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1 Bundles and the Feasible Set

1.1 Bundles

A bundle is a vector (an ordered pair or “tuple” of numbers) representing amounts of things. In this class, our
models will often involve two things. Each number in the vector represents an amount of some underlying
good. The bundle (x1, x2) is a bundle of two goods where x1 represents the amount of good 1 in the bundle
and x2 represents the amount of good 2.

Bundle: x = (x1, x2)

To make this concrete, suppose we are building a model about the choice of ice cream bowls. If these bowls
can only have two flavors, vanilla and chocolate, then the possible bowls can be written as ordered pairs
where x1 is the amount of vanilla and x2 is the amount of chocolate.

Here are some possible bundles in this model: (0, 1) one scoop of chocolate. (2, 0) two scoops of vanilla.
(2, 2) two scoops of each flavor. Since these bundles are ordered pairs or vectors, we can plot them. The ice
cream examples are plotted in Figure 1.1.

Figure 1.1: The bundles (0, 1) , (2, 2) , (2, 0).

1.2 Feasible Set

The feasible set is the universe of bundles that might be relevant in a model. The feasible set defines the
scope of a model. In our ice cream example, the feasible set X might be the set of all bowls that have a
non-negative amount of scoops of vanilla and chocolate.

Feasible Set: X is the “feasible” set of bundles.

In reality, usually we are limited to choose an integer amount of scoops of ice cream. But allowing only
integer choices can cause some complexity in analyzing models. For this reason, we often assume that our
feasible sets allow bundles with any real number of each good. In this case, x = (1.25, 2.387) would be a
feasible bundle. Perhaps it is best to think of the quantities of each good as something like ounces of ice
cream. So this bundle would be 1.25 ounces of vanilla and 2.387 ounces of chocolate ice cream.
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2 Budget Set

While the feasible set X is all of the possible bundles, the budget set B is the set of bundles available to a
particular consumer. The budget set must be a subset of the feasible set.

Budget Set: B

In set notation we write: B ⊆ X which literally says “B is a subset of X”. The symbol ⊆ allows the two
sets to be equal. B does not have to be strictly smaller than X, it just can’t be bigger than X. That is,
anything in the budget set has to be a feasible bundle.

Budget sets can be almost anything. For instance, the ice cream shop might give you a coupon that says
“This coupon entitles you to either 7 ounces of vanilla ice cream or 3 ounces of vanilla and 4 ounces of
chocolate ice cream”. This is a weird coupon, but it is perfectly representable with our notation. In this
case, your budget set is: B = {(7, 0) , (3, 4)}. Normally, however, our budget sets will be more well-behaved.

2.1 Budget Sets from Prices and Income

Most of the time, we think of “budget” as meaning you have some amount of money you can spend on stuff.
Conveniently, this is the usual way we define B. We have prices p1 and p2 and an amount of money to spend
m.

Prices of good 1 and good 2: p1, p2

We usually call m the “income”.

Income: m.

To construct the budget set, first we need to calculate the cost of any bundle: p1x1 + p2x2. From here,
the set of bundles that a consumer can have is simply all the bundles for which the cost is less than
m. Mathematically: x1p1 + x2p2 ≤ m. Thus, we can define if formally this way. The budget set:
B ={x|x ∈ X &x1p1 + x2p2 ≤ m} . This set theory notation says that “B is the set of bundles x that
are both in the feasible set X and such that such that the price x1p1+x2p2 of the bundle is less than income
m.”

We will often want to look at the budget graphically. To do this, first we draw the budget line. This is the
set of bundles that are “just affordable”. That is, they cost exactly m.

Budget Line: x1p1 + x2p2 = m

Now we can plot this on an x1, x2 plane. Let’s put x2 of the vertical axis. In this case, it is useful to rewrite
the budget line into a form we are more familiar with: x2 = m

p2
− p1

p2
x1.

This is now clearly an equation for a line with intercept m
p2

and slope −p1

p2
. Before we plot it, let’s interpret

it a little. Notice that if x1 = 0 we get x2 = m
p2

. This says “If I were only to buy x2, I could afford m
p2

units
of x2. Furthermore, for every unit that we increase x1 by, x2 goes down by −p1

p2
. This says “Given that I

am spending all my money, if I want to buy one more unit of x1, I have to give up −p1

p2
units of x2. This is

a very important thing to know about the slope of the budget line. The slope of the budget line represents
the trade-off between x1 and x2 at the market prices.

Two useful bundles to know about are the endpoints. I recommend always labeling these on a graph of the
budget. The two endpoints are

(
m
p1
, 0
)

and
(
0, m

p2

)
. Respectively, these are how much x1 the consumer can

afford if they buy only x1 and the same for x2.
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Budget Set: x1p1 + x2p2 ≤ m

We are now ready to plot the budget set. It is the budget line and all of the bundles “below” the budget
line. A budget set formed this way from prices and income is shown in Figure 2.1.

