked server and the pass-through query. The
next query uses OpenQuery() to retrieve data from the CHA1_Schedule Excel spreadsheet:

SELECT *
FROM OPENQUERY(CHA1_Schedule,
‘SELECT * FROM Tour WHERE Tour = “Gauley River Rafting”’)

Result:

Tour Base Camp
---------------------------- -----------------------------
Gauley River Rafting Ashville
Gauley River Rafting Ashville

As demonstrated in Figure 18-8, the OpenQuery() pass-through query requires almost no pro-
cessing by SQL Server. The Remote Scan returns exactly two rows to SQL Server. The where
clause is executed by the Jet engine as it reads from the Excel spreadsheet.

Figure 18-8: The distributed query using OpenQuery() returns only the rows selected
by the where clause.

22549359 ch18.F 11/21/02 9:49 AM Page 524

525Chapter 18 ✦ Working with Distributed Queries

In the next example, the OpenQuery() requests from Jet engine that it extract only the two
rows requiring the update. The actual update operation is performed in SQL Server, and the
result written back to the external dataset. In effect, the pass-through query is only perform-
ing the select portion of the update command:

UPDATE OPENQUERY(CHA1_Schedule,
‘SELECT * FROM Tour WHERE Tour = “Gauley River Rafting”’)
SET [Base Camp] = ‘Ashville’
WHERE Tour = ‘Gauley River Rafting’

OpenRowSet()
The OpenRowSet() function is the pass-through counterpart to the OpenDataSet() function.
Both require the remote data source to be fully specified in the distributed query.
OpenRowSet() adds a parameter to specify the pass-through query.

SELECT ContactFirstName, ContactLastName
FROM OPENROWSET (‘Microsoft.Jet.OLEDB.4.0’,
‘C:\SQLServerBible\CHA1_Customers.mdb’; ‘Admin’;’’,
‘SELECT * FROM Customers WHERE CustomerID = 1’)

Result:

ContactFirstName ContactLastName
------------------- ----------------------
Tom Mercer

To perform an update using the OpenRowSet() function, use the function in place of the table
being modified. The following code sample modifies the customer’s last name in an Access
database. The where clause of the update command is handled by the pass-through portion
of the OpenRowSet() function:

UPDATE OPENROWSET (‘Microsoft.Jet.OLEDB.4.0’,
‘C:\SQLServerBible\CHA1_Customers.mdb’; ‘Admin’;’’,
‘SELECT * FROM Customers WHERE CustomerID = 1’)
SET ContactLastName = ‘Wilson’

Distributed Transactions
Transactions are key to data integrity. If the logical unit of work includes modifying data out-
side the local SQL server, a standard transaction is unable to handle the atomicity of the trans-
action. If a failure should occur in the middle of the transaction, a mechanism must be in place
to roll back the partial work, or else a partial transaction will be recorded and the database
will be left in an inconsistent state.

Chapter 11, “Transactional Integrity,” explores how SQL Server performs transactions and the
underlying ACID properties of the database.

SQL Server uses the Distributed Transaction Coordinator (DTC) to handle multiple server
transactions, commits, and rollbacks. The DTC service uses a two-phase commit scheme for
multiple server transactions. The two-phase commit ensures that every server is available
and handling the transaction by performing the following steps:

Cross-
Reference

22549359 ch18.F 11/21/02 9:49 AM Page 525

526 Part III ✦ Data Connectivity

1. Each server is sent a “prepare to commit” message.

2. Each server performs the first phase of the commit, ensuring that it is capable of com-
mitting the transaction.

3. Each server replies when it has finished preparing for the commit.

4. Only after every participating server has responded positively to the “prepare to com-
mit” message is the actual commit message sent to each server.

If the logical unit of work only involves reading from the external SQL server, the DTC is not
required. Only when remote updates are occurring is a transaction considered a distributed
transaction.

Distributed Transaction Coordinator
The Distributed Transaction Coordinator is a separate service from SQL Server. DTC is
started or stopped with the SQL Server Service Manager.

Only one instance of DTC runs per server regardless of how many SQL Server instances may
be installed or running on that server. The actual service name is msdtc.exe and it consumes
only about 2.5MB of memory.

DTC must be running when a distributed transaction is initiated or the transaction will fail.

Developing Distributed Transactions
Distributed transactions are similar to local transactions with a few extensions to the syntax:

SET xact_abort on
BEGIN DISTRIBUTED TRANSACTION

In case of error, the xact_abort connection option will cause the current transaction, rather
than only the current T-SQL statement, to be rolled back. The xact_abort on option is
required for any distributed transactions accessing a remote SQL server and for most other
OLE DB connections as well.

The begin distributed transaction command, which determines whether the DTC ser-
vice is available, is not strictly required. If a transaction is initiated with only begin tran, the
transaction is escalated to a distributed transaction and DTC is checked as soon as a dis-
tributed query is executed. It’s considered a better practice to use begin distributed
transaction so that DTC is checked at the beginning of the transaction. When DTC is not
running, an 8501 error is raised automatically:

Server: Msg 8501, Level 16, State 3, Line 7
MSDTC on server ‘NOLI’ is unavailable.

The following example demonstrates a distributed transaction between the local SQL Server
and the second instance:

USE Family
SET xact_abort on
BEGIN DISTRIBUTED TRANSACTION

22549359 ch18.F 11/21/02 9:49 AM Page 526

527Chapter 18 ✦ Working with Distributed Queries

UPDATE Person
SET LastName = ‘Johnson2’
WHERE PersonID = 10

UPDATE [Noli\SQL2].Family.dbo.Person
SET LastName = ‘Johnson2’
WHERE PersonID = 10

COMMIT TRANSACTION

Rolling back a nested SQL Server local transaction rolls back all pending transactions.
However, DTC uses true nested transactions, and rolling back a DTC transaction will roll
back only the current transaction.

Monitoring Distributed Transactions
As a separate service, Distributed Transaction Coordinator activity can be viewed from
within the Windows operating system by means of opening Control Panel ➪ Administrative
Tools ➪ Component Services. Component Services provides both a list of current pending dis-
tributed transactions (Figure 18-9) and an overview of DTC statistics (Figure 18-10).

Figure 18-9: Component Services includes a list of current DTC transactions.

22549359 ch18.F 11/21/02 9:49 AM Page 527

528 Part III ✦ Data Connectivity

If a distributed transaction is having difficulty, it will likely be aborted. However, if the trans-
action is marked “In Doubt,” forcibly committing, aborting, or forgetting the transaction using
the right-click menu in Component Services may resolve the transaction.

Figure 18-10: The current and accumulated count of distributed transactions as viewed
in Component Services. The statistics begin at 0 when DTC is restarted.

Summary
Large database applications data tend to involve multiple platforms and locations. SQL
Server’s ability to leverage OLE DB and ODBC to perform distributed queries is a key factor in
the success of many database projects, and knowing how to build distributed queries well is
a necessary component in the DBA’s skill set.

Beyond moving data directly with distributed queries, SQL Server includes an amazing tool
designed specifically for complex data migration tasks. The next chapter introduces Data
Transformation Services (DTS).

✦ ✦ ✦

22549359 ch18.F 11/21/02 9:49 AM Page 528

Migrating Data
with DTS

Data Transformation Services, affectionately called DTS, is a
database developer’s dream. It can move data from anywhere

to anywhere and clean up the data in the process. While technically
there’s nothing that DTS does that some creative T-SQL and dis-
tributed queries can’t do, comparing DTS to a distributed query
script is like comparing Sarah Hughes’ Salt Lake City Olympic–gold-
medal figure-skating presentation to a junior-league hockey game. If
any other company owned DTS it would be the flagship product
instead of a feature tacked onto another product.

DTS is usually used to move data into SQL Server, although it can eas-
ily move data between nearly any data sources. DTS could be used to
migrate data from dBASE to FoxPro.

In a nutshell, DTS is a graphical means of connecting to various data
sources and defining how to move data. With a graphic diagram or a
short script, the data can be manipulated, tested, or transformed dur-
ing the move. DTS also includes most of the administrative tasks
required by scheduled data migrations, including FTP, e-mail, and
logging. All of these features make DTS an ideal tool for the following
tasks:

✦ Data conversion and migration tasks

✦ Merging data from dissimilar data sources

✦ Data warehouse Extract Transform Load (ETL) tasks

✦ Data schema upgrades and conversions

✦ Scheduled data collections from other data sources

As evidence of its versatility, the SQL Server team leverages DTS
in the SQL Server wizards. The Copy Database Wizard and the
import/export wizards actually create and execute DTS packages.
One way to get a jumpstart in DTS is to run one of these wizards and
then explore the DTS package it creates.

Although it’s incorporated with SQL Server, Data Transformation
Services is complex and broad enough to be considered a separate
tool. Because of this, the developing and programming DTS packages
topic could easily consume several hundred pages if it were to dig
deeply into DTS. But the purpose of this chapter is to present a sur-
vey of DTS and explain the commonly used tasks.

1919C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating DTS packages

Connecting to various
data sources

Moving and
transforming data

Controlling the
workflow within a DTS
package

Executing, saving, and
moving DTS packages

Managing multiple
versions of DTS
packages

✦ ✦ ✦ ✦

23549359 ch19.F 11/21/02 9:49 AM Page 529

530 Part III ✦ Data Connectivity

The Web site http://www.sqldts.com/ is dedicated to Data Transformation Services tips
and solutions. I recommend it as a resource.

The DTS Designer
DTS solutions are constructed as self-contained DTS packages built within Enterprise Manger.
A DTS connection can connect to any database, so a DTS package belongs to the server, not
to any particular database.

To create a new DTS package or open an existing one, open the Data Transformation Services
node in Enterprise Manager. The Local Packages node lists the available DTS packages. Use
the Action menu or right-click menu to create a new DTS package.

DTS packages are developed by means of a separate DTS Designer window, shown in
Figure 19-1, which includes the Connection and Task dockable toolbars. (To re-dock a
floating toolbar, use the right-click menu on the toolbar’s toolbar.)

Figure 19-1: The Data Transformation Services Designer within Enterprise Manager.

The Connection toolbar lists the available connection objects including SQL Server, Access,
Excel, dBase 5, HTML, Paradox 5, text files, and the Microsoft ODBC driver for Oracle. In addi-
tion, two connection types are available. The Microsoft Data Link and Other Connection
objects can be used for other installable drivers, including XML. The connections are also
available from the Connection menu.

Note

23549359 ch19.F 11/21/02 9:49 AM Page 530

531Chapter 19 ✦ Migrating Data with DTS

The Task toolbar and the Task menu, include 19 key data-conversion tasks. The two most
common tasks are Transform Data and Execute SQL.

A complete DTS package will likely have a few dozen connections and tasks, and DTS will exe-
cute multiple tasks simultaneously when executing the package. This could be a problem if
some of the data must be transformed before other data. A primary table and secondary
table present an example of this kind of problem. The primary data must be loaded before
the secondary table’s data or the secondary table’s foreign key will block the insert.

To solve this problem, the workflow and the order of precedence (including the next task
based on the completion, success, or failure of the previous task) may be specified.

DTS Package Properties
The DTS Package Properties dialog is opened within the DTS workspace by means of the
Package ➪ Properties menu command or the associated toolbar command. The DTS Package
Properties dialog box (Figure 19-2) presents the package name and version information,
including the creation date, and offers three editable options.

Figure 19-2: The DTS Package Properties
dialog box sets several behaviors for the
package.

The General tab in the DTS Package Properties dialog may also be used to set the Windows
execution priority for the package and the maximum number of parallel tasks. I do not typi-
cally adjust these values.

DTS global variables are created in the Global Variables tab. The Logging tab sets up activity
logs and error handling for the DTS package. The Advanced tab includes metadata options
such as enabling lineage columns and setting metadata object-scanning options. Transaction
integrity is also set in the Advanced tab.

23549359 ch19.F 11/21/02 9:49 AM Page 531

532 Part III ✦ Data Connectivity

Connecting to Data
The first step in developing a DTS package is creating a connection to either the data source
and the data destination. To add a connection to a package, click on the connection type in
the Connection toolbar or drag the connection type from the Connection toolbar to the
workspace. The Connection dialog box will ask for the appropriate location and authentica-
tion information required to establish the data connection.

Most DTS packages will connect to SQL Server. Using the SQL Server Connection Properties
dialog box (Figure 19-3) is similar to creating a linked server or registering a server in
Enterprise Manager.

DTS connection security can be quite complicated. It depends on where the package is exe-
cuted. If the package runs as a job, it uses the authentication of the SQL Server Agent. If a
user executes the package manually from a workstation, it uses the authentication of the
user (assuming the connection properties are using NT authentication).

Figure 19-3: The SQL Server Connection Properties
dialog box establishes the server, database, and
authentication context for the connection.

Once the connection is created, DTS can access the data with the security restrictions of the
login used in the connection.

The Cape Hatteras Adventures data was stored in Access and Excel prior to being moved to
SQL Server. The CHA_Conversion DTS package connects to the Access CHA_Customer.mdb
files and the CHA_Schadule.xls file. (The DTS package assumes the files are in the
C:\SQLServerBible directory.) The data is then transformed into the CHA2 SQL Server
database.

Note: The DTS Open Package command is in the right-mouse menu under Data
Transformation Services.

On the
CD-ROM

23549359 ch19.F 11/21/02 9:49 AM Page 532

533Chapter 19 ✦ Migrating Data with DTS

With DTS connections, the locations and user login are hard-coded into the connection
object. As DTS packages are moved from one server to another, the connections will often
break. If you use (local) as the server name for SQL Server, a package that is moved from one
server to another will still connect to the (local) server.

Connection user IDs and logins can be a problem with DTS packages that are moved to dif-
ferent servers. One solution is to use the Dynamic Properties Task to modify the connection
properties at runtime.

Transformations
The real work is done with transformation tasks, which move data from one data connection
to another. Transformations are powerful; they can merge and twist data, perform lookups
and replace data, or even run scripts to perform complex transformations.

Adding the Transform Data Task to the workspace from either the Task menu or the toolbar
creates a transformation-task object, which appears as a gray line from the source connection
to the destination connection. Creating a Transform Data Task requires two clicks — one for
the source connection and one for the destination connection. If a source connection is
already selected, only the destination connection is required. The result is a transformation
line from the source connection to the destination connection, as shown in Figure 19-4. Two
connections would have multiple transformations if several data sets are moved between the
connections.

Figure 19-4: The first transformation in the CHA_Conversion DTS package.

Note

23549359 ch19.F 11/21/02 9:49 AM Page 533

534 Part III ✦ Data Connectivity

The Transformation Task Properties dialog is opened by means of double-clicking the trans-
formation-task line. The five tabs are in the same order as the process of setting up a
transformation.

The Source
The Source tab (Figure 19-5) defines the data to be extracted from the source connection.

Figure 19-5: The Transform Task Properties’
Source tab determines how the data is
extracted from the source connection. This
is the source for the Customer Type
transformation in the CHA_Conversion
DTS package.

The source can be a single table or view in the source connection, or an ad hoc query typed
into the Properties dialog. For testing purposes, the query can be executed and the results
displayed by means of the Browse button.

Often, a key factor in the success of a DTS data migration project is the ability to carefully
select the clean data. Building the source query is a good opportunity to filter out bad data.

The Build Query button opens a variation of the Query Designer in which to visually assem-
ble the SQL query.

The Destination
The goal of the transformation is to move data into the destination connection. The destina-
tion is simply the table that receives the result of the transformation. Figure 19-6 shows the
Destination tab, where the destination data connection properties are configured.

23549359 ch19.F 11/21/02 9:49 AM Page 534

535Chapter 19 ✦ Migrating Data with DTS

Figure 19-6: The Destination tab sets the
table to receive the transformed data and
displays the schema of the destination table.

The Transformation
Once the source and destination are defined, the Transformations tab (Figure 19-7) may be
used to match or link the columns from the data source to the destination. This transforma-
tion accepts a distinct list of customers from the CHA_Customers Access database and
inserts the list into the Customer table in CHA2 SQL Server database. The transformations
align the columns between the source and destination. The CustomerType transformation
uses an ActiveX script and a lookup to convert from the CustomerType name to the
CustomerTypeID.

Figure 19-7: The Transformations tab
sends data from a source column to a
destination column.

23549359 ch19.F 11/21/02 9:49 AM Page 535

536 Part III ✦ Data Connectivity

To transform a column, click and drag the column from the source-column list to the
destination-column list as shown in Figure 19-7. (The click-and-drag is a little buggy; you
have to click the actual text of the column name, not the space to the right of the name.)
A column transformation can be one of the following:

✦ Copy column is the most common type of transformation. Multiple columns may be
moved in a single transformation, so moving nine columns doesn’t necessarily require
nine transformations.

✦ DateTime string, Lowercase string, middle of string, trim string, and uppercase string
are all similar to a copy column transformation, but each adds some type of data
conversion.

✦ Read file and write file imports or exports data, respectively, to a file specified within
the source column.

✦ ActiveX script executes an ActiveX script for complex transformations that can include
logic or data lookups.

Lookups and ActiveX Script Transformations
Simply moving data from one table to another is a straightforward task. Often, however, the
data must be modified in the transformation. A transformation can call a lookup from a script
and replace a value from the source dataset with a value from the lookup. A common example
is migrating data from a flat-file schema to a relational schema and converting a value to a for-
eign key.

The CHA_Conversion DTS package includes several transformations that include lookups
and ActiveX scripts. The customer’s customer type is stored as the name of the customer
type in the Access database, but is stored as a foreign key integer value in the SQL Server
schema. The transformation has to convert the CustomerTypeName into the correct integer.

The Lookup
The initial step in the process is to define a lookup for the transformation using the Lookups
tab, as shown in Figure 19-8.

The Query Builder button (the ellipsis on the right side of the lookup grid) opens a variation
of the Query Designer, which is used to define a valid query from any connection. The query
needs to accept a value from the source list and return the value that will be inserted in the
destination. The input parameter is handled by a ? placeholder, and the returned column in
the select statement is the value that will be substituted in the destination. In the following
example, the customer-type name is read in from the source list and is replaced by the
CustomerTypeID returned by the query:

SELECT CustomerTypeID
FROM CustomerType
WHERE (Name = ?)

The Cache value in the Lookup tab sets the number of query results DTS can cache during
execution to improve performance.

23549359 ch19.F 11/21/02 9:49 AM Page 536

537Chapter 19 ✦ Migrating Data with DTS

Figure 19-8: The Transform Data Task
Properties’ Lookups tab determines how the
source data is compared to lookup data and
transformed to a relating value.

The ActiveX Script
One of the transformation types is the ActiveX transformation. This type can use either VBA
or Java ActiveX scripts to test and manipulate the data as it’s read by DTS. The script’s logic
can decide what data is inserted into the destination dataset or even whether the row is
passed on to the destination.

The script is actually built within the ActiveX Script Transformation Properties page, as
shown in Figure 19-9.

In the CHA_Converison sample DTS package the CustomerType transformation script is exe-
cuted for every row from the source. The destination is populated from the DTSLookups func-
tion. The function calls the CustomerName lookup query and passes the CustomerType
source column to the lookup. The return from the lookup is then sent to the CustomerTypeID
column in the DTSDestination.

‘***
‘ Visual Basic Transformation Script
‘***
‘ Copy each source column to the destination column
Function Main()

DTSDestination(“CustomerTypeID”) =
DTSLookups(“CustomerName”)
.Execute(DTSSource(“CustomerType”))

Main = DTSTransformStat_OK
End Function

23549359 ch19.F 11/21/02 9:49 AM Page 537

538 Part III ✦ Data Connectivity

Figure 19-9: The Transform Task’s script is created on the ActiveX Script Transformation
Properties page, which is opened by means of double-clicking the transformation line.

This script scratches the surface of the possibilities of VBA scripting within DTS. Using
scripts, DTS transformations can perform complex data scrubbing, error checking, and data
validation.

Transformation Options
For each individual transformation, the Options tab (Figure 19-10) determines how DTS han-
dles errors. If a row is not accepted by the destination, DTS can log the row to the exception
file. The format and details of the data written to the file may be customized with the file-type
and format options.

The Data Movement portion of the Options tab determines how many errors may occur
before the transformation task fails. The bottom third of the Options tab sets insert options
for the destination connection.

23549359 ch19.F 11/21/02 9:49 AM Page 538

539Chapter 19 ✦ Migrating Data with DTS

Figure 19-10: The Transform Data Task
Properties’ Option tab determines how file
formats, data exceptions, and SQL Server
connection configurations are handled.

Other DTS Tasks
Without question, the transformation task is the meat and potatoes of DTS, but the additional
DTS tasks give DTS an advantage over T-SQL distributed-query batches.

SQL Server Transfer Tasks
Several DTS tasks serve SQL Server as means of transferring SQL Server objects and
databases from one server to another. The Copy Database Wizard creates a DTS package that
uses these tasks:

✦ Transfer Error Messages

✦ Transfer Master Stored Procedures

✦ Transfer Jobs

✦ Transfer Logins

✦ Transfer Databases

✦ Copy SQL Server Objects

23549359 ch19.F 11/21/02 9:49 AM Page 539

540 Part III ✦ Data Connectivity

Messaging Tasks
So that DTS can notify DBAs of any issues or error, the following two messaging tasks may be
added to a DTS package:

✦ Message Queue — If message queuing is installed on the server, this task can leverage
that service.

✦ Send Mail — Standard e-mail using MAPI is sent by means of this task. This task is differ-
ent from the SQL Agent Mail, which can only send mail to defined operators.

Data Transfer Tasks
DTS is often used to move data among various locations. To do this it uses the following
tasks:

✦ FTP — The FTP task establishes the FTP connection as would any other FTP tool
(Figure 19-11). The Files tab is used to set up a list of files to upload or download. This
task is extremely useful for managing data transfers over the Internet. If DTS handles
the FTP transfer, then DTS can respond to the transfer’s completed, successful, or fail-
ure status. If the FTP transfer fails, DTS can log the problem and even generate an
e-mail.

Figure 19-11: The FTP Task is extremely useful
for sharing data files over the Internet.

✦ Bulk Insert — The Bulk Insert Task simply executes bulk copy — SQL Server’s built-in
means of rapidly receiving data from a text file. The location of the source text file and
the file-formatting options are set in the Task Properties dialog.

23549359 ch19.F 11/21/02 9:49 AM Page 540

541Chapter 19 ✦ Migrating Data with DTS

DTS Processing Tasks
DTS is often used to automate batch process within a database environment. To facilitate
that, DTS include several tasks that are geared toward executing processes:

✦ Execute SQL — The Execute SQL task returns to the familiar Transact-SQL environment
and submits a T-SQL batch to SQL Server (Figure 19-12). I find the Execute SQL task
useful for purging data at the beginning of a repeatable data conversion and performing
SQL queries on the data after it’s moved into SQL Server.

Figure 19-12: The Execute SQL Task
Properties dialog box.

✦ Execute Package — This task launches another DTS package.

✦ Execute Process — This task executes another external Windows program.

✦ Data Driven Query — Similar to the standard transformation task, this variation can ref-
erence additional queries from the script.

✦ Dynamic Properties — With this task DTS global variables may be dynamically set at
runtime from an .ini file, query result, or other variable by means of the Dynamic
Properties Task.

Data Warehousing Tasks
✦ Analysis Services Processing Task — Analysis Services cubes can be processed by this

task. It allows DTS to serve as an Extract-Transform-Load (ETL) component of a com-
plete decision support service (DSS) solution by importing the data and then signaling
Data Analysis Services to update the cubes. Very cool.

✦ Data Mining Prediction — If a data-mining model is predefined in Data Analysis Services,
this task can reference that model and create a data-mining prediction result.

23549359 ch19.F 11/21/02 9:49 AM Page 541

542 Part III ✦ Data Connectivity

Workflow Precedence
Rare is the DTS package that uses only a few tasks. Most DTS packages involve a complex
maze of a few dozen tasks. The order of execution becomes critical in preventing errors.

DTS precedence includes the following options to control workflow:

✦ On Completion (blue)

✦ On Success (green)

✦ On Failure (red)

To establish a workflow order, select the first and second task and then choose the workflow
type in the workflow menu. To include a transformation task in the workflow choose the
source connection of the transformation. Figure 19-13 shows an On Completion workflow
connector between the Purge task and the Access data source connection object.

Figure 19-13: The Workflow Connector determines that the Execute SQL task must
complete before the transformation tasks from Access can begin.

Workflow can also be established by means of the Workflow Properties command in the task’s
right-click menu.

23549359 ch19.F 11/21/02 9:49 AM Page 542

543Chapter 19 ✦ Migrating Data with DTS

Executing the DTS Package
Microsoft is generous in the variety of methods that immediately execute and schedule the
execution of DTS packages. To execute a DTS package, use any of the following methods:

✦ During development and testing, highlight the task and select Execute Step from the
right-click menu to execute specific tasks.

✦ Within the DTS package workspace, click on the green Run button in the toolbar, or
select the Package ➪ Execute menu command.

✦ From the Enterprise Manager Console, select the package in the local DTS package list
and choose Execute Package from the Action menu or the right-click menu.

✦ From within a DTS package, add an Execute Package task to the package. Global vari-
ables may be passed between the outer and the called package.

✦ From a Windows command prompt, use the dtsrun or dtsrunui command. The /?
parameter will display all the possible parameters. If no parameters are provided, a dia-
log will appear to execute the DTS package.

✦ From within a T-SQL batch or stored procedure, use the xp_cmdshell system stored
procedure to execute the dtsrun command-line utility to launch a DTS package.

DTS packages may be scheduled by means of any of the following methods:

✦ In the Enterprise Manager Console, selecting the package to schedule, and using the
Schedule Package command in the Action menu or the right-click menu. The standard
SQL Server scheduling dialog will appear to set up the schedule. It will create a SQL
Server Agent job that executes the package using dtsrun.

✦ Using the dtsrunui command to schedule the DTS package to run as a reoccurring
SQL Agent job.

✦ Manually creating a SQL Server Agent job using the dtsrun command.

Saving and Moving DTS Packages
The simple Package ➪ Save menu command saves the package to the local server using the
SQL Server format. Packages stored using the SQL Server format are listed in the Local
Packages node under Data Transformation Services node in the Enterprise Manager console
tree.

The Package ➪ Save As command offers several other formats and options, as shown in
Figure 19-14.

23549359 ch19.F 11/21/02 9:49 AM Page 543

544 Part III ✦ Data Connectivity

Figure 19-14: The Save DTS Package dialog,
opened from the Package ➪ Save As menu
command, may be used to specify the location
to store the DTS package to.

A DTS package may be saved in one of four formats:

✦ SQL Server — This method saves the package to the sysdtspackages table in the
MSDB database inside any registered SQL Server. If the servers are registered, this is
the easiest way to move a DTS package to another server. To move a package to a
server that isn’t registered, use the Structured Storage File option.

✦ Meta Data Services — This advanced method enables tracking of the data that has been
changed using DTS.

✦ Structured Storage File — This method enables a file to be copied to another SQL Server
and then opened on another server. Be careful about SQL Server versions and service
packs. There’s no guarantee that DTS packages saved to a Structured Storage File can
be retrieved by SQL Server 2000 instances with different service-pack levels.

To open a package that’s been saved using the Structured Storage File format, use the
DTS Open Package command in the right-click menu under Data Transformation
Services node in the Enterprise Manager console tree.

✦ Visual Basic File — This option actually generates a VB script to perform the same tasks
as the SQL Server DTS package.

If the package has been saved using the Package ➪ Save As command, the Package ➪ Save
command uses same format and location choices as the last Save As command.

23549359 ch19.F 11/21/02 9:49 AM Page 544

545Chapter 19 ✦ Migrating Data with DTS

Deltas and Versions
A nice feature of Data Transformation Services is the way it handles changes to DTS pack-
ages. Each save is stored as a new version in a continuous list of versions.

The saved versions of any package may be viewed within Enterprise Manager by means of
selecting the DTS package from the list of local packages and selecting Action ➪ Versions or
right-click menu ➪ Versions. The DTS Package Versions dialog, shown in Figure 19-15, displays
the version date and description.

Figure 19-15: The DTS Package
Versions dialog lists all the saved
versions of the package for editing
or deleting.

Using the DTS Package Versions dialog you can purge or open previous versions for editing.
To revert to a previous version as the current version, open the previous version for editing
and use the Package ➪ Save As menu command to save the package using a new name.

Summary
I’m glad that Microsoft includes Data Transformation Services within SQL Server 2000. I regu-
larly use it as a data-connectivity tool in my database projects. Any database developer, using
any database product, would be wise to consider using DTS for data-migration projects.

The next chapter continues the data connectivity theme by introducing database replication,
which keeps the data in multiple locations in sync.

✦ ✦ ✦

23549359 ch19.F 11/21/02 9:49 AM Page 545

23549359 ch19.F 11/21/02 9:49 AM Page 546

Replicating
Databases

Replication is basically the automatic migration of data from one
server to another. Replication can perform many tasks:

✦ Pushing data one way to remote locations.

✦ Synchronizing mobile users.

✦ Updating a server reserved for queries and reports.

✦ Sharing data between servers in various parts of the world.

✦ Synchronizing a sales server and a production server.

Database replication has a mixed reputation. While some developers
are successful with replication, others find it a nightmare. In my expe-
rience, replication works well when SQL Server 2000 is running on a
clean server. However, when the replication configuration or database
schema is repeatedly altered, then replication becomes less stable.

Replicating data merely means duplicating changes from one database
to another. While SQL Server includes the stored procedures and
interfaces to perform replication among multiple servers, this is not
the only way to replicate data. Dave Catherman, a database developer,
has developed a send-and-forward method of replication that uses
e-mail to perform merge replication. I suspect that future replication
methods will use XML. However, unless you can justify recreating the
wheel, I suggest trying SQL Server’s built-in replication first.

You can move data from one server to another in several ways other
than SQL Server Replication:

✦ With the Bulk Copy utility (bcp)

✦ With the Data Transformation Services (DTS)

✦ By backing up and restoring a database

✦ With the Database Copy Wizard

✦ With distributed transactions using two-phase commit within
custom-written stored procedures

2020C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
replication concepts

Setting up replication

Replicating data

Handling merge-
replication conflicts

✦ ✦ ✦ ✦

24549359 ch20.F 11/21/02 9:49 AM Page 547

548 Part III ✦ Data Connectivity

Each will accomplish replication to various degrees and with more or fewer features.
Depending on the frequency of the synchronization and how much data needs be transferred,
any one of these techniques may be a simpler alternative to SQL Server replication. SQL
Server’s replication is a good choice when you want flexibility in which data is being copied
and synchronization is a regularly scheduled process as opposed to an occasional
export/import scenario.

Replication Concepts
SQL Server replication operates according to a publishing metaphor and includes three
agents — a distributor, a publisher, and a subscriber:

1. Distributor: To establish a publishing industry the first requirement is an established
method of distributing the publication.

2. Publication: With a distribution method in place, the publisher can place content
within the publication.

3. Subscriber: When the distributor and the publisher make the publication available,
subscribers can subscribe to the publication.

In keeping with the publishing metaphor, three SQL Server servers cooperate to replicate
data: the publisher, the distributor, and the subscriber server.

A single server can serve as both the publisher and the distributor and even as the sub-
scriber. An excellent configuration for experimenting with replication is a server with multiple
SQL Server instances. However, when performance is an issue, a dedicated distributor server
is the best plan.

The publisher server organizes multiple articles (an article is a data source; a single table,
view, function, or stored procedure) into a publication. The distributor server manages the
replication process. The publisher can initiate the subscription and push data to the sub-
scriber server, or the subscriber can set up the subscription and pull the subscription from
the publisher.

Transactional Consistency
The measure of transactional consistency is the degree of synchronization between two repli-
cated servers. As the lag time between synchronizations increases, transactional consistency
decreases. If the data is identical on both servers most of the time, transactional consistency
is said to be high. A replication system that passes changes every two weeks by e-mail has
low transactional consistency.

There is no perfect level of transactional consistency. The ideal level of transactional consis-
tency depends on the client requirements balanced with both the monetary cost and the per-
formance cost of performing the synchronization.

Replication Types
SQL Server offers three basic types of data replication with a few variations:

✦ Snapshot — A one-way replication. Taking a snapshot is effectively the same as pushing
a complete backup to the remote server.

24549359 ch20.F 11/21/02 9:49 AM Page 548

549Chapter 20 ✦ Replicating Databases

✦ Transactional — Each transaction is synchronized between the servers. Using transac-
tional data replication is conceptually somewhat similar to applying transaction-log
backups to a snapshot.

✦ Merge — The data changes in each server are tracked and blended together, allowing
changes to be made on any server participating in the merge replication.

Table 20-1 compares the multiple methods of synchronizing databases and the relative
latency (delay between synchronization) and transactional consistency (synchronization of
the data) each provides.

Table 20-1: Data Sharing Methods

Shared Data Transactional Subscriber
Method Description Consistency Independence

Snapshot Replication The published data is moved Typically low, depending High, because
from the publisher to the on the synchronization synchronization is
subscriber and overwrites any schedule, which is infrequent so
data on the subscriber. This commonly infrequent subscribers can
replication method is similar because of the need to operate even if the
to a scheduled backup and replace all the data on the publisher is
restore, but it provides the subscriber each time, unavailable.
ability to limit the scope of which limits the frequency
the published data. of synchronization.

Merge Replication Data changes from both Typically low, depending Highest,
the publisher and the on the synchronization because
subscriber are periodically schedule, but because changes can
synchronized. Any data only the changes to the be made on
conflicts are handled with data need to be the publisher or any
rules and a conflict manager. transmitted each time subscriber at any time

(rather than all the data), without a distributed
synchronization may occur transaction and the
more often than with snapchanges merged
shot replication. However, together in the future.
a risk of data conflicts
does exist with this
method.

Snapshot Replication Similar to snapshot Medium, depending on Medium, depending
with Immediate replication, except that a the synchronization on the frequency of
Updating Subscribers subscriber may update its schedule, but local changesupdates. Retrieval

local copy as well as the are immediately reflected operations are highly
copy on the publisher on the subscriber making independent, but
through a distributed the change. Other updates require
transaction. subscribers’ changes are publisher availability

not seen until the next for a distributed
synchronization. transaction.

Continued

24549359 ch20.F 11/21/02 9:49 AM Page 549

550 Part III ✦ Data Connectivity

Table 20-1 (continued)

Shared Data Transactional Subscriber
Method Description Consistency Independence

Transactional Transactions are sent from Medium; data may be Low, because the
Replication the publisher to the synchronized more frequency of

subscriber. This is not a frequently or even synchronization is
distributed two-phase immediately depending typically high and this
commit transaction. The on the speed and type of replication is
transaction is completed on availability of the network generally used inside
the publisher and is then connection between the a good network
routed to the subscriber. publisher and the environment.

subscriber.

Transactional Similar to transactional High; data is synchronized Lowest; servers have
Replication with replication, but subscribers almost immediately as virtually no
Immediate Updating can make immediate long as the servers are independence
Subscribers changes to their local connected, but only because of the

copies through distributed between the publisher frequency of
transactions. Other and the subscriber making transactional posting
subscribers see these the change. and need for a
changes on the next distributed
synchronization. transaction to make

any changes.

Configuring Replication
Using wizards is the simplest way to implement replication. Developers and DBAs generally
avoid wizards because they have limited features, but implementing replication without wiz-
ards requires numerous calls to arcane stored procedures and is a tedious and painful pro-
cess prone to user errors.

Creating a Publisher and Distributor
The initial configuration step is to run the Configure Publishing and Distribution Wizard. The
wizard is located in the list of wizards opened from Tools ➪ Wizards menu or the Wizards but-
ton on the toolbar.

Key decisions while running the wizard include:

✦ Whether the publisher will also serve as its own distributor, or whether to configure a
separate (pre-setup) distribution server.

✦ Which folder will be used to store snapshot files.

✦ What the name of the distribution database will be (if you choose Advanced Options).

24549359 ch20.F 11/21/02 9:49 AM Page 550

551Chapter 20 ✦ Replicating Databases

✦ If non-default settings are chosen, then you will have to configure multiple publishing
servers, configure individual databases for transaction or merge replication, and con-
figure servers as potential subscribers.

✦ You must also make sure to configure the startup account for your server in order to
use a domain account and not the local system account. Otherwise, replication
between different servers will fail. If the startup account is not changed, you will be
warned when you run the wizard. The same holds true for the SQL Server Agent
startup account. In addition, you must make sure that the SQL Server Agent is set to
automatically start up on reboot.

Running the wizard is fairly simple and will not produce many surprises. If SQL Server Agent
is not configured to start up automatically already, the wizard will ask if you want to configure
it this way. Next you are prompted for the directory in which the snapshot files will be stored
(Figure 20-1). Create a directory on the distributor and share this folder with a simple
name — no spaces and short, so a simple Universal Naming Convention (UNC) name can be
used to reference the path instead of relying on the default administrative share to C$.

Figure 20-1: The snapshot folder using UNC pathname
to a shared folder.

If you choose to customize the settings, specify the name and location of the distribution
database. Generally it’s a good idea to keep the name distribution; however, it’s OK to specifi-
cally locate the database on a drive of your choosing. The distribution database is marked as
a system database and will be hidden from Enterprise Manager’s view if the registration for
that server is configured to hide system databases and tables. It is also possible to enable
other publishers to use this server as a distributor, enable merge and transactional replica-
tion, and enable subscribers at this time, or these choices can be deferred until later.

Once finished, the wizard will create the distribution database (if this server is the distribu-
tor) and enable the publishers and subscribers specified to use this server, and also enable
whatever replication agents are necessary for the types of replication specified.

24549359 ch20.F 11/21/02 9:49 AM Page 551

552 Part III ✦ Data Connectivity

If this sever is the distributor, then you will be notified that because this server is acting as a
distributor, the Replication Monitor will be added to the Enterprise Manager tree view. The
first time the Replication Monitor is clicked it will inform you that it can be set to automati-
cally refresh. You may select a refresh rate or choose manual refreshes if you wish. These set-
tings can be changed later by right-clicking the Replication Monitor and choosing Refresh
Rate and Settings.

Creating a Publication
Once a distributor is set up for your server, you can make publications. A publication is
defined as a collection of articles, where an article is an item to be published. An article in
SQL Server can be a table, a view, a user-defined function, or even a stored procedure.
Typically tables are published, but views can also be published although there are many pit-
falls involved in doing so and unless you are well experienced with replication it is best to
avoid this. Publishing stored procedures is useful for transactional replication to reduce the
network traffic associated with keeping the subscribers in synch. Publishing stored proce-
dures eliminates the need to log each individual change the procedure makes; instead the
server logs that the procedure was called and the identical procedure is called on the sub-
scriber, thereby yielding the same data changes on the subscriber.

To create a publication you can manually type out a series of stored procedure calls or run
the Create Publication Wizard (Figure 20-2). Launch the wizard to see a list of all the user
databases on the server; expand the branches to see the existing publications in each
database. It is possible to modify an existing publication, create a new push subscription
for it, remove it, or create a script to recreate it or create a new publication.

Figure 20-2: The Create Publication Wizard shows existing
publications and enables the creation of new ones.

Follow the wizard steps and decide whether you want to see the advanced options. Advanced
options include immediate updating subscribers or queued updates. Follow the wizard steps
and choose the database for the publication. If there already are publications in that
database, use one of them as a template for the new publication, or create the publication
from scratch. The next question asks what type of replication you want — snapshot, transac-
tional, or merge. Remember that if you want snapshot or transactional with immediate updat-
ing subscribers, you must first choose show advanced options.

24549359 ch20.F 11/21/02 9:49 AM Page 552

553Chapter 20 ✦ Replicating Databases

Once the wizard is running it presents the following pages:

1. Subscriber Type page. The data in the distribution database is saved in different for-
mats according to the checkboxes you select. If only other SQL Servers will be sub-
scribers then the publishing server can save the data in the more efficient internal
format, but if heterogeneous servers such as Jet or Oracle are used, the publishing
SQL Server must save the data in the less efficient ASCII format.

2. Articles Published page. The next page is used to choose which tables, views, user-
defined functions, and stored procedures to be published. Several articles (objects)
may be combined in a single publication or each article can be an individual publica-
tion. The advantage of placing several articles in one publication is that they are all
managed on a single schedule. It is possible, however, to have different articles pub-
lished on different schedules or even to mix snapshot, merge, and transactional replica-
tion to serve different business needs. Figure 20-3 shows the dialog box used to select
the articles. By default it only lists tables unless you select the checkboxes to show
views and stored procedures as well. The Article Defaults button in the lower left-hand
corner of this box enables you to specify table properties as well as how conflicts will
occur if an article already exists on a subscriber and how indexes, triggers, collations,
extended properties, and referential integrity will be carried over to the subscriber.

Figure 20-3: The Specify Articles dialog of the Create
Publication Wizard.

If any problems related to publishing any of the selected articles come up, the next
page will enumerate them and suggest ways to resolve them. For example, replicating a
table with identity columns can be handled in different ways, depending on whether
the subscribers will allow updates or not. The wizard will suggest ways to handle this
situation before you enable replication on the article. Then you will be prompted for a
name and description of the article.

The last page of the wizard enables you to further customize the publication. If you
choose to customize the settings you can create vertical and horizontal partitions,
allow for anonymous subscriptions, and/or change the frequency with which the
snapshots are refreshed.

24549359 ch20.F 11/21/02 9:49 AM Page 553

554 Part III ✦ Data Connectivity

Partitions
Partitions enable you to publish only part of the data from a table. A vertical partition
enables you to filter out columns you do not want to publish, and a horizontal partition
enables you to filter out rows you do not want to publish. Typically one does not replicate
sensitive columns or unnecessary columns. For example, if publishing a list of products, you
presumably want to publish only active products. So, create a horizontal partition to filter out
inactive products, and hide the column for status altogether because it would be redundant
to have a column in which every value is the same in the result set.

Horizontal partitioning can be either static or dynamic. Static filters make the same set of data
available to all subscribers based on some multiple criteria, typically a status column or date.
Dynamic filtering enables each subscriber to receive different data based on criteria specific
to each server. For example, subscribers in different geographical regions might be set to
receive different data. This is set by means of having the subscriber server pass some infor-
mation back to the publisher. This information is used in the where-clause criteria to deter-
mine which rows are passed back to the subscriber. This feature is only available with merge
replication.

Anonymous Subscriptions
Anonymous subscriptions simplify the administrative workload by not requiring that each
subscriber server be registered with the publisher. If you have a small number of known sub-
scribers, anonymous subscriptions are not necessary. However, in a typical merge-replication
scenario there may be dozens or hundreds of disconnected subscribers using computers that
may not be known at the time the publication and subscriptions are created. If each sub-
scriber had to be manually registered before it could receive a publication the situation
would be an administrative nightmare. Although anonymous subscriptions can enable an
unknown server to receive the publication, this does not represent a big security hole. The
subscribers still need to make a network connection and authenticate using either SQL or
Windows authentication.

Modifying a Publication’s Properties
Once the publication is created, its properties can be modified by right-clicking on the publi-
cation name and choosing Properties. This shows all the options you selected during the cre-
ation of the publication as well as a few additional options not available through the wizard.
One such useful option is Generate SQL Script, which will write a SQL script to recreate the
publication without your having to run the wizard again. This is useful for creating the publi-
cation on a test server and then implementing it on a production server, or to create the
same publication on multiple servers. Another benefit is to use this item to see all the work
you would have had to do if not for the wizard.

The replication information is stored in several system tables in the database that contains
the publication. These tables include SysPublications, SysArticles, SysArticleUpdates,
and SysSubscriptions, among others. Some replication information is also stored in the dis-
tribution database, and the MSDB database contains the jobs that refresh the snapshots and
push subscriptions. Once the replication is started it sets up a whole chain of interrelated
threads and therefore it’s difficult to change the structures of tables, detach databases, or
perform other radical operations. Keep in mind all the places both user data and replication
configuration data are stored, so you can plan your backup strategy accordingly. It is always a
good idea to save a copy of the replication scripts independently of the database backups,
just as it is a good idea to keep the scripts you would need to recreate the database.

24549359 ch20.F 11/21/02 9:49 AM Page 554

555Chapter 20 ✦ Replicating Databases

Because of the tangle that replication creates, modifying tables involved in replication can
also get tricky. It is best to plan ahead and not make modifications to tables once replication
is in place. One option is to remove the replication on these tables altogether, and then to
make the modifications and recreate the replication anew. But if you have a lot of replications
in place, this could prove cumbersome. Limited support exists for adding and removing
columns to a table involved in replication, but it generally works without a problem.

SQL Server 2000 supports replicating added and dropped columns through the stored pro-
cedures sp_repladdcolumn and sp_repldropcolumn. Use these stored procedures
instead of the usual alter table add column command.

Replication Data
Once the publication is set up, SQL Server is ready to replicate data. The subscribing server
can pull the replication or the publisher can push the replication.

Subscribing to the Publication
Once a publication exists, it’s ready for subscribers. The two types of subscriptions are push
and pull.

A push subscription is one in which the publisher determines when to send the updates to
the subscribers; a pull subscription is one in which each subscriber determines its own syn-
chronization schedule. Push subscriptions are generally used for centralized administration
in systems in which a constant, reliable network connection exists among all the servers.
This is typically the type of subscription used in a transactional replication.

Pull subscriptions are more appropriate in networks that have a lot of subscribers, some of
whom may not always be available for synchronization at a given time. This kind of subscrip-
tion is also generally used for merge replication, in which each subscriber is an independent
user and synchronizes with the publisher at its own convenience.

Both push and pull subscriptions can be scheduled as jobs or done on demand. The jobs for
push subscriptions are stored in the MSDB database of the publisher, and the jobs for pull
subscriptions are stored in the MSDB databases of the subscribers.

When a publication is first made, the server does not need to create a snapshot until there
are subscribers. When the first subscriber subscribes to the publication, the snapshot agent
will create a new snapshot of the publication and then apply it to the subscriber. Thereafter,
the snapshots will be updated according to the schedule defined for refreshing them.

Creating the snapshot is not without its cost. Just like any other read process, the Snapshot
Agent must acquire share locks on the articles being read for snapshotting. This can block
other update operations resulting in serious performance issues. For this reason it is usually
best to prepare the snapshots at a non–peak-usage time. Avoid creating the initial snapshot
on a production server when a lot of transactions are occurring. Instead, do all your work on
a development server, test it out, and then generate the scripts for the replication and apply
them on the production server as a scheduled job in the middle of the night.

Note

24549359 ch20.F 11/21/02 9:49 AM Page 555

556 Part III ✦ Data Connectivity

Pushing a Subscription
To create a push subscription on the publisher server, either choose from the wizard’s menu
or right-click a publication and select Push New Subscription from the menu. Either option
will launch the Push Subscription Wizard, which presents the following pages:

1. Select Subscribers page. Decide which subscribers you want to push the subscription
to. You may select more than one by clicking on each new server name while pressing
the Ctrl key. You may select all the servers in a group by picking the group name. The
next screen prompts you for the name of the database on the subscriber that will
receive the publication.

2. Subscription Frequency page. Choose how frequently the subscription is refreshed.
Continuously means that synchronization occurs immediately after a change is made on
the publisher. A moment of latency occurs between the time when the change is com-
mitted on the publisher and the time when it is propagated to the subscribers. This
type of refreshing is not to be confused with a distributed transaction in which the
change is made simultaneously to both servers. So continuously does not mean simul-
taneously or immediately, but rather very quickly. The other option is to synchronize on
a timed schedule. This involves scheduling a job with the SQL Server Agent just as you
would schedule a backup job.

3. Snapshot Agent option. If the subscribers do not already have a database schema
defined that matches the publication, then you must let the Snapshot Agent create the
tables for you on the subscriber. It is usually a good idea to let the agent create the ini-
tial schema for you so no mismatches occur in the structures; but if you have a mature
database, or you need to deploy an application that will later be brought into a replica-
tion subscription, then you may want to manually create the schema and skip this step
when you actually create the subscription.

The system stored procedures sp_publication_validation and sp_article_vali-
dation can test the publication and data integrity. These are very sensitive to the data
schema and the way that replication is configured.

When the wizard is done, it has created the subscription. If you checked the option to create
the initial snapshot, it will have done that, but not yet applied it to the subscribers. It is the
job of the distribution agent to apply the snapshots to the subscribers. To force the initial
subscription, go to the Publications branch either in the publisher database or under the
Replication branch below Management. Choose the publication and the Details panel on the
right will show the subscriptions for it. Right-click the subscription and choose Start
Synchronizing. This will kick off the distribution agent and populate the subscriber with the
initial snapshot. If this fails, it could be because the initial snapshot has not yet been created
or has not finished yet. You may need to manually launch the Snapshot Agent or try synchro-
nizing again. If synchronization still fails, delete the subscription and recreate it, or delete the
publication and recreate it, and try it all again. Sometimes it is just a simple matter of the syn-
chronization timing being off and recreating the subscription can make it work.

No menu item enables you to script the creation of push subscriptions. Instead, when you
generate a script for the creation of the publication, the push subscriptions are included at
the bottom of the script. Therefore, if you add new subscriptions, just rescript the publication
to get the new push subscriptions.

Note

Note

24549359 ch20.F 11/21/02 9:49 AM Page 556

557Chapter 20 ✦ Replicating Databases

Pulling a Subscription
A pull subscription is much the same as a push subscription except that it is accomplished
on the subscriber server instead of the publisher. You can create a new pull subscription
either from the wizards menu or by right-clicking the database and choosing New ➪ Pull
Subscriptions. Both will launch the Pull Subscription Wizard. The steps are pretty much the
same as those of the Push Subscription Wizard. The information is saved in the subscriber
database under a branch called Pull Subscriptions. It is also saved on the publisher and can
be seen by means of looking at the publications branch. All the subscriptions, both push and
pull, are visible in the details panel on the right.

Pull subscriptions can be scripted separately, unlike push subscriptions. This can be done by
right-clicking the subscription at the subscriber server and choosing Generate SQL Script. If
you examine one of the scripts, you will notice that some code is to be run on the publisher
and some is to be run on the subscriber. Although the subscriber is the server that controls
when the actual synchronization occurs, a record of the subscription is kept in the publisher.
The following sample from Generate SQL script illustrates this:

-- Adding the snapshot pull subscription: PUBLISHER:Northwind:Northwind
Categories

/**** Begin: Script to be run at Subscriber: SUBSCRIBER ****/
use [NorthwindRepl]
GO

exec sp_addpullsubscription @publisher = N’Publisher’, @publisher_db =
N’Northwind’, @publication = N’Northwind Categories’, ...

exec sp_addpullsubscription_agent @publisher = N’Publisher’,
@publisher_db = N’Northwind’, @publication = N’Northwind Categories’,
...
GO

/***** End: Script to be run at Subscriber: SUBSCRIBER *****/

/***** Begin: Script to be run at Publisher: PUBLISHER *****/
use [Northwind]
GO

exec sp_addsubscription @publication = N’Northwind Categories’,
@subscriber = N’PUBLISHER’, @destination_db = N’NorthwindRepl’, ...
GO
/****** End: Script to be run at Publisher: PUBLISHER ******/

Removing Replication
Removing replication manually is nearly impossible. To remove replication from a server, run
the Disable Publishing and Distribution Wizard. If this fails to work, try to delete all publica-
tions first, and then try running the wizard again. If this fails, you may need to rebuild the
server and restore your backups of the system and user databases. For this reason it is a
good idea to make backups of all your databases, including the system databases, before you
first implement replication.

24549359 ch20.F 11/21/02 9:49 AM Page 557

558 Part III ✦ Data Connectivity

Replicating to an Access Database
Other databases, such as Access and Oracle, may be subscribers to a SQL Server database.
You may use either push or pull subscriptions for these heterogeneous subscribers as well.
The following sections will show you how to make a Jet database a subscriber to a SQL
Server publication.

Pushing a Subscription
In order to replicate to an Access Database with a push subscription, you must define the Jet
database as a linked server, and run a configuration dialog in Enterprise Manager. You can set
up the linked server first, or you can do it from within the dialog box. On the menu, choose
Tools ➪ Replication ➪ Configuring Publishing, Subscribers, and Distribution. Then create a
new subscriber on the Subscribers tab and select Microsoft Jet 4.0 database (Microsoft
Access). Choose a name for the linked server and point to the file path of the Jet .mdb file; if
there is any security on it, provide the user name and password. (If no security exists just use
“admin” as the login and a blank password.) This will create the linked server and enable it as
a subscriber. Now that the linked Jet database is enabled as a subscriber, you can create a
push subscription to it, just as you would to any registered server.

Pulling a Subscription
Pulling a subscription to an Access database, or any heterogeneous database is a little trick-
ier than pushing push subscription, but push subscriptions are the more typical type for
these databases because of the disconnected nature of an Access application. You need to
use the Microsoft Replication ActiveX controls. These are a set of programmable COM
(Component Object Model)-based controls that you include in the front-end program that
manages the Jet database. (Using these controls is a minor programming effort that is not
worth exploring here as it has more to do with programming Access and Visual Basic than it
does with replication itself.)

The replication controls are available in Access by means of opening a form, clicking the
More Controls icon on the toolbar, and scrolling down until you see the Microsoft SQL
Replication tools. They are available in Visual Basic by means of adding the controls to the
toolbar and dropping them onto a form.

Access Replication Issues
You need to keep a few issues in mind when replicating to a Jet database. Microsoft Jet 4.0
does not support case-sensitive sort orders, so make sure you do not try to subscribe to a
publication created on a case-sensitive SQL Server. In order for the Microsoft ActiveX replica-
tion controls to work you must enable anonymous subscriptions. You cannot replicate both
transactional and merge publications from the same publication database to a Jet subscriber.

Although it is not very difficult to allow Jet subscribers it is probably best to replace Jet alto-
gether and use the SQL Server MSDE instead.

Note

24549359 ch20.F 11/21/02 9:49 AM Page 558

559Chapter 20 ✦ Replicating Databases

Merge Replication Conflict Management
Merge replication is a versatile technique that offers you a great deal of independence while
still enabling you to share data among many computers. It even enables the subscribers to
make changes to their local copies of the data and upload those changes back to the pub-
lisher; the other replication types are all one-way from the publisher to the subscriber.

All this flexibility is not without its costs, however. In order for merge replication to work, you
must modify the structure of the tables that will be merge-replicated to include a globally
unique identifier (GUID) data-type column. A GUID is a 16-byte hexadecimal number that
looks like this: 80F77599-025B-4D97-87B4-30AFD8BDE4FB. A GUID can be generated over
and over by each computer on Earth and the same number will never be recreated twice. It is
a guaranteed unique value for a row in the table. When you implement merge replication
using the wizards, the wizards will automatically modify the published tables to add the GUID
column.

Another cost of merge replication is the possibility of data conflicts. With the other replica-
tion types the changes are only made on the publisher and then eventually synchronized to
the subscribers. The only differences that can occur among the sets of data are caused by the
timeliness with which the changes make it to the subscribers. With merge replication, the
subscribers can locally change the data on their copies of the database. Also, the publisher
may be making changes to the data. Because anyone can change his or her local copy of the
data, the possibility does exist of two people changing the same record to different values.
This inconsistency is known as a data conflict.

When conflicts are detected during the synchronization process, something has to happen to
resolve the conflict. After the synchronization, the data on the publisher and subscriber
should be the same, so one of the changes has to be rejected in favor of the other. A conflict-
resolution logic determines which change is accepted. Various techniques can be used to
handle the conflict. One method is to assign different priorities to different servers; in the
event of a data conflict, the server with the highest priority wins. Another method is to allow
whichever change occurred first to win. It is also possible to configure whether a conflict is
tracked at the record or field level. If none of these techniques is acceptable, custom resolu-
tion logic may be written and compiled to a DLL.

No matter which technique is used to resolve the conflict, one change will be a winner and
the other a loser. The winner is propagated to the publisher and all the subscribers. The loser
is kept in a history table so that a manual Q&A process can be used to override the automatic
conflict resolution and implement the loser or an altogether different value.

Creating and Resolving Conflicts
Now take a look at how conflicts are handled by means of creating a merge publication on the
Employees table. Remember that this will modify the structure of the table by adding a col-
umn called rowguid that is a uniqueidentifier data type. Once the first subscription is ini-
tialized you can change values in rows in both the publisher and subscriber copies. Depending
on how you set up the publication, a conflict may occur if any change is made to a row by
either server, even if the row is in different columns, or if a different change is made to the
same column. The second option is the default, but you can edit the publication properties to
log a conflict if any change is made to the same row. To do this, right-click a publication and

24549359 ch20.F 11/21/02 9:49 AM Page 559

560 Part III ✦ Data Connectivity

choose Properties. In the lower right-hand corner of the Articles tab of the Properties dialog
box, find the Article Defaults button. Choose to modify the table articles, and at the bottom of
the General tab you are presented with an option that can be used to determine whether there
is a conflict (Figure 20-4).

Figure 20-4: Use the Publication Properties dialog box to determine when a
conflict occurs.

After you make some changes to both the publisher and the subscriber that will result in a
conflict, and you synchronize the publication, you will see the last status of the synchroniza-
tion displayed on the Details panel of the subscriptions for the publication. It will look some-
thing like the following:

Merged 2 data changes (0 inserts, 2 updates, 0 deletes, 1 resolved
conflicts).

The conflicts can now be viewed and manually resolved. If you right-click the subscription
and choose the View Conflicts option, a dialog will appear, but it will not show any of the
actual conflicts. This is a bug in Enterprise Manager. The proper way to view conflicts is to go
to the publisher level, and then to right-click and choose View Conflicts. The same dialog will
appear, but this time it will show the actual conflicts. The first screen will show each article
and the number of conflicts in parentheses. Click the View button and you will be presented
with each conflict, one record at a time (Figure 20-5).

24549359 ch20.F 11/21/02 9:49 AM Page 560

561Chapter 20 ✦ Replicating Databases

Figure 20-5: Resolving conflicts from merge replication.

You will be able to see the values of each conflict’s winner and loser and decide how you
want to resolve the conflict. You can leave the values as they were automatically resolved,
select the loser to become the winner, modify the record with entirely different values, or
postpone any resolution and keep the conflict in the list for later resolution. If you make any
changes they will occur at the publisher and be propagated to the subscribers during the
next synchronization.

You can also write custom interfaces to manually resolve conflicts by using the Microsoft
Replication ActiveX controls on a Visual Basic or Access form, so that someone other than a
DBA using Enterprise Manager can handle conflict resolution.

Summary
Replication is a complex and powerful feature of SQL Server, and to describe it could easily
take a book all by itself. Using the wizards and dialogs that Microsoft has written into the
Enterprise Manager greatly simplifies the process of configuring and deploying replication.

✦ ✦ ✦

24549359 ch20.F 11/21/02 9:49 AM Page 561

24549359 ch20.F 11/21/02 9:49 AM Page 562

ADO and ADO.NET

So far, this book has concentrated on the Database Management
System (DBMS) and associated databases. Since building and

maintaining the database is the main work that a database adminis-
trator will do, it’s important to know how to create tables and stored
procedures. However, a database is of little use if someone can’t
access the data. To create a connection between a client and the
DBMS, you need technology such as ActiveX Data Objects (ADO). In
fact, in Visual Studio .NET you also have a second choice in the form
of ADO.NET. Both technologies serve the same purpose — they
enable the developer to create a connection between the client and
the DBMS.

Microsoft has created a plethora of database technologies over the
years. In fact, so many of them exist that I doubt many developers
have used them all. All of these technologies have had three things in
common. First, they have made creating a connection between the
client and the DBMS easier. Second, they have provided greater flexi-
bility and improved features. Finally, each addition has repaired prob-
lems in areas such as support for referential integrity.

This chapter covers both ADO and ADO.NET. The first new bit of
information to learn is that the two technologies are not mutually
exclusive — both should have a place in your toolkit. Next you need
to know how these two technologies differ so that you can make
good development decisions. During the course of learning this infor-
mation, you’ll also learn how the technologies work.

Along with ADO and ADO.NET, this chapter provides information on
the Visual Studio environment and how it supports the developer and
the database administrator. Previous versions of Visual Studio were a
tad difficult to use — some would say they were nearly impossible to
use. This version comes with a new feature called Server Explorer
that’s going to make life a lot easier for everyone. You’ll find that you
don’t have to leave your desk constantly to perform some task on the
server. Once you know about these Visual Studio .NET features, you’ll
use them to perform two essential tasks: working with stored proce-
dures from within the Visual Studio .NET environment and using
automation to build a simple client application.

An Overview of ADO
ADO first appeared as a companion to Visual Basic 6. It’s a high-level
wrapper around the functionality provided by Object Linking and
Embedding for Databases (OLE-DB). While Visual C++ users pondered
the low-level details of OLE-DB, Visual Basic users were quickly creat-
ing applications with ADO. ADO and OLE-DB both offer trade-offs for
developers that will be described in the sections that follow.

2121C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding ADO

Understanding
ADO.NET

Using Server Explorer

Accessing stored
procedures

Designing a client

✦ ✦ ✦ ✦

25549359 ch21.F 11/21/02 9:49 AM Page 563

564 Part III ✦ Data Connectivity

Part of working with a connection technology is gaining an understanding of the various ele-
ments used to create it. For this chapter, we’ll take a quick look at the one essential element
of both ADO and OLE-DB, the objects that you use when working with them. We’ll also dis-
cuss the data types and providers that ADO supports. Finally, we’ll discuss how developers
use ADO in a variety of programming efforts, including scripting. You may find that scripts
offer a lightweight means of creating the connection between client and DBMS in some
situations.

ADO and OLE-DB
As previously mentioned, OLE-DB is a low-level technology used mainly by Visual C++ devel-
opers who value its flexibility and speed. ADO is a higher-level wrapper around OLE-DB that
helps a developer create code more quickly, with fewer errors, and with some level of
automation.

For both ADO and OLE-DB programmers, the main reason to use OLE-DB is that it provides a
set of interfaces for data access. You can query, create, and destroy an OLE-DB object just as
you would any other COM object. Each of the interfaces constitutes a specific unit or area of
expertise for database management. For example, OLE-DB provides a record-set object that
manages the set of records obtained from the DBMS.

OLE-DB also relies on events, just as any COM object would. These events tell you when an
update of a table is required to show new entries made by other users or when the table
you’ve requested is ready for viewing. You’ll also see events used to signal various database
errors and other activities that require polling immediately.

It’s essential to understand the basis for describing OLE-DB as a connection between client
and DBMS. Because ADO relies on OLE-DB for low-level access, the technology used to create
an OLE-DB connection also affects ADO. Microsoft designed OLE-DB as an upgrade to ODBC.
We won’t discuss the whole history of Microsoft connection technology because that could
require another book. However, Open Database Connectivity (ODBC) is an important connec-
tion technology because it affected Microsoft’s decisions in creating OLE-DB.

ODBC is an extremely reliable technology that provides connections to many different
DBMSes. The fact is that many people still use ODBC because they think of it as easier to use
than OLE-DB or ADO and they don’t want to lose the connectivity they currently enjoy with
ODBC. Note that this view is so pervasive that Microsoft finally created ODBC.NET for those
developers who refused to make the change. So how does OLE-DB differ from ODBC? Table
21-1 shows the major differences between the two products.

The most problematic feature of ODBC is that the administrator must configure the connec-
tion for it on each machine. ODBC relies on special connectivity information managed with
the ODBC Data Source Administrator. OLE-DB (and therefore ADO) relies on data that’s per-
sisted as part of the application. The administrator doesn’t have to perform any special con-
figuration with these technologies, which makes the application easier to install on the
system. This emphasizes the point I made at the beginning of the chapter that each new ver-
sion of Microsoft DBMS connectivity technology seeks to create faster connections with fewer
problems and less chance for error.

25549359 ch21.F 11/21/02 9:49 AM Page 564

565Chapter 21 ✦ ADO and ADO.NET

Table 21-1: OLE-DB Versus ODBC Technology Comparison

Element OLE-DB ODBC Description

Access type Component Direct OLE-DB provides interfaces that interact
with the data; user access to the data is
through components designed to interact
with OLE-DB.

Data-access Any tabular data SQL Microsoft designed ODBC to
specialization use SQL as the basis for data transactions.

In some cases, this means that the
programmer has to make concessions to
force the data to fit into the SQL standard.

Driver-access method Component Native As mentioned earlier, all access to an
OLE-DB provider is through COM
interfaces by means of components of
various types. ODBC normally requires
direct programming of some type and
relies heavily on the level of SQL
compatibility enforced by the database
vendor.

Programming model COM C/C++ OLE-DB relies on COM to provide the
programmer with access to the provider.
This means that OLE-DB is language-
independent, while ODBC is
language-specific.

Technology standard COM SQL OLE-DB adheres to Microsoft’s COM
standard, which means that it’s much
more vendor- and platform-specific than
the SQL technology standard used by
ODBC.

The ADO Object Model
Now that you’ve gotten a handle on OLE-DB, where does ADO fit in? ADO represents a way to
provide database access through the combination of databound ActiveX controls and five
specialty classes. You can divide the classes into two functional areas: data provider and
dataset. Each of these classes provides part of the connection to the database, and Microsoft
designed each class to provide some level of automation for the developer.

✦ Data provider — Contains the classes that create the connection, issue commands, han-
dle the data reader, and provide data-adapter support. The connection provides the
conduit for database communications. The command enables the client to request
information from the database server. It also enables the client to perform updates and
other tasks. The data reader is a one-way, read-only, disconnected method of viewing
data. The data adapter provides the real-time connection support normally associated
with live data connections. We’ll discuss the data provider in more detail in the
“Understanding Data Providers” section.

25549359 ch21.F 11/21/02 9:49 AM Page 565

566 Part III ✦ Data Connectivity

✦ Dataset — The representation of information within the database. It contains two
collections: DataTableCollection and DataRelationCollection. The DataTable
Collection contains the columns and rows of the table, along with any constraints
imposed on that information. The DataRelationCollection contains the relational
information used to create the dataset.

ADO isn’t just a wrapper over OLE-DB. It provides real value to the developer and has several
advantages over previous database-access methods. The following list describes those
advantages for you.

✦ Independently created objects — You no longer have to thread your way through a hier-
archy of objects. This feature enables you to create only the objects you need, thus
reducing memory requirements and increasing application speed.

✦ Batch updating — Instead of sending one change to the server, you can collect them in
local memory and send all of them at once. Using this feature improves application per-
formance (because the data provider can perform the update in the background) and
reduces network load.

✦ Stored procedures — These procedures reside on the server as part of the database
manager. You’ll use them to perform specific tasks on the dataset. ADO uses stored pro-
cedures with in/out parameters and return values.

✦ Multiple cursor types — Essentially, cursors point to the data you’re currently working
with. You can use both client-side and server-side cursors.

✦ Returned row limits — You only get the amount of data you actually need to meet a user
request.

✦ Multiple record-set objects — Helps you to work with multiple record sets returned by
stored procedures or batch processing.

✦ Free threaded objects — This feature enhances Web-server performance by enabling the
server to perform multiple tasks.

Two databinding models are used for ActiveX controls. The first, simple databinding, pro-
vides the means for an ActiveX control like a textbox to display a single field of a single
record. The second, complex databinding, enables an ActiveX control like a grid to display
multiple fields and records at the same time. Complex databinding also requires the ActiveX
control to manage which records and fields the control will display. Visual Studio comes with
several ActiveX controls that support ADO, including these controls:

✦ DataGrid

✦ DataCombo

✦ DataList

✦ Hierarchical Flex Grid

✦ Date and Time Picker

Like OLE-DB, Microsoft based ADO on COM. ADO provides a dual interface: a program ID of
ADODB for local operations and a program ID of ADOR for remote operations. The ADO
library itself is free-threaded, even though the registry shows it as using the apartment-
threaded model. The thread safety of ADO depends on the OLE-DB provider that you use. In
other words, if you’re using Microsoft’s ODBC OLE-DB provider you won’t have any problems.
If you’re using a third-party OLE-DB provider, you’ll want to check the vendor documentation
before assuming that ADO is thread-safe (a requirement for using ADO over an Internet or
intranet connection).

25549359 ch21.F 11/21/02 9:49 AM Page 566

567Chapter 21 ✦ ADO and ADO.NET

You’ll use seven different objects to work with ADO. Table 21-2 lists these objects and
describes how you’ll use them. Most of these object types are replicated in the other tech-
nologies that Microsoft has introduced, although the level of ADO-object functionality is
much greater than that offered by previous technologies.

Table 21-2: ADO-Object Overview

Object Description

Command A command object performs a task using a connection or record-set object. Even
though you can execute commands as part of the connection or record-set
object, the command object is much more flexible and enables you to define
output parameters.

Connection A connection object defines the connection with the OLE-DB provider. You can
use this object to perform tasks like beginning, committing, and rolling back
transactions. There are also methods for opening or closing the connection and
for executing commands.

Error ADO creates an error object as part of the connection object. The error object
provides additional information about errors raised by the OLE-DB provider. A
single error object can contain information about more than one error. Each
object is associated with a specific event, such as committing a transaction.

Field A field object contains a single column of data contained in a record-set object. In
other words, a field can be thought of as a single column in a table; it contains
one type of data for all the records associated with a record set.

Parameter The parameter object defines a single parameter for a command object. A
parameter modifies the result of a stored procedure or query. Parameter objects
can provide input, output, or both.

Property Some OLE-DB providers will need to extend the standard ADO object. Property
objects represent one way to do this. A property object contains attribute, name,
type, and value information.

Record set The record set contains the result of a query, and a cursor for choosing individual
elements within the returned table. C# gives you the option of creating both a
connection and a record set using a single record-set object, or of using an
existing connection object to support multiple record-set objects.

Understanding Data Providers
Remember that a data provider manages the connection between the client and the DBMS
using a number of objects. Of course, this means that a data provider requires a source of
information and has to define the specifics for creating that connection. Generally, a provider
is database-specific or provides a means for configuring a specific database. Figure 21-1
shows a typical list of database providers. As you can see, some of the providers on the list
are quite specific.

25549359 ch21.F 11/21/02 9:49 AM Page 567

568 Part III ✦ Data Connectivity

Figure 21-1: A typical list of database providers

The source of an OLE-DB object is a provider. Consequently, the ADO also relies on data
providers as a source of data. The .NET Framework includes only a few of the OLE-DB
providers found in the unmanaged version of the product. More will likely arrive as vendors
upgrade their database products. The nice thing about OLE-DB is that the same provider
works with any Visual Studio product: Visual C++, Visual Basic, or C#.

Generally, for SQL Server developers, it’s better to use the SQL Server–specific provider. Even
though other, general-purpose providers will work, Microsoft has optimized the SQL Server
provider for use with SQL Server. You can easily measure the performance difference between
using the SQL Server driver and using a general-purpose driver.

Data Types
When you work exclusively within SQL Server, the problem with data types amounts to
choosing the right type for a given data-storage need. However, when you begin to move the
data from the DBMS through a data provider to a client, several layers of transition occur. For
some DBMSes this is an extreme problem because the general providers supplied with OLE-
DB don’t support many special data types. The problem of data typing is another reason to
the use the SQL Server–specific data providers when working with ADO.

When you want to use data found in a SQL Server table in your client application, the
provider must map the data from a type that SQL Server understands to a type that the client
application will understand. Fortunately for SQL Server developers, the mapping is relatively
straightforward. Table 21-3 shows how the SQL Server provider maps data types. As you can
see, not every SQL Server data type has a precise ADO data-type equivalent. The biggest
problem occurs when ADO uses the same data type to represent two or three SQL Server
data types and you want the subtle differences to appear in your application.

25549359 ch21.F 11/21/02 9:49 AM Page 568

569Chapter 21 ✦ ADO and ADO.NET

Table 21-3: SQL Sever Data Mapping

SQL Server Data Type ADO Data Type Notes

bigint adBigInt The bigint data-type value ranges from -2^63
(-9,223,372,036,854,775,807) through 2^63-1
(9,223,372,036,854,775,807). This value is only
available for SQL Server 2000, but the OLE-DB
provider will still try to send it to SQL Server 7.0
and older systems, and data loss will result. Use
the adBigInt type only when necessary and
then with caution.

binary adBinary ADO uses the same data-type equivalence for
both binary and timestamp.

bit adBoolean While this data transfer always works, conceptual
differences exist between the two. For example,
a bit can have values of 1, 0, or NULL, while an
adBoolean always has either a true or false
value.

char adChar ADO uses the same data-type equivalence for
char, varchar, and text data types.

datetime adDBTimeStamp

decimal adNumeric ADO uses the same data-type equivalence for
both decimal and numeric data types.

float adDouble

image adVarbinary This data type can be so large that it won’t fit in
memory. The lack of memory can cause provider
errors and you might see only a partial retrieval.
When this happens, the developer must write a
custom routine to retrieve the data in pieces.
ADO uses the same data-type equivalence for
image, tinyint, and varbinary.

int adInteger

money adCurrency ADO uses the same data-type equivalence for
money and smallmoney.

nchar adWChar ADO uses the same data-type equivalence for
nchar, ntext, nvarchar, and sysname.

ntext adWChar This data type can be so large that it won’t fit in
memory. The lack of memory can cause provider
errors and you might see only a partial retrieval.
When this happens, the developer must write a
custom routine to retrieve the data in pieces.
ADO uses the same data-type equivalence for
nchar, ntext, nvarchar, and sysname.

numeric adNumeric ADO uses the same data-type equivalence for
both decimal and numeric data types.

Continued

25549359 ch21.F 11/21/02 9:49 AM Page 569

570 Part III ✦ Data Connectivity

Table 21-3: (continued)

SQL Server Data Type ADO Data Type Notes

nvarchar adWChar ADO uses the same data-type equivalence for
nchar, ntext, nvarchar, and sysname.

real adSingle

smalldatetime adTimeStamp

smallint adSmallInt

smallmoney adCurrency ADO uses the same data-type equivalence for
money and smallmoney.

sql_variant adVariant This data type can contain any of a number of
small data types such as smallint, float,
and char. It can’t contain larger data types such
as text, ntext, and image. The adVariant
type maps to the OLE-DB DBTYPE_VARIANT
data type and is only usable with SQL Server
2000. Be careful when using this data type
because it can produce unpredictable results.
Even though OLE-DB provides complete support
for it, ADO doesn’t.

sysname adWChar ADO uses the same data-type equivalence for
nchar, ntext, nvarchar, and sysname.

text adChar This data type can be so large that it won’t fit in
memory. The lack of memory can cause provider
errors and you might see only a partial retrieval.
When this happens, the developer must write a
custom routine to retrieve the data in pieces.
ADO uses the same data-type equivalence for
char, varchar, and text data types.

timestamp adBinary ADO uses the same data-type equivalence for
both binary and timestamp.

tinyint adVarbinary ADO uses the same data-type equivalence for
image, tinyint, and varbinary.

uniqueidentifier adGUID The data provider supports a string GUID, not a
true GUID. This means that if you need an actual
GUID, you’ll have to convert it by hand into a
GUID data structure.

varbinary adVarbinary ADO uses the same data-type equivalence for
image, tinyint, and varbinary.

varchar adChar ADO uses the same data-type equivalence for
char, varchar, and text data types.

25549359 ch21.F 11/21/02 9:49 AM Page 570

571Chapter 21 ✦ ADO and ADO.NET

Table 21-3 only touches on the most significant problems that come up in the process of map-
ping data between the data provider and SQL Server. You also have to consider data-conver-
sion errors. According to Microsoft, all non-direct data translations are subject to data loss.
For example, neither the provider nor SQL Server will complain if you convert an 8-byte num-
ber into a 4-byte, but data loss may occur. In addition, you can’t convert some types to other
types. For example, it’s impossible to convert an adBinary data type into an adSmallInt
data type. In this situation, the development environment would complain.

ADO and Scripting
ADO often appears in scripts of various types. Because ADO relies on COM technology, any
scripting language capable of creating an object can probably use ADO to retrieve data from a
database. Using scripts to perform small tasks makes sense because you can easily modify
them if necessary and they’re quick to write.

Of course, scripting languages don’t provide the same interactive environment that you’ll find
in a full programming languages such as C# or Visual Basic. That is, unless you’re using the
script within a Web page (in which case, Visual Studio provides the required support).
Consequently, you’ll want to restrict your use of scripts to small tasks such as calling on a
stored procedure to perform some task automatically or to retrieve the result of a data query
to display on screen.

Microsoft makes a point of demonstrating the flexibility of ADO with a number of languages
including Java. You can see several examples of ADO in use with scripting languages in the
Visual Studio help file. Two of the more interesting technical articles are “Implementing
ADO with Various Development Languages” (ms-help://MS.VSCC/MS.MSDNVS/dnado/
html/msdn_adorosest.htm) and “Microsoft ADO and SQL Server Developer’s Guide”
(ms-help://MS.VSCC/MS.MSDNVS/dnsqlsg/html/msdn_adosql.htm).

An Overview of ADO.NET
This section discusses ADO.NET. Many developers labor under the misconception that
ADO.NET is simply the upgrade to ADO. In part, this misconception stems from the early mar-
keting that Microsoft provided for ADO+, which is actually a different product from ADO or
ADO.NET. The “Understanding ADO and ADO.NET Differences” section later in this chapter
fills you in on some of the details about how ADO evolved into ADO+ and, finally, into
ADO.NET. For now, consider ADO.NET a technology that is based on ADO, but that is useful
for an entirely different class of applications.

The following sections describe ADO.NET from an ADO perspective. In other words, we’ll
build on the information you already know to create a picture of what ADO.NET is like. You’ll
find for the most part that ADO.NET is a managed version of ADO designed to create applica-
tions in disconnected environments such as the Internet.

The ADO.NET Object Model
The ADO.NET object model is very different from the object model used by ADO because the
emphasis of ADO.NET is on the Internet and Web-based applications. Microsoft made certain
design considerations when creating the ADO.NET object model, most of which make sense,
but some of which cause developer concerns. For example, ADO.NET doesn’t provide a full
implementation of server-side cursors. The developer has full access only to client-side cur-
sors, which means that some data manipulations are less efficient.

25549359 ch21.F 11/21/02 9:49 AM Page 571

572 Part III ✦ Data Connectivity

You can divide the ADO.NET object model into two components: the DataSet and the data
provider. The DataSet is a special object that contains one or more tables. The data provider
is actually composed of the Connection, Command, DataReader, and DataAdapter objects.
Each of these objects also has capabilities not found in ADO. For example, a DataAdapter can
actually handle more than one connection and one set of rules. As with many managed
objects, you’ll use enumerators to access the various objects within these main objects in
your application. Table 21-4 provides an overview of the ADO.NET data objects.

Table 21-4: ADO.NET Object Overview

Object Description

Command Defines an action to perform on the DBMS, such as adding, deleting, or updating
a record. You won’t normally need to create a Command object with ADO.NET
unless you need to perform a special task. The DataAdapter includes the
command objects required to query, delete, insert, and edit records.

Connection Creates the physical connection between the DBMS and the DataAdapter. This
object is the embodiment of the data provider. The Connection object also
includes logic that optimizes the use of connections within the distributed-
application environment.

DataAdapter Translates the raw data from the DBMS into a form the DataSet can accept. The
DataAdapter performs all queries, translates data from one format to another,
and even performs table mapping. One DataAdapter can manage one database
relation. The result set can have any level of complexity, but it must be a single
result set. The DataAdapter is also responsible to issuing requests for new
connections and terminating connections after it obtains the data.

DataReader Provides a live connection to the database. However, it only provides a means of
reading the database. In addition, the DataReader cursor works only in the
forward direction. This is the object to use if you need to perform a fast retrieval
of a local table and don’t need to perform any updates. The DataReader blocks
the DataAdapter and associated Connection objects, so it’s important to close the
DataReader immediately after using it.

DataSet Contains a local copy of the data retrieved by one or more DataAdapters. The
DataSet uses a local copy of the data, so the connection to the database isn’t live.
A user makes all changes to the local copy of the database, and then the
application requests an update. (Updates can occur in batch mode or a single
record at a time.) The DataSet maintains information about both the original and
current state of each modified row. If the original row data matches the data on
the database, the DataAdapter makes the requested update. If not, the
DataAdapter returns an error, which the application must handle.

It’s important to note that ADO.NET doesn’t have a single object that’s named Command or
DataAdapter. It actually supports several objects that perform these tasks, and you need to
select the object that works best for your application. When working with SQL Server, that
means using the objects that Microsoft has optimized for SQL Server use, such as
SqlCommand or SqlDataAdapter. When you work with DBMS from other vendors, you’ll need
to use the generic OleDbCommand or OleDbDataAdapter.

25549359 ch21.F 11/21/02 9:49 AM Page 572

573Chapter 21 ✦ ADO and ADO.NET

Variations of these objects also exist for ODBC and XML. However, all these objects provide
output to the same DataSet object. The connection and data adapter perform the conver-
sions required to create a single DataSet-object representation.

Managed Providers
The managed-database providers for ADO.NET incorporate a certain level of intelligence not
found in the ADO version of the same providers. For example, the providers make better use
of database connections. The providers also create and break connections as necessary to
ensure optimal use of server and client resources. You can easily break the differences
between an unmanaged and a managed provider into four areas:

✦ Object Access Technique — An unmanaged provider will use a COM progID to access the
required objects. When working with a managed provider, the application relies on a
command class. The command class still has to access the COM progID, but the com-
mand class hides the details of the access from the developer, which makes develop-
ment faster and less error-prone.

✦ Data Result Handling — The unmanaged provider relies on the Rowset or Recordset
object provided by ADO to present the data to the application. The managed equiva-
lent is the DataSet or DataReader class. We’ve already discussed the many differences
between these two implementations in “The ADO.NET Object Model” section.

✦ Data Updates — The fact that the unmanaged environment uses a live connection
means that resources are in constant use and that the user must have a connection to
the database. In addition, the developer spends plenty of time creating the commands
by hand. The managed environment uses connections only as needed to actually trans-
fer data, so resource usage is more efficient and the user doesn’t need a connection at
all times. As you’ll see later in the chapter, the managed environment also provides a
wealth of automation techniques.

✦ Data-Transfer Format — The unmanaged environment uses binary data transfer. The
managed-data provider relies on XML for data transfer.

The differences in data-transfer method between the managed and unmanaged data
providers require close examination. The XML data-transfer format used by a managed
provider is better suited to the Internet because it enables data transfer through firewalls
that normally block binary data transfers. However, XML is a bulkier data-transfer method
and isn’t very secure. Consequently, the unmanaged data provider used by ADO is actually
more efficient and more secure than the one used by ADO.NET. As mentioned several times
in the chapter, it pays to use ADO for local database needs and ADO.NET for distributed
applications.

Data Types
ADO.NET relies on managed data types to represent data on screen. What this really means is
that Microsoft has added yet another translation layer to the mix. All of the data restrictions,
oddities, and problems that we discussed in the ADO section also apply to ADO.NET.
Consequently, you need to consider the same problems, such as data loss and compatibility
problems, during development.

Fortunately, the managed environment provides good marshaling for data types used in
database management. Using ADO.NET does introduce a small performance penalty, but so
far, no one has reported any additional data-translation problems being introduced by the
managed environment.

Note

25549359 ch21.F 11/21/02 9:49 AM Page 573

574 Part III ✦ Data Connectivity

Understanding ADO and ADO.NET Differences
ADO.NET has had a rough childhood in some respects. It began as ADO+, the new and
improved form of ADO, but Microsoft quickly changed the name when it became obvious that
ADO.NET was going to become something different. (For a detailed view of the ADO+ concept,
see the Visual Studio .NET help article entitled, “Introducing ADO+: Data Access Services for
the Microsoft .NET Framework” at ms-help://MS.VSCC/MS.MSDNVS/dnmag00/html/ado-
plusnet.htm.) In fact, ADO and ADO.NET are very different technologies, despite the similar-
ities in their names. Of course, this begs the question of why Microsoft used the term at all if
the technologies are so different. The answer lies in the few similarities between them.

Both ADO and ADO.NET are high-level database-access technologies. This means that to
accomplish any given task you do less work with either of them than with a low-level technol-
ogy such as OLE-DB, but also that you lose some flexibility and control. In addition, both of
these technologies rely on OLE-DB as the low-level technology that performs most of the
behind-the-scenes work. The final point of similarity between these two technologies is that
they rely on similar access techniques, such as the use of cursors and an in-memory data rep-
resentation. This feature is hardly surprising, considering that both technologies come from
the same company.

You learned earlier in the chapter that the basic in-memory representation for ADO is the
Recordset object. This object contains a single table that can come from a query, individual
table, stored procedure, or any other source of a single table of information. In some
respects, this representation is limited because you can only work with one set of information
per Recordset object. However, nothing prevents you from creating more than one Recordset
object, so in reality, the limit is more one of perception than anything else. In fact, some
developers state that using recordsets makes their code more readable than the ADO.NET
alternative would.

The ADO.NET alternative is to use a DataSet object. This is the same object that OLE-DB uses
under .NET. A DataSet can contain multiple tables, which means that you don’t need exotic
queries to gain access to precisely the information you need. The DataTable objects within
the DataSet can have relations, just as they would within the database. The result is that you
can create complex database setups within your application. Of course, this scenario oper-
ates under the assumption that you have so much data that you require such a complex
setup for a single application. Some companies do have that much data, which is why this
approach is so valuable.

The simple single-table Recordset object used by ADO enables ADO to use simple commands
to move between records. The Recordset objects relies on the Move(), MoveFirst(),
MovePrevious(), MoveNext(), and MoveLast() functions to do all the work required to
move from one record to another. In addition, you can easily determine the EOF and BOF con-
ditions using the associated Recordset property values. This means that moving to the begin-
ning or end of a table is easy and you can always determine your current position within the
table. The record pointer associated with all of this movement is called a cursor. ADO sup-
ports cursors that reside on both the server and the client, which means that an application
can track the current record position wherever it makes sense within a LAN application
environment.

ADO.NET makes use of collections within the dataset. Actually, there are groups of collec-
tions, and collections within collections. The advantage of the collection technique is that
you can examine records using a foreach statement — the same technique you’d use to enu-
merate any other collection. Using collections also makes it easier to transfer data to display
elements such as the DataGrid object. (Although the Recordset object is actually easier to

25549359 ch21.F 11/21/02 9:49 AM Page 574

575Chapter 21 ✦ ADO and ADO.NET

use with detail forms.) The use of collections means that it’s easier to read a DataSet object
from end to end than it is to address an individual record or to move backward within the col-
lection. For example, let’s say you want to address a single record field within the dataset:
You’d probably require code similar to this:

MyString = MyData.Tables[0].Rows[0].ItemArray.GetValue(1).ToString();

The equivalent code for ADO is simpler and easier to understand. Here’s an example:

MyString = DBRecordset.get_Collect(“Name”).ToString()

As you can see, a Recordset object does have an advantage in requiring less code to access
an individual value because the technology doesn’t bury it in multiple layers. In addition,
notice that you can access the field by name when using a Recordset object — the DataSet
object offers you an integer value that you must derive from the field’s position within the
data result. Still, using ADO.NET offers significant advantages, as you’ll see in the sections
that follow.

This brings us to the DataReader object, which uses a read-only, forward-only cursor. The
main purpose of the DataReader object is to enable disconnected mode operation for applica-
tions. A user can download data from the company database while using an Internet (or
other) connection. The data is then available for viewing offline (but not for modification,
because the connection to the database is lost).

While both ADO and ADO.NET rely on OLE-DB as their connectivity technology, they both use
different techniques to accomplish their goals. Both database technologies do rely on a con-
nection. However, ADO provides few options regarding the way data updates occur once the
connection is established. As a contrast, with ADO.NET you can either create the individual
update elements of the DataAdapter object or rely on automation. The use of individual
update elements and automation provides you with a lot of flexibility in performing updates.

The final point for consideration is the issue of connectivity. ADO does provide remote-con-
nectivity features, but like all other COM-based technologies, it uses DCOM as the basis for
data exchange across a remote network. This means that the connection-port number
changes often and that the data itself is in binary form. The benefit of this approach is that
few crackers have the knowledge required to peer at your data (assuming they can unscram-
ble it after they locate it). The disadvantage is Web-server firewall support — vendors design
most firewalls to keep ports closed and to restrict binary data.

ADO.NET gets around the firewall problems by using XML to transfer the data using
HyperText Transport Protocol (HTTP) or some other appropriate data transfer technology.
The point is that the data is in pure ASCII and relies on a single port for data transfers.
Unfortunately, many people criticize XML as being a security risk and vendors have done lit-
tle to make it more secure. Any attempt to encrypt the data would open the Pandora’s box of
binary data transfer again, making the use of XML dubious. In short, XML is a good solution,
but not a perfect solution, to the problem of remote connectivity.

Using Server Explorer
Server Explorer is a part of the Visual Studio IDE that replaces many of the tools that you
used to get as extras on the Visual Studio disk. It also creates new tools for exploring your
network in ways that you might not have thought possible in the past. In fact, the term Server
Explorer is a bit of a misnomer because Server Explorer provides access to any resource on
any machine to which you have access. In fact, when you begin using Server Explorer, the
connection points to your local machine, not to a server on the network.

25549359 ch21.F 11/21/02 9:49 AM Page 575

576 Part III ✦ Data Connectivity

This ability to explore all the accessible machines on the network makes the Visual Studio
.NET IDE more useful than any previous IDE you might have used. The capacity to explore
and use resources without leaving the IDE makes application development a lot easier. This
section provides an in-depth view of this essential tool.

An Overview of the Server Explorer Hierarchy
You might not notice Server Explorer the first time you open Visual Studio. Server Explorer
shares the same area of your IDE as the Toolbox. Click the upper icon and you’ll see Server
Explorer; click the lower icon and the Toolbox appears. Figure 21-2 shows a typical example
of the Server Explorer with connections to two machines. Because I have administrator privi-
leges on both machines, all of the resources of both machines are at my disposal.

Figure 21-2: Server Explorer not only gives
you the grand view of your network to start,
but enables you to drill down as needed.

Notice that I opened the SQL Server connection to the server, WinServer. If you get the idea
that you won’t need to use the server-side tools much anymore, you’re correct. You can per-
form most (but not all) tasks right from Server Explorer. If you need a new database, or to
reconfigure a table or create a query, Server Explorer does it all.

The following sections contain two examples that will acquaint you with Server Explorer. No,
they aren’t SQL Server–specific — we’ll explore SQL Server specific examples later in the
chapter. For now, all we want to do is show you some of the tasks you can perform with
Server Explorer that might be helpful for your client-side programming. For example, creating
an Event Log entry when an error occurs could be helpful, even for someone who normally

25549359 ch21.F 11/21/02 9:49 AM Page 576

577Chapter 21 ✦ ADO and ADO.NET

works only with SQL Server. Likewise, because it’s important to monitor the performance of
your application, knowing how to access the performance counters is essential.

You’ll find that using Server Explorer will make working with objects found in the display triv-
ial. This is in contrast to the many operating systems that require odd coding techniques to
access many features (especially the event log and performance counters) in previous ver-
sions of Visual Studio. As you’ll see, Server Explorer provides a drag-and-drop method with
which to work with just about any object it can access (and there’s little that it can’t access).

Working with the Event Log
One of the features that developers appreciate about Server Explorer is that it helps you cate-
gorize information. You drill down to the information you need, but ignore everything else.
For example, when you open the Application Event Log you need to connect to the remote
server, locate the log, and then search through the list of messages for the particular message
you need. Server Explorer categorizes event messages by type, so all you see is the message
you want.

If you want to build a quick application to monitor certain types of messages only, all you
need to do is drag the requisite folder to a form and add some quick code to monitor it.
Here’s a short example of how you could use this feature in an application:

private void btnCreateEvent_Click(object sender, System.EventArgs e)
{

// Create an event entry.
ApplicationEvents.WriteEntry(“This is a test message”,

EventLogEntryType.Information,
1001,
1);

}

private void ApplicationEvents_EntryWritten(object sender,
System.Diagnostics.EntryWrittenEventArgs e)

{
// Respond to the entry written event.
MessageBox.Show(“The Application Generated an Event!” +

“\r\nType:\t\t” +
e.Entry.EntryType.ToString() +
“\r\nCategory:\t” +
e.Entry.Category.ToString() +
“\r\nEvent ID:\t\t” +
e.Entry.EventID.ToString() +
“\r\nSource:\t\t” +
e.Entry.Source.ToString() +
“\r\nMessage:\t\t” +
e.Entry.Message.ToString() +
“\r\nTime Created:\t” +
e.Entry.TimeGenerated.ToString(),
“Application Event”,
MessageBoxButtons.OK,
MessageBoxIcon.Information);

}

The above code sample is included on the book’s CD.Cross-
Reference

25549359 ch21.F 11/21/02 9:49 AM Page 577

578 Part III ✦ Data Connectivity

The btnCreateEvent_Click() method writes an event to the event log. The private void
ApplicationEvents_EntryWritten() monitors the event log and displays a message when
it sees the event entry posted by the btnCreateEvent_Click() method. You could place
such code in just about any application you create. The application will continuously monitor
the event log in the background and let you know if something happens. This particular fea-
ture is even good for debugging because many server-side controls only log errors in the
event logs.

The Event Log entry you create by dragging the Event Log from the Server Explorer will have a
default configuration. The EnableRaisingEvents property will enable your application to
detect changes to the log and notify you. However, this feature only works on the local
machine. If you want to monitor events on a remote machine, your application will have to per-
form some form of polling or use a remote component that connects to your local application.

Working with Performance Counters
While event logs are an essential part of the Windows experience, monitoring them isn’t so
important that you’d want to spend a lot of time doing it. However, one slightly more difficult
type of monitoring involves the performance counters. Working with performance counters
has been notoriously difficult in the past. Server Explorer makes it almost too simple to moni-
tor all the performance counters on your machine. Again, all you need to do is drag the
counter of interest from Server Explorer to the application form. This next example uses a
DataSet to store the intermediate values and a DataGrid to show the values. (See, we even
got a little database coding in this example.) A Timer is the means of obtaining constant data
updates. The following code shows how to create a performance-counter monitor (note that
it doesn’t include the report setup, which you can view in the source code):

private void DataTimer_Elapsed(object sender,
System.Timers.ElapsedEventArgs e)
{

DataTable CounterTable;
DataRow NewRow;

// Create the data table object.
CounterTable = CounterData.Tables[“UserProcessorTime”];

// Create a new row for the data table.
NewRow = CounterTable.NewRow();

// Obtain the current performance counter value.
NewRow[“Total Percent User Time”] =

UserProcessorTime.NextValue();

// Store the value in the data table.
CounterTable.Rows.Add(NewRow);

// Verify the size of the data table and remove
// a record if necessary.
if (CounterTable.Rows.Count >=

CounterDataView.VisibleRowCount)
CounterTable.Rows.RemoveAt(0);

}

private void btnStopCounter_Click(object sender, System.EventArgs e)
{

25549359 ch21.F 11/21/02 9:49 AM Page 578

579Chapter 21 ✦ ADO and ADO.NET

// Start and stop the timer as needed. Change the
// caption to show the current timer state.
if (btnStopCounter.Text == “Stop Counter”)
{

DataTimer.Stop();
btnStopCounter.Text = “Start Counter”;

}
else
{

DataTimer.Start();
btnStopCounter.Text = “Stop Counter”;

}
}

private void txtTimerInterval_TextChanged(object sender,
System.EventArgs e)
{

try
{

// Verify the timer change value has a number in it.
if (Int64.Parse(txtTimerInterval.Text) == 0)

// If not, reset the value.
txtTimerInterval.Text = DataTimer.Interval.ToString();

else
// If so, use the new value.
DataTimer.Interval = Int64.Parse(txtTimerInterval.Text);

}
catch
{

// Catch invalid values.
MessageBox.Show(“Type Only Numeric Values!”,

“Input Error”,
MessageBoxButtons.OK,
MessageBoxIcon.Error);

txtTimerInterval.Text = DataTimer.Interval.ToString();
}

}

The above code sample is included on the book’s CD.

Notice that most of the code in this part of the example relates to the presentation of data.
For example, the txtTimerInterval_TextChanged() method modifies the display speed of
the application, while the btnStopCounter_Click() method enables and disables the timer.
Disabling the DataTimer has the effect of stopping the display so you can see the current data
value along with the value history.

The DataTimer_Elapsed() method contains the code that updates the display at the inter-
val specified by DataTimer.Interval. CounterTable contains the entire data table used for
the example. The NewRow() method of this object creates a new row represented by NewRow.
The Item property, Total Percent User Time, is a particular column within the table and we’ll
use it with the current processed value for the UserProcessorTime performance counter
using the NextValue() method. The final step is to add the new row to the data table using
the Add() method. Figure 21-3 shows an example of the output from this application.

Cross-
Reference

25549359 ch21.F 11/21/02 9:49 AM Page 579

580 Part III ✦ Data Connectivity

Figure 21-3: The Server Explorer example
shows how easy it is to use performance
counters in C#.

One of the interesting things about this example is that this view isn’t available through the
System Monitor component of the Performance console. The Report View of the utility shows
the current counter value, but doesn’t provide any history. The Graph View and Histogram
View might prove less than accurate for developer needs. So this report view with history ful-
fills a developer need. It enables you to capture precise counter values over a period of time
in a way that helps you look for data patterns. The fact that the table automatically sizes itself
ensures that you won’t end up with too much data in the table. Of course, you can always
change the method used to delete excess records to meet specific needs.

It’s interesting to note that Visual Studio installs a number of .NET Common Language
Runtime (CLR) specific performance counters for you. For example, you have access to mem-
ory, network, and data-related counters with which to adjust the performance of your appli-
cation. A special Interop object contains counters that measure the impact of external calls
on application performance. Not only do these counters help you work on performance
issues, but you can also use them to locate bugs or enable an application to tune itself. For
example, you could monitor memory usage and get rid of nonessential features when applica-
tion memory is low. In addition, a special Exceptions object contains counters that help you
monitor application exceptions, including those that your application handles without any
other visible signs.

Accessing SQL Server
Server Explorer provides the means for accessing SQL Server. You can’t access some fea-
tures, but many of them are accessible. For example, Figure 21-2 shows the WinServer entry.
If you want to create a new database on WinServer, you can follow a simple process to do so
(see the “Working with SQL Server Databases” section later in this chapter for details).

25549359 ch21.F 11/21/02 9:49 AM Page 580

581Chapter 21 ✦ ADO and ADO.NET

Sever Explorer is even good at performing mundane tasks. Let’s say that you want to check
the data in the Contact table in the OBX Kites database. You can drill down to the table using
the hierarchical features of Server Explorer. Right-click the Contact table and you’ll see a list
of actions you can perform, like the list shown in Figure 21-4.

Figure 21-4: Server Explorer helps you interact with
every component in SQL Server — at least from a
developer perspective.

As you can see, you can do everything from designing the table to generating the scripts
required to create it. To see what the table contains, you’d select the Retrieve Data from
Table option. Visual Studio will query the DBMS and obtain the raw content from the Contact
table. Figure 21-5 shows some sample output as seen in design area of Visual Studio .NET
(that’s right, we still haven’t left the IDE). Notice that the tabbed view keeps multiple applica-
tion elements within easy access, yet keeps screen clutter to a minimum.

Figure 21-5: You can explore the content of any table or the output of any
stored procedure right within the Visual Studio .NET IDE.

The feature we appreciate most is the ability to create diagrams right within the Visual Studio
.NET IDE. Figure 21-6 shows a database diagram that we created in about half a minute using
the Server Explorer. To create this diagram, all we did was right-click the Database Diagrams
entry and select New Diagram from the context menu. When the Add Table dialog box
appeared we selected all the tables in the list and clicked OK. It took Visual Studio .NET just
a few seconds to generate the diagram, because the server was on a LAN (even Internet
connections don’t take long).

25549359 ch21.F 11/21/02 9:49 AM Page 581

582 Part III ✦ Data Connectivity

Figure 21-6: Creating diagrams is easy using Server Explorer.

The one issue that most developers will experience problems with is that Server Explorer
keeps the connection open, even after you close the hierarchical structure. It’s essential that
you right-click the database you’re using and then select Close Connection from the context
menu. Otherwise, the database connection will remain open until you reboot the client
machine (or until SQL Server times out from inactivity). Microsoft assumes that if you have
access to this tool, you’ll also have the knowledge required to perform some tasks by hand.
Even so, some developers are bound to forget to close their connections and run out of
resources on the local machine.

Working with SQL Server Databases
One of the advantages of using Server Explorer is that you don’t need to run to the server to
perform most development-related tasks. Normally you’d use the tools provided with SQL
Server to create and manage your database. In some situations you’ll still need those tools
because they provide essential abilities that the Visual Studio .NET IDE can’t provide, such as
the need to run local scripts to perform updates. However, in many cases, you can at least
begin the design process and perform some testing without ever leaving the IDE.

The following steps show how to create a simple database using the Server Explorer. We
won’t use this database anywhere else in the book — it’s simply here for demonstration pur-
poses. However, this procedure does show that you can create a database using Server
Explorer of any complexity or size. The difference for the developer is in working constantly
within the IDE, rather than moving between tools or machines. Using a single tool, especially
for design, translates into higher efficiency and means you can develop an application faster
and with less effort.

1. Open Server Explorer, locate the server with SQL Server installed on it, open the SQL
Servers folder, and open the SQL Server instance of interest. In most cases, you’ll only see
one. My server is named WinServer — your server will probably have a different name.

2. Right-click the SQL Server instance and choose New Database from the context menu.
You’ll see a Create Database dialog box.

25549359 ch21.F 11/21/02 9:49 AM Page 582

583Chapter 21 ✦ ADO and ADO.NET

3. Type a name in the New Database Name field. The example uses SimpleData as the
database name.

4. Choose between Windows NT integrated security and SQL Server authentication. The
example uses SQL Server authentication with the default user name and appropriate
password.

5. Click OK and SQL Server will create a new database for you (which will appear in the
Visual Studio .NET IDE). Now it’s time to create a table for the database.

6. Right-click Tables and choose New Table from the context menu. You’ll see a blank
table form similar to the one shown in Figure 21-7. (Note that we’ve already filled this
table out, so it’s ready for use.)

Figure 21-7: This form shows the table structure for a
simple table.

7. Fill in the required table entries. Of course, every table requires the use of one or more
columns as a primary key.

8. Highlight the Data1 column. (You can Ctrl-click any number of columns for the primary
key, but we’ll use just one in this case.) Right-click the highlighted field and choose Set
Primary key from the context menu. Our table still lacks indexes, so that’s what we’ll
set in the next step.

9. Right-click any column entry and choose Indexes/Keys from the context menu. You’ll
see the Indexes/Keys tab of the Property Pages dialog box (shown in Figure 21-8).
Notice that this dialog box also helps you configure the table-specific data, relation-
ships, and constraints for this table. You should also notice that the Indexes/Keys tab
contains an entry for the primary key. Just as when you work within SQL Server
Enterprise Manager, Visual Studio .NET will create required entries automatically.

10. Click New and then type a name for the index in the Index Name field. The example
uses MyIndex. Select several of the columns and choose a sort order for each of them.
Add any special properties for the index, and then click Close.

25549359 ch21.F 11/21/02 9:49 AM Page 583

584 Part III ✦ Data Connectivity

11. Save the table and close it. The example uses a table name of SimpleTable.

Figure 21-8: The Property Pages dialog
helps you consider the table for use.

This is obviously the short tour of working with Server Explorer to create a database. You’ll
also need to add other entries to a complete database. The point is that we were able to cre-
ate the database without exiting the Server Explorer even once. You can create a complete
database application using Server Explorer.

Working with Stored Procedures
A great deal of the material in this book has focused on working with stored procedures, so
the point of this section is not to show you yet more ways to create the perfect stored proce-
dure for your server; what it does show you is how to work with stored procedures from
within Server Explorer and ultimately from a Visual Studio application. It’s theoretically possi-
ble to create a Visual Studio application that relies exclusively on stored procedures, which
means using only two of the objects we discussed in detail at the beginning of this chapter
(Connection and Command). With this in mind, the following sections are your guide to
stored-procedure use in the Visual Studio .NET IDE.

Accessing Stored Procedures with Server Explorer
First you need to know how to access a stored procedure. The stored procedures are (natu-
rally) located in the Stored Procedures folder for the database of interest. Figure 21-9 shows a
typical example of a stored-procedure listing for the OBX Kites database. Notice that the
stored-procedure display shows the inputs and outputs for the stored procedure. Select any
of these objects and you’ll see the properties associated with them, including type and
source information.

25549359 ch21.F 11/21/02 9:49 AM Page 584

585Chapter 21 ✦ ADO and ADO.NET

Figure 21-9: The stored procedure tells you
about the stored procedure, including its
inputs and outputs.

You can choose to work with the stored procedure directly within Server Explorer in some
cases. If the stored procedure requires input to run, Server Explorer will display a Run Stored
Procedure dialog box that asks for the required parameters. Enter the data as you’d expect
an application to do, and then click OK. The Visual Studio IDE will display any results in the
Output window. You won’t see error results in most cases, unless the stored procedure is set
up to provide them.

Editing a stored procedure is easy. All you need to do is right-click the stored procedure and
choose Edit Stored Procedure from the context menu. The Visual Studio IDE highlights the
various stored-procedure areas, as shown in Figure 21-10. When you save the stored proce-
dure, it will also change on the server.

Server Explorer also offers options that enable you to step into (or debug) a stored proce-
dure using the Visual Studio .NET IDE. The debugger works similar to a standard application.
You can set break points, check the content of variables, and use the Command window to
perform other types of checks. The Debug window provides the normal level of output.
However, you can only see what happens on the local machine. The debugger won’t tell you
what happens on SQL Server, except as inputs and outputs.

Finally, you can perform the same standard tasks with stored procedures that you can with
every other SQL Server element. For example, Server Explorer provides a way to create new
stored procedures. You can also create scripts from the stored procedures and make local
copies of them.

25549359 ch21.F 11/21/02 9:49 AM Page 585

586 Part III ✦ Data Connectivity

Figure 21-10: Editing a stored procedure is easy using
Server Explorer.

Adding Stored Procedures to Visual Studio Projects
Earlier in the chapter I mentioned that using stored procedures in a Visual Studio .NET pro-
ject is as easy as dragging and dropping. It’s time to check out that claim and see if it actually
works as advertised. The following steps will get you started.

1. Create a new Visual Studio .NET project. The example is written in C#, but you can also
use Visual Basic. The one language that won’t work is Visual C++, because it lacks form-
designer support.

2. Locate the pProductFetch stored procedure in the OBXKites database and drag it to
the Visual Studio .NET form. Drag the folder containing this stored procedure to the
form. You have to place the folder on the form before you can drop it. Visual Studio.
NET will create a Connection and a Command object for you.

3. Rename the objects if you like — the example uses OBXKitesConnect for the
Connection object and pProductFetch for the Command object.

4. Add DataSet, DataGrid, and Run command buttons to the project. The DataSet will hold
the information from the database, the DataGrid will display it on screen, and the Run
command will initial the process. Figure 21-11 shows what you should end up with at
this point.

25549359 ch21.F 11/21/02 9:49 AM Page 586

587Chapter 21 ✦ ADO and ADO.NET

Figure 21-11: The sample program will display the results of a
stored procedure on screen.

The example application will need some way of interacting with the stored procedure, so
you’ll need to create a series of objects to store intermediate data results. One of these
objects is a DataReader, which is the one-way data object described earlier in the chapter.
Here’s what the code looks like for this example:

private void btnRun_Click(object sender, System.EventArgs e)
{

SqlDataReader Output; // The results of the query.
DataColumn Column; // A single data column.
DataRow Row; // A single data row.
DataTable Table; // The addition to the DataSet.

// Open a connection to the database and execute the
// stored procedure.
OBXKitesConnect.Open();
Output = pProductFetch.ExecuteReader();

// Create a DataTable to store the information.
Table = new DataTable(“pProductFetch Output”);

// Create the columns found within the DataReader.
for (int Counter = 0;

Counter < Output.FieldCount;
Counter++)

{
Column = new DataColumn(Output.GetName(Counter),

Output.GetFieldType(Counter));
Table.Columns.Add(Column);

}

25549359 ch21.F 11/21/02 9:49 AM Page 587

588 Part III ✦ Data Connectivity

// Read the data one row at a time.
while (Output.Read())
{

// Create a new row in the DataTable.
Row = Table.NewRow();

// Read the data from the DataReader into the DataTable.
for (int Counter = 0;

Counter < Output.FieldCount;
Counter++)

// Fill the row with data
Row[Counter] = Output.GetValue(Counter);

// Add the data to the table.
Table.Rows.Add(Row);

}

// Add the table to the DataSet and then display it in the
// DataGrid.
SPOut.Tables.Add(Table);
SPDisplay.DataMember = “pProductFetch Output”;
SPDisplay.CaptionText = “pProductFetch Output”;
SPDisplay.Refresh();

// Close the connection now that we have the data.
Output.Close();
pProductFetch.Connection.Close();
OBXKitesConnect.Close();

}

The previous code sample is included on the book’s CD.

The code begins by opening a connection to the database and executing the stored proce-
dure. The output of the ExecuteReader() is a DataReader object. This object requires a live
connection to the database, so the code can’t close the connection until the code has fin-
ished creating the DataSet.

Before the code can create a DataSet, it must create a DataTable to place within the DataSet.
Remember that a DataSet can hold multiple DataTables. The new DataTable requires some
column headers. The best way to provide them is create a new DataColumn for each column
in the result set and add it to the DataTable using the Columns.Add() method.

Once the code has some columns in place, it can begin scanning the DataReader for data. The
Read() method reads one entry at a time from the result set. If there are no entries to read,
the Read() method returns false. The code also has to add a new row to the DataTable
using the NewRow() method. The output of this call is a DataRow object. The code fills each
column of the DataRow with data and then adds the modified DataRow to the DataTable using
the Rows.Add() method.

At this point, you have built a basic table. The code adds the DataTable to the DataSet using
the Tables.Add() method. However, performing this step doesn’t necessarily display the
data on the DataGrid, even though the two objects are linked through the DataSource

Cross-
Reference

25549359 ch21.F 11/21/02 9:49 AM Page 588

589Chapter 21 ✦ ADO and ADO.NET

property. The code updates the DataGrid’s DataMember property so it points to the new
DataTable contained within the DataSet. It then modifies the caption for the grid and tells the
DataGrid to update its content using the Refresh() method. The final act you need to per-
form is to close the connection. Figure 21-12 shows the output from the example.

Figure 21-12: The example application displays the
output of a stored procedure.

Passing Parameters to the Stored Procedure
The previous example is nice if you want to display everything that a stored procedure can
provide. However, what do you do if you want to limit the output of the stored procedure by
passing parameters to it? Actually, it’s easier than you think, because you’ve already done all
the hard work. The following code shows all you need to add to filter the output shown in
Figure 21.12:

// See if we have any input for the stored procedure.
if (txtProdCode.Text.Length != 0)

pProductFetch.Parameters[“@ProductCode”].Value =
txtProdCode.Text;

As you can see, all you need to do is access the Parameters enumeration that Visual Studio
.NET automatically sets up. The txtProdCode.Text property contains the code that the
application should provide from the database.

Creating a Basic Application
There are a number of ways to drag-and-drop your way to a client application in Visual Studio
.NET. For example, you can simply drag and drop the tables you want to use onto the form.
The IDE will automatically create the required connection for you. The problem with this
method is that it limits you to using the commands that Microsoft thinks you should use,
rather than the stored procedures you’ve worked so hard to construct.

Another technique is to drag the components from the Data tab of the Toolbox onto the form.
The easiest method is to drag and drop a DataAdapter, so that’s the technique we use in this
case. Dragging the DataAdapter to the form opens a wizard that leads you through the pro-
cess of configuring your system. The following sections show how to create a connection and
then use it to display information in a grid view.

25549359 ch21.F 11/21/02 9:49 AM Page 589

590 Part III ✦ Data Connectivity

Creating the DataAdapter
The procedure in this section provides you with some insights into the various ways that you
can create a DataAdapter. The DataAdapter is the centerpiece of application communication
with the database, just as the DataSet is the main storage medium. The following steps con-
centrate on the DataAdapter portion of the application.

1. Create a new Visual Studio .NET application. As before, you can use either C# or Visual
Basic.

2. Open the Toolbox and click the Data tab. Drag a SqlDataAdapter object to the form.
You’ll see the Data Adapter Configuration Wizard dialog box. Click Next.

3. The Data Adapter Configuration Wizard will ask which connection you want to use or if
you want to create a new one. No connection is established for this example, so you
need to create a new one.

4. Click New Connection. The Data Link Properties dialog box that we discussed earlier in
the chapter (see Figure 21-11) will appear. You’ll probably want to check the Provider
tab to ensure that the Microsoft OLE DB Provider for SQL Server option is selected.

5. Click the Connection tab. Fill out the name of your server and the security information.
Select the OBX Kites option from the list of databases.

6. Click Test Connection to verify that the connection works. (If you don’t perform this
step, you won’t know if the connection is causing problems should an error occur later.
Many developers don’t make this simple check and end up spending hours trying to fig-
ure out why their application won’t work.) Click OK.

7. You should see the Data Adapter Configuration Wizard dialog box again. Click Next. The
Data Adapter Configuration Wizard will ask you to select a query type, as shown in Figure
21-13. Notice that you can choose to use an existing stored procedure, create a new
stored procedure, or use the default of SQL statements. If you choose the Use SQL state-
ments option, the Data Adapter Configuration Wizard will configure the data adapter with
four default commands based on the data relation you set up. You can build a query
using the Visual Studio Query Builder. The process involves selecting tables, drawing
relationships between them, and then selecting the columns you want to use. Let’s
assume you want to use the stored procedures again for the product information.

8. Select the “Use existing stored procedures” option, and then click Next. You’ll see a
Bind Commands to Existing Stored Procedures dialog box, similar to the one shown in
Figure 21-14. This dialog box points out that you still need to provide the four com-
mands required to create a DataAdapter — at least, you need to if you want full func-
tionality. In this case, all the example will do is show the results of a query, perform
updates, and insert new records. There won’t be an option to delete anything.

9. Select the stored procedures shown in Figure 21-14 and click Next.

10. You’ll see a Data Adapter Configuration Wizard results dialog box. This dialog box tells
you which features the DataAdapter has implemented. It also tells you if there were any
implementation errors that you’ll need to correct later. Click Finish. The DataAdapter is
ready to use.

25549359 ch21.F 11/21/02 9:49 AM Page 590

591Chapter 21 ✦ ADO and ADO.NET

Figure 21-13: The Data Adapter Configuration Wizard
can build a data adapter using stored procedures or
a query that you create graphically.

Figure 21-14: A DataAdapter always needs stored
procedures to perform at least one of the four tasks,
and it’s usually good to include all four.

Creating a Grid View
At this point, you have communication with the DBMS and a specific database controlled by
the DBMS. You still can’t display any information, or do anything else with the data for that
matter. What you have, at this point, is akin to a telephone cable with no telephone con-
nected to it. The communication’s there, but you can’t use it. The following steps show you
how to implement the “telephone” portion of the communication:

25549359 ch21.F 11/21/02 9:49 AM Page 591

592 Part III ✦ Data Connectivity

1. Right click sqlDataAdapter1 and choose Generate Dataset from the context menu. You
could generate the DataSet by hand, but the automated method saves a lot of time and
effort. You’ll see a Generate Dataset dialog box. No DataSet objects exist, so your only
choice is to create a new one. However, you can use this same process to recreate an
existing DataSet should the need arise.

2. Accept the default DataSet name by clicking OK. The Generate Dataset Wizard will cre-
ate a DataSet named dataSet11.

3. Add a DataGrid to the form. Configure the DataSource property for dataSet11 and the
DataMember property for pProduct_Fetch. These options should be available in the
dropdown list box.

The example is just about ready to run. Have you noticed that you haven’t typed any code
yet? Well, now you need to type. The example requires that you add a single line of code to
the Form1 constructor, as shown here:

public Form1()
{

//
// Required for Windows Form Designer support
//
InitializeComponent();

// Fill the dataset with data.
sqlDataAdapter1.Fill(dataSet11);

}

At this point you’re probably wondering what the catch is, because database applications
normally require a lot of code. This example will perform updates, display the records in the
database, and add new records. It won’t delete records because you didn’t provide a stored
procedure to perform that task. The connections you’ve established are all that you’ll need
for a simple client.

Summary
ADO and ADO.NET provide connectivity between the client application and the DBMS.
They’re the most recent connectivity options in a long line of technologies developed by
Microsoft. Using ADO and ADO.NET helps you build robust clients. Of course, the Visual
Studio .NET IDE provides a wealth of other tools for building client applications, such as
Server Explorer.

This section of the book helps you understand connectivity techniques. The information in
this chapter has demonstrated one type of connection between the client and the DBMS. The
next chapter continues the discussion of connectivity by looking at the issues surrounding
SQL Server and XML.

✦ ✦ ✦

25549359 ch21.F 11/21/02 9:49 AM Page 592

XML and Web
Publishing

The Internet is moving from being a vehicle primarily for e-mail
and data presentation into a phase of high-performance data con-

nectivity. HTML, as a common mark-up language, describes how data
should be presented, but eXtensible Markup Language, or XML, goes
deeper than HTML and describes the content of the document.

Mark-up languages began in 1969 when Charles F. Goldfarb, Ed
Mosher, and Ray Lorie developed Generalized Markup Language
(GML) for IBM, to standardize documents for publication. In 1974,
Charles Goldfarb published Standard Generalized Markup Language
(SGML), which became “the International Standard (ISO 8879) lan-
guage for structured data and document representation”
(HTTP://www.sgmlsource.com). Basically, SGML defines the rules
for creating mark-up languages. As a presentation mark-up language
that follows the SGML rules, HTML formats the look of data for Web
browsers. XML is a subset of SGML that essentially uses ‘60s technol-
ogy to create a new mark-up language that describes a set of data. In
1998, the World Wide Web Consortium (HTTP://www.W3C.org) pub-
lished version 1.0 of the official XML specs.

By itself, XML does nothing; it’s only a file format. There is no such
thing as an XML application — only applications that read or generate
XML documents. However, the wide acceptance of XML makes it an
excellent format for transporting data between dissimilar systems,
especially over the Internet. The prosaic comma-delimited text file
usually identifies the fields in the first line, and, more often than not,
the data does not follow the format rule, making comma-delimited
files frustrating. As a welcome relief, XML explicitly tags every indi-
vidual piece of data, reducing the errors caused by varying or incom-
plete data schemas.

XML uses a hierarchical data structure: each XML element may con-
tain a nested XML element. For example, a customer element that
describes a single customer might contain a few order elements,
which could contain order-detail elements. Every XML document
uses this top-down hierarchal method to contain data. This makes
XML very powerful for sharing data sets, but prevents XML from
being a replacement for a relational-database system.

2222C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Comparing XML and
EDI

How XML is used

Understanding XML
documents

Validating XML data
with DTDs and XSDs

Creating and reading
XML data with SQL
Server

Creating HTML with XSL
style sheets

Using HTTP queries

Generating HTML
pages from SQL Server

✦ ✦ ✦ ✦

26549359 ch22.F 11/21/02 9:49 AM Page 593

594 Part III ✦ Data Connectivity

While the SQL Server–specific code is in the chapter code script as usual, this chapter also
refers to several XML document and validation files located on the CD in the
C:\SQLServerBible\Sample Databases\CapeHatterasAdventures directory. All
the XML samples are pulled from the Cape Hatteras Adventures sample database.

In the sample XML document CHA2_Events.xml, data extracted from the Cape Hatteras
Adventures sample database is painstakingly identified using XML tags. This allows the data
to be self-describing and represented in a format that is identical to its representation within
the database.

<?xml version=”1.0” encoding=”UTF-8”?>
<Tours>
<Tour Name=”Amazon Trek”>
<Event Code=”01-003” DateBegin=”2001-03-16T00:00:00”/>
<Event Code=”01-015” DateBegin=”2001-11-05T00:00:00”/>

</Tour>
<Tour Name=”Appalachian Trail”>
<Event Code=”01-005” DateBegin=”2001-06-25T00:00:00”/>
<Event Code=”01-008” DateBegin=”2001-07-14T00:00:00”/>
<Event Code=”01-010” DateBegin=”2001-08-14T00:00:00”/>

</Tour>
<Tour Name=”Bahamas Dive”>
<Event Code=”01-002” DateBegin=”2001-05-09T00:00:00”/>
<Event Code=”01-006” DateBegin=”2001-07-03T00:00:00”/>
<Event Code=”01-009” DateBegin=”2001-08-12T00:00:00”/>

</Tour>
<Tour Name=”Gauley River Rafting”>
<Event Code=”01-012” DateBegin=”2001-09-14T00:00:00”/>
<Event Code=”01-013” DateBegin=”2001-09-15T00:00:00”/>

</Tour>
<Tour Name=”Outer Banks Lighthouses”>
<Event Code=”01-001” DateBegin=”2001-02-02T00:00:00”/>
<Event Code=”01-004” DateBegin=”2001-06-06T00:00:00”/>
<Event Code=”01-007” DateBegin=”2001-07-03T00:00:00”/>
<Event Code=”01-011” DateBegin=”2001-08-17T00:00:00”/>
<Event Code=”01-014” DateBegin=”2001-10-03T00:00:00”/>
<Event Code=”01-016” DateBegin=”2001-11-16T00:00:00”/>

</Tour>
</Tours>

SQL Server 2000 has first-generation XML capabilities to publish to the Web and work with
XML data. XML and .NET Web services easily fill a couple more books. The purpose of this
chapter is to provide an understanding of how XML fits into the database world, as well as
the commonly used features of XML as used by SQL Server.

XML and EDI
XML is the best means of moving data among various dissimilar databases and programs. As
such, it is replacing the expensive Electronic Data Interchange (EDI) systems of the ’80s and
’90s and is the new B2B data-exchange standard. The issue with XML is that both companies
sharing data must agree on the XML schema or data-descriptor tags. Most industries have
already established XML standards.

On the
CD-ROM

26549359 ch22.F 11/21/02 9:50 AM Page 594

595Chapter 22 ✦ XML and Web Publishing

The Commercial XML standard (HTTP://www.cXML.org) has taken the lead as the universal
transactional B2B XML standard. cXML is a set of XML Document Type Definitions (DTDs)
that define the structure of XML mark-up languages for handling common B2B transactions
such as catalogs, product suppliers, punch outs (instances of interactive procurement over
the Internet), master agreements, purchase orders, order confirmations, ship notices, and
invoices.

Other XML standards include:

✦ XMLLife — For insurance companies

✦ Channel Definition Format (CDF) — For pushing media over the Web

✦ Open Financial eXchange (OFX) — For the stock market and financial industry

✦ Mathematical Markup Language (MathML) — For describing equations

✦ Chemical Markup Language (CML) — For chemical formulas and products

In addition, several server software packages are already on the market that convert one XML
schema to another for data sharing, including Microsoft BizTalk.

Working with XML
Like an HTML document, an XML document is just a text document with tags — often a very
long document with an abundance of tags. While XML documents can be viewed and created
using Notepad, XML is not intended for human consumption. Most developers who work with
XML use a parser to decode the XML within an application and an XML viewer to peruse the
XML document.

XML Parsing
To work with XML data from within custom application programs, you’ll want to use a pre-writ-
ten parser. A parser will decode the XML document and handle the complexities of XML.
Several vendors offer XML parsers; Microsoft’s parser, XML Core Services V4.0 (formerly
known as MSXML), is one of the more complete parsers available and is a free download from:

HTTP://msdn.microsoft.com/downloads/default.asp?
url=/downloads/topic.asp?
url=/MSDN-FILES/028/000/013/topic.xml

Within a custom application, code can access the XML Core Services objects to inspect and
create XML documents. The Document Object Model (DOM) is the standard API for XML doc-
uments. Simple API for XML (SAX) is an alternative to DOM. Microsoft Core Services includes:

✦ An XML parser

✦ An XSL style-sheet processor

✦ Support for DOM

XML Viewing
A number of tools can aid in the viewing and creation of raw XML documents. I highly recom-
mend XML Spy, shown in Figure 22-1, because it’s a full suite of XML tools in a slick integrated
development environment (IDE) that includes many views and features. It can graphically cre-
ate or display XMLs, XSLs, DTDs, and XML Schemas, and can validate XML documents.

26549359 ch22.F 11/21/02 9:50 AM Page 595

596 Part III ✦ Data Connectivity

Figure 22-1: XML Spy’s grid view makes it easy to visualize the elements and attributes
of the sample CHA_Event.xml document.

XML Spy is the best tool for working with XML documents. A 30-day trial version of XML Spy
is on the CD included with this book. XML Spy includes several example documents.

An XML document can be opened and viewed within Internet Explorer. IE 5 includes a default
XML style sheet (Figure 22-2) for browsing the XML data.

XML Publishing
Because XML describes the content of the data, various style sheets can locate data within
the XML document and format it for various devices. A single XML document might be
viewed using any of the following:

✦ Computer browsers using XSL — XML style sheets that merge XML data into an HTML
document

✦ Cell phones or other wireless devices using Wireless Markup Language (WML) — The fol-
lowing link provides details on the Wireless Application Protocol specifications:

www.wapforum.org/what/technical.htm

On the
CD-ROM

26549359 ch22.F 11/21/02 9:50 AM Page 596

597Chapter 22 ✦ XML and Web Publishing

✦ Acrobat Reader – XML:FOP — IBM’s Formatting Objects to PDF tool can use XML and
XSL to produce PDF files.

HTTP://www-106.ibm.com/developerworks/education
/transforming-xml/xmltopdf/

HTTP://www.wapforum.org/what/technical.htm

A major component of Microsoft’s .Net initiative is Web services, which reply to queries with
XML data. Combining Web services with XSL is an excellent way to publish dynamic data on
the Web.

XML Validation
A key benefit of XML is its ability to validate data using Data Type Documents or XML Schema
documents. These additional documents describe the data structure so the receiving applica-
tion can compare the data to the expected structure. The validation information can be
stored inside the XML document, or the XML document can point to the validation document.

You can use the validation and publishing features of XML to develop powerful Web-based
applications.

Figure 22-2: IE 5 provides a cool collapsible-list feature, which is not a standard
XML view but is actually the default XSL style sheet within IE 5.

26549359 ch22.F 11/21/02 9:50 AM Page 597

598 Part III ✦ Data Connectivity

Inside an XML Document
An XML document consists of two sections: the Declaration section, which contains informa-
tion for the XML parser, and the Root-Element section, which contains the data.

As a database developer, you won’t spend your days writing XML documents by hand;
instead a tool or SQL Server will generate the documents.

Declaration Section
The Declaration section is an optional prologue to the document and contains Processing
Instructions (PI). Typically, the Declaration section specifies instructions, such as the follow-
ing, for the parser:

<?procname procatt=”attribvalue” ?>

The most common instruction identifies the document as an XML document using the
reserved PI, XML:

<?xml version=”1.0” encoding=”UTF-8”?>

Other instructions can specify the DTD file for data validation, or the XSL file for translation
into an HTML document.

Root Element
Each data object in XML is defined as an element. The root element is the overarching object
container. All the data contained in an XML document must fit inside elements and attributes
contained within a single root element.

In this sense an XML document is no different from an HTML document that uses the <HTML>
tag as its root element. The XML root name should be a word that describes the content of
the XML document, such as <Orders>, <Customers>, or, as in the case of the sample XML
document, <Events>.

<?xml version=”1.0” encoding=”UTF-8”?>
<Tours>
<Tour Name=”Amazon Trek”>
<Event Code=”01-003” DateBegin=”2001-03-16T00:00:00”/>
<Event Code=”01-015” DateBegin=”2001-11-05T00:00:00”/>

</Tour>
<Tour Name=”Appalachian Trail”>
<Event Code=”01-005” DateBegin=”2001-06-25T00:00:00”/>
<Event Code=”01-008” DateBegin=”2001-07-14T00:00:00”/>
<Event Code=”01-010” DateBegin=”2001-08-14T00:00:00”/>

</Tour>
<Tour Name=”Bahamas Dive”>
<Event Code=”01-002” DateBegin=”2001-05-09T00:00:00”/>
<Event Code=”01-006” DateBegin=”2001-07-03T00:00:00”/>
<Event Code=”01-009” DateBegin=”2001-08-12T00:00:00”/>

</Tour>
<Tour Name=”Gauley River Rafting”>

26549359 ch22.F 11/21/02 9:50 AM Page 598

599Chapter 22 ✦ XML and Web Publishing

<Event Code=”01-012” DateBegin=”2001-09-14T00:00:00”/>
<Event Code=”01-013” DateBegin=”2001-09-15T00:00:00”/>

</Tour>
<Tour Name=”Outer Banks Lighthouses”>
<Event Code=”01-001” DateBegin=”2001-02-02T00:00:00”/>
<Event Code=”01-004” DateBegin=”2001-06-06T00:00:00”/>
<Event Code=”01-007” DateBegin=”2001-07-03T00:00:00”/>
<Event Code=”01-011” DateBegin=”2001-08-17T00:00:00”/>
<Event Code=”01-014” DateBegin=”2001-10-03T00:00:00”/>
<Event Code=”01-016” DateBegin=”2001-11-16T00:00:00”/>

</Tour>

</Tours>

The element concludes with a closing tag, </Events>, as seen in the example above.

Elements
XML is loose in its usage of elements and attributes. An element is generally an item similar to
a tuple or row. However, a column can also be represented within XML as an element.
Element names cannot contain spaces, must be unique, and are case-sensitive.

Elements can contain the following:

✦ Other nested elements to represent secondary table information or columns

✦ Attributes, which are similar to database columns

✦ Text data

The element tag is repeated for each instance of the element. For example, the
CHA2_Events.xml sample XML document has a series of Tour elements beginning with the
<Tour> tag and closing with the </Tour> tag. The first Tour element is this:

<Tour Name=”Amazon Trek”>

The tag denotes a Tour. In this case, the element has an attribute, Name, with a value of
“Amazon Trek”.

If an element contains nested elements, it will close with a closing tag:

<Tour Name=”Amazon Trek”>
Other elements

</Tour>

If the element does not contain any additional elements, it can be self-closed with a slash at
the conclusion of the element:

<Event Code=”01-003” DateBegin=”2001-03-16T00:00:00”/>

Data that a database developer would consider an attribute is often expressed within an XML
document as a valid nested element:

<Tour>
<Name=”Amazon Trek”>

</Tour>

26549359 ch22.F 11/21/02 9:50 AM Page 599

600 Part III ✦ Data Connectivity

An element may also contain stand-alone text referred to as PCData (parsable character
data):

<Thing “This is a PCData text within an element”>
</Thing>

Although elements and attributes seem interchangeable, elements can be repeated while
attributes cannot. While Java Web developers might consider an element a valid location for
a column data, database developers have been describing data for a few decades now, and
know better.

Attributes
Database tables have columns and XML documents can have attributes to further describe
the element. Attribute names must be unique and contain no spaces. The attribute value is
enclosed in single or double quotes. Each attribute may only be applied to an element once.
In the following case, name is an attribute describing the tour element:

<Tour Name=”Amazon Trek”>

XML lacks an explicit null value. An attribute can be an empty string, but nulls cannot be
passed with XML without an explicit Column-Null attribute being specified and the
attribute being set to 1 to indicate a null.

Namespaces
XML can share data between dissimilar systems, and data names are not always unique. For
example the term stock has a different meaning in the financial, stock-car racing, firearms, and
lumber industries. XML uses a namespace to differentiate between similar terms by providing
a unique name qualifier. The namespace is a shortcut that refers to a unique string. While any
unique string can differentiate namespaces, the standard practice is to use the string to point
to the URL location of the Data Type Document for the data associated with the namespace.

In the following example, the tr namespace refers to a unique URL string:

<?xml version=”1.0” encoding=”UTF-8”?>
<Tours xmlns:tr=”HTTP://www.CHA2.com/tr.dtd”>
<tr:Tour Name=”Amazon Trek”>

</Tours>

Well-Formed XML Documents
XML is very strict concerning formatting and syntax, much stricter than HTML or SQL. HTML
browsers have become very liberal in their allowance for poorly formed HTML tags (<p>
without </p>, tags improperly nested, tags with the wrong case, and so forth). The following
are the five rules for a well-formed XML document:

1. Each XML document must have one root element.

2. Element or attribute names must not include any spaces.

3. All elements must be correctly nested and terminated:

<x> <y> </y> </x>

Note

26549359 ch22.F 11/21/02 9:50 AM Page 600

601Chapter 22 ✦ XML and Web Publishing

4. All tags are case-sensitive.

5. All attribute values must be in quotes.

XMLSpy’s yellow checkmark tool tests the current XML document for adherence to the well-
formed rules.

XML Text
XML is primarily a text document and as such it has a few well-defined rules concerning text,
substituting special characters, and comments.

PCData
Parsable Character Data, or PCData, is any text that the parser will see as it reads the docu-
ment. Elements must be PCData.

CData
CData (Character Data) is text that the parser will ignore. CData is defined with brackets and
the term CDATA. The following text is invalid because of the ampersand in the text. Using
CData, the parser bypasses the text:

<Couple><![CDATA[Paul & Melissa]]</ Couple >

Entities
An entity is a predefined shortcut, or placeholder, for a symbol that would otherwise cause a
syntax error. For example, angle brackets (< >) are illegal because they are used to create
tags. The standard entities are listed in Table 22-1:

Table 22-1: Standard Entities

Entity Meaning

< <

> >

& &

" “

' ‘

The invalid XML element shown previously can be legally written with an entity:

<Couple “Paul & Melissa” />

Comments
XML comments are the same as HTML comments, except that XML comments can’t include
extra hyphens:

<!-- Comment -->

26549359 ch22.F 11/21/02 9:50 AM Page 601

602 Part III ✦ Data Connectivity

Document Type Definitions (DTDs)
An advantage of XML over SQL record sets is that an XML document can include data valida-
tion and schema information.

A Document Type Definition is a set of rules that defines the structure of an SGML document.
Each SGML document may use only one DTD file. (HTML uses a DTD document that’s built
into the browser.) XML documents can use custom DTDs. The DTD may be in a separate file
or included within the XML document. If the DTD is in a separate file, multiple XML docu-
ments can share the same DTD.

An XML document must pass two tests. The first test is whether it’s a well-formed XML docu-
ment that adheres to the five rules. In XML terms, a valid document is one that is well formed
and has passed a second data-validation test using its DTD. XML Spy’s green check tool per-
forms a validation check.

DTD Structure
The DTD defines the root, elements, repetition of elements, and PCData within the elements.
DTD syntax keywords start with a bang (exclamation point) and are uppercase.

I recommend developing DTD for your XML documents as a method of improving data
validity. XML Schemas are more powerful than DTDs, but they aren’t accepted by as many
parsers. For now, DTDs are the standard.

Elements
The following DTD example (CHA2_Events.DTD) defines the elements within the sample XML
document:

<?xml version=”1.0” encoding=”UTF-8”?>
<!ELEMENT Event EMPTY>
<!ATTLIST Event

Code CDATA #REQUIRED
DateBegin CDATA #REQUIRED

>
<!ELEMENT Tour (Event+)>
<!ATTLIST Tour

Name CDATA #REQUIRED
>
<!ELEMENT Tours (Tour+)>

XMLSpy can automatically generate DTDs from existing XML documents and can even create
database tables from DTDs.

The <!ELEMENT tag defines an element and specifies any nested elements within the element.
For example, the <!ELEMENT Tour (Event+)> tag indicates that the Tour element contains
an Event element.

Nested Elements
Any nested elements are added to elements in a DTD by being listed within parentheses fol-
lowing the element. The nested element’s cardinality (which XML refers to as repetition) is

Note

26549359 ch22.F 11/21/02 9:50 AM Page 602

603Chapter 22 ✦ XML and Web Publishing

defined by the occurrence indicators, as listed in Table 22-2. The occurrence indicator is
added to the nested element as a suffix.

Table 22-2: Nested Element Occurrence Indicators

Indicator Element Repetition Element Required

None (Default) One Required

+ One to many Required

? Zero to one Optional

* Zero to many Optional

In the sample DTD file, the + in the root-element definition indicates that the Events root ele-
ment must include one to many Event elements:

<!ELEMENT Tours (Tour+)>

In the following DTD sample line, a Customer element may include any number of order ele-
ments, must include at least one address element, and must include exactly one account
element:

<!ELEMENT Customer (Order*, Address+, Account)>

Each element definition includes the definition of the next level of nested elements. If the
Order element includes OrderDetail elements, the OrderDetail element must be defined
within the Order element, not the Customer element.

Listing the nested elements within parentheses also defines the order of the nested elements.
So in the case of the previous Customer element, the subelements must be in the following
order: Order elements (if any), Address elements, and Account elements.

Nested elements, which may be substituted, are separated by pipe symbols (|) rather than
commas. The following example indicates that the MainElement must contain one element1
and one or more of either element2 or element3:

MainElement(element1, (element2 | element3)+)

In addition to listing specific elements, ANY allows any defined keyword in any order and
EMPTY allows elements with no data.

General Entities
In addition to the special character entities such as ("), general entities may be defined
in the DTD and then used in the XML document. A general entity is similar to a constant in a
procedural programming language. Parameter entities may be nested. The following line cre-
ates a companyname entity:

<!ENTITY COMPANYNAME “OBX Kites Company”>

Within the XML document, the general entity will be replaced by the value when the data is
read. For example,

Company - &COMPANYNAME;

26549359 ch22.F 11/21/02 9:50 AM Page 603

604 Part III ✦ Data Connectivity

becomes

Company - OBX Kites Company

General entities are useful for building generic XML documents with values that change
depending on the DTD document used.

Parameter Entities
A DTD parameter entity (defined with a %) is used to insert an external DTD document similar
to a #include compiler command in procedural languages. The parameter entity must be
defined before it’s used.

The following example demonstrates including the tour element as a parameter entity. The
tour.dtd file is inserted into the event.dtd document:

Tour.dtd file:
<!ELEMENT Tour (Event+)>
<!ATTLIST Tour

Name CDATA #REQUIRED
>

Event.dtd file:
<?xml version=”1.0” encoding=”UTF-8”?>
<!ENTITY % TOUR SYSTEM “tour.dtd”>
<!ELEMENT Event EMPTY>
<!ATTLIST Event

Code CDATA #REQUIRED
DateBegin CDATA #REQUIRED

>
%Tour;
<!ELEMENT Tours (Tour+)>

Defining Attributes
Within a DTD, an element’s attributes may be defined with the ATTLIST keyword. In the sam-
ple DTD document shown previously, the Code and DateBegin attributes of the Event ele-
ment are defined in the following tag:

<!ATTLIST Event
Code CDATA #REQUIRED
DateBegin CDATA #REQUIRED

>

XML DTDs don’t provide for full-featured data-typing or constraints as database developers
would think of constraints. But they can configure the required status of an attribute using
the following keywords:

✦ #REQUIRED— An attribute value must be present in the XML document.

✦ #IMPLIED— If the attribute value is missing in the XML document, the application will
supply the value.

✦ #FIXED— The DTD’s attribute value will be passed as data regardless of the value in
the XML document. (The parser should produce an error if the DTD’s fixed value is
changed in the XML document, but many parsers don’t check this.)

Unlike elements, DTDs, XSD (XML Schema Document) don’t establish an attribute order.

26549359 ch22.F 11/21/02 9:50 AM Page 604

605Chapter 22 ✦ XML and Web Publishing

ID Attributes
The ID attribute option defines a unique constraint on the data within the XML document. ID
is limited by the fact that it cannot accept numeric data, so it’s useful only for unique names
or codes that include mixed character data.

The following example forces the tour names to be unique:

<!ATTLIST Tour
Name CDATA ID #REQUIRED

>

IDREF Attributes
An IDREF attribute option is a loose foreign-key reference within the XML document. An
attribute defined as an IDREF must have data that refers to data that’s been validated by an
ID attribute — any ID attribute. Since by the very nature of XML documents (elements nested
with elements) most one-to-many relationships are handled, IDREF attributes are useful for
reflexive relationships.

Referencing the DTD
A DTD is only useful when an XML document references it for validation. An XML document
may either include the DTD definition itself within the XML document or reference an exter-
nal DTD document. The advantage of an external DTD is that it becomes a single point of ref-
erence for multiple XML documents.

Internal DTDs are useful for working with a changing schema, such as during development or
testing. Each version of an XML document contains its own validation information.

Referencing an External DTD
When the DTD is an external document, it’s referenced within the declaration section of an
XML document. The location of the DTD document is often an HTTP URL (although if you
installed the book’s CD the Tours DTD document is located under the SQLServerBible direc-
tory). The CHA2_Events_DTDexternal.xml file includes a reference to an external DTD:

<!DOCTYPE Tours SYSTEM
“C:\SQLServerBible\Sample Databases\CapeHatterasAdventures\
CHA2_Tours.dtd”>

Referencing an Internal DTD
To include the DTD validation information inside the XML document, the entire DTD defini-
tion is inserted within a DOCTYPE tag and square brackets:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE Tours [

DTD definition goes here
]>
<Tours>
<Tour Name=”Amazon Trek”>
<Event Code=”01-003” DateBegin=”2001-03-16T00:00:00”/>

...

The CHA2_Events_DTDinternal.xml file includes an internal DTD definition.

26549359 ch22.F 11/21/02 9:50 AM Page 605

606 Part III ✦ Data Connectivity

XML Schema — XSDs
To database professionals the term schema refers to the logical or physical design of the data.
Within the Web-oriented XML community, a schema is a specific type of XML validation.

XML Schema Document, or XSD, is an elegant means of performing XML document validation.
XML itself is used to define the XML elements. While Data Type Definition documents are the
accepted means of XML validation, the newer XML Schema is more powerful and is used
within .Net.

✦ XSDs are themselves XML documents. As such, the familiar XML syntax may be created
and edited using standard XML tools. XSDs must be well-formed XML documents.

✦ From a database viewpoint, an important factor is that XSDs include data typing, some-
thing that’s lacking in DTDs.

✦ XSD can include namespace definitions.

XSD was approved as a recommendation by W3C on May 2, 2001, and at the end of 2002 was
starting to be used. Be sure to check HTTP://www.w3c.org for updates to the XSDs.

Altnova’s XML Spy will work with XSDs. An XSD within XML Spy is referred to as a W3C
schema in the Generate DTD/Schema dialog.

The following is the XSD definition for the previous sample XML document, which contains
event data from the CHA2 database generated by XML Spy (CHA2_Events.XSD). In the decla-
ration section of the XML document the XMLSchema namespace is referenced. Each XML ele-
ment and attribute (in bold) is defined within with the XSD element structure:

<?xml version=”1.0” encoding=”UTF-8”?>
<!--W3C Schema generated by

XML Spy v4.3 U (HTTP://www.xmlspy.com)-->
<xs:schema xmlns:xs

=”HTTP://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”>

<xs:element name=”Event”>
<xs:complexType>
<xs:attribute name=”Code”

type=”xs:string” use=”required”/>
<xs:attribute name=”DateBegin”

type=”xs:dateTime” use=”required”/>
</xs:complexType>

</xs:element>
<xs:element name=”Tour”>
<xs:complexType>
<xs:sequence>
<xs:element ref=”Event” maxOccurs=”unbounded”/>

</xs:sequence>
<xs:attribute name=”Name”

type=”xs:string” use=”required”/>
</xs:complexType>

On the
CD-ROM

26549359 ch22.F 11/21/02 9:50 AM Page 606

607Chapter 22 ✦ XML and Web Publishing

</xs:element>
<xs:element name=”Tours”>
<xs:complexType>
<xs:sequence>
<xs:element ref=”Tour” maxOccurs=”unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

XML Schemas are generally much longer than the equivalent DTD definitions. While DTDs are
relatively simple, XML Schemas can be very complex.

An XSD document is an XML document that describes an XML document, so an XML element
is defined by an xsd:element (xsd is the XSD namespace). XML Schema includes two types
of XML elements, simple and complex. A simple element only includes text (PCData), no
subelements or attributes. The XML Item element is defined in XSD as a simple element:

XML: <Item> Big Kite</Item>
XSD: <xsd:element name=”Item” type=”xsd:string”>

Complex elements can contain subelements and attributes and mixed content (PCData and
other elements). The previous sample XSD document includes complex elements.

XSD Elements
Elements and attributes defined within the root element are considered global elements and
may be referenced later in the XSD document. This adds consistency and reusability to ele-
ments within XSD documents. An element, once defined, may be referenced by means of the
following syntax:

<xsd:element ref=”Event”/>

Element Cardinality
XSD includes a flexible method of defining the occurrences of a subelement using the
MinOccurs and MaxOccurs element options. The default is 1; setting the MaxOccurs to
unbounded permits a true one-to-many relationship:

<xsd:element name=”Event”
minOcurrs = “0”
maxOccurs = “unbounded”

Element Grouping
XSD has three methods of ordering subelements:

✦ <xsd:sequence>— The XML elements may be in the sequenced order.

✦ <xsd:all>— The XML elements may be used once, in any order.

✦ <xsd:choice>— Any one of the elements may be in the XML document.

The grouping tags (sequence, all, or choice) are wrapped around the subelements.

26549359 ch22.F 11/21/02 9:50 AM Page 607

608 Part III ✦ Data Connectivity

XSD Attributes
XML Schemas define attributes within an attribute XSD element called xsd:attribute. For
example, within the sample XSD schema, the name attribute is defined by a subelement under
the tour element:

<xs:attribute name=”Name”
type=”xs:string” use=”required”/>

The use option may be used to define the attribute as required or optional (default).

XSD Data Types and Validation
This is the area where XSDs show significant improvement over DTDs. The W3C XML Schema
defines over 40 data types, most of which map well with SQL Server.

Beyond the base data types, derived type, much like a user-defined type, may be added by
means of using the simpletype data type and building data facets to describe the data vali-
dation. An XSD facet is a data-validation constraint, similar to a check constraint, that can
perform one of several data checks.

Referencing an XSD Schema
An XSD Schema document may be referenced within the root element of an XML document.
The following code in the CHA2_Tours_XSD.xml document references the CHA2_Tours.xsd
document (abridged):

<?xml version=”1.0” encoding=”UTF-8”?>
<Tours xmlns:xsi=”HTTP://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”C:\SQLServerBible\
Sample Databases\CapeHatterasAdventures\CHA2_Event.xsd”>

<Tour Name=”Amazon Trek”>
<Event Code=”01-003” DateBegin=”2001-03-16T00:00:00”/>

...

XML Spy can automatically generate the XSD and reference it within the XML document.

You don’t need to decide between DTD and XSD for validation — use both. Because DTDs are
more established, I recommend always using DTDs and optionally sending an XSD schema
for those data partners who may opt to use it.

XML and SQL Server
SQL Server 2000 enables you to create and read XML data from within a select statement.

Creating XML with SQL Server 2000
SQL Server 2000 can produce XML documents directly from queries. The for XML optional
select suffix directs SQL Server to format the query-data result as an XML document rather
than as a standard SQL result set.

26549359 ch22.F 11/21/02 9:50 AM Page 608

609Chapter 22 ✦ XML and Web Publishing

The XML output appears as a single-column result. By default, the Query Analyzer maximum
size per column is set too low to view the XML result set. It may be changed to its max-
imum setting of 8192 in the Results tab of the Options dialog opened from Tools ➪ Options.

The For XML suffix generates the XML data, but not the declaration section or the root ele-
ment. The application will need to wrap the data from SQL Server correctly to create a result
set that qualifies as a well-formed XML document.

For XML Raw
The For XML suffix has three modes: raw, auto, and an elements option. The For XML Raw
mode simply dumps the result-set rows to an XML document without generating any hierar-
chical structure. Each SQL row becomes an XML row element:

SELECT Tour.Name, Event.Code, Event.DateBegin
FROM Tour
JOIN Event
ON Tour.TourID = Event.TourID

FOR XML RAW

Result (abridged):

<row Name=”Amazon Trek” Code=”01-003”
DateBegin=”2001-03-16T00:00:00”/>

<row Name=”Amazon Trek” Code=”01-015”
DateBegin=”2001-11-05T00:00:00”/>

<row Name=”Appalachian Trail” Code=”01-005”
DateBegin=”2001-06-25T00:00:00”/>

<row Name=”Appalachian Trail” Code=”01-008”
DateBegin=”2001-07-14T00:00:00”/>

<row Name=”Appalachian Trail” Code=”01-010”
DateBegin=”2001-08-14T00:00:00”/>

...

For XML Auto
The auto mode determines any hierarchies within the data structure and generates a much
more useable XML document. The previous sample XML document at the beginning of this
chapter was produced with the following query:

SELECT Tour.Name, Event.Code, Event.DateBegin
FROM Tour
JOIN Event
ON Tour.TourID = Event.TourID

FOR XML AUTO

The elements option causes the for XML auto mode to generate elements instead of
attributes. The following variation of the sample XML document uses the elements option to
generate elements exclusively:

SELECT Tour.Name, Event.Code, Event.DateBegin
FROM Tour
JOIN Event
ON Tour.TourID = Event.TourID

FOR XML AUTO, ELEMENTS

Note

26549359 ch22.F 11/21/02 9:50 AM Page 609

610 Part III ✦ Data Connectivity

Results (abridged):

<Tour>
<Name>Amazon Trek</Name>
<Event>
<Code>01-003</Code>
<DateBegin>2001-03-16T00:00:00</DateBegin>

</Event>
<Event>
<Code>01-015</Code>
<DateBegin>2001-11-05T00:00:00</DateBegin>

</Event>
</Tour>
<Tour>
<Name>Appalachian Trail</Name>
<Event>
<Code>01-005</Code>
<DateBegin>2001-06-25T00:00:00</DateBegin>

</Event>
<Event>
<Code>01-008</Code>
<DateBegin>2001-07-14T00:00:00</DateBegin>

</Event>
<Event>
<Code>01-010</Code>
<DateBegin>2001-08-14T00:00:00</DateBegin>

</Event>
</Tour>
...

Reading XML into SQL Server
Applications read XML using a parser that in turn exposes the XML data within the Document
Object Mode, or DOM. This W3C-established standard is an object-oriented representation of
an XML document. The XML document, and each element, attribute, and text within the docu-
ment, becomes a DOM object. DOM is very powerful and may be used within object-oriented
code to create, read, or modify an XML document.

SQL Server uses the Microsoft XML parser and DOM to read an XML document in a two-stage
process:

1. The sp_xml_preparedocument stored procedure reads the XML document using the
MSXML parser and creates the DOM objects internal to SQL Server. The DOM object is
identified by an integer returned by the stored procedure.

2. OpenXML is used as a data source within an SQL DML statement. OpenXML identifies the
DOM object using the integer returned from sp_xml_preparedocument.

The following code sample first sets the sample XML data into the @XML SQL Server local vari-
able. SQL Server then reads data into SQL using the previous two stages, as follows:

1. When the sp_xml_preparedocument store procedure is executed, the DOM is created.
The DOM ID is received as an output parameter from the stored procedure and stored
in the @iDOM variable.

26549359 ch22.F 11/21/02 9:50 AM Page 610

611Chapter 22 ✦ XML and Web Publishing

2. The Select statement refers to the OpenXML system function as a data source. It
accepts three parameters:

• The integer ID of the internal DOM object, which was stored in the @iDOM
variable.

• The rowpattern of the XML document, which OpenXML used to identify the ele-
ment structure of the XML data. In this case the rowpattern is
‘/Tours/Tour/Event’.

• The XML configuration flag, which determines how the elements and attributes
are interpreted by OpenXML according to Table 22-3.

3. The OpenXML’s With option forces a column matching for the result set passed back
from OpenXML. A column is defined by its XML name, data type, and optional XML ele-
ment location.

Table 22-3: OpenXML Configuration Flags

Flag Value Setting Description

0 Default Defaults to attribute-centric

1 Attribute-centric OpenXML looks for attributes

2 Element-centric OpenXML looks for elements

8 Combined Open XML looks for attributes and then looks for elements

The batch closes with the sp_removedocument system stored procedure, which releases the
DOM from memory:

DECLARE
@iDOM int,
@XML VarChar(8000)

Set @XML = ‘
<?xml version=”1.0” encoding=”UTF-8”?>
<Tours>
<Tour Name=”Amazon Trek”>
<Event Code=”01-003” DateBegin=”2001-03-16T00:00:00”/>
<Event Code=”01-015” DateBegin=”2001-11-05T00:00:00”/>

</Tour>
<Tour Name=”Appalachian Trail”>
<Event Code=”01-005” DateBegin=”2001-06-25T00:00:00”/>
<Event Code=”01-008” DateBegin=”2001-07-14T00:00:00”/>
<Event Code=”01-010” DateBegin=”2001-08-14T00:00:00”/>

</Tour>
<Tour Name=”Bahamas Dive”>
<Event Code=”01-002” DateBegin=”2001-05-09T00:00:00”/>
<Event Code=”01-006” DateBegin=”2001-07-03T00:00:00”/>
<Event Code=”01-009” DateBegin=”2001-08-12T00:00:00”/>

</Tour>
<Tour Name=”Gauley River Rafting”>

26549359 ch22.F 11/21/02 9:50 AM Page 611

612 Part III ✦ Data Connectivity

<Event Code=”01-012” DateBegin=”2001-09-14T00:00:00”/>
<Event Code=”01-013” DateBegin=”2001-09-15T00:00:00”/>

</Tour>
<Tour Name=”Outer Banks Lighthouses”>
<Event Code=”01-001” DateBegin=”2001-02-02T00:00:00”/>
<Event Code=”01-004” DateBegin=”2001-06-06T00:00:00”/>
<Event Code=”01-007” DateBegin=”2001-07-03T00:00:00”/>
<Event Code=”01-011” DateBegin=”2001-08-17T00:00:00”/>
<Event Code=”01-014” DateBegin=”2001-10-03T00:00:00”/>
<Event Code=”01-016” DateBegin=”2001-11-16T00:00:00”/>

</Tour>
</Tours>’

-- Generate the internal DOM
EXEC sp_xml_preparedocument @iDOM OUTPUT, @XML

-- OPENXML provider.
SELECT *
FROM OPENXML (@iDOM, ‘/Tours/Tour/Event’,8)

WITH ([Name] VARCHAR(25) ‘../@Name’,
Code VARCHAR(10),
DateBegin DATETIME
)

EXEC sp_xml_removedocument @iDOM

Result (abridged):

Name Code DateBegin
------------------- -------- -------------------------
Amazon Trek 01-003 2001-03-16 00:00:00.000
Amazon Trek 01-015 2001-11-05 00:00:00.000
Appalachian Trail 01-005 2001-06-25 00:00:00.000
Appalachian Trail 01-008 2001-07-14 00:00:00.000
...

Transforming XML with XSL
One of the most powerful aspects of XML is the ability to present XML data in different for-
mats defined by XML style sheets or XSL. Typically, the style sheet will wrap HTML around
the XML to present a Web page. When an XML document that references an XSL style sheet is
opened within a browser, the XSL style sheet becomes a framework HTML page, which is pop-
ulated from the XML document’s data.

Not all XML parsers perform XSL parsing; fortunately, the MSXML parser includes an XSL
parser. The processor that performs the XSL transformation is referred to as the XSLT
processor.

XSL is not limited to transforming the XML into desktop-computer HTML code. It can trans-
form the data to WML for wireless browsers, to XHTML, or even to another XML definition for
B2B transformations.

26549359 ch22.F 11/21/02 9:50 AM Page 612

613Chapter 22 ✦ XML and Web Publishing

XSL Style Sheets
The style sheet itself is a W3C standard. The style sheet is external to the XML document and
referenced within the XML document. It must be a well-formed XML document.

The following XSL style sheet, CHA2_Events.XSL, formats the sample XML document we
have been using thus far, to present a table of events for each tour run by the Cape Hatteras
Adventure Company. The style sheet doesn’t include any cool graphics or fancy styling so
that the focus can be on how the XML data is integrated within the XSL style sheet. However,
any good-looking HTML page can be built with XSL style sheets.

The declaration section identifies the style sheet as an XSL document, and references two
namespaces. Within xsl:template match =”/”, which identifies the root of the style sheet
that contains the HTML framework, notice the familiar <html> and <body> tags. The
<xsl:apply-templates select=”Tours”/> tag is where the Tours template is inserted
within the HTML framework.

Within the <xsl:template match=”Tours”> tag, the XML tour element is read and the
for-each element is used much like a loop to iterate through the XML data. The XML’s
attribute or text data is referenced with the value-of command:

<xsl:stylesheet version=”1.0”
xmlns:xsl=”HTTP://www.w3.org/1999/XSL/Transform”
xmlns:fo=”HTTP://www.w3.org/1999/XSL/Format”>

<xsl:template match=”/”>
<html>
<body>
Cape Hatteras Adventures
 </br>
Event Schedule
<hr></hr>
<xsl:apply-templates select=”Tours”/>

</body>
</html>

</xsl:template>

<xsl:template match=”Tours”>
<xsl:for-each select= “Tour”>
<xsl:sort select=”Name”/>
<xsl:value-of select=”@Name”/>
</br>
<table border=”1”>
<xsl:for-each select= “Event”>
<xsl:sort select=”DateBegin “/>
<tr>
<td><xsl:value-of select=”@Code”/></td>
<td><xsl:value-of select=”@DateBegin”/></td>

</tr>
</xsl:for-each>

</table>
</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

26549359 ch22.F 11/21/02 9:50 AM Page 613

614 Part III ✦ Data Connectivity

The declaration section of the sample XML document is altered to include a reference to the
new style sheet (CHA2_Events_XSL.xml):

<?xml-stylesheet type=”text/xsl” href=”CHA_Tours.xsl”?>

The XSL style sheet can also ensure the sort order of the data by use of the xsl:sort tag:

<xsl:sort select=”Name”/>

When the XML document is viewed with a browser the result is a basic Web page, as shown in
Figure 22-3.

Figure 22-3: Viewing the XML data with the XSL style sheet applied reads the XML data
into an HTML page. While this page isn’t very fancy, XSL style sheets can produce any
HTML code.

Transforming XML to XML
XSL is simply a means of restyling XML into another format. While it’s typically used to trans-
form XML data into an HTML page, with some creative work XSL can transform an XML docu-
ment into a different XML document, which is very useful to Web developers performing B2B
XML transformations.

Combining this technique with XPath queries can “select” a subset of data from one XML
document into another XML document. The element and attribute structure may also be
changed in the transformation. During the creation of the XSL style sheet the <xsl:element>
and <xsl:attribute> tags are used to create the new elements and attributes.

26549359 ch22.F 11/21/02 9:50 AM Page 614

615Chapter 22 ✦ XML and Web Publishing

More information on XML transformation and XPath can be found in the “XML Bible, Second
Edition” (John Wiley & Sons Inc.).

XPATH
XPath is a feature of XML and adds result restriction and aggregation capabilities to XML
while navigating through the XML hierarchy to access any node (element, attribute, or piece
of text) within the XML document. The XPath code may be added to the XSL style sheet or to
other XML queries to filter the data. The most applicable use of XPath for SQL Server is in
templates. (While XPath is stable, its more powerful cousin, XQuery, is still evolving.)

XPath must first identify the node. Identifying a node is very similar to the column name
within a SQL select statement’s where clause. For example, to navigate to the event ele-
ment under the tour element use the following structure:

/Tours/Tour/Event

The previous example uses absolute location. The node location may also be selected by
means of relative location, so that a portion of the XSL that’s working with child data may
select a parent node for the filtering process.

To navigate down the hierarchical XML tree to an attribute, use the @ sign, as follows:

/Tours/Tour/@Name

Once the correct node is identified, XPath has several filtering features to select the correct
data. For the execution of a where = filter the criteria are specified after the node in square
brackets. The file, CHA2_Events_XPath.xsl, includes the following XPath code:

/Tours/Tour/@Name [‘Gauley River Rafting’]

SQLXML
Microsoft SQLXML installs as a layer between IIS and SQL Server and allows queries to be
submitted to SQL Server from a browser. This is done with virtual directories in IIS.

Virtual Directories
To set up HTTP queries, run the program Configure SQL XML Support in IIS. Right-click the
default Web site and select New ➪ Virtual Directory. Figure 22-4 shows the dialog box that will
appear.

The General tab of the dialog box will prompt you for a virtual-directory name and local path.
Choose a name for the virtual directory that will appear after the server name in the HTTP
request. Also, you need to have it point to a physical directory that will not really contain
anything, but that needs to exist in order for the configuration to work. Choose a simple
name like SQL or the name of the database against which the queries will run.

On the Security tab, enter the login ID the queries will be run as. The best approach is to cre-
ate an account for the queries to run under. You can specify either a SQL or Windows login
for this. Another approach is to require the browser to pass a client’s Windows authentica-
tion if the session is taking place within an intranet; alternately, you can send a text login ID
and password that would typically be stored in a database or configuration file. It is some-
what dangerous to pass clear-text login ID’s and passwords and this is not a recommended
practice.

Note

26549359 ch22.F 11/21/02 9:50 AM Page 615

616 Part III ✦ Data Connectivity

Figure 22-4: Configuring Virtual Directories in IIS to run HTTP queries in SQL Server

26549359 ch22.F 11/21/02 9:50 AM Page 616

617Chapter 22 ✦ XML and Web Publishing

The Data Source tab is used to specify the server name and default directory for the queries.
The Settings tab is where you enable the features you want to support. Allowing URL queries
enables people to execute ad hoc queries against the SQL Server. Allowing template queries
enables clients to only execute queries that have been previously saved into a template file.
URL queries can be dangerous if you open up too much access to the account the queries run
under, whereas template queries limit the clients to only those queries that have been pre-
programmed.

Allowing XPath queries requires an XDR schema file to be created for each query that maps
the columns to XML attributes. The URL query can then execute the SQL statement and use
the XPath language to drill down into a particular node.

HTTP Queries
If the virtual directory is enabled and allows HTTP queries, a browser pointed to the correct
server can issue a query in the address line of the browser using the for xml syntax:

HTTP://server/virtualdirectory?sql=SELECT QUERY&
Root=RootName

The select query cannot include any spaces, so substitute a + for any spaces. Also, the
select...for xml command does not generate a well-formed XML document because it
lacks an XML declaration section and root node. The second parameter, root, supplies the
name of the root node. For example, the following HTTP query retrieves a list of tours and
start dates into an XML document with a root named Tours:

HTTP://localhost/sql?sql=SELECT+Tour.Name,+Event.Code,+Event.DateBegin+
FROM+Tour+JOIN+Event+ON+Tour.TourID+=+Event.TourID+FOR+XML+AUTO,+ELEMEN
TS&root=Tours

The result of the HTTP query is shown in Figure 22-5.