Figure 2.1: Budget set.

2.2 Changing Prices and Income

We are often interested in how the budget set changes when we change one of the budget parameters: p1, p2
or m. Since the budget set is just all of the bundles on and below the budget line, we will just focus on what
happens to the budget line when we change one of these parameters.

It is easy to determine what happens to the budget line by looking at how a change in one of these parameters
affects the three key elements of the budget line: the slope −p1

p2
, the x1 intercept

(
m
p1
, 0
)
, and the x2 intercept(

0, m
p2

)
.

Suppose income m increases. Both endpoints therefore change. When m increases, m
p1

(maximum affordable
x1) increases and m

p2
(maximum affordable x2) increases. The slope does not change. If m decreases, the

opposite happens. The case of increasing m is shown in the left panel of Figure 2.2.

Suppose one of the prices changes:

p1. If p1 goes up, the slope decreases (becomes more negative). If p1 goes down, the slope increases. The x2

intercept stays the same. The case of increasing p1 is shown in the center panel of Figure 2.2.

p2. If p2 goes up, the slope increases. If p2 goes down, the slope decreases. The x1 intercept stays the same.
The case of increasing p2 is shown in the right panel of Figure 2.2.
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Figure 2.2: How the budget line changes with an increase in: m (left), p1 (center), p2 (right). In each
case, the blue line is the original budget, and the orange line is the budget after an increase in the relevant
parameter.

2.3 Taxes and other scenarios

Budget Line with a quantity tax on x1: x1p1 + tx1 + x2p2 = m

Taxes are a familiar method of varying a consumer’s budget. There are two common types of taxes: quantity
and ad valorem taxes.

In a quantity tax, consumers are charged a fixed amount of money per unit of a good they buy. For instance,
suppose a quantity tax of t is added to good 1. The consumer has to pay tx1 in tax. This gives us a new
budget of p1x1 + tx1 + p2x2 = m. This can also be written as (p1 + t)x1 + p2x2 = m which demonstrates
very clearly that a quantity tax simply increases the price of a good by t.

In an ad valorem tax, consumers are charged a percentage of the total amount they spend on a good. For
instance, suppose a ad valorem tax is 1%. The consumer spends a total of x1p1 on good 1. So the tax
changed is 0.01 (x1p1). More generally if the size of the ad valorem tax is τ (pronounced “tau”), this gives
us a new budget of p1x1 + τ (p1x1)+ p2x2 = m. This can also be written as [(1 + τ) p1]x1 + p2x2 = m. This
demonstrates, again, that an ad valorem tax is just another way of increasing the price of a good.

We will discuss other scenarios in class such as situations where the price of a good changes depending on
how much you buy.

3 The Preference Relation ≿

3.1 Definitions

A preference relation is a set of statements about pairs of bundles. The statement bundle x is preferred to
bundle y is shortened to x ≿ y.

Preference Relation: x ≿ y. “Bundle x is preferred to bundle y”

Let’s look back at our ice cream example. Again, let (x1, x2) be a bundle with x1 scoops of vanilla and
x2 scoops of chocolate. Suppose someone likes a scoop of vanilla more than a scoop of chocolate. Then
the following would be true for them: (1, 0) ≿ (0, 1). They might also like any number of scoops of vanilla
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more than that same number of chocolate. Then the following would also be true of their preferences:
(2, 0) ≿ (0, 2) and (3, 0) ≿ (0, 3) and (100, 0) ≿ (0, 100).

The following might be true about a consumer who does not care about flavor at all: (1, 0) ≿ (0, 1) , (0, 1) ≿
(1, 0). Notice that we have both (1, 0) ≿ (0, 1) and (0, 1) ≿ (1, 0). That is, a scoop of vanilla is just as good
as a scoop of chocolate and a scoop of chocolate is just as good as a scoop of vanilla. When this is the case,
we say the consumer is indifferent.

Indifference Relation: x ∼ y “Bundle x is indifferent to bundle y”

x ∼ y if and only if x ≿ y and y ≿ x.

When a consumer is not indifferent, we say they have strict preference for some bundles. Suppose a consumer
would much rather have two scoops of vanilla to one scoop then we have (2, 0) ≿ (1, 0) and (1, 0) ̸≿ (2, 0).
In this case we way that they strictly prefer (2, 0) to (1, 0) and use the symbol ≻. That is (2, 0) ≻ (1, 0) .

Strict Preference Relation: x ≻ y “Bundle x is strictly preferred to bundle y”

x ≻ y if and only if x ≿ y and not y ≿ x.

3.2 Assumptions on ≿

Axiom 1. Reflexive: For all bundles, the bundle is at least as good as itself.

In set notation: ∀x ∈ X : x ≿ x

Axiom 2. Complete: For every pair of distinct bundles, either one is at least as good as the other or the
consumer is indifferent.