Note that you may type the query with spaces, or with plus signs instead of spaces. However,
if you use spaces, the Web server will convert each one to %20, which makes the URL difficult
to read. The better way to handle this and make the URL more readable is to save the whole
query in a stored procedure:

CREATE PROCEDURE GetTourBeginDates AS
SELECT Tour.Name, Event.Code, Event.DateBegin
FROM Tour JOIN Event ON Tour.TourID = Event.TourID
FOR XML AUTO, ELEMENTS

Then simply use the stored-procedure name in the HTTP query:

HTTP://localhost/sql?sql=GetTourBeginDates&root=root

The results will be identical but it will be much easier to manage and view the URL.

26549359 ch22.F 11/21/02 9:50 AM Page 617

618 Part III ✦ Data Connectivity

Figure 22-5: Viewing the XML data, with the XSL style sheet applied, reads
the HTTP queries.

Template Queries
Template queries enable you to assert a little more control over what queries can be run over
an HTTP request, as well as over how the output will look. First you need to configure the vir-
tual directory to allow template queries. Then create a Virtual Name as a template type and a
directory to contain the template files. Once that is done, you need to create a template file
and save it in the directory specified in the Virtual Name configuration. You can then run
queries using the following format:

HTTP://server/virtualdirectory/virtualname/filename.xml

The XML template file is a fully formed XML document, but where you want the contents of a
query substituted into the document, place the SQL statement between the tags
<sql:query> and </sql:query>. Configure a virtual name called Temp with a type of tem-
plate that points to a directory called \temp (see Figure 22-6). Make sure you create a subdi-
rectory under the physical directory that the virtual directory points to.

26549359 ch22.F 11/21/02 9:50 AM Page 618

619Chapter 22 ✦ XML and Web Publishing

Figure 22-6: Allow template queries via the
Virtual Names tab.

Once the virtual name exists, create a document called Tours.xml and save it in the path
C:\INETPUB\SQL\Temp\Tours.XML.

<?xml version =’1.0’ encoding=’UTF-8’?>
<root xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>
<sql:query>

SELECT Tour.Name, Event.Code,
Event.DateBegin

FROM Tour
JOIN Event ON Tour.TourID = Event.TourID
FOR XML AUTO, ELEMENTS

</sql:query>
</root>

26549359 ch22.F 11/21/02 9:50 AM Page 619

620 Part III ✦ Data Connectivity

To execute this template query all you need to do is run the following:

HTTP://localhost/sql/Temp/Tours.xml

Running this will yield the same result as running the URL query, but it has been set up in
advance so it does not open the door to potentially dangerous ad hoc queries. It also simpli-
fies the URL for queries that are run frequently.

Publishing Data on the Web
Apart from generating XML, SQL Server has the ability to generate HTML directly from a
stored procedure.

The Web Assistant is a wizard in Enterprise Manager that can be used to generate calls to
stored procedures that will generate HTML documents from a query. The documents it cre-
ates are called static HTML files, because a query is run at a given time and it generates a
result set that is converted into HTML and saved as a file. The file itself is returned to the
client. This method is different from a dynamic HTML page, which is generated through a
script file such as ASP, ColdFusion, or JSP. With a dynamic page, a query is run against the
database for each call to the Web page and a new HTML document is generated in memory
for each client request. Both dynamic and static pages have advantages and disadvantages.
For data that does not change much, such as a phone list or monthly-summary data, a static
page is better because it eliminates the need for excessive calls to the SQL Server. For data
that changes more frequently, such as an order-status or user-feedback page, the capabilities
of a dynamic page are more appropriate.

The wizard is relatively easy to use, and you have only a few things to decide on when run-
ning it. You can allow the wizard to do basic formatting for you, or you can build a template
file using any HTML-authoring tool. The template file enables you to make a page that fits
seamlessly into the overall look and feel of the Web site. All that is necessary to make the
template file work is the inclusion of a few special tags in the HTML files. If you want to dump
the result set of a query into the HTML document as a simple HTML table, just use the tag
<%insert_data_here%> where you want the table to appear. To have a little more control
over the look of the output, use <%begindetail%> and <%enddetail%> tags, and between
them type HTML code that you want repeated for each row of output. Use the tag
<%insert_data_here%> for each column of the result set to control where they appear
in the HTML code.

The other key decision to make is how frequently the Web page will be regenerated.
Regeneration can be scheduled as a regular task, or it can occur each time the data changes.
Regeneration is no different from any other scheduled job, it simply runs the stored proce-
dure sp_runwebtask. To make the Web page refresh each time any data changes, you can
create triggers on the table that is to be monitored for changes. Then, whenever there is an
insert, update, or delete to that table, it will fire the trigger that runs the same sp_run-
webtask stored procedure that you would use to recreate the page on a schedule. The advan-
tage of triggers is that the pages are recreated immediately after the change is committed.
The disadvantage is that if numerous changes are necessary, the trigger may fire after each
change, causing the page to be recreated numerous times leading to serious performance
drag.

26549359 ch22.F 11/21/02 9:50 AM Page 620

621Chapter 22 ✦ XML and Web Publishing

Using the Web assistant does all the hard work of assembling a call to a stored procedure
with a lot of parameters. Here is a sample of the sp_makewebtask procedure to create a sim-
ple Web page:

EXECUTE sp_makewebtask
@outputfile = N’C:\SQLServerBible\Sample Databases

\CapeHatterasAdventures\CHA_Events.htm’,
@query=N’SELECT Tour.Name, Event.Code, Event.DateBegin

FROM Tour
JOIN Event
ON Tour.TourID = Event.TourID’,

@fixedfont=0,
@HTMLheader=3,
@webpagetitle=N’Cape Hatteras Adventures’,
@resultstitle=N’Tour Dates’,
@URL=N’HTTP://www.SQLServerBible.com’,
@reftext=N’www.SQLServerBible.com’,
@dbname=N’CHA2’,
@whentype=1,
@procname=N’CHA2 Web Page’,
@codepage=65001,@charset=N’utf-8’

Running the stored procedure sp_runwebtask @procname = N’CHA2 Web Page’ against
the CHA database generates an HTML page (CHA_Events.htm) as seen below in Figure 22-7.

Figure 22-7: The Web assistant generates an HTML page of data with our query results.

26549359 ch22.F 11/21/02 9:50 AM Page 621

622 Part III ✦ Data Connectivity

Summary
This chapter has briefly highlighted how SQL Server can serve data to the Web. We have
explored the use of DTDs to validate XML data as well as how to properly implement them.
We then touched on the use of style sheets to format XML data for presentation within a Web
browser.

This chapter demonstrates the power SQL Server introduces with the use of XML.
Unfortunately, due to space limitations, the chapter just scratches the surface of the vast use
of XML. To learn more about XML, I highly suggest picking up the XML Bible (John Wiley &
Sons, Inc.).

✦ ✦ ✦

26549359 ch22.F 11/21/02 9:50 AM Page 622

Administering
SQL Server

The project isn’t done when the production database goes live. A
successful database requires preventive maintenance (tune-ups)

and corrective maintenance (diligent recovery planning).

Databases are often developed without a thought to security, but
security is also a day-to-day issue, or the database is obsolete.

Part IV is about keeping the box running smooth, day after day.

✦ ✦ ✦ ✦

In This Part

Chapter 23
Configuring SQL Server

Chapter 24
Maintaining the
Database

Chapter 25
Automating Database
Maintenance with SQL
Server Agent

Chapter 26
Recovery Planning

Chapter 27
Securing Databases

✦ ✦ ✦ ✦

P A R T

IVIV

27549359 PP04.F 11/21/02 9:50 AM Page 623

27549359 PP04.F 11/21/02 9:50 AM Page 624

Configuring SQL
Server

SQL Server has a plethora of configuration options. The difficulty
in mastering them lies in the fact that they are spread across

three levels:

✦ Server-level options generally configure how the server works
with hardware and determines the database defaults.

✦ Database-level options determine the behavior of the database
and set the connection-level defaults.

✦ Connection-level options determine the current behaviors
within the connection or current procedure.

Several of the configuration options overlap or simply set the default
for the level immediately below. This chapter pulls these three config-
uration levels into a single unified understanding of how they relate
and affect each other.

Setting the Options
Whether you choose to adjust the properties from Enterprise
Manager’s graphical tool or from code is completely up to you, but
not every property is available from both Enterprise Manager and
Query Analyzer. While Enterprise Manager has the advantages of
being easy to use and walks you through easy to understand dialogs
that prompt for the possible options in a pick and choose format, it
lacks the repeatability of a T-SQL script run in Query Analyzer.

Configuring the Server
The server-level configuration options control server wide settings,
such as how SQL Server interacts with hardware, how it multi-
threads within Windows, and whether triggers are permitted to fire
other triggers. When configuring the server, keep in mind the goals of
configuration — consistency and performance.

Graphically, many of the server options may be configured within the
Server Property page, which can be open by right-clicking a server in
the console tree.

The General tab in Enterprise Manager’s SQL Server Properties
(Configure) dialog box (Figure 23-1) reports the versions and environ-
ment of the server.

2323C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Making sense of SQL
Server configuration

Setting the server-level
configuration options

Configuring the
database-level
configuration options

Configuring the
connection-level options

✦ ✦ ✦ ✦

28549359 ch23.F 11/21/02 9:50 AM Page 625

626 Part IV ✦ Administering SQL Server

Figure 23-1: Enterprise Manager’s Server
Properties — the General tab

The same information is available to code. For example, the version may be identified with
the @@Version global variable:

Select @@Version

Microsoft SQL Server 2000 - 8.00.532 (Intel X86)

Oct 5 2001 20:31:34
Copyright (c) 1988-2000 Microsoft Corporation
Developer Edition on Windows NT 5.0 (Build 2195: Service Pack 2)

Many of the configuration properties do not take effect until SQL Server is restarted. For this
reason, the Server Settings tab in the SQL Server Properties (Configure) dialog box may dis-
play either the configured values or the current running values, depending on the radio but-
ton selected at the bottom of the dialog box.

Within code, many of the server properties are set by means of the sp_configure system
stored procedure. When executed without any parameters, this procedure reports the cur-
rent settings, as in the following code (word-wrap adjusted to fit on page):

EXEC sp_configure

Result:

name minimum maximum config_value run_value
-------------- ----------- ----------- ------------ ---------
affinity mask -2147483648 2147483647 3 0
allow updates 0 1 0 0
awe enabled 0 1 0 0
c2 audit mode 0 1 0 0
cost threshold for parallelism

0 32767 5 5
cursor threshold

28549359 ch23.F 11/21/02 9:50 AM Page 626

627Chapter 23 ✦ Configuring SQL Server

-1 2147483647 -1 -1
default full-text language

0 2147483647 1033 1033
default language

0 9999 0 0
fill factor (%)0 100 0 0
index create memory (KB)

704 2147483647 0 0
lightweight pooling

0 1 1 1
locks 5000 2147483647 0 0
max degree of parallelism

0 32 0 0
max server memory (MB)

4 2147483647 128 128
max text repl size (B)

0 2147483647 65536 65536
max worker threads

32 32767 251 251
media retention

0 365 0 0
min memory per query (KB)

512 2147483647 1024 1024
min server memory (MB)

0 2147483647 16 16
nested triggers

0 1 1 1
network packet size (B)

512 65536 4096 4096
open objects 0 2147483647 0 0
priority boost 0 1 0 0
query governor cost limit

0 2147483647 0 0
query wait (s) -1 2147483647 -1 -1
recovery interval (min)

0 32767 0 0
remote access 0 1 1 1
remote login timeout (s)

0 2147483647 20 20
remote proc trans

0 1 0 0
remote query timeout (s)

0 2147483647 600 600
scan for startup procs

0 1 0 0
set working set size

0 1 1 1
show advanced options

0 1 1 1
two digit year cutoff

1753 9999 2049 2049
user connections

0 32767 0 0
user options 0 32767 0 0

28549359 ch23.F 11/21/02 9:50 AM Page 627

628 Part IV ✦ Administering SQL Server

The extended stored procedure, xp_msver, reports additional server and environment
properties:

EXEC xp_msver

Result:

Index Name Internal_Value Character_Value
------ ------------------- --------- -----------------------
1 ProductName NULL Microsoft SQL Server
2 ProductVersion 524288 8.00.532
3 Language 1033 English (United States)
4 Platform NULL NT INTEL X86
5 Comments NULL NT INTEL X86
6 CompanyName NULL Microsoft Corporation
7 FileDescription NULL SQL Server Windows NT
8 FileVersion NULL 2000.080.0532.00
9 InternalName NULL SQLSERVR
10 LegalCopyright NULL (c) 1988-2001 Microsoft

Corp. All rights
reserved.

11 LegalTrademarks NULL Microsoft(r) is a
registered trademark of
Microsoft Corporation.
Windows(TM) is a
trademark of Microsoft
Corporation

12 OriginalFilename NULL SQLSERVR.EXE
13 PrivateBuild NULL NULL
14 SpecialBuild 34865152 NULL
15 WindowsVersion 143851525 5.0 (2195)
16 ProcessorCount 1 1
17 ProcessorActiveMask 1 00000001
18 ProcessorType 586 PROCESSOR_INTEL_PENTIUM
19 PhysicalMemory 192 192 (200855552)
20 Product ID NULL NULL

The ServerProperty system function is yet another means of determining information about
the server. The advantage is that a function may be used as an expression within a select
statement. The following use of the ServerProperty function to return the SQL Server
instance edition:

SELECT ServerProperty(‘Edition’)

Result:

Developer Edition

Configuring the Database
The database-level options configure the current database’s behavior regarding ANSI compat-
ibility and recovery.

Most database options can be set in Enterprise Manager within the Database Properties page,
which may be found by means of right-clicking a database in the console tree. The Options
tab is shown in Figure 23-2.

28549359 ch23.F 11/21/02 9:50 AM Page 628

629Chapter 23 ✦ Configuring SQL Server

Figure 23-2: The Enterprise Manager’s database
properties Option tab can be used to configure the
most common database properties.

The database configuration options can be set using code and the sp_dboption system
stored procedure. When executed without any parameters, this procedure lists the available
database settings:

EXEC sp_dboption

Result:

Settable database options:

ANSI null default
ANSI nulls
ANSI padding
ANSI warnings
arithabort
auto create statistics
auto update statistics
autoclose
autoshrink
concat null yields null
cursor close on commit
dbo use only
default to local cursor
merge publish
numeric roundabort
offline
published
quoted identifier
read only
recursive triggers

28549359 ch23.F 11/21/02 9:50 AM Page 629

630 Part IV ✦ Administering SQL Server

select into/bulkcopy
single user
subscribed
torn page detection
trunc. log on chkpt.

Configuring the Connection
Many of the connection-level options configure ANSI compatibility or specific connection-per-
formance options.

Connection-level options are very limited in scope. If the option is set within an interactive
session, the setting is in force until it’s changed or the session ends. If the option is set within
a stored procedure, the setting persists only for the life of that stored procedure.

The connection-level options are typically configured by means of the set command. The fol-
lowing code configures how SQL Server handle nulls within this current session:

Set Ansi_nulls Off

Result:

The command(s) completed successfully.

Connection properties can also be checked by means of the SessionProperty function:

Select SessionProperty (‘ANSI_NULLS’)

Result:

0

Query Analyzer sets several connection options when it makes a connection to the server.
The connection defaults are found in the Tools ➪ Options menu under the Connection
Properties tab. The current connection-level options are set by means of the Query ➪ Current
Connection Properties menu command, as shown in Figure 23-3.

Figure 23-3: Query Analyzer’s Current Connection
Properties dialog can be used to view or set the
connection-level options for the current session.

28549359 ch23.F 11/21/02 9:50 AM Page 630

631Chapter 23 ✦ Configuring SQL Server

Configuration Options
Because so many similar configuration options are controlled by different commands and at
different levels (server, database, connection), this section organizes the configuration
options by topic rather than command or level.

Start/Stop-Configuration Properties
The start-up configuration properties control how SQL Server and the processes are
launched and are listed in Table 23-1.

Table 23-1: Start/Stop-Configuration Properties

Property Level* Graphic Control Code Option

AutoStart SQL Server S SQL Manager -

AutoStart SQL Server Agent S Enterprise Manager -

AutoStart MS DTC S Enterprise Manager -

Show Advanced Options S - show advanced options

Scan for startup procs S - scan for startup procs

Start-up Parameters S Em -

AutoClose D Em alter database autoclose

* The configuration level refers to Server, Database, or Connection.

In Enterprise Manager’s Server Properties, the General tab controls the start-up of three of
the SQL Server processes. SQL Server Service Manager can also set these processes, as well
as MS Search and Analysis Services, to autostart.

Start-up Parameters
The start-up parameters are similar to the parameters that are passed to a program when it is
started from the DOS command line. Besides the standard master database–location parame-
ters, the two parameters that are most useful are:

-m Starts SQL Server in single-user mode and is required to restore or
rebuild a lost master database. While the database is in single user
mode, avoid Enterprise Manager.

-x Disables tracking of CPU and cache-hit statistics for maximum
performance.

Additional start-up parameters are:

-d Used to include the full path of the Master file.

-e Used to include the full path of the Error file.

-c Starts SQL Server so that it is not running as a Windows service.

-f Used to start up with a minimal configuration.

28549359 ch23.F 11/21/02 9:50 AM Page 631

632 Part IV ✦ Administering SQL Server

-g Specifies virtual memory (in MB) available to SQL Server for extended
stored procedures.

-n Disables logging to the Windows application log.

/Ttrace# Enables trace-specific flags by trace flag number.

Start-up Stored Procedure
Two additional server properties are not exposed on Enterprise Manager’s Server Property
page but are available from code. SQL Server can be configured to scan for a start-up stored
procedure every time the SQL Server starts — similar to how Microsoft DOS operating sys-
tems scan for the autoexec.bat file when they boot up. There’s no fixed name for a start-up
procedure, and there may be multiple start-up procedures. To create a start-up stored proce-
dure, run the sp_procoption to mark a start-up stored procedure. So you can further control
the start-up procedure, the server property scan for startup procs turns the startup
procs feature on or off:

EXEC sp_configure ‘scan for startup procs’, 1
RECONFIGURE

Memory-Configuration Properties
SQL Server can either dynamically request memory from the operating system or consume a
fixed amount of memory. These settings can be configured by means of the SQL Server
Properties Memory tab, shown in Figure 23-4, or from code by means of the sp_configure
stored procedure.

The memory-configuration properties, listed in Table 23-2, control how SQL Server uses and
allocates memory.

Figure 23-4: Enterprise Manager’s SQL
Server Properties — the Memory tab

28549359 ch23.F 11/21/02 9:50 AM Page 632

633Chapter 23 ✦ Configuring SQL Server

Table 23-2: Memory-Configuration Properties

Property Level* Graphic Control Code Option

Dynamic Memory Minimum S Enterprise Manager min server memory

Dynamic Memory Maximum S Enterprise Manager max server memory

Fixed Memory Size S Enterprise Manager min server memory and
max server memory

Reserve Physical Memory S Enterprise Manager set working set size
for SQL Server

Minimum Query Memory S Enterprise Manager min memory per query

AWE Enabled S - AWE Enabled

Index Create Memory S - index create memory

Locks S - locks

Max Text Repl Size S - max text repl size

Open Objects S - open objects

* The configuration level refers to Server, Database, or Connection.

Dynamic Memory
If SQL Server is set to dynamic memory then SQL Server’s memory footprint can grow or be
reduced as needed within the minimum and maximum constraints based on the physical
memory available and the workload. SQL Server will try to maintain its requirement and 4 to
10MB extra memory. Its goal is to have enough memory available while avoiding Windows
having to swap pages from memory to the virtual-memory support file (pagefile.sys).

The minimum-memory property prohibits SQL Server from reducing memory below a certain
point and hurting performance, but it doesn’t set the initial memory footprint. The minimum
simply means that once SQL Server has reached that point, it will not reduce memory below it.

The maximum-memory setting prevents SQL Server from growing to the point where it con-
tends with the operating system, or other applications, for memory. If the maximum is set too
low performance will suffer.

Microsoft Search Engine, used by SQL Server for full-text searches, is also memory-intensive.
If you are doing a significant amount of full-text searching, be sure to leave plenty of memory
available for Search Engine. The official formula from Microsoft is: Total virtual memory -
(SQL Server maximum virtual memory + virtual memory requirements of other services) ≥ 1.5
times the physical memory. For example, for a server that has 192MB physical memory,
allowing 96MB for SQL Server and 64MB for Search Engine, the total virtual memory must be
greater than 288MB (physical memory times 1.5) plus 160MB (SQL Server and MS Search
planning memory), for a total of 448MB required virtual memory. Since the server has 192MB
of physical memory, the virtual-memory support file must be at least 252MB to meet the
requirements set by the formula. So the more physical memory in the server, the larger the
swap file required.

28549359 ch23.F 11/21/02 9:50 AM Page 633

634 Part IV ✦ Administering SQL Server

Personally, I run SQL Server configured for dynamic memory with the minimum set to 16MB
and the maximum set to the computer’s total RAM less 128MB. This reserves a minimum
amount of memory for SQL Server and permits SQL Server to grow as it sees fit, but still
reserves 128MB for Windows and prevents SQL Server from contending with Windows for
memory when running several very huge queries. Depending on your configuration, you may
want to leave more for the operating system.

Multiple SQL Server instances do not cooperate when requiring memory. In servers with mul-
tiple instances, it’s highly possible for two busy instances to contend for memory and for one
to become memory-starved. Reducing the maximum-memory property for each instance can
prevent this from happening.

From T-SQL code, the minimum- and maximum-memory properties are set by means of the
sp_configure system stored procedure. It’s an advanced option, so it can only be changed if
the show advanced options property is on:

EXEC sp_configure ‘show advanced options’, 1

EXEC sp_configure ‘min server memory’, 16

Result:

Configuration option ‘min server memory (MB)’
changed from 0 to 16.

Run the RECONFIGURE statement to install.

The following code sets the max-memory configuration:

EXEC sp_configure ‘max server memory’, 128

Result:

Configuration option ‘max server memory (MB)’
changed from 128 to 128.

Run the RECONFIGURE statement to install.

To automatically calculate the maximum memory based on the available physical memory,
the following stored procedure examines the result set of xp_msver to determine the physical
memory and then executes sp_configure:

CREATE PROC pSetMaxMemory (
@Safe INT = 64)

AS
CREATE TABLE #PhysicalMemory (
[Index] INT,
[Name] VARCHAR(50),
[Internal_Value] INT,
[Character_Value] VARCHAR(50))

DECLARE @Memory INT
INSERT #PhysicalMemory

EXEC xp_msver ‘PhysicalMemory’
SELECT @Memory =

(Select Internal_Value FROM #PhysicalMemory) - @safe
EXEC sp_configure ‘max server memory’, @Memory
RECONFIGURE

go

28549359 ch23.F 11/21/02 9:50 AM Page 634

635Chapter 23 ✦ Configuring SQL Server

EXEC pSetMaxMemory -- sets max memory to physical - 64Mb
EXEC pSetMaxMemory 32 -- sets max memory to physical - 32Mb

Reconfigure
After a configuration setting is changed with sp_configure, the reconfigure command
causes the changes to take effect. Some configuration changes only take effect after SQL
Server is restarted.

RECONFIGURE

The command(s) completed successfully.

Instead of dynamically consuming memory, SQL Server may be configured to immediately
request a fixed amount of memory from the operating system. To set a fixed amount of mem-
ory from code, set the minimum- and maximum-memory properties to the same value.

While calculating memory cost, polling the environment, and requesting memory may seem
as if they would require overhead, I do not believe you would see any performance gains from
switching from dynamic to fixed memory. The primary purpose of using fixed memory is to
configure a dedicated SQL Server computer to prevent page-swapping by combining the
fixed-memory setting with the next option presented in this chapter.

Regardless of the amount of memory SQL Server is allocated by Windows, the Windows
Memory Manager may opt to swap some of the SQL Server pages to the swap file if SQL
Server is idle. If SQL Server memory is set to a fixed size, swapping can be prevented by
means of setting Reserve Physical Memory for SQL Server to true.

The SQL Server Reserve Physical Memory property may be set in code by means of the
set working set size option along with the sp_configure system stored procedure:

EXEC sp_configure ‘set working set size’, 1
RECONFIGURE

SQL Server must restart for the Reserve Physical Memory property change to take effect.

At times, the SQL Server team amazes me with the level of detailed control it passes to DBAs.
SQL Server will allocate the required memory for each query as needed. The min memory
per query option sets the minimum threshold for the memory (KB) used by each query.
While increasing this property to a value higher than the default 1MB may provide slightly
better performance for some queries, I see no reason to override SQL Server automatic mem-
ory control and risk causing a memory shortage. The following code increases the minimum
query memory to 2MB:

EXEC sp_configure ‘min memory per query’, 2048
RECONFIGURE

Six additional memory-related properties that are unavailable from Enterprise Manager can
be configured from code.

Query Wait
If the memory is unavailable to execute a large query, SQL Server will wait for the estimated
amount of time necessary to execute the query times 25 and then time out. During this time
the query will hold any locks and an undetectable deadlock may occur. If you are seeing this

28549359 ch23.F 11/21/02 9:50 AM Page 635

636 Part IV ✦ Administering SQL Server

type of behavior, you can hard-code the query lack-of-memory timeout to a certain number of
seconds using the following code:

EXEC sp_configure ‘query wait’, 20
RECONFIGURE

The previous code specifies that every query will either start execution within 20 seconds or
time out.

AWE Memory
SQL Server is normally restricted to the standard 3-GB physical-memory limit. However, SQL
Server Enterprise Edition, when running on Windows 2000 Data Center, can use up to 64GB of
physical memory by configuring SQL Server to address the Address Windowing Extensions
(AWE) API. The AWE-enabled property turns on AWE memory addressing within SQL Server:

EXEC sp_configure ‘AWE Enabled’, 20
RECONFIGURE

Index Memory
The amount of memory SQL Server uses to perform sorts when creating an index is generally
self-configuring. However, you can control it by using sp_configure to hard-code a certain
memory footprint (KB) for index creation. For example, the following code fixes the memory
used to create an index to 8MB:

EXEC sp_configure ‘ index create memory’, 8096
RECONFIGURE

Lock Memory
Excessive locks can bring a SQL Server to its knees both in terms of waiting for locks and in
terms of the memory consumed by the locks (96 bytes per lock). By default, SQL Server will
begin with 2 percent of its memory reserved for locks and then dynamically allocate memory
up to 40 percent of SQL Server’s maximum available memory. That should be sufficient. If you
are getting errors indicating there isn’t enough memory for locks, don’t just increase the lock
property. There’s a problem in the code. The following example disables the dynamic lock-
memory allocation and allocates memory for 16,767 locks, consuming a little over 1.5MB of
memory:

EXEC sp_configure ‘locks’, 16767
RECONFIGURE

Max Open Objects
SQL Server prefers to dynamically control its memory, including the pool used to track the
current open objects (tables, views, rules, stored procedures, defaults, and triggers). Each
object takes only one allocation unit, even if it is referenced numerous times. SQL Server
reuses memory space in the object pool, but if SQL Server is complaining that it is exceeded
the number of open objects, the property can be manually configured. The following code
sets the maximum number of open objects to 16,767:

EXEC sp_configure ‘open objects’, 16767
RECONFIGURE

28549359 ch23.F 11/21/02 9:50 AM Page 636

637Chapter 23 ✦ Configuring SQL Server

Processor-Configuration Properties
You can use the processor-configuration properties (listed in Table 23-3) to control how SQL
Server makes use of symmetrical multi-processor computers for SQL Server.

Table 23-3: Processor-Configuration Properties

Property Level* Graphic Control Code Option

SMP Processors Used S Enterprise Manager affinity mask

Maximum Worker Threads S Enterprise Manager max worker threads

Boost SQL Server Priority S Enterprise Manager priority boost
on Windows

Use Windows NT Fibers S Enterprise Manager lightweight pooling

Number of processors for S Enterprise Manager max degree of parallelism
parallel execution of queries

Minimum query plan S Enterprise Manager cost threshold for
Threshold for parallel execution parallelism

Query wait S - query wait

* The configuration level refers to Server, Database, or Connection.

The Processor tab of the SQL Server Properties page (Figure 23-5), determines how SQL
Server will make use of symmetrical multi-processor computers. Most of these options are
moot in a single-processor server.

Figure 23-5: Enterprise Manager’s SQL
Server Properties — the Processor tab

28549359 ch23.F 11/21/02 9:50 AM Page 637

638 Part IV ✦ Administering SQL Server

Affinity Mask
In a multi-CPU server the operating system can move processes to CPUs as the load requires.
The SQL Server processor affinity, or the relationship between a task and a CPU, can be con-
figured on a per-CPU basis. By enabling the affinity between SQL Server and a CPU you make
that CPU available to SQL Server, but it is not dedicated to SQL Server. So while a CPU can’t
be forced to run SQL Server, it can be segmented from SQL Server.

Because of the overhead involved in switching processes, Windows performance benefits if it
can run on one CPU without SQL Server. If the server has eight CPUs or more, I might recom-
mend disabling a single CPU to free Windows processes from competing with SQL Server.

In Enterprise Manager, CPU affinity is configured by means of the checkboxes in the
Processor tab, as shown in Figure 23-5.

In code, the individual CPUs are enabled by means of setting the affinity mask bits using
sp_configure. Since 3 is 00000011 in base 2, the following code enables processors 0 and 1
in an SMP server:

EXEC sp_configure ‘affinity mask’, 3
RECONFIGURE

Max Worker Threads
SQL Server is a multi-threaded application, meaning that it can execute on multiple proces-
sors concurrently for increased performance. The threads are designed as follows:

✦ A thread for each network connection.

✦ A thread to handle database checkpoints.

✦ Multiple threads to handle user requests. When SQL Server is handling a small number
of connections, a single thread is assigned to each connection. However, as the number
of connections grows, a pool of threads handles the connections more efficiently.

Depending on the number of connections and the percentage of time those connections are
active (versus idle), making the number of worker threads less than the number of connec-
tions can force connection pooling, conserve memory, and improve performance.

From code, the maximum number of worker threads is set by means of the sp_configure
stored procedure and the max worker threads option:

EXEC sp_configure ‘max worker threads’, 64
RECONFIGURE

Priority Boost
Different processes in Windows operate at different priorities levels, ranging from 0 to 31.
The highest priorities are executed first and are reserved for the operating-system processes.
Typically Windows scheduling priority level settings for applications are 4 (low), 7 (normal),
13 (high), and 24 (real-time). By default, SQL Server installs with a Windows scheduling prior-
ity level of 7.

For single CPU servers, or systems running SQL Server along with other foreground applica-
tions, a Windows scheduling priority level of 7 is desired. Boosting the priority in this situa-
tion may cause less than smooth operations. However, for dedicated SQL Server multi-CPU

28549359 ch23.F 11/21/02 9:50 AM Page 638

639Chapter 23 ✦ Configuring SQL Server

servers, the higher Windows scheduling priority level of 13 is recommended. In code, to set
the Windows scheduling priority level to 13, the priority boost option is set to 1:

EXEC sp_configure ‘priority boost’, 1
RECONFIGURE

Lightwieght Pooling
Another useful option for servers with symmetrical multi-processing helps reduce the over-
head of frequently switching processes among the CPUs. Enabling the NT fiber threads option
creates fewer process threads, but those threads are associated with additional fibers, or
lightweight threads, that stay associated with their thread. The smaller number of threads
helps reduce process-switching and improve performance. In Enterprise Manager, this option
is referred to as Use Windows NT fibers. In code the configuration option is lightweight
pooling:

EXEC sp_configure ‘lightweight pooling’, 1
RECONFIGURE

Parallelism
The Enterprise Edition of SQL Server (and the Developer and Evaluation Editions because
they are the same edition with different licensing) will execute complex queries using several
processors in parallel instead of serially. That’s great for the user running the massive query
that aggregates every row in a 20GB database, but what about the other users who are now
waiting while one user ties up all the processors? The solution is to limit the number of pro-
cessors used in a single parallel query and to set the cost threshold (in estimated seconds)
required before SQL Server will consider the query a candidate for parallel execution.

Additional overhead is involved in generating a parallel query-execution plan, synchronizing
the parallel query, and terminating the query, so longer queries benefit the most from paral-
lelism. However, parallel queries are amazingly fast. To see if a query is using parallelism,
view the query-execution plan in Query Analyzer. A symbol shows the merger of different par-
allel query–execution threads.

My recommendation is to enable half of the available processors (remember the affinity
mask) minus one for parallel-query execution. So if the server has eight processors, and
seven are available for SQL Server, set SQL Server to use three processors for parallelism.
Since parallel queries can greatly boost performance, depending on your CPU demand, you
may want to try actually lowering the cost threshold slightly so more queries will benefit
from parallelism.

In code, query parallelism is set by means of the max degree of parallelism and cost
threshold for parallelism options. Setting max degree of parallelism to 0 enables
all available processors for parallelism.

EXEC sp_configure ‘max degree of parallelism’, 1
EXEC sp_configure ‘cost threshold for parallelism’, 1
RECONFIGURE

While these server-tuning options can affect performance, performance begins with the
database schema, queries, and indexes. No amount of server tuning can overcome poor
design and development.

28549359 ch23.F 11/21/02 9:50 AM Page 639

640 Part IV ✦ Administering SQL Server

Security-Configuration Properties
The security-configuration properties (Table 23-4) are used to control the security features of
SQL Server.

Table 23-4: Security-Configuration Properties

Property Level* Graphic Control Code Option

Security Authentication Mode S Enterprise Manager -

Security Audit Level S Enterprise Manager -

StartUp SQL Server Security Account S Enterprise Manager -

C2 Audit Mode S - C2 audit mode

* The configuration level refers to Server, Database, or Connection.

The same security-configuration options established during the installation are again pre-
sented in the Security tab of the Server Properties page (Figure 23-6), so the configuration
may be adjusted after installation. The authentication model and the SQL Server Windows
accounts are exactly the same as in the installation.

Figure 23-6: Enterprise Manager’s SQL
Server Properties — the Security tab

28549359 ch23.F 11/21/02 9:50 AM Page 640

641Chapter 23 ✦ Configuring SQL Server

Security-Audit Level
The additional option configures the level of user-login auditing performed by SQL Server.
Based on this setting, SQL Server will record every successful or failed user login attempt to
either the Windows application log or the SQL Server log.

C2 Security
When configuring SQL Server for C2 level security, enabling C2 Audit Mode property ensures
that SQL Server will refuse to continue if it is unable to write to the security-audit log. The
property can be set with the following code and may not be set from within Enterprise
Manager:

EXEC sp_configure ‘C2 audit mode’, 1
RECONFIGURE

For more about locking down SQL Server’s security, refer to Chapter 27, “Securing
Databases.”

Connection-Configuration Properties
The connection-configuration properties (Table 23-5) are used to set connection options in
SQL Server.

Table 23-5: Connection-Configuration Properties

Property Level* Graphic Control Code Option

Max Concurrent User Connections S Enterprise Manager user connections

Default Connections Options S Enterprise Manager several user options

Permit Remote Server Connections S Enterprise Manager remote access

Remote Query Timeout S Enterprise Manager remote query timeout

Enforce DTC S Enterprise Manager remote proc trans

Network Packet Size S - network packet size

Remote Login Timeout S - remote login timeout

* The configuration level refers to Server, Database, or Connection.

The Connections tab (Figure 23-7), sets connection-level properties including defaults, num-
ber of connections permitted, and timeout settings.

Cross-
Reference

28549359 ch23.F 11/21/02 9:50 AM Page 641

642 Part IV ✦ Administering SQL Server

Figure 23-7: Enterprise Manager’s SQL
Server Properties — the Connections tab

Maximum Concurrent User Connections
The Maximum concurrent user connections option should probably not be set to the
number of users, because applications often open several connections to SQL Server. For
example, ODBC- and ADO-based applications will open a connection for every connection
object in code — possibly as many as one for every form, list box, and/or combo box. Access
tends to open at least two connections.

The purpose of this option is to limit the number of connections in a memory-starved server
because each connection consumes 40KB. For most servers the default of 0, or unlimited con-
nections, is appropriate.

The maximum number of user connections may be set within code by means of the user
connections option:

EXEC sp_configure ‘user connections’, 0
RECONFIGURE

To determine the current setting in code, examine the value in the @@maxconnections global
variable:

SELECT @@MAX_CONNECTIONS

Remote Access
The remote-server’s connection properties are used for distributed queries — referencing
data from one SQL Server in another. By default, this feature is enabled. To disallow dis-
tributed queries from calling the server, disable the checkbox, or set the remote access
option to 0:

EXEC sp_configure ‘remote access’, 0
RECONFIGURE

28549359 ch23.F 11/21/02 9:50 AM Page 642

643Chapter 23 ✦ Configuring SQL Server

Remote Query Timeout
The remote query timeout option sets the number of seconds SQL Server will wait on a
remote query before assuming it failed and generating a timeout error. The default value of 10
minutes seems sufficient for executing a remote query:

EXEC sp_configure ‘remote query timeout’, 600
RECONFIGURE

Enforce DTC
When updating multiple servers within a transaction (logical unit of work), SQL Server can
enforce dual-phase commits using the Distributed Transaction Coordinator.

From code, the Enforce DTC property is enabled by means of setting the remote proc
trans option to 1:

EXEC sp_configure ‘remote proc trans’, 1
RECONFIGURE

Transactions are explained in Chapter 11, “Transactional Integrity.”

Network-Packet Size and Timeout
Two connection-related properties are available only through code. The network-packet size
may be changed from its default of 4KB by means of the network packet size option. The
following code sets the network-packet size to 2KB:

exec sp_configure ‘network packet size’, 2048
RECONFIGURE

Very rarely should the network-packet size need reconfiguring. Consider this property a fine-
tuning tool and use it only if the data being passed tends to greatly exceed the default size,
such as large text or image data.

The remote login timeout property is also unavailable from Enterprise Manager. This
property sets the maximum wait time to log into a remote data source. The default of 20 can
be changed to 30 with the following code:

EXEC sp_configure ‘remote login timeout’, 30
RECONFIGURE

Max Large-Data-Replication Size
Although you can’t configure it in Enterprise Manager, you can use the following code to con-
figure the maximum size of the text and image data that may be sent via replication:

EXEC sp_configure ‘max text repl size’, 16767
RECONFIGURE

Server-Configuration Properties
The server-configuration properties (Table 23-6) enable you to set server-wide performance
and display properties in SQL Server.

The Server Settings tab of the Enterprise Manager’s Server Properties page (Figure 23-8) is
best left with the default values.

Cross-
Reference

28549359 ch23.F 11/21/02 9:50 AM Page 643

644 Part IV ✦ Administering SQL Server

Table 23-6: Server-Configuration Properties

Property Level* Graphic Control Code Option

Default Language for Server Messages S Enterprise Manager default language

Allow Changes to System Tables S Enterprise Manager allow updates

Query Cost Governor S Enterprise Manager query governor cost limit

Two-digit Year Interpreter S Enterprise Manager two-digit year cutoff

Default Full-text Language S - default full-text language

* The configuration level refers to Server, Database, or Connection.

Figure 23-8: Enterprise Manager’s SQL
Server Properties — the Server Settings tab

Default Message Language
The default language for server user messages can be set in Enterprise Manager as well as in
code:

EXEC sp_configure ‘default language’, 0
RECONFIGURE

Full-Text Search Default Language
The default language for full-text searches can only be set from within code:

EXEC sp_configure ‘default full-text language’, ‘English’
RECONFIGURE

Allow Changes to System Tables
The “Allow modifications to be made to the system catalogs” server-behavior option enables
direct modifications to system tables; it should be avoided. I can think of no system-table

28549359 ch23.F 11/21/02 9:50 AM Page 644

645Chapter 23 ✦ Configuring SQL Server

value that should be directly manipulated, although any change is best made through
Microsoft’s system stored procedures, or through standard SQL alter commands. The
sp_configure version of this option is allow updates.

Query Governor Cost Limit
In the same way that a small gas-engine governor controls the top speed of the engine, the
query governor limits the maximum number of queries SQL Server will perform according to
the estimated query cost. If the user submits a query that exceeds the limit set by the query
governor, SQL Server will not execute the query.

The following code sets the max-query plan to 10 seconds for the entire server:

EXEC sp_configure ‘query governor cost limit’, 10
RECONFIGURE

But in code, the query governor can be changed for the current connection. The following
code disables the governor within the scope of the current connection/batch:

SET QUERY_GOVERNOR_COST_LIMIT 0

Personally, I don’t use the query governor to limit user-query execution. However, if you have
a smoothly-running database with all application queries running in under a second, and users
are now submitting poorly written ad hoc queries that consume unreasonable resources, using
the query governor might be a good way to prevent those queries from executing.

Two-Digit-Year Cutoff
The two-digit-year support helps handle Y2K problems by converting a two-digit year to a
four-digit year based on the values supplied. If the two-digit year falls after the first value
(default 1959), it is interpreted as being in the twentieth century. If it falls before the second
value (default 2049), it is interpreted as being in the twenty-first century. So, 01/01/69
remains 01/01/1969, and 01/01/14 is interpreted as 01/01/2014. The following example
sets the two-digit-year cutoff to 41:

EXEC sp_configure ‘two digit year cutoff’, 2041
RECONFIGURE

Index-Configuration Properties
The index statistics and fill-factor options (Table 23-7) establish the defaults for new indexes
in SQL Server.

Table 23-7: Index-Configuration Properties

Property Level* Graphic Control Code Option

Auto Create Statistics D Enterprise Manager auto_create_statistics

Auto Update Statistics D Enterprise Manager auto_update_statistics

Index Fill Factor S Enterprise Manager fill factor

* The configuration level refers to Server, Database, or Connection.

These options do not alter any existing indexes; they only set the defaults for new indexes.

28549359 ch23.F 11/21/02 9:50 AM Page 645

646 Part IV ✦ Administering SQL Server

The details of index creation are discussed in Chapter 5, “Implementing the Physical
Database Schema.” Index management is covered in Chapter 24, “Maintaining the Database.”
And techniques for tuning indexes are explained in Chapter 28, “Advanced Performance.”

Configuring Database Auto Options
Four database-configuration options determine the automatic behaviors of SQL Server
databases (Table 23-8). In Enterprise Manager they are all set in the Options tab of the
Database Properties page.

Table 23-8: Index-Configuration Properties

Property Level* Graphic Control Code Option

Auto Close D Enterprise Manager auto_close

Auto Shrink D Enterprise Manager auto_shrink

Auto Create Statistics D Enterprise Manager auto _create_statistics

Auto Update Statistics D Enterprise Manager auto _ update _ statistics

* The configuration level refers to Server, Database, or Connection.

Auto Close
Auto close directs SQL Server to release all database resources (cached data pages, compiled
stored procedures, saved query execution plans) when all users exit and all processes are
complete. This frees memory for other databases. While this option will improve perfor-
mance slightly for other databases, reloading the database will take longer, as will recompil-
ing the procedures and recalculating the query-execution plans, once the database is again
opened by a user.

Personal Edition and Desktop Edition install this option enabled as the default. All other edi-
tions set auto_close off as the default.

If the database is used regularly, do not enable auto close. If the database is used very occa-
sionally, then auto close might be appropriate to save memory.

Many front-end client applications repeatedly open and close a connection to SQL Server.
Setting auto close on in this type of environment is a sure way to kill SQL Server performance.

To set auto close in code:

ALTER DATABASE database SET AUTO_CLOSE ON | OFF

Auto Shrink
If the database has more than 25 percent free space, this option causes SQL Server to per-
form a shrink database operation. This option also causes the transaction log to shrink after
it’s backed up.

Caution

Cross-
Reference

28549359 ch23.F 11/21/02 9:50 AM Page 646

647Chapter 23 ✦ Configuring SQL Server

Performing a file shrink is a costly operation because several pages must be moved within
the file. This option also regularly checks the status of the data pages to determine whether
they can be shrunk.

The default setting is on for Desktop and Personal edition; off for Standard and Enterprise.

Shrinking the data and transaction log files is discussed in detail in Chapter 26, “Recovery
Planning.”

To set the auto shrink option in code, do the following:

ALTER DATABASE database SET AUTO_SHRINK ON | OFF

Auto Create Statistics
Data-distribution statistics are a key means of query execution plans. This option directs SQL
Server to automatically create statistics for any columns for which statistics could be useful.

To set auto create statistics in code, do the following:

ALTER DATABASE database SET AUTO_CREATE_STATISTICS ON | OFF

Auto Update Statistics
Out-of-date data-distribution statistics may cause more harm than good. This option keeps
the statistics automatically updated. The default for this option is set to on.

To set the auto update statistics option in code, do the following:

ALTER DATABASE database SET AUTO_UPDATE_STATISTICS ON | OFF

Query and index tuning rely heavily on data-distribution statistics. The strategies involving
statistics are explained in Chapter 28, “Advanced Performance.”

Cursor-Configuration Properties
The cursor-configuration properties (Table 23-9) are used to control cursor behavior in SQL
Server.

Table 23-9: Cursor-Configuration Properties

Property Level* Graphic Control Code Option

Cursor Threshold S - cursor threshold

Cursor Close on Commit SDC - cursor_close_on_commit

Cursor Default D - cursor default

* The configuration level refers to Server, Database, or Connection.

Cross-
Reference

Cross-
Reference

28549359 ch23.F 11/21/02 9:50 AM Page 647

648 Part IV ✦ Administering SQL Server

Cursor Threshold
The cursor threshold property sets the number of rows in a cursor set before the cursor
keysets are generated asynchronously. Synchronous keysets are faster than other cursor
types, but they consume more memory. Every cursor keyset will be generated asyn-
chronously if the cursor threshold property is set to 0.

The default of -1 causes all keysets to be generated synchronously, which is OK for smaller
keysets. For larger cursor keysets this may be a problem. When you are working with cursors,
the following code will permit synchronous cursor keysets for cursors of up to 10,000 rows:

To set the cursor threshold in code, do the following:

EXEC sp_configure ‘cursor threshold’, 5000
RECONFIGURE WITH OVERRIDE

Cursor Close on Commit
This property will close an open cursor after a transaction is committed when set to on. If it
is set to off, cursors will remain open across transactions until a close cursor statement is
issued.

To set cursor close on commit in code, do the following:

SET CURSOR_CLOSE_ON_COMMIT ON

Cursor Default
This property will make each cursor local to the object that declared it when set to local.
When it is set to global, the scope of the cursor can be extended outside the object that cre-
ated it.

To set cursor default in code, do the following:

ALTER DATABASE database SET CURSOR_DEFAULT LOCAL

SQL ANSI–Configuration Properties
The SQL ANSI–configuration properties (Table 23-10) are used to set ANSI behavior in SQL
Server.

The connection default properties (there are several) affect the environment of batches exe-
cuted within a connection. Most of the connection properties change SQL Server behavior so
that it complies with the ANSI standard. Because so few SQL Server installations modify these
properties, it’s much safer to modify them in code at the beginning of a batch if the code
depends on a non-Microsoft behavior than to set them at the server or database level.

For example, T-SQL requires a begin transaction to start a logical unit of work. Oracle
assumes a begin transaction is at the beginning of every batch. If you prefer to work with
implicit (non-stated) transactions, you’re safer if you set the implicit transaction connection
property at the beginning of your batch then if you set it in the server defaults. The server
default will affect every batch and may break Microsoft-standard T-SQL code. For these rea-
sons, I recommend leaving the connection properties at the default values and setting them
in code, if needed.

The SQL ANSI-configuration settings are set by means of the alter database command. For
backwards compatibility, the sp_dboption is also available.

28549359 ch23.F 11/21/02 9:50 AM Page 648

649Chapter 23 ✦ Configuring SQL Server

Table 23-10: SQL ANSI–Configuration Properties

Property Level* Graphic Control Code Option

ANSI Defaults C - ansi defaults

ANSI Null Behavior SDC Enterprise Manager ansi_null_Default

ANSI Nulls SDC Enterprise Manager ansi_nulls

ANSI Padding SC - ansi_padding

ANSI Warnings SDC - ansi_warnings

Arithmetic Abort SC - arithabort

Arithmetic Ignore SC - arithignore

Numeric Round Abort D - numeric_roundabort

Null Concatenation DC - concat_null_yields_null

Use Quoted Identifier D - quoted_identifier

ANSI SQL 92 Compatibility Flag C - fips_flagger

* The configuration level refers to Server, Database, or Connection.

ANSI Null Default
The ansi_null_default setting controls the database’s default nullability. This default set-
ting is used when a null or not_null is not explicitly specified when creating a table.

To set the database ansi_null_default in code, do the following:

ALTER DATABASE database SET ANSI_NULL_DEFAULT ON | OFF

ANSI NULLs
The ansi_nulls database setting is used to determine comparison evaluations. When the
setting is set to on any comparison to a null value will evaluate to null. When the setting is set
to off, then the comparison of two null values will evaluate to true.

To set ANSI nulls in code, do the following:

ALTER DATABASE database SET ANSI_NULLS ON | OFF

ANSI Padding
The ansi_padding database setting affects only newly created columns. When this setting is
set to on, data stored in variable data types will retain any padded zeros to the left of variable
binary numbers, and any padded spaces to the right or left of variable-length characters.
When it is set to off, all leading and trailing blanks and zeros are trimmed.

To set ANSI padding in code, do the following:

ALTER DATABASE database SET ANSI_PADDING ON | OFF

28549359 ch23.F 11/21/02 9:50 AM Page 649

650 Part IV ✦ Administering SQL Server

ANSI Warnings
The ansi_warnings database setting is used to handle ANSI errors and warnings. When this
setting is off, all errors, such as null values in aggregate functions and divide-by-zero errors,
are suppressed. When the setting is on, then the warnings and errors will be raised.

To set ANSI warnings in code, do the following:

ALTER DATABASE database SET ANSI_WARNINGS ON | OFF

Arithmetic Abort
The arithabort database setting, when set to on, will abort the data process if an arithmetic
error occurs, such as data overflow or divide-by-zero. If the setting is set to off, only a warn-
ing message is passed if an arithmetic error occurs, and the data process is able to proceed.

To set arithmetic abort in code, do the following:

ALTER DATABASE database SET ARITHABORT ON | OFF

Numeric Round Abort
The numeric_roundabort database setting is used to control the behavior of numeric deci-
mal-precision-rounding errors in process. If the setting is set to on, the process will abort if
the numeric-decimal precision is lost in an expression value. When it is set to off, the pro-
cess will proceed without error, and the result will be rounded down to the precision of the
object the number is being stored in.

To set numeric round abort in code, do the following:

ALTER DATABASE database SET NUMERIC_ROUNDABORT ON | OFF

Concatination Null Yields Null
The concat_null_yields_null database setting is used to control the behavior of the resul-
tant when concatenating a string with a null. If the setting is set to on, any string concate-
nated with a null will result in a null. If it is set to off, any string concatenated with a null
will result in the original string, ignoring the null.

To set numeric round abort in code, do the following:

ALTER DATABASE database SET CONCAT_NULL_YIELDS_NULL ON | OFF

Use Quoted Identifier
The quoted_identifier database setting enables you to refer to an identifier, such as a col-
umn name, by enclosing it within double quotes. When this database setting is set to on, iden-
tifiers can be delimited by double quotation marks. When it is set to off, identifiers cannot
be placed in quotation marks and must not be keywords.

ALTER DATABASE database SET QUOTED_IDENTIFIER ON | OFF

The default is off. This option must be on to create or modify indexed views or indexes on cal-
culated columns.

28549359 ch23.F 11/21/02 9:50 AM Page 650

651Chapter 23 ✦ Configuring SQL Server

Trigger Configuration Properties
The trigger configuration properties (Table 23-11) are used to control trigger behavior in SQL
Server.

Table 23-11: Trigger Configuration Properties

Property Level* Graphic Control Code Option

Allow Nested Triggers S Enterprise Manager nested triggers

Recursive Triggers D Enterprise Manager recursive triggers

* The configuration level refers to Server, Database, or Connection.

Trigger behavior can be set at both the server and database levels.

Nested Triggers
Triggers can be nested by means of being called in a recursive hierarchy up to a maximum of
32 levels. This is a server-level configuration setting.

To set nested triggers in code, do the following:

EXEC sp_configure ‘nested triggers’, 1
RECONFIGURE

Recursive Triggers
A trigger is a small stored procedure that is executed upon an insert, update, or delete
operation on a table. If the code in the trigger again inserts, updates, or deletes the same
table, the trigger causes itself to be executed again. This recursive behavior is enabled or dis-
abled by the recursive trigger database option.

Nested triggers, a server property, and recursive triggers (a database property) are often con-
fused with each other. Refer to Chapter 15, “Implementing Triggers,” for the complete expla-
nation, including explanations of how triggers can call other triggers and how this server
property controls trigger behavior.

The default is off. Nested triggers, a related option, is a server option. To set the option in T-
SQL code, do the following:

ALTER DATABASE database SET RECURSIVE_TRIGGERS ON | OFF

Cross-
Reference

28549359 ch23.F 11/21/02 9:50 AM Page 651

652 Part IV ✦ Administering SQL Server

Database-State-Configuration Properties
The database state configuration properties (Table 23-12) are available in SQL Server. These
configurations are mostly used when a DBA is performing maintenance on the database.

Table 23-12: Database-State-Configuration Properties

Property Level* Graphic Control Code Option

Database Off-Line D - offline

Read-Only D Enterprise Manager read_only

Restricted Access — D Enterprise Manager restricted_user
Members of db_owner,
dbcreator, or sysadmin

Restricted Access — Single user D Enterprise Manager single_user

Restricted User — Disabled D Enterprise Manager multi_user

Compatibility Level D Enterprise Manager compatibility

* The configuration level refers to Server, Database, or Connection.

The state of the database can also be set by means of the alter database command. The
sp_dboption is also available for backward compatibility.

Database-Access Level
The database-access-configuration options are used to set the state of the database. When
the database is offline, no access to the database is allowed.

To set a database to an offline state in code, do the following:

ALTER DATABASE database SET OFFLINE

The read_only database-state settings are used to allow only selects from the database.
read_only cannot take effect if any users are in the database. To reset the database to a nor-
mal read-and-write state the read_write database setting is used.

To set a database to a read_only state in code, do the following:

ALTER DATABASE database SET READ_ONLY

The database restricted access database state settings are also available. The three restricted
access levels are single_user, restricted_user, and multi_user states. These settings
control which users are allowed to access the database. The single_user setting is best
used when you are doing database maintenance. The restricted_user setting only allows
access to the database to those users in the db_owner, dbcreator, and sysadmin roles. The
multi_user setting is used to set the database in the normal operating state.

To set the database restricted access state in code, do the following:

ALTER DATABASE database SET SINGLE_USER

28549359 ch23.F 11/21/02 9:50 AM Page 652

653Chapter 23 ✦ Configuring SQL Server

Compatability Level
In SQL Server, the database-compatibility level can be set from 60 (SQL Server version 6.0) to
80 (SQL Server 2000). Setting the database-compatibility level to a level lower than 80 may be
necessary if you are upgrading the database engine and still need to maintain the behavior of
an earlier version of SQL Server.

To set compatibility level in code, do the following:

EXEC sp_dbcmptlevel database, 80

Recovery-Configuration Properties
The recovery-configuration properties (Table 23-13) are used to set recovery options in SQL
Server.

Table 23-13: Recovery-Configuration Properties

Property Level* Graphic Control Code Option

Recovery Model D Enterprise Manager alter database recovery

Torn Page Detection D Enterprise Manager alter database torn_page_
detection

Backup Timeout S - -

Media Retention S - media retention

Recovery Interval S - recovery interval

* The configuration level refers to Server, Database, or Connection.

The recovery options determine how SQL Server handles transactions and the transaction
log, and how the transaction log is backed up.

Recovery Model
SQL Server 2000 uses a recovery model to configure several settings that work together to
control how the transaction log behaves regarding file growth and recovery possibilities. The
three recovery model options are:

✦ Simple — The transaction log contains only transactions that are not yet written to the
data file. This option provides no up-to-the-minute recovery.

✦ Bulk-Logged — The transaction log contains all DML operations, but bulk insert opera-
tions are only marked and not logged.

✦ Full — The transaction log contains all changes to the data file. This option provides
the greatest recovery potential.

Chapter 26, “Recovery Planning,” focuses on recovery planning and operations in detail.

The recovery option can be set in code by means of the set recovery option.

Cross-
Reference

28549359 ch23.F 11/21/02 9:50 AM Page 653

654 Part IV ✦ Administering SQL Server

Torn-Page Detection
Even though SQL Server works with 8KB data pages, the operating system I/O writes in 512-
byte sectors. So it’s possible that a failure might occur in the middle of a data-page write,
causing some of the 512-byte sectors to be written and some not written.

In keeping with the ACID properties of the database, the torn-page detection option instructs
SQL Server to toggle a bit on each 512-byte sector with each write operation. If all the sectors
were updated, all the torn-page detection bits should be identical. If, upon recovery, any of
the bits are different, SQL Server can detect the torn-page condition and mark the database
as suspect.

Some argue that this option is not necessary if the server has battery backup and the disk
subsystem has battery backup on the cache, but I still use it.

The additional minor recovery options (back-up timeout, media retention, and recovery
interval) are all discussed in Chapter 26, “Recovery Planning.”

Summary
Configuration options are important for compatibility, performance tuning, and controlling
the connection. The configuration options are set at the server, database, and connection
level. Most of the options can be set by means of Enterprise Manager’s Database Properties
page; nearly all can be configured with code.

Continuing with SQL Server–administration tasks, the next chapter focuses on maintaining
the databases with database-consistency checks.

✦ ✦ ✦

Cross-
Reference

28549359 ch23.F 11/21/02 9:50 AM Page 654

Maintaining the
Database

The Database Consistency Checker (DBCC) commands are at the
heart of database maintenance, even since the earliest versions

of SQL Server. However, thanks to Microsoft’s zero-maintenance ini-
tiative, SQL Server 2000 is now easier to maintain than ever before.
Not only are many of the traditional database maintenance duties no
longer required, but the Database Maintenance Plan Wizard can set
up a custom set of SQL Server Agent jobs that execute an excellent
database maintenance plan.

DBCC Commands
Microsoft SQL Server’s primary command for database maintenance
is the Database Consistency Checker (DBCC) command and its 34
options.

The first DBCC command to become familiar with is the DBCC help
command, which returns the syntax with all the options for any DBCC
command:

DBCC Help (‘CheckDB’)

Result:

CheckDB [(‘database_name’
[, NOINDEX | REPAIR])]
[WITH NO_INFOMSGS[, ALL_ERRORMSGS]
[, PHYSICAL_ONLY]
[, ESTIMATEONLY][, TABLOCK]]

DBCC execution completed. If DBCC printed
error messages,contact your system
administrator.

All DBCC commands report their activity or errors found, and then
conclude with the standard execution-completed statement, includ-
ing the puzzling request to report any error to the system administra-
tor. You are the database pro. If you’re running DBCC, you’re the best
person to handle it.

2424C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using SQL Server’s
Database Consistency
Checker (DBCC)

Creating database
maintenance plans

✦ ✦ ✦ ✦

29549359 ch24.F 11/21/02 9:50 AM Page 655

656 Part IV ✦ Administering SQL Server

Several obsolete DBCC commands and options are included for backward compatibility only.
These are not included in this chapter.

Database Integrity
DBCC CheckDB performs several consistency checks on the internal physical structure of the
database. It’s critical for the health of the database that the physical structure is correct.
DBCC CheckDB checks things like index pointers, data-page offsets, the linking between data
pages and index pages, and the structural content of the data and index pages. If a hardware
hiccup has left a data page half-written, DBCC CheckDB is the best means of detecting the
problem:

DBCC CheckDB (‘OBXKites’)

Result (abridged):

DBCC results for ‘OBXKites’.
DBCC results for ‘sysobjects’.
There are 114 rows in 2 pages for object ‘sysobjects’.
DBCC results for ‘sysindexes’.
There are 77 rows in 3 pages for object ‘sysindexes’.
...
DBCC results for ‘ProductCategory’.
There are 8 rows in 1 pages for object ‘ProductCategory’.
DBCC results for ‘Product’.
There are 55 rows in 1 pages for object ‘Product’.
CHECKDB found 0 allocation errors
and 0 consistency errors in database ‘OBXKites’.

DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

Two options simply determine which messages are reported without altering the functional-
ity of the integrity check: all_errormsgs and no_infomsgs. The estimate_only option
returns the estimated size of the tempdb required by CheckDB.

If the database is large, the noindex option can be used to skip checking the integrity of all
user-table non-clustered indexes. For additional time savings, the Physical_Only option per-
forms only the most critical checks on the physical structure of the pages. Use these options
only if time prevents a complete CheckDB, or the indexes are about to be rebuilt.

Repairing the Database
If an error is found, DBCC can attempt to repair it. This is a separate operation from the nor-
mal integrity checks because the database must be placed in single-user mode with sp_dbop-
tion command before a DBCC CheckDB can be executed with the Repair_Rebuild
option.

EXEC sp_dboption OBXKites, ‘Single_user’, ‘True’
DBCC CheckDB (‘OBXKites’, Repair_Rebuild)

Note

29549359 ch24.F 11/21/02 9:50 AM Page 656

657Chapter 24 ✦ Maintaining the Database

DBCC offers three repair modes, each performing a more radical surgery on the internal
structure than the last:

✦ Repair_Fast— The simplest repair mode repairs non-clustered index keys and does
not touch the data pages.

✦ Repair_Rebuild— The mid-level repair method performs a complete check and
rebuild of all non-clustered indexes and index pointers. Again, this method doesn’t
write to any data pages.

✦ Repair_Allow_Data_Loss— The most severe option performs all the index repairs
and also rebuilds the data-page allocations and pointers, and removes any corruption
found in the data pages. Because it updates the data-page structure, some data loss is
possible.

Run a DBCC CheckDB every day and after any hardware malfunction. If an error is detected,
run the Repair_Rebuild repair mode to attempt to repair the database before using the
Repair_allow_data_loss option to perform a full data-page repair.

Multi-User Concerns
Improved with SQL 2000, DBCC CheckDB can now be executed while users are in the
database, and it will multithread using all CPUs. However, CheckDB is very processor and disk
intensive and is best to run while the database has the fewest users.

DBCC CheckDB will normally use schema locks while it is checking the database if DBCC is
run while users are in the database. The TabLock option reduces the lock granularity to only
a table-shared lock. DBCC CheckDB will run less efficiently, but the database concurrency will
be higher, thus allowing users to perform their work:

DBCC CheckDB (‘OBXKites’) With TabLock

Object-Level Validation
DBCC CheckDB performs a host of database structural-integrity checks. It’s possible to run
these checks individually. As an advantage, each of these commands provides more detailed
information about its specific database object. For that reason, it’s best to run DBCC CheckDB
for the daily database-maintenance plan and use these object specific versions for debugging.

If the database requires repair, always use the full CheckDB over one of the lesser versions.

✦ DBCC CheckAlloc (‘database’)— A subset of CheckDB that checks the physical
structure of the database. The report is very detailed, listing the extent count (64KB or
eight data pages) and data-page usage of every table and index in the database.

✦ DBCC CheckFileGroup (‘filegroup’)— Similar to a CheckDB but for a specific file-
group only.

✦ DBCC CheckTable (‘table’)— Performs multiple parallel checks on the table.

✦ DBCC CleanTable (‘database’, table’)— Reclaims space from a varchar, nvar-
char, text, or ntext column that was dropped from the table. This option actually
updates the database and is not included in CheckDB unless the maximum-repair
option is being used. Therefore CleanTable might be a useful option to include in the
daily maintenance plan if the database experiences regular text updates.

29549359 ch24.F 11/21/02 9:50 AM Page 657

658 Part IV ✦ Administering SQL Server

Data Integrity
Above the physical-structure layer of the database is the data layer, which can be verified by
the following DBCC options. These three data-integrity DBCC commands are not automati-
cally executed by the DBCC CheckDB command. They should be executed independently.

✦ DBCC CheckCatalog (‘database’) checks the integrity of the system tables within a
database, ensuring referential integrity among tables, views, columns and data types.
While it will report any errors, under normal conditions no detailed report is returned.
DBCC CheckCatalog won’t repair any errors. If an error is found, we recommend
rebuilding the table or database from a script and moving any data that is still recover-
able from the old table to the new table. If no errors are found, nothing of interest is
reported.

✦ DBCC CheckConstraints (‘table’,’constraint’) examines the integrity of a spe-
cific constraint, or all the constraints for a table. It essentially generates and executes a
query to verify each constraint, and reports any errors found. As with the
CheckCatalog, if no issues are detected, nothing is reported.

✦ DBCC CheckIdent (‘table’) verifies the consistency of the current identity-column
value and the identity column for a specific table. If a problem exists, the next value for
the identity column is updated to correct any error. If the identity column is broken,
the new identity value will violate a primary key or unique constraint and new rows
cannot be added to the table.

The code below demonstrates the usage of the DBCC CheckIdent command:

Use CHA2
DBCC CheckIdent (‘Customer’)

Result:

Checking identity information:
current identity value ‘127’, current column value ‘127’.

DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

Index Maintenance
Indexes provide the performance bridge between the data and SQL queries. Because of data
inserts and updates, indexes fragment, the data-distribution statistics become out of date,
and the fill factor of the pages can be less than optimal. Index maintenance is required to
combat these three results of normal wear and tear and to prevent performance reduction.

Chapter 5, “Implementing the Physical Database Schema,” contains information on index
creation. Chapter 28, “Advanced Performance,” covers index design and tuning.

Database Fragmentation
As data is inserted into the data pages and index pages, the pages fill to 100 percent. At that
point SQL Server performs a page split, creating two new pages with about 50 percent page
density each. While this solves the individual page problem, the internal database structure
can become fragmented.

Cross-
Reference

29549359 ch24.F 11/21/02 9:50 AM Page 658

659Chapter 24 ✦ Maintaining the Database

To demonstrate the DBCC commands that affect fragmented tables and indexes, a table large
enough to become fragmented is required. The following script builds a suitable table and a
non-clustered index. The clustered primary key is a GUID, so row insertions will occur
throughout the table, generating plenty of good fragmentation.

USE Tempdb

CREATE TABLE Frag (
FragID UNIQUEIDENTIFIER
PRIMARY KEY CLUSTERED DEFAULT NewID(),

Col1 INT,
Col2 CHAR(200),
Created DATETIME DEFAULT GetDate(),
Modified DATETIME DEFAULT GetDate()
)

CREATE NONCLUSTERED INDEX ix_col
ON Frag (Col1)

The following stored procedure will add one hundred thousand rows each time it’s executed:

CREATE PROC Add100K
as
set nocount on
DECLARE @X INT
SET @X = 0
WHILE @X < 100000
BEGIN
INSERT Frag (Col1,Col2)
VALUES (@X, ‘sample data’)

SET @X = @X + 1
END

go

The following batch calls Add100K several times and populates the Frag table:

EXEC Add10K
EXEC Add10K
EXEC Add10K
EXEC Add10K
EXEC Add10K

DBCC ShowContig (table, index) reports the fragmentation details and the density for a
given table or index. With half a million rows, the Frag table is very fragmented and most
pages are slightly more than half full, as the following command shows:

DBCC ShowContig (frag) WITH ALL_INDEXES

In the following result, Index 1 is the clustered primary-key index, so it’s also reporting the
data-page fragmentation. Index 2 is the non-clustered index.

DBCC SHOWCONTIG scanning ‘Frag’ table...
Table: ‘Frag’ (1977058079); index ID: 1, database ID: 2
TABLE level scan performed.

29549359 ch24.F 11/21/02 9:50 AM Page 659

660 Part IV ✦ Administering SQL Server

- Pages Scanned................................: 22015
- Extents Scanned..............................: 2769
- Extent Switches..............................: 22008
- Avg. Pages per Extent........................: 8.0
- Scan Density [Best Count:Actual Count].......: 12.50%

[2752:22009]
- Logical Scan Fragmentation: 49.73%
- Extent Scan Fragmentation: 12.53%
- Avg. Bytes Free per Page.....................: 2531.6
- Avg. Page Density (full).....................: 68.72%

DBCC SHOWCONTIG scanning ‘Frag’ table...
Table: ‘Frag’ (1977058079); index ID: 2, database ID: 2
LEAF level scan performed.
- Pages Scanned................................: 2757
- Extents Scanned..............................: 348
- Extent Switches..............................: 2725
- Avg. Pages per Extent........................: 7.9
- Scan Density [Best Count:Actual Count].......: 12.66%

[345:2726]
- Logical Scan Fragmentation: 47.99%
- Extent Scan Fragmentation: 99.71%
- Avg. Bytes Free per Page.....................: 3380.7
- Avg. Page Density (full).....................: 58.23%

DBCC IndexDefrag defragments the index pages of both clustered and non-clustered
indexes. It will organize the nodes for faster performance, compact the index, and reestablish
the fill factor for an index.

DBCC IndexDefrag (DatabaseName, TableName, IndexName)

Performing the DBCC IndexDefrag operation is similar to rebuilding an index, with the dis-
tinct advantage that defragmenting an index is performed in a series of small transactions
that do not block users from performing inserts and updates.

The next two commands defrag both indexes:

DBCC IndexDefrag (‘Tempdb’, ‘Frag’, ‘PK_Frag’)

Result:

Pages Scanned Pages Moved Pages Removed
------------- ----------- -------------
22009 18374 3633

DBCC IndexDefrag (‘Tempdb’, ‘Frag’, ‘ix_col’)

Result:

Pages Scanned Pages Moved Pages Removed
------------- ----------- -------------
2753 1700 1052

29549359 ch24.F 11/21/02 9:50 AM Page 660

661Chapter 24 ✦ Maintaining the Database

A DBCC ShowContig command examines the index structure after the defragmenting of the
index. Both the logical-fragmentation and page-density problems created by the insertion of
half a million rows are resolved:

DBCC ShowContig (frag) WITH ALL_INDEXES

Result:

DBCC SHOWCONTIG scanning ‘Frag’ table...
Table: ‘Frag’ (1977058079); index ID: 1, database ID: 2
TABLE level scan performed.
- Pages Scanned................................: 18382
- Extents Scanned..............................: 2307
- Extent Switches..............................: 2316
- Avg. Pages per Extent........................: 8.0
- Scan Density [Best Count:Actual Count].......: 99.18% [2298:2317]
- Logical Scan Fragmentation: 0.03%
- Extent Scan Fragmentation: 13.87%
- Avg. Bytes Free per Page.....................: 1431.9
- Avg. Page Density (full).....................: 82.31%

DBCC SHOWCONTIG scanning ‘Frag’ table...
Table: ‘Frag’ (1977058079); index ID: 2, database ID: 2
LEAF level scan performed.
- Pages Scanned................................: 1705
- Extents Scanned..............................: 216
- Extent Switches..............................: 221
- Avg. Pages per Extent........................: 7.9
- Scan Density [Best Count:Actual Count].......: 96.40% [214:222]
- Logical Scan Fragmentation: 0.29%
- Extent Scan Fragmentation: 99.54%
- Avg. Bytes Free per Page.....................: 471.4
- Avg. Page Density (full).....................: 94.18%

Index Statistics
The usefulness of an index is based on the data distribution within that index. For example, if
60 percent of the customers are in New York City, selecting all customers in NYC will likely be
faster with a table scan than with an index seek. But to find the single customer from Delavan,
Wisconsin, the query definitely needs the help of an index. The query optimizer depends on
the index statistics to determine the usefulness of the index for a particular query.

The statistics appear as indexes in some listings with names beginning with _WA_Sys or
heed_.

DBCC Show_Statistics reports the last date the statistics were updated and the basic infor-
mation about the index statistics, including the usefulness of the index. A low density indi-
cates that the index is very selective. A high density indicates that a given index node points
to several table rows and may be less useful than a low-density index.

The following code demonstrates the Update Statistics command:

use cha2
exec sp_help customer
Update Statistics Customer

The procedures sp_createstats and sp_updatestats will create and update statistics on
all tables in a database, respectively.

29549359 ch24.F 11/21/02 9:50 AM Page 661

662 Part IV ✦ Administering SQL Server

Index Density
Index density refers to the percentage of the index pages that contains data. If the index den-
sity is low, SQL Server has to read more pages from the disk to retrieve the index data. The
index’s fill factor refers to the percentage of the index page that contains data when the index
is created or defragmented, but the index density will slowly alter during inserts, updates,
and deletes.

The DBCC DbReIndex command will completely rebuild the index. Using this command is
essentially the equivalent of dropping and creating the index with the added benefit of allow-
ing the user to set the fill factor as the index is recreated. In contrast, the DBCC IndexDefrag
will repair the fragmentation to the index’s fill factor but will not adjust the target fill factor.

The next command recreates the indexes on the Frag table and sets the fill factor to
98 percent:

DBCC DBReIndex (‘Tempdb.dbo.Frag’,’’,98)

Index density can affect performance. Chapter 28, “Advanced Performance,” includes more
information on planning the best index fill factor.

Database File Size
SQL Server 7 moved beyond SQL Server 6.5’s method of allocated space in fixed-size files
called devices. Since SQL Server 7, data and transaction logs can automatically grow as
required. File size is still an area of database-maintenance concern. Without some interven-
tion or monitoring, the data files could grow too large. The following commands and DBCC
options deal with monitoring and controlling file sizes.

Monitoring Database File Sizes
Three factors of file size should be monitored: the size of the database files and their maxi-
mum growth size, the amount of free space within the files, and the amount of free space on
the disk drives.

The current and maximum file sizes are stored within the sysfiles system table:

Select name, size, maxsize from sysfiles

To detect the percentage of the file that is actually being used, use the sp_spaceused system
stored procedure. The DBCC Updateusage command ensures that the index-usage informa-
tion is accurate:

DBCC Updateusage (‘tempdb’)
sp_spaceused

Result:

database_name database_size unallocated space
------------------ ---------------- ----------------
OBXKites 3.00 MB 0.92 MB

reserved data index_size unused
----------- ------------ ------------- ----------------
1104 KB 376 KB 584 KB 144 KB

Cross-
Reference

29549359 ch24.F 11/21/02 9:50 AM Page 662

663Chapter 24 ✦ Maintaining the Database

To determine the size and the percentage of free space within the transaction log, use the
DBCC SQLPerf (LogSpace) command:

DBCC SQLPerf (LogSpace)

Result (abridged):

Database Name Log Size (MB) Log Space Used (%) Status
-------------- -------------- --------------------- --------
master 3.3671875 33.207657 0
tempdb 0.7421875 59.473682 0
model 0.4921875 63.194443 0
...
OOD 0.484375 72.278229 0
MS 0.7421875 37.302631 0

DBCC execution completed.
If DBCC printed error messages,
contact your system administrator.

To monitor the amount of free space on the server’s disk drives, use the xp_fixeddrives
procedure:

Xp_fixeddrives

Result:

Disk:

c:

For more information about configuring the data and transaction log files for autogrowth and
setting the maximum file sizes, refer to Chapter 5, “Implementing the Physical Database
Schema.”

Shrinking the Database
Unless the database is configured to automatically shrink in the background, the file space
that is freed by deleting unused objects and rows will not be returned to the disk operating
system. Instead, the files will remain at the largest size the data file may have grown to. If data
is regularly added and removed, constantly shrinking and growing the database would be a
wasteful exercise. However, if disk space is at a premium, a large amount of data has been
removed from the database, and the database is not configured to automatically shrink, the
following commands may be used to manually shrink the database. The database can be
shrunk while transactions are working in the database.

DBCC ShrinkDatabase can reduce the size of the database files by performing two basic steps:

1. Packing data to the front of the file, leaving the empty space at the end of the file.

2. Removing the empty space at the end of the file, reducing the size of the file.

These two steps can be controlled with the following options:

✦ The notruncate option causes DBCC ShrinkDatabase to perform only Step 1, packing
the database file but leaving the file size the same.

✦ The truncateonly option eliminates the empty space at the end of the file, but does
not first pack the file.

Cross-
Reference

29549359 ch24.F 11/21/02 9:50 AM Page 663

664 Part IV ✦ Administering SQL Server

✦ The target file size can be set by specifying the desired percent of free space after the
file is shrunk. Because autogrowth can be an expensive operation, leaving some free
space is a useful strategy. If the desired free space percentage is larger than the current
amount of free space, this option will not increase the size of the file.

The following command shrinks OBX Kites and leaves 10 percent free space:

DBCC ShrinkDatabase (‘OBXKites’, 10)

DBCC ShrinkDatabase affects all the files for a database, while the DBCC ShrinkFile com-
mand shrinks individual files.

The database can be configured to automatically shrink the files. See Chapter 23,
“Configuring SQL Server,” for more information.

Shrinking the Transaction Log
When the database is shrunk, the transaction log is also shrunk. The notruncate and trun-
cateonly options have no effect on the transaction log. If multiple log files exist, SQL Server
shrinks them as if they were one large contiguous file.

A common problem is a transaction log that grows and refuses to shrink. The most likely
cause is an old open transaction. The transaction log is constructed of virtual logs partitions.
The success or failure of shrinking the transaction log depends on the aging of transactions
within the virtual logs and log checkpoints. SQL Server can only shrink the transaction log by
removing data older than the oldest transaction within the structure of the virtual logs.

To verify that an old transaction has a hold on the transaction log, use the DBCC OpenTran
command:

BEGIN TRAN
UPDATE Product
SET ProductDescription = ‘OpenTran’
WHERE Code = ‘1002’

DBCC OpenTran (‘OBXKites’)

Result:

Transaction information for database ‘OBXKites’.

Oldest active transaction:
SPID (server process ID) : 58
UID (user ID) : 1
Name : user_transaction
LSN : (33:77:2)
Start time : May 18 2002 5:39:51:440PM

DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

Based on this information, the errant transaction can be tracked down and the SPID (user
connection) can be killed. Enterprise Manager’s Current Activity node can provide more
information about the SPID’s activity. A more drastic option is to stop and restart the server
and then shrink the database.

The recovery model and transaction log backups both affect how the transaction log grows
and automatically shrinks. For more information on these critical issues refer to Chapter 26,
“Recovery Planning.”

Cross-
Reference

Cross-
Reference

29549359 ch24.F 11/21/02 9:50 AM Page 664

665Chapter 24 ✦ Maintaining the Database

Miscellaneous DBCC Commands
The remaining seven DBCC commands are used in troubleshooting during testing of stored
procedures and triggers.

✦ DBCC DropCleanBuffers— Cleans the memory of any buffered data so that it doesn’t
affect query performance during testing.

✦ DBCC Inputbuffer (SPID)— Returns the last statement executed by a client, as iden-
tified by the client’s SPID. This command can only be executed by members of the
sysadmin server group, for obvious security reasons.

✦ DBCC Outputbuffer (SPID)— Returns the results of the last statement executed by a
client. Like the DBCC InputBuffer command, this command can only be executed by
members of the sysadmin group.

✦ DBCC PinTable (DatabaseID, ObjectID)— Tags a table so that once it is in mem-
ory it will not be flushed from memory. We advise against pinning a table; it’s far better
to let SQL Server cache pages in memory as they are needed.

✦ DBCC UnPinTable (DatabaseID, ObjectID)— Removes a table from the pin list.

✦ DBCC ProcCache— Reports some basic statistics about the procedure cache as
queries and procedures are compiled and stored in memory.

✦ DBCC ConcurrencyViolation— The Desktop and Personal editions of SQL Server are
limited to five concurrent users. This command checks how many times that limitation
was hit.

Managing Database Maintenance
SQL Server provides a host of database maintenance commands. Fortunately, it also provides
the DBA with ways to schedule maintenance tasks.

Planning Database Maintenance
An ideal database maintenance plan includes the following functions in the following order:

✦ Consistency checks —DBCC CheckDB and DBCC CleanTable(table) for tables that
experience heavy text updates, DBCC CheckCatalog, DBCC CheckConstraints, and
DBCC CheckIdent for database structure integrity.

✦ Updating the index statistics

✦ Defragmenting the database

✦ Rebuilding the indexes

✦ Backups — A strategic backup plan includes a mix of full, differential, and transaction
log backups of the system databases and all significant user databases.

✦ Checking the file sizes and free disk space

These maintenance tasks can be automated in SQL Server Agent jobs.

29549359 ch24.F 11/21/02 9:50 AM Page 665

666 Part IV ✦ Administering SQL Server

Database Maintenance Plan Wizard
The Database Maintenance Plan Wizard, built into Enterprise Manager, helps automate a
basic maintenance plan and can perform all the required maintenance tasks. Launch the
Wizard by highlighting a database and then selecting the Action ➪ All Tasks ➪ Maintenance
Plan menu item.

Once a maintenance plan is created it can be adjusted and different databases can be
assigned to it by means of the Management ➪ Databases Maintenance Plans node in
Enterprise Manager’s console tree.

The maintenance plans work by passing parameters to an external executable program,
which then runs the job. This means that the maintenance plan can’t be manually tweaked.

The Select Databases Screen
Under the Select Databases screen (Figure 24-1), database maintenance can be set up for all
databases in SQL Server, for only the system databases, for only the user databases, or for a
combination of databases selected by the user.

Figure 24-1: Database Maintenance Plan Wizard —
the Select Databases screen.

The Update Data Optimization Information Screen
The Update Data Optimization Information screen (Figure 24-2) enables the user to choose
the level of indexing for the tables in the Database Maintenance Plan. Behind the scenes,
DBCC DbReIndex, Update Statistics, and DBCC ShrinkDatabase are being executed on
the tables in each database in the Database Maintenance Plan.

The Database Integrity Check Screen
The Database Integrity Check screen (Figure 24-3) shows the levels of database integrity
checks to choose from. Behind the scenes, DBCC CheckDb is executed.

29549359 ch24.F 11/21/02 9:50 AM Page 666

667Chapter 24 ✦ Maintaining the Database

Figure 24-2: Database Maintenance Plan Wizard —
the Update Data Optimization Information screen.

Figure 24-3: Database Maintenance Plan Wizard —
the Database Integrity Check screen.

The Specify the Database Backup Plan Screen
Under the Specify the Database Backup Plan screen (Figure 24-4), database backups are
automated. The Database Maintenance Plan has the nice feature of saving the backup files to
different directories for each database. It will also remove old backup files to help conserve
disk space.

29549359 ch24.F 11/21/02 9:50 AM Page 667

668 Part IV ✦ Administering SQL Server

Figure 24-4: Database Maintenance Plan Wizard —
the Specify the Database Backup Plan screen.

The Specify the Transaction Log Backup Plan Screen
On the Specify the Transaction Log Backup Plan screen the options are very similar to those
on the Specify the Database Backup Plan screen (Figure 24-4).

The Reports to Generate Screen
The Reports to Generate screen (Figure 24-5) is an added benefit of the Database
Maintenance Plan. This final screen in the Database Maintenance Plan Wizard enables the cre-
ation of a report that summarizes the database maintenance activities in the Database
Maintenance Plan. The reports can be saved in a specific directory and/or e-mailed.

Figure 24-5: Database Maintenance Plan Wizard —
the Reports to Generate screen.

29549359 ch24.F 11/21/02 9:50 AM Page 668

669Chapter 24 ✦ Maintaining the Database

Command-Line Maintenance
Database maintenance is normally performed within Query Analyzer or Enterprise Manager,
or automated with SQL Server Agent. However, maintenance can be performed from the DOS
command prompt by means of SQLMaint. This utility has numerous options that can perform
backups, update statistics, and run DBCC. Specific information on SQLMaint can be found in
SQL Server 2000 Books On-line.

SQLMaint may be useful in some situations, when using non–SQL Server schedulers or inte-
grating the database maintenance plan with system utilities, such as third-party backups.
Nevertheless, we recommend that you stay with SQL Server Agent over SQLMaint unless
there’s a compelling reason to abandon SQL Server’s internal scheduler.

Monitoring Database Maintenance
It’s not enough to simply schedule the tasks; they must be monitored as well. In larger instal-
lations with dozens of SQL Servers spread around the globe, just monitoring the health of
SQL Server and the databases becomes a full-time job. Table 24-1 provides a sample DBA
daily checklist that can be a starting point for developing a database monitoring plan.

Table 24-1: DBA Daily Checklist

Item S M T W T F

System Databases Backup

Production User Databases Backup

SQL Agent, SQL Main, & DTC running

Database Size, Growth, Disk Free Space

Batch Jobs Execute OK

DBCC Jobs Execute OK

SQL Log Errors

Replication Log Agent Running

Replication Distribution Cleanup Job Execute OK

SQL Server Last Reboot

Depending on the complexity and the number of servers, the DBA daily checklist can be
maintained manually with an Excel spreadsheet or tracked in a SQL Server table.

29549359 ch24.F 11/21/02 9:50 AM Page 669

670 Part IV ✦ Administering SQL Server

Summary
This chapter covered database maintenance in detail. SQL Server has a rich set of commands
and utilities that can be used to monitor the health of, and to perform maintenance on, SQL
Server. The Database Maintenance Plan is also available to streamline database maintenance.
All installations of SQL Server should also include a database maintenance schedule to assist
the DBA in keeping track of maintenance performed.

The next chapter explains how to use SQL Agent, which may be used to schedule jobs and
create custom maintenance jobs.

✦ ✦ ✦

29549359 ch24.F 11/21/02 9:50 AM Page 670

Automating
Database
Maintenance with
SQL Server Agent

The automation of database maintenance is crucial to ensuring
that a database is regularly monitored, maintained, and opti-

mized. Monitoring consists of monitoring database size to identify
issues before they generate mayhem; maintenance includes frequent
backups; and optimization involves tweaking the index configuration
for optimal performance. Automation ensures that these activities do
not consume too much of your time, so you can focus on more press-
ing issues (such as improving your golf game, perhaps).

Ideally, you want SQL Server to monitor itself and alert you when it
encounters a critical condition. And luckily for you, Microsoft grants
this specific wish, since SQL Server 2000 includes a powerful compo-
nent that can send alerts when specific critical conditions occur.
Better still, this same component also enables you to schedule rou-
tine maintenance tasks either on a one-time basis or on a recurring
basis. When scheduling a recurring task, specify how frequently the
task should be executed, such as once a month or, say, on the first
Saturday of every month. SQL Server Agent is the service responsible
for processing alerts and running scheduled jobs.

Setting up SQL Server Agent
Setting up SQL Server Agent is straightforward, as long as you avoid
two pitfalls: The first is rather elementary, the second a bit more sub-
tle. We’ll cover the easy one first. Since SQL Server Agent is a
Windows service, you want to make sure that the service is restarted
if anybody reboots the server. This is an elementary step, but it is
occasionally overlooked (and then, after someone restarts the server,
none of the scheduled jobs run and, perhaps even worse, critical
alerts go undetected).

2525C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Setting up SQL Server
Agent

Understanding alerts,
operators, and jobs

Managing alerts

Managing operators

Managing jobs

✦ ✦ ✦ ✦

30549359 ch25.F 11/21/02 9:50 AM Page 671

672 Part IV ✦ Administering SQL Server

The SQL Server Agent service is named SQLServerAgent if the default SQL Server instance in
installed on the server. If more than one SQL Server instance is installed on the server, a SQL
Server Agent service will exist for each instance, named SQLServerAgent$instancename
(where instancename is the name of the SQL Server instance serviced).

As with any service, the SQL Server Agent start-up mode can be changed through the
Services applet in the Control Panel. However, an easier way to accomplish the same goal is
to use the SQL Server Service Manager whose icon is in the notification area of the taskbar
(that’s the area at the right of the taskbar, where the time is typically displayed). Double-click
this icon to open the SQL Server Service Manager dialog box, shown in Figure 25-1.

Figure 25-1: The SQL Server Service Manager
dialog box lets you easily change the start-up
mode of the SQL Server Agent service.

Here are the steps to follow to ensure that the start-up mode of the SQL Server Agent service
is set to automatic.

1. Open the SQL Server Service Manager dialog box by double-clicking its icon in notifica-
tion area in the taskbar.

2. Make sure the correct server is selected.

3. Choose the SQL Server Agent service from the Services list box.

4. If the checkbox at the bottom of the dialog (labeled “Auto-start service when OS
starts”) is unchecked, check it to set the start-up mode to automatic.

It is a good idea to take one extra step to ensure that SQL Server Agent (and SQL Server for
that matter) is always running. Here’s how to accomplish this:

1. Start the SQL Server Enterprise Manager (its default location is Start ➪ Programs ➪
Microsoft SQL Server ➪ Enterprise Manager).

2. Expand the folders until you find the server you are configuring. If you are working on
the actual server you are configuring, the path is Console Root/Microsoft SQL Server/
SQL Server Group/(local) (Windows NT).

3. Expand to see the folder below the server. One of these folders is entitled Management.
Expand this folder to see the items under it.

4. One of the items under the Management folder is entitled SQL Server Agent. Right-click
this item and select Properties, which opens a dialog box similar to the one shown in
Figure 25-2.

30549359 ch25.F 11/21/02 9:50 AM Page 672

673Chapter 25 ✦ Automating Database Maintenance with SQL Server Agent

Figure 25-2: The General tab on the SQL
Server Agent Properties dialog box enables
you to configure how the service runs.

5. Click the Advanced tab. The Properties dialog now looks similar to the one shown in
Figure 25-3. Under the Restart services group, make sure that both checkboxes have
been clicked on. This will ensure that SQL Server and SQL Server Agent restart when
they unexpectedly stop.

Figure 25-3: The Avanced tab on the SQL
Server Agent Properties dialog helps you
ensure that SQL Server and SQL Server Agent
are running at all times.

30549359 ch25.F 11/21/02 9:50 AM Page 673

674 Part IV ✦ Administering SQL Server

The second pitfall to be aware of when setting up SQL Server Agent has to do with security.
You have to determine which account will be used to run this service. By default, the SQL
Server Agent service runs under the security context of the system account. Since the system
account has access to only local resources, you must use a domain account if you want to
access network resources in any of the scheduled jobs. You may, for example, want to back up
a database to a different server. Typically, you will also need a domain account to enable SQL
Server to send e-mail and pager notifications (the steps you need to follow to do this are out-
lined later in this section). You must also use a domain account for replication to work. You
typically configure SQL Server Agent to use a Windows domain account that is a member of
the sysadmin role so that you have the necessary permission to run jobs or send notifications.

Here are the steps to follow to change the account used to run the SQL Server Agent service:

1. Bring up the SQL Server Agent properties dialog box.

2. If needed, click the General tab. As shown in Figure 25-2 above, you will see a group
called “Service startup account.” Click the “This account” radio button and two text
boxes will become enabled in which you can type the user name and password, respec-
tively, for the Windows domain account that will be used for running the service.

3. If the account specified does not have the appropriate permissions for making connec-
tions to SQL Server, click the Connection tab and select “SQL Server Authentication.”
Then specify the SQL Server login account and password used to access the database.

The final step is to set up the SQL Server Agent Mail profile so that the service can send
e-mail and pager notifications when alerts occur. This requires setting up and configuring a
mail service and letting SQL Server Agent know how to access the mail service. The easiest
mail service to use for this purpose is Exchange Server. If you are using Microsoft Exchange
as the mail service, here are the steps you must follow.

1. Set up an Exchange mailbox for SQL Server Agent Mail on the Exchange server (nor-
mally this is a different server from the database server). Configure this mailbox for the
domain account used to run the SQL Server Agent Mail service. Make sure to pick a
descriptive name for the profile, identifying it as the SQL Server Agent profile. This will
help prevent accidental deletion of this important profile.

2. Install MAPI-compliant mail-client software such as Outlook on the database server.

3. Set up a Mail profile for SQL Server Agent using the Mail utility on the Control Panel on
the database server. This mail profile should point to the Mail Exchange server and the
Exchange mailbox you set up in the first step of this procedure.

Now all that is left to do is to tell SQL Server Agent which Mail profile to use when sending
e-mail. This is done in the SQL Server Agent Properties dialog, as follows:

1. Click the General tab.

2. In the Mail Session group, select the Mail Profile you have set up for this purpose. You
can test whether mail has been properly configured by clicking the Test button.

Understanding Alerts, Operators, and Jobs
An alert defines a specific action that will be carried out when a certain condition is met.
Such a condition can be set up for a variety of performance counters, including number of
connections, database file size, and number of deadlocks per second. A condition can also be
tied to an error number or degree of error severity. When acting upon an alert condition, SQL
Server Agent can notify one or more operators, run a job, or both.

30549359 ch25.F 11/21/02 9:50 AM Page 674

675Chapter 25 ✦ Automating Database Maintenance with SQL Server Agent

Operators are the people responsible for handling critical conditions on the database server.
As pointed out in the previous section, one of the neat things SQL Server Agent does is send
messages to operators to report job status or make them aware of server conditions.
Operators can be set up to receive messages via e-mail, pager, or Net Send. You can specify at
which times an operator is available to receive messages via pager (9:00 a.m. to 5:00 p.m.,
Monday to Friday, for example). You can also suspend notification for a specified operator,
such as when he or she is taking time off.

A job is a database task or group of database tasks. Examples of typical jobs are backing up a
database, reorganizing the indexes, or executing a Data Transformation Services (DTS) pack-
age. SQL Server Agent jobs are also used behind the scenes to implement and schedule a
maintenance plan using the Maintenance Plan Wizard in SQL Server Enterprise Manager.

Managing Operators
Just like you need to create logins for the users that will be accessing a SQL Server database,
you need to create operators in SQL Server to be able to send alert to these support people.
Creating operators in SQL Server is straightforward. Here’s how it works.

1. Start the SQL Server Enterprise Manager and find the Management folder below the
server you are configuring.

2. One of the items under Management is entitled SQL Server Agent. Right-click this item
and select New ➪ Operator from the context menu. (Alternatively, you may also expand
the SQL Server Agent item and right-click Operators to bring up a pop-up menu con-
taining the New Operator option.) This brings up the dialog box similar to the one
shown in Figure 25-4.

Figure 25-4: The New Operator Properties
dialog box enables you to specify when an operator
is available to receive pager notifications.

30549359 ch25.F 11/21/02 9:50 AM Page 675

676 Part IV ✦ Administering SQL Server

3. In the General tab of the New Operator dialog box, fill in the name of the operator as
well as his or her e-mail address, pager e-mail address, and/or Net Send address,
depending on how you want the notification to be sent. If you fill out a pager address
you can specify when the operator is available to be paged. If an e-mail address is
ambiguous you should specify a fully qualified e-mail address in square brackets, such
as [SMTP:SQLSupport@YourCompany.com]. Alternatively, you can click the button
with the ellipsis (...) to browse the address book on the database server.

4. If all your alerts have already been defined (you will learn how to define them in the
next section, “Managing Alerts”), you can click the Notifications tab and select the noti-
fication method for each alert.

5. If an operator is unavailable to respond to notification, you can temporarily disable this
operator by clearing the checkbox labeled “Operator is available to receive notifica-
tions” just under the Alert list on the Notifications tab. If you do this, make sure that
another operator will be notified. Rather than disabling an operator, change the e-mail,
pager, and Net Send addresses until the operator becomes available again.

Managing Alerts
A number of default alerts are predefined when you install SQL Server. Another set of alerts
are predefined when you install replication. Nine alerts are predefined in a default SQL Server
installation. Two of these alerts are triggered by a full log file in either the msdb or tempdb
database and the seven other alerts are triggered by errors of severity 19–25, respectively. All
these alerts have names that start with “Demo:” and are enabled for use. However, no opera-
tors are configured to receive the notifications. Because errors of severity 19–25 are fatal
errors, you should edit the properties of these alerts and configure them properly on each
production server.

The names of the seven alerts created when you set up database replication start with
“Replication:.” These alerts include one for each status (success, failure, and retry) of
the replication agent, one for each status (validation success, validation failure, and re-
initialization) of a subscription, and one for when an expired subscription is dropped. By
default these alerts are disabled and have no operators assigned to them.

Creating User-Defined Errors
If you are deploying custom-written applications that use SQL Server as their data store, the
application programmers may define their own set of errors. Here is how this is done:

1. Start SQL Server Enterprise Manager.

2. Expand the folders until you find the server you are configuring. If you are working on
the actual server you are configuring, the path is Console Root/Microsoft SQL Server/
SQL Server Group/(local) (Windows NT). Select the server.

3. In the menu bar, select Action ➪ All Task ➪ Manage SQL Server Messages.

4. In the dialog box that appears, click the Messages tab and then click New. This brings
up the New SQL Server Message dialog box (Figure 25-5).

30549359 ch25.F 11/21/02 9:50 AM Page 676

677Chapter 25 ✦ Automating Database Maintenance with SQL Server Agent

5. Select an appropriate error number, severity level, message description, and language.
You can also specify whether the error gets written to the Windows event log. By
default, SQL Server error messages with a severity level of 19 or higher are logged in
the Windows event log.

Figure 25-5: SQL Server enables application programmers
to define their own error messages.

A programmer can also use the sp_addmessage system stored procedure to add a user-
defined message. These user-defined messages can be triggered in code by means of the
raiserror Transact-SQL facility.

As far as alerts are concerned, user-defined and native SQL Server messages are handled uni-
formly. Specify the error number or severity level, and when an error is raised that matches
the alert condition, SQL Server Agent will initiate the specified response. The following sec-
tion covers how to set up these kinds of alerts.

Creating an Alert
You can create two kinds of alerts. The first is triggered by an error number or by an error of
a specified severity. The second is triggered by a SQL Server performance counter. Here is
how to set up both kinds of alerts:

1. Start SQL Server Enterprise Manager.

2. Expand the folders until you find the server you are configuring.

3. Expand to see the folder below the server. One of these folders is entitled Management.
Expand to see the items under this folder.

4. One of the items under Management is entitled SQL Server Agent. Right-click this item
and select New ➪ > Alert. (Alternatively, you can expand the SQL Server Agent item and
right-click Alerts to select New Alert.) This opens the New Alert Properties dialog box,
similar to the one shown in Figure 25-6.

5. The Type list box enables you to specify which kind of alert you want to create: either a
SQL Server event alert (triggered by an error number or level of severity) or a SQL
Server performance-condition test. Figure 25-7 shows the changes to make to the New
Alert Properties dialog box to create a SQL Server performance-condition test. A check-
box next to the Type list box enables you to enable or disable the alert.

30549359 ch25.F 11/21/02 9:50 AM Page 677

678 Part IV ✦ Administering SQL Server

Figure 25-6: Error conditions is one of the
two events that can trigger an alert.

Figure 25-7: Performance conditions is one
of the two events that can trigger an alert.

6. What to do in this step depends on the choice you made in previous step.

1. If you are creating a SQL Server event alert, select the severity or error number
you want to monitor. When specifying an error number, you can use the button
with ellipsis to search for an error. If specifying severity, you typically focus on
the critical errors, which by default have a severity of 19 or higher. You can either
monitor all databases on the server or monitor a specific database. Finally, you

30549359 ch25.F 11/21/02 9:50 AM Page 678

679Chapter 25 ✦ Automating Database Maintenance with SQL Server Agent

can also restrict alerts to messages containing a specific text string by specifying
the filter text in the text box entitled “Error Message Contains This Text.”

2. If you are creating a SQL Server performance-condition test alert, select the
object and counter you want to monitor. Then set the threshold for that counter.
You can specify that the alert occur when the counter falls below, equals, or rises
above the specified value. For some counters, you can specify the instance the
counter is to be applied to. For example, you can monitor the data-file size for
either all databases on the server or just one specific database.

7. In the Response tab, you can specify one or more operators to be notified, or which job
to run, or both. You will learn how to set up jobs in the next section, “Managing Jobs.”
Of course, the New Operator button brings up the New Operator dialog box discussed in
the previous section, “Managing Operators.” Typically, you choose to send the error text
in an e-mail or a Net Send, but not when you are paging an operator. Three checkboxes
below the list of operators to be notified let you control when the error text is sent.

8. Finally, for recurring alerts, you can specify the delay between responses in minutes
and seconds. This is especially important for SQL Server performance-condition alerts,
because these conditions tend to exist for a long time and you do not want to flood the
operators with multiple alerts for the same condition.

Another way of setting up an alert is through the Alert Wizard. You may access this wizard by
starting SQL Server Enterprise Manager and selecting Tools ➪ Wizards on the menu bar. This
brings up the Select Wizard dialog box, shown in Figure 25-8. Expand the Management section
and select the Create Alert Wizard. Clicking OK will start this wizard. When you run this wiz-
ard, you will have to make similar choices as the one outlined in the procedure described pre-
viously in this section.

Figure 25-8: The Alert Wizard walks you
through the creation of an Alert.

30549359 ch25.F 11/21/02 9:50 AM Page 679

680 Part IV ✦ Administering SQL Server

Managing Jobs
A job is defined as a series of steps with a specific work flow. You can, for example, specify
that Step 1 will execute Step 2 if it succeeds, but will execute Step 3 if it fails. Steps come in
two basic types. The first type involves replication. The second can execute Transact-SQL
script, ActiveX script (Visual Basic script or JScript), or any operating-system command. The
latter are the most frequently used. After each step, you can specify the next action if the step
succeeds and the next action if the step fails. Your choices are:

✦ Go to the next step

✦ Go to Step x, where x is the number of any step defined in the job

✦ Quit the job, reporting success

✦ Quit the job, reporting failure

You can also set the number of times you want a step to be attempted in case of failure. You
can associate one or more schedules with a job. This enables you to automatically run a job
at a specified time. A schedule can specify that a job runs once at a specific time or on a
recurring basis. You can also schedule a job to run whenever SQL Server Agent starts or
whenever the CPU becomes idle. In the Advanced tab of the SQL Server Agent Properties dia-
log (Figure 25-2), you can specify when you consider the CPU to be idle. This involves select-
ing the level of average CPU usage that the CPU must fall below for a specified time in
seconds.

Finally, you can also set notifications for completion, success, or failure of a job.

Some wizards create jobs behind the scenes when you use them. Wizards that do so include
the Maintenance Plan Wizard, the Backup Wizard, the DTS Import Wizard, and the DTS Export
Wizard.

As with alerts, you can create a new job either with a wizard or using the New Job dialog box.
Here are the steps to follow when using the New Job dialog box. (You will be confronted with
similar choices when using the wizard.) Creating a job involves five distinct steps:

✦ Creating a job definition

✦ Setting each step to execute

✦ Setting the next action for each step

✦ Configuring a job schedule

✦ Handling completion-, success-, and failure-notification messages

We’ll walk you through each of these steps. But first, an optional step is covered: creating a
job category.

Creating a job category
As you will see in the next section, when defining a job, you can assign a category to it. This
enables you to group similar jobs together. Here are the steps you can use to manage job
categories:

1. Start SQL Server Enterprise Manager and find the Management folder below the server
you are configuring.

2. Expand the Management folder and click Jobs.

30549359 ch25.F 11/21/02 9:50 AM Page 680

681Chapter 25 ✦ Automating Database Maintenance with SQL Server Agent

3. In the menu bar, select Action ➪ All Tasks ➪ Manage Job Categories. This brings up the
Job Categories dialog box, shown in Figure 25-9.

Figure 25-9: The Job Categories dialog box
enables you to maintain the job categories
used when you define a new job.

4. You can create a new job category by clicking the Add... button. This brings up the New
Category properties dialog. Type in a descriptive name for the category.

5. You can then add jobs to this category by clicking the Show All Jobs checkbox and
selecting the corresponding checkbox in the Member column of the job list.

Creating a Job Definition
The main component of a job definition is the unique name that will be used to refer to the
job. You use this unique name, for example, to specify which job to run when an alert is trig-
gered. Here’s how you create a job definition:

1. Start SQL Server Enterprise Manager and find the Management folder below the server
you are configuring.

2. Expand the Management folder to see the items below it.

3. One of the items under Management is entitled SQL Server Agent. Right-click this item
and select New ➪ Job. (Alternatively, you can also expand the SQL Server Agent item
and right-click Jobs to select New Job.) This brings up a New Job Properties dialog box
similar to the one shown in Figure 25-10.

4. In the General tab, give the job a unique name (up to 128 characters), select an appro-
priate category and owner for the job, and type a short description (up to 512 charac-
ters) of the job. Only administrators can change the owner of an existing job. Only
predefined logins can be used as the owner. If you do not find the login you want to use,
exit the job definition by clicking the Cancel button and create a login for the account
you want to use. To do this, expand the Security item a few items below the
Management item in Enterprise Manager, right-click on Logins, and then select “New
Login.”

30549359 ch25.F 11/21/02 9:50 AM Page 681

682 Part IV ✦ Administering SQL Server

Figure 25-10: You can categorize and assign an owner to a new
job in the New Job Properties dialog box.

5. If job scheduling across multiple servers is configured, select which server acts as the
target server (the server on which the job runs). To run on the server on which you are
working, select Target Local Server. To run on multiple servers, select Target Multiple
Servers and specify the servers on which the job will run.

6. Click Apply to create the job definition. You are now ready for the next steps, as
explained in the following sections.

Setting up the Job Steps
After you have created a job definition, you may want to define what steps need to be per-
formed during the job. You do this by clicking the Steps tab (Figure 25-11) in the New Job
Properties dialog box. The usages of the buttons on this screen are as follows:

✦ New creates a new step.

✦ Insert inserts a step before the currently highlighted step.

✦ Edit modifies the currently highlighted step.

✦ Delete deletes the currently highlighted step.

✦ Move Step Up moves the currently highlighted step up one in the list.

✦ Move Step Down moves the currently highlighted step down one in the list.

✦ Start Step enables you to choose which step is executed first. This first step is indicated
by a green flag.

When you create a new step, you are presented with the New Job Step dialog box (Figure
25-12). All steps require a unique name (up to 128 characters). For the three most common
types of steps (Transact-SQL Script, ActiveX script, and operating-system commands), you

30549359 ch25.F 11/21/02 9:50 AM Page 682

683Chapter 25 ✦ Automating Database Maintenance with SQL Server Agent

simply type in the command box the code you want executed. You may also click the Open
button to load the code from a file. The Parse button enables you to check the syntax of the
command.

Figure 25-11: A job may consist of one or more steps, which are
created in the Steps tab.

Figure 25-12: A step can execute any Transact-SQL
code.

After you have entered the code that should run for the step, you can click the Advanced tab
in the New Job Step dialog box (Figure 25-13) and determine what happens after the step exe-
cutes. You can also specify how many times the step is attempted in case of initial failure, as
well as the delay in minutes between the attempts.

30549359 ch25.F 11/21/02 9:50 AM Page 683

684 Part IV ✦ Administering SQL Server

Figure 25-13: You can control what happens after
a step executes.

Configuring a Job Schedule
After you have entered the steps for a given job, you need to specify when the job is to
be executed. You do this in the Schedule tab of the Job Properties dialog box. Clicking on
the New Schedule button on this tab brings up the New Job Schedule dialog shown in
Figure 25-14.

Figure 25-14: Jobs can be scheduled on a one-time
basis or on a recurring basis.

For many maintenance tasks, you want to create a recurring job. If you don’t like the default
(every week on Sunday at 12:00:00 a.m.), you can click the Change button to define how fre-
quently the task is to be repeated. As you can see from Figure 25-15, you have plenty of flexi-
bility in scheduling a recurring job.

30549359 ch25.F 11/21/02 9:50 AM Page 684

685Chapter 25 ✦ Automating Database Maintenance with SQL Server Agent

Figure 25-15: Recurring jobs can be scheduled on
a daily, weekly, or monthly basis.

Handling Completion-, Success-, and
Failure-Notification Messages
Finally, click the Notifications tab of the New Job Properties dialog box (Figure 25-16) to spec-
ify the type of notification to be used when the job completes, fails, or succeeds. You can
send a message to an operator (via e-mail, pager, or Net Send message), log the related event,
automatically delete the step, or do any two or all three.

Figure 25-16: You can specify the type of notification to be used
when the job completes, fails, or succeeds.

30549359 ch25.F 11/21/02 9:50 AM Page 685

686 Part IV ✦ Administering SQL Server

Summary
SQL Server Agent is a powerful ally that will ensure you never forget to perform a crucial
maintenance task, and that will alert you when something critical requires your attention.
The former goal is achieved through recurring jobs, the latter through alerts.

In this chapter you learned how to set up SQL Server Agent. You learned what alerts, opera-
tors, and jobs are, and the steps required to manage them. In short, you should now be fully
equipped to use all features of SQL Server Agent to automate crucial maintenance tasks.

✦ ✦ ✦

30549359 ch25.F 11/21/02 9:50 AM Page 686

Recovery Planning

“When times are perilous, a wise fellow keeps his powder dry.”

— American Revolution saying

Obviously, we live in an imperfect world and bad things do hap-
pen to good people. Since you’re bothering to read this chapter,

I’ll be honest and agree that doing backups isn’t very exciting. In
some jobs excitement means trouble, and this is one of them. To a
good DBA, being prepared for the worst means having a sound recov-
ery plan that’s been tested more than once.

Consistent with the flexibility found in other areas of SQL Server, there
are multiple ways to perform a backup, each suited to a different pur-
pose. SQL Server 2000 introduces recovery models, which help orga-
nize the backup options and simplify database administration.

This chapter discusses the concepts that support the recovery effort,
which entail both backup and restoration. It seems foolish to study
backup without also learning about how restoration completes the
recovery.

Recovery planning is not an isolated topic. Transactional integrity
(Chapter 11) is deeply involved in the theory behind a sound
recovery plan. Once the recovery strategy is determined, it’s often
implemented within a maintenance plan (Chapter 24). Aside from
the backup and restoration, it is the constant availability of log
shipping and failover servers (Chapter 28).

While backups tend to be boring, restores tend to occur while folks
are excited. For this reason, it makes sense to be more familiar with
restoration than with backup.

Recovery Concepts
The concept of database recovery is based on the D in the transac-
tional-integrity ACID properties — transaction durability. Durability
means that a transaction, once committed, must be persistent.
Regardless of hardware failure, the transaction must still exist in
the database.

Cross-
Reference

2626C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding the
recovery models

Backing up user
databases

Understanding and
working with the
transaction log

Recovering a lost
database, a lost system
database, or the whole
server

✦ ✦ ✦ ✦

31549359 ch26.F 11/21/02 9:50 AM Page 687

688 Part IV ✦ Administering SQL Server

SQL Server accomplishes transactional durability with a write-ahead transaction log. Every
transaction is written to the transaction log prior to being written to the data file. This pro-
vides a few benefits to the recovery plan:

✦ The transaction log ensures that every transaction can be recovered up to the very last
moment before the server stopped.

✦ The transaction log permits backups while transactions are being processed.

✦ The transaction log reduces the impact of a hardware failure because the transaction
log and the data file may be placed on different disk subsystems.

The strategy of a recovery plan should be based on the organization’s tolerance level, or pain
level, for lost transactions. Recovery-plan tactics involve choosing among the various backup
options, generating a backup schedule, and off-site storage.

SQL Server backup and recovery are very flexible: You have three recovery models to choose
from. The transaction log can be configured, based on your recovery needs, according to one
of the following recovery models:

✦ Simple — No transaction-log backups

✦ Bulk-logged — Bulk-logged operations are not logged

✦ Full — All transactions are logged

And five backup options:

✦ Full — Complete backup of all data

✦ Differential — Backup of all data pages modified since the last full backup

✦ Transaction log — Backup of all transactions in the log

✦ File or filegroup — Backup of all the data in the file or filegroup

✦ File differential — Backup of all data pages modified since the last file or filegroup
backup.

Backing up the database may not be the only critical backup you have to perform. If the
database-security scheme relies on Windows authentication, backing up the Windows users
is important as well. The point is that the SQL Server recovery plan must fit into a larger IT
recovery plan.

SQL Server backups are very flexible and can handle any backup-to-file ratio. A single backup
instance can be spread across several backup files, creating a backup set. Conversely, a single
backup set can contain multiple backup instances.

Restoration always begins with a full backup. Differential and transaction log backups then
restore the transaction that occurred after the full backup.

Recovery Models
The recovery model configures SQL Server database settings to accomplish the type of recov-
ery required for the database, as detailed in Table 26-1. The key differences among the recov-
ery models involve how the transaction log behaves and which data is logged.

Note

31549359 ch26.F 11/21/02 9:50 AM Page 688

689Chapter 26 ✦ Recovery Planning

Table 26-1: SQL Server Recovery Models

Recovery Transaction Transaction Bulk-Copy
Model Description Atomicity Durability Operations

Simple Transaction log is Yes No, can restore only Not logged — high
continuously to the last full or performance
truncated on differential backup
checkpoints

Bulk-Logged Select-into and Yes Maybe, can restore Only marked — high
bulk-insert operations only to the last full performance
are not logged as or differential backup,
ransactions or to the last

transaction-log
backup if no bulk-
copy operations
have been performed

Full All transactions are Yes Yes, can restore up to Slower than simple
logged and stored the point of recovery or bulk-logged
until transaction-log
backup

While the durability of the transaction is configurable, the transaction log is still used as a
write-ahead transaction log to ensure that each transaction is atomic. In case of system fail-
ure, the transaction log is used by SQL Server to roll back any uncommitted transactions as
well as to complete any committed transactions.

Simple Recovery Model
The simple recovery model is suitable for databases that require that each transaction be
atomic, but not necessarily that it be durable. The simple recovery model directs SQL Server
to truncate, or empty, the transaction log on checkpoints. The transaction log will keep a
transaction until it’s confirmed in the data file, but after that point the space may be reused
by another transaction in a round-robin style.

Since the transaction log is only a temporary log, there are no transaction-log backups. This
recovery model has the benefit of keeping the transaction log small at the cost of potentially
losing all transactions since the last full or differential backup. Choosing the simple recovery
model is the equivalent of setting the truncate log on checkpoint database option to
true in SQL Server 7.0 or newer.

A recovery plan based on a simple recovery model might perform full backups once a week
and differential backups every weeknight, as shown in Figure 26-1. The full backup copies the
entire database, and the differential backup copies all the changes that have been made since
the last full backup.

31549359 ch26.F 11/21/02 9:50 AM Page 689

690 Part IV ✦ Administering SQL Server

Figure 26-1: A typical recovery plan using the simple recovery model includes only
full and differential backups.

When restoring from a simple recovery plan:

1. Restore the most recent full backup.

2. Restore the most recent (optional) single differential backup.

The Full Recovery Model
The full recovery model offers the most robust recovery plan. Under this model all transac-
tions, including bulk-logged operations, are fully logged in the transaction log. Even system
functions such as index creation are fully logged. The primary benefit of this model is that
every committed transaction in the database can be restored right up to the point when fail-
ure occurred.

For production databases, we recommend the full recovery model. While it will run on a sin-
gle drive system, the transaction log should be located on a fault-tolerant disk subsystem
separate from the data files to ensure a high level of transactional durability.

The trade-off for this high level of transactional integrity is a certain amount of performance:

✦ Bulk-logged and select-into operations will be slower. If the database doesn’t import
data using these methods, this is a moot point.

✦ The transaction log will be mammoth. If copious drive space is available, this, too, is a
moot point.

✦ Backing up and restoring the transaction log will take longer than with the other recov-
ery models. However, in a crisis, restoring all the data will likely be more important
than quickly restoring partial data.

The full recovery model can use all five types of database backups. A typical backup schedule
is illustrated in Figure 26-2.

A full-recovery backup plan will typically do a full database backup twice a week, and differ-
ential backups every other night. The transaction log is backed up throughout the day, from
as little as two times to as often as every 15 minutes.

Simple Recovery Model
Backup Plan

2300
Full

Diff Diff
Full

Diff Diff Diff

Time Sun Mon Tues Wed Thurs Fri Sat

31549359 ch26.F 11/21/02 9:50 AM Page 690

691Chapter 26 ✦ Recovery Planning

Figure 26-2: A typical recovery plan using the full recovery model, using full,
differential, and transaction-log backups.

When restoring from the full-recovery model, do the following:

1. Back up the current transaction log.

If the disk subsystem containing the transaction log is lost, the database is marked suspect
by SQL Server and it is not possible to back up the current transaction log. In this case the
best recovery is to restore to the last transaction-log backup. Other reasons for a database
being marked suspect would be that the database file itself has been removed or renamed,
or the database is currently off-line.

2. Restore the most recent full backup.

3. Restore the most recent single differential backup, if one has been made since the last
full backup.

4. Restore, in sequence, all the transaction-log backups made since the time of the last full
or differential backup. If the last backup was a full backup then restoring it is sufficient.
If the last backup was a differential backup, you will need to restore the most recent full
backup before restoring the most recent differential.

The Enterprise Manager restore form (discussed in the section “Performing the Restore with
Enterprise Manager,” later in this chapter) automatically helps you choose the correct set of
backups, so it’s not as difficult as it sounds.

Note

Time Sun

Log1000

Mon

Log

Tues

Log

Wed

Log

Thurs

Log

Fri

Log

Sat

Log

Log1200 Log Log Log Log Log Log

Log1400 Log Log Log Log Log Log

Log1600 Log Log Log Log Log Log

2300

Full Recovery Model Backup Plan

Full
Diff Diff

Full
Diff Diff Diff

31549359 ch26.F 11/21/02 9:50 AM Page 691

692 Part IV ✦ Administering SQL Server

Bulk-Logged Recovery Model
The bulk-logged recovery model is similar to the full recovery model, except that the follow-
ing operations are not logged:

✦ Bulk inserts (BCP)

✦ Select * into table DML commands

✦ Writetext and updatetext BLOB operations

✦ Create index and create indexed views

Because this recovery model does not log these operations they run very fast. The transac-
tion log only marks that the operations took place and tracks the extents (a group of eight
data pages) that are affected by the bulk-logged operation. When the transaction log is
backed up, the extents are copied to the transaction log in place of the bulk-logged marker.

The trade-off for bulk-logged operation performance is that the bulk-logged operation is not
treated as a transaction. While the transaction log itself stays small, copying all affected
extents to the transaction-log backup can make the log-backup file more than mammoth.

Since bulk-logged operations are not logged, if a failure should occur after the bulk-logged
operation but before the transaction log is backed up, the bulk-logged operation is lost and
the restore must be made from the last transaction log. Therefore, if the database is using the
bulk-logged recovery model, every bulk-logged operation should be immediately followed by
a transaction-log backup.

This model is useful only if the database sees a great number of bulk-logged operations, and if
it’s important to increase their performance. If the database is performing adequately during
bulk-logged operations in the full recovery model, bypass the bulk-logged recovery model.

Note that the simple recovery model also does not log bulk-copy operations.

Using this setting is essentially the same as setting the Select Into/Bulkcopy database
option to true.

Setting the Recovery Model
The model system database’s recovery model is applied to any newly created database. The
full recovery model is the default for the Standard and Enterprise Editions. The Personal and
Desktop editions use the simple recovery model as their default. But you can change the
default by setting the recovery model for the model system database.

Using Enterprise Manager, you can easily set the recovery model on the Options tab of the
Database Properties dialog box. Select the database and right-click to get to the Database
Properties dialog.

In code, the recovery model is set by means of the alter database DDL command:

ALTER DATABASE DatabaseName SET Recovery Option

The valid options are Full, Bulk_Logged, and Simple. The following code sets the CHA2
sample database to the full recovery model:

ALTER DATABASE CHA2 SET Recovery Full

31549359 ch26.F 11/21/02 9:50 AM Page 692

693Chapter 26 ✦ Recovery Planning

We recommend explicitly setting the recovery model in the code that creates the database.

The current recovery model can be determined from code by means of the database-property
examine function:

SELECT DatabasePropertyEx(‘CHA2’, ‘Recovery’)

Result:

FULL

Modifying Recovery Models
While a database is typically set to a single recovery model, there’s nothing to prevent you
from switching between recovery models during operation to optimize performance and suit
the specific needs of the moment.

It’s perfectly valid to run during the day with the full recovery model for transaction durabil-
ity, and then to switch to bulk-logged during data imports in the evening.

During recovery it’s the full, differential, and transaction-log backups that count. The recov-
ery operation doesn’t care how they were made.

Because the simple recovery model does not permanently log the transactions, care must be
taken in switching to or from the simple recovery model:

✦ If you are switching to simple, the transaction log should be backed up prior to the
switch.

✦ If you are switching from simple, a full database backup should be performed immedi-
ately following the switch.

Backing up the Database
The actual process of performing a backup presents as many options as the underlying con-
cepts present.

Backup Destination
A backup may copy the data to any one of two possible destinations:

✦ Disk subsystem — A backup can be performed either to a local disk (preferably not the
same disk subsystem as the database files), or to another server’s disk drive by means
of the Universal Naming Convention (UNC). The SQL Server account must have write
privileges to the remote drive in order to save the backup file

We prefer backing up to a disk file on another server and then copying the backup flies to
tape using the organization’s preferred IT backup method. This method is the fastest for SQL
Server, and it enables the IT shop to continue using a familiar single-tape backup-software
technique. If this creates a network bottleneck, use a dedicated network connection or back-
bone between the SQL Server and the file server.

✦ Tape — SQL Server can back up directly to most tape-backup devices.

31549359 ch26.F 11/21/02 9:50 AM Page 693

694 Part IV ✦ Administering SQL Server

Several companies offer third-party backup for SQL Server that uses named pipes. While you
may find third-party backup useful, we encourage you to become familiar with SQL Server’s
built-in recovery methods before making the decision to use it.

A disk- or tape-backup file is not limited to a single backup event. The file may contain multi-
ple backups and multiple types of backups.

Two other issues to keep in mind when considering backup media are the media retention or
rotation, and the off-site media-storage location.

A common technique is to rotate a set of five tapes for the weekly backups and another set of
six tapes for the remaining daily backups. The weekly tapes would be labeled Sunday1,
Sunday2, and so on, and the daily tapes would be labeled Monday, Tuesday, Wednesday,
Thursday, Friday, and Saturday.

A palindrome is a word, phrase, or number that’s the same backward or forward, such as
“kayak,” or “drab as a fool, aloof as a bard.” Some numbers when reversed and added to itself
will create a palindrome; for example, 236 + 632 = 868. Palindromes have a rich history: In
ancient Greece they inscribed, “Nipson anomemata me monan opsin,” meaning, “wash the sin
as well as the face,” on fountains.

Palindromes also represent a great method for rotating backup tapes. Using four tapes
labeled A through D, a backup rotation might be ABCDCBA ABCDCBA....

Alternately, the palindrome method can be implemented so that each letter represents a
larger interval, such as A for daily, B for weekly, C for monthly, and D for quarterly.

Rotating backup tapes off site is an important aspect of recovery planning. Ideally, a contract
should support an off-site recovery site complete with server and workstations.

Performing Backup with Enterprise Manager
The first backup must be a full database backup to begin the backup cycles.

A database backup can be performed from multiple locations in Enterprise Manager, as follows:

✦ Select the database to be backed up. From the right-click menu or Action menu select
All Tasks ➪ Backup Database to open the SQL Server Backup form.

✦ From the Tools menu select Backup Database to open the SQL Server Backup form.

✦ Select Databases in the console tree, right-click on it, and select Backup Database to
open the SQL Server Backup form.

✦ Select the database to be backed up. In the Wizards menu of the Taskpad select Backup
a Database to launch the Backup Wizard.

✦ In the toolbar, click the wizards tool. Expand the Management wizards node. Select the
Backup Wizard.

The SQL Server Backup form, shown in Figure 26-3, is the primary means of backing up
databases within Enterprise Manager. The Backup Wizard simply asks the same questions,
but with fewer questions per page.

Note

31549359 ch26.F 11/21/02 9:50 AM Page 694

695Chapter 26 ✦ Recovery Planning

Figure 26-3: The SQL Server Backup form is the most common means of manually
backing up a database.

The following is a list of the fields within the SQL Server Backup window as well as a descrip-
tion of each:

✦ Database — The database to be backed up. By default this is the current database in
Enterprise Manager.

✦ Name — The required name of the backup.

✦ Description — Optional additional information about the backup.

✦ Backup — The type of backup: full, differential, transaction-log, file or filegroup. If the
database is set to the simple recovery model, transaction-log will not be available.

✦ Destination — Sets the destination tape file or disk file. If the current destination is
incorrect, delete it and add the correct destination

✦ Contents — Displays the backups already in the selected destinations.

✦ Append to media or Overwrite existing media — Determines if the current backup will be
added to the backup file or if the backup media should be initialized and a new series
of backups placed in them.

✦ Schedule — Launches a scheduler to create a SQL job that will run the configured
backup according to the schedule, as shown in Figure 26-4

✦ Verify backup upon completion — Despite the name, this option does not compare the
data in the backup with the data in the database, nor does it verify the integrity of the
backup. It simply checks that the backup sets are complete, and that the file is read-
able. Nevertheless, we always use this option.

31549359 ch26.F 11/21/02 9:50 AM Page 695

696 Part IV ✦ Administering SQL Server

Figure 26-4: The scheduler creates a SQL Server
Agent job that will perform backups on a regular
schedule.

✦ Eject tape after backup — Directs the tape to eject, which helps prevent other backups
from overwriting the backup file.

✦ Remove inactive entries from the log — This is the Enterprise Manager equivalent of
truncating the transaction log. Once the transaction log has been successfully backed
up it’s common to remove transactions that were backed up so the log doesn’t need to
increase in size.

✦ Check media set name and backup set expiration — Tests the backup media to ensure
that they’re the correct media.

✦ Backup set will expire — Sets an expiration date for the backup. This establishes a pro-
tective waiting period for the backup, to prevent it from being overwritten before the
date specified.

✦ Initialize and labels — Directs SLQ Server to initialize and label the tape.

Backing up the Database with Code
The Backup command offers a few more options than Enterprise Manager, and using the
backup command directly is useful for assembling SQL Server Agent jobs by hand rather than
with the scheduler or the Maintenance Plan Builder.

Without all the options and frills, the most basic backup command is as follows:

BACKUP DATABASE Databasename
TO DISK = ‘file location’
WITH
NAME = ‘backup name’

The following command backs up the CHA2 database to a disk file and names the backup
CHA2Backup:

31549359 ch26.F 11/21/02 9:50 AM Page 696

697Chapter 26 ✦ Recovery Planning

BACKUP DATABASE CHA2
TO DISK = ‘e:\Cha2Backup.bak’
WITH
NAME = ‘CHA2Backup’

Result:

Processed 200 pages for database ‘CHA2’,
file ‘CHA2’ on file 1.

Processed 1 pages for database ‘CHA2’,
file ‘CHA2_log’ on file 1.

BACKUP DATABASE successfully processed 201 pages
in 0.316 seconds (5.191 MB/sec).

The backup command has a few important options that deserve to mentioned first:

✦ Tape (Backup To:) — To back up to tape instead of disk, use the to tape option and
specify the tape-drive location:

TAPE = ‘\\.\TAPE0’

✦ Differential— Causes the backup command to perform a differential backup instead
of a full database backup. The following command performs a differential backup:

BACKUP DATABASE CHA2
TO DISK = ‘e:\Cha2Backup.bak’
WITH
DIFFERENTIAL,
NAME = ‘CHA2Backup’

✦ To back up a file or filegroup, list it after the database name. This technique can help
organize backups. For example, for backup purposes the OBX Kites sample database
is designed to place static tables in one filegroup and active tables in the primary
filegroup.

✦ Password— If the backup is being made to a unsecured tape, a password is highly rec-
ommended. This password is for the specific backup instance.

The backup command has numerous additional options:

✦ Description— Identical to the Description field within Enterprise Manager.

✦ ExpireDate: Identical to Enterprise Manager; prevents the backup from being over-
written before the expiration date.

✦ RetainDays— The number of days, as an integer, before SQL Server will overwrite the
backup.

✦ Stats = %— Tells SQL Server to report the progress of the backup in the percentage
increment specified; the default increment is 10 percent.

✦ BlockSize— Sets the block size of the backup. For disk backups it’s not needed; for
tape drives it is probably not needed, but available to solve problems if required for
compatibility. For disk backups the default Windows block size is used automatically,
which is typically 4096 bytes on a drive over 2GB in size. If a backup to disk will later be
copied to a CD/RW, try a block size of 2048.

31549359 ch26.F 11/21/02 9:50 AM Page 697

698 Part IV ✦ Administering SQL Server

✦ MediaName— Specifies the name of the media volume. This option serves as a safety
check: If the backup is being added to the media, the name must match.

✦ MediaDescription— Writes an optional media description.

✦ MediaPassword— Creates an optional media password that applies to the entire
medium (disk file or tape). The first time the medium is created the password can be
set. If the password is specified when the medium is created, it must be specified every
subsequent time the backup medium is accessed to add another backup or to restore.

✦ Init/NoInit— Initializes the tape or disk file, thus overwriting all existing backup sets
in the medium. SQL Server will prevent initialization if any of the backups in the
medium have not expired or still have the number of retaining days. NoInit is the
default.

✦ NoSkip/Skip— This option “skips” the backup-name and -date checking that normally
prevents overwriting backups. Noskip is the default.

The last options apply only when backing up to tape:

✦ NoFormat/Format— Will format the tape (not disk drive!) prior to the backup. Format
automatically includes skip and init.

✦ Rewind/NoRewind— Directs SQL Server to rewind the tape. The default is to rewind.

✦ UnLoad/Load— Automatically rewinds and unloads the tape. This is the default until
the user session specifies load.

✦ Restart— If a multi-tape backup fails in the middle of the backup (a tape breaks for
example). The restart option will continue the backup sequence in midstream without
having to go back to the first tape. The restart option can save time, but be sure to run
a restore verifyonly (see next topic) after the backup to be sure.

Verifying the Backup with Code
Enterprise Manager’s backup includes an option to verify the backup, and the T-SQL Backup
command does not. Enterprise Manager actually calls the T-SQL restore verifyonly
command after the backup to perform the verification:

RESTORE VERIFYONLY
FROM DISK = ‘e:\Cha2Backup.bak’

Result:

The backup set is valid.

The verification has a few options, such as Eject tape after backup. Most of these verification
options are for tapes and are self-explanatory.

Working with the Transaction Log
Sometimes it seems that the transaction log has a life of its own. The space within the file
seems to grow and shrink without rhyme or reason. If you’ve felt this way, you’re not alone.
This section should shed some light on why the transaction log behaves as it does.

31549359 ch26.F 11/21/02 9:50 AM Page 698

699Chapter 26 ✦ Recovery Planning

Inside the Transaction Log
The transaction log contains all the transactions for a database. Both transactions that have
been written if the server crashes the transaction log are used to recover by rolling back
uncommitted partial transactions, and by completing any transactions that were committed
but not written to the data file.

Virtually, the log can be imagined as a sequential list of transactions sorted by date and time.
Physically, however, SQL Server writes to different parts of the physical log file in virtual
blocks without a specific order. Some parts might be in use, making other parts available. So
the log reuses itself in a loose round-robin fashion.

The Active and Inactive Divide
The transactions in the transaction log can be divided into two groups (Figure 26-5):

✦ Active transactions are uncommitted and not yet written to the data file.

✦ Inactive transactions are all those transactions before the earliest active transaction.

Figure 26-5: The inactive transactions are all those prior to the oldest active
transaction.

Because transactions have varying durations, and are committed at different times, it’s very
likely that committed transactions are in the active portion of the log. The active portion
does not merely contain all uncommitted transactions, but all transactions since the start of
the oldest uncommitted transaction. One very old uncommitted transaction can make the
active portion appear unusually large.

Transaction Checkpoints
Understanding how SQL Server uses checkpoints in the transaction log is important to under-
standing how the transaction log is backed up and emptied. Checkpoints calculate the
amount of work that must be done to recover the database.

Unused Inactive

Transaction Log

Committed
Transactions

Checkpoints

Active Unused

Uncommitted
Transactions

Oldest
Uncommitted
Transactions

31549359 ch26.F 11/21/02 9:50 AM Page 699

700 Part IV ✦ Administering SQL Server

A checkpoint automatically occurs under any of the following conditions:

✦ When an alter database command changes a database option

✦ When the server is shut down

✦ When the number of log entries exceeds the estimated amount of work required by the
server’s recovery interval configuration option.

✦ If the database is in the simple recovery model or log-truncate mode, when the transac-
tion log becomes 70 percent full

Checkpoints may be manually initiated with a checkpoint command. Checkpoints perform
the following activities:

✦ Marks the checkpoint spot in the transaction log

✦ Writes a checkpoint-log record, including:

• The oldest active transaction

• The oldest replication transaction that has not been replicated

• A list of all active transactions

• Information about the minimum work required to roll back the database

✦ Writes to disk all dirty data pages and log pages

So basically, a checkpoint gets everything up to date as best it can and then records the cur-
rent state of the dividing line between active and inactive in the log.

Backing up the Transaction Log
Performing a transaction log backup is very similar to performing a full or differential backup,
with a few notable differences.

The T-SQL command is as follows:

BACKUP LOG CHA2
TO DISK = ‘e:\Cha2Backup.bak’
WITH
NAME = ‘CHA2Backup’

Result:

Processed 1 pages for database ‘CHA2’,
file ‘CHA2_log’ on file 9.

BACKUP LOG successfully processed 1 pages
in 0.060 seconds (0.042 MB/sec).

The same media options apply to the transaction log backup that apply to the database
backup; in addition, two options are transaction-log specific. The no_truncate option is for
backing up the transaction log during a recovery operation and the norecovery/standby
option is for running a standby server. Both are covered in more detail later in this chapter in
the “Recovering with T-SQL Code” section.

31549359 ch26.F 11/21/02 9:50 AM Page 700

701Chapter 26 ✦ Recovery Planning

The transaction log may not be backed up if any of the following conditions exist:

✦ The database is using a simple recovery model

✦ The database is using a bulk-logged recovery model, a bulk-logged operation has been
executed, and the database files are damaged

✦ Database files have been added or removed.

In any of these cases, perform a full database backup instead.

Truncating the Log
Updates and deletes might not increase the size of a data file, but to the transaction log every
transaction of any type is simply more data. Left to its own devices, the transaction log will
continue to grow with every data modification.

The solution is to back up the inactive portion of the transaction log and then remove it. By
default, backing up the transaction log will also truncate the log, as shown in Figure 26-3.

If, for example, the disk is full, the transaction log might need to be truncated without the
database being backed up. There’s no way to just truncate the log without performing a
backup. But with T-SQL, the transaction log can be truncated by means of the
Backup...NoLog or Backup...TruncateOnly (the two are synonymous):

BACKUP LOG CHA2
WITH TRUNCATE_ONLY

If the transaction log is manually truncated and then backed up, there will be a gap in the
transaction-log sequence. Any transaction-log pickups after the gap will not be restored. A
full backup is recommended to restart the backup sequencing.

The Transaction Log and Simple Recovery Model
When the database is using a simple recovery model, the transaction log ensures that each
committed transaction is written to the data file, and that’s it. When the transaction log is 70
percent full, SQL Server will perform a checkpoint and then truncate the log. So the free
space of the transaction-log will fluctuate, but the minimum is the size of the active portion of
the transaction log.

Recovery Operations
There are any number of reasons to restore a database, including:

✦ A disk subsystem has failed.

✦ A sleepy programmer forgot a where clause in a SQL update statement and updated
everyone’s salary to minimum wage.

✦ The server melted into a pool of silicon and disk platters.

✦ A large import worked, but with yesterday’s data.

Caution

31549359 ch26.F 11/21/02 9:50 AM Page 701

702 Part IV ✦ Administering SQL Server

The best reason to restore a database is to practice the backup/restore cycle, and to prove
that the recovery plan works. Without confidence in the recovery, there’s little point in doing
backups.

Detecting the Problem
If a problem with a database file does exist, Enterprise Manager will mark the database as
suspect, as shown in Figure 26-6.

Figure 26-6: The Northwind database file is damaged (we deleted it). Enterprise
Manager shows the database as suspect and without any objects. Further down the
console tree are the SQL Server logs.

To further investigate a problem, check the SQL Server log. In Enterprise Manager, the log can
be viewed under Management ➪ SQL Server Logs. SQL Server writes errors and events to an
errorlog file in the \error directory under the MSSQL directory. SQL Server creates a new file
every time the server is started. The six previous versions of the file are saved in the same
directory. Some errors may also be written to the Windows Application Event Log.

Recovery Sequences
The two most important concepts about recovering a database are:

✦ A recovery operation always begins by restoring a full backup and then restores any
additional differential or transactional backups. The restore never copies only yester-
day’s work. It restores the entire database up to a certain point.

31549359 ch26.F 11/21/02 9:50 AM Page 702

703Chapter 26 ✦ Recovery Planning

✦ There’s a difference between restore and recover. A restore copies the data back into
the database and leaves the transactions open. Recovery is the process of handling the
transactions left open in the transaction log. If a database-recovery operation requires
that four files be restored, only the last file is restored with recovery.

Only logins who are members of the SysAdmins fixed server role can restore a database that
doesn’t currently exist. SysAdmins and db_owners can restore databases that do currently
exist.

The actual recovery effort depends on the type of damage and the previous recovery plans.
Table 26-2 is a comparative listing of recovery operations.

Table 26-2: Recovery Sequences

Recovery Model Damaged Database File Damaged Transaction Log

Simple 1) Restart server. Restart the server. A new 1MB
2) Restore full backup. transaction log will be
3) Restore latest differential automatically created.
backup (if needed).

Full or Bulk-Logged 1) Back up current transaction 1) Restore full backup.
log with no_truncate option*. 2) Restore latest differential
2) Restore full backup. backup (if needed).
3) Restore latest differential 3) Restore all the transaction-log
backup (if needed). backups since the last differential
4) Restore all the transaction- or full backup.
log backups since the last
differential or full backup. Transactions made since the last
All committed transactions backup will be lost.
will be recovered.

If the database is using the bulk-logged recovery model and a bulk-insert operation occurred
since the last transaction-log backup, the backup will fail. Transactions that occurred after
the transaction-log backup will not be recoverable.

Performing the Restore with Enterprise Manager
As with the backup command, there are numerous ways to launch the restore form within
Enterprise Manager:

✦ Select the database to be backed up. From the right-click or Action menu select All
Tasks ➪ Backup Restore to open the SQL Server Restore database form.

✦ Select Tools ➪ Restore Database to open the SQL Server Restore database form.

✦ Select Databases in the console tree, right-click, and select Restore Database from the
context menu.

The Restore database form, shown in Figure 26-7, does a great job of intelligently navigating
the potential chaos of the backup sequences, and it always offers only legal restore options.

31549359 ch26.F 11/21/02 9:50 AM Page 703

704 Part IV ✦ Administering SQL Server

Figure 26-7: Only the correct sequences of restoring
from multiple backup files is possible from Enterprise
Manager’s Restore database form.

The selection you make at the top of the form is the name of the database after the restore.

The Restore database form can restore database backups, file backups, or backups from a
device (i.e., a tape drive). The restore wizard will present a hierarchical tree of backups, while
the filegroups or file restore lists the files and must be manually restored in the correct order.

The “Show backups of database” option is used to select the first backup in the database-
backup sequence to restore. Based on the sequence selected, the grid displays a hierarchical
tree of the possible backup sequences:

✦ Full database backups are represented by gold hard-drive symbols at the highest level
of the tree.

✦ Differential backups are represented by blue hard-drive symbols at the second level of
the tree.

✦ Transaction-log backups are represented by notebook symbols at the lowest level of
the tree.

Depending on the full and differential backups selected, only certain differential and transac-
tion-log backups may be chosen.

The advantage is that the sequence of one full backup, the second differential backup, and
the following 15 transaction-log backups can be correctly sequenced by means of selecting
the final transaction log to be restored. Restoring the 17 backup files is performed with a sin-
gle click of the OK button.

If one of the backup files being restored is a transaction log the “Point in time restore” option
becomes available, because only a transaction log has the ability to restore only some of the
transactions.

31549359 ch26.F 11/21/02 9:50 AM Page 704

705Chapter 26 ✦ Recovery Planning

The point-in-time restore will restore all transactions committed before the time selected.

The Options tab of the Restore database dialog box (Figure 26-8) offers you a couple of signifi-
cant options.

Figure 26-8: The Options tab of the Restore database
dialog box enables you to restore the files to a
different disk location.

The “Force restore over existing database” option disables a safety check that prevents
Database A backup from being restored as Database B and accidentally overwriting an exist-
ing Database B. The safety check doesn’t prohibit Database A backup being restored over
Database A, so in most cases this option is moot. For the one time the database names are
chosen incorrectly, the default for “Force restore over existing databases” ignores the safety
check and allows the mistake. We don’t like it either. We turn it off.

Because it is very possible that the database is being restored to a different file location than
the original backup, the Option tab includes a way to assign new file locations.

The “Recovery completion state” option enables you to ship the log to a warm standby
server. For a normal restore, the option should be left operational.

If only certain files or filegroups are being restored, the “Restore: File or file groups” option
enables you to select the files or filegroup you wish to restore.

If the backup history, stored in msdb, is not available — because the server is being rebuilt or
the database is being restored to a different server — then the Restore: From Device option can
be used to manually select the specific backup disk file and backup instance within the file.

31549359 ch26.F 11/21/02 9:50 AM Page 705

706 Part IV ✦ Administering SQL Server

Restoring with T-SQL Code
Database backup is a regularly scheduled occurrence, so if SQL Server’s built-in maintenance
plan wizard isn’t to your liking, it makes sense to write some repeatable code to perform
backups and set up your own SQL Server Agent jobs.

But unless the backup plan is only a full backup, it’s impossible to know how many differen-
tial backups or transaction-log backups need to be restored. And because each backup file
requires a separate restore command, it’s impossible to script the recovery effort before-
hand without writing lots of code to examine the msdb tables and determine the restore
sequence properly.

The restore command will restore from a full, differential, or transaction-log backup:

RESTORE DATABASE (or LOG) DatabaseName
Optional-File or Filegroup PARTIAL
FROM BackUpDevice
WITH
FILE = FileNumber,
PASSWORD = Password,
NORECOVERY or RECOVERY or STANDBY = UnDoFileName,
REPLACE,
STOPAT datetime,
STOPATMARK = ‘markname’
STOPBEFOREMARK = ‘markname’

To restore a full or differential backup use the restore database command; otherwise use
the restore log for a transaction log. To restore a specific file or filegroup add its name
after the database name. If the file or filegroup is the only data being restored add the par-
tial option.

A backup set often contains several backup instances. For example, a backup set might con-
sist of the following:

1 — Full backup

2 — Differential backup

3, 4, 5, 6 — Transaction-log backups

7 — Differential backup

8, 9 — Transaction-log backups

The with file option specifies the backup to restore. If it’s left out of the command the first
backup instance is restored.

The recovery/norecovery option is vital to the restore command. Every time a SQL Server
starts it automatically checks the transaction log, rolling back any uncommitted transactions
and completing any committed transactions. This process is called recovery, and it’s a part of
the ACID properties of the database.

So if the restore has the norecovery option SQL Server restores the log without handling any
transactions. On the other hand, recovery instructs SQL Server to handle the transactions.
In the sequence of the recovery operation, all the restores must have the norecovery option
enabled, except for the last restore, which must have the recovery option enabled.

31549359 ch26.F 11/21/02 9:50 AM Page 706

707Chapter 26 ✦ Recovery Planning

Deciding between recovery and norecovery is one of the complications involved in trying
to write a script to handle any possible future recovery operation.

If the recovery operation includes a transaction-log restore, the recovery can stop before the
end of the transaction log. The options, stopat and stopatmark, will leave the end of the
transaction log unrestored. The stopat accepts a time, and the stopatmark restores only to
a transaction that was created with a named mark. The stopbeforemark option restores
everything up to the beginning of the marked transaction.

Chapter 15, “Implementing Triggers,” details SQL Server transactions and how to create
marked transactions.

The following script demonstrates a restore sequence that includes a full backup and two
transaction-log backups:

-- BackUp and recovery example

CREATE DATABASE Plan2Recover

Result:

The CREATE DATABASE process
is allocating 0.63 MB on disk ‘Plan2Recover’.

The CREATE DATABASE process
is allocating 0.49 MB on disk ‘Plan2Recover_log’.

Continue:

USE Plan2Recover

CREATE TABLE T1 (
PK INT Identity PRIMARY KEY,
Name VARCHAR(15)
)

Go
INSERT T1 VALUES (‘Full’)
go
BACKUP DATABASE Plan2Recover
TO DISK = ‘e:\P2R.bak’
WITH
NAME = ‘P2R_Full’,
INIT

Result:

Processed 80 pages for database ‘Plan2Recover’,
file ‘Plan2Recover’ on file 1.

Processed 1 pages for database ‘Plan2Recover’,
file ‘Plan2Recover_log’ on file 1.

BACKUP DATABASE successfully processed 81 pages
in 0.254 seconds (2.590 MB/sec).

Cross-
Reference

31549359 ch26.F 11/21/02 9:50 AM Page 707

708 Part IV ✦ Administering SQL Server

Continue:

INSERT T1 VALUES (‘Log 1’)
go
BACKUP Log Plan2Recover
TO DISK = ‘e:\P2R.bak’
WITH
NAME = ‘P2R_Log’

Result:

Processed 1 pages for database ‘Plan2Recover’,
file ‘Plan2Recover_log’ on file 2.

BACKUP LOG successfully processed 1 pages
in 0.083 seconds (0.055 MB/sec).

Continue:

INSERT T1 VALUES (‘Log 2’)
go
BACKUP Log Plan2Recover
TO DISK = ‘e:\P2R.bak’
WITH
NAME = ‘P2R_Log’

Result:

Processed 1 pages for database ‘Plan2Recover’,
file ‘Plan2Recover_log’ on file 3.

BACKUP LOG successfully processed 1 pages
in 0.057 seconds (0.008 MB/sec).

Continue:

SELECT * FROM T1

Result:

PK Name
----------- ---------------
1 Full
2 Log 1
3 Log 2

At this point the server is hit with a direct bolt of lightning and all drives are fried, with the
exception of the backup files. The following recovery operation goes through the full backup
and the two transaction-log backups. Notice the norecovery and recovery options:

-- NOW PERFORM THE RESTORE
Use Master
RESTORE DATABASE Plan2Recover
FROM DISK = ‘e:\P2R.bak’
With FILE = 1, NORECOVERY

Result:

Processed 80 pages for database ‘Plan2Recover’,

31549359 ch26.F 11/21/02 9:50 AM Page 708

709Chapter 26 ✦ Recovery Planning

file ‘Plan2Recover’ on file 1.
Processed 1 pages for database ‘Plan2Recover’,
file ‘Plan2Recover_log’ on file 1.

RESTORE DATABASE successfully processed 81 pages
in 0.089 seconds (7.392 MB/sec).

Continue:

RESTORE LOG Plan2Recover
FROM DISK = ‘e:\P2R.bak’
With FILE = 2, NORECOVERY

Result:

Processed 1 pages for database ‘Plan2Recover’,
file ‘Plan2Recover_log’ on file 2.

RESTORE LOG successfully processed 1 pages
in 0.009 seconds (0.512 MB/sec).

Continue:

RESTORE LOG Plan2Recover
FROM DISK = ‘e:\P2R.bak’
With FILE = 3, RECOVERY

Result:

Processed 1 pages for database ‘Plan2Recover’,
file ‘Plan2Recover_log’ on file 3.

RESTORE LOG successfully processed 1 pages
in 0.044 seconds (0.011 MB/sec).

To test the recovery operation:

USE Plan2Recover
Select * from T1

Result:

PK Name
----------- ---------------
1 Full
2 Log 1
3 Log 2

As this script shows, it is possible to recover using T-SQL. But in this case Enterprise
Manager beats code as the best way to accomplish the task.

System Databases Recovery
So far, this chapter has dealt only with user databases. But the system databases are impor-
tant to the recovery operation as well. The master database contains key database and secu-
rity information, and the MSDB database holds the schedules and jobs for SQL Server, as well
as the backup history. A complete recovery plan must include the system databases.

31549359 ch26.F 11/21/02 9:50 AM Page 709

710 Part IV ✦ Administering SQL Server

System databases are visible in Enterprise Manager only if the “Show system databases and
system objects” option is enabled in the server-registration properties.

Master System Database
The master database, by default, uses the simple recovery model. Using only full backups for
the master database is OK; it’s not a transactional database.

Backing up the Master Database
The master database is backed up in the same manner as user databases.

Be sure to back up the master database when:

✦ Create or delete databases

✦ Modify security by adding logins or changing roles

✦ Modify any server or database-configuration options

Since the MSDB database holds a record of all backups, back up the master database and
then the MSDB.

Recovering the Master Database
If the master database is corrupted or damaged SQL Server won’t start. Attempting to start
SQL Server with the Service Manager will have no effect. Attempting to connect to the
instance with Enterprise Manager will invoke a report that the server does not exist or that
access is denied.

To simulate this occurrence, delete the master database. It’s located in the data directory of
the following instance:

C:\Program Files\Microsoft SQL Server\MSSQL\Data\master.mdf

The first step to recovery is to install a fresh master database so that the server will at least
start. From there, the actual master database can be restored. To install a fresh master
database, double-click the rebuildm.exe utility found in the following directory:

C:\Program Files\Microsoft SQL Server\80\Tools\Binn

The rebuild master utility, shown in Figure 26-9, requires three entries:

✦ The name of the server to be recovered.

✦ The location of the original master database from the initial installation, which will
likely be x86\data directory of the initial CD if the SQL Server is SP2. (In earlier ver-
sions, the initial data directory may need to be copied to a hard drive or a network
drive because of a bug.)

✦ The server collation.

The rebuild process will re-create all four system databases, plus Northwind and Pubs, and
then configure the server. The entire process will take several minutes, or even longer if the
server has been upgraded to a service pack.

Note

31549359 ch26.F 11/21/02 9:50 AM Page 710

711Chapter 26 ✦ Recovery Planning

Figure 26-9: The rebuildm.exe utility will create a fresh master database so SQL Server
can be started.

Step two of the recovery process is to start the server using Service Manager or Enterprise
Manager.

Depending on your security configuration, it’s highly likely that Enterprise Manager doesn’t
have permission to connect to the server. Rebuilding the master database lost all the logins
except sa, and reset the sa password to blank. To adjust Enterprise Manager’s connection
setting so it connects as sa with a blank password, edit the SQL Server registration proper-
ties. Don’t be concerned about the blank password; the real master database will soon be
restored.

Once the server is again running, it will appear as if the user databases are gone because the
rebuilt master database doesn’t include any information about the user databases.

Step three is to put the server in single-user mode so the master may be restored. In
Enterprise Manager, do the following:

1. Select the server.

2. Select properties in the right-click menu to open the Server Properties form.

3. Click the Startup Parameters button, shown in Figure 26-10.

31549359 ch26.F 11/21/02 9:50 AM Page 711

712 Part IV ✦ Administering SQL Server

Figure 26-10: The server must be put in
single-user mode (-m) for the master
database to be restored.

4. Enter -m in the Parameter text box and press the Add button.

5. Press OK to close the Startup Parameters dialog box and close the server Properties
form.

6. Close Enterprise Manager.

While the SQL Server instance is in single-user mode, avoid using Enterprise Manager. It’s
possible to get the instance locked into a mode that will not accept any future connections.

7. Stop and restart the SQL Server instance using SQL Server Manager.

The fourth step in recovering a lost master database is to perform the actual restore. Because
SQL Server is now in single-user mode, this step must be performed within Query Analyzer.
Attempting to restore the master database within Enterprise Manager can cause serious diffi-
culties. From Query Analyzer execute the restore, as follows:

RESTORE DATABASE master
FROM
DISK = ‘systembackup’
WITH FILE = 1

Result:

The master database has been successfully restored.
Shutting down SQL Server.

SQL Server is terminating this process.

Close Query Analyzer and restart the SQL Server instance using SQL Service Manager.

The final step in restoring the master database is to return the SQL Server instance to multi-
user mode buy removing the -m startup parameter you inserted in Step three. Use Enterprise
Manager’s Server Properties form to modify the startup parameters.

Close Enterprise Manager and stop and restart the SQL Server instance using SQL Server
Manager.

Caution

31549359 ch26.F 11/21/02 9:50 AM Page 712

713Chapter 26 ✦ Recovery Planning

MSDB System Database
Like the master database, the msdb database by default uses the simple recovery model.

Because the msdb database contains information regarding the SQL Server Agent jobs and
schedules, as well as the backup history, it should be backed up whenever you:

✦ Perform backups

✦ Save DTS packages

✦ Create new SQL Server Agent jobs

✦ Configure SQL Server Agent mail or operators

✦ Configure replication

✦ Schedule tasks

The msdb database is backed up in the same way that a user database backs up.

To restore the msdb database you do not need to put the server in single-user mode, as you
do with the master database. However, it’s still not a normal restore, because without a
current msdb, Enterprise Manager is not aware of the backup history. Therefore, the msdb
backup can’t be chosen as a backup database but must be selected as a backup device, as
shown in Figure 26-11.

Figure 26-11: When you are restoring the msdb system database the backup history is
not available, so the restore must select the backup directly from the backup file as a
backup device.

31549359 ch26.F 11/21/02 9:50 AM Page 713

714 Part IV ✦ Administering SQL Server

The Contents button can be used to check the disk device for specific backups. If several
backup instances are in the backup device the Contents dialog box (Figure 26-12) can be used
to select the correct backup. It then fills in the file number in the restore form.

Figure 26-12: The backup file might contain
several backup instances. The Contents dialog
box is used to select the correct file number
within the disk device.

Performing a Complete Recovery
If the server has completely failed and all the backups must be restored onto a new server,
this is the process to follow:

1. Build the Windows server and restore the domain logins to support Windows
authentication.

2. Install SQL Server and any service-pack upgrades.

3. Put SQL Server in single-user mode and restore the master database.

4. Restore the msdb database.

5. If the model database was modified, restore it.

6. Restore the user databases.

Performing a flawless recovery is a “bet your career” skill. I recommend taking the time to
work through a complete recovery of the production data to a backup server. The confidence
it will build will serve you well as a SQL Server DBA.

31549359 ch26.F 11/21/02 9:50 AM Page 714

715Chapter 26 ✦ Recovery Planning

Summary
The recovery cycle begins with the backup of the databases. The ability to survive hardware
failure or human error is crucial to the ACID properties of a database. Without the transac-
tion’s durability, the database can’t be fully trusted. Because of this, recovery planning and
the transaction log provide durability to committed transactions.

The recovery cycle transfers data from the past to the present. The next chapter moves on
from this theme and explains how to secure the database.

✦ ✦ ✦

31549359 ch26.F 11/21/02 9:50 AM Page 715

31549359 ch26.F 11/21/02 9:50 AM Page 716

Securing Databases

It’s common practice to develop the database and then worry
about security. While there’s no point in applying security while

the database design is in flux, the project benefits when you develop
and implement the security plan sooner rather than later.

Security, like every other aspect of the database project, must be
carefully designed, implemented, and tested. Security may affect the
execution of some procedures and must be taken into account when
the project code is being developed.

A simple security plan with a few roles and the IT users as sysadmins
may suffice for a small organization. Larger organizations — the mili-
tary, banks, or research organizations — will require a more complex
security plan that’s designed as carefully as the logical database
schema.

If security is tightly implemented with full security audits performed
by SQL Profiler, the SQL Server installation can be certified at C2-level
security. Fortunately, SQL Server’s security model is well thought-out
and, if fully understood, both logical and flexible. While the tactics of
securing a database are creating users and roles, and then assigning
permissions; the strategy is identifying the rights and responsibilities
of data access and then enforcing the plan.

Security Concepts
The SQL Server security model is large and complex. In some ways
it’s more complex than the Windows security model. Because the
security concepts are tightly intertwined, the best way to begin is to
walk through an overview of the model.

SQL Server security is based on the concepts of users, roles, objects,
and permissions. Users are assigned to roles, both of which may be
granted permission to objects, as illustrated in Figure 27-1. Each
object has an owner, and ownership also affects the permissions.

2727C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding SQL
Server security

Making sense of the
many SQL logins

Server-level security

Server, database, and
application roles

Granting, revoking, and
denying access

Recommended security
models

Views and security

✦ ✦ ✦ ✦

32549359 ch27.F 11/21/02 9:50 AM Page 717

718 Part IV ✦ Administering SQL Server

Figure 27-1: An overview of the SQL Server security model shows how users are first
authenticated to the server, followed by the databases, and finally the objects within
the databases. The circles represent how the user is identified.

Server-Level Security
A user may be initially identified to SQL Server via one of three methods:

✦ Windows user login

✦ Membership in a Windows user group

✦ SQL Server–specific login (if the server uses mixed-mode security)

At the server level the user is known by his or her LoginID, which is either his or her SQL
Server login, or his or her Windows domain and user name.

Once the user is known to the server and identified, the user has whatever server-level admin-
istrative rights have been granted via fixed server roles. If the user belongs to the sysadmin
role he or she has full access to every server function, database, and object in the server.

A user can be granted access to a database, and his or her network login ID can be mapped to
a database-specific user ID in the process. If the user doesn’t have access to a database he or
she can gain access as the guest user with some configuration changes within the database
server.

Database-Level Security
At the database level, the user may be granted certain administrative-level permissions by
belonging to fixed database roles.

Server Roles

Fixed DB Roles

User DB Roles

Public Role

Object Permission
(Grant, Revoke, Deny)

LoginID

Windows User

Windows Groups

SQL Server Security Model

SQL
Server
InstanceSQL Server User

(Mixed Mode)

User DBs

Guest

Master

UserID

32549359 ch27.F 11/21/02 9:50 AM Page 718

719Chapter 27 ✦ Securing Databases

The user still can’t access the data. He or she must be granted permission to the database
objects (tables, stored procedures, views, functions). User-defined roles are custom roles that
serve as groups. The role may be granted permission to a database object, and users may be
assigned to a database user-defined role. All users are automatically members of the public
standard database role.

Object permissions are assigned by means of grant, revoke, and deny. A deny permission
overrides a grant permission, which overrides a revoke permission. A user may have multi-
ple permission paths to an object (individually, through a standard database role, and through
the public role). If any of these paths is denied the user is blocked from accessing the object.
Otherwise, if any of the paths is granted permission, the user can access the object.

Object permission is very detailed and a specific permission exists for every action that can
be performed (select, insert, update, run, and so on) for every object. Certain database
fixed roles also affect object access, such as the ability to read or write to the database.

It’s very possible for a user to be recognized by SQL Server and not have access to any
database. It’s also possible for a user to be defined within a database but not recognized by
the server. Moving a database and its permissions to another server, but not moving the
logins, will cause such orphaned users.

Object Ownership
The final aspect of this overview of SQL Server’s security model involves object ownership.
Every object has an owner. The owner is automatically granted permission to the object, but
this permission can be overridden by a deny in a role. The owner can be a specific database
user, or the user, dbo.

Ownership becomes critical when permission is being granted to a user to run a stored pro-
cedure when the user doesn’t have permission to the underlying tables. If the ownership
chain from the tables to the stored procedure is consistent, the user can access the stored
procedure and the stored procedure can access the tables as its owner. But if the ownership
chain is broken, meaning that there’s a different owner somewhere between the stored proce-
dure and the table, the user must have rights to the stored procedure, the underlying tables,
and every other object in between.

Most of the management of security can be performed in Enterprise Manager. With code,
security is managed by means of the grant, revoke, and deny Data-Control Language (DCL)
commands, and 53 system stored procedures.

Windows Security
Because SQL Server exists within a Windows environment, one aspect of the security strategy
must be securing the Windows server.

Windows Security
SQL Server databases frequently support Web sites, so Internet Information Server (IIS) secu-
rity and firewalls must be considered within the security plan.

32549359 ch27.F 11/21/02 9:50 AM Page 719

720 Part IV ✦ Administering SQL Server

Windows security is an entire topic in itself, and outside the scope of this book. If, as a DBA,
you are not well supported by qualified network staff, we suggest that you make the effort to
become proficient in Windows Server technologies, especially security (which is why you
must pass the Windows server exam to receive MCDBA certification).

The Microsoft Personal Security Advisor will run a check on the Windows installation and
report any security holes. You can find the Personal Security Advisor at the following URL:

http://www.microsoft.com/technet/mpsa/start.asp

SQL Server Login
Don’t confuse users access to SQL Server with SQL Server’s Windows accounts. The two
logins are completely different.

SQL Server users don’t need access to the database directories or data files on a Windows
level because the SQL Server process, not the user, will perform the actual file access.
However, the SQL Server process needs permission to access the files, so it needs a Windows
account. Two types are available:

✦ Local admin account — SQL Server can use the local admin account of the operating
system for permission to the machine. This option is adequate for single-server instal-
lations but fails to provide the network security required for distributed processing.

✦ Domain user account (recommended) — SQL Server can use a Windows user account
created specifically for it. The SQL Server user account can be granted administrator
rights for the server and can access the network through the server to talk to other
servers.

The SQL Server accounts were initially configured when the server was installed. Installation
is discussed in Chapter 3, “Installing and Configuring SQL Server.”

Server Security
SQL Server uses a two-phase security-authentication scheme. The user is first authenticated to
the server. Once the user is “in” the server, access can be granted to the individual databases.

SQL Server stores all login information within the master database.

SQL Server Authentication Mode
When SQL Server was installed, one of the decisions made was which of the following authen-
tication methods was used:

✦ Windows authentication mode — Windows authentication only.

✦ Mixed mode — Both Windows authentication and SQL Server user authentication.

This option can be changed after installation in Enterprise Manager, in the Security tab of the
SQL Server Properties dialog box, as shown in Figure 27-2.

Cross-
Reference

32549359 ch27.F 11/21/02 9:50 AM Page 720

721Chapter 27 ✦ Securing Databases

Figure 27-2: Server-level security is
managed in the Security tab of the SQL Server
Properties dialog box.

From code, the authentication mode can be checked by means of the xp_loginconfig sys-
tem stored procedure, as follows:

EXEC xp_loginconfig ‘login mode’

Results:

name config_value
---------------------------- ----------------------------
login mode Mixed

Notice that the system stored procedure to report the authentication mode is an extended
stored procedure. That’s because the authentication mode is stored in the registry in the fol-
lowing entry:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
MicrosoftSQLServer\<instance_name>\MSSQLServer\LoginMode

A value of LoginMode is 0 is for Windows authentication and 1 for mixed mode.

The only ways to set the authentication mode are to use either Enterprise Manager or RegEdit.

Windows Authentication
Windows authentication is superior to mixed mode because the user does not need to learn
yet another password and because it leverages the security design of the network.

32549359 ch27.F 11/21/02 9:50 AM Page 721

722 Part IV ✦ Administering SQL Server

The use of Windows authentication means that users must exist as Windows users to be rec-
ognized by SQL Server. The Windows SID (Security Identifier) is passed from Windows to SQL
Server.

Windows authentication is very robust in that it will authenticate not only Windows users,
but also users within Windows user groups.

When a Windows group is accepted as a SQL Server login, any Windows user who is a mem-
ber of the group can be authenticated by SQL Server. Access, roles, and permissions can be
assigned for the Windows group; they will apply to any Windows user in the group.

If the Windows users are already organized into groups by function and security level, using
those groups as SQL Server users provides consistency and reduces administrative overhead.

SQL Server also knows the actual Windows user name, so the application can gather audit
information at the user level as well as at the group level.

Managing Windows Users and Groups with Enterprise Manager
Windows users are created and managed in various places in the different Windows versions.
In Windows XP classic view, users can be managed from Control Panel ➪ Administrative
Tools ➪ Computer Management, as shown in Figure 27-3. The Windows XP category view
offers fewer user management features.