In set notation: ∀x, y ∈ X&x ̸= y : x ≿ y or y ≿ x or both

This ensures a consumer can say “I’m indifferent.” but not “I don’t know” when comparing two bundles.

Axiom 3. Transitivity: If bundle A is preferred to B and bundle B is preferred to C, then bundle A is
preferred to C.

In set notation: x ≿ y, y ≿ z impliesx ≿ z

Transitivity (along with the other assumptions) implies we can always put a set of objects (or bundles) into
a ranking.

3.3 Indifference Curves and Other Sets

For every bundle, we can use the preference relation to define a few sets. ≿ (x) is the set of bundles at least
as good as x. ≻ (x) is the set of bundles strictly better than x. ∼ (x) is the set of bundles indifferent to x.

Set of points weakly preferred to x: ≿ (x) = {y|y ∈ X, y ≿ x}

Set of points strictly preferred to x: ≻ (x) = {y|y ∈ X, y ≻ x}

Set of points indifferent to x: ∼ (x) = {y|y ∈ X, y ∼ x}

Sets of indifferent bundles are very important in studying preferences. We call such a set of bundles an
“indifference curve”. We use indifference curves to visualize preferences. Note: There are many indifference
curves. We only sketch a few to get an idea of the “shape” of preferences.
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3.4 Indifference Curves Cannot Cross

If preferences are rational, there’s really only one thing we can say about indifference curves.

If ≿ is rational, two distinct indifference curves cannot cross.

The proof of this is remarkably simple and we will discuss it in class, though you are not responsible for the
proof.

3.5 Examples of Preferences

3.5.1 Perfect Substitutes

Perfect substitutes preferences have indifference curves that are straight lines.

These preferences are such that the willingness to trade-off between the goods is the same everywhere. The
indifference curves are always downward sloping lines with the same slope. The slope measures the amount
of x2 you are willing to give up to get 1 more unit of x1. A steep slope indicates a stronger relative preference
for x1. A shallow slope indicates a stronger relative preference for x2.

Figure 3.1: Indifference curves of perfect substitutes preferences where the consumer will always give up 2
units of x2 to get 1 unit of x1.

3.5.2 Perfect Complements

Perfect complements preferences have indifference curves that are L-shaped.

Perfect complements preferences represent situations where one good cannot substitute for the other. For
example: left and right shoes. No matter how many left shoes you have, they cannot replace a right shoe.
You must consume them in a 1-to-1 ratio.
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Figure 3.2: Indifference curves of perfect complements preferences where the consumer needs the goods in
1-to-1 combinations.

3.5.3 Bads

A “bad” is a product that a consumer actively dislikes. They prefer none of a bad to any positive amount
of a bad. In a bundle with one good and one bad, indifference curves slope upwards. If both products are
bads then indifference curves slope downwards, but preference increases towards the origin.

3.6 Further Assumptions: “Well Behaved Preferences”

3.6.1 Monotonicity

Monotonicity is the assumption that everything is a “good”. That is, more of either good makes the consumer
better off. There are two types of monotonicity:

Strict Monotonicity: For two bundles (x1, x2) and (y1, y2), (x1, x2) ≿ (y1, y2) if x1 ≥ y1 and x2 ≥ y2.
(x1, x2) ≻ (y1, y2) if either x1 > y1 or x2 > y2.
Monotonicity: For two bundles (x1, x2) and (y1, y2), (x1, x2) ≿ (y1, y2) if x1 ≥ y1 and x2 ≥ y2. (x1, x2) ≻
(y1, y2) if both x1 > y1 and x2 > y2

For example, perfect substitutes are monotonic and strictly monotonic. Perfect complements are monotonic
but not strictly monotonic. Monotonicity of either kind implies that indifference curves are downward sloping
and that preference increases to the north east (away from the origin).

3.6.2 Convexity

Convexity is the assumption that mixtures are better than extremes. Again, there are two forms of this
assumption. Strict and Weak.

Strictly Convex: For two indifferent bundles (x1, x2) ∼ (y1, y2), for any t ∈ (0, 1), the mixture given by
(tx1 + (1− t) y1, tx2 + (1− t) y2) ≻ (x1, x2) and (tx1 + (1− t) y1, tx2 + (1− t) y2) ≻ (y1, y2).
Weakly Convex: For two indifferent bundles (x1, x2) ∼ (y1, y2), for any t ∈ [0, 1], the mixture given by
(tx1 + (1− t) y1, tx2 + (1− t) y2) ≿ (x1, x2) and (tx1 + (1− t) y1, tx2 + (1− t) y2) ≿ (y1, y2).

As an example, perfect substitutes and perfect complements are both weakly convex because their indifference
curves include “flat” portions. On the other hand, the preferences below are strictly convex.
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Figure 3.3: Indifference curves of a strictly convex preference relation. A line segment has been placed
between two points on one of the indifference curves. Notice that it lies completely above that indifference
curve.