Figure 27-3: Windows users are managed and assigned to Windows groups
by means of the Computer Management tool.

Once the users exist in the Windows user list or the Windows domain, SQL Server can recog-
nize them. Follow these steps to add Windows users to SQL Server with Enterprise Manager
(you must have sysadmin rights to add users):

1. Open the security node under the server.

2. Select Logins.

32549359 ch27.F 11/21/02 9:50 AM Page 722

723Chapter 27 ✦ Securing Databases

3. Right-click the Login node, or right-click in the right pane, and select New Login.

4. In the General tab of the SQL Server Login Properties dialog (Figure 27-4), click the
builder button (...) to the right of the new user name.

Figure 27-4: The General tab of the SQL
Server Login Properties dialog is used to
create and edit user logins at the server level.

5. A dialog box will appear that displays all the Windows users and groups (Figure 27-5).
Select the Windows user or group, click Add, and then click OK.

Figure 27-5: SQL Server will list all the
Windows users and groups, making it easy to
add Windows-authentication users.

32549359 ch27.F 11/21/02 9:50 AM Page 723

724 Part IV ✦ Administering SQL Server

The user may be assigned a default database and language at the bottom of the SQL Server
Login Properties dialog. Unfortunately, assigning a default database does not grant access to
that database. The user may be granted access to databases in the Database Access tab.
(Database access is discussed in the next section.)

There is a Create Login Wizard under the database grouping of wizards. However, it requires
the domain and user name to be typed rather than selected from a list, and it provides no
additional functionality. It’s easier to add the Windows user security node than the wizard.

Managing Windows Users and Groups with Code
To use T-SQL code to add a Windows user or group, run the sp_grantlogin system stored
procedure. Be sure to use the full Windows user name, including the domain name, as follows:

EXEC sp_grantlogin ‘Noli\Paul’

Result:

Granted login access to ‘Noli\Paul’.

Removing a Windows Login
To drop a Windows user or group from SQL Server, use the sp_revokelogin system stored
procedure. The Windows user or group will exist in Windows; it just won’t be recognized by
SQL Server.

EXEC sp_revokelogin ‘Noli\Paul’

Result:

Revoked login access from ‘Noli\Paul’.

Denying a Windows Login
Using the paradigm of grant, revoke, and deny, a user may be blocked for access using
sp_denylogin. This can prevent a user or group from accessing SQL Server even if he or she
could otherwise gain entry from another method.

For example, say the Accounting group is granted normal login access, while the Probation
group is denied access. Joe is a member of both the Accounting group and the Probation
group. The Probation group’s denied access blocks Joe from the SQL Server even though he
is granted access as a member of the Accounting group, because deny overrides grant.

To deny a Windows user or group, use the sp_denylogin system stored procedure. If the
user or group being denied access doesn’t exist in SQL Server, sp_denylogin adds and then
denies him, her, or it:

EXEC sp_denylogin ‘Noli\Paul’

Result:

Denied login access to ‘Noli\Paul’.

To restore the login after denying access, you must first grant access with the sp_grantlogin
system stored procedure.

Note

32549359 ch27.F 11/21/02 9:50 AM Page 724

725Chapter 27 ✦ Securing Databases

Orphaned Windows Users
If a Windows user is added to SQL Server and then removed from the Windows domain, the
user still exists in SQL Server but is considered orphaned. Being an orphaned user means
even though the user has access to the SQL Server, they may not necessarily have access to
the network and thus no access to the SQL Server box itself.

The sp_validatelogins system stored procedure will locate all orphaned users and return
their Windows NT security identifiers and login names. For the following code example, Joe
was created as a Windows user and granted a Windows authentication login, and was then
removed from Windows:

EXEC sp_validatelogins

Result (formatted):

SID NT Login
--- ----------
0x010500000000000515000000FCE31531A9314340BE043E32F1030000

Noli\Joe

This is not a security hole. Without a Windows login with a matching SID, the user can’t log
into SQL Server.

To resolve the orphaned user:

1. If the user owns any objects, transfer the ownership to another user or to the
database owner using sp_changeobjectowner, or drop the objects (covered in
the next section).

2. Remove the user from any database access using sp_revokedbaccess.

3. Revoke the user’s server access using sp_revokelogin.

Security Delegation
In an enterprise network with multiple servers and IIS, logins can become a problem because
a user may be logging into one server that is accessing another server. This problem arises
because each server must have a trust relationship with the others. For internal company
servers, this may not be a problem, but when one of those servers sits in a DMZ on the
Internet you may not want to establish that trust since it presents a security hole.

Security delegation is a Windows 2000 feature that uses Kerberos to pass security informa-
tion among trusted servers.

For example, a user can access IIS, which can access a SQL Server, and the SQL Server will
see the user as the user name even though the connection came from IIS.

A few conditions must be met in order for Kerberos to work:

✦ All servers must be running Windows 2000 running Active Directory in the same
domain or within the same trust tree.

✦ The “Account is sensitive and cannot be delegated” option must not be selected for the
user account.

32549359 ch27.F 11/21/02 9:50 AM Page 725

726 Part IV ✦ Administering SQL Server

✦ The “Account is trusted for delegation” option must be selected for the SQL Server ser-
vice account.

✦ The “Computer is trusted for delegation” option must be selected for the server run-
ning SQL Server.

✦ SQL Server must have Service Principal Name (SPN), created by setspn.exe, available
in the Windows 2000 Resource Kit.

Security delegation is difficult to set up and may require the assistance of your network-
domain administrator. However, the ability to recognize users going through IIS is a powerful
security feature.

SQL Server Logins
The optional SQL Server logins are useful when Windows authentication is inappropriate or
unavailable. It’s provided for backward compatibility and for legacy applications that are
hard-coded to a SQL Server login.

Implementing SQL Server logins (mixed mode) will automatically create an sa user, who will
be a member of the sysadmin fixed server role and have all rights to the server. An sa user
without a password is very common and the first attack every hacker tries when detecting a
SQL Server. Therefore, the best practice is disabling the sa user and assigning different users,
or roles, to the sysadmin fixed server role instead.

To manage SQL Server users in Enterprise Manager use the same steps as before, but enter
the name instead of choosing a Windows user or group.

In T-SQL code, use the sp_addlogin system stored procedure. Because this requires setting
up a user rather than just selecting one that already exists, it’s much more complex than
adding a sp_grantlogin. Only the login name is required:

sp_addlogin ‘login’, ‘password’, ‘defaultdatabase’,
‘defaultlanguage’, ‘sid’, ‘encryption_option’

For example, the following code adds Joe as a SQL Server user and sets his default database
to the OBX Kite Store sample database:

EXEC sp_addlogin ‘Joe’, ‘myoldpassword’, ‘OBXKites’

Result:

New login created.

The encryption option (skip_encryption) directs SQL Server to store the password without
any encryption in the sysxlogins system table. SQL Server expects the password to be
encrypted so the password won’t work. Avoid this option.

The server user ID, or SID, is an 85-bit binary value that SQL Server uses to identify the user. If
the user is being set up on two servers as the same user, the SID will need to be specified for
the second server. The system stored procedure sp_helplogins will report the user’s fSID:

EXEC sp_help_logins

32549359 ch27.F 11/21/02 9:50 AM Page 726

727Chapter 27 ✦ Securing Databases

Result (abridged):

LoginName SID DefDBName
--------- ---------------------------------- ---------
Joe 0x6CC6F5C9C52D1E4E8916DE0C544D103F OBXKites

Setting the Default Database
The default database can be set from code by means of the sp_defaultdb system stored
procedure:

EXEC sp_defaultdb ‘Paul’, ‘OBXKites’

Result:

Default database changed.

Updating a Password
The password can be modified by means of the sp_password system stored procedure:

EXEC sp_password ‘myoldpassword’, ‘mynewpassword’, ‘Joe’

Result:

Password changed.

If the password was empty, use the keyword NULL instead of empty quotes (‘’).

Removing a Login
To remove a SQL Server login use the sp_droplogin system stored procedure:

EXEC sp_droplogin ‘Joe’

Result:

Login dropped.

Removing a login will also remove all the login security settings.

Server Roles
SQL Server includes only fixed, predefined server roles. Primarily these roles grant permis-
sion to perform certain server-related administrative tasks. A user may belong to multiple
roles.

These following roles are best used to delegate certain server administrative tasks:

✦ System administrators (sysadmin) can perform any activity in the SQL Server installa-
tion, regardless of any other permission setting. The sysadmin role even overrides
denied permissions on an object.

SQL Server automatically creates a user, ‘BUILTINS/Administrators’, which
includes all Windows users in the Windows Admins group, and assigns that group to
the SQL Server sysadmin role. The BUILTINS/Administrators user can be deleted or
modified if desired.

32549359 ch27.F 11/21/02 9:50 AM Page 727

728 Part IV ✦ Administering SQL Server

If the SQL Server is configured for mixed-mode security it also creates an sa user and
assigns that user to the SQL Server sysadmin role. The sa user is there for backward
compatibility.

Disable or rename the sa user, or at least assign it a password, but don’t use it as a devel-
oper and DBA sign on. Also, delete the BUILTINS/Administrators user. Instead, use
Windows authentication and assign the DBAs and database developers to the sysadmin
role.

✦ A user must reconnect for the full capabilities of the sysadmin role to take effect.

✦ Bulk-insert administrators can perform bulk-insert operations.

✦ Database creators can create and alter databases.

✦ Process administrators can kill a running SQL Server process.

✦ Security administrators can manage the logins for the server.

✦ Server administrators can configure the serverwide settings, including setting up full-
text searches and shutting down the server.

✦ Setup administrators can configure linked servers, extended stored procedures, and the
startup stored procedure.

✦ Disk administrators is a SQL Server 6.5 legacy role that can manage SQL Server 6.5–style
disk files.

The server roles are set in Enterprise Manager in the Server Roles tab of the SQL Server Login
Properties dialog (Figure 27-6). The Properties button opens a dialog box that describes the
selected role and lists the specific commands or stored procedures to which the role grants
permission.

Figure 27-6: The Server Roles tab is used to
assign server-administrative rights to users.
The Properties button details the exact
permissions granted by the server role.

32549359 ch27.F 11/21/02 9:50 AM Page 728

729Chapter 27 ✦ Securing Databases

In code, a user is assigned to a server role by means of a system stored procedure:

sp_addsrvrolemember
[@loginame =] ‘login’,
[@rolename =] ‘role’

For example, the following code adds the login Noli\Lauren to the sysadmin role:

EXEC sp_addsrvrolemember ‘Noli\Lauren’, ‘sysadmin’

Result:

‘Noli\Lauren’ added to role ‘sysadmin’.

The counterpart of sp_addsrvrolemember, sp_dropsrvrolemember, removes a login from a
server fixed role:

EXEC sp_dropsrvrolemember ‘Noli\Lauren’, ‘sysadmin’

Result:

‘Noli\Lauren’ dropped from role ‘sysadmin’.

Database Security
Once a user has gained access to the server, access may be granted to the individual user
databases. Database security is potentially complex.

Users are initially granted access to databases by means of adding the database to the user,
or adding the user to the database.

Guest Logins
Any user who wishes to access a database, but has not been declared a user within the
database, will automatically be granted the user privileges of the guest database user if the
guest user account exists.

The guest user is not automatically created when a database is created. It must be specifi-
cally added in code or as a database user. The guest login does not need to be predefined as
a server login.

EXEC sp_adduser ‘Guest’

Be very careful with the guest login. While it may be useful to enable a user to access the
database without setting him or her up, the permissions granted to the guest user apply to
everyone without access to the database.

The guest user must be removed from a database if guests are no longer welcome.

Granting Access to the Database
Many security settings involve multiple objects such as users and databases or roles and
object permissions. These settings can be made either from the user listing or database, or
from the role or object permission.

To grant access to a database using Enterprise Manager, use either the user listing Server
Login Properties, or the users listing under the database.

Caution

32549359 ch27.F 11/21/02 9:50 AM Page 729

730 Part IV ✦ Administering SQL Server

Granting Access Using the Server Properties
In Enterprise Manager, the Server ➪ Security ➪ Logins node lists every user. Any user may be
granted access to a database by right-clicking on the user and selecting Properties. The SQL
Server Login Properties dialog is the same dialog we used to add users and groups previously
in this chapter. The Database Access tab (Figure 27-7) lists all the system and user databases.

Figure 27-7: The SQL Server Login Properties
dialog can add any database to the list of
databases a user may access.

Using the SQL Server Login Properties dialog, select the databases the user should be able to
access. If the user will be known by a database user name that is different from his or her
server login name, enter the user name in the right-hand (User) column. The user-name cell
will accept an entry only after the database is selected.

Granting Access Using the Database User List
To start from the database side of the access:

1. Select the database in the Enterprise Manager console tree and open the node.

2. Select the Users node and right-click the node or in the right-hand pane.

3. Select New Database User.

4. In the Database User Properties dialog box (Figure 27-8), select the user to be added in
the Login Name combo box. The dropdown list will display only users who do not cur-
rently have access to the database.

5. If the user will be known within the database by a user name that is different from the
server login, enter the name in the “User name” text box.

6. Click OK.

32549359 ch27.F 11/21/02 9:50 AM Page 730

731Chapter 27 ✦ Securing Databases

Figure 27-8: The Database User Properties
dialog box can be used to add a new user to
the database or to manage the current users.

Granting Access Using T-SQL Code
Of course, a stored procedure exists to grant database access to a user: sp_grantdbaccess.
The stored procedure must be issued from within the database to which the user is to be
granted access. The first parameter is the server login and the second is the optional
database user name:

USE Family
EXEC sp_grantdbaccess ‘Noli\Lauren’, ‘LRN’

Result:

Granted database access to ‘Noli\Lauren’.

Lauren now appears in the list of database users as ‘LRN’.

To remove Lauren’s database access, the system stored procedure sp_revokedbaccess
requires her database user name, not her server login name:

USE Family
EXEC sp_revokedbaccess ‘LRN’

Result:

User has been dropped from current database.

Fixed Database Roles
SQL Server includes a few standard, or fixed, database roles. Like the server fixed roles, these
primarily organize administrative tasks. A user may belong to multiple roles. The fixed
database roles include:

32549359 ch27.F 11/21/02 9:50 AM Page 731

732 Part IV ✦ Administering SQL Server

✦ db_owner is a special role that has all permissions in the database. This role includes
all the capabilities of the other roles. It is different from the dbo user role (see the sec-
tion on database owner). This is not the database-level equivalent of the server sysad-
min role; an object-level deny will override membership in this role.

✦ db_accessadmins can authorize a user to access the database, but not to manage
database-level security.

✦ db_backupoperators can perform backups, checkpoints, and dbcc commands, but
not restores (only server sysadmins can perform restores).

✦ db_datareaders can read all the data in the database. This role is the equivalent of a
grant on all objects and it can be overridden by a deny permission.

✦ db_datawriters can write to all the data in the database. This role is the equivalent of
a grant on all objects, and it can be overridden by a deny permission.

✦ db_ddladmins can issue DDL commands (create, alter, drop).

✦ db_denydatareaders can read from any table in the database. This deny will override
any object-level grant.

✦ db_denydatawriters blocks from modifying data in any table in the database. This
deny will override any object-level grant.

✦ db_securityadmins can manage database-level security — roles and permissions.

Assigning Fixed Database Roles with Enterprise Manager
The fixed database roles can be assigned with Enterprise Manager by means of either of the
following two procedures:

✦ Adding the role to the user in the user’s Database User Properties dialog — either as
the user is being created (Figure 27-8), or after the user exists (Figure 27-9).

Figure 27-9: The Database User Properties
dialog lists the roles. Checking a role assigns
the role to the user.

32549359 ch27.F 11/21/02 9:50 AM Page 732

733Chapter 27 ✦ Securing Databases

✦ Adding the user to the role in the Database Role Properties dialog. Select Roles under
the database in the console tree, select a role, right-click, and select Properties to open
the Database Role Properties dialog box (Figure 27-10).

Figure 27-10: The Database Role Properties
dialog lists all the users assigned to the
current role. Users can be added or removed
from the role by means of the Add and
Remove buttons.

Assigning Fixed Database Roles with T-SQL
From code, you can add a user to a fixed database role with the sp_addrole system stored
procedure.

Statement Permissions
Permission to execute specific statements may be granted, revoked, or denied in the
Permissions tab of the Family Properties dialog (Figure 27-11). The statements that can be
restricted are:

✦ Create Table

✦ Create View

✦ Create Sp

✦ Create Default

✦ Create Rule

✦ Create Function

✦ Backup DB

✦ Backup Log

32549359 ch27.F 11/21/02 9:50 AM Page 733

734 Part IV ✦ Administering SQL Server

In the Permissions tab a green check indicates that permission is granted, a red x indicates
that permission is denied, and an empty checkbox revokes the permission.

Figure 27-11: The Permissions tab of the Family
Properties dialog is used to grant permission to execute
specific commands within the database.

Unless you have a compelling reason to manage the permissions on an individual-statement
level, it’s easier to manage the database administrative tasks using the fixed database roles.

The grant, revoke, and deny commands are detailed in the next section.

Application Roles
An application role is a database-specific role that’s intended to allow an application to gain
access regardless of the user. For example, if a specific Visual Basic program is used to search
the Customer table, and it doesn’t handle user identification, the VB program can access SQL
Server using a hard-coded application role. Anyone using the application gains access to the
database.

Because using an application role forfeits the identity of the user, we strongly advise against
using application roles.

Object Security
If the user has access to the database, permission to the individual database objects may be
granted. Permission may be granted either directly to the user, or to a standard role and the
user assigned to the role. Users may be assigned to multiple roles, so multiple security paths
from a user to an object may exist.

Caution

32549359 ch27.F 11/21/02 9:50 AM Page 734

735Chapter 27 ✦ Securing Databases

Object Permissions
Object permissions are assigned with the SQL DCL commands, grant, revoke, and deny.
These commands have a hierarchy. A deny overrides a grant, and a grant overrides a
revoke. Another way to think of the DCL commands is that any grant will grant permission
unless the user is denied permission somewhere.

Several specific types of permissions exist:

✦ Select — The right to select data. Select permission can be applied to specific columns.

✦ Insert — The right to insert data.

✦ Update — The right to modify existing data. Update rights requires select rights as well.
Update permission can be set on specific columns.

✦ Delete — The right to delete existing data.

✦ DRI (References) — The right to create foreign keys with DRI.

✦ Execute — The right to execute stored procedures or user-defined functions.

Object-level permission is applied with the three basic DCL commands, grant, deny, and
revoke. Whether security is being managed from Enterprise Manager or from code, it’s
important to understand these three commands.

Granting object permission interacts with the server and database roles. Here’s the overall
hierarchy of roles and grants, with 1 overriding 2, and so on:

1. The sysadmin server role

2. Deny object permission

or the db_denydatareader database role

or the db_denydatawriter database role

3. Grant object permission

or object ownership

or the db_datareader database role

or the db_datewriter database role

4. Revoke object permission

An easy way to test security is to configure the server for mixed mode and create a SQL
Server Login test user. Using Query Analyzer, it’s easy to create additional connections as dif-
ferent users — much easier than it is to change the server registration and log into Enterprise
Manager as someone else.

If your environment prohibits mixed-mode security, the easiest way to check security is to
right-click Enterprise Manager or Query Analyzer and use the Run As command to run then
using a different user. But this entails creating dummy users on in the Windows domain.

32549359 ch27.F 11/21/02 9:50 AM Page 735

736 Part IV ✦ Administering SQL Server

Granting Object Permissions with Code
Setting an object permission is the only security command that can be executed without a
system stored procedure being called.

GRANT Permission, Permission
ON Object
TO User/role, User/role
WITH GRANT OPTION

The permissions may be all, select, insert, delete, references, update, or execute. The
role or user name refers to the database user name, any user-defined public role, or the pub-
lic role. For example, the following code grants select permission to Joe for the Person table:

GRANT Select ON Person TO Joe

The next example grants all permissions to the public role for the Marriage table:

GRANT All ON Marriage TO Public

Multiple users or roles, and multiple permissions, may be listed in the command. The follow-
ing code grants select and update permission to the guest user and to LRN:

GRANT Select, Update ON Person to Guest, LRN

The with grant option grants the ability to grant permission for the object. For example, the
following command grants Joe the permission to select from the Person table and grant
select permission to others:

GRANT Select ON Person TO Joe WITH GRANT OPTION

The with grant option may only be used when you are managing security with code.
Enterprise Manager has no feature with which to access the with grant option.

Revoking and Denying Object Permission with Code
Revoking and denying object permissions uses essentially the same syntax as granting per-
mission. The following statement revokes select permissions from Joe on the Marriage table:

REVOKE All ON Marriage TO Public

If the permission was granted with grant option, then the permission must be revoked or
denied with the cascade option so that the with grant option will be removed. The follow-
ing command denies select permission from Joe permission on the Person table:

DENY Select ON Person TO Joe CASCADE

Standard Database Roles
Standard database roles, sometimes called user-defined roles, can be created by any user in
the server sysadmin, database db_owner, or database security admin role. These roles
are similar to those in user groups in Windows. Permissions, and other role memberships,
can be assigned to a standard database role, and users can then be assigned to the role.

The cleanest SQL Server security plan is to assign object permissions and fixed roles to stan-
dard database roles, and then to assign users to the roles.

32549359 ch27.F 11/21/02 9:50 AM Page 736

737Chapter 27 ✦ Securing Databases

The Public Role
The public role is a fixed role but it can have object permissions like a standard role. Every
user is automatically a member of the public role and cannot be removed, so the public
role serves as a baseline or minimum permission level.

Use caution when applying permissions to the public role because it will affect everyone
except members of the sysadmin role. Granting access will affect everyone; more impor-
tantly, denying access will block all users except the members of the sysadmins role, even
object owners, from accessing data.

Managing Roles with Code
Creating standard roles with code involves using the sp_addrole system stored procedure.
The name can be up to 128 characters and cannot include a backslash, be null, or be an
empty string. By default the roles will be owned by the dbo user. However, you can assign the
role an owner by adding a second parameter. The following code creates the manager role:

EXEC sp_addrole ‘Manager’

Result:

New role added.

The counterpart of creating a role is removing it. A role may not be dropped if any users are
currently assigned to it. The sp_droprole system stored procedure will remove the role from
the database:

EXEC sp_droprole ‘Manager’

Result:

Role dropped.

Once a role has been created, users may be assigned to the role by means of the sp_addrole-
member system stored procedure. The following code sample assigns Joe to the manager role:

EXEC sp_addrolemember ‘Manager’, Joe

Result:

‘Joe’ added to role ‘Manager’.

Unsurprisingly, the system stored procedure sp_droprolemember removes a user from an
assigned role. This code frees Joe from the drudgery of management:

EXEC sp_dropRoleMember ‘Manager’, Joe

Result:

‘Joe’ dropped from role ‘Manager’.

Hierarchical Role Structures
If the security structure is complex, a powerful permission-organization technique is to
design a hierarchical structure of standard database roles. For example:

Caution

32549359 ch27.F 11/21/02 9:50 AM Page 737

738 Part IV ✦ Administering SQL Server

✦ The worker role may have limited access.

✦ The manager role may have all worker rights plus additional rights to look up tables.

✦ The administrator role may have all manager rights plus the right to perform other
database-administration tasks.

To accomplish this type of design, do the following:

1. Create the worker role and set its permissions.

2. Create the manager role and set its permissions. Add the manager role as a user to the
worker role.

3. Create the admin role. Add the admin role as a user to the manager role.

The advantage of this type of security organization is that a change in the lower level affects
all upper levels, and as a result administration is required in one location rather than dozens.

Object Security and Enterprise Manager
Object permissions, because they involve users, roles, and objects, can be set from numerous
places within Enterprise Manager (Figure 27-12). It’s almost a maze.

Figure 27-12: These thumbnails show the workflow involved in setting object permissions
from a list of objects, users, or roles. Each of these forms is shown full-sized within this
section.

Enterprise
Manager Console

Object Properties

Database User Properties-
Permissions

Database User
Properties

Database Role Properties Database Role Properties-
Permissions

Column Permissions

Table Properties

32549359 ch27.F 11/21/02 9:50 AM Page 738

739Chapter 27 ✦ Securing Databases

From the Object List
To modify an object’s permissions:

1. From an object list (tables, views, stored procedures, or user-defined functions) in
Enterprise Manager, double-click an object or select Properties from the right-click
menu to open the Properties dialog for that object type.

2. Click the Permissions button to open the Object Properties dialog (Figure 27-13).

Figure 27-13: The Object Properties dialog box shows all
users and roles, and can be used to modify their permissions.

As with setting statement permissions in the Database Properties Security tab, clicking the
permissions box will cycle through the grant, revoke, and deny, as follows:

✦ A green check indicates permission is granted.

✦ A red x indicates that permission is denied.

✦ An empty box indicates a revoked permission.

The object list at the top of the dialog lists all the objects in the database. This list can be
used to quickly switch to other objects without backing out of the form to the console and
selecting a different object.

The Columns button at the bottom opens the Column Permissions dialog (Figure 27-14).
Select the user and then click the button to set the columns permission for that user. Only
select and update permissions can be set at the column level, because inserts and deletes
affect the entire row.

32549359 ch27.F 11/21/02 9:50 AM Page 739

740 Part IV ✦ Administering SQL Server

Figure 27-14: The Column Permissions dialog
enables you to set permissions for selecting and
updating individual columns.

From the User List
From the list of database users in Enterprise Manager, select a user and double-click, or select
Properties from the right-click menu. The Database User Properties dialog (Figure 27-15) is
used to assign users to roles.

Figure 27-15: The Database User Properties
dialog box.

32549359 ch27.F 11/21/02 9:50 AM Page 740

741Chapter 27 ✦ Securing Databases

Clicking the Properties button will open the properties of the selected role.

Clicking the Permissions button will open the Permissions tab of the Database User
Properties dialog (Figure 27-16). This dialog is similar to the Permissions tab of the Database
Object Properties dialog.

Figure 27-16: The Permissions tab of the Database User
Properties dialog box is used to set individual permissions
for the user.

Unfortunately, the list of objects appears to be unsorted, or only partially sorted, and the grid
headers don’t re-sort the list of objects. This dialog also desperately needs a select all func-
tion, and other features such as those in Access’ permissions forms.

From the Role List
The third way to control object permission is from the database role. To open the Database
Role Properties dialog (Figure 27-17), double-click a role in the list of roles, or select
Properties from the right-click menu. The Database Role Properties dialog can be used to
assign users or other roles to the role, and to remove them from the role.

The Permissions button opens the permissions dialog box for the role (Figure 27-18). The
form operates like the other permission forms, except that it’s organized from the role’s
perspective.

32549359 ch27.F 11/21/02 9:50 AM Page 741

742 Part IV ✦ Administering SQL Server

Figure 27-17: The Database Role Properties
dialog box lists the users currently assigned
to the role, and can be used to manage the
role as well.

Figure 27-18: The Database Role Properties dialog box is
used to set object permissions for the role.

32549359 ch27.F 11/21/02 9:50 AM Page 742

743Chapter 27 ✦ Securing Databases

Object Ownership
Object ownership is an important yet easily misunderstood topic for SQL Server developers
and DBAs.

Every object must have an owner. Whoever created the object owns it, with the notable
exception of members of the sysadmins fixed server role. Enterprise Manager lists the object
owner before the object name.

The full name of any object is the name of the owner and the name of the object. For example,
in the family database, the Person table’s full name is dbo.Person, not Person. It’s possible,
therefore, for Sue to create a Person table, and its name would be sue.Person.

The owner’s individual permissions are permanently granted on their own objects. However,
if the owner is assigned to a role that is denied permission to the object, or to the
db_denyreader or db_denywriter roles, he or she will be blocked from his or her own
object. Object ownership does not override a deny permission.

Object owners also have the right to manage the permissions of the objects they own.

dbo
Any user in the sysadmin fixed server role is also mapped to a special system user, dbo. If the
user creates a new object the object is owned by dbo rather than by the user. The dbo user
has full permission in the database.

Ownership Chains
In SQL Server databases users often access data by going through one or several objects.
Ownership chains apply to views, stored procedures, and user-defined functions. For example:

✦ A Visual Basic program might call a stored procedure that then selects data from a
table.

✦ A report might select from a view, which then selects from a table.

✦ A complex stored procedure might call several other stored procedures.

In these cases, the user must have permission to execute the stored procedure or select from
the view. Whether the user also needs permission to select from the underlying tables
depends on the ownership chain from the object the user called to the underlying tables.

If the ownership chain is unbroken from the stored procedure to the underlying tables, the
stored procedure can execute using the permission of its owner, as shown in Figure 27-20.
The user only needs permission to execute the stored procedure. The stored procedure can
use its owner’s permission to access the underlying tables. The user doesn’t require permis-
sion to the underlying tables.

In the example shown in Figure 27-19, all the objects are owned by dbo. Since they have the
same owner, the ownership chain is unbroken. Joe needs only to execute permission for the
stored procedure dbo.A. The rest of the access takes place using dbo’s permissions rather
than Joe’s. In fact, since the lower-level objects are owned by the same owner, SQL Server
does not even bother to check the permissions of the owner of these objects.

32549359 ch27.F 11/21/02 9:50 AM Page 743

744 Part IV ✦ Administering SQL Server

Figure 27-19: An unbroken ownership chain means that the
called stored procedure can execute using the permissions
of its owner instead of the permissions of the user who called
the stored procedure.

Ownership chains are great for developing tight security where the users execute stored pro-
cedures but aren’t granted direct permission to any tables.

If the ownership chain is broken (Figure 27-20), meaning that there’s a different owner
between an object and the next lower object, SQL Server checks the user’s permission for
every object accessed.

In the example,

✦ The ownership chain from dbo.A to dbo.B to dbo.Person is unbroken, so dbo.A can
call dbo.B and access dbo.Person as dbo.

✦ The ownership chain from dbo.A to Sue.C to Joe.Purchase is broken because differ-
ent owners are present. So dbo.A calls Sue.C using Joe’s permissions, and Sue.C
accesses Joe.Purchase using Joe’s permissions.

✦ The ownership chain from dbo.A through dbo.B to Joe.Person is also broken. So
dbo.A calls dbo.B using dbo’s permissions, but dbo.B must access Joe.Purchase
using Joe’s permissions.

User: Joe
Permissions
Checked

Stored Procedure
dbo.A

Stored Procedure
dbo.B

Table
dbo.Person

Stored Procedure
dbo.C

Table
dbo.Purchase

as dbo as dbo

as dbo as dbo

as dbo

Unbroken Ownership Chain

32549359 ch27.F 11/21/02 9:50 AM Page 744

745Chapter 27 ✦ Securing Databases

Figure 27-20: Two of the three ownership chains are broken.
A broken ownership chain means that the user must have
permission to every object accessed.

Assigning Ownership
Since ownership chains are so important, SQL Server includes a method of modifying the
ownership of an object. Unfortunately, you cannot change an object’s ownership using
Enterprise Manager. But with code, the sp_changeobjectowner system stored procedure
reassigns the ownership:

sp_changeobjectowner object, newowner

For example, the following code makes Joe the owner of the Person table:

EXEC sp_changeobjectowner Person, Joe

Result:

Caution: Changing any part of an object name
could break scripts and stored procedures.

A Sample Security Model Example
For a few examples of permissions using the OBX Kites database, Table 27-1 lists the permis-
sion settings of the standard database roles. Table 27-2 lists a few of the users and their roles.

Table
Joe.Purchase

User: Joe

Broken Ownership Chain

Permissions
Checked

Stored Procedure
dbo.B

Table
dbo.Person

Stored Procedure
Sue.C

as dbo as Joe

as dbo as Joe

as Joe

Stored Procedure
dbo.A

32549359 ch27.F 11/21/02 9:50 AM Page 745

746 Part IV ✦ Administering SQL Server

Table 27-1: OBX Kites Roles

Hierarchical Primary Filegroup Static Filegroup
Standard Role Role Structures Tables Tables Other Permissions

IT sysadmin - - -
server role

Clerk - - - Execute permissions several
stored procedures that read
from and update required
day-to-day tables

Admin db_owner - - -
database fixed role

Public - Select permissions - -

Table 27-2: OBX Kites Users

User Database Standard Roles

Sammy Admin

Joe

LRN IT

Clerk Windows group (Betty, Tom, Martha, and Mary) Clerk

From this security model, the following users can perform the following tasks:

✦ Betty, as a member of the Clerk role, can execute the VB application that executes
stored procedures to retrieve and update data. Betty can run select queries as a mem-
ber of the Public role.

✦ LRN, as the IT DBA, can perform any task in the database as a member of the sysadmin
server role.

✦ Joe can run select queries as a member of the public role.

✦ As a member of the Admin role, Sammy can execute all stored procedures. He can also
manually modify any table using queries. As a member of the admin role that includes
the db_owner role, Joe can perform any database administrative task and select or
modify data in any table.

✦ Joe can perform backups, but only LRN can restore from the backups.

C2-Level Security
Organizations that require proof of their database security can investigate and implement
C2-level security.

32549359 ch27.F 11/21/02 9:50 AM Page 746

747Chapter 27 ✦ Securing Databases

The Department of Defense Trusted Computer System Evaluation Criteria (TCSEC) evaluates
computer and database security. The security scale ranges from A (very rare) meaning veri-
fied design, to D, meaning minimal protection. The C2-level security rating, meaning controlled-
access protection, is required for classified data, IRS data, and most government contracts.

Essentially, C2-level security requires the following:

✦ A unique loginID for each user, protected from capture or eavesdropping. The user
must be required to log in prior to accessing the database.

✦ A method of auditing every attempt by any user or process to access or modify any
data.

✦ The default access to any object is no access.

✦ Access is granted at the discretion of the owner, or by the owner.

✦ Users are responsible for their data access and modifications.

✦ Data in memory is protected from unauthorized access.

For SQL Server’s certification, Science Applications International Corp. of San Diego per-
formed the tests as a third-party testing facility for the National Security Agency and the
National Institute of Standards and Technology, which jointly run the government’s security-
certification program. The test took 14 months to complete and was funded by Microsoft.

The 47-page SQL 2000 C2 Admin and User Guide may be downloaded from: http://www.
microsoft.com/Downloads/Release.asp?ReleaseID=25503.

Implementing C2-level security on SQL Server requires the following:

✦ SQL Server 2000 must be running on Windows NT 4 Service Pack 6a.

✦ Merge replication, snapshot replication, federated databases, and distributed
databases are not allowed.

✦ Full auditing must be implemented using SQL Profiler.

✦ The C2 security option must be enabled, which shuts down SQL Server if the audit file
is not functioning.

✦ Other restrictions on the location and size of the audit file exist.

Views and Security
A popular, but controversial, method of designing security is to create a view that projects
only certain columns, or that restricts the rows with a where clause and a with check
option, and then grants permission to the view to allow users limited access to data. Some IT
shops require that all access go through such a view. This technique is even assumed in the
Microsoft certification tests.

Chapter 9, “Creating Views,” explains how to create a view and to use the with check
option.

Cross-
Reference

32549359 ch27.F 11/21/02 9:50 AM Page 747

748 Part IV ✦ Administering SQL Server

Those opposed to using views for a point of security have several good reasons:

✦ Views are not compiled or optimized.

✦ Column-level security can be applied with standard SQL Server security.

✦ Using views for row-level security means that the with check option must be manu-
ally created with each view. As the number of row-level categories grows, the system
requires manual maintenance.

Summary
In this decade of cyber crime, security is more important than ever. While it’s possible to set
all the users to sysadmin and ignore security, with a little effort SQL Server security is func-
tional and flexible enough to meet the needs presented by a variety of situations.

This chapter concludes Part IV of the book, which dealt with administering SQL Server. Part V
dives into the more advanced operations of SQL Server.

✦ ✦ ✦

32549359 ch27.F 11/21/02 9:50 AM Page 748

Advanced Issues

One of the most enjoyable projects of my career was spending a
couple years reworking and tuning an insurance document

database search engine. When I first saw the project the queries were
running as long as 20 minutes. At the end of the tuning the search
time was consistently less than one second. There’s nothing magical
about it, just good solid design combined with optimization and scal-
ability techniques.

Part V is about taking the box to the next level — adding those high-
end features that differentiate a workgroup database from a polished
mature database.

✦ ✦ ✦ ✦

In This Part

Chapter 28
Advanced Performance

Chapter 29
Advanced Availability

Chapter 30
Advanced Scalability

Chapter 31
Analysis Services

Chapter 32
Advanced Portability

✦ ✦ ✦ ✦

P A R T

VV

33549359 PP05.F 11/21/02 9:51 AM Page 749

33549359 PP05.F 11/21/02 9:51 AM Page 750

Advanced
Performance

The all-encompassing goal of the computer industry is speed.
However, too many benchmarks are based solely on response

time as a measure of performance. True database performance is a
composite of several factors:

✦ Accuracy (transactional integrity and data integrity)

✦ Availability

✦ Response time

If one of these goals is lacking the database is performing poorly,
regardless of speed.

Of these performance goals, accuracy is paramount. Click and Clack,
the NPR Car Talk brothers, say that the most important parts of a car
are the wheels and the brakes: If the wheels fall off or the brakes fail,
that’s a real problem. Those two parts must perform; everything else
is gravy. Database accuracy can be thought of in much the same way.
If the query returns inaccurate results, response time is immaterial.

Another optimization myth is that performance can be added to a
database after the development is complete. While databases can be
tuned, the greatest impact on performance is made by the database
design and development from day one. Often, what’s called perfor-
mance tuning is actually redevelopment of poorly designed portions
of the database.

This chapter builds on the best practices from all the previous chap-
ters and pulls together a strategy for measuring and maximizing
database performance.

Chapter 29, “Advanced Availability,” discusses advanced availabil-
ity designs, while Chapter 30, “Advanced Scalability,” deals with
techniques for managing very large databases.

Cross-
Reference

2828C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Managing, measuring,
and monitoring
performance

A database strategy for
improving performance

Designing the database
schema, constraints,
and triggers for
improving performance

Interpreting query-
execution plans

Indexing for improving
performance

How lock contention
can affect performance

✦ ✦ ✦ ✦

34549359 ch28.F 11/21/02 9:51 AM Page 751

752 Part V ✦ Advanced Issues

The Optimization Cycle
Typically, the most important concerns for the first version of a database project are the ship
date, accuracy, and basic functionality. In what seems to be endless cycles of development,
areas of the database or code are reworked and optimized in subsequent revisions.

Optimizing a database doesn’t happen overnight, it takes a lot of time and patience monitor-
ing the database and making changes when necessary. Here are some optimization best prac-
tices to keep in mind:

✦ As an organization, value good database design and well-written code.

✦ Put as much effort as possible into the database schema. All optimization depends on
the schema.

✦ Focus the optimization effort on the most frequently run code, rather than just the
slowest code.

✦ Optimize the database before upgrading the hardware. Bad code on a fast server is still
bad code.

✦ Keep a list of possible optimization ideas, even if you don’t have time to implement
them now.

✦ New features compete with optimization for resources; therefore, a release that main-
tains the current functionality while improving performance is a good idea.

✦ Optimization is a discovery process and difficult to predict. Avoid making promises
concerning performance gains or delivery dates.

✦ Consider indexes fluid components that are easily changed and tuned.

✦ Compatibility testing may require a server identical to one used in production, but
develop and test on an old, slow server that won’t mask performance issues.

✦ Focus on fixing the worst-performing aspect of the application.

✦ Spend some time using the application as a user. Go work for the department that uses
the application for a week. It will provide valuable insights.

✦ Always leave some development time (25 percent?) for scenario testing.

✦ Consider any optimization project not only an investment in the software, but an
investment in the knowledge base of the organization. If consultants are hired to per-
form some magic optimization tricks, the IT-development staff will be less confident
and less likely to develop subsequent high-performing database projects. If consultants
are employed, be sure to schedule plenty of time for knowledge transfer.

Measuring Accuracy
The process of testing for accuracy involves a series of predictions and explanations. While
testing an application or database with 10 rows is a standard joke in IT circles, using a testing
scenario is the only valid method of proving the accuracy of an application.

34549359 ch28.F 11/21/02 9:51 AM Page 752

753Chapter 28 ✦ Advanced Performance

A scenario test measures the accuracy of the database by comparing the answers to queries
with the predicted results. A complex query that runs against 27 million rows is difficult to test;
a scenario, however, is a carefully crafted set of data that represents all possible data combina-
tions, but is small enough (5 to 50 rows per table) that the correct answer to any query is easily
predicted. The scenario should be implemented in a script that creates the database and
inserts the sample data, much like the sample database scripts on the book’s CD.

The scenario test is any database’s most significant test. If the database has not passed a
careful scenario test, do not deliver or accept a database into production.

Measuring Response Time
Performance may seem subjective, but it is possible to eliminate the variables and objectively
measure the database performance. The purpose of the testing is to prove the capabilities of
the database, expose any weaknesses, and objectively measure the performance loss or gain
of any optimization efforts.

Script Testing
A comprehensive response-time performance test consists of running a script against the
database. The script should execute a series of queries or stored procedure calls that exer-
cise the entire database. The balance of selects versus update queries, and the distribution of
tables affected, should be representative of those of the actual front-end application and the
batch processes.

The OBXKites sample database contains a benchmark file, OBXKites_Benchmark.sql,
which executes a timed series of stored procedure calls and queries. The total time is
reported at the end of the script.

Numerous factors can affect response-time performance. To objectively determine which fac-
tor accounted for which change in performance, it’s important to alter only one factor per
test, and to measure the response time using a consistent method. Each run of the perfor-
mance test should begin with the same data, and the server used for testing should be free
of other processes, connections, or users.

The performance of the test script can be calculated by means of saving the start time to a
variable and subtracting it from the end time. Once the method of performing the test and
measuring the result is decided and documented, a baseline test establishes the initial “as is”
performance level.

Load Testing
A load test evaluates the scalability of the database by measuring its response time at both
half of the estimated load and the full estimated load.

Data-Load Testing
To SQL Server, any database under 1GB in size can be considered minuscule and will perform
well. The database schema and queries can only be load-tested when the data exceeds the
memory capacity of the server by several times.

On the
CD-ROM

34549359 ch28.F 11/21/02 9:51 AM Page 753

754 Part V ✦ Advanced Issues

Index behavior is different when SQL Server has the luxury of loading all the required data
pages and index pages into memory. If all the pages are in memory logical reads are the only
significant factor. Because physical disk reads are not an issue, performance of the clustered
index is less significant.

If you have access to several gigabytes of actual data, then that’s the best data for the load
test. If you don’t, a large quantity of sample data can be generated using cross joins, a utility
such as dbgen (included with the Microsoft SQL Server 2000 Resource Kit), DataSim (also
included with the Resource Kit), or another third-party tool.

The graphical front end for dbgen is less than reliable, and it does not work well with GUID
primary keys generated with a default value of newid(). However, dbgen works well with the
command-line interface. In the following example, the data-generation commands for each
column are contained in the example2.txt text file:

C:\Program Files\dbgenwin>dbgencom
-Dguidint -Tsmexample -N1000 -iexample2.txt /Usa /Psa

Starting generation and copy
1000 of 1000 rows copied
1000 rows out of 1000 copied.
Done.

Although dbgen is less than intuitive, it’s fast, and with a little effort and some time spent
reading the help html files it’s a useful utility.

DataSim examines the current data and generates similar x number of rows for x days of
activity. The data is created as a SQL script with insert statements, so the same data can
be reinserted at a later time.

User-Load Testing
A database that’s tested with only a single user, or just a few users, isn’t fully tested. Locking
contention, which is only exposed when the database tested with a large number of users,
can cause serious performance problems.

To test the multi-user-load script, either run a continuous loop script from multiple connec-
tions using random parameters, or use a utility like dbhammer (which can be found in the
SQL Server resource kit) to simulate a heavy user load. The closer the user load is to the
number and type of queries generated by the actual active users, the better the test. (Keep
in mind that not all current users are actually submitting queries at any given second.)

While the user load is running, execute the test script a few times and measure its perfor-
mance at various user-load levels.

Clean Testing
SQL Server is optimized to intelligently cache data in memory, and this will affect subsequent
tests. Memory can be flushed by means of stopping and restarting the server, or with the
DBCC DropCleanBuffers and DBCC FreeProcCache commands.

Monitoring SQL Server
Tuning the server and database depends on solid and detailed information. Fortunately, SQL
Server includes several tools for monitoring the activities and performance of the server.

Performance Monitor provides a performance overview of the database. While it can show
detailed server information, it doesn’t track the code-level details that SQL Profiler does.

34549359 ch28.F 11/21/02 9:51 AM Page 754

755Chapter 28 ✦ Advanced Performance

Performance Monitor can help determine if the server needs a hardware upgrade, if transac-
tions are waiting for locks, or if user activity has increased by a certain percentage. SQL
Profiler can track down procedures that are holding the locks, the queries that are running
slow, or the batches that are causing deadlocks.

Performance Monitor
Performance Monitor, known as PerfMon, is familiar to anyone with experience with Windows
administration. Performance Monitor is a separate MMC (Microsoft Management Console)
application that can be launched from the SQL Server menu under the Start menu. Some
servers have it installed in the Administrative Tools menu, and it’s also found at Control
Panel ➪ Administrative Tools ➪ Performance. If you have trouble finding it, the actual file
(perfmon.exe or perfmon.mmc) is located in the c:\windows\system32 directory.

A performance trace consists of multiple performance counters, which are displayed graphi-
cally or logged to a file. The performance counters are added to the PerfMon trace one at a
time with the plus-symbol button in the toolbar. A performance counter can watch the local
server or a remote server, so it isn’t necessary to run PerfMon at the SQL Server machine.

The counters can be watched as a timed line graph, a histogram bar graph, or a real-time
report.

SQL Server, Analysis Services, and the Distributed Transaction Coordinator each add several
additional SQL Server–oriented objects and counters to monitor key SQL Server or Window
details in real time, as shown in Figure 28-1.

Figure 28-1: Performance Monitor is useful for watching the overall activity within SQL
Server.

34549359 ch28.F 11/21/02 9:51 AM Page 755

756 Part V ✦ Advanced Issues

Typically, PerfMon is used to determine if the hardware is supporting the load. However, it
can also be used to zero in on specific SQL Server problems. PerfMon can easily seem over-
whelming because of the sheer number of possible counters that can be viewed; the most
useful counters are listed in Table 28-1.

Table 28-1: Key Performance-Monitor Counters

Object Counter Description Usefulness

SQLServer: Buffer Buffer-cache hit ratio The percentage of SQL Server typically does an
Manager reads found already excellent job of pre-fetching

cached in memory. the data into memory. If the
ratio is below 95 percent,
more memory will improve
performance.

Processor Percentage of The total percentage If CPUs are regularly more
processor time of processor activity. than 60 percent active,

additional CPUs or a faster
server will increase
performance.

SQLServer: Batch requests SQL batch activity. A good indicator of user
SQL Statistics per second activity.

Physical Disk Average disk-queue The number of both Disk throughput is a key
length reads and writes hardware-performance factor.

waiting on the disk; Splitting the database across
an indication of disk multiple disk subsystems will
throughput; affected improve performance.
by the number of disk
spindles on multi-disk
RAID configurations.
According to Microsoft,
the disk-queue length
should be less than the
number of disk spindles
plus two. (Check the scale
when applying.)

SQLServer: Failed auto-params The number of queries Locating and correcting
SQL Statistics per second that SQL Server could the queries will improve

not cache the query performance.
execution plan in
memory; an indication
of poorly written
queries (check the scale
when applying).

34549359 ch28.F 11/21/02 9:51 AM Page 756

757Chapter 28 ✦ Advanced Performance

Object Counter Description Usefulness

SQLServer: Locks Average wait time A cause of serious If locking issues are detected,
(in milliseconds), and performance the indexing structure and
lock waits and lock problems; lock waits, transaction code should be
timeouts per second the length of the wait, examined.

and the number of lock
timeouts are all good
indicators of the level
of locking contention
within a database.

SQLServer: User User connections The number of current Indicates potential database
Connections connections. activity.

SQLServer: Transactions per second The number of current A good indicator of database
Databases transactions within activity.

a database.

Using the properties dialog, available from the right-click menu, you can adjust the scale of
the graph, the scale of each counter, and the presentation of each counter.

In addition to showing you the performance counters in real time, PerfMon can also log coun-
ters to a file or generate alerts using the other advanced options in the console tree.

SQL Profiler
One of our favorite tools, SQL Profiler, watches the connection to a server and records the
activity by tracking a copious number of items. The filters can be set to record all the activity,
or they can focus on a specific problem. The activity can be watched on the SQL Profiler
trace window, shown in Figure 28-2, or recorded to a file or table for further analysis.

When a new trace is created with the New Trace toolbar button or File ➪ New ➪ Trace, a con-
nection is created to a SQL Server and the Trace Properties dialog box (Figure 28-3) is pre-
sented. The Trace Properties dialog box defines the events and data columns to be recorded,
as well as the filter. If the trace is running the properties may be viewed, but not changed.

A trace configuration can be saved as a template to make creating new traces easier.

Profiler-Trace Events
The Events tab determines the actions within SQL Server that the Profiler records. Like
Performance Monitor, the Profiler can trace numerous key SQL Server events. The default
events are useful for tracking user activity. Other events are useful for SQL detective work —
looking for a specific problem.

34549359 ch28.F 11/21/02 9:51 AM Page 757

758 Part V ✦ Advanced Issues

Figure 28-2: This SQL Profiler is set to record any SQL statement that references the
product table in OBX Kites. Selecting a trace event in the trace window displays the
details of the event in the bottom pane.

Figure 28-3: The Trace Properties
dialog can define a new trace or
alter the parameters of a stopped
trace. The Events tab enables you
to select the events tracked by the
Profiler.

34549359 ch28.F 11/21/02 9:51 AM Page 758

759Chapter 28 ✦ Advanced Performance

The Profiler’s SQL Batch Completed event is based on an entire batch (separated by a batch
terminator), not a single SQL statement. So the profiler will capture one event’s worth of
data for even a long batch. Use the SQL Statement Complete even to capture single DML
statement events.

If the trace is to be replayed certain events must be captured. For example, the SQL Batch
Start event can be replayed, but SQL Batch Complete cannot.

Profiler-Trace Data Columns
Depending on the events, different data becomes relevant to the trace. The Data Columns tab
(Figure 28-4) defines the data columns and the group by within the trace output. As columns
are added and removed, the event class and SPID columns become mandatory.

To add a column to the group by, select group by in the right-hand column before clicking
the Add button. Columns can also be escalated to group status by means of the Up button.
Any group by columns become the first columns in the trace window, and as new events are
added to the trace window those events are automatically added within their group.

Figure 28-4: The Data Columns tab of the Trace
Properties dialog box determines the data grouping
and columns available in the trace output.

The data available for each column depends on the event, and often it isn’t clear what you
should expect. For example, the object name seems that it might display the object being
locked, or the object being addressed for the Profiler filter. However, the object column
seems to be populated only by some system objects for some events. The database name
column seems to be populated only by security audit events.

The query batch being executed is found in the text data column.

Note

34549359 ch28.F 11/21/02 9:51 AM Page 759

760 Part V ✦ Advanced Issues

Data-Trace Filters
Profiler can capture so much information that it can fill a drive with data. Fortunately,
the Profiler Trace Filter (Figure 28-5) can narrow the scope of your search to the data of
interest.

Figure 28-5: The Filters tab of the Trace Properties
dialog box serves as a where clause for the trace,
restricting the trace to certain events only.

The filter uses a combination of equal and like operators, depending on the data types cap-
tured. The frustrating aspect of the filter is that it only works against collected data, and the
data collected for some columns may not be what was expected. For example, if you want to
filter the trace to only those batches that reference a specific table or column, filtering by the
object name won’t work. But defining a like filter using wildcards on the text data column
will cause the Profiler to select only those batches that include that table name.

Another popular Profiler trace filter is to filter for events with a duration greater than or
equal to a specified time, to select all the longer-running batches.

The “Exclude system IDs” checkbox sets the filter to select only user objects.

Using the Profiler Trace
Once the trace is captured it can be browsed through the Profiler trace window, although a
more useful option is to configure the trace to save results to a database table. The data can
then be analyzed and manipulated as in any other SQL table.

34549359 ch28.F 11/21/02 9:51 AM Page 760

761Chapter 28 ✦ Advanced Performance

SQL Profiler has the ability to replay traces. However, the restrictions on the replay option
are such that it’s unlikely to be useful for most databases.

Additionally, the entire trace file can be submitted as a workload to the Query Tuning Wizard
so that the Query Tuning Wizard can tune for multiple queries.

Tracing in the Background
SQL Profiler is generally used interactively, and for smaller databases this is more than suffi-
cient. However, larger databases or longer traces can easily generate hundreds of thousands
of trace entries or more, which can cause problems at the workstation running the trace.
However, it’s possible to generate a script that executes an extended stored procedure to
launch the profile trace, logging the trace details directly to a table without using the graphic
interface.

To create a background trace, first define the trace using SQL Profiler as a normal trace. Once
the events, data columns, and filters are configured, use the File ➪ Script Trace menu option
to generate a script. The script will create a trace configuration in the registry so that the
trace can be executed by means of the xp_trace extended stored procedure.

Developing Well-Performing Databases
Database optimization begins in the initial planning stages; performance can’t be easily added
once the database development is complete. As the development of an ill-designed database
progresses, the cost of correcting it increases dramatically. A constraint that would take five
minutes to carefully implement in the initial stages could take weeks to correct after the
database has been in use for a few years.

The big difference between a slow database and one that runs smoothly isn’t subtle server
tuning, hardware, or query-optimizer hints. In our experience, the following five factors deter-
mine that a database will perform well. If one of these factors is missing, the database will be
slow:

✦ A data-driven normalized physical database schema design

✦ A complete and balanced indexing strategy

✦ Code that uses set-based queries and avoids procedural (row-by-row) grinding of the
data

✦ Excellent use of database constraints and triggers to enforce rules

✦ Tables, indexes, and code designed to avoid locking contention

The best practice is to optimize the database and then upgrade the hardware. It’s far better
to improve performance by optimizing the design and the code than it is to buy new hard-
ware. I believe that using hardware upgrades alone to improve performance will actually hin-
der performance in the long term, because management will feel that it has made an
investment in optimization and will be less likely to focus on the real problems. In addition,
the hardware solution may mask the true problems for a while. It’s a question of bandages
versus treatment.

34549359 ch28.F 11/21/02 9:51 AM Page 761

762 Part V ✦ Advanced Issues

Database Design and Performance
The foundation of the application is the design of the database. Even the type of queries used
depends in part on the style of the database design. Databases that use composite primary
keys require multiple join conditions. Databases that aren’t properly normalized require addi-
tional code to maintain data integrity, or require code to move the data from work table to
work table — grinding the database to death. Databases without comprehensive constraints
require extra code to validate the data either during data entry, while data is moved from
work table to work table, or as part of the reporting queries.

A high-performance database schema will meet the following design ideals:

✦ Normalize the database to third normal form, but then be careful to implement a physi-
cal design that uses high-performance single-column keys.

✦ Don’t over-normalize or over-complicate the database. Keep working until a simple and
elegant design is found.

✦ Avoid database designs that shuttle data from table to table in a transactional manner.

✦ Use a data-driven database-design style rather than designs with any hard-coded values.

✦ If the code is building several temporary tables or extra work tables, that’s an indica-
tion that the database design isn’t sufficient.

✦ Design the database schema with queries in mind. We’ve seen databases that were per-
fectly normalized logical databases designed by DBAs who never wrote queries. It isn’t
pretty.

✦ When necessary, be bold and duplicate data from the OLTP tables into denormalized
read-only tables for faster database reads.

Constraints and Triggers
If performance includes data integrity, the quality and execution performance of the data
rules are also vital to the database. The following list contains key points to consider during
the implementation of Rules and Triggers:

✦ Rules should be implemented at the database level so that they are fast and always
enforced.

✦ Implement database rules and business rules as database constraints, and then use
triggers for rules that are too complex for database constraints.

✦ Triggers must handle multiple-row operations, and they should do this using set-ori-
ented DML statements instead of cursors. Since the trigger fires for every insert,
update, or delete operation, no pains should be spared to optimize the code.

Query Design and Performance
The methods used to retrieve data significantly affect performance. The select statement is
the heart of SQL and, as demonstrated in Chapters 6 and 7, an incredible amount of work can
be performed by a single SQL DML statement. The greatest optimizations we’ve performed,

34549359 ch28.F 11/21/02 9:51 AM Page 762

763Chapter 28 ✦ Advanced Performance

or seen on a database, have involved replacing row-based procedures with set-based SQL
code. The single worst thing anyone can do to a database is to write a cursor when it’s not
absolutely required.

With the goal of avoiding cursors or loops like the plague, and focusing on set-based queries
to perform the database work, consider the following:

✦ Always specify the owner of the table, so the query-execution plan can be cached.

✦ Never use views within code, but only to support ad hoc user queries.

✦ Use subqueries to break down large complex queries into smaller logical units.

Comparing row-iterative procedural-style code to set-based queries using procedural-style
code is like moving from New York to Los Angeles by transporting one item at a time in a
Volkswagen, while using set-based queries is like loading the entire household into a FedEx
overnight express jet. Sure, driving the script code 15 mph over the speed limit will cut a few
hours off each round trip, but it’s still buggy code.

Query Optimization
SQL is a declarative language, meaning that the SQL query describes the question and SQL
Server decides how to execute the query.

SQL Server’s Query Optimizer examines several possible methods of solving each portion of
the query, such as where conditions, joins, and functions. Considering the estimated cost of
each logical cost of each operation, as well as the available indexes, hardware limitation, and
data statistics, the query optimizer calculates the fastest possible query-execution plan.

This means that much of the optimization is being performed by SQL Server, not the query.

Optimizing queries is largely a matter of providing the right indexes so the query optimizer
can perform fast index seeks instead of slow table scans. For some queries, altering the struc-
ture of the query can affect performance, but for the majority of queries, writing the query
three different ways will return three identical query-execution plans.

We’ve seen some complex queries benefit from parts of the query being broken into sub-
queries, but sometimes when we’re sure that altering a huge three-page query into sub-
queries will yield better performance, SQL Server generates the exact same query plan
despite the time spent rewriting the query. When in doubt, develop the query three ways and
see which yields the best performance.

Query-Execution Plans
Another of our favorite parts of SQL Server is the Query Analyzer’s display of the query-exe-
cution plan. You can view the estimated query plan by clicking the query plan toolbar button,
and after a query is run you can view the actual plan if the Query ➪ Show Execution Plan
option is selected.

The logical operations are the same in both the estimated and actual query plans. Besides
not waiting for the query to execute, the estimated-query execution plan uses the statistics to
estimate the number of rows involved in each logical operation, while the actual execution
plan reports actual data.

34549359 ch28.F 11/21/02 9:51 AM Page 763

764 Part V ✦ Advanced Issues

The query plan is read from right to left, as shown in Figure 28-6. Each logical operation is
presented as an icon. But the display isn’t just a static display. Here are a few of the opera-
tions you can perform while in the Query Execution plan window:

✦ Mousing over the logical operation causes a dialog box to appear containing detailed
information about the logical operation, including the logical cost and the portion of
the query handled by the operation.

✦ Mousing over a connector line presents detailed information about how much data is
being moved by that connector.

✦ Right-clicking the execution plan opens a menu offering access to sizing options, index
management, and the Statistics Manager.

Figure 28-6: Query Execution Plans show the logical operations SQL Server uses to
solve the query.

The estimated query plan uses the statistics to estimate the number of rows involved in each
logical operation.

Index Seeks and Nested Loops
When the indexes are available, the fastest way for SQL Server to fetch a row is for it to per-
form an index seek that quickly navigates the b-tree index from the root node, through the
intermediate node, to the leaf node, and finally to the row.

34549359 ch28.F 11/21/02 9:51 AM Page 764

765Chapter 28 ✦ Advanced Performance

Once the correct row is identified, if all the required columns are found in the index the seek
is done. If additional columns are needed, SQL Server will likely use a bookmark operation to
fetch the remaining data columns from the data page.

A key benefit of index seeks is that the where clause or join condition is applied directly at
the table level instead of a filter operation being added later in the query-execution plan.
Index seeks also provide the best data for a join operation, so the join can be performed by a
fast nested-loop join instead of a slower hash join.

Index Scans
When an index is available, but the data column being sought isn’t in the correct ordinal posi-
tion of the index, SQL Server may opt to use an index scan. While an index scan is better than
a table scan, it’s much slower than an index seek. Index scans indicate that the columns in
the index aren’t in the best order. An index scan will still return the correct rows, however,
enabling SQL Server to perform fast joins and avoid filters.

Table Scans and Hashes
Depending on the table size, a table scan can be very expensive. Several situations will cause
a table scan, including:

✦ If no index is available, the query optimizer has no choice but to scan every row of the
table.

✦ If SQL Server decides that the index isn’t useful because of the data statistics or the
small size of the table, the query optimizer will use a table scan.

If you see table scans accessing any table containing over 100 rows, the indexes for that
table are drastically inadequate and should be reevaluated.

Filters and Sorts
In some situations SQL Server retrieves all the data from a table and then uses filter opera-
tions to select the correct rows and sort operations to perform the order by. Filters and
sorts are slow operations and indicate a lack of useful indexes.

Optimizable SARGs
A key concept to the usability of the query optimization is by use of the where condition. If
SQL Server can optimize the where condition using an index, the condition is referred to as a
search argument or SARG. But not every condition is a “sargable” search argument. For
instance:

✦ Multiple conditions that are ANDed together are SARGs, but ORed conditions are not
SARGs.

✦ Negative search conditions (<>, !>, !<, Not Exists, Not In, Not Like) are not opti-
mizable. It’s easy to prove that a row exists, but to prove it doesn’t exist requires exam-
ining every row.

✦ Conditions that begin with wildcards don’t use indexes. An index can quickly locate
Smith, but must scan every row to find any rows with ith anywhere in the string.

34549359 ch28.F 11/21/02 9:51 AM Page 765

766 Part V ✦ Advanced Issues

✦ Conditions with expressions are not SQL Server compliant so these expressions will be
broken down with the use of algebra to aide with the procurement of valid input data.

✦ If the where clause includes a function, such as a string function, a table scan is
required so every row can be tested with the function applied to the data.

SQL Expert by Lecco is an amazing tool that takes any SQL DML statement and generates
alternative SQL languages to make the same query — hundreds of variations are possible.
Each variation is then submitted to SQL Server and the estimated execution plans are col-
lected. The result is a list of every possible way to submit a query, sorted by the logical cost.

Measuring Query Performance
SQL Server provides several query-performance indicators beside Query Analyzer’s graphic
query-execution plan. The statistics io connection option reports I/O (Input/Output)
activity for each table in the query, including scans and reads:

SET statistics io ON
USE OBXKites
SELECT LastName + ‘ ‘ + FirstName as Customer, Product.[Name],
Product.code
FROM dbo.Contact
JOIN dbo.[Order]
ON Contact.ContactID = [Order].ContactID

JOIN dbo.OrderDetail
ON [Order].OrderID = OrderDetail.OrderID

JOIN dbo.Product
ON OrderDetail.ProductID = Product.ProductID

WHERE Product.Code = ‘1002’
ORDER BY LastName, FirstName

Result (excluding data):

Table ‘Contact’. Scan count 13, logical reads 26,
physical reads 0, read-ahead reads 0.

Table ‘Order’. Scan count 13, logical reads 26,
physical reads 0, read-ahead reads 0.

Table ‘Product’. Scan count 33, logical reads 66,
physical reads 0, read-ahead reads 0.

Table ‘OrderDetail’. Scan count 1, logical reads 1,
physical reads 0, read-ahead reads 0.

The statistics time option reports CPU and overall execution time for the query, as well
as for other system processes that may have run as a result of the query, such as compilation
and storage of the query:

Set statistics time on
SELECT LastName + ‘ ‘ + FirstName as Customer
FROM dbo.Contact
ORDER BY LastName, FirstName

Set statistics time off

Result (excluding data):

SQL Server parse and compile time:
CPU time = 0 ms, elapsed time = 2 ms.

On the
CD-ROM

34549359 ch28.F 11/21/02 9:51 AM Page 766

767Chapter 28 ✦ Advanced Performance

SQL Server Execution Times:
CPU time = 0 ms, elapsed time = 1 ms.

A slight overhead is involved in reporting the statistics, so be sure to turn them off when
you’re finished.

The showplan_all connection option reports the query-execution plan in text, with lots of
detail. While this option is not as pretty as the graphic query-execution plan, the text can be
printed or captured for further text analysis.

Set showplan_all on
go
SELECT LastName
FROM dbo.Contact

go
Set showplan_all off

Result (abridged, there are 17 more columns of detailed information):

StmtText
--
SELECT LastName
FROM dbo.Contact
|--Table Scan(OBJECT:([OBXKites].[dbo].[Contact

Reusing Query Execution Plans
As the time statistics demonstrated, the query-parse and -compile time can be expensive.
Stored query plans are therefore critical to the continued performance of the database. If the
query qualifies, the first time it is executed SQL Server attempts to save the query plan in the
procedure cache.

In order to be saved a query must have parameters and qualified table names. Fortunately,
SQL Server 2000 will autoparameterize the query, replacing literals and constants in the
query with parameters, thus allowing the query to be saved.

A more restrictive condition is that all table references must the qualified with a two-part
name for the query plans to be saved.

You can look at the query-plan cache to verify that the query is in fact cached. The procedure
cache can be large. While it’s not recommended in a production environment, clearing the
cache will make checking for a specific query easier:

DBCC FREEPROCCACHE

To examine the procedure cache, use the syscacheobjects table:

SELECT cast(C.sql as Char(35)) as StoredProcedure,
cacheobjtype, usecounts as Count

FROM Master.dbo.syscacheobjects C
JOIN Master.dbo.sysdatabases D
ON C.dbid = C.dbid

WHERE D.Name = DB_Name()
AND ObjType = ‘Adhoc’

ORDER BY StoredProcedure

34549359 ch28.F 11/21/02 9:51 AM Page 767

768 Part V ✦ Advanced Issues

Result (abridged):

cacheobjtype Count StoredProcedure
----------------- ----------- -------------------------------
Compiled Plan 1 INSERT [Lumigent_Profiler]([Pre
Executable Plan 1 SELECT LastName + ‘ ‘ + FirstNa
Compiled Plan 1 SELECT LastName + ‘ ‘ + FirstNa
Compiled Plan 1 UPDATE msdb.dbo.sysjobschedules

Performance depends on a combination of the query, the indexes, and the data. A saved
query plan is useful only as long as the data statistics, indexes, and parameters are consis-
tent. When the table or index structure changes, the data statistics are updated, or a signifi-
cant amount of data is updated, SQL Server marks the query as unusable and generates a
new query plan the next time it’s executed.

To efficiently save memory, query plans are also aged out of the cache, with the most com-
plex queries taking the longest time to be removed.

A Balanced Index Strategy
Indexes play a vital role in database performance. Unfortunately, the topic of indexing is
obscured by more misinformation than any other area of database development.

Indexing Basics
Understanding SQL Server’s basic types of indexes is critical to working with indexes. SQL
Server uses clustered and nonclustered indexes, either of which may be created as a stand-
alone index or the primary-key index.

Clustered Indexes
A clustered index merges the data page with the leaf node of the index so that the data is in
the same order as the index, as illustrated in Figure 28-7. A good example of a clustered index
is a phone book. The phone book is indexed in the same order as the data. A table can only
be in one physical sort order.

Nonclustered Indexes
Nonclustered indexes are b-tree indexes that go from the root node through intermediate
nodes to the leaf node, and that then point to the data row. A table can have up to 249 non-
clustered indexes. An index in the back of a book is a nonclustered index: The index entries
are sorted, but they only point to pages in the book.

If a clustered index is present the nonclustered leaf nodes point to the clustered index and
the clustered index’s columns function as if they were appended to the nonclustered index.
For example, if a table has a clustered index on Column 1, a nonclustered index on Columns 3
and 4 is actually an index on Columns 3, 4, and 1.

Primary Keys
A primary key can be initially defined as a clustered or nonclustered index. However, for the
index type to be changed the primary-key constraint must be dropped and recreated — a
painful task if numerous foreign keys are present or if the table is replicated.

34549359 ch28.F 11/21/02 9:51 AM Page 768

769Chapter 28 ✦ Advanced Performance

Figure 28-7: The clustered index merges the index page with the data page, while a
nonclustered index points to the data page.

Indexing and Database Size
One reason that there’s so much misinformation regarding indexing is that index behavior is
affected by database size. If the entire database can fit into memory, the question of how the
database is indexed is much less critical than in the case of a database that’s several times
larger than the server memory, in which case data must be swapped in as needed.

The idea that primary keys should use a clustered index is based on the fact that a clustered
index saves one logical read in moving from the index to the data page. However, the clus-
tered index’s ability to group similar rows on the same database for range selection of data
becomes important when the data pages must be read from the disk.

OLTP Indexing versus OLAP Indexing
Indexing affects both read and write performance. While read performance is dramatically
improved by indexing, the improvement comes at a cost. The cost of inserting a single row
into a few indexes is usually not an issue and is usually well worth the benefit to those read-
ing from those indexes. However, adding numerous indexes to a transactional-processing
database (OLTP or Online Transaction Processing) will have some affect when you are writing
to multiple rows.

Because indexes benefit reads and degrade writes, they cause contention between the index-
ing needs of daily transactional data-entry indexing and reporting or online analysis process-
ing (OLAP) indexing. One way to resolve this contention is to use two databases, one
dedicated to transactions and the other to reporting. The indexes for each database are
tuned to its specific needs, and the databases are kept in sync by a periodic DTS transfer of
data or transactional replication. If the synchronization is sufficient, the front-end application
can write to the transactional database and use the reporting database to populate grids and
combo boxes, further reducing the need for indexes in the transactional database.

Non-Clustered Index Data Page Clustered Index

root root

intermediate intermediate

leaf leaf

34549359 ch28.F 11/21/02 9:51 AM Page 769

770 Part V ✦ Advanced Issues

The Base Indexes
Even before tuning, the locations of a few indexes are easy to determine. These base indexes
are the first step in building a solid set of indexes. Here are a few things to keep in mind when
building these base indexes:

1. Create every primary key as a nonclustered index. Primary keys are typically used for
single-row retrieval and the one side of one-to-many joins, so a nonclustered index is
the best choice.

2. Create a clustered index for every table. For primary tables, cluster the most common
order by columns. Do not cluster the primary key. For secondary tables, create a clus-
tered index for the most important foreign key.

3. Create nonclustered indexes for the columns of every foreign key, except for the foreign
key that was indexed in Step 2.

4. Create a single-column index for every column referenced in a where clause or an
order by.

While this indexing plan is far from perfect, it provides an initial compromise between no
indexes and tuned indexes, and a baseline performance measure to compare the index tuning
against.

Index Tuning
Index tuning is part science and part art. You might consider several tactics when tuning the
indexes. For every tactic the goal is the same — to reduce the number of physical data-page
reads required per query.

While some indexes are obvious (such as foreign keys and common where-clause criteria),
the best indexing strategy analyzes how queries are accessing the data and develops indexes
as a performance bridge between the data and the queries.

Using the Clustered Index
The clustered index is merged with the data page, so it saves one logical step by skipping the
index leaf node; however, the true purpose of the clustered index is to speed physical reads
from the disk. The clustered index can be the most critical index, and the most complex to
determine.

Every table is in some physical order on the disk. If no clustered index exists, the data is sim-
ply arranged in the order of entry and the clustered index has been wasted.

As a rule, selecting a range of entries is faster with a clustered index than with a nonclus-
tered. Using the phone book example, retrieving a list of all the Nielsens in a city is as easy as
finding the Nielsen page and tearing that page from the book.

If a nonclustered index is used to select all the Nielsens from a book on Viking and Danish his-
tory, the nonclustered index in the back of the book will quickly find the Nielsens, but retriev-
ing the data will require turning to several individual pages spread throughout the book.

The same is true within SQL Server. Because a clustered index arranges data in the order of
the index, retrieving several rows of data with a similar clustered value requires significantly
fewer data-page reads than the same retrieval would with a nonclustered index.

34549359 ch28.F 11/21/02 9:51 AM Page 770

771Chapter 28 ✦ Advanced Performance

If the entire database fits in memory, data reads may not be a problem. But if SQL Server is
fetching data from the disk, a significant performance difference exists between reading 2
data pages and reading 100 data pages.

Since the primary benefit of a clustered index is that it clusters, or groups, similar data and
speeds the retrieval of ranges of data, clustered indexes are excellent for foreign keys on the
many side of one-to-many relationships, such as the orderid column in an order-detail table.
When an order is selected, all the related order-detail rows are already grouped into a single
data page.

Primary tables can use a clustered index to group data according to the most frequently used
range selection, such as an account number or region. Depending on how the front-end appli-
cation is written, it may be beneficial to cluster by the columns used for the most common
sort order for the data-view grid.

Composite Index
An index created using multiple columns is considered a composite index. The key to building
useful composite indexes is using the most useful order.

Referring again to the common phone book, finding Doe, John is easy because the first and
second columns of the index are used in the search. On the other hand, searching for John
using the index can be done, but every name must be examined to find every John.

The same logic applies to SQL Server’s composite indexes. If an index includes three
columns, the possible uses are Column 1, Columns 1 and 2, or Columns 1, 2, and 3. However,
searching for Column 3 will not make the best use of an index. While a query can use an index
scan, reading through every index entry, it can not seek the data, swiftly navigating the b-tree
to the correct index value.

When planning composite indexes, consider that if the table has a clustered index that every
nonclustered index is a composite index using the clustered-index columns.

Covering Indexes
An excellent use of a composite index is eliminating data page reads by including all the
required columns in the composite index. The composite index then covers the entire select.
The data is fetched directly from the index without reading any data pages. This technique is
very fast; the trick is designing a few covering indexes that serve multiple queries.

Building a covering index that includes both foreign keys of many-to-many junction tables,
enables SQL Server to join from one primary table, through the junction table, and to the
other primary table without reading the data pages of the junction table.

Index Selectivity
Another aspect of indexing is the selectivity of the index. An index that is very selective has
more index values and selects fewer data rows per index value. A primary key or unique
index has the highest possible selectivity.

An index with only a few values spread across a large table is less selective. Indexes that are
less selective may not even be useful as indexes. A column with three values spread through-
out the table is a poor candidate for an index. A bit column has low selectivity and may not
even be indexed.

34549359 ch28.F 11/21/02 9:51 AM Page 771

772 Part V ✦ Advanced Issues

SQL Server uses its internal index statistics to track the selectivity of an index. DBCC
Show_Statistics reports the last date the statistics were updated and the basic information
about the index statistics, including the usefulness of the index. A low density indicates that
the index is very selective. A high density indicates that a given index node points to several
table rows and that the index may be less useful.

Use CHA2
DBCC Show_Statistics (Customer, IxCustomerName)

Result (formatted and abridged; the full listing includes details for every value in the index):

Statistics for INDEX ‘IxCustomerName’.
Rows Average

Updated Rows Sampled Steps Density key length
--------- ----- -------- ------ -------- -----------
May 1,02 42 42 33 0.0 11.547619

All density Average Length Columns

-------------- --------------- ---------------------------
3.0303031E-2 6.6904764 LastName
2.3809524E-2 11.547619 LastName, FirstName

DBCC execution completed. If DBCC printed error messages,
contact your system administrator.

Index Fill Factor and Padding
As data is written to each data and index page, it must be inserted into an existing page
unless the data is being added to the end of the index. The amount of empty space available
for inserts is set by the index’s fill factor. A setting of 1 or 100 will leave space for two rows;
any other setting will determine what percentage of the page will be filled with data.

The fill factor affects performance. If the fill factor is set too low, more pages are required to
contain the data. More pages means more physical data-page reads per query; both read and
write performance will suffer.

If the page is full and a row is inserted, the page is split into two pages, each 50 percent full.
The page-split process is costly, so page splits should be avoided. Setting the fill factor too
high will cause page splits and write performance will suffer.

The best fill factor is based on the percentage of data changes expected between index
rebuilds on a table-by-table basis. If a table with 100,000 rows sees 4,000 new rows and
another 6,000 updates to an indexed column, the table sees about 10 percent writes. The fill
factor is then calculated based on the activity plus some margin (5 percent?). Using this
method, the fill factor would be set to 85 percent.

The index’s fill factor will slowly become useless as the pages fill and split. The maintenance
plan must include periodic reindexing to reset the fill factor. Chapter 24, Maintaining the
Database,” includes information on how to maintain indexes.

Cross-
Reference

34549359 ch28.F 11/21/02 9:51 AM Page 772

773Chapter 28 ✦ Advanced Performance

The fill factor for a clustered index will affect the data page. For a nonclustered index the fill
factor affects the leaf node of the index, but not any intermediate nodes. To propagate the fill
factor to the intermediate index nodes, set the pad index option to true.

If all the table activity is going through stored procedures, the rows affected by each opera-
tion can be logged to a table. A query can then easily calculate the table’s activity between
scheduled reindexing operations, and automatically set the fill factor to a level optimized for
that table.

Redundant-Index Analysis
Sometimes, tuning table indexes requires a careful analysis of the existing indexes to identify
existing duplicate or inefficient indexes. Now we’ll look at a scenario that works by cleaning a
set of indexes within the OBXKites.dbo.Product table.

Table 28-2 is an example of a poorly planned set of indexes. Each index’s columns are indi-
cated by its position in the index. For example, index Ix1 is a composite index consisting of
the OrderID and OrderDetailID columns.

Table 28-2: Redundant Indexes

Column Pk (cl) Ix1 Ix2 ix3 ix4 ix5 ix6 ix7

OrderDetailID 1 2 (2) 3 (4) (3) (3) (4)

OrderID 1 2 2 2 1

ProductID 1 1 3 2

NonStockProduct

Quantity 3

UnitPrice

ExtendedPrice

ShipRequestDate 2 1

ShipDate 1 1

ShipComment

This set of indexes contains several duplicate indexes and indexes that include needless
columns as well as other problems. Clustering the primary key fails to make the best use of
the clustered index because it isn’t used for the selection of a range of records.

Table 28-3 shows how the redundant indexes can be cleaned up:

✦ The clustered index is moved to Ix1. The order-detail rows are physically grouped by
the order, and the clustered index serves as a covering index for an order/order-
detail/product join.

✦ Indexes Ix2, Ix3, Ix4, and Ix7 are eliminated as duplicate indexes.

✦ Ix5 serves as a fast index for ordering by or selecting by the ship date.

✦ Ix6 is a covering index for queries that plan shipments.

34549359 ch28.F 11/21/02 9:51 AM Page 773

774 Part V ✦ Advanced Issues

Table 28-3: Clean Indexes

Column Pk Ix1 (cl) Ix2 ix3 ix4 ix5 ix6 ix7

OrderDetailID 1

OrderID 1 (2) (4)

ProductID 2 (3) (5)

NonStockProduct

Quantity 2

UnitPrice

ExtendedPrice

ShipRequestDate 1

ShipDate 1 3

ShipComment

When cleaning indexes, be sure to check the query code for any index hints. If the index is
dropped, a query that references it will fail.

Using the Index Tuning Wizard
While indexes can be manually set, the process of matching data with queries to determine a
set of useful indexes can be a very complex task. The SQL Server team has created the Index
Tuning Wizard to automate it. Although it’s not perfect, the Index Tuning Wizard can help
identify holes in the indexing strategy.

The Index Tuning Wizard can be launched from SQL Profiler or Query Analyzer, and it can
evaluate possible indexes for an entire Profiler workload or for the Query Analyzer selection.
Be sure to check the validity of the workload’s queries: A single query with an error will cause
the Index Tuning Wizard to fail. If you exit the wizard you will have to reset every option
when you run it again.

The Index Tuning Wizard walks you through several dialogs:

1. In the first page of the index, the server and database are selected, as shown in Figure
28-8. The wizard can optionally drop indexes that do not contribute to the creation of
the query. Indexed views can be added by the wizard. The first page of the wizard also
enables you to select the Tuning Mode, with the following three options:

• Fast — A quick check of indexes. This option won’t recommend clustered indexes
or indexed views, or drop existing indexes.

• Medium — The default; recommends clustered indexes and indexed views, and
can drop existing indexes.

• Thorough — Performs the most exhaustive analysis of the workload. This option
is useful for generating a set of indexes that serves a large workload containing
numerous queries.

34549359 ch28.F 11/21/02 9:51 AM Page 774

775Chapter 28 ✦ Advanced Performance

Figure 28-8: The Index Tuning Wizard can keep existing
indexes and offers three levels of analysis.

Unless the wizard is analyzing a comprehensive workload, do not allow it to drop existing
indexes. Doing so will negatively affect queries that are not in the set of analyzed queries.

2. Page two of the wizard allows you to select a set of queries for analysis:

• A workload file looks to a file for a set of queries from a SQL Profiler trace (.trc)
or a SQL script (.sql).

• A captured workload stored in a SQL Profiler trace table.

• The current Query Analyzer selection.

The advanced options set the Index Tuning Wizard’s properties, such as the number of
queries it will examine, the maximum disk size, and the recommended width of com-
posite indexes. If the wizard is tuning the indexes for a large workload, the advanced
options will need to be increased.

3. The wizard’s third page selects the tables that the wizard may adjust. In addition to
simply selecting a table, the number of rows in a table affects the usefulness of an
index. Manually adjust the projected number of rows to create indexes that will be
more useful for the actual projected size of the database.

4. The recommendation of the Index Tuning Wizard is a list of the indexes. Indexes to be
added have that new-index sparkle (Figure 28-9); indexes the wizard wants to drop
have an x over them.

Click the Analysis button to receive several detailed explanations of how the wizard
determined its index-change recommendations. Each individual analysis report can be
saved to a text file.

34549359 ch28.F 11/21/02 9:51 AM Page 775

776 Part V ✦ Advanced Issues

Figure 28-9: In this example, the Index Tuning Wizard
recommends adding a clustered index and predicts a
99 percent performance improvement.

5. The last page of the wizard offers to apply the changes now or at a specified time. A
better option is to generate a script so the indexes can be applied more than once.

Manually create a base set of indexes and the clustered index. Add indexes for the most crit-
ical queries. Then use the Index Tuning Wizard to validate and refine the indexing strategy. If
the wizard wants to add an index, try to figure out why. An understanding of the data, the
queries, and the indexing is too important for the database developer simply to let the Index
Tuning Wizard do all the work.

Locking and Performance
When a database is experiencing locking contention, it can be a serious problem. Depending
on the time spent waiting for the lock to be released, the lock-timeout setting, and how the
application handles the timeout, transactions might be waiting for locks without the user’s
awareness. To identify locking problems, track the lock waits per second Performance
Monitor counter, or a lock:cancel or lock:timeout event in SQL Profiler.

The clustered order affects locking by grouping rows on the same page. This can cause a hot
spot if the transactions are escalating from row locks to table locks and the locks are being
held.

To reduce the severity of a locking problem, do the following:

✦ Check the transaction-isolation level and make sure it’s not any higher than required.

✦ Make sure transactions begin and commit quickly. Redesign any transaction that
includes a cursor.

✦ If two procedures are deadlocking, make sure they lock the resource in the same order.

34549359 ch28.F 11/21/02 9:51 AM Page 776

777Chapter 28 ✦ Advanced Performance

✦ Make sure client applications are fetching the data and releasing any locks immediately.

✦ Examine the clustered index and fix any hot spots.

✦ Make sure any select statement that can be written with a (nolocks) hint uses the hint.

✦ Consider forcing page locks with the (rowlock) hint to prevent the locks from escalating.

Summary
Performance is the aggregate of accuracy, availability, and speed. The best way to test accu-
racy is with a scenario test. The primary cause of database speed is set-based queries that
access well-designed indexes. Avoid using code that iterates through the data row-by-row
because it is the slowest possible method. The Performance Analyzer provides an overview
of performance issues while the SQL Profiler gathers information about specific problems.
Indexes bridge queries to data and are a fluid means of tuning performance. After the base
indexes are manually built, the Index Tuning wizard can assist with index tuning.

The next chapter continues the discussion of performance with strategies to improve
database availability.

✦ ✦ ✦

34549359 ch28.F 11/21/02 9:51 AM Page 777

34549359 ch28.F 11/21/02 9:51 AM Page 778

Advanced
Availability

The availability of a database refers to the overall reliability of the
system. A database that’s highly available is one that never goes

down. For some databases, being down for an hour is not a problem;
for others, 30 seconds of downtime is a catastrophe. It all depends on
the organization’s requirements.

A plan for maintaining availability is planned and executed at three
distinct cascading levels:

1. Keeping the primary database available

2. Providing a near-instant substitute, or secondary, database

3. Recovering from a lost database

Several methods of increasing availability are unrelated to SQL Server
proper. The quality and redundancy of the hardware, the quality of
the electrical power, preventive maintenance of the machines and
replacement of the hard drives, the security of the server room — all
of these contribute to the availability of the primary database. The
first line of availability defense is quality hardware.

Chapter 3, “Installing and Configuring SQL Server,” covers select-
ing hardware and various RAID disk subsystems.

If a database is lost because of hardware failure, the third level of
availability is executed and the database must be recovered accord-
ing to the methods detailed in Chapter 26, “Recovery Planning.” Even
in the best of circumstances, recovering a database requires several
minutes to an hour, and a more likely scenario is a half-day to build
up a server and recover the data. Moreover, some data might be lost,
depending on the recovery plan.

Advanced availability, the ability to handle a failure and switch to
another server, is the layer between quality hardware and a last-
resort recovery operation, and is often the difference between
several hours of downtime and a few seconds.

Cross-
Reference

2929C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Configuring a warm
standby server with
either Enterprise
Manager or SQL Server
Agent

Understanding failover
clusters and availability

✦ ✦ ✦ ✦

35549359 ch29.F 11/21/02 9:51 AM Page 779

780 Part V ✦ Advanced Issues

Before implementing the middle layer of advanced availability, be sure the first layer is cov-
ered and the recovery planning is complete. Money spent on log shipping, if the primary
computer’s drives provide no redundancy, is wasted money.

SQL Server provides two options for advanced availability: log shipping and failover
clustering.

Some IT shops have implemented transactional replication to keep a backup server in sync
with the primary server. The advantage of this method is that each transaction is individually
moved to the backup server, but at a performance cost. Replication is covered in Chapter 20,
“Replicating Databases.”

Warm-Standby Availability
Log shipping involves periodically restoring a transaction log backup from the primary
server to a warm-standby server, making that server ready to recover at a moment’s notice.
In case of a failure the recovery server and the most recent transaction-log backups are ready
to go. Because of this, log shipping can be implemented without any exotic hardware and is
significantly cheaper and simpler than a failover-cluster recovery plan. However, log shipping
has a few drawbacks:

✦ When the primary server fails, any transactions made since the last time the log was
shipped to the warm-standby server will be lost. For this reason, log shipping is usually
set to occur every few minutes.

✦ The switch is not transparent. Some code must be executed at the warm-standby
server, and any front-end-application connections must connect to the warm standby
server and then continue. Sample code is provided later in this chapter.

✦ A DTS job must be created and periodically run to move user logins from the primary
server to the warm-standby server.

✦ Once the primary server is repaired, returning to the original configuration requires
manual DBA work.

If these issues are acceptable, log shipping to a warm-standby server is an excellent safe-
guard against downtime.

Keeping a warm-standby server populated with the correct backups can be tricky if things get
out of order. The Enterprise Edition of SQL Server includes a wizard to set up the backup,
copy the backup, and the process necessary to restore the backup. Alternately, the same pro-
cess can be programmed with scripts and scheduled as a normal SQL Server Agent job.

The primary server and the warm-standby server should ideally be in different locations so
that a disaster in one location will not affect the other. Also, log shipping can place a large
demand on a network every few minutes. If the two servers can be connected with a private
high-speed network, log shipping can take place without affecting other network users and
the bandwidth they require. This private network connection would ideally be a SONET
(Synchronous Optical Network) ring, which would provide the high bandwidth requirements
imposed by very large databases, as well as adding redundancy to the connection.

Cross-
Reference

35549359 ch29.F 11/21/02 9:51 AM Page 780

781Chapter 29 ✦ Advanced Availability

Log Shipping with Enterprise Edition
The high-end edition of SQL Server includes a Log Shipping Wizard (integrated into the
Database Maintenance Plan Wizard) that creates a maintenance plan to back up, copy, and
restore the transaction log from the primary server to the warm-standby server every few
minutes.

The Servers
Log shipping involves three SQL Servers: a primary server, a warm-standby server, and a
monitor server.

✦ The primary server is the main server to which clients normally connect. This server
should be a high-quality server with redundant disk drives.

✦ The warm-standby server is the backup server. If the source server fails, it becomes the
primary server. This server should be capable of meeting the minimum performance
requirements during a short-term crisis. Typically the performance capabilities of the
warm-standby server are less than half that of the primary or source server, although
the disk-drive capacity must be sufficient to hold the same amount of data.

✦ The monitor server polls both the primary server and the warm-standby server, gener-
ating an alert if the two are out of sync.

SQL Server 2000 allows multiple instances of a SQL Server to run on a single physical server,
so while it would be foolish to locate the source and destination servers on the same physical
server, it’s possible for testing and learning about log shipping.

The monitor server can be an instance on the destination server, but locating the monitor
server on the source server would be a self-defeating plan. If the source server physically
failed, the monitor server would also fail and the destination server would not receive a sig-
nal to go live. If the monitor server is co-located on the destination server, no performance
impact occurs during normal operation and minimal impact occurs during warm-standby
operation.

Each primary-server database can have only one log-shipping plan, and each plan can ship
only one database. However, a plan may ship to multiple destination servers.

Configuring Log Shipping with Enterprise Manager
To assist in the configuration of log shipping, SQL Server provides a Log Shipping Wizard,
located inside the Database Maintenance Wizard. The Database Maintenance Wizard is in the
list of wizards available from the Wizard button in the Enterprise Manager toolbar. The wizard
includes several steps:

1. The first page of the Database Maintenance Wizard presents a list of local databases
that will use the maintenance plan. If only one eligible database is selected, a check-
box enables you to select the Log Shipping Wizard. Be sure to check the box or the log
shipping pages or the wizard will not be available.

2. Skip past the data-optimization, database-integrity, backup-plan, backup–disk directory,
and transaction-log backup disk–directory pages.

Keep the log-shipping maintenance plan separate from the standard database-maintenance
plan. This will make scheduling and tracking the two plans easier and reduce problems later.

35549359 ch29.F 11/21/02 9:51 AM Page 781

782 Part V ✦ Advanced Issues

3. In the Transaction Log Share page, enter the network share that will be used to hold
the transaction-log backups. The share location must be available to the warm-standby
server. It will receive the backup files by copying them from this share.

4. Press the Add button to add a warm-standby server. The log-shipping destination page
is used to specify the warm-standby server. Multiple warm-standby servers can be con-
figured with the wizard.

5. Configure the warm-standby server in the Add Destination Database dialog box as seen
here in Figure 29-1. The key portions of the dialog are the “Server Name,” “Database
name,” “For data,” and “For log” fields.

Figure 29-1: The warm-standby server,
database, and log-shipping options are set
in the Add Destination Database dialog box.

The Database Load State determines if the transaction log is restored with no recovery
mode or with standby mode. The No recovery option leaves the database in a non-
operational state. Enterprise Manager will show the database as “loading.” Standby
mode means that the transaction log is prepared enough for the database to be read
but not modified. The section, “Configuring a Read-Only Standby Query Server,” later
in this chapter also discusses standby mode.

It’s important to select the “Terminate users in database” option, especially if the warm
standby server is in standby mode. If a user is in the standby database, the transaction-log
restore will fail and the log shipping will get out of sync.

35549359 ch29.F 11/21/02 9:51 AM Page 782

783Chapter 29 ✦ Advanced Availability

6. Log shipping is easier to implement if the wizard initially creates the database on the
warm-standby server. This helps to ensure that the process starts in sync. The Initialize
Destination Database page configures the wizard to use an existing backup or to make
its own. We recommend letting the wizard create a backup.

7. The scheduling options shown in Figure 29-2 include:

• Backup schedule — The frequency of the transaction-log backup on the primary
server. This schedule is created with the incredibly flexible SQL Server Agent
scheduler.

• Copy/load frequency — How often the wizard’s code will move the backup file to
the warm-standby server.

• Load delay — A set delay between the transaction-log backup and restore, which
acts as a safety buffer between the primary server and the warm-standby server.

• File retention period — How long to keep old transaction logs on the disk for
archival purposes.

Figure 29-2: The log-shipping backup and handling
schedule is created in the Log Shipping Wizard.

8. The alert threshold determines how far the warm-standby server can fall behind the
primary server’s live data before it issues an alert. The backup threshold ensures the
primary server is performing its backups, and the out-of-sync threshold is in place to
keep a watchful eye on the warm standby’s restore process.

9. The final log-shipping portion of the Database Maintenance Plan Wizard identifies the
monitor server. It should either be a third server or the warm-standby server, but defi-
nitely not the primary server.

10. In the summary page, be sure to name the maintenance plan.

To remove database-maintenance-plan log shipping, open the Maintenance Plan properties
and remove Log Shipping using the Log Shipping tab.

35549359 ch29.F 11/21/02 9:51 AM Page 783

784 Part V ✦ Advanced Issues

Monitoring Log Shipping
Once log shipping is running, a new node is available under the management node in the
Enterprise Manager console tree, under the SQL Server configured as the monitor. The Log
Shipping Monitor node lists all log-shipping pairs being monitored by that SQL Server, as
shown in Figure 29-3.

Figure 29-3: The CHA2 database is being transferred from Noli to Noli/SQL2. The Log
Shipping Properties window displays the status of and information about the last log
shipment.

For each log shipment listed, the Action menu (and context menu) include access to the
following:

✦ A complete list of all backups

✦ A complete list of all transaction-log copies and loads

✦ The log-shipping pair properties, including the source server, destination server, and
status (the details can be edited here as well)

Switching Roles
The log-shipping method is heavily based on several system stored procedures and system
tables. As the log-shipping environment changes, the roles may need to be changed. The
roles of the servers can be swapped by means of the following system stored procedures.
With these procedures the primary server becomes the warm-standby server, and the warm-
standby server becomes the primary server:

35549359 ch29.F 11/21/02 9:51 AM Page 784

785Chapter 29 ✦ Advanced Availability

✦ sp_change_primary_role— Run on the current primary server to remove the server
from its log-shipping role.

✦ sp_change_secondary_role— Run on the current warm-standby server to upgrade it
to the primary server.

✦ sp_change_monitor_role— Run on the monitor server to reconfigure it to monitor
the new primary — warm-standby servers.

✦ sp_resolve_logins— Run on the new primary server to ensure that the logins are
correct.

Each of these stored procedures has several parameters that must be carefully set. Ideally,
they should be pre-configured and tested in a stored procedure so that change will be easy
during a stressful time.

Log Shipping with SQL Server Agent
A warm-standby server is still possible without the Enterprise Edition of SQL Server, because
log shipping is really nothing more than backing up the transaction log, copying it to the
warm-standby server, and restoring it with no recovery. With a little work, a SQL Server Agent
job can be configured to perform these three tasks in sequence every five minutes.

The wizard does an excellent job of configuring a maintenance plan to perform and monitor
the log shipping. But if you’re willing to figure out the code necessary for shipping the log,
you can bypass the Enterprise Edition and save the difference in cost between the Standard
Edition and the Enterprise Edition. On a quad CPU server, that’s $60,000.

As with the Enterprise Edition Log Shipping Wizard, a shared directory on the primary server
serves as a common area for passing backup files.

The Initialize Stored Procedures
The first step is to move a current copy of the primary database to the warm-standby server.
The following stored procedures on the primary server and the warm-standby server cooper-
ate to perform the backup to network share and restore the data to the warm-standby server.

The first stored procedure must be created locally on the warm-standby server. The stored
procedure on the primary server will call this stored procedure to restore the database. The
move option specifies the location on the warm-standby server for the files:

CREATE PROCEDURE LogShipInitializeReceive
AS
SET NoCount ON
RESTORE DATABASE CHA2
FROM DISK = ‘\\Noli\LogShipping\CHA2Initilze.bak’
WITH
FILE = 1,
NORECOVERY,
MOVE ‘CHA2’ TO ‘c:\SQL2\CHA2.mdf’,
MOVE ‘CHA2_log’ TO ‘c:\SQL2\CHA2.ldf’

35549359 ch29.F 11/21/02 9:51 AM Page 785

786 Part V ✦ Advanced Issues

With the warm-standby server’s stored procedure ready to receive the backup, the
LogShipInitialze stored procedure can be created and run on the primary server. The
LogShipInitializeReceive stored procedure is called from the primary server by means
of the four-part name:

CREATE PROCEDURE LogShipInitialze
AS
SET NoCount ON
Print ‘Backing up Primary Server’
BACKUP DATABASE CHA2
TO DISK = ‘c:\LogShipping\CHA2Initilze.bak’
WITH
NAME = ‘CHA2Initilze’,
INIT

PRINT ‘----- ‘
Print ‘Restoring Warm Standby Server’
EXEC [NOLI\SQL2].Master.dbo.LogShipInitializeReceive

To initialize the log shipping, execute the stored procedure on the primary server:

EXEC LogShipInitialze

Result:

Backing up Primary Server
Processed 160 pages for database ‘CHA2’,
file ‘CHA2’ on file 1.

Processed 1 pages for database ‘CHA2’,
file ‘CHA2_log’ on file 1.

BACKUP DATABASE successfully
processed 161 pages in 0.433 seconds (3.029 MB/sec).

Restoring Warm Standby Server
RESTORE DATABASE successfully
processed 161 pages in 0.714 seconds (1.837 MB/sec).

Processed 1 pages for database ‘CHA2’,
file ‘CHA2_log’ on file 1.

Processed 160 pages for database ‘CHA2’,
file ‘CHA2’ on file 1.

At this point, the bulk of the data has been moved and the database on the warm-standby
server is ready to receive subsequent transaction-log backups. The database is currently in a
“loading” state and cannot be viewed.

The LogShipJob Stored Procedures
The actual log shipping is handled by the two stored procedures that are executed by a SQL
Server agent job every five minutes.

As with the initialization stored procedures, the first stored procedure is created on the
warm-standby server; it receives the transaction-log backup. The restore uses the with
norecovery option so that the database is left in a state ready to accept additional restores:

CREATE PROCEDURE LogShipJobReceive
AS
SET NoCount ON

35549359 ch29.F 11/21/02 9:51 AM Page 786

787Chapter 29 ✦ Advanced Availability

RESTORE LOG CHA2
FROM DISK = ‘\\Noli\LogShipping\CHA2Job.bak’
WITH
FILE = 1,
NORECOVERY,
MOVE ‘CHA2’ TO ‘c:\SQL2\CHA2.mdf’,
MOVE ‘CHA2_log’ TO ‘c:\SQL2\CHA2.ldf’

For more details on the transaction log and how it can be restored, refer to Chapter 26,
“Recovery Planning.”

On the primary server, the following stored procedure performs the transaction-log backup
and calls the restore on the warm-standby server:

USE CHA2
go
CREATE PROCEDURE LogShipJob
AS
SET NoCount ON
Print ‘Log Ship from Primary Server’
BACKUP LOG CHA2
TO DISK = ‘c:\LogShipping\CHA2Job.bak’
WITH
NAME = ‘CHA2Log’,
INIT

PRINT ‘----- ‘
Print ‘Receiving Log Ship on Warm Standby Server’
EXEC [NOLI\SQL2].Master.dbo.LogShipJobReceive

Creating a SQL Server Agent Job
To ship the log every n minutes, configure a SQL Server Agent job with one step that executes
the stored LogShipJob procedure, as shown in Figure 29-4.

Figure 29-4: A SQL Server Agent job executes the
LogShipJob stored procedure every five minutes.

Cross-
Reference

35549359 ch29.F 11/21/02 9:51 AM Page 787

788 Part V ✦ Advanced Issues

While creating SQL Server Agent jobs in Enterprise Manager is definitely easier than using a
script, a script has the benefit of being reusable without there being any chance of deviation.
The following code also creates the SQL Server Agent job:

EXEC msdb.dbo.sp_add_job
@Job_Name = ‘LogShip_CHA2’,
@Enabled = 1,
@Owner_login_name = ‘NOLI\SQL’,
@Description = ‘log shipping with stored procedures’

EXEC msdb.dbo.sp_add_jobstep
@Job_Name = ‘LogShip_CHA2’,
@SubSystem = ‘TSQL’,
@Step_Name = ‘LogShip’,
@Database_Name = ‘CHA2’,
@Retry_Attempts = 3,
@Command = ‘EXEC LogShipJob’

EXEC msdb.dbo.sp_add_JobSchedule
@Job_Name = ‘LogShip_CHA2’,
@Name = ‘FiveMin’,
@freq_type = 4, -- Daily
@freq_interval = 1,
@freq_subday_type = 0x4, -- minutes
@freq_subday_interval = 5 -- every 5 min

EXEC msdb.dbo.sp_add_jobserver
@Job_Name = ‘LogShip_CHA2’,
@server_name = N’(local)’

In addition to setting up the SQL Server Agent job, a SQL Server Agent operator should be
created so the job can e-mail the operator if the job fails.

For more information on creating SQL Server Agent jobs, see Chapter 25, “Automating
Database Maintenance with SQL Server Agent.”

Configuring a Read-Only Standby Query Server
As an additional benefit of using a warm-standby server, the restored data on the server can
be configured so that it’s available for read-only queries; this enables you to offload some of
the work from the primary server. Changing the Restore option from “with no recovery” to
“with standby” sets the server to read-only mode. To implement this type of log shipping, the
norecovery line in the LogShipJobReceive stored procedure on the warm standby server
should be changed to the following:

STANDBY = ‘c:\SQL2\CHA2.sby’,

Using the warm-standby server as a query server can be problematic. A restore operation
requires exclusive use of the database and both the log-shipping and go-live procedures must
execute a restore command. If any users are connected to the warm-standby database
(assuming it’s being used as a read-only query server) the restore will fail.

If the warm-standby server is used as a query server, the only option is to automatically ter-
minate all user connections prior to the restore command. The following code can be used to
kill all non-system spids.

Cross-
Reference

35549359 ch29.F 11/21/02 9:51 AM Page 788

789Chapter 29 ✦ Advanced Availability

create procedure sp_kill_spids
as

set nocount on

create table #connection_processes(
spid int null

, usernm varchar (1000) null
, db varchar (1000) null
, status varchar (1000) null
, cmd nchar (0016) null
)

insert into #connection_processes (spid, usernm, db, status,cmd)
select p.spid,

case when p.spid > 6
then convert(sysname, ISNULL(suser_sname(p.sid),

rtrim(p.nt_domain) + ‘\’ + rtrim(p.nt_username)))
else ‘system’

end,
case when p.dbid = 0

then ‘no database context’
else db_name(p.dbid)

end,
p.status,
cmd

from master.dbo.sysprocesses p with (NOLOCK)
order by p.spid

declare 'id int, @usernm varchar (1000), @print varchar(1000), @sql
varchar(1000), @cmd nchar(0016)
select 'id = max(spid) from #connection_processes
select @cmd = cmd from #connection_processes where spid = 'id
while 'id is not null
begin
select @usernm = usernm from #connection_processes where spid = 'id
if lower(@usernm) <> ‘system’ -- we ignore all system processes
OR @cmd not in (‘AWAITING COMMAND’,’CHECKPOINT SLEEP’,’LAZY

WRITER’,’LOCK
MONITOR’,’SELECT’,’SIGNAL HANDLER’)

begin
if 'id <> 'id
begin
select @sql = ‘KILL ‘+convert(varchar(20), 'id)
execute(@sql)
end

end
select 'id = max(spid) from #connection_processes where spid < 'id

end
drop table #connection_processes
GO

35549359 ch29.F 11/21/02 9:51 AM Page 789

790 Part V ✦ Advanced Issues

Shipping the Users
Neither the Log Shipping Wizard nor the stored procedures synchronize the server logins
between the primary server and the warm-standby server. If the warm-standby server
becomes the current live server, but no one can log in, it will be the same to the users as if the
server were down. It’s important, therefore, to move the user logins from the primary server
to the warm-standby server. The best way to do that is to create a DTS job that connects to
each server and transfers the users. If you are routinely adding several users, you may want
to schedule this job to run several times per day, otherwise once daily should suffice.

Chapter 19, “Migrating Data with DTS,” includes information about creating and scheduling a
DTS package.

Detecting and Handling a Crash
The primary issue with log shipping is that the switch from the primary server to the warm-
standby server is normally manually executed by a human DBA. However, if an object is used
to manage the connection, the object can serve two vital purposes:

✦ The object can detect a timeout situation on the primary server, attempt to query the
server again to be sure, and, if the primary server’s database is in fact unavailable, initi-
ate the StandbyGoLive stored procedure.

✦ The object can drop all current connections and redirect all new connections to the
warm-standby server.

Going Live on the Warm-Standby Server
If the primary server goes down, the warm-standby server has to be brought on line. The pro-
cedure is the same whether the log was shipped by the Log Shipping Wizard or by SQL Server
Agent and stored procedures.

On the warm-standby server, restoring the database with the with recovery option rolls
back any uncommitted transactions in the transaction log and makes the database available
for data modification.

CREATE PROCEDURE StandbyGoLive
AS
RESTORE DATABASE CHA2 WITH RECOVERY

On the off chance that the database file is unavailable, but the transaction log is intact, the
LogShipJob should run one last time to pick up any last transactions. If the primary server is
completely gone, any transactions that were committed after the last LogShipJob was run
will be lost.

If the primary server is no longer running, the SQL Server Agent job is probably no longer
running as well. It should be disabled. However, any attempt to restore a transaction log to a
database that’s been restored with the with recovery option will result in an error, so the
restore won’t harm the warm-standby server’s database.

Cross-
Reference

35549359 ch29.F 11/21/02 9:51 AM Page 790

791Chapter 29 ✦ Advanced Availability

If the database uses full-text searches, the warm-standby server will have to also run a stored
procedure after the restore to create and populate a full-text search catalog. Chapter 8,
“Searching Full-Text Indexes,” includes sample scripts to perform these functions.

Returning to the Original Primary Server
Once the primary server has been repaired and is ready to return to service, the following
steps reinitialize the primary server during a period when users are not connected:

1. Use DTS to move all the user logins from the warm-standby server to the primary
server.

2. Transfer the database from the warm-standby server to the primary server using either
a full backup and restore or a detach and attach.

Failover Servers and Clustering
A more sophisticated high-availability recovery method is to implement failover servers and
clustering. The cluster allows several servers to appear as a single virtual SQL Server. The
user connects to the virtual SQL Server and is unaware of which physical server is processing
the request.

A SQL Server cluster is not a Network Load Balancing cluster, which provides scalability for
Web servers. SQL Server clusters provide backup availability, not scalability. Clusters do not
balance the SQL load.

This method requires Windows 2000 clusters and a shared disk subsystem. Each server
requires a connection (usually SCSI or optical) to the shared disk subsystem. Since both
servers can see the same disk subsystem, in effect they share the same transaction log and
data file. The cluster also uses a high-speed network dedicated to the clustering servers (usu-
ally optical), which serves as the heartbeat. Hardware manufacturers make specific models
and configurations for clustering, and an OEM (Original Equipment Manufacturer)-specific
version of Windows 2000 Server must be purchased with the hardware. Using failover servers
and clustering costs several times more than using a warm-standby server.

Each server in the cluster may be active or passive. An active/passive cluster is referred to as
a single-instance cluster. A cluster with multiple active servers (one database per server) is a
multiple-instance cluster. If an active server fails, a designated passive server automatically
becomes active and takes over from the shared transaction log and data file. From the user’s
perspective the switch is transparent.

If you are planning to implement failover clusters, we recommend the SQL Server 2000
Resource Kit, which contains five chapters on high availability; it’s also a good idea to read as
many white papers as possible from your hardware vendor. A visit to an IT shop running clus-
tering using the proposed equipment would be time well spent. If your hardware vendor
won’t supply a list of suitable referral sites, keep shopping.

Cross-
Reference

35549359 ch29.F 11/21/02 9:51 AM Page 791

792 Part V ✦ Advanced Issues

Summary
Availability is paramount to the success of most database projects. Log shipping and failover
clusters are both high-end techniques to provide a stable database environment for the users.

Log shipping backs up the log every few minutes and restores it on the warm-standby server
with a no restore option so the warm-standby server is ready to go live at a moment’s notice.

Failover clusters configure multiple servers that share a single disk subsystem into a single
virtual server to provide a seamless switch from one physical server to another in case of a
server fault.

A cousin to availability is scalability — the ability of a server to handle increasing numbers of
users and data. The next chapter provides a framework for understanding scalability and
practical techniques to improve the scalability of your projects.

✦ ✦ ✦

35549359 ch29.F 11/21/02 9:51 AM Page 792

Advanced
Scalability

Scalability is related to performance, but specifically scalability
refers to the database’s ability to survive increasing capacity.

Most (but not all) databases will perform well with a handful of users
accessing a mere 50MB of data within a database. If the database still
performs well with hundreds of users accessing 100GB of data, it is
beginning to scale well.

Scalability is a team concept. Even if the database is developed to
scale, if the connection object, front-end application, network infras-
tructure, or reporting application fails to scale, the entire project will
fail to scale.

If the database is expected to scale, the optimization guidelines pre-
sented in Chapter 28, “Advanced Performance,” should already be in
place. Beyond the database-optimization methods, SQL Server pro-
vides a few high-end techniques specifically intended to improve the
scalability of a database. Assuming that the optimization techniques
are already in place, this chapter focuses on advanced scalability,
concluding with the pinnacle of scalability — federated databases.

De-normalization Indexes
A popular technique to woo performance out of a database is to
make a de-normalized copy of some of the data, in which data that’s
stored in five large tables, for example, is extracted and stored in a
single wide table for faster reads. We did some extreme de-normaliza-
tion on a project, replacing a query that had a couple of dozen joins
with a single table, and reduced the search time from a couple of min-
utes to about a second. It was OK for that project because the data
was read-only. When the queries go against live data, de-normaliza-
tion can be a source of data-integrity problems.

Microsoft provides an alternate to de-normalizing the actual data.
SQL Server’s indexed views are actually clustered indexes storing a
de-normalized set of data, as illustrated in Figure 30-1.

3030C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Local- and distributed-
partition views

Indexed views

✦ ✦ ✦ ✦

36549359 ch30.F 11/21/02 9:51 AM Page 793

794 Part V ✦ Advanced Issues

Figure 30-1: Indexed views create a bridge between two
tables that might actuality be a dozen joins apart.

Instead of building tables to denormalize a join, a view can be created that can select the two
primary keys from the joined tables. A clustered index created on the view stores the valid
data from the primary-key and foreign-key pairs.

While a normal view only stores the SQL select statement and the data isn’t materialized
until the view is called, an indexed view stores a copy of the data in a clustered index.
Clustered indexes merge the data page and the b-tree index leaf to store the actual data in
the physical order of the index. The clustered index uses a view as a framework to define
the columns to be stored.

Numerous restrictions on indexed views exist. Here are a few:

✦ The ANSI null and quoted identifier must be enabled when the view is created, and
when any connection attempts to modify any data in the base tables.

✦ The index must be a unique clustered index; therefore, the view must produce a unique
set of rows without using distinct. This can be a problem because situations that
need de-normalizing include most many-to-many relationships, which tend to produce
duplicate rows in the result set. For this reason, most indexed views only span one-to-
many relationships.

✦ The tables in the view must be tables (not nested views) in the local database and must
be referenced by means of the two-part name (owner.table).

✦ The view must be created with the option with schema binding.

Clustered Index

Indexed View

PrimaryKey ForeignKey

36549359 ch30.F 11/21/02 9:51 AM Page 794

795Chapter 30 ✦ Advanced Scalability

As an example of an indexed view being used to de-normalize a large query, the following
view selects data from the contact to product tables in the OBX Kites database:

USE OBXKites

SET ANSI_Nulls ON
SET ANSI_Padding ON
SET ANSI_Warnings ON
SET ArithAbort ON
SET Concat_Null_Yields_Null ON
SET Quoted_Identifier ON
SET Numeric_RoundAbort OFF

GO

CREATE VIEW vContactOrder
WITH SCHEMABINDING
AS
SELECT c.ContactID, o.OrderID
FROM dbo.Contact as c
JOIN dbo.[Order] as o
ON c.ContactID = o.ContactID

GO

CREATE UNIQUE CLUSTERED INDEX ivContactOrder ON vContactOrder
(ContactID, OrderID)

Indexed Views and Queries
When SQL Server’s Query Optimizer develops the execution plan for a query, it includes the
indexed view’s clustered index as one of the indexes it can use for the query, even if the
query doesn’t explicitly reference the view.

This means that the indexed view’s clustered index can serve as a covering index to speed
queries. When the Query Optimizer selects the indexed view’s clustered index, the query-exe-
cution plan indicates it with an index scan, as illustrated in Figure 30-2. The following query
selects the same data as the Indexed view:

SELECT Contact.ContactID, OrderID
FROM dbo.Contact
JOIN dbo.[Order]
ON Contact.ContactID = [Order].ContactID

Just adding indexed views without fully analyzing how the queries use them will likely hurt
performance more than it helps. Updating indexed views entails a serious performance hit,
so avoid them for transactional databases. Carefully add them to databases used primarily
for reporting, OLAP, or querying, by identifying specific joins that are impeding frequent
queries and surgically inserting an indexed-view cluster index.

36549359 ch30.F 11/21/02 9:51 AM Page 795

796 Part V ✦ Advanced Issues

Figure 30-2: The query-execution plan performs a clustered index scan to retrieve the
data instead of accessing the base tables.

Updating Indexed Views
As with any de-normalized copy of the data, the difficulty is keeping the data current. Indexed
views have the same issue. As data in the underlying base tables is updated, the indexed view
must be keep in sync. This process is completely transparent to the user and is more of a per-
formance consideration than a programmatic issue.

Partitioned Tables
To partition a table is to split the table into two or more smaller segments based on a parti-
tion key. The partitions are most effective when the partition key is a column often used to
select a range of data, so that a query has a good chance of addressing only one of the seg-
ments. For example,

✦ A company manages sales from five distinct sales offices; splitting the order table by
sales region will enable each sales region’s queries to likely access only that region’s
partition.

✦ A manufacturing company partitions a large activity-tracking table into several smaller
tables, one for each department, knowing that each of the production applications
tends to query a single department’s data.

36549359 ch30.F 11/21/02 9:51 AM Page 796

797Chapter 30 ✦ Advanced Scalability

✦ A financial company has several hundred gigabytes of historical data and must be able
to easily query across current and historical data. However, the majority of current
activity deals with only the current data. Segmenting the data by era enables the
current-activity queries to access a much smaller table.

In the access of data, the greatest bottleneck is reading the data from the drive. The primary
benefit of partitioning tables is that a smaller partitioned table will have a greater percentage
of the table cached in memory.

Very large, frequently accessed tables, with data that can logically be divided horizontally for
the most common queries, are the best candidates for partitioning. If the table doesn’t meet
this criteria, don’t partition the table.

With the data split into several partition tables, of course, it may be accessed by means of
querying a single partition table. A more sophisticated and flexible approach is to access the
whole set of data by querying a view that unites all the partition tables.

The SQL Server query processor is designed specifically to handle such a partitioned view. If
a query accesses the union of all the partition tables, the query processor will only retrieve
data from the required partition tables.

Data can be inserted directly into each individual partition table, rather than dealing with
each partition as if it were one database. With SQL Server you also have the option of insert-
ing the data into the correct partition table by passing the insert through a properly config-
ured view that unites all the partition tables.

SQL Server supports two types of partition views: local and distributed. A local-partition view
unites data from multiple local-partition tables. A distributed-partition view, also known as a
federated database, spreads the partition tables across multiple servers and connects them
using linked servers, and views that include distributed queries.

Local-Partition Views
For a local-partition view to be configured, the following elements must be in place:

✦ The data must be segmented into multiple tables according to a single column, known
as the partition key.

✦ Each partition table must have a check constraint restricting the partition-key data to a
single value. SQL Server uses the check constraint to determine which tables are
required by a query.

✦ The partition key must be part of the primary key.

✦ The partition view must include a union statement that pulls together data from all the
partition tables.

Segmenting the Data
To implement a partitioned-view design for a database and segment the data in a logical fash-
ion, the first step is to move the data into the partitioned tables.

36549359 ch30.F 11/21/02 9:51 AM Page 797

798 Part V ✦ Advanced Issues

As an example, the Order and OrderDetail tables in the OBXKites sample database can be
partitioned by sales location. In the sample database, the data breaks down as follows:

SELECT LocationCode, Count(OrderNumber) AS Count
FROM Location
JOIN [Order]
ON [Order].LocationID = Location.LocationID

GROUP BY LocationCode

Result:

LocationCode Count
----------------- ---------
CH 6
JR 2
KH 2

To partition the sales data, the Order and OrderDetail tables will be split into a table for
each location. The first portion of the script creates the partition tables. They differ from the
original tables only in the primary-key definition, which becomes a composite primary key
consisting of the original primary key and the LocationCode. In the OrderDetail table the
LocationCode column is added so it can serve as the partition key, and the OrderID column
foreign-key constraint points to the partition table.

The script then progresses to populating the tables from the non-partitioned tables. To select
the correct OrderDetail rows, the table needs to be joined with the OrderCH table.

For brevity’s sake, only the Cape Hatteras (CH) location is shown here, and is included on the
book’s CD. The script includes similar code for the Jockey Ridge and Kill Devil Hills locations.
The differences between the partition table and the original tables, and the code that differs
among the various partitions, are boldfaced:

--Order Table
CREATE TABLE dbo.OrderCH (
LocationCode CHAR(5) NOT NULL,
OrderID UNIQUEIDENTIFIER NOT NULL -- Not PK
ROWGUIDCOL DEFAULT (NEWID()),

OrderNumber INT NOT NULL,
ContactID UNIQUEIDENTIFIER NULL
FOREIGN KEY REFERENCES dbo.Contact,

OrderPriorityID UNIQUEIDENTIFIER NULL
FOREIGN KEY REFERENCES dbo.OrderPriority,

EmployeeID UNIQUEIDENTIFIER NULL
FOREIGN KEY REFERENCES dbo.Contact,

LocationID UNIQUEIDENTIFIER NOT NULL
FOREIGN KEY REFERENCES dbo.Location,

OrderDate DATETIME NOT NULL DEFAULT (GETDATE()),
Closed BIT NOT NULL DEFAULT (0) -- set to true when Closed
)
ON [Primary]

go

-- PK

36549359 ch30.F 11/21/02 9:51 AM Page 798

799Chapter 30 ✦ Advanced Scalability

ALTER TABLE dbo.OrderCH
ADD CONSTRAINT
PK_OrderCH PRIMARY KEY NONCLUSTERED
(LocationCode, OrderID)

-- Check Constraint
ALTER TABLE dbo.OrderCH
ADD CONSTRAINT
OrderCH_PartitionCheck CHECK (LocationCode = ‘CH’)

go
-- Order Detail Table
CREATE TABLE dbo.OrderDetailCH (
LocationCode CHAR(5) NOT NULL,
OrderDetailID UNIQUEIDENTIFIER NOT NULL -- Not PK
ROWGUIDCOL DEFAULT (NEWID()),

OrderID UNIQUEIDENTIFIER NOT NULL, -- Not FK
ProductID UNIQUEIDENTIFIER NULL
FOREIGN KEY REFERENCES dbo.Product,

NonStockProduct NVARCHAR(256),
Quantity NUMERIC(7,2) NOT NULL,
UnitPrice MONEY NOT NULL,
ExtendedPrice AS Quantity * UnitPrice,
ShipRequestDate DATETIME,
ShipDate DATETIME,
ShipComment NVARCHAR(256)
)
ON [Primary]

go

ALTER TABLE dbo.OrderDetailCH
ADD CONSTRAINT
FK_OrderDetailCH_Order
FOREIGN KEY (LocationCode,OrderID)
REFERENCES dbo.OrderCH(LocationCode,OrderID)

ALTER TABLE dbo.OrderDetailCH
ADD CONSTRAINT
PK_OrderDetailCH PRIMARY KEY NONCLUSTERED
(LocationCode, OrderDetailID)

ALTER TABLE dbo.OrderDetailCH
ADD CONSTRAINT
OrderDetailCH_PartitionCheck CHECK (LocationCode = ‘CH’)

go

-- move the data
INSERT dbo.OrderCH (LocationCode,

OrderID, OrderNumber, ContactID, OrderPriorityID,
EmployeeID, LocationID, OrderDate, Closed)

36549359 ch30.F 11/21/02 9:51 AM Page 799

800 Part V ✦ Advanced Issues

SELECT
‘CH’,
OrderID, OrderNumber, ContactID, OrderPriorityID,
EmployeeID, [Order].LocationID, OrderDate, Closed

FROM [Order]
JOIN Location
ON [Order].LocationID = Location.LocationID

WHERE LocationCode = ‘CH’

INSERT dbo.OrderDetailCH (
LocationCode, OrderDetailID, OrderID, ProductID,
NonStockProduct, Quantity, UnitPrice, ShipRequestDate,
ShipDate, ShipComment)

SELECT ‘CH’,
OrderDetailID, OrderDetail.OrderID,
ProductID, NonStockProduct, Quantity, UnitPrice,
ShipRequestDate, ShipDate, ShipComment

FROM OrderDetail
JOIN OrderCH
ON OrderDetail.OrderID = OrderCH.OrderID

Creating the Partition View
With the data split into valid partition tables that include the correct primary keys and con-
straints, SQL Server can access the correct partition table through a partition view. The
OrderAll view uses a union all to vertically merge data from all three partition tables:

CREATE VIEW OrderAll
AS
SELECT

LocationCode,
OrderID, OrderNumber, ContactID, OrderPriorityID,
EmployeeID, LocationID, OrderDate, Closed

FROM OrderCH
UNION ALL
SELECT

LocationCode,
OrderID, OrderNumber, ContactID, OrderPriorityID,
EmployeeID, LocationID, OrderDate, Closed

FROM OrderJR
UNION ALL
SELECT

LocationCode,
OrderID, OrderNumber, ContactID, OrderPriorityID,
EmployeeID, LocationID, OrderDate, Closed

FROM OrderKDH

Selecting Through the Partition View
When all the data is selected from the OrderAll partition view, the query plan, shown in
Figure 30-3, includes all three partition tables as expected:

SELECT LocationCode, OrderNumber
FROM OrderAll

36549359 ch30.F 11/21/02 9:51 AM Page 800

801Chapter 30 ✦ Advanced Scalability

Result (abridged):

LocationCode OrderNumber
------------ -----------
CH 1
...
JR 4
JR 7
KDH 9
KDH 10

Figure 30-3: The partition table’s query plan, when run without a where clause r
estriction, includes all the partition tables as a standard union query.

What makes partition views useful for advanced scalability is that the SQL Server query pro-
cessor will use the partition tables’ check constraints to access only the required tables if the
partition key is included in the where clause of the query calling the partition view.

The following query selects on the Kill Devil Hills orders from the partition view. The
LocationCode column is the partition key, so this query will be optimized for scalability.
Even though the view’s union includes all three partition tables, the query-execution plan,
shown in Figure 30-4, reveals that the query processor accesses only the OrderCH
partition table:

36549359 ch30.F 11/21/02 9:51 AM Page 801

802 Part V ✦ Advanced Issues

SELECT OrderNumber
FROM OrderAll
WHERE LocationCode = ‘KDH’

Result:

OrderNumber

9
10

Figure 30-4: When a query with a where-clause restriction that includes the partition key
retrieves data through the partition view, SQL Server’s query processor accesses only the
required tables.

Updating Through the Partition View
Union queries are typically not updateable. Yet, the partition tables’ check constraints enable
a partition view based on a union query to be updated, as long as a few conditions are met:

✦ The partition view must include all the columns from the partition tables.

✦ The primary key must include the partition key.

✦ Partition-table columns, including the primary key, must be identical.

✦ Columns and tables must not be duplicated within the partition view.

36549359 ch30.F 11/21/02 9:51 AM Page 802

803Chapter 30 ✦ Advanced Scalability

The following update query demonstrates updating through the OrderAll view:

UPDATE OrderAll
SET Closed = 0
WHERE LocationCode = ‘KDH’

Unfortunately, an update does not benefit from query optimization to the extent that a
select does. For heavy transactional processing at the stored-procedure level, the code
should access the correct partition table.

Moving Data
An issue with local-partition views is that data is not easily moved from one partition table to
another partition table. An update query that attempts to update the partition key violates
the check constraint:

UPDATE OrderAll
SET Locationcode = ‘JR’
WHERE OrderNumber = 9

Result:

Server: Msg 547, Level 16, State 1, Line 1
UPDATE statement conflicted with TABLE REFERENCE constraint
‘FK_OrderDetailKDH_Order’. The conflict occurred in
database ‘OBXKites’, table ‘OrderDetailKDH’.

The statement has been terminated.

For implementations that partition by region or department, moving data may not be an
issue, but for partition schemes that divide the data into current and archive partitions, it is.

The only possible workaround is to write a stored procedure that inserts the rows to be
moved into the new partition and then deletes them from the old partition. To complicate
matters further, a query that inserts into the partition view cannot reference a partition table
in the query, so an insert..select query won’t work. A temporary table is required to facil-
itate the move:

CREATE PROCEDURE OrderMovePartition (
@OrderNumber INT,
@NewLocationCode CHAR(5))

AS
SET NoCount ON

DECLARE @OldLocationCode CHAR(5)

SELECT @OldLocationCode = LocationCode
FROM OrderAll
WHERE OrderNumber = @OrderNumber

-- Insert New Order
SELECT DISTINCT

OrderID, OrderNumber, ContactID, OrderPriorityID,
EmployeeID, LocationID, OrderDate, Closed

INTO #OrderTemp

36549359 ch30.F 11/21/02 9:51 AM Page 803

804 Part V ✦ Advanced Issues

FROM OrderAll
WHERE OrderNumber = @OrderNumber
AND LocationCode = @OldLocationCode

INSERT dbo.OrderAll (LocationCode,
OrderID, OrderNumber, ContactID, OrderPriorityID,
EmployeeID, LocationID, OrderDate, Closed)

SELECT
@NewLocationCode,
OrderID, OrderNumber, ContactID, OrderPriorityID,
EmployeeID, LocationID, OrderDate, Closed

FROM #OrderTemp

-- Insert the New OrderDetail
SELECT DISTINCT

OrderDetailID, OrderDetailAll.OrderID,
ProductID, NonStockProduct, Quantity, UnitPrice,
ShipRequestDate, ShipDate, ShipComment

INTO #TempOrderDetail
FROM OrderDetailALL
JOIN OrderALL
ON OrderDetailALL.OrderID = OrderALL.OrderID

WHERE OrderNumber = @OrderNumber

Select * from #TempOrderDetail

INSERT dbo.OrderDetailAll (
LocationCode, OrderDetailID, OrderID, ProductID,
NonStockProduct, Quantity, UnitPrice, ShipRequestDate,
ShipDate, ShipComment)

SELECT @NewLocationCode,
OrderDetailID, OrderID,
ProductID, NonStockProduct, Quantity, UnitPrice,
ShipRequestDate, ShipDate, ShipComment

FROM #TempOrderDetail

-- Delete the Old OrderDetail
DELETE FROM OrderDetailAll
FROM OrderDetailAll
JOIN OrderALL
ON OrderAll.OrderID = OrderDetailAll.OrderID

WHERE OrderNumber = @OrderNumber
AND OrderDetailAll.LocationCode = @OldLocationCode

-- Delete the Old Order
DELETE FROM OrderALL
WHERE OrderNumber = @OrderNumber
AND LocationCode = @OldLocationCode

To test the stored procedure, the following batch moves order number 9 from the Kill Devils
Hill store to the Jockey’s Ridge location:

EXEC OrderMovePartition 9, ‘JR’

36549359 ch30.F 11/21/02 9:51 AM Page 804

805Chapter 30 ✦ Advanced Scalability

To see the move, the following query reports the LocationCode from both the OrderAll and
the OrderDetailAll tables:

Select
OrderAll.OrderNumber,
OrderALL.LocationCode as OrderL,
OrderDetailALL.LocationCode AS DetailL

FROM OrderDetailAll
JOIN OrderAll
ON OrderAll.OrderID = OrderDetailAll.OrderID

WHERE OrderNumber = 9

Result:

OrderNumber OrderL DetailL
----------- ------ -------
9 JR JR
9 JR JR
9 JR JR

Distributed-Partition Views
Since partition views often segment data along natural geographic lines, it logically follows
that a partition view that spans multiple servers is very useful. Distributed-partition views
build upon local-partition views to unite data from segmented tables located on different
servers. This technique is also referred to as a federated-database configuration because multi-
ple individual components cooperate to complete the whole. This is how Microsoft gains
those incredible performance benchmarks.

The basic concept is the same as that of a local-partition view, with a few differences:

✦ The participating servers must be configured as linked servers with each other.

✦ The distributed-partition view on each server is a little different from those of the other
servers, because it must use distributed queries to access the other servers.

✦ Each server must be configured for lazy schema validation to prevent repeated
requests for metadata information about the databases.

Turning on lazy schema validation means that SQL Server will not check remote tables for the
proper schema until it has executed a script. This means if a remote table has changed,
scripts dependant on that table will error out. Turning this feature on can have certain bad
effects on scripts but does help increase performance.

The following script configures a quick distributed-partition view between Noli and
Noli\SQL2. To save space, we list only the Noli half of the script. Similar code is also run on
the second server to establish the distributed view. The script creates a database with a sin-
gle table and inserts a single row. Once a link is established, and lazy schema validation is
enabled, the distributed-partition view is created. This partition view is created with a four-
part name to access the remote server. Selecting through the distributed-partition view
retrieves data from both servers:

CREATE DATABASE DistView
go
USE DistView

Note

36549359 ch30.F 11/21/02 9:51 AM Page 805

806 Part V ✦ Advanced Issues

CREATE TABLE dbo.Inventory(
LocationCode CHAR(10) NOT NULL,
ItemCode INT NOT NULL,
Quantity INT)

ALTER TABLE dbo.Inventory
ADD CONSTRAINT PK_Inventory

PRIMARY KEY NONCLUSTERED(LocationCode, ItemCode)
ALTER TABLE dbo.Inventory
ADD CONSTRAINT Inventory_PartitionCheck

CHECK (LocationCode = ‘Noli’)

INSERT dbo.Inventory
(LocationCode, ItemCode, Quantity)
VALUES (‘NOLI’, 12, 1)

-- Link to the Second Server
EXEC sp_addlinkedserver
@server = ‘Noli\SQL2’,
@srvproduct = ‘SQL Server’

EXEC sp_addlinkedsrvlogin
@rmtsrvname = ‘NOLI\SQL2’

-- Lazy Schema Validation
EXEC sp_serveroption ‘Noli\SQL2’,
‘lazy schema validation’, true

-- Create the Distributed Partition View
CREATE VIEW InventoryAll
AS
SELECT *
FROM dbo.Inventory

UNION ALL
SELECT *
FROM [NOLI\SQL2].DistView.dbo.Inventory

SELECT *
FROM InventoryAll

Result:

LocationCode ItemCode Quantity
------------ ----------- -----------
NOLI 12 1
NOLI\SQL2 14 2

Updating and Moving Data with Distributed-Partition Views
One fact that makes distributed-partition views an improvement over local-partition views
is that a distributed-partition view can move data without complication. MS Distributed

36549359 ch30.F 11/21/02 9:51 AM Page 806

807Chapter 30 ✦ Advanced Scalability

Transaction Coordinator must be running and xact_abort enabled, because the transaction
is a distributed transaction. This update query changes the LocationCode of the first
server’s row to ‘Noli\SQL2’, and effectively moves the row from Noli to Noli\SQL2:

SET XACT_ABORT ON
UPDATE InventoryAll
SET LocationCode = ‘Noli\SQL’
WHERE Item = 12

To show you the effect of the update query, the next query selects from the distributed-parti-
tion view and demonstrates that item 14 is now located on Noli:

SELECT *
FROM InventoryAll

Result:

LocationCode ItemCode Quantity
------------ ----------- -----------
NOLI 12 1
NOLI 14 2

Highly Scalable Distributed-Partition Views
SQL Server’s query processor handles distributed-partition views much as it handles local-
partition views. Where the local-partition view accesses only the required tables, a dis-
tributed-partition view will perform distributed queries and request the required data from
the remote servers. Each server executes a portion of the query.

For maximum scalability in a multiple-server distributed environment, use a federated-
database scheme. To execute an intelligent distributed query that generates smart pass-
through queries and shares the query-execution work among multiple servers, be sure to
include the partition key in the query’s where clause.

In the following example, the query is being executed on Noli. A remote query request is
sent to Noli\SQL2 and the results are passed back to Noli. The query processor knows not
to bother looking at the table on Noli, as shown in Figure 30-5. Even better, the query passes
the row restriction to the remote server as well. Noli\SQL2 has two rows, but only one is
returned.

SELECT *
FROM InventoryAll
WHERE LocationCode = ‘Noli\SQL2’
AND Item = 14

Result:

LocationCode ItemCode Quantity
------------ ----------- -----------
NOLI\SQL2 14 2

36549359 ch30.F 11/21/02 9:51 AM Page 807

808 Part V ✦ Advanced Issues

Figure 30-5: Noli\SQL2 executes a remote query and returns the requested data to
Noli in an intelligent distributed-partition query.

Summary
Not every database will have to scale to higher magnitudes of capacity, but when a project
does grow into the hundreds of gigabytes, SQL Server provides some additional techniques
with which to tackle the growth.

High-end scalability techniques are not a substitute for clean design and optimization. Once
the database is optimized these techniques can be employed.

Indexed views provide a framework for a clustered index that can de-normalize data and
serve as a covering index for queries.

A partition view horizontally segments the data into multiple smaller tables. A partition view
is then used to recombine the segments into what appears to be a single table.

The SQL Server Query Optimizer can use the partition tables’ check constraints to extract
data from only the required tables.

A distributed-partition view, also known as a federated database, spreads the segments
among multiple servers. Queries that access the view are transformed into intelligent pass-
though queries in which each server performs a piece of the query.

The advanced topic in the next chapter deals with data anomalies — how to identify and
track questionable data, and how to measure the data consistency in your database.

✦ ✦ ✦

36549359 ch30.F 11/21/02 9:51 AM Page 808

Analysis Services

Up to this point, this book has dealt with relational databases in
SQL Server 2000. Analysis Services introduces a twist to the

standard relational database that we have not yet addressed. While
standard databases work well for Online Transaction Processing
(OLTP) a standard database is not fast enough to support the types of
queries and number crunching for end users that Analysis Services
provides.

This chapter covers several terms that are used within Microsoft’s
Analysis Services. You will learn how to install Analysis Services and
create cubes within Analysis Services, and, using Microsoft Excel,
how to displays data generated using Analysis Services. While the
points covered in this chapter will provide you with enough informa-
tion to use the most popular features of Analysis Services, it does not
cover every detail. For more information check the online documen-
tation included with Analysis Services.

What’s Included with Analysis Services
Analysis Services provides the tools that you will need to generate
detailed multidimensional reports. If you are coming from a rela-
tional-database background, it might be difficult to think of a report
in more than two dimensions, but Analysis Services provides such an
environment. Although this may sound rather complex, Microsoft has
done a great job of hiding the ugly complexities by means of the wiz-
ards and the Analysis Manager MMC snap-in.

The major components of Analysis Services are:

✦ Multidimensional Database Engine — As mentioned at the begin-
ning of this chapter, a standard relational database does not
provide enough flexibility to handle the load required for multi-
dimensional reporting. This database stores data differently
from a relational database. Each data item is stored at a coordi-
nate, including data computed ahead of time. The coordinates
are usually something more descriptive than the normal x, y, z
values — something more specific to the data.

✦ Analysis Manager — Microsoft has continued using the
Microsoft Management Console for systems management and
has included a snap-in for Analysis Services. The Analysis
Manager snap-in will give you enough flexibility to manage all
of the tasks from within a single interface.

✦ Pivot Table Service — A service that allows external applica-
tions to gain access to data stored within the cubes in Analysis
Services.

3131C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The foundation of
Analysis Services

Creating and
processing cubes within
Analysis Manager

Using the Analysis
Services MMC snap-in

Using Analysis Services
from Microsoft Excel

✦ ✦ ✦ ✦

37549359 ch31.F 11/21/02 9:51 AM Page 809

810 Part V ✦ Advanced Issues

Analysis Services is a product in itself. While it is included with Microsoft’s SQL Server 2000,
SQL Server is not required to use Analysis Services. Analysis Services will work fine against
additional data sources such as Oracle and Access. In fact, the sample application that is
installed with Analysis Service, FoodMart, uses Access as its own data source.

That’s a look at Analysis Services from a high level. The next section addresses a standard
procedure you might follow to actually analyze your data.

The Process Needed to Analyze Data
Analysis Services functions under the assumption that you have created a data warehouse.
Think of a data warehouse as a database that collects data over time. The data warehouse,
because it is constantly collecting data over time, will grow even larger than its OLTP
counterpart.

Usually the most complicated part of the Online Analytical Processing (OLAP) environment is
scrubbing the data from one format in a relational database to the format that the data ware-
house requires. Scrubbing data involves combining information from several tables into a sin-
gle table or combining fields into a single field. This is not a one-time migration, either. To
make your OLAP environment most useful this task must be done on an automated and
scheduled basis. This is where Microsoft’s Data Transformation Services (DTS) helps out.

In discussions of data warehousing and Analysis Server, the term OLAP comes up frequently.
Analysis Server is Microsoft’s answer for Online Analytical Processing and was around long
before Analysis Server was even thought of. OLAP databases differ from standard relational
databases because they are designed to handle generalized queries looking up summarized
data. OLAP databases also precalculate the data before it is requested. This produces fast
results to queries.

Once the data has been moved to the data warehouse, Analysis Services can be used to cre-
ate a cube for reporting. A cube contains precalculated values based on the data from the
data warehouse. Analysis Services provides wizards and editors for creating cubes. The
whole process is laid out in Figure 31-1.

Figure 31-1: The process the data will travel before finally being stored
in a cube.

Analysis Services looks to the data warehouse as a data source. In particular, Analysis
Services is looking for a fact table. A fact table is a standard table in a database but is made
up of both dimensions and members, discussed later in this section. Table 31-1 shows how a
fact table based on the Cape Hatteras Adventures database might look.

Data Warehouse CubeOLTP

Note

37549359 ch31.F 11/21/02 9:51 AM Page 810

811Chapter 31 ✦ Analysis Services

Table 31-1: Cape Hatteras Adventures Fact Table

CustomerID EventID Cost EventDate

4 1 365 3/19/2003 5:00:00 PM

2 4 221 6/28/2002 6:00:00 AM

1 4 497 1/7/2005 10:00:00 AM

1 3 187 5/2/2002 10:30:00 AM

2 2 592 3/23/2005 10:00:00 AM

3 1 154 7/8/2004 8:30:00 AM

This fact table represents tours and dates that the company has provided. It indicates which
customers attended the tours on which dates and what the costs were. This table will con-
tinue to grow over time and would probably be loaded nightly, with the previous day’s
events. The EventID, CustomerID, and EventDate columns are dimensions. Cost is referred
to as a measure. For each of the dimensions included in the fact table a corresponding dimen-
sion table will exist, providing additional information about the dimension. The dimension
represented as a key is not very descriptive. The measure values are summed to provide
additional information. In Table 31-1, Analysis Services could calculate that CustomerID 1
has generated 684 dollars’ worth of revenue.

Based on the information in the fact table, Analysis Services can create reports for viewing
for several different scenarios. Just based on the small amount of information found in Table
31-1, Analysis Services could break down sales based on customers, events, or even sales for
different times of the year. To show what Analysis Manager can provide for a quick report
based on a cube generated on data similar to Table 31-1, see Figure 31-2.

Figure 31-2: Analysis Manager provides a simple Cube
Browser for looking at the details generated by Analysis Server.

37549359 ch31.F 11/21/02 9:51 AM Page 811

812 Part V ✦ Advanced Issues

While the topic of Analysis Manager will be covered later in the chapter, usually it’s easiest to
explain what it can do by showing an image. Figure 31-2 shows some of the detail that
Analysis Services will let you drill down to. The formatting and summation that Analysis
Services does would be very difficult to draw out of a standard relational database.

This section has covered some of the basics of Analysis Services and has shown you just a lit-
tle of what it can do. The next section shows what it takes to install it onto your system so
you can start generating multidimensional reports.

Installing Analysis Services
The installation of Analysis Services is relatively easy. To start, you’ll need your SQL Server
2000 installation CD handy. After inserting the CD you’ll be prompted with the opening
screen. If you are not prompted, you’ll need to browse the CD and double-click autorun.exe
at the root of the CD.

From the menu of options, choose to install SQL 2000 Server Components. Then click Install
Analysis Services.

Click the Next button on the Welcome screen. This screen indicates that you should close all
other open applications and that Analysis Services is protected under copyright law. After
clicking Next, you are presented with a license agreement. If you agree with all of the verbiage
in text box, click Yes to continue and see the screen shown in Figure 31-3.

Figure 31-3: The Select Components setup screen
enables you to select the components
that you want installed with Analysis Services.

Check the appropriate boxes in Figure 31-3 to indicate the components you want installed. By
default, all the options are checked. Leaving all of the options checked is a good option
because the online help provides additional resources and the sample application is a good
place to start exploring Analysis Services. Through this screen you are also able to indicate

37549359 ch31.F 11/21/02 9:51 AM Page 812

813Chapter 31 ✦ Analysis Services

where you want the application installed and see how much disk space is available on the
destination disk.

Click Next and you will be prompted with a screen that enables you to indicate where you
want the data generated by Analysis Services to be stored.

By default, the setup application will install the data on the same physical disk as the appli-
cation. You may want to consider storing the data on a disk array that may provide better
fault tolerance and faster throughput, especially in a production environment. Doing this
early on in the process will only help further down the road.

For testing purposes store the data in the default location.

After deciding where you want the data stored, click the Next button. The Select Program
Folder setup screen enables you to indicate where in the Start menu you want the shortcut to
the applications included with Analysis Services to be located. By default, the setup program
places the applications in a folder underneath the Microsoft SQL Server program group.

Click the Next button to complete the installation. Once Analysis Services has been com-
pletely installed you should be able to click the Finish button.

After installing Analysis Services you are now ready to start processing cubes and interacting
with the Analysis Server. The next section discusses how you can start creating cubes within
Analysis Services based on the Cape Hatteras Adventures database.

It’s always good practice to keep SQL Server 2000 and Analysis Server at the current service
packs. The service packs for both of the products can be downloaded at http://www.
microsoft.com/sql. There is an issue when installing Analysis Services after installing a
SQL Server 2000 service pack; the Microsoft Data Access Components (MDAC) and Analysis
Server, for the most part, will stop functioning. To fix this problem you will need to reinstall
the service pack after installing the Analysis Server.

Creating and Browsing Cubes
The installation application for Analysis Services has made some substantial additions to
your system. For starters, it has added MSSQLServerOLAPService to the list of available ser-
vices located in the Control Panel Services applet.

This service is the core of Analysis Services and you interact with it via the Analysis Manager
snap-in discussed in the following section.

The Analysis Manager MMC Snap-in
Analysis Manager, included as the administration tool for Analysis Services, provides a single
interface for common tasks pertaining to data processing. Analysis Manager comes in the
form of an MMC snap-in just like Enterprise Manager included with Microsoft SQL Server
2000. If you are familiar with the Enterprise Manager snap-in, the Analysis Manager snap-in is
easy to adjust to. Figure 31-4 shows what the snap-in looks like.

Note

37549359 ch31.F 11/21/02 9:51 AM Page 813

814 Part V ✦ Advanced Issues

Figure 31-4: The Analysis Manager provides a unified interface with which to manage
Analysis Services.

Figure 31-4 shows each of the components associated with Analysis Services. The root of the
Analysis Manager tree is the Analysis Servers root node. From here you can add additional
Analysis Servers, but currently the local server is the only server administered from the
Manager. Within Analysis Manager, each of your applications is stored in a database. Figure
31-4 shows two databases: FoodMart 2000, the sample shipped with Analysis Services, and
Tour, the example used throughout the rest of this chapter.

If you select a database, such as Tour in Figure 31-4, you can select the Meta Data tab in the
details pane. This tab provides information about the Analysis Server database and about the
cube data stored within the database. The information includes which data source and cubes
are associated with the database, as well as when the cube was last processed and how much
space the cube and database are using.

The database contains data sources, cubes, shared dimensions, mining models, and database
roles, all discussed in the following sections.

Data Sources
Analysis Services will look to a data source associated with the database where Analysis
Services will draw its information. Usually, as discussed in the beginning of the chapter, the
data will be drawn from a data warehouse. The warehouse is usually loaded on a schedule
and then imported later into Analysis Services. In Figure 31-4, the data source is located on
the local server and has been named CHA2Warehouse. This data source happens to point to a
database stored within SQL Server. The data source can use either an OLE-DB provider or an
ODBC driver to connect to the data source. The steps involved in creating a data source are
detailed later in this chapter under the section titled “Creating your First Cube.”

37549359 ch31.F 11/21/02 9:51 AM Page 814

815Chapter 31 ✦ Analysis Services

Cubes
The cube in Analysis Services is where all of the pre-computed values are stored. In Figure
31-4, the cube has been named TourCustomers. The cube contains the dimensions and mea-
sures defined ahead of time. From within Analysis Manager you can process the cube based
on the dimensions and measures specified. The cube can then be queried for values;
response times should be very fast.

Shared Dimensions
The dimensions that you create in the database can be shared among other cubes within the
same database. This is convenient and saves you time because it means that it is not neces-
sary to recreate a common dimension for each cube that you create in the database. For
example, most cubes will incorporate time in some way. It would be tedious to recreate the
same dimension for each cube. All of the shared dimensions for the database appear under
Shared Dimensions folder. The topic of shared dimensions is further discussed later in the
chapter in the section, “Creating your First Cube.”

Mining Models
As if providing multidimensional analysis weren’t enough, Microsoft has also included a way
to do predictive analysis. Although not discussed in the book, mining models enable you to
perform predictive analysis based on data in the cube. A mining model looks at data in a cube
and, based on input from the user, attempts to make assumptions about what the system
sees.

Database Roles
Database roles are the means by which security is implemented in Analysis Services. The per-
missions associated with roles can be very granular. The permissions are based on a
Windows NT or 2000 account pulled from the Active Directory and can include individual
users or groups — a big benefit, especially if you have groups predefined in your organization.
You can grant them permission to specific cubes or even specific dimensions within the
database.

This section has discussed the interface provided in the Analysis Manager. The next section
will cover how you can create your own cube and test it to see what types of values you can
calculate.

Creating Your First Cube
As discussed in the previous section, in order to create a cube you need a database to hold
all the associated information. For this example you will be creating the Tour database within
the Analysis Manager. To get started you need to start up Analysis Manager by selecting it
from the Analysis Services menu located under the Microsoft SQL Server menu or in the loca-
tion that you indicated in the setup process.

Once the application is started you will need to create a database. You can do this by drilling
down on the tree presented in the left pane within the MMC. Click the plus sign next to
Analysis Services and then click the plus sign next to the Analysis Server running on your
local system. You should see the FoodMart 2000 database, which was installed as an example
database. For this example you’ll be creating a new database called Tour. To do this, right-
click the local server and select New Database, as shown in Figure 31-5.

37549359 ch31.F 11/21/02 9:51 AM Page 815

816 Part V ✦ Advanced Issues

Figure 31-5: The context menu used to create a new database from within Analysis
Manager

After selecting New Database you will be presented with a dialog named Database, which
asks you to enter a database name and a description. For this example, type in Tour as the
database name, and Tour Database for the Cape Hatteras Adventures Database as a descrip-
tion. Once you have the values entered, click OK to continue. Analysis Manager has now cre-
ated your Tour database and is ready to accept information for your first cube. By clicking on
the plus symbol next to the Tour database you can see the five default objects within the
database — the same five discussed in the previous section.

The next step would be to associate a data source with this database, but at this point there
is no data warehouse to be associated. To fix this problem you’ll need to have a basic under-
standing of schemas and then create your data warehouse within SQL Server.

Star and Snowflake Schemas
The two major schemas when dealing with OLAP are star and snowflake. As it turns out, the
snowflake schema is just a variation of the star schema but with one minor difference. In the
next section I will discuss the differences between each of them and provide some best prac-
tice information for schema layout.

Star Schema
A star schema contains a central fact table and the supporting dimension tables. The dimen-
sion tables describe the data within the central fact table. Dimension tables in a star schema
are not normalized. If the example of regions of a country were used, country, region, state,
and city would all be stored in a single table. As you might imagine, the state of California is
going to be repeated for every city within California. This method can become expensive

37549359 ch31.F 11/21/02 9:51 AM Page 816

817Chapter 31 ✦ Analysis Services

when it comes to disk space. When dealing with OLAP however, this is not such a bad sce-
nario. Figure 31-6 shows what this layout might look like.

Figure 31-6: The layout for a star schema contains
information combined into a single table.

In Figure 31-6 all of the information appears to be run together. This data is de-normalized
and contains repeating values. Currently Figure 31-6 shows only four cities in California. If all
of the cities in the United States were to be included the value of “US” would be included for
every one. The snowflake schema attempts to resolve this redundancy.

Snowflake Schema
The snowflake schema differs from the star schema in one major area; it relies more heavily on
relationships, much like a standard normalized database. In the previous example country,
region, state and city would have all been stored in the same table. Because of this there will be
duplication of data. To avoid this you could break the information out into individual tables,
just like a standard relational database. Figure 31-7 shows what this layout might look like.

Figure 31-7: The layout for a snowflake schema breaks the information into
multiple tables for more efficient storage.

The layout in Figure 31-7 includes just three tables. The Country Region table contains all of
the records needed to represent all four regions of the United States. The Region State table
would include a total of 50 records for the entire United States. Finally the State City table
would include all of the cities in the United States with its associated state. The State City
table will include quite a bit less data than the star schema because it does not include
repeating data. The tables would also include associated identity columns and would proba-
bly not repeat the actual values, but the identity values themselves.

Snowflake Schema Layout

Country Region

US North

US South

US East

US West

South

East

West

Region State

North IN

TX

NY

CA

State City

CA

CA

CA

CA

CA

Los Angeles

San Diego

Sacramento

Fresno

Ventura

Star Schema Layout

Country Region State City

US West CA Los Angeles

US West CA San Diego

US West CA Sacramento

US West CA Fresno

US West CA Ventura

37549359 ch31.F 11/21/02 9:51 AM Page 817

818 Part V ✦ Advanced Issues

In almost every case you will want to use the star schema. The star schema is easier to main-
tain and easier for Analysis Services to work with. The star schema has fewer links to navigate
which means it will perform faster than the snowflake schema. The only reason that star
schema may become a problem is if size becomes an issue. The amount of data that needs
to be stored when using a star schema is considerably greater than that of the snowflake
schema.

The rest of the chapter will concentrate on the star schema. In the next section you will actu-
ally create the data warehouse to store the data.

Creating the Data Warehouse
For the next example, the database named CHA2Warehouse will include a total of three
tables. The layout for the database is shown in Figure 31-8.

Figure 31-8: The layout of the data warehouse, which
the data source from within the Tour database will point to.

The script for creating the data warehouse in this chapter is on the CD and called
CHA2Warehouse.sql. This script will create the three tables from Figure 31-11. You can
also load data with scripts included on the CD. To load seven customers you can use the
Customer.sql script. You can add 4 events by running the Event.sql script. Finally, you
can load 15,000 events into the fact table by running the TourFactLoad.sql script. You
can run these scripts from within SQL Query Analyzer.

As indicated at the beginning of this chapter, the fact table for this database is TourFact.
Customer and Event are the dimension tables. The dimensions in the fact table are
CustomerID, EventID, and EventDate. The single measure in the fact table is the Cost. The
dimension tables provide additional information beyond the identity value. If you look at
Figure 31-9 of the OLTP database you can see, with some data scrubbing, how the data would
get from the OLTP database to the data warehouse.

The only piece of data that is missing from the database diagram in Figure 31-9 is the Cost.
This piece of data we fabricated for the purpose of the example, but it would be a relatively
easy piece of data to include in the layout of the OLTP database.

On the
CD-ROM

37549359 ch31.F 11/21/02 9:51 AM Page 818

819Chapter 31 ✦ Analysis Services

Figure 31-9: The layout for part of the Cape Hatteras Adventures OLTP
database.

To get the data from the OLTP database to the data warehouse, the FirstName and LastName
fields are merged into one and placed, along with the CustomerID, in the Customer dimen-
sion table. DTS would assist in migrating the data from the OLTP database, but in this exam-
ple the data is already merged where it needs to be. Next, the EventName is actually pulled
from the Tour table using the Name field. The EventID from the Event table in the OLTP
database is also added to the Event table in the warehouse. These two tables make up the
dimension tables in the data warehouse. The fact table is made up of both the EventID and
the CustomerID and also gets the EventDate from the Event table in the OLTP database.
Finally, the measure Cost could have been drawn from either the Tour or the Event table.

In a production environment DTS and SQL Server Agent working together could automate
this process of data migration each night. This process would provide new data each day by
using an additional field to keep track of when data was inserted. For the purposes of this
example you can run the sample script, which will add 15,000 records to the table for pro-
cessing in the cube.

Now that the data warehouse has been created, you can set the data source property in the
Analysis Server database.

Creating the Data Source
Microsoft has incorporated the Data Link Properties dialog into the Analysis Management
MMC for configuring your data sources. This dialog box is shown in Figure 31-10.

The first tab in the dialog, called Provider, just requires that you select the appropriate OLE-
DB Provider for the data source where your warehouse is located. You are not limited to only
OLE-DB providers, because Microsoft supplies the OLE-DB provider for ODBC drivers. Using
the OLE-DB provider for ODBC drivers, however, is a little slower than just using the native
OLE-DB Provider, but sometimes a provider does not exist for your data source. For this
example choose the Microsoft OLE-DB Provider for SQL Server. On the Connection tab, set

37549359 ch31.F 11/21/02 9:51 AM Page 819

820 Part V ✦ Advanced Issues

the server name of your SQL Server, a user name, and a password (if you are not using
Integrated Security). Also, indicate that you want to connect to the CHA2WareHouse database.
If you are using SQL Server logins, you will probably want to check the “Allow saving pass-
word” option. (If you don’t do this you won’t be able to connect to the warehouse later in the
example.) You will be prompted about storing an unencrypted password in the Analysis
Services repository. After these values have been set, click OK to continue.

Now that the data source for the Tour database is set up, you can continue creating the cube
based on the data warehouse you have created.

Figure 31-10: The Data Link Properties dialog
box with which to configure the data source
within the Analysis Services database.

Creating the Cube and Shared Dimensions
This section shows you how to create a cube and the dimension inside the cube. Both are
included in this section because Analysis Manager provides wizards to create both the cube
and the dimensions.

To start the process you will need to right-click the Cubes folder within Analysis Manager
under the Tour database and select New Cube ➪ Wizard. Microsoft also provides a manual
cube editor, but the wizard will provide sufficient options for the purpose of this example.

The first screen of the wizard can be disregarded (you can even select the “Skip this screen in
the future” option if you don’t want to see it again). After clicking the Next button on the
opening screen you will see the dialog box shown in Figure 31-11.

Analysis Manager has used the information from the data source to show the tables available
in the warehouse. At this point the wizard wants to know which of the tables is the fact table.
The fact table is the one titled TourFact. After you select TourFact the wizard displays all
the fields within that table in the Details column on the right-hand side of the screen. At this
point you can also browse the data within the table by clicking the Browse Data button. If you
loaded the data using the scripts from earlier in the chapter, the Browse Data button will dis-
play the first 1,000 records. Click Next to continue.

37549359 ch31.F 11/21/02 9:51 AM Page 820

821Chapter 31 ✦ Analysis Services

Figure 31-11: The first screen for setting up the cube for the
Tour database under Analysis Manager.

Next, the wizard will want to know which of the fields from the fact table are the numeric
measures. Note that the wizard only displays CustomerID, EventID, and Cost. The wizard
knows that EventDate is a datetime data type and that it will be used later in the wizard. For
this example use the Cost field as the numeric measure. Add it to the Cube Measure list box
by clicking the > button. After the measure has been added the Cube Wizard should look like
what is shown in Figure 31-12.

Figure 31-12: The Cube Wizard displays the measures that
you have selected for the cube from the fact table.

37549359 ch31.F 11/21/02 9:51 AM Page 821

822 Part V ✦ Advanced Issues

After you click the Next button the Cube Wizard will want to create the dimensions for the
cube. Currently there are no shared dimensions within the database so you’ll need to create
them by clicking the New Dimension button. Doing this brings up the Dimension Wizard. You
can ignore the first screen and click the Next button. The wizard now wants to know how to
create your dimension. Several options are available, including star shema, snowflake
schema, parent-child, virtual model, and mining model. The simplest of the group is star
schema, which you can select for this example. Click Next.

The wizard will now ask you which table is the dimension table for the dimension you are cre-
ating. Again the wizard is looking at your data source for the list of potential tables to draw
from. In this step you can select the Customer dimension table, as shown in Figure 31-13.

Figure 31-13: The Dimension Wizard wants to know which
of the tables is a dimension table.

You are also able to view the data for the dimension table by clicking the Browse Data button.
The wizard now wants to know about the dimensions within the dimension table. For this
example there is only one dimension, CustomerName. In other scenarios you can add addi-
tional levels. Doing this would be especially useful if your levels broke down into, for exam-
ple, region, state, and city, which would enable you to drill down and sort information based
on any one of the three groups. If you eventually do add additional levels, you need to sort
them from the most broad to the most granular: region, state, and city. Click Next.

The wizard will want to know which of the columns in the dimension table is the key
column. You can use the dropdown menu to change the value from “dbo”.”Customer”.
”CustomerName” to “dbo”.”Customer”.”CustomerID”. Click Next two more times to skip
the advanced options, and you should be ready to name the shared dimension (Figure 31-14).

The dialog box shown in Figure 31-14 enables you to browse the values of the new dimension
and also to name the dimension. You can name the dimension Customer. The final step also
enables you to share the dimension with other cubes within the database. (This option is
selected by default and, as mentioned before, is a good option to have.) After you click Finish
the dimension will be stored in the Shared Dimension folder in the Analysis Manger tree. Once
you click Finish you are dropped back into the Cube Wizard. You can now add the Event
dimension on your own, following the steps that you went through to create the Customer
dimension. Use the EventName as the only level for the dimension and use

37549359 ch31.F 11/21/02 9:51 AM Page 822

823Chapter 31 ✦ Analysis Services

“dbo”.”Event”.”EventID” as the member-key column. Finally, name the dimension Event in
the last step of the wizard. After you click Finish you are placed back in the Cube Wizard again.

Figure 31-14: The final screen in the Dimension Wizard,
in which it requests the name of the new dimension and
displays the data from the newly created dimension.

This takes care of the two standard dimensions in the cube, but now you need to create a
special dimension for time. Analysis Services provides special features for time, which makes
it easy for you to break the levels down into years, quarters, months, days, and so forth. To
add the Time dimension to the cube, click the New Dimension button, which will bring up the
Dimension Wizard again. Skip the first screen and indicate that you want to create another
star schema. Click Next and this time select the TourFact table as the dimension table. After
you have selected the table the wizard will show the fields contained in the table and enable
you to browse the data if you want. Once you click Next you will see a dialog that is a little dif-
ferent from the dialog used to create the previous two dimensions. Figure 31-15 shows that
the wizard presents you with a different option.

After you select the Time dimension option, the only value you can select from the dropdown
is EventDate. Click Next to continue. The next dialog box in the Dimension Wizard will enable
you to specify how granular you want the data. The default selection is year, quarter, month,
day, which is fine for this example. (You can experiment with different values if you wish.) This
screen also enables you to decide when the year begins and provides an example of the
dimension structure based on the type of level you have selected. Click Next twice to move
beyond the advanced options onto the dialog that enables you to save your new dimension.
Name your new dimension EventTime and click Finish. Once again you will be dropped back
into the Cube Wizard; you have now defined all three of the dimensions for your new cube.

Click Next and you should be prompted with the Fact Table Row Count message box. This
message box is indicating that the system will now count the rows in the fact table and that
this might take some time. Click Yes and let it count them (it should not take very long). This is
the last step in specifying the information that Analysis Services will need to create your cube.
After the rows in the fact table have been counted you will see the last dialog of the Cube
Wizard, which will ask you to name your cube and will display a summary of the data that you
have provided in the Cube Wizard process. Name the cube CustomerEvents and click Finish.

37549359 ch31.F 11/21/02 9:51 AM Page 823

824 Part V ✦ Advanced Issues

Figure 31-15: The Dimension Wizard now enables you to
select a Time dimension because the dimension table has
a data type of datetime.

This process has provided enough information for a cube to be built. The cube has not actu-
ally been processed, and you still have not indicated what type of storage you want to use.
The wizard has now left you in the Cube Editor within the Analysis Manager. The Cube Editor
is shown in Figure 31-16.

Figure 31-16: The Cube Editor provides an interface built by the
values that you specify through the Cube Wizard. You can manually
create cubes using the Cube Editor.

37549359 ch31.F 11/21/02 9:51 AM Page 824

825Chapter 31 ✦ Analysis Services

From here you can save the cube data by clicking the floppy-disk icon in the toolbar. Exit the
Cube Editor by selecting Exit from the File menu. While trying to exit you will be prompted to
design storage for the cube, which you must do before it can be queried. You can disregard
this prompt by clicking No, and design storage from within the Analysis Manager.

After clicking the No button you will be dropped back into Analysis Manager with the new
CustomerEvents cube. To use the cube you need to design the storage for it just as the Cube
Editor was encouraging you to do when you exited the application. As you might expect, stor-
age of the cube data plays an important part in the performance of the cube. The different
types of storage and the process of setting the storage for your cube are discussed in the
next section.

Cube Storage
Three types of storage for your cube are available with Analysis Services: multidimensional
OLAP, relational OLAP, and hybrid OLAP. The list below discusses the benefits and drawbacks
of each of the storage types.

✦ Multidimensional OLAP (MOLAP) — Usually the best fit for most situations. The data is
stored in the OLAP multidimensional database. This option provides good performance
when compared to the other two storage options but does require more storage space.

✦ Relational OLAP (ROLAP) — The data is stored outside the OLAP database. This may
degrade performance if the data is stored in the OLTP system for users interacting with
the system while other users are running reports.