It is useful to think about the shape of convex preferences in terms of their indifference curves. Assuming
preferences are monotonic, if preferences are strictly convex, then each indifference curve lies strictly below a
line between any two points on that indifference curve. If preferences are weakly convex, then the indifference
curve always lies on or below a line between any two points on that indifference curve.

3.7 Marginal Rate of Substitution and Slope of the Indifference Curve

The marginal rate of substitution, or MRS, is defined as the slope of the indifference curve at a point. The
MRS measures willingness to trade off between good 1 and good 2. Approximately, it’s how much x2 the
consumer would give up to get one more unit of x1.

4 Utility

4.1 Definition

A utility function is a way of assigning “scores” to bundles, such that better bundles according to ≿ get a
higher score.

A utility function U (x) represents preferences ≿ when, for every pair of bundles x and y, U (x) ≥ U (y) if and only if x ≿ y.

Example 1. Suppose A ≻ B ≻ C ∼ D. Some utility functions that represent these preferences are
U (A) = 10, U (B) = 5, U (C) = U (D) = 0 and also U (A) = 12, U (B) = 1, U (C) = U (D) = −100.

Definition. A utility function U (x) represents preferences ≿ when for every pair of bundles x and y,
U (x) ≥ U (y) if and only if x ≿ y. That is, if x is better than y according to ≿ it gets a higher utility
according to U ().

Because the magnitude of exact utility scores are meaningless, and only the relationships between scores
matter, we say that these utility functions are “ordinal” rather than “cardinal”. There is no sense in which
two times higher utility means that the preference is two times stronger. We can only infer the ranking of
things, but not how strong the preferences are from ≿ and a utility function that represents ≿.
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4.2 Transformations

Any strictly increasing function of a utility function represents the same preferences as the original utility function.

Because utility is ordinal, we are free to transform one utility function into another, as long as it maintains
the same preferences. Any strictly increasing function of a utility function represents the same preferences
as the original utility function. For example, suppose: U (x1, x2) = x1 + x2. This represents the preferences
of someone who only cares about the total amount of stuff, but not the composition. Here are some other
utility functions that represent the same preferences: U ′ (x1, x2) = x1+x2+100 = U (x1, x2)+100. Another
one is U ′ (x1, x2) = (x1 + x2)

2
= (U (x1, x2))

2.

4.3 MRS from Utility Function

The MRS is the (negative of) the ratio of marginal utilities: MRS = −mu1

mu2
= −

∂u(x1,x2)
∂x1

∂u(x1,x2)
∂x2

Recall that the marginal rate of substitution (MRS) is the slope of the indifference curve.

Definition. The marginal utility of good i (mui) is ∂u(x1,x2)
∂xi

.

We can get the MRS at any point by taking the ratio of marginal utilities. MRS = −mu1

mu2
= −

∂u(x1,x2)
∂x1

∂u(x1,x2)
∂x2

Note that, because two preferences that are the same will have the same indifference curves, they will also
have the same MRS.

Two utility functions with the same MRS everywhere represent the same preferences.

Same MRS, same preferences.

4.4 Examples of Utility Functions

4.4.1 Perfect Substitutes

Perfect Substitutes: u (x1, x2) = ax1 + bx2

Perfect substitutes preferences can be represented with a utility function of the form u (x1, x2) = ax1 + bx2.
The MRS is −a

b everywhere. This constant MRS implies a constant willingness to trade off between the two
goods.

4.4.2 Quasi-Linear

Quasi-Linear: u (x1, x2) = x1 + f (x2)

With quasi-linear preferences, the consumer eventually gets tired of one of the two goods. One common quasi-
linear utility function is u (x1, x2) = x1 + ln (x2). The marginal rate of substitution for these preferences are

MRS = −
∂(x1+ln(x2))

∂x1
∂(x1+ln(x2))

∂x2

= −x2. To interpret this, notice the that amount of x2 the consumer is willing to give

up increases as x2 increases but does not depend on the amount of x1 they have.

Another example of a quasi-linear utility function is u (x1, x2) = 10x1 +
√
x2. Practice taking the MRS of

this function. Notice that it only depends on the amount of x2.
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4.4.3 Cobb-Douglas

Cobb-Douglas: u (x1, x2) = xα
1x

β
2

With Cobb-Douglas preferences, the consumer gets tired of both goods. A general form of these preferences is

represented by the utility function u (x1, x2) = xα
1x

β
2 . Let’s look at the marginal utilities. mu1 =

∂(xα
1 xβ

2 )
∂x1

=

αxα−1
1 xβ

2 , mu2 =
∂(xα

1 xβ
2 )

∂x2
= βxα

1x
β−1
2 . Thus, the MRS is MRS = −MU1

MU2
= −αxα−1

1 xβ
2

βxα
1 xβ−1

2

= −α
β

x2

x1
. Note that

as the ratio x2

x1
increases (the consumer has proportionately more x2) the MRS increases and they are willing

to give up more x2 to get x1.