✦ Hybrid OLAP (HOLAP) — A combination of both MOLAP and ROLAP. The data is stored
in the relational database, but the aggregations for the cubes are stored within the
OLAP database.

In most cases it is best to use MOLAP for storage structure as long as disk space does not
become a constraint.

To set the storage for the cube that you have created just right-click the CustomerEvents
cube from within Analysis Manager and select Design Storage from the context menu. This
will bring up the Storage Design Wizard. You can disregard the first dialog in the wizard by
clicking Next. The Storage Design Wizard will now show you a simple screen, which will
enable you to choose which storage type you want. For this example select MOLAP, the first
option.

After you click Next, the wizard will ask how you want the aggregations calculated. You have
three options here: One based on disk space available, one based on performance gains, and
one for just stopping the process once you feel it has completed enough. For this example not
many aggregations need to be calculated, so you can just leave the default selected. Click
Start. The process should not take much time at all, possibly less than a second. Figure 31-17
shows the result of processing the aggregations.

Click Next and the wizard will enable you to process the cube. Select Process and click Finish.
The Process dialog shown in Figure 31-18 shows the interaction between Analysis Services
and the data warehouse.

After the cube has been processed, click Close. Your cube is finally ready to be queried.

37549359 ch31.F 11/21/02 9:51 AM Page 825

826 Part V ✦ Advanced Issues

Figure 31-17: The aggregations are calculated and provide
different storage and performance options.

Figure 31-18: After the cube has been processed, this dialog
enables you to double-click any of the events in order to pull up
additional details.

Querying the Cube from Analysis Manager
Analysis Manager provides a simple interface for retrieving information from the cubes that
you have created. You can open the Cube Browser by right-clicking the cube you want to
browse and selecting Browse Data from the context menu. The Cube Browser will enable you
to see what is stored within the cube and what type of aggregations are able to be computed.
Figure 31-19 shows what the Cube Browser sees when looking at the cube created earlier in
the chapter.

37549359 ch31.F 11/21/02 9:51 AM Page 826

827Chapter 31 ✦ Analysis Services

Figure 31-19: The Cube Browser presents different
scenarios for you to work with.

The Cube Browser can render the data in several different ways. In Figure 31-19, the upper
portion of the window where both Event and EventTime are located is referred to as the
data-slicing pane. The grid in the lower half of the window where the customers are currently
located is referred to as the data-viewing pane. Within the Cube Browser you can move the
data items around. The default layout is good if you want to know about each of the cus-
tomers. If your goal is to find out more about the different quarters or months of the year, you
can drag the EventTime dimension down to the data-viewing pane and move the Customers
dimension up to the data-slicing pane. This type of interface is shown in Figure 31-20.

Figure 31-20: If you want to view the data based on time,
use this interface.

37549359 ch31.F 11/21/02 9:51 AM Page 827

828 Part V ✦ Advanced Issues

You can now drill down on individual years, quarters, months, and even days. You can also
try selecting different dimensions from the data-slicing pane. If you select a different cus-
tomer the data-viewing pane only shows data that pertains to that customer. Additionally,
you can select a single event that the customer attended to see how much was spent at differ-
ent times in the year.

If you want to you can also drag the remaining dimensions from the data-slicing pane down to
the data-viewing pane. The Cube Browser breaks the data down into tiers. Based on some of
the numbers from the Cube Browser, it looks as if Cape Hatteras Adventures is doing very
well with just a few customers and a limited number of events.

While the Cube Browser is a powerful tool, most users are not going to have access to it. The
next section covers the topic of accessing cubes from Microsoft Excel.

Using Cubes from Microsoft Excel
Microsoft Excel is a perfect match for OLAP cubes. There is a great deal of similarity between
the Cube Browser within Analysis Manager and an Excel spreadsheet. In this section you’ll
see how Microsoft Excel can interact with the Tour cube created earlier in the chapter.

Once you have the data connected to the Excel PivotTable, the interface is similar to that of
the Cube Browser. To get started you will need to start Microsoft Excel and select Data ➪
PivotTable and PivotChart. This will launch the PivotChart and PivotTable Wizard shown in
Figure 31-21.

Figure 31-21: Microsoft Excel provides an interface for
linking to OLAP cubes for data viewing.

In Figure 31-21, the default option is to use a Microsoft Excel list or database. Change this
option so that Excel uses the External data source, and click Next. The wizard will ask you to
specify where you will be drawing the data for the pivot table. Click the Get Data button to
open the Choose Data Source dialog. Continue by clicking the OLAP Cube tab. This will show
all the available data sources for OLAP cubes on your system. If <New Data Source> is
selected, click OK to create a new data source. Fill out the information for the Create New
Data Source dialog, as shown in Figure 31-22.

37549359 ch31.F 11/21/02 9:51 AM Page 828

829Chapter 31 ✦ Analysis Services

Figure 31-22: Excel will get its information
for the PivotTable from this dialog.

For the first field shown in Figure 31-22 you just need to enter a data source name. In the sec-
ond field you need to specify the appropriate provider for the database you are retrieving
data from. For this example, you should choose the Microsoft OLE DB Provider for OLAP
Services. After clicking Connect, indicate on the Multi-Dimensional Connection screen that
you will be connecting to an OLAP server, and then specify the server name. For this exam-
ple, use the localhost server, the one that runs on your local system. After clicking the Next
button, specify which database under Analysis Services you want to work with. Select the
Tour database — the one that was created earlier in the chapter — and then click Finish.

After you have indicated where the data is, select the cube you want Excel to use. Do this by
checking the combo box shown in Figure 31-22. You can select CustomerEvents from the
dropdown box. Click OK once to close the Create New Data Source dialog and then click it
again once TourDataSource is selected. You have now entered enough information for the
PivotTable to be created. After returning to the PivotTable and PivotChart Wizard, click Next
and use the default location of =A3 to insert the PivotTable. After clicking Finish, the
PivotTable will be inserted and the PivotTable toolbar available for you to use.

Measures will go into the section labeled “Drop Data Items Here,” which is similar to the data-
viewing pane in the Cube Browser. You can drag the Cost measure from the PivotTable tool-
bar to the Data Item area within the PivotTable. Next, you can drag different dimensions to
different locations within the PivotTable. You can drag dimensions to either the space labeled
“Drop Row Fields Here” or the space labeled “Drop Column Fields Here.” Figure 31-23 shows a
completed PivotTable similar to the one that was created earlier with the Cube Browser from
Analysis Manager.

The previous example showed the true power of Analysis Services. Not only can you create
cubes from within Analysis Manager, but the cubes can then be used by common client appli-
cations like Microsoft Excel. Without Analysis Services a lot of development time would be
required to create the basic functionality that Analysis Services provides out of the box.
Analysis Services provides both the speed and flexibility required for OLAP.

37549359 ch31.F 11/21/02 9:51 AM Page 829

830 Part V ✦ Advanced Issues

Figure 31-23: Microsoft Excel provides an attractive
interface with which the end user can look at information
within an OLAP cube.

Summary
This chapter has covered the basics of Analysis Services. You have learned what dimensions,
measures, and cubes are, and how Analysis Services uses them. You have learned how to cre-
ate a cube based on fact and dimension tables and how to browse the cubes using the Cube
Browser included with Analysis Manager. Finally, you stepped beyond the Cube Browser and
used Microsoft Excel to interact with the cube you created using a PivotTable.

✦ ✦ ✦

37549359 ch31.F 11/21/02 9:51 AM Page 830

Advanced
Portability

T-SQL is a superset of ANSI SQL-92, and it makes a few significant
deviations from the ANSI standard. For the most part, these

changes make coding easier, although a few minutes saved now may
cost hours a few years later as the code is slowly scrubbed of opera-
tors that do not comply with ANSI SQL.

I haven’t always paid attention to portability.

A while back, someone in the SQLBeginner Yahoo Group asked a
question about updating rows based on values in another table using
SQL Server. I sent back a quick reply with the update table set
columns from tables syntax. A frequenter of the group then sent a
private message to me stressing the need for code portability. His
point was that the cost of database maintenance and porting
databases to future platforms, and not the cost of the initial develop-
ment, is the largest cost of a database.

I’ve come to agree with notion; I’ve seen organizations that seemed
dead set on a strategy make 180-degree turns without warning.

Even if all indications are that the current database will stay in
Microsoft SQL Server for the next 15 years, you can never know for
sure. By developing code that’s as portable as possible, and clearly
commenting code that isn’t portable, you’re serving your organiza-
tion well and doing another database developer a favor.

But there’s more to the portability problem than just declaring a
moratorium on non-portable code. Portability sometimes comes at
the cost of proprietary optimizations and enhancements. Microsoft’s
non-ANSI SQL extensions add significant performance enhancements,
add functionality, and make complex programming easier. The ques-
tion on whether to use non-portable extensions as opposed to
straight ANSI SQL pits today’s deadline and specifications against
tomorrow’s conversion project.

Detecting Non-ANSI Standard Code
The FIPS flagger is a feature in most databases that warns of code
that does not meet the Federal Information Processing Standard
127-2, as defined by the National Institute of Standards and
Technology and based on ANSI SQL-92 and ISO/IEC SQL-92.

3232C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Locating any non-
portable code

Avoiding proprietary
code

✦ ✦ ✦ ✦

38549359 ch32.F 11/21/02 9:51 AM Page 831

832 Part V ✦ Advanced Issues

By default, SQL Server’s FIPS flagger is off. If you wish to see the warnings as the code is
parsed, set the following connection setting:

SET FIPS_FLAGGER ‘Entry’

The FIPS flagger accepts four levels of SQL-92 compliance; off, entry, intermediate, and
full.

Developing Portable Code
Of the non-portable SQL extensions, some are easy to avoid or rewrite later while others
would require a major overhaul during the conversion project. Correcting non-portable code
can be frustrating because non-portable code tends to have a ripple effect within the
database. To that point, a non-portable extension that calculates critical figures in your
database could be replaced with code that actually conforms to ANSI standards. In doing so,
the output of the modified ANSI compliant code may yield results slightly different and need a
larger column in the database, for example. You are then forced to update all tables where
these results are stored. This kind of operation can have a negative impact on a DBMS that
needs to operate around the clock.

When writing SQL it may prove useful to fully investigate all extensions to determine their
portability. If certain non-portable extensions are used throughout your code, it will give you
some idea of just how much effort will be involved should the need arise to rewrite every-
thing to conform to ANSI standards.

While it’s impossible to develop a 100 percent portable database, some proprietary com-
mands and techniques are best avoided.

The update...from Command
The update command, by definition, updates a single table. If the criterion to select the cor-
rect rows requires an additional table, SQL Server includes the optional, non-ANSI standard,
from clause:

UPDATE Table
SET Col = Expression
FROM table
JOIN table ...

An ANSI-standard version of the same code uses a subquery to locate the correct rows for
updating:

UPDATE Table
Set Col = Expression
WHERE Col IN
(SELECT Col FROM OtherTable WHERE Col = x)

The delete...from Command
Much like the update...from syntax, the syntax of the delete... from command also uses
an extra from clause to specify additional tables used for the where clause:

DELETE FROM Table
From

38549359 ch32.F 11/21/02 9:51 AM Page 832

833Chapter 32 ✦ Advanced Portability

As with the update...from command, the ANSI-standard method uses a subquery:

DELETE FROM Table
WHERE col1 IN
(SELECT col1 FROM OtherTable WHERE Col = x)

The top Command
The top command returns a limited number of rows from a select statement. While it’s use-
ful, top is specific to Microsoft SQL Server and Access:

SELECT TOP 10 WITH TIES ProductName
FROM Product
ORDER BY Name

The ANSI equivalent of using top is actually non-existent and thus a prime example of code
that will require a rewrite should you move it to a different database. As you can see in the
following table, returning a predetermined number of rows varies among databases.

Table 32-1: Methods of Limiting the Number of
Returned Rows Vary Widely among Various Databases

Database SQL Syntax

DB2 select * from table fetch first 10 rows only

Informix select first 10 * from table

Microsoft SQL Server and Access select top 10 * from table

MySQL and PostgreSQL select * from table limit 10

Oracle select * from (select * from table) where rownum <= 10

User-Defined Functions
When I first got into SQL Server 2000, I was excited about user-defined functions. They com-
bine the benefits of stored procedures with the flexible usage of views. However, user-defined
functions are doubly non-portable:

✦ The user-defined functions themselves must be rewritten. Inline user-defined table-val-
ued functions can be rewritten as views. Multi-line table-valued functions can be rewrit-
ten as stored procedures. Scalar user-defined functions have no equivalent component.

✦ User-defined functions can supply data to a SQL statement within the from clause,
meaning that every SQL statement that references the user-defined function will have
to be overhauled.

Partition Views
SQL Server’s local- and distributed-partition views add significant scalability. While they are
not portable, partition views are easily converted to single tables.

38549359 ch32.F 11/21/02 9:51 AM Page 833

834 Part V ✦ Advanced Issues

The set Command
The set command is used to adjust connection-specific properties. Every use of the set com-
mand, or any other database- or server-configuration command, is Microsoft-specific and will
require redevelopment in a ported environment.

Logic Programming Flow
T-SQL’s programmatic flow-of-control statements, such as if and while, will need to be rede-
veloped in the language of the new database product. By definition, therefore, most stored
procedures and triggers will require modification. However, most programmatic extensions
are straightforward and completely unavoidable.

System Tables
Any reference to SQL Server’s system table won’t port to another database product, and
there’s no guarantee that the reference will work in the next version of SQL Server. The safest
development plan is to reference the ANSI-standard information-schema views.

Instead of Triggers on Non-Updateable Views
SQL Server 2000’s instead of triggers can be created on views, which converts a normally
non-updateable view into a view that is programmatically updateable. The instead of trig-
ger isn’t portable, so any code that depends on the view being updateable will have to be
redeveloped.

View with order by
ANSI SQL views do not include an order by clause; however, Microsoft SQL Server will allow
an order by clause if the view also includes a top 100 percent predicate.

The order by clause is non-portable, and any SQL DML statements that call the view will
require modification.

Summary
Developing portable code takes more effort than using the SQL Server T-SQL extensions. A
few update and delete statements will require a subquery in lieu of a from clause. But in the
long term, valuing code portability saves money and extends respect to future developers.

✦ ✦ ✦

38549359 ch32.F 11/21/02 9:51 AM Page 834

Resources

The following is a collection of resources I have found useful as a
SQL Server developer and DBA.

Books
✦ Celko, Joe, SQL for Smarties, Advanced SQL Programming. This

is the guidebook for using SQL.

✦ Date, Chris J., A Introduction to Database Systems, 7th Edition.
The standard reference work for all things database.

✦ Delaney, Kalen, Inside SQL Server 2000. The best source for
details and insight into the database engine.

✦ Henderson, Ken, The Guru’s Guide to Transact-SQL. Incredible
details. One of the best T-SQL books available, but it’s for SQL 7.

✦ McCarthy, Jim, Dynamics of Software Development. Fifty-three
rules for delivering great software on time. Written in story
format.

Publications
✦ Server Magazine

http://www.SQLMag.com

✦ SQL Server Professional Newsletter

http://www.pinpub.com/sq

Web Pages
✦ The author’s Web site:

http://www.IsNotNull.com

✦ SQL Server and Oracle feature comparison:

http://www.bristle.com/Tips/SQL.htm

✦ MaraTrane Solutions SQL Server Links:

http://www.MaraTrane.com/SQLServerLinks.asp

AAA P P E N D I X

✦ ✦ ✦ ✦

In This Appendix

SQL books and
publications

On-line resources

Third-party products

SQL organizations

✦ ✦ ✦ ✦

549359 AppA.F 11/21/02 9:51 AM Page 835

836 Appendixes

✦ SQL Server Performance:

http://www.sql-server-performance.com/

✦ SQL Beginners and SQL Server Yahoo Groups (Search for SQL Server):

http://groups.yahoo.com/

✦ SQL Server Central:

http://www.sqlservercentral.com/

✦ Database Journal:

http://www.databasejournal.com/

✦ SQL DTS–devoted Web site:

http://www.sqldts.com/

✦ SQLDTS.com — Data Transformation Services on the Web:

http://www.sqldts.com/

✦ Planet Source Code’s SQL page:

http://www.planetsourcecode.com/xq/ASP/lngWId.5/qx/vb/default.htm

✦ XML info:

http://www.w3.org
msdn.microsoft.com/xml

✦ XML DTD tools:

http://www.tibco.com

Third-Party Products
✦ Log Explorer by Lumigent Technologies

http://www.lumigent.com

✦ Total SQL Analyzer by FMS

http://www.fmsinc.com/products/sqlanalyzer/index.html

Organizations
✦ Professional Association for SQL Server

http://www.sqlpass.org

✦ ✦ ✦

549359 AppA.F 11/21/02 9:51 AM Page 836

Sample Databases

This book draws examples from the following five sample
databases, each designed to illustrate a particular design concept

or development style:

✦ Cape Hatteras Adventures is actually two sample databases that
together demonstrate upsizing to a relational SQL Server
database. Version 1 consists of a simple Access database and
an Excel spreadsheet — neither of which is very sophisticated.
Version 2 is a typical small- to mid-sized SQL Server database
employing identity columns and views. It uses an Access pro-
ject as a front end and publishes data to the Web using the SQL
Server Web Publishing Wizard and stored procedures.

✦ The OBXKites database tracks inventory, customers, and sales
for a fictitious kite retailer with four stores in North Carolina’s
Outer Banks. This database is designed for robust scalability. It
employs GUIDs for replicationand Unicode for international
sales. In various chapters in the book, partitioned views, full
auditing features, and Analysis Services cubes are added to the
OBXKites database.

✦ The Family database stores family tree history. While the
database has only two tables, person and marriage, it sports
the complexities of a many-to-many self-join and extraction of
hierarchical data.

✦ Twenty-five of Aesop’s Fables provide the text for Chapter 8,
“Searching Full-Text Indexes.”

✦ The Material Specification database demonstrates a
dynamic/relational database design and stores an unlimted
number of properties for materials organized by type.

This Appendix documents required files (Table B-1) and the database
schemas for the sample databases.

The Sample Database Files
The sample files should be installed into the C:\SQLServerBible
directory. The SQL Server sample Web applications are coded to look
for template files in a certain directory structure. The DTS packages
and distributed queries also assume that the Access and Excel files
are in that directory.

BBA P P E N D I X

✦ ✦ ✦ ✦

In This Appendix

The filelist, background,
requirements, diagrams,
and descriptions for the
five sample databases.

✦ ✦ ✦ ✦

549359 AppB.F 11/21/02 9:52 AM Page 837

838 Appendixes

Table B-1: Sample Database Files

Cape Hatteras Adventures Version 2

C:\SQLServerBible\Sample Databases\CapeHatterasAdventures

CHA2_Create.sql Script that generates the database for Cape Hatteras Adventures
Version 2, including tables, constraints, indexes, views, stored
procedures, and user security.

CHA_Convert.sql Distributed queries that convert data from Access and Excel into
the Cape Hatteras Adventures Version 2 database. This script
mirrors the DTS package and assumes that the Access and Excel
source files are in the C:\SQLServerBible directory.

CHA_Conversion.dts DTS package that converts data from Access and Excel into the
Cape Hatteras Adventures Version 2 database. For more
information about how the DTS package works, refer to Chapter
19, “Migrating Data with DTS.”

CHA1_Customers.mdb Access database of customer list, used prior to SQL Server
conversion. Data is imported from this file into the CHA1 SQL
Server database.

CHA1_Schdule.xls Excel spreadsheet of events, tours, and guides, used prior to SQL
Server conversion. Data is imported from this file into the CHA1
SQL Server database.

CHA2_Events.xml Sample XML file.

CHA2_Events.dtd Sample XML Data Type Definition file.

CHA2.adp Sample Access front end to the CHA2 database.

OBX Kites

C:\SQLServerBible\Sample Databases\OBXKites

OBXKites_Create.sql Script that generates the database for the OBXKites database,
including tables, views, stored procedures, and functions.

OBXKites_Populate.sql Script that populates the database for the OBXKites database
with sample data by calling the stored procedures.

OBXKites_Query.sql A series of sample test queries with which to test the population of
the OBXKites database.

The Family

C:\SQLServerBible\Sample Databases\Family

Family_Create.sql Script that creates the Family database tables and stored
procedures, and populates the database with sample data.

Family_Queries.sql A set of sample queries against the Family database.

549359 AppB.F 11/21/02 9:52 AM Page 838

839Appendix B ✦ Sample Databases

Aesop’s Fables

C:\SQLServerBible\Sample Databases\Aesop

Aesop_Create.sql Script that creates the Aesop database and Fable table and
populates the database with 25 of Aesop’s fables. This sample
database is used with full-text search.

Aesop.adp Access front end for browsing the fables.

Material Specifications

C:\SQLServerBible\Sample Databases\MaterialSpec

MS_Create.sql Script to create the Material Specification database.

MS_Populate.sql Script to populate the Material Specification database with sample
data from a computer-clone store.

To create one of the sample databases, run the create script within Query Analyzer. The
script will drop the database if it exists. These scripts make it easy to rebuild the database, so
if you want to experiment, go ahead. Because the script drops the database, no connections to
the database can exist when the script is run. Enterprise Manager will often keep the connec-
tion even if another database is selected. If you encounter an error, chances are that
Enterprise Manager, or a second connection in Query Analyzer, is holding an open connection.

Cape Hatteras Adventures Version 2
The fictitious Cape Hatteras Adventures (CHA) is named for the Cape Hatteras lighthouse in
North Carolina, one of the most famous lighthouses and life-saving companies in America.
Cape Hatteras is the easternmost point of North Carolina’s Outer Banks, known for incredible
empty beaches and the graveyard of the Atlantic.

Cape Hatteras Adventures leads wild and sometimes exotic adventures for the rich and
famous. From excursions down the gnarly Gauley River in West Virginia to diving for sunken
treasure off the Outer Banks to chopping through the Amazon jungle, Cape Hatteras
Adventures gets its guests there and brings them back, often alive and well.

The staff and management of CHA are outdoors folks and their inclination to avoid the indoors
shows in the effort that’s been put into IT. The customer/prospect list is maintained in Access
2000 in a single-table database. It’s used primarily for mailings. The real workhorse is an Excel
spreadsheet that tracks events, tours, and tour guides in a single flat-file format. In the same
page, a second list tracks customers for each event. Although the spreadsheet is not a proper
normalized database, it does contain the necessary information to run the business.

QuickBooks handles all financial and billing activities and both the company president and
the bookkeeper are very satisfied with that setup. They foresee no need to improve the finan-
cial or billing software.

549359 AppB.F 11/21/02 9:52 AM Page 839

840 Appendixes

Application Requirements
CHA has grown to the point that it realizes the need for a better scheduling application; how-
ever, it desires to “keep the tough work in the rapids and not in the computer.” CHA has con-
tracted for the development and maintenance of the database.

All scheduling and booking of tours takes place at the main office in Cape Hatteras, North
Carolina. CHA launches tours from multiple sites, or base camps, throughout the world. The
base camps generally have no computer access and sometimes no electricity. A guide or
guides are dispatched to the base camp with a printed guest list. If it’s determined in the
future that a base camp may need to be staffed and to have access to the schedule on line, a
Web page will be developed at that time.

Each base camp may be responsible for multiple tours. A tour is a prearranged, repeatable
experience. Each time the tour is offered, it’s referred to as an event. An event will have one
lead guide, who is responsible for the safety and enjoyment of the guests. Other guides may
also come along as needed.

As CHA brings on more guides with broader skills, the database must track the guides and
the tours each is qualified to lead.

Database Design
The database design uses typical one-to-many relationships between customer type and cus-
tomer, and from guide to base camp to tour to event. Many-to-many relationships exist
between customer and event, guide and tour, and guide and event, as shown in Figure B-1.

Figure B-1: The Cape Hatteras Adventures database schema

549359 AppB.F 11/21/02 9:52 AM Page 840

841Appendix B ✦ Sample Databases

Concerning the development style, there is at the moment no need for multiple database
sites, so identity columns will be used for simplicity of design. The primary access means
that access to the data is through views and direct select statements.

Data Conversion
The CHA2_Create.sql script creates an empty database. The data resides in the Access and
Excel spreadsheets. Both the CHA_Conversion DTS package and the CHA_Convert.sql
script can extract the data from Access and Excel and load it into SQL Server.

CHA2.adp Front End
Because the Cape Hatteras Adventures staff is comfortable with Access forms and does not
require the robustness of a full Visual Basic or .Net application, a simple front end has been
developed using Access .adp project technology.

OBX Kites
OBX Kites is a high-quality kite retailer serving kite enthusiasts and vacationers around the
Outer Banks, where the winds are so steady the Wright brothers chose the area (Kill Devil
Hills) for their historic glider flights and their first powered flights. OBX Kites operates a main
store/warehouse and four remote retail locations, and is planning to launch an e-commerce
Web site.

Application Requirements
OBX Kites needs a solid and useful order/inventory/PO system with a middle-of-the-road set
of features. For simplicity, all contacts are merged into a single table and the contact type is
signified by flags. A contact can be a customer, employee, or vendor. Customers have a
lookup for customer type, which is referenced in determining the discount. Full details are
maintained on customers, with a summer location and the home location. The product/inven-
tory system must handle multiple suppliers per product, price history, multiple inventory
items per product, multiple locations, and inventory transactions to track the inventory
movement.

Database Design
The database design uses standard one-to-many relationships throughout.

The database construction must support replication and Unicode for international cus-
tomers. For performance and flexibility, the database implements with two filegroups — one
for heavy transactions and the other for static read-mostly data.

The database design (Figure B-2) is a standard inventory, order-processing database.

549359 AppB.F 11/21/02 9:52 AM Page 841

842 Appendixes

Figure B-2: The OBXKites sample database schema, as shown in Enterprise Manager’s
Database Diagrammer

The Family
This small database demonstrates multiple hierarchical reflexive relationships for interesting
queries and both cursors and queries to navigate the genealogical hierarchy.

Application Requirements
The family database must store every person in the family, along with genealogical informa-
tion, including both biological and marital relationships. The database is populated with five
generations of a fictitious family for query purposes.

Database Design
The Family database consists of two tables and three relationships, as configured in the
Database Designer in Figure B-3. Each person has an optional reflexive MotherID and
FatherID foreign key back to the PersonID. The marriage table has a foreign key to the
PersonID for the husband and the wife. The primary keys are integer columns for simplicity.

549359 AppB.F 11/21/02 9:52 AM Page 842

843Appendix B ✦ Sample Databases

Figure B-3: The Family sample database schema as shown in Enterprise Manager’s
Database Diagrammer

Aesop’s Fables
Aesop’s collection of fables is an excellent test bed for string searches and full-text search.
The fables are relatively short and familiar, and they’re in the public domain.

Application Requirements
The primary purpose of this database is to enable you to experience SQL Server’s full-text
search. Therefore the database must include a few character columns, a BLOB or image col-
umn, and a BLOB-type column.

Database Design
The database design is very simple — a single table with one fable per row.

Material Specifications
The Material Specifications database is an example of a data-driven dynamic relational
database design.

549359 AppB.F 11/21/02 9:52 AM Page 843

844 Appendixes

Application Requirements
The goal of the material-specification system is to identify any number of material properties
for any number of materials.

Materials are grouped by material type and then by material state. A material may go through
multiple versions of development, so the specifications for each version must be maintained
and readily comparable. The bill of materials for any material must be able to include multi-
ple other materials, and any material must be able to be used in multiple other materials.

A property may apply to multiple material types, but must be limited to materials of those
material types. For each version or each material, the system must maintain the spec value
for each material.

All this must be dynamic and constant change must be easy to handle without any database
or programming changes.

Database Design
Beginning with the material table, each material belongs to a single material type; the mate-
rial types are grouped by material state in traditional one-to-many relationships, as shown in
Figure B-4

Figure B-4: The Material Specification sample database schema as shown in Enterprise
Manager’s Database Diagrammer

549359 AppB.F 11/21/02 9:52 AM Page 844

845Appendix B ✦ Sample Databases

There’s a many-to-many relationship between material type and property, so that each mate-
rial type may have multiple properties and each property may apply to multiple material
types. The property value contains the actual material-specification value for each many-to-
many combination of material and property.

Materials have two direct reflexive relationships: Each material points back both to the origi-
nal version of that material and to the previous version.

The bill of materials is actually a multiple reflexive relationship among any material and mul-
tiple other materials, with additional data describing the reflexive relationship.

Because the database design is complex, identity columns are used for simplicity.

✦ ✦ ✦

549359 AppB.F 11/21/02 9:52 AM Page 845

549359 AppB.F 11/21/02 9:52 AM Page 846

SQL Server 2000
Specifications

CCA P P E N D I X

✦ ✦ ✦ ✦

In This Appendix

SQL Server
specifications

Comparison of SQL
Server specs for
versions 6.5, 7.0,
and 2000

✦ ✦ ✦ ✦

549359 AppC.F 11/21/02 9:52 AM Page 847

848 Appendixes

Table C-1: SQL Server Specifications

Feature SQL Server 6.5 SQL Server 7.0 SQL Server 2000

Server Features

Automatic Configuration No Yes Yes

Page Size 2KB 8KB 8KB

Max Row Size 1,962 bytes 8,060 bytes 8,060 bytes

Page-Level Locking Yes Yes Yes

Row-Level Locking Insert only Yes Yes

Files Located Devices Files and filegroups Files and filegroups

Kerberos and Security Delegation No No Yes

C2 Security Certification No No Yes

Bytes Per Character Column 255 8,000 8,000

Automatic Log Shipping No No Yes

Index-Computed Column No No Yes

Max Batch Size 128KB 65,536 * network 65,536 * network
packet–size bytes packet–size bytes

Bytes Per Text/Image 2GB 2GB 2GB

Objects in Database 2 billion 2,147,483,647 2,147,483,647

Parameters Per Stored Procedure 255 1,024 1,024

References Per Table 31 253 253

Rows Per Table Limited by available Limited by available Limited by available
storage storage storage

Table Per Database 2 billion Limited by available Limited by available
storage storage

Table Per select Statement 16 256 256

Triggers Per Table 3 Limited by number Limited by number
of objects in database of objects in database

Bytes Per Key (Index, 900 900 900
Foreign, or Primary)

Bytes Per Group by or 900 8,060 8,060
Order by

Bytes Per Row 900 8,060 8,060

Bytes of Source Text Per 65,025 Batch size or 250MB, Batch size or 250MB,
Stored Procedure whichever is less whichever is less

549359 AppC.F 11/21/02 9:52 AM Page 848

849Appendix C ✦ SQL Server 2000 Specifications

Feature SQL Server 6.5 SQL Server 7.0 SQL Server 2000

Server Features

Columns Per Key (Index, 16 16 16
Foreign, or Primary)

Columns in Group by 16 Limited by bytes Unspecified
or Order by

Columns Per Table 255 1,024 1,024

Columns Per select Statement 4,096 4,096 4,096

Columns Per insert Statement 250 1,024 1,024

Database Size 1TB 1,048,516TB 1,048,516TB

Databases Per Server 32,767 32,767 32,767 (per instance)

File Groups Per Database – 256 256

Files Per Database 32 32,767 32,767

Data-File Size 32GB 32TB 32TB

Log-File Size 32GB 4TB 32TB

Foreign-Key References Per Table 16 253 253

Identifier Length (Table, 30 128 128
Column Names, Etc.)

Instances Per Computer 1 1 16

Locks Per Instance 2,147,483,647 2,147,483,647 or 2,147,483,647 or
40 percent of SQL 40percent of SQL
Server memory Server memory

Parallel Query Execution No Yes Yes

Federated Databases No No Yes

Indexes Per Table Used 1 Multiple Multiple
in Query Execution

Administration Features

Automatic-Data and No Yes Yes
Log-File Growth

Automatic Index Statistics No Yes Yes

Profiler Tied to Optimizer Events No Yes Yes

Alert on Performance Conditions No Yes Yes

Conditional Multistep Agent Jobs No Yes Yes

Continued

549359 AppC.F 11/21/02 9:52 AM Page 849

850 Appendixes

Table C-1 (continued)

Feature SQL Server 6.5 SQL Server 7.0 SQL Server 2000

Programming Features

Recursive Triggers no Yes Yes

Multiple Triggers Per Table Event No Yes Yes

instead of Triggers No No Yes

Unicode Character Support No Yes Yes

User-Defined Function No No Yes

Indexed Views No No Yes

Cascading DRI Deletes No No Yes
And Updates

Collation Level Server Server Server, database,
table, query

Nested Stored-Procedure Levels 16 32 32

Nested Subqueries 16 32 32

Nested Trigger Levels 16 32 32

XML Support No No Yes

Replication Features

Snapshot Replication Yes Yes Yes

Transactional Replication Yes Yes Yes

Merge Replication No Yes Yes
with Conflict Resolution

Enterprise Manager Features

Database Diagram No Yes Yes

Graphical Table Creation Yes Yes Yes

Database Designer No Yes Yes

Query Designer No Yes Yes

✦ ✦ ✦

549359 AppC.F 11/21/02 9:52 AM Page 850

What’s on the CD?

Several goodies have been gathered for the book’s CD and are
organized into the following directories:

✦ \ChapterCode— The complete code from this book, organized
by chapter.

✦ \Chapters— An electronic copy of this book in PDF format.

✦ \ProductEvals— Trial editions of the following SQL Server
utilities and related products:

• FMS Total SQL Analyzer Pro, Trial Edition

• Lumigent’s Log Explorer 3.0, Trial Edition

• RAC 2.0, Trial Edition

• XML Spy, Trial Edition

• SQL Expert, Trial Edition

• Adobe Acrobat Reader (freeware)

✦ \SampleDatabase— Six sample databases in the form of DDL
scripts to create the databases and scripts to populate the
database with sample data. The following sample databases
support the code demonstrated within this book:

• Aesop’s Fables (Aesop)

• Cape Hatteras Adventures (CHA2)

• Family Tree (Family)

• Material Specifications (MaterialSpec)

• Outer Banks Kite Store (OBXKites)

• Object-Oriented Database (OODBMS)

✦ \Utilites— Various useful SQL Server–related scripts.

To use the CD, copy all the files to the \SQLServerBible directory on
your C: drive. If you use a different directory, some of the distributed
query files may need to be edited.

Check with www.sqlserverbible.com for any code updates, addi-
tional links, errata, or additional utilities.

✦ ✦ ✦

DDA P P E N D I X

✦ ✦ ✦ ✦

549359 AppD.F 11/21/02 9:52 AM Page 851

549359 AppD.F 11/21/02 9:52 AM Page 852

SYMBOLS AND NUMERICS
& (ampersand), 167–168
^ (caret), 168–169
“ (double quotes), 280
% (modulo mathematical operator), 166
| (pipe character), 168
+ (plus sign), 167
* (star), 164, 280
Θ (theta) join, 232
1753, entering dates before, 139

A
abort, arithmetic, 650
accents, order by clause, 295–296
access control, 652, 718–719, 729–731
Access (Microsoft)

.adp front-end applications, 80–81
client/server design, converting to, 77–78
described, 4, 26
external data sources, linking, 517–518
indexes, 147
project forms, coding efficient, 81
queries, views similarity to, 289
replicating, 558
rows, limiting number, 833
Wizard, 78–80

accuracy, measuring, 752–753
ACID properties

atomicity, 337–338
consistency, 40, 127, 348, 656–658
durability, transactional integrity, 338
isolation, 338, 343–344, 355–356

active transactions, 699
ActiveX Data Objects. See ADO
ActiveX script transformations, 537–538
ad hoc queries, 289, 293
adding data

aggregate functions, 205–208
filtering results, 210–213
generating totals, 213–214
within a result set, 208–210

administration, system
configuration

ANSI behavior, 648–650
auto options, 646–647
connection, 630, 641–643

cursor, 647–648
database state, 652–653
index statistics and fill-factor options, 645–646
memory, 632–636
processor, 637–639
recovery options, 653–654
server, 625–628, 643–645
start/stop properties, 631–632
trigger behavior, 651

database security, 729–734
maintenance

automating, 674–679
command-line, 669
Database Maintenance Plan Wizard, 666–668
DBCC commands, 655–665
jobs, 680–685
monitoring, 669
planning, 665

object security
Enterprise Manager, 738–742
ownership, 743–745
permissions, 735–736
sample security model, 745–746
standard database roles, 736–738

recovery plans
complete, performing, 714
concepts, 687–688
database, backing up, 693–698
Enterprise Manager, performing restore with,

703–705
Master System, 710–712
models, 688–693
MSDB System, 713–714
problems, detecting, 702
reasons to restore database, 701–702
sequences, 702–703
System Databases, 709–714
transaction log, 698–701
T-SQL Code, performing restore with, 706–709

security concepts, 640–641, 717–719, 746–747
server security

authentication mode, 720–726
logins, 726–729
server roles, 727–729

views and, 747–748
Windows security, 719–720

Index

549359 Index.F 11/21/02 9:52 AM Page 853

854 Index ✦ A

ADO (ActiveX Data Objects)
ADO.NET, differences from, 574–575
data providers, understanding, 567–568
data types, 568–571
described, 563–564
object model, 565–567
OLE-DB and, 564–565
scripting, 571

ADO.NET
ADO, differences from, 574–575
basic application, creating, 589–592
data types, 573
managed providers, 573
object model, 571–573
Server Explorer

databases, working with, 582–584
hierarchy, 576–580
SQL Server, accessing, 580–582

stored procedures, 584–589
.adp front-end applications. See Access (Microsoft)
Aesop’s Fables sample database, 146, 843
affinity mask, 638
after trigger, 331–332, 437–438
aggregate data, pre-calculated

Analysis Manager, 813–815, 826–828
creating

data source, 819–820
data warehouse, 818–819
shared dimensions, 820–825
Snowflake schema, 817–818
Star schema, 816–817

Excel, 828–830
storage, 825–826

aggregate functions, summing and grouping data,
205–208

aggregate queries, 289
alerts, 650, 674–679
alphabet, order by clause, 295–296
alter stored procedures, 404
altering data

deleting, 318–322
inserting, 305–313
obstacles, 322–334
updating, 313–318

ampersand (&), 167–168
analysis, database used for

cubes
Analysis Manager MMC snap-in, 809, 813–815
data source, 819–820
data warehouse, 818–819
Excel, 828–830

querying from Analysis Manager, 826–828
shared dimensions, 820–825
Snowflake schema, 817–818
Star schema, 816–817
storage, 825–826

decision-support databases, 35
described, 809–810
installing, 812–813
process, 810–812
warehousing tasks, 541

anonymous subscriptions, 554
ANSI

behavior, configuring, 648–650
indexed views, 794
isolation levels, 343–344
non-ANSI standard code, detecting, 831–832
Oracle, 82
SQL standards, 3, 24
user-defined functions, 425

application stored procedures
data, retrieving (fetch), 451–452
deleting, 456–457
primary method of identifying row, accepting

(update), 453–456
rows, inserting new, 450–451

applications
database, embedded version, 16
database security roles, 734
locking design, 358–359, 363–366
.Net development, 30
SQL edition, 16
SQL Server, connecting to, 25–27

arithmetic abort, 650
article, table

creating
within Enterprise Manager, 124–125
filegroups, 128
SQL Scripts, working with, 125–126
table and column names, 126–127
while inserting data, 310–313

data spread among multiple, 13
database basics, 34–35
design, creating indexes, 149
design view in Enterprise Manager, 99
duplicating for distinct purposes, 116
events, stored procedures attached to

after, 437–438
behavior, configuring, 651
creating, 437
data integrity, 53–54
described, 435–436

549359 Index.F 11/21/02 9:52 AM Page 854

855Index ✦ A

disabling, 439
instead of, 438–439, 834
limitations, 439
listing, 439–440
logically deleting data, 489–490
multiple-trigger interaction, 444–447
performance, advanced, 762
security, 440
transactions, 436–437, 440–444

indexed views, 794
inserted and deleted table triggers, 442–443
names, 126–127
organizing, 154
perspective, locking, 357
publishing portion of, 554
referring back to same (self-joins), 229–230
result sets, stacking

rows common to both data sets, finding
(intersection union), 246–248

rows found in only one of data sets (difference
union), 249–250

retrieving data with select, 171–172
select statement embedded within outer query

(subqueries), 241–243
system

allowing changes, 644–645
code, developing, 834
listed, 86

temporary, 379–380
variables, database programming with T-SQL, 380

article view
ad hoc queries, 293
alternatives, 301
with check option, 294–295
database security and, 747–748
DDL (Data Definition Language) code, 291–292
described, 289–290
distributed queries, working with, 519
distributed-partition tables, 805–808
Enterprise Manager, 290–291
indexes, 13, 116, 148
local-partition tables

creating, 800
moving data, 803–805
segmenting data, 797–800
selecting through, 800–802
updating through, 802–803

locking, 353–355
nested, 300–302
order by clause, 295–296, 834
performance problems, 298–300
protecting, 296–297

query-optimization plans and execution statistics
filegroups, modifying, 123
retrieving data with Select, 157–158
SQL Server client components, 21–22, 23
stored procedures, debugging, 414–415

restrictions, 292–293
updatable, 297–298
XML, 595–596

ASCII characters, 64
asterisk (*). See star
atomicity, 337–338
attended installation, 71–73
attribute

assigned to tuple, data modeling (primary key), 38
DTDs, 604–605
of entry, ensuring validity, 49–50
not fully dependent on primary key, 50–51
XML, 600, 608
XSDs, 608

Audit table, 473
auditing

level
data integrity, 54
security, 641

trail
fixed trigger, data changes, 473–476
rolling back from, 477–478

authentication mode, 65
automated tasks

alerts, 674–679
database management, setting up, 671–674
described, 17–18
jobs

category, creating, 680–681
completion-, success-, and failure-notification

messages, 685
definition, creating, 681–682
schedule, configuring, 684–685
steps, setting up, 682–684

MSDB system database recovery, 713–714
operators, 675–676

availability, advanced
crash, detecting and handling, 790
described, 779–780
failover servers and clustering, 791
going live, 790–791
log shipping, 781–785
original primary server, returning to, 791
SQL Server Agent, 785–789
users, shipping, 790
warm-standby availability, 780–791

AWE Memory, 636

549359 Index.F 11/21/02 9:52 AM Page 855

856 Index ✦ B

B
backing up

described, 693–698, 781–785
job, creating, 787–788
master system databases, 700–701, 710
read-only standby query server, 788–789
replicating databases

Access database issues, 558
configuring, 550–555
data, 555–557
editions, comparing, 14
replication types, 548–550
transactional consistency, 548

stored procedures, initializing, 785–787
warm-standby availability, 790

base indexing, 770
batches

DDL commands, 368
executing, 105, 368–369
instance, creating new, 381–382
raw T-SQL code

filegroups, modifying, 123
retrieving data with select, 157–158
SQL Server client components, 21–22, 23
stored procedures, debugging, 414–415

stored procedures, 369
switching databases, 368
terminating, 368

begin/end database programming with T-SQL, 374
beginning state, log architecture, 344–345
benchmarks, database performance, 9, 12
between search condition, 173–176
binary objects

indexes, searching full-text, 285–286
manipulating with bitwise operators, 167–169

BizTalk as rival to EDI (Electronic Data
Interchange), 31

blank entries
ANSI behavior, 649
constraints and defaults, user-data columns,

141–142
obstacles to modifying data, 329
retrieving data with Select, 185–190
as valid entry, 53

BLOBs (binary large objects), 140
Books On-Line (BOL), 22–23, 146
books, recommended reading

Business @ the Speed of Thought (Bill Gates), 36
Dynamics of Software Development (Jim

McCarthy), 835

The Guru’s Guide to Transact-SQL (Ken
Henderson), 835

Inside SQL Server 2000 (Kalen Delaney), 835
Introduction to Database Systems, A

(Chris J. Date), 835
SQL for Smarties, Advanced SQL Programming

(Joe Celko), 835
Boolean operators

case expressions, 170–171
exclusive or, 168–169
not, 169
table, retrieving data with select, 167–168
T-SQL procedural flow, 374–376
user-defined rules, 145–146
where conditions, combining multiple, 179–180

bottleneck, 797
Boyce-Codd Normal Form, 52
browser, allowing queries from (SQLXML)

HTTP queries, 617–618
template queries, 618–620
virtual directories, 615–617

b-tree indexes, 768
Bulk Copy command-line utility, 22
bulk-insert administrators, 728
bulk-logged recovery planning, 692
Business @ the Speed of Thought (Bill Gates), 36
business intelligence

cubes
Analysis Manager MMC snap-in, 813–815
data source, 819–820
data warehouse, 818–819
Excel, 828–830
querying from Analysis Manager, 826–828
shared dimensions, 820–825
Snowflake schema, 817–818
Star schema, 816–817
storage, 825–826

Data Analyzer (Microsoft), 27
described, 809–810
installing, 812–813
performance, monitoring, 755
process, 810–812
warehousing tasks, 541

business rules
complex, validating, 457–458
constraints, 435
data integrity, 53
data type, 141
n-tier design, 7
triggers, 435

549359 Index.F 11/21/02 9:52 AM Page 856

857Index ✦ C

C
C2 security, 641, 717, 746–747
cache data

buffer performance, 756
clean testing, 734

capacity, increasing
de-normalization indexes, 793–796
described, 793
editions, comparing, 15
partitioned tables

described, 796–797
distributed views, 805–808
moving data, 802–803, 806–807
segmenting data, 797–800
updating through view, 802–803, 806–807
view, creating, 800
view, selecting through, 800–802

Cape Hatteras Adventures Version 2 sample database,
810–811, 816, 839–841

cardinality, 607
career-building

benefits of certification, 27
conferences, 30
Learning Tree SQL Server 2000 certifications, 29
Microsoft Certified DBA certification, 28–29
Microsoft Certified Professional program, 28
on-line independent certification company

(Brainbench.com), 29
security, 720

caret (^), 168–169
cascading deletes, 319–321, 491–492
case expressions, 169–171
catalogs, 269–276
CData (Character Data), 601
CD-ROM, back-of-the-book, 851
CE edition, 16
Celko, Joe (SQL for Smarties, Advanced SQL

Programming), 835
census, pattern-matching system. See soundex()
certifications

benefits, 27
conferences, 30
Learning Tree SQL Server 2000 certifications, 29
Microsoft Certified DBA certification, 28–29
Microsoft Certified Professional program, 28
on-line independent certification company

(Brainbench.com), 29
security, 720

chains, object security, 743–745
changing data

deleting, 318–322
inserting, 305–313

obstacles, 322–334
updating, 313–318

characters
column data types, 138
position of string within string, 196

check constraints, 143–144, 329–330
checkpoints, transaction log, 699–700
clean testing, 754
client connectivity, 83–84
client, gathering project requirements, 37
client protocol, adjusting (Client Network

Utility), 84
client/server database

Access files, converting, 77–78
desktop databases, 4, 5
n-tier design, 7
roles, 6
user information functions, 193

closing
on commit, 648
database auto options, 646
log architecture, 347–348

clustered index
creating, 150–151
primary key, 768
tuning, 770–771
views, 794

coalesce(), 188–189
code

connection-specific properties, adjusting
(set command), 834

database, backing up, 696–698
Dynamic SQL, 382–384
files, creating multiple, 120–121
flow-control statements, 834
non-ANSI, detecting, 831–832
partition views, 833
permissions, revoking and denying, 736
rows, returning limited from select statement

(top command), 833
single table, deleting (delete...from command),

832–833
single table, updating (update...from

command), 832
system tables, 834
triggers (instead of) on non-updateable

views, 834
user-defined functions, 833
view with order by, 834

collation, 63–64, 184–185

549359 Index.F 11/21/02 9:52 AM Page 857

858 Index ✦ C

column
aliases, specifying, 183
data types, 137–140
database auto options, creating statistics, 647
database basics, 34–35
including all in composite index, 771
multiple, composite indexes, 151
names, 126–127, 182
ordinal positions, specifying with, 183–184
outer query, referencing in subqueries (correlated

subqueries), 243–246
renaming to support ad hoc queries, 289
updating all, primary method of identifying row,

accepting (update), 453–454
combining data

messy (coalesce()), 188–189
multiple result sets, stacking into single table,

246–250
multiplication of two data sets and restriction of

results
analogy explaining different types, 228
inner joins, 218–222
multiple condition, 232
non-equal on condition, 232
non-key, 233–234
outer joins, 222–228
source table, multiplication of two, 230–232
table, referring back to same, 229–230

query scenarios, sample
denormalizing time sequences, 260–264
Northwind inventory problem, 258–259
stockbroker problem, 264–266

relational division
differences, finding based on condition of joins,

255–258
exact matches, finding without remainder,

253–255
with a remainder, 251–253

replication conflict management, 559–561
select statement embedded within outer query

lists, 238–241
scalar, 236–237
simple, 234–236
tables, 241–243

command-line database maintenance, 669
command-line utilities, 22
comments, XML text, 601
committing, 347–348, 648
comparisons

ANSI behavior, 649
null, returned if equal (nullif()), 189
standard operators, listed, 173

compatibility level, database state, 653

compiling, stored procedures, 405–406
completion-notification messages, database

maintenance, 685
composite index, 151, 771
concatenation

nulls, 189–190, 650
strings, 167

concurrency, 337, 358
conditional select command, 373
conditions, placing within

comparisons, 170–171
outer joins, 227–228

conferences, 30
configuration

ANSI behavior, 648–650
auto options, 646–647
client connectivity, 83–84
connection, 630, 641–643
cursor, 647–648
database, 628–630
display and performance properties, 643–645
index statistics and fill-factor options, 645–646
information schema views, 87–88
memory, 632–636
processor, 637–639
recovery options, 653–654
removing SQL Server, 83
replicating databases, 550–555
sample databases (Pubs and Northwind), 85–86
security, 640–641
server, 625–628
start/stop properties, 631–632
state, 652–653
system databases, 84–85
system tables, listed, 86
trigger behavior, 651

conflicts, 171–172, 559–561
connection

configuring, 630
DTS, migrating data, 532–533
performance, measuring, 757
properties, adjusting (set command), 834
system configuration, 641–643

consistency
checks, DBCC commands, 656–658
look-up values, identifying multiple entries, 40
naming conventions, 127
state, returning database in log architecture, 348
transactional integrity, 338

constraints
keys, creating, 129–130
performance, advanced, 762
user-data columns, 141–145

549359 Index.F 11/21/02 9:52 AM Page 858

859Index ✦ C

contains function, 276, 284–285
ContainsTable function, 276–278
contention mode, locking, 351
controlled-access protection, 641, 717, 746–747
conversions

Access, 77–78
bad data, cleaning up, 258
DTS, migrating data with

connecting to data, 532–533
data transfer tasks, 540
described, 529–530
DTS Designer, 530–531
DTS Package Properties, 531
messaging tasks, 540
packages, 543–544
processing tasks, 541
SQL Server transfer tasks, 539
transformations, 533–539
warehousing tasks, 541

lowercase, converting string to, 197
scalar functions, 202–205
text, 198–199

Copy Database Wizard, 498–501
copying databases

Access database issues, 558
connectivity

configuring, 550–555
replication types, 548–550
transactional consistency, 548

data, 555–557
editions, comparing, 14

corrupted master database, 710
cost

limit, 645
maintenance, 114–115
SQL Server, relative to performance, 12–13

covering indexes, 771
CPUs, multiple

Enterprise edition, 13
hardware recommendations, 67–68

crash recovery
bulk-logged, 692
complete, performing, 714
concepts, 687–688
database, backing up, 693–698
Enterprise Manager, performing restore with,

703–705
failure, detecting, 790
full, 690–691
master system databases, 710–712
models, 688–693
modifying, 693
options, configuring, 653–654
problems, detecting, 702

reasons to restore database, 701–702
replicating databases

Access database issues, 558
configuring, 550–555
data, 555–557
editions, comparing, 14
replication types, 548–550
transactional consistency, 548

sequences, 702–703
setting, 692–693
simple, 689–690
System Databases, 709–714
transaction log, 698–701
transactional integrity

ACID properties, 337–338
application locking design, 363–366
isolation levels, 343–344
locking, 350–359
log architecture, 344–349
multiple tasks competing for same resource

(deadlocks), 360–363
transaction, defined, 335–337
transactional faults, 338–343

T-SQL Code, performing restore with, 706–709
Create Index Wizard, 147–148
create stored procedure, 404
cross joins, load testing, 734
crosstabs, generating, 214, 385–386
cross-unrestricted joins, 230–232
cube

Analysis Manager, 813–815, 826–828
creating

data source, 819–820
data warehouse, 818–819
shared dimensions, 820–825
Snowflake schema, 817–818
Star schema, 816–817

Excel, 828–830
external applications, accessing, 809
storage, 825–826

cursor
database programming with T-SQL

described, 386–387
dynamic-crosstab query, building, 389–390
list, denormalizing with, 388–389
options, 387
scope, 387–388
tree, navigating with recursive, 390–394
working with, 388

options, 387
system configuration, 647–648

custom messages, returning to calling procedure or
front-end application (raiseerror),
397–401

549359 Index.F 11/21/02 9:52 AM Page 859

860 Index ✦ D

D
damaged master database, 710
data

attributes not fully dependent on primary key
(Third Normal Form), 50–51

basic data element, 36
changes, auditing, 472–485
duplicating within

design, 115–116
indexes, 793–796
query scenarios, sample, 260–264
views, 289

dynamic/relational database design, 56–59
element, modeling, 36
goal, 36
index modifications, 153
integrity, 52–54, 658
load testing, 753–754
mathematical approach, 37
missing

ANSI behavior, 649
constraints and defaults, user-data columns,

141–142
obstacles to modifying data, 329
retrieving data with Select, 185–190
as valid entry, 53

modification command, log architecture, 345
moving among data source types

connecting, 532–533
data transfer tasks, 540
described, 529–530
destination, 534–535
DTS Designer, 530–531
DTS Package Properties, 531
editions, comparing, 14
lookup, 536–537
messaging tasks, 540
options, 538–539
package, saving and moving, 543–544
processing tasks, 541
source, 534
SQL Server transfer tasks, 539
transformations, 533–539
views, local-partition, 803–805
warehousing tasks, 541

multiple entities, 52
multiple entries, 38–40
multiplication of two sets and restriction of results

analogy explaining different types, 228
inner joins, 218–222
multiple condition, 232

non-equal on condition, 232
non-key, 233–234
outer joins, 222–228
source table, multiplication of two, 230–232
table, referring back to same, 229–230

normalization
advantages over flat-file, 47–48
attribute of entry, ensuring validity (Second

Normal Form), 49–50
entity format (First Normal Form), 48–49
multiple entities, designing complex

relationships (Fifth Normal Form), 52
problems with complex composite primary

keys (Fourth Normal Form), 52
problems with entities that have two primary

keys (Boyce-Codd Normal Form), 52
processes, 36–37
project requirements, gathering, 37

object-oriented database design, 54–55
out-of-place, finding, 255–258
providers, ADO, 567–568
pushing to full-text index, 272–273
Query Analyzer retrieval and modification

batches, executing, 105
execution plans, viewing, 107
object browser, 105
scripts, opening and saving, 105
server, connecting, 104
templates, 106

Query Designer retrieval and modification, 101–102
relationships

category entities, 46
diagramming, 42–43
items of same type, 46–47
many-to-many, 44–45
one-to-many, 43
one-to-one, 43
optional, 41–42
secondary entries and foreign keys, 40
super-type/sub-type, 43–44
tuples on each side, 40–41

retrieving (fetch stored procedure), 451–452
segmenting views, local-partition, 797–800
source, 19, 814, 819–820
style guide, developing, 313
trace filters, 760
transfer tasks, 540
type

ADO, 568–571
ADO.NET, 573
conversion, scalar functions, 202–205

549359 Index.F 11/21/02 9:52 AM Page 860

861Index ✦ D

modifying, obstacles to, 322–323
validation, 608

updating and moving, 806–807
validation, 608
visible entities, 38
warehouse cubes, 818–819

Data Analyzer (Microsoft), 27
data connectivity

deltas and versions, 544–545
DTS, migrating data with

connecting to data, 532–533
described, 529–530
DTS Designer, 530–531
DTS Package Properties, 531
messaging tasks, 540
packages, 543–544
processing tasks, 541
transformations, 533–539
warehousing tasks, 541

replicating databases
to an Access database, 558
configuring, 550–555
merge replication conflict management,

559–561
transactional consistency, 548

transferring databases
Copy Database Wizard, 498–501
detaching and attaching, 504–505
methods, overview, 497–498
SQL Script, 501–503

workflow precedence, 542
data control language. See DCL
Data Definition Language. See DDL
data mining, 541
Data Transformation Services. See DTS
DataAdapter, 590–591
database

access, granting, 730–731
analysis, primarily used for (OLAP), 35
auto options, 646–647
backing up

bulk-logged, 692
described, 687–688, 781–785
Enterprise Manager, performing restore with,

703–705
full, 690–691
job, creating, 787–788
master database failure, 711
master system databases, 700–701, 710
models, 688–693
modifying, 693

options, configuring, 653–654
problems, detecting, 702
read-only standby query server, 788–789
reasons to restore database, 701–702
sequences, 702–703
setting, 692–693
simple, 689–690
stored procedures, initializing, 785–787
transaction log, 698–701
warm-standby availability, 790

configuring, 628–630
creating

existing database, modifying files of, 121
file concepts, 117
filegroups, planning multiple, 122–123
growth, allowing, 118–119
multiple files, 119–121

for day-to-day processing with inserts, updates,
and searches (OLTP), 34–35

diagrams, 100–101
digital database, benefits of, 34
digital nervous system, 36
dropping, 123
fixed roles, security and, 731–733
large, running on SQL Server 2000, 9
maintenance, automating with SQL Server Agent,

674–679
performance, advanced, 761, 762
programming with T-SQL

batches, 368–369
cursors, 386–394
debugging, 370–371
Dynamic SQL, 381–384
error handling, 395–402
formatting, 369–370
recursive select variables, 384–386
server, examining, 376–379
table variables, 380
temporary tables, 379–380
tree, navigating, 390–391, 393–394
variables, 371–376

roles, Analysis Manager MMC snap-in, 815
sample

Aesop’s Fables, 843
Cape Hatteras Adventures Version 2, 839–841
described, 837
The Family, 842–843
files, 837–839
Material Specifications, 843–845
OBX Kites, 841–842

Continued

549359 Index.F 11/21/02 9:52 AM Page 861

862 Index ✦ D

database (continued)
security, 718–719, 729–734
size, indexing, 769
state, 652–653
tables, rows, and columns, 34–35
transferring

Copy Database Wizard, 498–501
detaching and attaching, 504–505
methods, overview, 497–498
SQL Script, 501–503

Database Consistency Checker. See DBCC
database creators, 728
Database Maintenance Plan Wizard, 666–668
datasets

correlation, analyzing, 255–258
table, retrieving data with Select, 171–172

DataSim, 734
date

column data types, 139
created and date modified, data changes, 478
prior to 1753, handling, 139
range, searching for values within, 173–176
and time scalar functions, retrieving data

(datatime), 193–195
two-digit-year cutoff, server display, 645

Date, Chris J. (Introduction to Database Systems, A), 835
day-to-day processing, 34–35
DB2, 833
DBCC (Database Consistency Checker) commands

file size, 662–664
index maintenance, 658–662

dbgen load testing utility, 734
DB-Lib, 25
dbo object security, 743
DCL (data control language) commands, 25
DDL (Data Definition Language) code, 121
deadlocks, 360–363
debugging stored procedures, 414–415
declaration section, XML documents, 598
declarative referential integrity. See DRI
default

constraints and, user-data columns, 144–145
cursor, 648
message language, 644
obstacles to modifying data, 329
row, creating for inserting data, 310
scope, database programming with T-SQL, 371–372
SQL Server logins, 727
user-data columns, 141–145

definition, SQL Server Agent database maintenance
jobs, 681–682

Delaney, Kalen (Inside SQL Server 2000), 835
deleted logical table triggers, 442–443

deleted rows, 490–491
deleting

application stored procedures, 456–457
data, 318–322
database files, 121, 123
permission, 735

deltas, 544–545
denormalization

design, 115–116
indexes, 793–796
query scenarios, sample, 260–264
views, 289

density, index maintenance, 662
Department of Defense Trusted Computer System

Evaluation Criteria. See TCSEC
dependency, 49–51
design

data modeling, 36–37
denormalization, 115–116
disk-drive subsystems, 69–70
for maintainability, 114–115
Material Specifications sample database, 844–845
normalization

advantages over flat-file, 47–48
attribute of entry, ensuring validity (Second

Normal Form), 49–50
defined, 37
entity format (First Normal Form), 48–49
multiple entities, designing complex

relationships (Fifth Normal Form), 52
problems with complex composite primary

keys (Fourth Normal Form), 52
problems with entities that have two primary

keys (Boyce-Codd Normal Form), 52
processes, 36–37

for performance, 114
for security, 114
for simplicity and agility, 112–114

desktop databases, 4, 5, 9
destination

database, backing up, 693–694
transformations, 534–535

detaching databases, 504–505
detection, deadlock, 362
developer flexibility, 11–12
Developer Tools

actions, selecting, and properties, viewing (right-
click menu), 97

data retrieval and modification (Query Designer),
101–102

database diagrams (Database Designer), 100–101
described, 91
menus and toolbars, 97

549359 Index.F 11/21/02 9:52 AM Page 862

863Index ✦ D

MMC add-in, 91–92
objects, viewing available, 93–96
processes, starting and stopping, 89–91
Query Analyzer data retrieval and modification,

104–107
server, connecting to, 92–93
Table Design view, 99
Taskpad, 96
top 10 annoyances, 102–103
wizards, 98–99

diagramming models
binding scalar functions, creating with, 428
lock (Sch-M, Sch-S) mode, 353
relationships, data modeling, 42–43
XML, 606–608

difference() scalar data retrieval, 202
differences, finding based on condition of joins (set

difference), 255–258
digital database, benefits of, 34
digital nervous system, 36
dirty reads, 338–340
disabling triggers, 439
disk administrators, 728
Disk Management utility, 69
disk-drive subsystems, 68–70, 690, 693, 756
distributed queries

client/server model, advantages of, 6
described, 507–509
developing, 526–527
Enterprise Manager, 518–519
establishing link, 512–513
external data sources, linking

Access/Excel, 515–518
Enterprise Manager, 509–512
T-SQL, 512–515

local SQL Server database, accessing, 509
local-distributed queries, 519–523
monitoring, 527–528
pass-through distributed queries, 523–525
views, 519

distributed security and logins, 513–514
Distributed Transaction Coordinator. See DTC
distributed-partition view, 806–808
division

defined, 250
differences, finding based on condition of joins (set

difference), 255–258
exact matches, finding without remainder, 253–255
with a remainder, 251–253

DML (data manipulation language) statement
data changes, auditing, 478–479
data, retrieving, 156–157

embedded within outer query
lists, 238–241
scalar, 236–237
simple, 234–236
tables, 241–243

nulls, 185–190
parameters, including, 430–431
permission to use, 735
query design and performance

described, 762–763
execution plans, 763–764
filters and sorts, 765
index scans, 765
index seeks and nested loops, 764–765
measuring, 766–767
optimization, 763
plans, 766–768
SARGS, optimizable, 765
table scans and hashes, 765

rows, returning few (top keyword), 163–164
scalar functions

data-time, 193–195
data-type conversion, 202–205
phonetic pattern-matching system, 199–202
server environment information, 192
string, 196–199
user information, 193

stored and referenced as a table
ad hoc queries, 293
alternatives, 301
with check option, 294–295
database security and, 747–748
DDL code, 291–292
described, 289–290
distributed queries, working with, 519
distributed-partition tables, 805–808
Enterprise Manager, 290–291
indexes, 13, 116, 148
local-partition tables, 797–805
locking, 353–355
nested, 300–302
order by clause, 295–296, 834
with order by code, developing, 834
performance problems, 298–300
protecting, 296–297
query-optimization plans and execution

statistics, 21–23, 123, 157–158, 414–415
restrictions, 292–293
updatable, 297–298
XML, 595–596

Continued

549359 Index.F 11/21/02 9:52 AM Page 863

864 Index ✦ D–E

DML (data manipulation language) statement
(continued)

summing and grouping data
aggregate functions, 205–208
filtering results, 210–213
generating totals, 213–214
within a result set, 208–210

table, single
bitwise operators, 167–169
case expressions, 169–171
from datasets, 171–172
duplicate rows, eliminating from result

(distinct keyword), 160–161
expressions, 165–167
result set, ordering, 181–185
rows, returning few (top keyword), 162–164
in search condition, 176–180
select statement, basic flow of, 158–159
where conditions, 172–176, 180, 765

tool, choosing, 155–158
where, 180, 765

Document Type Definitions. See DTDs
documenting physical schema, 154
documents, XML, 598–601
domain

described, 53
user account security, 720

DOS prompt. See command-line utilities
double quotes (“), 280
DRI (declarative referential integrity), 133–135, 735
drop existing and rebuild (drop existing option)

indexes, 153
drop stored procedure, 404
DTC (Distributed Transaction Coordinator),

18, 526, 755
DTDs (Document Type Definitions), 597, 602–605
DTS (Data Transformation Services)

data connectivity
connecting, 532–533
described, 529–530
destination, 534–535
DTS Designer, 530–531
DTS Package Properties, 531
lookup, 536–537
messaging tasks, 540
options, 538–539
processing tasks, 541
source, 534
transfer tasks, 539–540
warehousing tasks, 541

editions, comparing, 14
package, saving and moving, 543–544

duplicate rows, eliminating from result (distinct
keyword), 160–161

duplicating data within data
design, 115–116
indexes, 793–796
query scenarios, sample, 260–264
views, 289

durability, transactional integrity, 338
duration, locking, 353
dynamic audit-trail trigger and procedure, 479–485
dynamic memory, 633–635
Dynamic SQL, 381–384
dynamic-crosstab query, building, 389–390
dynamic/relational database design

advanced features, 58–59
described, 56–57
front-end programming, 58
material-specifications example, 57–58

Dynamics of Software Development (Jim
McCarthy), 835

E
EDI (Electronic Data Interchange), 594–595
editions, SQL Server

CE edition, 16
Enterprise (Developer) edition, 13–15
Microsoft Developer Network (MSDN), 16
MSDE/Desktop Edition, 16
Personal Edition, 15–16
Standard Edition, 15

either/or statements
case expressions, 170–171
exclusive or, 168–169
not, 169
table, retrieving data with select, 167–168
T-SQL procedural flow, 374–376
user-defined rules, 145–146
where conditions, combining multiple, 179–180

elements, 36, 599–600, 607
e-mail messaging task, 540
e-mail, sending to external mailbox (SQL Mail), 18
encryption

passwords, 726
stored procedures, 406–407

engine features, by edition, 14
English words, specifying, 18
Enterprise Manager

actions, selecting, and properties, viewing (right-
click menu), 97

authentication mode, configuring, 720–721
backing up, 694–696
cascading deletes, enabling, 136
database diagrams, 100–101
described, 91
distributed queries, working with, 518–519
external data sources, linking, 509–512

549359 Index.F 11/21/02 9:52 AM Page 864

865Index ✦ E–F

filegroups, 122–123
files, creating multiple, 120
fixed database roles, assigning with, 732–733
indexes, 147–149
log shipping, 781–783
menus and toolbars, 97
MMC add-in, 91–92
object security, 738–742
objects, viewing available, 93–96
primary key, setting, 130–132
Query Analyzer data retrieval and modification

batches, executing, 105
execution plans, viewing, 107
object browser, 105
scripts, opening and saving, 105
server, connecting, 104
templates, 106

Query Designer data retrieval and modification,
101–102

restore, performing, 703–705
retrieving data with Select, 156–157
server, connecting to, 92–93
server permissions, 730–731
single-user mode, 712
SQL Server client components, 21
Table Design view, 99
tables, creating, 124–125
Taskpad, 96
unique constraints, 142
views, creating, 290–291
wizards, 98–99

entity format (First Normal Form), normalization,
48–49

equal comparisons, 169–171
errors

documenting database schema, 154
handling, 395–401
symbols, replacement for, 601
user-defined alerts, 676–679

events, recording (SQL Profiler), 23
events, stored procedures attached to

after, 437–438
behavior, configuring, 651
creating, 437
data integrity, 53–54
described, 435–436
disabling, 439
instead of, 438–439, 834
(instead of) on non-updateable views, 834
limitations, 439
listing, 439–440
logically deleting data, 489–490
multiple-trigger interaction, 444–447

performance, advanced, 762
security, 440
transactions

described, 436–437
multi-row enabled triggers, 443–444
updated columns, determining, 440–442

exact matches, finding without remainder, 253–255
exams, certification, 28–29
Excel (Microsoft)

cubes, creating and browsing, 828–830
described, 26–27
external data sources, linking, 515–517

exclusive lock (X) mode, 352
existing database, modifying files of, 121
expression

referencing multiple tables while updating data,
315–318

results, presenting, 140–141
sorting result set, 182–183
table, retrieving data with Select, 165–167
value, assigning to variable (set and select

commands), 372–373
eXtensible Markup Language. See XML
eXtensible Stylesheet Language. See XSL
external data sources, linking

distributed queries, working with
Access, 515–518
T-SQL, 512–515

options, configuring, 511–512

F
failover servers and clustering, 791
failure-notification messages, 685
Family, The, sample database, 842–843
fatal errors, 396–397
Federal Information Processing Standard 127-2. See

FIPS flagger
federated-database configuration. See distributed-

partition view
fetch

result set, establishing from select statement and
fetching single row at a time

described, 386–387
dynamic-crosstab query, building, 389–390
list, denormalizing with, 388–389
options, 387
scope, 387–388
system configuration, 647–648
tree, navigating with recursive, 390–394
working with, 388

security table, 462–463
stored procedure, 451–452

Fifth Normal Form, 52

549359 Index.F 11/21/02 9:52 AM Page 865

866 Index ✦ F

file
databases, creating, 117
existing database files, modifying (alter

database command), 121
growth, allowing, 118–119
locations, 63
multiple, creating databases, 119–121
normalization, data modeling advantages over

flat-file, 47–48
restoring particular, 705
size, 662–664
text-search capability (Microsoft Search

Service), 18
update, log architecture, 348

filegroup
indexes, specifying, 153–154
planning multiple, 122–123
restoring particular, 705
tables, creating, 128

fill factor
indexes, creating, 152
tuning, 772–773

filtering
deleted rows, 491
grouped results, 210–213
queries, 765

FIPS flagger (Federal Information Processing Standard
127-2), 831–832

First Normal Form, 48–49
flat-file database, 27, 47–48
flow-control statements, 834
foreign key

data integrity, 53
deleting data, 319–321
keys, creating, 132–137
obstacles to modifying data, 327–328

four-part name
local-distributed queries, 519–520
pass-through distributed queries, 523
table, retrieving data with Select, 172

Fourth Normal Form, 52
Freetext word searches, 284
FreetextTable word searches, 284–285
front-end tool

actions, selecting, and properties, viewing (right-
click menu), 97

authentication mode, configuring, 720–721
backing up, 694–696
cascading deletes, enabling, 136
database diagrams, 100–101
described, 91
distributed queries, working with, 518–519
external data sources, linking, 509–512
filegroups, 122–123

files, creating multiple, 120
fixed database roles, assigning with, 732–733
indexes, 147–149
log shipping, 781–783
menus and toolbars, 97
MMC add-in, 91–92
object security, 738–742
objects, viewing available, 93–96
primary key, setting, 130–132
programming, 58
Query Analyzer data retrieval and modification

batches, executing, 105
execution plans, viewing, 107
object browser, 105
scripts, opening and saving, 105
server, connecting, 104
templates, 106

Query Designer data retrieval and modification,
101–102

restore, performing, 703–705
retrieving data with Select, 156–157
server, connecting to, 92–93
server permissions, 730–731
server properties, 93
single-user mode, 712
SQL Server client components, 21
Table Design view, 99
tables, creating, 124–125
Taskpad, 96
top 10 annoyances, 102–103
unique constraints, 142
views, creating, 290–291
wizards, 98–99

FTP data transfer, 540
functions

aggregate functions, 205–208
contains, 276, 284–285
ContainsTable, 276–278
inline table-valued, 428–431
multistatement table-valued

calling, 432
creating, 431–432
user-defined functions, 431–432

scalar
data-time, 193–195
data-type conversion, 202–205
phonetic pattern-matching system, 199–202
server environment information, 192
string, 196–199
user information, 193

string, 196–199
user information, 193
user-defined, 425, 833

fuzzy word searches, 284–285

549359 Index.F 11/21/02 9:52 AM Page 866

867Index ✦ G–I

G
Gates, Bill (Microsoft founder), 8, 36
general entities, DTDs (Document Type Definitions),

603–604
global search and replaces, 314–315
global unique identifiers. See GUIDs
global variables, examining server with T-SQL, 377–379
going live, warm-standby availability, 790–791
government contracts, security required by, 641, 717,

746–747
granularity, locking, 350–351
Grid View, ADO.NET, 591–592
grouping

filegroup
indexes, specifying, 153–154
multiple, planning, 122–123
restoring particular, 705
tables, creating, 128

names, similar sounding, 199–202
objects, identifying multiple entries, 39–40
schema (XSDs-XML Schema Document), 607
security, 722
select data

aggregate functions, 205–208
filtering grouped results, 210–213
generating totals, 213–214
within a result set, 208–210

guest logins, 729
GUIDs (global unique identifiers)

merge replication conflicts, managing, 559
primary keys, 131–132

Guru’s Guide to Transact-SQL, The (Ken
Henderson), 835

H
hardware recommendations, 67–71
Henderson, Ken (Guru’s Guide to Transact-SQL,

The), 835
hierarchy

role structure, 737–738
Server Explorer, 576–580

hints, 356–357
HOLAP (Hybrid OLAP), 825
HTTP queries, 617–618

I
ID attributes, 605
identifier, ANSI behavior, 650
identity columns, primary keys, 131
IDREF attributes, 605
if, 374
if, else, 375
if exists (), 374–375
IIS (Internet Information Server), 719–720, 725

in search condition, 176–180
inactive transactions, 699
inactivity, degrees of, 492
index

clustered, 150–151
composite, 151
data modifications and (ignore duplicate key

option), 153
denormalized, 116
drop existing and rebuild, 153
with Enterprise Manager, 147–149
filesgroup, specifying, 153–154
fill factor and pad, 152
full-text searches

binary objects, 285–286
catalogs, 269–276
by word, 276–285

maintenance, DBCC commands, 658–662
memory configuration, 636
non-clustered indexes, 149–150
performance, advanced

base, 770
clustered, 768, 770–771
composite, 771
covering, 771
database size and, 769
fill factor and padding, 772–773
nonclustered, 768
OLTP versus OLAP, 769
primary keys, 768–769
redundant-index analysis, 773–774
selectivity, 771–772
Tuning Wizard, 774–776

query, 795–796
sort order, 153
statistics, updating (statistics norecompute

option), 153
table designs, 149
unique, 152
view, 13, 795–796

industry standard, 8–9
information schema views, 87–88
information, terms for, 35
Informix, 833
inline table-valued functions, 428–431
inner joins, 218–222
input, passing data, 408–409
inserted logical table triggers, 442–443
inserting data

data style guide, developing, 313
default row, creating, 310
one row of values, 305–307
online transaction processing, 34–35

Continued

549359 Index.F 11/21/02 9:52 AM Page 867

868 Index ✦ I

inserting data (continued)
permission, 735
select result set, 307–308
stored procedure result set, 308–310
table, creating while, 310–313

Inside SQL Server 2000 (Kalen Delaney), 835
installing SQL Server

Analysis Services, 812–813
attended, 71–73
authentication mode, 65
file locations, 63
hardware recommendations, 67–71
migrating from other systems, 82–83
multiple instances, 74
network protocols, 64–65
operating system, 61–62
security accounts, 62–63
server instances, 65–66
service packs, 74
sort collation, 63–64
testing, 74
unattended, 73–74
upgrades from previous versions, 75–77
upsizing from Access, 77–81

instead of and after multiple-trigger
interaction, 447

instead of trigger, 330–331, 438–439
integrity

ACID properties, 337–338
advantages of client/server model, 6
application locking design, 363–366
DBCC commands, 656–658
isolation levels, 343–344
locking

controlling, 355–359
duration, 353
granularity, 350–351
mode, 351–353
viewing, 353–355

log architecture, 344–349
multiple tasks competing for same resource,

360–363
referential, 132
row-level, 143–144
transaction, defined, 335–337
transactional faults, 338–343

intelligence, business
cubes

Analysis Manager MMC snap-in, 813–815
data source, 819–820
data warehouse, 818–819

Excel, 828–830
querying from Analysis Manager, 826–828
shared dimensions, 820–825
Snowflake schema, 817–818
Star schema, 816–817
storage, 825–826

cubes, creating and browsing, 813–830
Data Analyzer (Microsoft), 27
described, 809–810
installing, 812–813
performance, monitoring, 755
process, 810–812
warehousing tasks, 541

intent locks, 352–353
interface, front-end

actions, selecting, and properties, viewing (right-
click menu), 97

authentication mode, configuring, 720–721
backing up, 694–696
cascading deletes, enabling, 136
database diagrams, 100–101
described, 91
distributed queries, working with, 518–519
external data sources, linking, 509–512
filegroups, 122–123
files, creating multiple, 120
fixed database roles, assigning with, 732–733
indexes, 147–149
log shipping, 781–783
menus and toolbars, 97
MMC add-in, 91–92
object security, 738–742
objects, viewing available, 93–96
primary key, setting, 130–132
Query Analyzer data retrieval and modification

batches, executing, 105
execution plans, viewing, 107
object browser, 105
scripts, opening and saving, 105
server, connecting, 104
templates, 106

Query Designer data retrieval and modification,
101–102

restore, performing, 703–705
retrieving data with Select, 156–157
server, connecting to, 92–93
server permissions, 730–731
single-user mode, 712
SQL Server client components, 21
Table Design view, 99
tables, creating, 124–125

549359 Index.F 11/21/02 9:52 AM Page 868

869Index ✦ I–L

Taskpad, 96
unique constraints, 142
views, creating, 290–291
wizards, 98–99

internal DTD (Document Type Definitions),
referencing, 605

Internet. See also Web sites, addresses listed
browser, allowing queries from (SQLXML), 615–620
data, publishing, 620–621
FTP data transfer, 540
Network Load Balancing cluster, 791
security, 719–720
Web pages, 835–836

Introduction to Database Systems, A (Chris J. Date), 835
inventory trigger, 487–489
inventory-transaction trigger, 486–487
I/O (input/output), spreading throughput, 154
IRS, security required by, 641, 717, 746–747
isnull(), 187
ISO/IEC SQL-92, 831–832
isolation level

locking, 355–356
transactional integrity, 338, 343–344

Isql command-line utility, 22

J
jobs

log shipping with SQL Server Agent, 787–788
SQL Server Agent database maintenance, 680–685

joins
analogy explaining different types, 228
complex, simplifying, 289
inner, 218–222
multiple condition, 232
non-equal on condition, 232
non-key, 233–234
outer, 222–228
source table, multiplication of two (cross-

unrestricted), 230–232
table, referring back to same, 229–230

Julian calendar, 139

K
Kerberos, 725–726
keys

constraints, 129–130
foreign, 133–137
partition, 797
primary, 128–132

L
language

DCL, 25
DDL, 121, 291–292, 404, 437
default message, 644
multiple, storing, 138
sort, 63
T-SQL

access, granting, 731
described, 24–25
distributed queries, working with, 512–515
filegroups, creating, 123
fixed database roles, assigning with, 733
raw batches, executing, 21–22, 23, 123, 157–158,

414–415
restore, performing, 706–709
scripts, 126
string functions, 196–199

leaf node, index, 768
Learning Tree SQL Server 2000 certifications, 29
legacy data

integrity, 53
joins, 220–221
migrating

bad data, cleaning up, 258
MySQL, 82
Oracle, 82–83
portability, 831–834

letters
column data types, 138
position of string within string, 196

licensing, 16
lightweight pooling, 639
like table, retrieving data with Select, 177–179
link, establishing distributed queries, 512–513
linked server

distributed queries, T-SQL, 514–515
leveraging (OpenQuery()) pass-through distributed

queries, 524–525
list

denormalizing, 384–385, 388–389
of ignored words, catalogs, 275–276
of multiple objects, identifying, 39
relational database, 34
select statement embedded within outer query

(subqueries), 238–241
terms for, 35

listing triggers, 439–440
load testing, 753–754

549359 Index.F 11/21/02 9:52 AM Page 869

870 Index ✦ L–M

local
admin account, security, 720
database, accessing, 509
distributed queries, working with, 519–523
system account, security, 62

local-partition tables
creating, 800
moving data, 803–805
segmenting data, 797–800
selecting through, 800–802
updating through, 802–803

lock
contention, testing, 734
memory configuration, 636
performance, advanced, 757, 776–777
transactional integrity, 350–359

log architecture, 344–349
log error handling, custom messages, 399–400
Log Explorer (Lumigent), 319, 836
log file error handling, custom messages, 400–401
log shipping

bulk-log recovery model, 692
described, 781–785
job, creating, 787–788
read-only standby query server, 788–789
stored procedures, initializing, 785–787
warm-standby availability, 790

logic, deleting data, 489–492
logical database schema, modeling

analysis, primarily used for (OLAP), 35
attributes not fully dependent on primary key

(Third Normal Form), 50–51
basic data element, 36
day-to-day processing with inserts, updates, and

searches (OLTP), 34–35
digital database, benefits of, 34
digital nervous system, 36
dynamic/relational database design, 56–59
goal, 36
integrity, 52–54
mathematical approach, 37
multiple entities, designing complex relationships