4.4.4 Perfect Complements

Perfect Complements: u (x1, x2) = min {ax1, bx2}

With perfect complements preferences, there is no substitution possible. The MRS is not defined for this
function because there are no trade-offs the consumer will make.

4.5 Properties of Preferences and Utility

5 Choice

The goal of a consumer is to choose their most-preferred bundle from the budget set. Formally, they look for
a bundle (x1, x2) such that for all other bundles (y1, y2) ∈ B, (x1, x2) ≿ (y1, y2). In general, this is not that
easy to work out. But, when we have a utility function that represents U along with a competitive budget
set, the problem is not so hard. We can write it this way:

The consumer problem is to maxx1,x2
U (x1, x2) subject to p1x1 + p2x2 ≤ m. This says they find the bundle

(x1, x2) that gives the highest value of U (x1, x2) such that it costs no more than m.

For any consumer with monotonic preferences, more is better, so we know that the consumer will not spend
less than their entire income. Note that if we were writing a model where savings was important, they might.
We will see that later. But for now, our models are simple. The consumer has only one time period to buy
goods in and they have a fixed amount of money to do it. In this case, we can be sure they will spend all of
their money. Because of this, for a consumer with monotonic preferences, we can write their maximization
problem this way:

Consumer Maximization Problem: maxx1,x2
U (x1, x2) subject to p1x1 + p2x2 = m

We can use a little calculus to solve this problem.

5.1 Three Possibilities

Assuming ≿ is monotonic, there are only three possibilities for where an optimal bundle can occur on a
budget line. These come from one key observation.

At the optimal bundle, the indifference curve cannot pass through the budget line.

The argument for this is simple. Look at the drawing below. Suppose we think the bundle X is optimal.
Here, the indifference curve passes through the budget line and into the interior of the budget set. That
means there must a bundle on the indifference curve in the part of the budget set that does not cost all of
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income m. A point like X ′. But, since X ′ costs less than M , the consumer could take the leftover money
and buy more of everything. This would give them a point like X ′′ which, if preferences are monotonic, must
be strictly better than X ′ which is indifferent to X. Thus X ′′ is affordable and strictly better than X.

Figure 5.1: An optimal bundle cannot be on an indifference curve that passes “into” the budget set. The
indifference curve containing x and x′ is shown in orange. The budget line is shown in blue.

There are only three possibilities for an optimal budget on an indifference curve that does not cross into the
budget set. These are enumerated below and demonstrated graphically.

1. (Tangent) It is at bundle where the indifference curve at that bundle had the same
slope as the budget line.
2. (Touching but not smooth) The bundle is a “non-smooth” point on the indifference
curve, but the that point just touches the budget line.
3. (Boundary) We are at one of the boundaries (x1 = 0 or x2 = 0) in this case the
slope of the indifference curve and the slope of the budget need not be equal.

Figure 5.2: Graphical Examples of the three possibilities. Budget is shown in blue. The indifference curve
through the optimal point is shown in orange.

Importantly, if we know the indifference curves are smooth everywhere (we can identify this case because we
will be able to take the derivative of the utility function), then for a bundle containing some of each good
(i.e. not on the boundary of the budget set) to be optimal it must be on a tangent point. The slope of
the indifference curve at that optimal bundle is the same as the slope of the budget line. This condition is
formalized by the familiar equation: MRS = −p1

p2
.
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If the utility function is smooth,

MRS = −p1

p2
is necessary for an optimal bundle that contains some of both goods.

Another way to interpret the tangency condition is as follows. Normally we have −MU1

MU2
= −p1

p2
for the

tangency condition. But we can rearrange this to MU1

p1
= MU2

p2
. Notice that if we divide marginal utility by

the price of that good, it tells us the marginal utility of a dollar spent on the good. To see this, suppose
the marginal utility of a good is 2, but the good costs $2 per unit. Then spending $1 gets half a unit
which increases utility by about 1. If we take MU

p we also get 1. Thus, we have the following alternative
interpretation of the tangency condition.

The tangency condition ensures that the marginal unit per dollar spent on both goods is the same.

5.2 Examples

5.2.1 Cobb-Douglas:

Let’s solve u (x1, x2) = x1x2, p1x1 + p2x2 = m. The MRS is MRS = −
∂(x1x2)

∂x1
∂(x1x2)

∂x2

= −p1

p2
. Thus the tangency

condition is −x2

x1
= −p1

p2
or x1p1 = x2p2. We also know the optimal bundle occurs on the budget line

x1p1 + x2p2 = m. We have two equations and two unknowns. We can solve the tangency condition and
budget condition together to get. x∗

1 = 1
2
m
p1

and x∗
2 = 1

2
m
p2

. Thus, the optimal bundle, or the demand, is(
1
2m

p1
,

1
2m

p2

)
.

5.2.2 Perfect Substitutes

Let’s solve u (x1, x2) = 2x1 + x2 with budget 1x1 + 1x2 = 10. That is p1 = 1,p2 = 1,m = 10. The MRS is

MRS = −
∂(x1x2)

∂x1
∂(x1x2)

∂x2

= − 2
1 = −2. Thus the tangency condition is −2 = −1. Since this can never happen, the

only possible solution is one on the boundary. That is, it does not contain some of both goods.

If the consumer only buys x1, they can get the bundle
(

m
p1
, 0
)
= (m, 0) which has utility 20. If they only

buy x2, they can get
(
0, m

p2

)
= (0,m) which has utility 10.

Thus, the optimal bundle is (m, 0).

Note: If we had made the budget p1 = 2, p2 = 1,m = 10 or 2x1 + 1x2 = 10 then we would have gotten
− 2

1 = − 2
1 for the tangency condition. In this case, the indifference curves have the same slope as the budget

line. As long as they spend all of their money, any bundle is optimal. This is because they tradeoff they are
willing to make is the same as the trade-off that the market asks them to make to stay affordable.

All of the bundles such that: p1x1 + p2x2 = m are optimal.

5.2.3 Perfect Complements (Left and Right Shoes)

Suppose a consumer buys x1 left shoes and x2 right shoes. Their utility function is u (x1, x2) = min {x1, x2}
and suppose p1 = 2,p2 = 1,m = 15. The budget line is 2x1 + x2 = 15. We still know the budget condition
must be true at the optimum. What is the other condition? Notice that here we cannot take derivatives.
However, the only possible place an indifference curve could just touch the budget line without crossing into
it is at the kink points of the indifference curves. Thus, the equation for the kink points, or what I call
the “no waste condition” serves the place of our tangency condition in the previous problems. The no waste
condition in this problem specifies: x1 = x2. Solving the no waste condition along with the budget condition
gets us: x1 = 5 and x2 = 5.
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5.2.4 Perfect Complements (2 Apples, 1 Crust)

Suppose a consumer makes pies using 2 apples x1 and 1 crust x2 for every pie. Their utility function is
u (x1, x2) = min

{
1
2x1, x2

}
and suppose p1 = 2,p2 = 1,m = 15. The budget line is 2x1 + x2 = 15.

Again, the budget condition must be true at the optimum: 2x1+x2 = 15. And the no waste condition... 1
2x1 =

x2. Solving these together, we get x1 = 6, x2 = 3.

5.2.5 Max Preferences

Suppose a consumer’s utility is the maximum of the amounts of x1 and x2 they have. u (x1, x2) =
max {x1, x2}. Suppose the budget line is 2x1 + x2 = 15. What is the optimal bundle?

6 Demand

In this section, we explore how demand for goods changes when we changes the “parameters” of the consumer’s
problem. Those parameters are the prices and income. We will look at how demand changes when one
parameter changes but the other are held fixed. This exercise is known as comparative statics.

6.1 Marshallian Demand

In the examples in the previous chapter, we solved for demand given specific prices and income. However,
we can also solve for demand while leaving these parameters unspecified. When we do that, we find the
“Marshallian demand”.

Marshallian demand is the optimal amount of a good as a functions of the prices and income. x∗
1 (p1, p2,m), x∗

2 (p1, p2,m) .

The process of solving for Marshallian demand is the same as solving for the optimal bundle at some particular
prices and income. We just leave the prices and income as variables rather than plug in values.

6.1.1 Example of Marshallian Demand for Cobb Douglass Preferences.

Let’s find the Marshallian demand for this utility function: u (x1, x2) = x1x2.

First, we write down the tangency condition:

−x2

x1
= −p1

p2

p2x2 = p1x1

Notice that this says “spend the same on both goods” and thus implies the consumer will spend half of my
money on good one and half on good two. This will always be the case for any Cobb Douglass utility
function with the same exponent on both goods like u (x1, x2) = x1x2 or u (x1, x2) = x2

1x
2
2 or u (x1, x2) =

x
1
2
1 x

1
2
2 .

And now the budget equation:

p1x1 + p2x2 = m
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Solve this system of equations. Plug the tangency condition in to the budget equation and solve for x1:

p1x1 + p1x1 = m

2p1x1 = m

p1x1 =
m

2

x1 =
1
2m

p1

Plug this back into the tangency condition to get demand for good 2:

p1x1 = p2x2

p1

( 1
2m

p1

)
= p2x2

1

2
m = p2x2

x2 =
1
2m

p2

We now have the Marshallian demands:

x∗
1 (p1, p2,m) =

1
2m

p1
, x∗

1 (p1, p2,m) =
1
2m

p2

6.2 Changes in Income

Now that we know how to find a Marshallian demand, we can start looking at how demand changes when
we change one parameter of the problem. We will start with the question of “how does demand change with
income?” There are two possibilities.