(Fifth Normal Form), 52
multiple entries, identifying, 38–40
normalization, 36–37, 47–50, 52
relationships, 40–47
tables, rows, and columns, 34–35
visible entities, 38

logically deleting data
cascading, 491–492
filtering deleted rows, 491
inactivity, degrees of, 492
triggers, 489–490
undeleting deleted rows, 490–491

login
external data sources, linking, 510–511
restoring databases, 703
SQL Server, removing, 727

lookup transformations, 536–537
looping while condition still true (while), 375–376
lost updates, 363–366
low-cost, 12–13
lowercase, converting string to, 197

M
mail, sending to external mailbox (SQL Mail), 18
maintenance

automating with SQL Server Agent, 674–679
command-line maintenance, 669
Database Maintenance Plan Wizard, 666–668
DBCC commands

consistency checks, 656–658
described, 655, 664–665
file size, 662–664
index maintenance, 658–662

design, 114–115
monitoring, 669
planning, 665

managed providers, ADO.NET, 573
many-to-many relationships, 41, 44–45
mass deployment

catalogs, configuring with T-SQL Code, 271–272
databases, transferring, 501–503
tables, creating, 125–126

master system
described, 84–85
System Databases, 710–712

matches, searching list for exact, 176–180
Material Specifications sample database, 57–58,

843–845
mathematical approach

adding data
aggregate functions, 205–208
filtering results, 210–213
generating totals, 213–214
within a result set, 208–210

data modeling, 37
multiplication of two data sets and restriction of

results (joins)
analogy explaining different types, 228
inner joins, 218–222
multiple condition, 232
non-equal on condition, 232
non-key, 233–234
outer joins, 222–228
source table, multiplication of two, 230–232
table, referring back to same, 229–230

549359 Index.F 11/21/02 9:52 AM Page 870

871Index ✦ M

relational quality of data model, evaluating
advantages over flat-file, 47–48
attribute of entry, ensuring validity, 49–50
defined, 37
entity format, 48–49
multiple entities, 52
processes, 36–37
project requirements, gathering, 37

Maximum concurrent user connections option, 642
McCarthy, Jim (Dynamics of Software Development), 835
measuring query design and performance, 766–767
memory

cache data, clean testing, 734
configuration, 632–636
hardware recommendations, 67
index, forcing, 153
recovery model, choosing, 690

menus and toolbars, Enterprise Manager, 97
merging data

messy (coalesce()), 188–189
multiple result sets, stacking into single table,

246–250
multiplication of two data sets and restriction of

results
analogy explaining different types, 228
inner joins, 218–222
multiple condition, 232
non-equal on condition, 232
non-key, 233–234
outer joins, 222–228
source table, multiplication of two, 230–232
table, referring back to same, 229–230

query scenarios, sample
denormalizing time sequences, 260–264
Northwind inventory problem, 258–259
stockbroker problem, 264–266

relational division
differences, finding based on condition of joins,

255–258
exact matches, finding without remainder, 253–255
with a remainder, 251–253

replication conflict management, 559–561
select statement embedded within outer query

lists, 238–241
scalar, 236–237
simple, 234–236
tables, 241–243

messaging tasks, 540
Microsoft Access

.adp front-end applications, 80–81
client/server design, converting to, 77–78
described, 4, 26
external data sources, linking, 517–518
indexes, 147

project forms, coding efficient, 81
queries, views similarity to, 289
replicating, 558
rows, limiting number, 833
Wizard, 78–80

Microsoft Certified DBA certification, 28–29
Microsoft Certified Professional program, 28
Microsoft Data Analyzer, 27
Microsoft Developer Network. See MSDN
Microsoft Excel

cubes, creating and browsing, 828–830
described, 26–27
external data sources, linking, 515–517

Microsoft Management Console. See MMC
Microsoft Windows

disks, managing, 69
error messages, calling, 398–400
language, selected, 63
security based on, 719–726
SQL Server editions, 13–16
SQL Server running inside, 3, 61–62
word/phrase indexing system, 267

migrating from other systems
bad data, cleaning up, 258
MySQL, 82
Oracle, 82–83
portability, 831–834

minimal update method of minimizing lost updates,
454–456

mining models, Analysis Manager MMC snap-in, 815
minute adjustments, 356–357
MMC (Microsoft Management Console) add-in, 91–92
mode, locking, 351–353
model

logical database schema
analysis, primarily used for (OLAP), 35
attributes not fully dependent on primary key,

50–51
basic data element, 36
day-to-day processing with inserts, updates,

and searches (OLTP), 34–35
digital database, benefits of, 34
digital nervous system, 36
dynamic/relational database design, 56–59
goal, 36
integrity, 52–54
mathematical approach, 37
multiple entities, designing, 52
multiple entries, identifying, 38–40
normalization, 36–37, 47–50, 52
relationships, 40–47
tables, rows, and columns, 34–35
visible entities, 38

Continued

549359 Index.F 11/21/02 9:52 AM Page 871

872 Index ✦ M–N

model (continued)
object

ADO, 565–567
ADO.NET, 571–573

physical schema
databases, creating, 116–123
indexes, creating, 146–154, 149
keys, creating, 128–137
tables, creating, 124–128
user-data columns, 137–146

recovery plans, 653, 688–693
system database, 85

modifying data
deleting, 318–322
inserting, 305–313
obstacles, 322–334
updating, 313–318

modulo mathematical operator (%), 166
MOLAP (Multidimensional OLAP), 825
monitor server, 781
monitoring

distributed transactions, 527–528
log shipping with Enterprise edition, 784
maintaining database, 669

MSDB System, 713–714
MSDE/Desktop Edition, 16
MSDN (Microsoft Developer Network), 16
Multidimensional Database Engine, 809
Multidimensional OLAP. See MOLAP
multiple after interaction, 447
multiple condition, 232
multiple entities, 52
multiple entries, 39–40
multiple files, 119–121
multiple instances, 74
multiple result sets, stacking into single table (union)

rows common to both data sets, finding
(intersection union), 246–248

rows found in only one of data sets (difference
union), 249–250

multiple rows, 443–444
multiple table joins, 221–222
multiple tables

referencing while deleting data, 319
referencing while updating data, 315–318

multiple tasks competing for same resource, 360–363
multiple triggers, 444–447
multiple users, 657
multiple words, searching with, 278–279

multiplication of two data sets and restriction of
results (joins)

analogy explaining different types, 228
inner joins, 218–222
multiple condition, 232
non-equal on condition, 232
non-key, 233–234
outer joins, 222–228
source table, multiplication of two, 230–232
table, referring back to same, 229–230

multistatement table-valued functions
calling, 432
user-defined functions, 431–432

MySQL, 833
MySQL, migrating from, 82

N
name

cost-limiting benefits of, 115
keyword conflict, avoiding, 171–172
ranges, retrieving table data with select, 171
similar sounding, grouping, 199–202
stored procedures, 408
tables and columns, 126–127

namespaces, XML documents, 600
natural keys, creating, 129
nested

elements, DTDs (Document Type Definitions)
structure, 602–603

triggers, 445, 651
views, creating, 300–302

.Net
ADO, 26
application development, 30
BizTalk as rival to EDI (Electronic Data

Interchange), 31
future, 32
XML, 31

network
hardware recommendations, 70–71
load balancing cluster, 791
packet size, 643
protocol

adjusting, 83–84
installing, 64–65

security delegation, 725–726
traffic, 6
utilities, 21

NIC (network interface card), 70–71

549359 Index.F 11/21/02 9:52 AM Page 872

873Index ✦ N–O

noise file, 275–276
non-equal on condition, 232
non-key multiplication of two data sets and restriction

of results (joins), 233–234
non-repeatable reads, 340–341
non-updateable view, 332–333
normalization

advantages over flat-file, 47–48
attribute of entry, ensuring validity (Second

Normal Form), 49–50
defined, 37
entity format (First Normal Form), 48–49
multiple entities, designing complex relationships

(Fifth Normal Form), 52
problems with complex composite primary keys

(Fourth Normal Form), 52
problems with entities that have two primary keys

(Boyce-Codd Normal Form), 52
processes, 36–37

Northwind inventory problem sample database,
258–259

NT Login, 470–471
n-tier design, 7
null default

ANSI behavior, 649
obstacles to modifying data, 329

null value
constraints and defaults, user-data columns,

141–142
retrieving data with Select, 185–190
as valid entry, 53

nullif(), 189
number of rows returned, 219–220
numbers

column data types, 138–139
position of string within string, 196
round abort, ANSI behavior, 650

O
object

browser, 105
creating from template, 106
list, 739–740
ownership, 719
recognizable, 38
tree, navigating, 93–96
validation, 657

object model
ADO, 565–567
ADO.NET, 571–573

object security
permissions, 735–736
standard database roles, 736–738

object-oriented database design, 54–55
OBX Kites sample database, 841–842
ODBC/DSN (Open Database Connectivity/data source

names), 25
off-site

access, configuring, 642
data source (OpenRowSet()), 525
query timeout, 643
stored procedures, executing, 416

OLAP (online analysis processing)
cubes

Analysis Manager MMC snap-in, 813–815
data source, 819–820
data warehouse, 818–819
Excel, 828–830
querying from Analysis Manager, 826–828
shared dimensions, 820–825
Snowflake schema, 817–818
Star schema, 816–817
storage, 825–826

decision-support databases, 35
described, 809–810
installing, 812–813
process, 810–812
warehousing tasks, 541

old data
integrity, 53
joins, 220–221
migrating

bad data, cleaning up, 258
MySQL, 82
Oracle, 82–83
portability, 831–834

OLE-DB/ADO, 25–26, 564–565
OLTP (online transaction processing applications)

denormalization, 115–116
OLAP indexing versus, 769

one row of values, inserting, 305–307
one-to-many or one-to-one relationships, modeling,

41, 43
online analysis processing. See OLAP
on-line independent certification company

(Brainbench.com), 29
online transaction processing applications. See OLTP
Open Database Connectivity/data source names. See

ODBC/DSN
open objects, memory configuration, 636

549359 Index.F 11/21/02 9:52 AM Page 873

874 Index ✦ O–P

OpenDataSource() function, 520–523
operating system

disks, managing, 69
error messages, calling, 398–400
installing, 61–63
language, selected, 63
security based on, 719–726
SQL Server editions, 13–16
word/phrase indexing system, 267

operators, SQL Server Agent, 675–676
optimistic versus pessimistic locking, 363
optimization cycle, 752
optional foreign keys, outer joins and, 225
options, database programming with T-SQL, 387
Oracle

migrating from, 82–83
rows, limiting number, 833
triggers, 435

order, adding stored procedures, 423–424
order by clause, 295–296
organizations, 836
organizing

multiple-trigger interaction, 444–445
objects, multiple entries, identifying, 39–40

original primary server, returning to, 791
orphaned Windows users, 725
osql command-line utility, 22
outer joins, 222–228
output parameters, returning data, 410–411
ownership, object security, 743–745

P
packet size, 643
padding

ANSI behavior, 649
indexes, creating, 152
tuning, 772–773

parallelism, processor, 639
parameter

adding error handling, custom messages, 398
defaults, passing data, 409–410
entities, DTDs (Document Type Definitions), 604
passing to ADO.NET stored procedure, 589

Parsable Character Data. See PCData
parsing, XML, 595
partition, database publication, creating, 554
partitioned tables

code, developing, 833
creating, 800
distributed-partition view, 806–808
moving data, 803–805
segmenting data, 797–800

selecting, 800–802
updating, 802–803

passing data, stored procedures, 408–410
pass-through distributed queries, 523–525
passwords

external data sources, linking, 510–511
restoring databases, 703
SQL Server, 726–727

path and scope, returning data, 412–413
pattern-matching census system. See soundex()
patterns within string, searching, 177–179, 196–197
PCData (Parsable Character Data), 601
performance

accuracy, measuring, 752–753
advantages of client/server model, 6
constraints and triggers, 762
counters, current status, 23
cursors, 386
data changes, auditing, 479
database design and performance, 114, 761–762
goals, 751
indexing

base, 770
clustered, 768
database size, 147
nonclustered, 768
OLTP versus OLAP, 769
primary keys, 768–769
tuning, 770–776

locking, 776–777
multiple SQL instances, running, 66
optimization cycle, 752
query design and performance, 763–768
response time, measuring, 753–754
scalability and, 9–10
SQL Server, monitoring, 754–761
views, creating, 298–300

Performance Monitor, 23, 755–757
permissions

database-level security, 718–719
described, 719
granting, 735–736
hierarchical role structures, 737–738
public role, 737
revoking and denying, 736
roles, managing with code, 737

Personal Edition, 15–16
pGetPrice stored procedure, 417–418
phantom rows, 341–343
phonetic pattern-matching system (Soundex), 199–202
phrases, word searches, 280
physical schema

549359 Index.F 11/21/02 9:52 AM Page 874

875Index ✦ P

databases, creating
described, 116
existing database, modifying files, 121
file concepts, 117
file growth, allowing, 118–119
filegroups, planning multiple, 122–123
multiple files, 119–121

denormalization, 115–116
documenting, 154
indexes, creating

clustered, 150–151
composite, 151
data modifications and (ignore duplicate

key option), 153
described, 146
drop existing and rebuild (drop existing

option), 153
with Enterprise Manager, 147–149
filesgroups, specifying, 153–154
fill factor and pad, 152
non-clustered, 149–150
sort order, 153
statistics, updating (statistics norecompute

option), 153
table designs, 149
unique, 152

keys, creating
foreign, 132–137
primary, 128–132

maintainability, 114–115
performance, 114
security, 114
simplicity and agility, 112–114
tables, creating

within Enterprise Manager, 124–125
filegroups, 128
SQL Scripts, working with, 125–126
table and column names, 126–127

user-data columns
calculated, 140–141
column data types, 137–140
constraints and defaults, 141–145
data catalog, 145–146

pipe character (|), 168
Pivot Table Service, 809, 828–830
plus sign (+), 167
Pocket Windows handheld device, 16
pOrder_AddItem stored procedure, 421–423
pOrder_AddNew stored procedure, 419–421
portability

code, developing, 832–834
non-ANSI standard code, detecting, 831–832

possible values, set of, 53

PostgreSQL, 833
pre-calculated aggregate data

Analysis Manager, 813–815, 826–828
creating

data source, 819–820
data warehouse, 818–819
shared dimensions, 820–825
Snowflake schema, 817–818
Star schema, 816–817

Excel, 828–830
storage, 825–826

primary key
assigned to tuple, data modeling, 38
complex, dealing with problems, 52
GUIDs, 131–132
identity columns, 131
indexing, 768–769
natural, 129
obstacles to modifying data, 323–327

priority boost processor, 638–639
problems

with complex composite primary keys (Fourth
Normal Form), 52

detecting, 702
with entities that have two primary keys (Boyce-

Codd Normal Form), 52
procedural flow, 374–376
process

Analysis Services, 810–812
cooperating, 4–7, 193
data modeling normalization, 36–37
starting and stopping, 89–91

process administrators, 728
processing tasks, migrating data with DTS, 541
processor, 637–639, 756
procs

ADO.NET, 586–589
attached to table events

after, 437–438
behavior, configuring, 651
creating, 437
data integrity, 53–54
described, 435–436
disabling, 439
instead of, 438–439, 834
limitations, 439
listing, 439–440
logically deleting data, 489–490
multiple-trigger interaction, 444–447
performance, advanced, 762
security, 440
transaction flow, 436–437
transaction, working with, 440–444

Continued

549359 Index.F 11/21/02 9:52 AM Page 875

876 Index ✦ P–Q

procs (continued)
compiling, 405–406
create, alter, and drop, 404
database access, 731
debugging, 414–415
described, 403–404, 416–424
encryption, 406–407
log shipping with SQL Server Agent, 785–787
managing, 404–408
order, adding, 423–424
passing data

input, 408–409
parameter defaults, 409–410

permission to execute, 735
pGetPrice stored procedure, 417–418
pOrder_AddItem stored procedure, 421–423
pOrder_AddNew stored procedure, 419–421
queries, using within, 413–414
record set, returning, 405
remote, executing, 416
returning data, 410–413

output parameters, 410–411
path and scope, 412–413
return command, 411–412

system, 408
Visual Basic, 743

production database, 690
programming, server-side

application stored procedures
data, retrieving (fetch), 451–452
deleting, 456–457
primary method of identifying row, accepting

(update), 453–456
rows, inserting new, 450–451

archiving data, 492–493
business rule validation, 457–458
data changes, auditing

Audit table, 473
audit trail, rolling back from, 477–478
complications, 478–479
dynamic audit-trail trigger and procedure,

479–485
fixed audit trail trigger, 473–476

deleting data
cascading, 491–492
filtering out deleted rows, 491
inactivity, degrees of, 492
triggers, 489–490
undeleting deleted rows, 490–491

referential integrity, 458–460
row-level custom security

function, 469–470
NT Login, 470–471

security check stored procedure, 468–469
security table, 461–468
trigger, 472

transaction-aggregation handling, 485–489
programming, T-SQL

batches, 368–369
cursors, 386–394
debugging, 370–371
Dynamic SQL, 381–384
error handling, 395–402
formatting, 369–370
recursive select variables, 384–386
temporary tables, 379, 380
variables, 371–373

project forms, coding efficient, 81
project requirements, 37
pronunciation, SQL, 3
proof, providing (C2-level), 746–747
properties, modifying, 554–555
protecting views, 296–297
protocol, network

adjusting, 83–84
installing, 64–65

public role, 737
publications

partitions, 554
properties, modifying, 554–555
subscriptions, 555–557

publications, listed, 835
publisher and distributor, creating, 550–552
publishing, XML, 596–597

Q
query

contention, testing, 734
cubes, creating and browsing, 826–828
defined, 368
execution plans, 763–768
filters and sorts, 765
governor cost limit, 645
index scans, 765
index seeks and nested loops, 764–765
large, denormalizing, 795
measuring, 756, 766–767
optimization, 762
SARGs, 765–766
scenarios, sample

denormalizing time sequences, 260–264
Northwind inventory problem, 258–259
stockbroker problem, 264–266

stored procedures, using within, 413–414
table scans and hashes, 765
wait, configuring memory, 635–636

549359 Index.F 11/21/02 9:52 AM Page 876

877Index ✦ Q–R

Query Analyzer
filegroups, modifying, 123
retrieving data with Select, 157–158
SQL Server client components, 21–22, 23
stored procedures, debugging, 414–415

R
RAID (Redundant Array of Individual Disks), 68–69
RAM

cache data, clean testing, 734
configuration, 632–636
hardware recommendations, 67
index, forcing, 153
recovery model, choosing, 690

range, searching for values within, 173–176
read

cascading during, 491
limited standby query server, 788–789
XML into SQL Server, 610–612

record set, 405
recording log architecture, 346
recovery

bulk-logged, 692
complete, performing, 714
concepts, 687–688
database, backing up, 693–698
Enterprise Manager, performing restore with,

703–705
full, 690–691
master system databases, 710–712
models, 688–693
modifying, 693
options, configuring, 653–654
problems, detecting, 702
reasons to restore database, 701–702
sequences, 702–703
setting, 692–693
simple, 689–690
System Databases, 709–714
transaction log, 698–701
transactional integrity

ACID properties, 337–338
application locking design, 363–366
isolation levels, 343–344
locking, 350–359
log architecture, 344–349
multiple tasks competing for same resource

(deadlocks), 360–363
transaction, defined, 335–337
transactional faults, 338–343

T-SQL Code, performing restore with, 706–709

recursive select variables, 384–386
recursive triggers

multiple, interacting, 445–447
system configuration, 651

Redundant Array of Individual Disks. See RAID
redundant-index analysis, 773–774
referencing

data integrity, 53, 492
DTDs (Document Type Definitions), 605
XML Schema, 608

referential integrity. See RI
reflexive relationships, 46–47
related data, auditing changes, 478
relational database, 34
relational database design

advanced features, 58–59
described, 56–57
front-end programming, 58
material-specifications example, 57–58

relational division
defined, 250
differences, finding based on condition of joins (set

difference), 255–258
exact matches, finding without remainder, 253–255
with a remainder, 251–253

Relational OLAP. See ROLAP
relationships

category entities, 46
diagramming, 42–43
items of same type, 46–47
many-to-many, 44–45
between objects, identifying, 39
one-to-many, 43
one-to-one, 43
optional, 41–42
secondary entries and foreign keys, 40
super-type/sub-type, 43–44
tuples on each side, 40–41

remainder, relational division, 251–253
remote

access, configuring, 642
data source (OpenRowSet()), 525
query timeout, 643
stored procedures, executing, 416

removing SQL Server, 83
repairing errors, DBCC (Database Consistency

Checker) commands, 656–657
repeatable installations

catalogs, configuring with T-SQL Code, 271–272
databases, transferring, 501–503
tables, creating, 125–126

549359 Index.F 11/21/02 9:52 AM Page 877

878 Index ✦ R

replicating databases
Access database issues, 558
connectivity

configuring, 550–555
replication types, 548–550
transactional consistency, 548

data, 555–557
editions, comparing, 14

Reports to Generate Screen, 668
request, SQL, 4
Resource Kit, 24
resources

books, 835
organizations, 836
publications, 835
third-party products, 836
Web pages, 835–836

response time, measuring, 753–754
restriction

aggregation capabilities, adding, 615
multiplication of two data sets

inner joins, 218–222
multiple condition, 232
non-key, 233–234
outer joins, 222–228
source table, multiplication of two, 230–232
table, referring back to same, 229–230

views, 292–293
result set

database programming with T-SQL
described, 386–387
dynamic-crosstab query, building, 389–390
list, denormalizing with, 388–389
options, 387
scope, 387–388
tree, navigating with recursive, 390–394
working with, 388

options, 387
ordering table, retrieving data with Select, 181–185
from select, inserting data, 307–308
stacking into single table

rows common to both data sets, finding
(intersection union), 246–248

rows found in only one of data sets (difference
union), 249–250

rules for constructing, 246–248
from stored procedure, inserting data, 308–310
summing and grouping data, 208–210
system configuration, 647–648

retrieving data with select
nulls, 185–190
scalar functions

data-time, 193–195
data-type conversion, 202–205
phonetic pattern-matching system, 199–202
server environment information, 192
string, 196–199
user information, 193

summing and grouping
aggregate functions, 205–208
filtering grouped results, 210–213
generating totals, 213–214
within a result set, 208–210

table, single
bitwise operators, 167–169
case expressions, 169–171
from datasets, 171–172
duplicate rows, eliminating from result

(distinct keyword), 160–161
expressions, 165–167
result set, ordering, 181–185
rows, returning few (top keyword), 162–164
in search condition, 176–180
select statement, basic flow of, 158–159
where conditions, 172–176

tool, choosing, 155–158
return command, 411–412
returning data, 410–413
revising data

deleting, 318–322
inserting, 305–313
obstacles, 322–334
updating, 313–318

RI (referential integrity), 132–134, 319–321
ROLAP (Relational OLAP), 825
role list, 741–742
roles, switching, 784–785
rollback, log architecture, 348
root element, XML documents, 598–599
row

additional, generating, 213–214
application stored procedures, 453–456
common to both data sets, finding (intersection

union), 246–248
cursors, 386
database basics, 34–35
found in only one of data sets (difference union),

249–250

549359 Index.F 11/21/02 9:52 AM Page 878

879Index ✦ R–S

identifying uniquely (primary key)
assigned to tuple, data modeling, 38
complex, dealing with problems, 52
GUIDs, 131–132
identity columns, 131
indexing, 768–769
natural, 129
obstacles to modifying data, 323–327

inserting new, 450–451
new data, identifying (update stored procedure),

453–456
number affected by error, checking, 396
result set, ordering with select, 181–185
returning few (top keyword), 162–164
returning limited from select statement (top

command), 833
row-level custom security, 460–472
tuple level visible entities, data modeling, 38

@@RowCount global variable, 396
rules, business

complex, validating, 457–458
constraints, 435
data integrity, 53
data type, 141
n-tier design, 7
triggers, 435

runtime performance
accuracy, measuring, 752–753
advantages of client/server model, 6
constraints and triggers, 762
counters, current status, 23
cursors, 386
data changes, auditing, 479
database design and performance, 114, 761–762
goals, 751
indexing

base, 770
clustered, 768
database size, 147
nonclustered, 768
OLTP versus OLAP, 769
primary keys, 768–769
tuning, 770–776

locking, 776–777
multiple SQL instances, running, 66
optimization cycle, 752
query design and performance, 763–768
response time, measuring, 753–754
scalability and, 9–10
SQL Server, monitoring, 754–761
views, creating, 298–300

Russian surveillance photos, 10

S
sample database

denormalizing time sequences, 260–264
described, 837
files, 837–839
Northwind inventory problem, 85–86, 258–259
stockbroker problem, 264–266

sample security model, 745–746
scalability

de-normalization indexes, 793–796
described, 793
editions, comparing, 15
partitioned tables

described, 796–797
distributed views, 805–808
moving data, 802–803, 806–807
segmenting data, 797–800
view, selecting through, 800–802

scalar functions
calling, 427–428
creating, 426–427
described, 425
retrieving data with Select, 191–205
schema binding, creating with, 428

schedule, SQL Server Agent database maintenance
jobs, 684–685

schema
binding scalar functions, creating with, 428
lock (Sch-M, Sch-S) mode, 353
relationships, data modeling, 42–43
XML, 606–608

scope, database programming with T-SQL, 387–388
script

ADO, 571
distributed-partition view, 805–806
opening and saving, data retrieval and modification

(Query Analyzer), 105
restore sequence, 707–709
testing response time, 753

search and replace, global within string, 197–198
searches

binary objects, 285–286
English basis, specifying, 18
indexes, searching full-text, 267–268, 276–285
OLTP database, 34–35
variable-word-weight, 282–283
word-inflection based on common root, 281–282
word-proximity (near option), 280–281

Second Normal Form, 49–50
secondary entries and foreign key relationships, 40

549359 Index.F 11/21/02 9:52 AM Page 879

880 Index ✦ S

security
advantages of SQL Server, 9
check function, 469–470
concepts, 717–719
data changes, auditing, 479
database level

access, granting, 729–731
application roles, 734
concepts, 718–719
fixed roles, 731–733
guest logins, 729
standard roles, 736–738
statement permissions, 733–734

DCL commands, 25
design, 114
Enterprise Manager and, 738–742
master database, rebuilding, 711
object level, 719, 734–746
obstacles to modifying data, 334
ownership, 743–745
permissions, 733–736
proof, providing (C2-level), 746–747
sample security model, 745–746
server level

authentication, 720–726
concepts, 718
logins, 726–729

stored procedures, 381, 468–469
system configuration, 640–641
table

assigning, 463–466
creating, 461–462
fetch (pSecurity_Fetch), 462–463
updates, 466–468

triggers, 440, 472
views, 747–748
Windows-based, 62–63, 719–726

security administrators, 728
Select Databases screen, 666
select statement

data changes, auditing, 478–479
data, retrieving, 156–157
embedded within outer query

lists, 238–241
scalar, 236–237
simple, 234–236
tables, 241–243

nulls, 185–190
parameters, including, 430–431
permission to use, 735
query design and performance

described, 762–763
execution plans, 763–764

filters and sorts, 765
index scans, 765
index seeks and nested loops, 764–765
measuring, 766–767
optimization, 763
plans, 766–768
SARGS, optimizable, 765
table scans and hashes, 765

rows, returning few (top keyword), 163–164
scalar functions

data-time, 193–195
data-type conversion, 202–205
phonetic pattern-matching system, 199–202
server environment information, 192
string, 196–199
user information, 193

stored and referenced as a table
ad hoc queries, 293
alternatives, 301
with check option, 294–295
database security and, 747–748
DDL code, 291–292
described, 289–290
distributed queries, working with, 519
distributed-partition tables, 805–808
Enterprise Manager, 290–291
indexes, 13, 116, 148
local-partition tables, 797–805
locking, 353–355
nested, 300–302
order by clause, 295–296, 834
performance problems, 298–300
protecting, 296–297
query-optimization plans and execution

statistics, 21–23, 123, 157–158, 414–415
restrictions, 292–293
updatable, 297–298
XML, 595–596

summing and grouping data
aggregate functions, 205–208
filtering results, 210–213
generating totals, 213–214
within a result set, 208–210

table, single
bitwise operators, 167–169
case expressions, 169–171
from datasets, 171–172
duplicate rows, eliminating from result

(distinct keyword), 160–161
expressions, 165–167
result set, ordering, 181–185
rows, returning few (top keyword), 162–164
in search condition, 176–180

549359 Index.F 11/21/02 9:52 AM Page 880

881Index ✦ S

select statement, basic flow of, 158–159
where conditions, 172–176, 180, 765

tool, choosing, 155–158
selectivity, tuning, 771–772
sequence

log architecture, 344–348
recovery planning, 702–703

server
catalogs, enabling full-text search, 269
components, 17–20
configuring, 625–628
connecting, 92–93, 104
data spread among multiple, 13
display and performance properties, configuring,

643–645
environment information, 192
examining database programming with T-SQL,

376–379
external data sources, linking, 510
hardware recommendations, 67
instances, installing, 65–66
log shipping with Enterprise edition, 781
monitor, 781
network utility, 21
processes, starting and stopping, 89–91
properties, 93, 730
security

logins, 721–729
master database, rebuilding, 711
at server-level, 718
SQL Server authentication mode, 720–721

updating more than one, 24, 525–528
warm-standby

crash, detecting and handling, 790
Enterprise edition, 781–785
going live, 790–791
log shipping, 781–789
original primary server, returning to, 791
SQL Server Agent, 785–789
users, shipping, 790

server administrators, 728
Server Explorer

accessing SQL Server, 580–582
databases, working with, 582–584
hierarchy, 576–580

Server Service Manager, 21
server-side programming

application stored procedures
data, retrieving (fetch), 451–452
deleting, 456–457
primary method of identifying row, accepting

(update), 453–456
rows, inserting new, 450–451

archiving data, 492–493

business rule validation, 457–458
data changes, auditing

Audit table, 473
audit trail, rolling back from, 477–478
complications, 478–479
dynamic audit-trail trigger and procedure,

479–485
fixed audit trail trigger, 473–476

deleting data
cascading, 491–492
filtering out deleted rows, 491
inactivity, degrees of, 492
triggers, 489–490
undeleting deleted rows, 490–491

referential integrity, 458–460
row-level custom security

function, 469–470
NT Login, 470–471
security check stored procedure, 468–469
security table, 461–468
trigger, 472

transaction-aggregation handling, 485–489
Service Manager, 89–91
service pack

downloading, 813
installing, 74

set and select command database programming,
372–373

set difference, 255–258
set-based solution, 393–394
setup administrators, 728
1753, entering dates before, 139
severity codes, error message, 397–398
shared dimensions, Analysis Manager MMC

snap-in, 815
shared lock (S) mode, 352
shipping, log

bulk-log recovery model, 692
described, 781–785
job, creating, 787–788
read-only standby query server, 788–789
stored procedures, initializing, 785–787
stored procedures, LogShipJob, 786–787
warm-standby availability, 790

shrink database auto options, 646–647
shrinking database, 663–664
single table

deleting entries, 832–833
updating, 313–314, 832

single value, returning
calling, 427–428
creating, 426–427
described, 425

Continued

549359 Index.F 11/21/02 9:52 AM Page 881

882 Index ✦ S

single value, returning (continued)
retrieving data with Select, 191–205
schema binding, creating with, 428
user-defined functions

calling, 427–428
creating, 426–427
described, 425

Snowflake schema cubes, 817–818
software applications

database, embedded version, 16
database security roles, 734
locking design, 358–359, 363–366
.Net development, 30
SQL edition, 16
SQL Server, connecting to, 25–27

sort collation, installing, 63–64
sort order

execution plans, 765
indexes, creating, 153
views, 295

soundex(), 200–201
source table, multiplication of two, 230–232
source transformations, 534
spaces, removing leading or trailing, 197
Specify the Database Backup Plan Screen, 667–668
Specify the Transaction Log Backup Plan Screen, 668
speed, system

accuracy, measuring, 752–753
advantages of client/server model, 6
constraints and triggers, 762
counters, current status, 23
cursors, 386
data changes, auditing, 479
database design and performance, 114, 761–762
goals, 751
indexing

base, 770
clustered, 768
database size, 147
nonclustered, 768
OLTP versus OLAP, 769
primary keys, 768–769
tuning, 770–776

locking, 776–777
multiple SQL instances, running, 66
optimization cycle, 752
query design and performance, 763–768
response time, measuring, 753–754
scalability and, 9–10

SQL Server, monitoring, 754–761
views, creating, 298–300

sp_help, 376–377
split tables

code, developing, 833
creating, 800
distributed-partition view, 806–808
moving data, 803–805
segmenting data, 797–800
selecting, 800–802
updating, 802–803

spreadsheet software
cubes, creating and browsing, 828–830
described, 26–27
external data sources, linking, 515–517

sprocs
ADO.NET, 586–589
attached to table events

after, 437–438
behavior, configuring, 651
creating, 437
data integrity, 53–54
described, 435–436
disabling, 439
instead of, 438–439, 834
limitations, 439
listing, 439–440
logically deleting data, 489–490
multiple-trigger interaction, 444–447
performance, advanced, 762
security, 440
transaction flow, 436–437
transaction, working with, 440–444

compiling, 405–406
create, alter, and drop, 404
database access, 731
debugging, 414–415
described, 403–404, 416–424
encryption, 406–407
log shipping with SQL Server Agent, 785–787
managing, 404–408
order, adding, 423–424
passing data

input, 408–409
parameter defaults, 409–410

permission to execute, 735
pGetPrice stored procedure, 417–418
pOrder_AddItem stored procedure, 421–423
pOrder_AddNew stored procedure, 419–421

549359 Index.F 11/21/02 9:52 AM Page 882

883Index ✦ S

queries, using within, 413–414
record set, returning, 405
remote, executing, 416
returning data

output parameters, 410–411
path and scope, 412–413
return command, 411–412

system, 408
Visual Basic, 743

SQL for Smarties, Advanced SQL Programming (Joe
Celko), 835

SQL, language specific to SQL Server. See T-SQL
SQL Profiler

background, 761
browsing, 760–761
trace data columns, 759–760
trace events, 757–759

SQL queries, 373
SQL script

catalogs, configuring with T-SQL Code, 271–272
databases, transferring, 501–503
tables, creating, 125–126

SQL Server
accessing with Server Explorer, 580–582
advantages, 8–13
applications connecting to, 25–27
authentication mode, 720–721
Books On-Line (BOL), 22–23
certifications and training, 27–30
client/server database model, 4–7
command-line utilities (Isql, osql, Bulk Copy), 22
data sources, moving among (Data Transformation

Services), 19
databases, working with, 582–584
distributed transactions, 24
DTC, 18
editions, discussed, 13–16
engine, 17
Enterprise Manager, 21
licensing, 16
login, 720, 726–729
monitoring, 754–761
.Net and, 30–32
network utilities, 21
performance counters, current status

(Performance Monitor), 23
Query Analyzer, 21–22, 23
reading XML into, 610–612
Resource Kit, 24

server components, 17–20
server network utility, 21
specifications, 847–850
SQL Server 2000, creating XML with, 608–610
traffic and events, recording (SQL Profiler), 23
Transact SQL, 24–25
transfer tasks, 539
XML, 24, 608–610

SQL Server Agent
alerts, 674–679
database management, setting up, 671–674
described, 17–18
jobs

category, creating, 680–681
completion-, success-, and failure-notification

messages, 685
definition, creating, 681–682
schedule, configuring, 684–685
steps, setting up, 682–684

MSDB system database recovery, 713–714
operators, 675–676

SQLXML queries
HTTP queries, 617–618
template queries, 618–620
virtual directories, 615–617

stacking result sets
rows common to both data sets, finding

(intersection union), 246–248
rows found in only one of data sets (difference

union), 249–250
standard database roles, 736–738
Standard Edition, 15
standard select statement cursors, 390–391
standby availability

crash, detecting and handling, 790
going live, 790–791
log shipping

configuring, 781–783
job, creating, 787–788
monitoring, 784
read-only standby query server, 788–789
roles, switching, 784–785
servers, 781
stored procedures, 785–786

original primary server, returning to, 791
SQL Server Agent, 785–789
users, shipping, 790

star (*), 164, 280
Star Schema cubes, 816–817

549359 Index.F 11/21/02 9:52 AM Page 883

884 Index ✦ S

start/stop
failure, indicating corrupt master database, 710
properties system administration, 631–632

start-up stored procedure, system administration, 632
statement permissions, 733–734
statistics

DBCC commands, 661
updating (statistics norecompute option)

indexes, 153
stockbroker problem, sample query, 264–266
stored messages, error handling, 398–399
stored procedures

ADO.NET, 586–589
attached to table events

after, 437–438
behavior, configuring, 651
creating, 437
data integrity, 53–54
described, 435–436
disabling, 439
instead of, 438–439, 834
limitations, 439
listing, 439–440
logically deleting data, 489–490
multiple-trigger interaction, 444–447
performance, advanced, 762
security, 440
transaction flow, 436–437
transaction, working with, 440–444

compiling, 405–406
create, alter, and drop, 404
database access, 731
debugging, 414–415
described, 403–404, 416–424
encryption, 406–407
log shipping with SQL Server Agent, 785–787
managing, 404–408
order, adding, 423–424
passing data, 408–410
permission to execute, 735
pGetPrice stored procedure, 417–418
pOrder_AddItem stored procedure, 421–423
pOrder_AddNew stored procedure, 419–421
queries, using within, 413–414
record set, returning, 405
remote, executing, 416
returning data, 410–413
system, 408
Visual Basic, 743

string
concatenation, 167
patterns within, searching, 177–179
scalar functions, retrieving data, 196–199

structure
data integrity (primary key and attributes), 53
DTDs, 602–603

style sheets
XML publishing, 596–597
XSL, transforming with, 613–614

subqueries
as lists, 238–241
scalar, 236–237
simple, 234–236
as tables, 241–243

subscriptions
MSDN Universal, 16
publication

pulling, 557
pushing, 556
removing replication, 557
subscribing, 555

success-notification messages, 685
summary data, pre-calculated

Analysis Manager, 813–815, 826–828
creating

data source, 819–820
data warehouse, 818–819
shared dimensions, 820–825
Snowflake schema, 817–818
Star schema, 816–817
storage, 825–826

Excel, 828–830
external applications, accessing, 809
storage, 825–826

summing data
aggregate functions, 205–208
filtering results, 210–213
generating totals, 213–214
within a result set, 208–210

super-type/sub-type relationships, 43–44
symbols, error-causing, 601
system

described, 84–85
index statistics and fill-factor options, 645–646
stored procedures, developing, 408

system administration
configuration

ANSI behavior, 648–650
auto options, 646–647
connection, 630, 641–643
cursor, 647–648
database state, 652–653
index statistics and fill-factor options, 645–646
memory, 632–636
processor, 637–639
recovery options, 653–654
security, 640–641

549359 Index.F 11/21/02 9:52 AM Page 884

885Index ✦ S–T

server, 625–628, 643–645
start/stop properties, 631–632
trigger behavior, 651

database security, 729–734
maintenance

automating, 674–679
command-line, 669
Database Maintenance Plan Wizard, 666–668
DBCC commands, 655–665
jobs, 680–685
monitoring, 669
planning, 665

object security
Enterprise Manager, 738–742
ownership, 743–745
permissions, 735–736
sample security model, 745–746
standard database roles, 736–738

recovery plans
complete, performing, 714
concepts, 687–688
database, backing up, 693–698
Enterprise Manager, performing restore with,

703–705
Master System, 710–712
models, 688–693
MSDB System, 713–714
problems, detecting, 702
reasons to restore database, 701–702
sequences, 702–703
System Databases, 709–714
transaction log, 698–701
T-SQL Code, performing restore with, 706–709

security concepts, 717–719, 727, 746–747
server security

authentication mode, 720–726
logins, 726–729

views and, 747–748
Windows security, 719–720

system performance
accuracy, measuring, 752–753
advantages of client/server model, 6
constraints and triggers, 762
counters, current status, 23
cursors, 386
data changes, auditing, 479
database design and performance, 114, 761–762
goals, 751
indexing

base, 770
clustered, 768
database size, 147
nonclustered, 768
OLTP versus OLAP, 769

primary keys, 768–769
tuning, 770–776

locking, 776–777
multiple SQL instances, running, 66
optimization cycle, 752
query design and performance, 763–768
response time, measuring, 753–754
scalability and, 9–10
SQL Server, monitoring, 754–761
views, creating, 298–300

system tables
allowing changes, 644–645
code, developing, 834
listed, 86

T
table

creating
within Enterprise Manager, 124–125
filegroups, 128
SQL Scripts, working with, 125–126
table and column names, 126–127
while inserting data, 310–313

database basics, 34–35
design, creating indexes, 149
design view in Enterprise Manager, 99
duplicating for distinct purposes, 116
events, stored procedures attached to

after, 437–438
behavior, configuring, 651
creating, 437
data integrity, 53–54
described, 435–436
disabling, 439
instead of, 438–439, 834
limitations, 439
listing, 439–440
logically deleting data, 489–490
multiple-trigger interaction, 444–447
performance, advanced, 762
security, 440
transactions, 436–437, 440–444

indexed views, 794
names, 126–127
organizing, 154
perspective, locking, 357
publishing portion of, 554
referring back to same (self-joins), 229–230
result sets, stacking (union)

rows common to both data sets, finding
(intersection union), 246–248

rows found in only one of data sets (difference
union), 249–250

Continued

549359 Index.F 11/21/02 9:52 AM Page 885

886 Index ✦ T

table (continued)
retrieving data with select, 171–172
select statement embedded within outer query

(subqueries), 241–243
single, retrieving data with Select (subentries),

158–185
system

allowing changes, 644–645
code, developing, 834
listed, 86

temporary, 379–380
variables, database programming with T-SQL, 380

tape-backup devices, 693–694
Taskpad, 96, 98
tasks, multiple competing for same resource, 360–363
TCSEC (Department of Defense Trusted Computer

System Evaluation Criteria), 641, 717
telephone book, 771
template

browser, allowing queries from (SQLXML), 618–620
data retrieval and modification (Query

Analyzer), 106
temporary tables

global, 380
local, 379

Terra Server project example, 10
testing

installation, 74
nulls, 185–187

text
catalogs, creating with wizard, 269–270
and image size sent via replication, maximum, 643
search default language, 644
stored procedure, retrieving, 406–407
title case, converting to, 198–199
XML documents, 601

theta (Θ) join, 232
third-party products

load-testing, 734
resources, listed, 836

threads, max worker, 638
threshold, cursor, 648
time

back-ups, performing, 690
column data types, 139
merging data, 260–264
scalar functions, retrieving data (datatime),

193–195

timeout
locking, 358
system configuration, 643

tools, developer
actions, selecting, and properties, viewing (right-

click menu), 97
data retrieval, 101–102, 155–158
database diagrams (Database Designer), 100–101
described, 91
menus and toolbars, 97
MMC add-in, 91–92
objects, viewing available, 93–96
processes, starting and stopping, 89–91
Query Analyzer data retrieval and modification,

104–107
server, connecting to, 92–93
Table Design view, 99
Taskpad, 96
top 10 annoyances, 102–103
wizards, 98–99

torn-page detection, 654
Total SQL Analyzer (FMS), 154, 836
TPC (Transaction Processing Council), 9
trace events

background, 761
browsing, 760–761
data columns, 759–760
described, 755, 757–759

traffic, recording, 23
trail, audit

fixed trigger, data changes, 473–476
rolling back from, 477–478

training
benefits, 27
conferences, 30
Learning Tree SQL Server 2000 certifications, 29
Microsoft Certified DBA certification, 28–29
Microsoft Certified Professional program, 28
on-line independent certification company

(Brainbench.com), 29
Transact SQL. See T-SQL
transaction

defined, 335–337
dual-phase commits spanning multiple SQL

Servers, 18, 526, 643
flow triggers, 436–437
triggers, working with, 440–444

549359 Index.F 11/21/02 9:52 AM Page 886

887Index ✦ T–U

transaction log
backing up and shipping to backup server

described, 781–785
job, creating, 787–788
read-only standby query server, 788–789
stored procedures, initializing, 785–787
warm-standby availability, 790

location, 63, 117
recovery planning, 698–701
shrinking, 664

Transaction Processing Council. See TPC
transactional consistency, 548
transactional faults, 338–343
transactional integrity

ACID properties, 337–338
application locking design, 363–366
isolation levels, 343–344
locking

controlling, 355–359
duration, 353
granularity, 350–351
mode, 351–353
viewing, 353–355

log architecture, 344–349
multiple tasks competing for same resource

(deadlocks), 360–363
transaction, defined, 335–337
transactional faults, 338–343

transformations, 533–539
tree hierarchy

elements, DTDs (Document Type Definitions)
structure, 602–603

set-based solution, 393–394
standard select statement, 390–391
triggers, 445, 651
unique indexes, 152
views, creating, 300–302

triggers
after, 437–438
behavior, configuring, 651
creating, 437
data integrity, 53–54
described, 435–436
disabling, 439
instead of, 438–439, 834
limitations, 439
listing, 439–440

logically deleting data, 489–490
multiple-trigger interaction, 444–447
performance, advanced, 762
security, 440
transaction, 436–437, 440–444

true/false statements
case expressions, 170–171
exclusive or, 168–169
not, 169
table, retrieving data with select, 167–168
T-SQL procedural flow, 374–376
user-defined rules, 145–146
where conditions, combining multiple, 179–180

truncating transaction log, 701
T-SQL (Transact SQL)

access, granting, 726, 731
described, 24–25
distributed queries, working with, 512–515
filegroups, creating, 123
fixed database roles, assigning with, 733
raw batches, executing

filegroups, modifying, 123
retrieving data with Select, 157–158
SQL Server client components, 21–22, 23
stored procedures, debugging, 414–415

restore, performing, 706–709
scripts, 126
string functions, 196–199

tuples
attribute, assigned (primary key), 38
on each side (cardinality), 40–41

two-digit-year cutoff, server display, 645

U
unattended installation, 73–74
Unicode, 64, 126, 138
union

rows common to both data sets, finding
(intersection union), 246–248

rows found in only one of data sets (difference
union), 249–250

unique constraints, 142–143
unique indexes

indexes, creating, 152
obstacles to modifying data, 328

unique values, 140
uniqueidentifier data type, 131–132

549359 Index.F 11/21/02 9:52 AM Page 887

888 Index ✦ U–V

Update Data Optimization Information Screen, 666
updated tables

code, developing, 833
creating, 800
distributed-partition view, 806–808
local-partition view

creating, 800
moving data, 803–805
segmenting data, 797–800
selecting through, 800–802
updating through, 802–803

selecting, 800–802
updating

columns, triggering when, 440–442
database auto options, 647
global search and replaces, 314–315
indexed views and queries, 796
keys, 129
mode, locking, 352
multiple tables, referencing, 315–318
OLTP database, 34–35
permission, 735
publications, 555–557
security table, 466–468
single table, 313–314
viewing before committing, 338–340
views, allowing, 297–298

uppercase, converting string to, 197, 198
upsizing from Access, 77–81
U.S. geological survey photos, 10
user

authentication mode, 65
concurrent data retrieval and modification, 337
connections, measuring, 757
data columns

calculated, 140–141
column data types, 137–140
constraints and defaults, 141–145
data catalog, 145–146

database-level security, 718–719
databases, recovery

bulk-logged, 692
concepts, 687–688
database, backing up, 693–698
Enterprise Manager, performing restore with,

703–705
full, 690–691
master database failure, 711
modifying, 693

options, configuring, 653–654
problems, detecting, 702
reasons to restore database, 701–702
sequences, 702–703
setting, 692–693
simple, 689–690
transaction log, 698–701

identifying, 718–719
information, retrieving, 193
list, 740–741
load testing, 754
primary key, protecting from, 129–130
shipping, warm-standby availability, 790

user-defined
data catalog rules, 145–146
data integrity, 53–54
data type, 141–142, 146
error alerts, 676–679
functions

code, developing, 833
inline table-valued functions, 428–431
multistatement table-valued functions, 431–432
permission to execute, 735
scalar functions, 425–428

V
validation

keys, creating, 129–130
performance, advanced, 762
user-data columns, 141–145
XML, 597

variables database programming with T-SQL, 371–373
variable-word-weight word searches, 282–283
variant data, 140
Venn diagrams, 216
verifying

database with code, 698
log files, 702

versions data connectivity, 544–545
versions, SQL Server

CE edition, 16
Enterprise (Developer) edition, 13–15
Microsoft Developer Network (MSDN), 16
MSDE/Desktop Edition, 16
Personal Edition, 15–16
Standard Edition, 15

view
ad hoc queries, 293
alternatives, 301

549359 Index.F 11/21/02 9:52 AM Page 888

889Index ✦ V–W

with check option, 294–295
database security and, 747–748
DDL (Data Definition Language) code, 291–292
described, 289–290
distributed queries, working with, 519
distributed-partition tables, 805–808
Enterprise Manager, 290–291
indexes, 13, 116, 148
local-partition tables

creating, 800
moving data, 803–805
segmenting data, 797–800
selecting through, 800–802
updating through, 802–803

locking, 353–355
nested, 300–302
order by clause, 295–296
with order by code, developing, 834
performance problems, 298–300
protecting, 296–297
query-optimization plans and execution statistics

filegroups, modifying, 123
retrieving data with Select, 157–158
SQL Server client components, 21–22, 23
stored procedures, debugging, 414–415

restrictions, 292–293
updatable, 297–298
XML, 595–596

virtual directories, allowing queries from browser
(SQLXML), 615–617

visible entities, 38
Visio, 27, 154
Visual Basic, 743
Visual Studio projects, 586–589

W
warehousing tasks, 541
warm-standby server

crash, detecting and handling, 790
Enterprise edition, 781–785
going live, 790–791
log shipping

configuring, 781–783
job, creating, 787–788
monitoring, 784
read-only standby query server, 788–789
roles, switching, 784–785
servers, 781
stored procedures, 785–78

original primary server, returning to, 791
SQL Server Agent, 785–789
users, shipping, 790

warnings, 650, 674–679
Web browser, allowing queries from (SQLXML)

HTTP queries, 617–618
template queries, 618–620
virtual directories, 615–617

Web pages
described, 835–836
security, supporting, 719–720

Web, publishing data on, 620–621
Web sites, addresses listed

author, 835
certification programs, 28, 29, 835
conferences, 30
corporate databases, sample running

on SQL Server 2000, 9
groups and organizations, 836
publications, 835
service packs, 813
SQL Server versus Oracle, 835
TerraServer, 10
third-party products, 836
Venn diagrams, 216

where conditions table, retrieving data with Select,
172–176

where table, retrieving data with Select, 179–180
wildcard

columns in table order, 164
patterns within string, searching, 177–179
searches, 280

Windows (Microsoft)
disks, managing, 69
error messages, calling, 398–400
language, selected, 63
security based on, 719–726
SQL Server editions, 13–16
SQL Server running inside, 3, 61–62
word/phrase indexing system, 267

with check option view, 294–295, 333–334
with ties option rows, returning few (top

keyword), 163
wizards

Access, upsizing from, 78–80
Copy Database Wizard, 498–501
Create Index Wizard, 147–148
Database Maintenance Plan Wizard, 666–668
Developer Tools, 98–99
Tuning Wizard, 774–776

549359 Index.F 11/21/02 9:52 AM Page 889

890 Index ✦ W–Z

word searches
binary objects, 285–286
English basis, specifying, 18
indexes, searching full-text, 267–268, 276–285
variable-word-weight, 282–283
word-inflection based on common root, 281–282
word-proximity (near option), 280–281

workflow precedence, 542
write, cascading during, 491

X
XML (eXtensible Markup Language)

auto, 609–610
documents, 598–601
DTDs (Document Type Definitions), 602–605

EDI (Electronic Data Interchange) and, 594–595
.Net, 31
parsing, 595
publishing, 596–597
queries from browser (IIS Virtual Directory

Manager), 24
validation, 597
viewing, 595–596

XPath, 615
XSL (eXtensible Stylesheet Language)

schema document, 606–608
transforming with, 612–615

Y
years, two-digit-year cutoff, server display, 645

549359 Index.F 11/21/02 9:52 AM Page 890

Wiley Publishing, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the soft-
ware packet(s) included with this book “Book”. This is a license agreement “Agreement”
between you and Wiley Publishing, Inc.”WPI”. By opening the accompanying software
packet(s), you acknowledge that you have read and accept the following terms and condi-
tions. If you do not agree and do not want to be bound by such terms and conditions,
promptly return the Book and the unopened software packet(s) to the place you obtained
them for a full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive license
to use one copy of the enclosed software program(s) (collectively, the “Software” solely
for your own personal or business purposes on a single computer (whether a standard
computer or a workstation component of a multi-user network). The Software is in use
on a computer when it is loaded into temporary memory (RAM) or installed into per-
manent memory (hard disk, CD-ROM, or other storage device). WPI reserves all rights
not expressly granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in and
to the compilation of the Software recorded on the disk(s) or CD-ROM “Software
Media”. Copyright to the individual programs recorded on the Software Media is owned
by the author or other authorized copyright owner of each program. Ownership of the
Software and all proprietary rights relating thereto remain with WPI and its licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival purposes,
or (ii) transfer the Software to a single hard disk, provided that you keep the orig-
inal for backup or archival purposes. You may not (i) rent or lease the Software,
(ii) copy or reproduce the Software through a LAN or other network system or
through any computer subscriber system or bulletin- board system, or (iii) mod-
ify, adapt, or create derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may
transfer the Software and user documentation on a permanent basis, provided
that the transferee agrees to accept the terms and conditions of this Agreement
and you retain no copies. If the Software is an update or has been updated, any
transfer must include the most recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual require-
ments and restrictions detailed for each individual program in the About the CD-ROM
appendix of this Book. These limitations are also contained in the individual license
agreements recorded on the Software Media. These limitations may include a require-
ment that after using the program for a specified period of time, the user must pay a
registration fee or discontinue use. By opening the Software packet(s), you will be
agreeing to abide by the licenses and restrictions for these individual programs that
are detailed in the About the CD-ROM appendix and on the Software Media. None of the
material on this Software Media or listed in this Book may ever be redistributed, in
original or modified form, for commercial purposes.

6549359 EULA.F 11/21/02 9:52 AM Page 891

5. Limited Warranty.

(a) WPI warrants that the Software and Software Media are free from defects in mate-
rials and workmanship under normal use for a period of sixty (60) days from the
date of purchase of this Book. If WPI receives notification within the warranty
period of defects in materials or workmanship, WPI will replace the defective
Software Media.

(b) WPI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH
RESPECT TO THE SOFTWARE, THE PROGRAMS, THE SOURCE CODE CONTAINED
THEREIN, AND/OR THE TECHNIQUES DESCRIBED IN THIS BOOK. WPI DOES NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION OF THE SOFTWARE WILL BE
ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other
rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) WPI’s entire liability and your exclusive remedy for defects in materials and work-
manship shall be limited to replacement of the Software Media, which may be
returned to WPI with a copy of your receipt at the following address: Software
Media Fulfillment Department, Attn.: Microsoft SQL Server 2000 Bible, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, or call
1-800-762-2974. Please allow four to six weeks for delivery. This Limited Warranty
is void if failure of the Software Media has resulted from accident, abuse, or mis-
application. Any replacement Software Media will be warranted for the remainder
of the original warranty period or thirty (30) days, whichever is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever (includ-
ing without limitation damages for loss of business profits, business interruption,
loss of business information, or any other pecuniary loss) arising from the use of
or inability to use the Book or the Software, even if WPI has been advised of the
possibility of such damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability for
consequential or incidental damages, the above limitation or exclusion may not
apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for
or on behalf of the United States of America, its agencies and/or instrumentalities “U.S.
Government” is subject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause of DFARS 252.227-7013, or subparagraphs
(c) (1) and (2) of the Commercial Computer Software - Restricted Rights clause at FAR
52.227-19, and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and
revokes and supersedes all prior agreements, oral or written, between them and may
not be modified or amended except in a writing signed by both parties hereto that
specifically refers to this Agreement. This Agreement shall take precedence over any
other documents that may be in conflict herewith. If any one or more provisions con-
tained in this Agreement are held by any court or tribunal to be invalid, illegal, or oth-
erwise unenforceable, each and every other provision shall remain in full force and
effect.

6549359 EULA.F 11/21/02 9:52 AM Page 892

6549359 EULA.F 11/21/02 9:52 AM Page 893

6549359 EULA.F 11/21/02 9:52 AM Page 894

6549359 EULA.F 11/21/02 9:52 AM Page 895

6549359 EULA.F 11/21/02 9:52 AM Page 896

If Microsoft SQL Server 2000 can do it,
you can do it too . . .
Here’s everything you need to harness the power of SQL Server 2000, Microsoft’s high-performance, Web-enabled
client/server database and data analysis package. With a focus on performance and data integrity, database
expert Paul Nielsen shows you how to design performance into your database from day one. From basic installation
to working with XML, monitoring, and performance tuning — a topic so hot, it merits an entire section — Nielsen
provides clear instructions, sound theory, and a special “Best Practice” icon that points to the most effective way
to accomplish a given task. It’s more than a guidebook; it’s your total SQL Server 2000 toolkit.

Shelving Category:
SQL Server/Database

Reader Level:
Beginning to Advanced

System Requirements:
PC running Windows XP, 2000 Pro, Win NT 4
with SP 5 or later. See “What’s on the CD-ROM”
appendix for details and complete system
requirements. ISBN 0-7645-4935-9

$49.99 USA
$74.99 Canada
£37.50 UK

Master the
bestselling
client/server
database platform

Build high-
performance,
enterprise-class
databases

Analyze data
with advanced
SQL techniques

Paul Nielsen

“Something for everyone . . . this book includes examples
to demonstrate concepts along with little-known

technical information about SQL Server.”
—Melinda S. King, President of Best Technology Solutions, Inc.

,!7IA7G4-fejdfj!:p;o;t;T;T

Sample applications,
utilities, code
examples, and

more on CD-ROM BONUS
CD-ROM
Includes 6 sample databases,
10,000+ lines of code, SQL
Server Utilities, and useful Web links

w w w . w i l e y . c o m / c o m p b o o k s /

100%
O N E H U N D R E D P E R C E N T

C O M P R E H E N S I V E
A U T H O R I T A T I V E
W H A T Y O U N E E D
O N E H U N D R E D P E R C E N T

• Sample database applications and code examples from the book
• SQL Server utilities
• Links to Web sites, including the author’s SQL Server Web site,

www.IsNotNull.com

SQL Server 2000
Bible

*85555-BAHJHh

SQL Server 2000
MicrosoftMicrosoft

NIELSEN

®®

Inside, you’ll find complete coverage
of SQL Server development
• Design database schemas for performance, adapt integrity, and agility
• Understand ACID and Transactional Integrity and

build rock-solid databases
• Use relational algebra to write powerful queries
• Tune indexes as the bridge between data and query
• Analyze Query Execution plans for performance
• Create T-SQL stored procedures, triggers, and user-defined functions
• Share data using DTS, distributed queries, XML, and ADO.NET
• Analyze data with Analysis Services
• Add advanced scalability, availability, performance, and

portability to your database

100%
C O M P R E H E N S I V E

™™

Explore the numerous tasks available
within Enterprise Manager.

Learn to analyze
query execution

plans to see
what’s affecting

performance

Paul Nielsen explains
how to accomplish

database tasks using
the graphical tools
and using the raw

SQL code.

M
icrosoft

SQ
L Server 2000

M
icrosoft

SQ
L Server 2000

® ®

™ ™

w w w . S Q L S e r v e r B i b l e . c o m

BONUS CD-ROM!

549359 Cover 11/15/02 1:53 PM Page 1

	Microsoft SQL Server 2000 Bible
	About the Authors
	Credits
	Preface
	Welcome to this Book
	The Writing Style
	Conventions
	Icons
	Walking Through the Book
	Development Philosophy
	Organization

	The Sample Databases
	www.IsNotNull.com
	Your Input

	Acknowledgments
	Contents at a Glance
	Contents
	Part I: Laying the Foundation
	Chapter 1: Introducing SQL Server
	The Client/Server Database Model
	Desktop Databases
	Client/Server Databases
	Client/Server Roles
	N-Tier Design

	The Advantages of SQL Server
	ACID Properties and High Availability
	SQL Server Has Become the Standard
	SQL Server Security
	SQL Server Performance and Scalability
	Balanced and Complete
	Out of the Box Experience
	Developer Flexibility
	Price and Performance

	Selecting the Right SQL Server 2000 Edition
	Enterprise (Developer) Edition
	Standard Edition
	Personal Edition
	MSDE/Desktop Engine
	SQL Server CE Edition
	Licensing SQL Server 2000
	MSDN Universal

	Server Components
	SQL Server Engine
	SQL Server Agent
	Distributed Transaction Coordinator (DTC)
	Microsoft Search Service
	SQL Mail
	English Query
	Data Transformation Services
	Analysis Services

	Client Components
	Server Network Utility
	Client Network Utility
	SQL Server Service Manager
	Enterprise Manager
	Query Analyzer
	Command-Line Utilities: Isql, osql, Bulk Copy
	SQL Books On-Line
	SQL Profiler
	Performance Monitor
	MSDTC Administrative Console
	IIS Virtual Directory Manager
	SQL Server Resource Kit

	Transact SQL
	Client Applications
	DB-Lib
	ODBC/DSN
	OLE-DB/ADO
	Microsoft Access
	Excel
	Visio
	Data Analyzer

	Certifications and Training
	Microsoft MCP
	MCDBA
	Learning Tree SQL Server 2000 Certifications
	Brainbench.com
	Conferences

	SQL Server in a Brave New .Net World
	.Net and Application Development
	.Net and XML
	Microsoft BizTalk and EDI
	How SQL Server Fits into .Net
	The Future

	Summary

	Chapter 2: Modeling the Logical Database Schema
	Database Basics
	Benefits of a Digital Database
	Tables, Rows, Columns
	Transaction Processing Databases
	Decision Support Databases
	Digital Nervous System

	Data Modeling
	Gathering Project Requirements
	Logical Database Schema
	Visible Entities
	Identifying Multiple Entities
	Modeling Relationships
	Normalization

	Data Integrity
	Entity Integrity
	Domain Integrity
	Referential Integrity
	User-Defined Integrity

	Object-Oriented Database Design
	Dynamic/Relational Database Design
	Basic Dynamic/Relational Design
	Dynamic/Relational Front-End Programming
	Advanced Dynamic/Relational Database Design

	Summary

	Chapter 3: Installing and Configuring SQL Server
	Planning Your Installation
	Operating System
	Planning the Security Accounts
	Planning the File Locations
	Planning the Sort Collation
	Planning the Network Protocols
	Planning the Authentication Mode
	Planning the Server Instances

	Hardware Recommendations
	Dedicated Server
	Copious Memory
	Using Multiple CPUs
	Disk-Drive Subsystems
	Network Performance

	Performing the Installation
	Attended Installations
	Unattended Installations
	Installing Multiple Instances
	Testing the Installation

	Installing Service Packs
	Upgrading from Previous Versions
	Upgrading from SQL Server 7
	Upgrading from SQL Server 6.5
	Upgrading from Versions Previous to 6.5
	After Upgrading
	Database Compatibility Level

	Upsizing from Access
	Converting to a Client/Server Design
	Using the Access Upsizing Wizard
	Access .adp Front-End Applications

	Migrating to SQL Server
	Upgrading from MySQL
	Migrating from Oracle

	Removing SQL Server
	Client Connectivity
	Server Network Utility
	Client Network Utility

	Exploring System Databases and Tables
	System Databases
	Pubs and Northwind
	System Tables
	Information Schema Views

	Summary

	Chapter 4: Using SQL Server's Developer Tools
	Using Service Manager
	Using Enterprise Manager
	The Microsoft Management Console Add-In
	Connecting to a Server
	Server Properties
	Navigating the Tree
	Taskpad
	Menus and Toolbars
	The Right-Click Menu
	The Wizards
	The Table Design View
	Building Database Diagrams
	The Query Designer

	Using Query Analyzer
	Connecting to a Server
	Executing SQL Batches
	Opening and Saving Scripts
	Object Browser
	Templates
	Viewing Query Execution Plans

	Summary

	Part II: Developing SQL Server Databases
	Chapter 5: Implementing the Physical Database Schema
	Designing the Physical Database Schema
	The Designing for Simplicity and Agility
	Designing for Performance
	Designing for Security
	Designing for Maintainability
	Responsible Denormalization

	Creating Databases
	Database-File Concepts
	Configuring File Growth
	Using Multiple Files
	Planning Multiple Filegroups

	Creating Tables
	Designing Tables Within Enterprise Manager
	Working with SQL Scripts
	Table and Column Names
	Filegroups

	Creating Keys
	Primary Keys
	Creating Primary Keys
	Creating Foreign Keys

	Creating User-Data Columns
	Column Data Types
	Calculated Columns
	Column Constraints and Defaults
	Data Catalog

	Creating Indexes
	Creating Indexes with Enterprise Manager
	Understanding Indexes
	Index Options

	Documenting the Database Schema
	Summary

	Chapter 6: Retrieving Data with Select
	Choosing Your Tool
	Selecting Data with Enterprise Manager
	Retrieving Data with Query Analyzer

	Selecting Data from a Single Table
	Basic Flow of the Select Statement
	Select Distinct
	Returning the Top Rows
	Columns, Stars, Aliases, and Expressions
	Bitwise Operators
	Case Expressions
	From Datasets
	Where Conditions
	Using the In Search Condition
	Ordering the Result Set

	Working with Nulls
	Testing for Null
	Handling Nulls

	Scalar Functions
	Server Environment Information
	User Information Functions
	Data-Time Functions
	String Functions
	Soundex Functions
	Data-Type Conversion Functions

	Summing and Grouping Data
	Aggregate Functions
	Grouping Within a Result Set
	Filtering Grouped Results
	Generating Totals

	Summary

	Chapter 7: Merging Data Using Relational Algebra
	Using Joins
	Inner Joins
	Outer Joins
	Self-Joins
	Cross (Unrestricted) Joins
	Exotic Joins

	Using Subqueries
	Simple Subqueries
	Correlated Subqueries

	Using Unions
	Intersection Union
	Difference Union

	Relational Division
	Relational Division with a Remainder
	Exact Relational Division
	Set Difference

	Three Query Scenarios
	Scenario #1: Northwind's Inventory Problem
	Scenario #2: Denormalizing Time Sequences
	Scenario #3: The Stockbroker Problem

	Summary

	Chapter 8: Searching Full-Text Indexes
	Configuring Full-Text Search Catalogs
	Enabling Full-Text Search on the Server
	Creating a Catalog with the Wizard
	Creating a Catalog with T-SQL Code
	Pushing Data to the Full-Text Index
	Maintaining a Catalog with Enterprise Manager
	Maintaining a Catalog in T-SQL Code
	Noise Files

	Word Searches
	The Contains Function
	ContainsTable

	Advanced Search Options
	Multiple Word Searches
	Searches with Wildcards
	Phrase Searches
	Word-Proximity Searches
	Word-Inflection Searches
	Variable-Word-Weight Searches

	Fuzzy Searches
	Freetext
	FreetextTable

	Binary Object Indexing
	Summary

	Chapter 9: Creating Views
	Why Use Views?
	Creating Views
	Creating Views with Enterprise Manager
	Creating Views with DDL Code
	View Restrictions
	Creating Views for Ad Hoc Queries
	The With Check Option
	Order By and Views
	Protecting the View

	Updatable Views
	Performance Problems with Views
	Nested Views
	Summary

	Chapter 10: Modifying Data
	Inserting Data
	Inserting One Row of Values
	Inserting a Result Set from Select
	Inserting the Result Set from a Stored Procedure
	Creating a Default Row
	Creating a Table While Inserting Data

	Updating Data
	Updating a Single Table
	Performing Global Search and Replaces
	Referencing Multiple Table While Updating Data

	Deleting Data
	Referencing Multiple Tables While Deleting
	Cascading Deletes
	Alternatives to Physically Deleting Data

	Potential Data-Modification Obstacles
	Data Type/Length Obstacles
	Primary Key Obstacles
	Foreign Key Obstacles
	Unique Index Obstacles
	Null and Default Obstacles
	Check Constraint Obstacles
	Instead of Trigger Obstacles
	After Trigger Obstacles
	Non-Updateable View Obstacles
	Views With-Check-Option Obstacles
	Security Obstacles

	Summary

	Chapter 11: Transactional Integrity
	Transactional Basics
	Transactional Integrity
	The ACID Properties
	Transactional Faults
	Isolation Levels

	Transaction-Log Architecture
	Transaction Log Sequence
	Transaction-Log Recovery

	Understanding SQL Server Locking
	Lock Granularity
	Lock Mode
	Lock Duration
	Viewing Locks

	Controlling SQL Server Locking
	Setting the Isolation Level
	Using Locking Hints
	Index-Level Locking Restrictions
	Controlling Lock Timeouts
	Evaluating Database Concurrency Performance
	Application Locks

	Deadlocks
	Creating a Deadlock
	Automatic Deadlock Detection
	Handling Deadlocks
	Minimizing Deadlocks

	Application Locking Design
	Implementing Optimistic Locking
	Lost Updates

	Summary

	Chapter 12: Programming with Transact-SQL
	Transact-SQL Fundamentals
	T-SQL Batches
	T-SQL Formatting
	Debugging Commands

	Variables
	Variable Default and Scope
	Using the Set and Select Commands
	Conditional Select
	Using Variables Within SQL Queries

	Procedural Flow
	If
	While
	Goto

	Examining SQL Server with Code
	sp_help
	Global Variables

	Temporary Tables and Table Variables
	Local Temporary Tables
	Global Temporary Tables
	Table Variables

	Dynamic SQL
	Executing Dynamic SQL
	sp_excecuteSQL
	Developing Dynamic SQL Code

	Recursive Select Variables
	Denormalizing a List
	Dynamic Crosstab Queries

	Cursors
	Cursor Basics
	Working with Cursors
	Denormalizing a List with a Cursor
	Building a Dynamic-Crosstab Query with a Cursor
	Navigating a Tree with a Recursive Cursor

	Error Handling
	Using @@Error
	Using @@RowCount
	T-SQL Fatal Errors
	Raiserror
	Error-Handling

	Summary

	Chapter 13: Developing Stored Procedures
	Managing Stored Procedures
	Create, Alter, and Drop
	Returning a Record Set
	Compiling Stored Procedures
	Stored Procedure Encryption
	System Stored Procedures

	Passing Data to Stored Procedures
	Input Parameters
	Parameter Defaults

	Returning Data from Stored Procedures
	Output Parameters
	Using the Return Command
	Path and Scope of Returning Data

	Using Stored Procedures Within Queries
	Debugging Stored Procedures
	Executing Remote Stored Procedures
	The Complete Stored Procedure
	The pGetPrice Stored Procedure
	The pOrder_AddNew Stored Procedure
	The pOrder_AddItem Store Procedure
	Adding an Order

	Summary

	Chapter 14: Building User-Defined Functions
	Scalar Functions
	Creating a Scalar Function
	Calling a Scalar Function
	Creating Functions with Schema Binding

	Inline Table-Valued Functions
	Creating an In-Line Table-Valued Function
	Calling an Inline Table-Valued Function
	Using Parameters

	Multistatement Table-Valued Functions
	Creating a Multistatement Table-Valued Function
	Calling the Function

	Summary

	Chapter 15: Implementing Triggers
	Trigger Basics
	Transaction Flow
	Creating Triggers
	After Triggers
	Instead of Triggers
	Trigger Limitations
	Disabling Triggers
	Listing Triggers
	Triggers and Security

	Working with the Transaction
	Determining the Updated Columns
	Inserted and Deleted Logical Tables
	Developing Multi-Row Enabled Triggers

	Multiple-Trigger Interaction
	Trigger Organization
	Nested Triggers
	Recursive Triggers
	Instead of and After Triggers
	Multiple After Triggers

	Summary

	Chapter 16: Advanced Server-Side Programming
	Developing Application Stored Procedures
	The AddNew Stored Procedure
	The Fetch Stored Procedure
	The Update Stored Procedure
	The Delete Stored Procedure

	Complex Business Rule Validation
	Complex Referential Integrity
	Row-Level Custom Security
	The Security Table
	The Security-Check Stored Procedure
	The Security-Check Function
	Using the NT Login
	The Security-Check Trigger

	Auditing Data Changes
	The Audit Table
	The Fixed Audit Trail Trigger
	Rolling Back from the Audit Trail
	Auditing Complications
	The Dynamic Audit- Trail Trigger and Procedure

	Transaction-Aggregation Handling
	Logically Deleting Data
	Logical Delete Triggers
	Undeleting a Logically Deleted Row
	Filtering out Logically Deleted Rows
	Cascading Logical Deletes
	Degrees of Inactivity

	Archiving Data
	Summary

	Part III: Data Connectivity
	Chapter 17: Transferring Databases
	Copy Database Wizard
	Working with SQL Script
	Detaching and Attaching
	Summary

	Chapter 18: Working with Distributed Queries
	Distributed Query Concepts
	Accessing a Local SQL Server Database
	Linking to External Data Sources
	Linking with Enterprise Manager
	Linking with T-SQL
	Linking with Non-SQL Server Data Sources

	Developing Distributed Queries
	Distributed Queries and Enterprise Manager
	Distributed Views
	Local-Distributed Queries
	Pass-Through Distributed Queries

	Distributed Transactions
	Distributed Transaction Coordinator
	Developing Distributed Transactions
	Monitoring Distributed Transactions

	Summary

	Chapter 19: Migrating Data with DTS
	The DTS Designer
	DTS Package Properties
	Connecting to Data
	Transformations
	The Source
	The Destination
	The Transformation
	Lookups and ActiveX Script Transformations
	Transformation Options

	Other DTS Tasks
	SQL Server Transfer Tasks
	Messaging Tasks
	Data Transfer Tasks
	DTS Processing Tasks
	Data Warehousing Tasks

	Workflow Precedence
	Executing the DTS Package
	Saving and Moving DTS Packages
	Deltas and Versions
	Summary

	Chapter 20: Replicating Databases
	Replication Concepts
	Transactional Consistency
	Replication Types

	Configuring Replication
	Creating a Publisher and Distributor
	Creating a Publication

	Replication Data
	Subscribing to the Publication
	Pushing a Subscription
	Pulling a Subscription
	Removing Replication

	Replicating to an Access Database
	Pushing a Subscription
	Pulling a Subscription
	Access Replication Issues

	Merge Replication Conflict Management
	Creating and Resolving Conflicts

	Summary

	Chapter 21: ADO and ADO.NET
	An Overview of ADO
	ADO and OLE-DB
	The ADO Object Model
	Understanding Data Providers
	Data Types
	ADO and Scripting

	An Overview of ADO.NET
	The ADO.NET Object Model
	Managed Providers
	Data Types

	Understanding ADO and ADO.NET Differences
	Using Server Explorer
	An Overview of the Server Explorer Hierarchy
	Accessing SQL Server
	Working with SQL Server Databases

	Working with Stored Procedures
	Accessing Stored Procedures with Server Explorer
	Adding Stored Procedures to Visual Studio Projects
	Passing Parameters to the Stored Procedure

	Creating a Basic Application
	Creating the DataAdapter
	Creating a Grid View

	Summary

	Chapter 22: XML and Web Publishing
	XML and EDI
	Working with XML
	XML Parsing
	XML Viewing
	XML Publishing
	XML Validation

	Inside an XML Document
	Declaration Section
	Root Element
	Elements
	Attributes
	Namespaces
	Well-Formed XML Documents
	XML Text

	Document Type Definitions (DTDs)
	DTD Structure
	General Entities
	Parameter Entities
	Defining Attributes
	Referencing the DTD

	XML Schema – XSDs
	XSD Elements
	XSD Attributes
	XSD Data Types and Validation
	Referencing an XSD Schema

	XML and SQL Server
	Creating XML with SQL Server 2000
	Reading XML into SQL Server

	Transforming XML with XSL
	XSL Style Sheets
	Transforming XML to XML

	XPATH
	SQLXML
	Virtual Directories
	HTTP Queries
	Template Queries

	Publishing Data on the Web
	Summary

	Part IV: Administering SQL Server
	Chapter 23: Configuring SQL Server
	Setting the Options
	Configuring the Server
	Configuring the Database
	Configuring the Connection

	Configuration Options
	Start/Stop-Configuration Properties
	Memory-Configuration Properties
	Processor-Configuration Properties
	Security-Configuration Properties
	Connection-Configuration Properties
	Server-Configuration Properties
	Index-Configuration Properties
	Configuring Database Auto Options
	Cursor-Configuration Properties
	SQL ANSI–Configuration Properties
	Trigger Configuration Properties
	Database-State-Configuration Properties
	Recovery-Configuration Properties

	Summary

	Chapter 24: Maintaining the Database
	DBCC Commands
	Database Integrity
	Index Maintenance
	Database File Size
	Miscellaneous DBCC Commands

	Managing Database Maintenance
	Planning Database Maintenance
	Database Maintenance Plan Wizard
	Command-Line Maintenance
	Monitoring Database Maintenance

	Summary

	Chapter 25: Automating Database Maintenance with SQL Server Agent
	Setting up SQL Server Agent
	Understanding Alerts, Operators, and Jobs
	Managing Operators
	Managing Alerts
	Creating User-Defined Errors

	Managing Jobs
	Creating a job category
	Creating a Job Definition
	Setting up the Job Steps
	Configuring a Job Schedule
	Handling Completion-, Success-, and Failure- Notification Messages

	Summary

	Chapter 26: Recovery Planning
	Recovery Concepts
	Recovery Models
	Simple Recovery Model
	The Full Recovery Model
	Bulk-Logged Recovery Model
	Setting the Recovery Model
	Modifying Recovery Models

	Backing up the Database
	Backup Destination
	Performing Backup with Enterprise Manager
	Backing up the Database with Code
	Verifying the Backup with Code

	Working with the Transaction Log
	Inside the Transaction Log
	Backing up the Transaction Log
	Truncating the Log
	The Transaction Log and Simple Recovery Model

	Recovery Operations
	Detecting the Problem
	Recovery Sequences
	Performing the Restore with Enterprise Manager
	Restoring with T-SQL Code

	System Databases Recovery
	Master System Database
	MSDB System Database

	Performing a Complete Recovery
	Summary

	Chapter 27: Securing Databases
	Security Concepts
	Server-Level Security
	Database-Level Security
	Object Ownership

	Windows Security
	Windows Security
	SQL Server Login

	Server Security
	SQL Server Authentication Mode
	Windows Authentication
	SQL Server Logins
	Server Roles

	Database Security
	Guest Logins
	Granting Access to the Database
	Fixed Database Roles
	Statement Permissions
	Application Roles

	Object Security
	Object Permissions
	Standard Database Roles
	Object Security and Enterprise Manager
	Object Ownership
	A Sample Security Model Example

	C2-Level Security
	Views and Security
	Summary

	Part V: Advanced Issues
	Chapter 28: Advanced Performance
	The Optimization Cycle
	Measuring Accuracy
	Measuring Response Time
	Script Testing
	Load Testing

	Monitoring SQL Server
	Performance Monitor
	SQL Profiler

	Developing Well-Performing Databases
	Database Design and Performance
	Constraints and Triggers
	Query Design and Performance
	Query Optimization
	Query-Execution Plans
	Measuring Query Performance
	Reusing Query Execution Plans

	A Balanced Index Strategy
	Indexing Basics
	Indexing and Database Size
	OLTP Indexing versus OLAP Indexing
	The Base Indexes
	Index Tuning
	Using the Index Tuning Wizard

	Locking and Performance
	Summary

	Chapter 29: Advanced Availability
	Warm-Standby Availability
	Log Shipping with Enterprise Edition
	Log Shipping with SQL Server Agent
	Shipping the Users
	Detecting and Handling a Crash
	Going Live on the Warm-Standby Server
	Returning to the Original Primary Server

	Failover Servers and Clustering
	Summary

	Chapter 30: Advanced Scalability
	De-normalization Indexes
	Indexed Views and Queries

	Partitioned Tables
	Local-Partition Views
	Distributed-Partition Views

	Summary

	Chapter 31: Analysis Services
	What's Included with Analysis Services
	The Process Needed to Analyze Data
	Installing Analysis Services
	Creating and Browsing Cubes
	The Analysis Manager MMC Snap-in
	Creating Your First Cube
	Querying the Cube from Analysis Manager
	Using Cubes from Microsoft Excel

	Summary

	Chapter 32: Advanced Portability
	Detecting Non-ANSI Standard Code
	Developing Portable Code
	The update...from Command
	The delete...from Command
	The top Command
	User-Defined Functions
	Partition Views
	The set Command
	Logic Programming Flow
	System Tables
	Instead of Triggers on Non-Updateable Views
	View with order by

	Summary

	Appendix A: Resources
	Books
	Publications
	Web Pages
	Third-Party Products
	Organizations

	Appendix B: Sample Databases
	The Sample Database Files
	Cape Hatteras Adventures Version 2
	Application Requirements
	Database Design

	OBX Kites
	Application Requirements
	Database Design

	The Family
	Application Requirements
	Database Design

	Aesop's Fables
	Application Requirements
	Database Design

	Material Specifications
	Application Requirements
	Database Design

	Appendix C: SQL Server 2000 Specifications
	Appendix D: What's on the CD?
	Index