Normal: Demand goes up when income goes up.
Inferior: Demand goes down when income goes up.

Example. Cobb-Douglas utility: U (x1, x2) = x1x2

As we saw above, for this utility function, demand for x1 =
1
2m

p1
. Since m is only in the numerator, demand

must be increasing as income increases. Thus, the good is normal. Another way to see this is to take the
derivative of x1 with respect to m. If we do that we get

1
2

p1
. Since this is a positive number regardless of

what p1 is, it tells us that x1 increases as m increases.
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6.2.1 Engel Curve

The Engel Curve is the relationship between income and demand for a good. Because of... tradition I guess,
the Engel curve had income (m) on the vertical axis and the demand on the horizontal axis. This is not how
I would personally chose to plot this, but it is what you will see in other courses and textbooks, so I will
perpetuate this oddity. One way to interpret the Engle curve is telling us the amount of income a consumer
would need to have to demand some amount of that good given some prices.

For instance, suppose demand for x1 is x1 =
1
2m

p1
and we want to look the the Engel curve for when p1 = 2.

In that case, we get x1 = 1
4m. Since we need to put m on the vertical axis, it is easier to isolate m in this

equation and the plot the result. Doing that we get: m = 4x1. If we wonder how much income the consumer
would need such that they can buy 10 units of x1 we just plut in x1 = 10 and get m = 4 (10) = 40. If the
consumer has $40, they would buy 10 units of the good. Here is the Engle curve plotted:

Figure 6.1: Engel curve for x1 = 1
4m.

Notice that the Engle curve is upward sloping. That is because demand for x1 is normal. On the other hand,
if the good is inferior, demand decreases as income increases and this is reflected in a “backwards bend” of
the Engel curve. This is demonstrated in the plot below.
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Figure 6.2: Engel curve for a good that is normal for low income and inferior for high income.

6.2.2 A good is never “always inferior”.

An inferior good is one for which demand decreases as income increases. But to decrease, the demand for
the good must be non-zero. That means, at some point, it must have increased. Because of this, a good can
never be “always inferior”. To be inferior, a good has to start out as normal and become inferior. Notice how
in the plot of the inferior good above, x1 starts as normal but becomes inferior as we move “up” in terms of
income. This creates the backward bend.

6.2.3 Example: Perfect Complements

Suppose utility is U (x1, x2) = min {x1, x2} . Price are: p1 = 2, p2 = 1. Let’s solve for demand and then
plot the income offer and Engel curve for x1. At the optimum, we know x1 = x2 (this is the no waste
condition). Since the budget constraint is 2x1 + 1x2 = m we have two equations and two unknowns. Solve
these together, we get demand x1 = m

3 , x2 = m
3 .

To get the Engel curve. Solve for m in the demand for x1. We get m = 3x1. This is the equation for the
Engel curve for x1. It is a line with slope of 3. This is plotted below.
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Figure 6.3: Engel Curve of x1 for min {x1, x2} with p1 = 2 and p2 = 1

6.3 Changes in “Own” Price

We now look at what happens to demand for a good when the price of that good changes. There are two
possibilities.

Ordinary: Demand goes down when it’s price goes up.
Giffen: Demand goes up when it’s price goes up?!?

The possibility of Giffen goods might come as a surprise, but they are mathematically possible in our
framework. Interestingly, a Giffen good has to be inferior. Here is how they arise. When the price of
some good goes up, the consumer will naturally trade off to buy other things. But whatever amount of that
good they continue to buy will now be more expensive. This makes their income effectively lower – it cannot
buy as much. Thus, we can think of a price increase as also lowering effective income. If a good is inferior,
this can lead to an increase in the demand for that good. If this effect overwhelms the decrease in demand
due to the consumer trading-off to other goods, the net effect can be positive. However, in practice, such
goods are hard to find and we will not study them extensively in this class.

6.3.1 Plotting the Inverse Demand Curve

Like we plot the relationship between demand and income using the Engle curve, we can also plot the
relationship between income and price. If we plot this with demand on the vertical axis, we call is the
demand graph. However, as with the Engle curve, it is common to put price on the vertical axis. Some
people also refer to this plot as the demand graph, but I think that is confusing, so I like to use it’s more
appropriate name: the inverse demand graph. The inverse demand tells us the price that would be
responsible for the consumer buying some amount of a good

For example, suppose demand for x1 is:

x1 =
1
2m

p1

Let’s plug in an income m = 10. We get x1 = 5
p1
. This is the demand. To plot the inverse demand, we

need to isolate p1. When we do this we get p1 = 5
x1

. Suppose we want to know what price would result in a
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consumer buying x1 = 10 units of the good. We get p1 = 5
10 = 1

2 . So, if price is 1
2 , they will buy 10 units.

Here is the inverse demand plotted:

Figure 6.4: Plotting demand for x1 = 5
p1
.

6.4 Changes in “Other” Price

So far we have looked at what happens to a good when we change income and it’s own price. We might also
be interested in how demand changes for a good when the price of another good changes.

Complements: Demand for a good goes down when the price of the other good goes up.
Substitutes: Demand for a good goes up when the price of the other good goes up.

Neither: Demand for a good does not change when the price of the other good goes up.

6.4.1 Example of Perfect Complements

u = min {x1, x2}has demand x1 = m
p1+p2

and x2 = m
p1+p2

. For both goods, as you increase the price of the
other good, the demand goes down. They are complements. Hopefully this is not a surprise since we call
them perfect complements.

6.4.2 Example of Perfect Substitutes

u = x1 + x2 has demand x1 = m
p1

x2 = 0 if p1 < p2 and x1 = 0 x2 = m
p2

if p1 > p2. Let’s look at the change
in p1. If p1 < p2 and p1 increases, then if it increases enough such that p1 > p2 the demand for x2 increases
from 0 to x2 = m

p2
. So, as long as the change in price p1 has any effect on the demand for p2 (it might not if

it does not change which price is higher in this example) then the goods are substitutes.

6.4.3 Example of Cobb-Douglas

Suppose u = x1x2. Demand is x1 =
1
2m

p1
and x2 =

1
2m

p2
. Neither good’s demand depends on the price of the

other good. They are neither complements nor substitutes.
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7 Slutsky Decomposition

This process decomposes the change in demand for a good into two parts:

Substitution Effect: Price went up, so I will demand less because I buy other things instead. This will always
lead to a decrease in demand.

Income Effect: Price went up, so what I continue to buy is now more expensive. My effective income is now
lower and my demand will change. This effect may be positive or negative.

Law of Demand: For a change in price of good i the substitution effect (on good i) will always lead to a
decrease or no change in demand xi.
Thus, if price of a normal good increases, demand will decrease.

There are three combinations possible:

Ordinary/Normal: Both effects decrease demand.

Ordinary/Inferior: Substitution decreases demand (it always does) and income effect increases demand, but
not enough to overcome the decrease due to substitution.

Giffen/Inferior: Substitution decreases demand (it always does) and income effect increases demand so much
that it overcomes the decrease due to substitution and increases demand overall.

7.1 Slutsky Decomposition

This decomposition is a sort of thought experiment. Suppose price of a good increases, we go from the
budget p1x1 + p2x2 = m to p

′

1x1 + p2x2 = m. When the budget changes, demand for x1 will change as well.
The total effect of this change on demand is: x∗

1 (p1, p2,m)− x∗
1

(
p

′

1, p2,m
)
.

How can we decompose this change into substitution and income effects? To study the substitution effect
only, we need to know what the consumer would choose if the price had changed, but their demand could not
change due to income. Thus, we think about how much income they would need at the new prices to afford
the old bundle. If we were to give the consumer this extra income and ask what they buy at the new prices,
then the change in their demand could not be due to the income effect! It is due only to the substitution
effect.

To find this, we first calculate the compensating income: cost of the original bundle under the new prices.
If we are analyzing a change in p1 this would be m̃ = p

′

1x
∗
1 (p1, p2,m) + p2x

∗
2 (p1, p2,m). Notice this is the

cost of the old optimal bundle x∗
1 (p1, p2,m) , x∗

2 (p1, p2,m) but at the new price p
′

1.

Now we construct a new budget with this compensated income: p
′

1x1 + p2x2 = m̃. We ask: what does the
consumer choose given this budget? This is denoted x∗

1

(
p

′

1, p2, m̃
)
. The substitution effect is the difference

between the original optimal amount and the amount on this new budget line (new prices, compensating
income). : x∗

1 (p1, p2,m)− x∗
1

(
p

′

1, p2, m̃
)
.

The income effect is the remainder: x∗
1

(
p

′

1, p2, m̃
)
− x∗

1

(
p

′

1, p2,m
)
. That is, the difference between what

they choose on the thought experiment budget (new prices, extra income) and what they choose under the
new prices with their actual income.

7.2 Example Problem

Suppose u = x1x2. Demand is x∗
1 =

1
2m

p1
, x∗

2 =
1
2m

p2
. Suppose p1 = 1, p2 = 2, m = 10. The optimal bundle

(original prices): is x∗
1 =

1
2 10

1 = 5, x∗
2 =

1
2 10

2 = 2.5.
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Now suppose the price of good 1 changes to p
′

1 = 2. The new optimal bundle is x∗
1 =

1
2 10

2 = 2.5, x∗
2 =

1
2 10

2 =
2.5. The total effect is (5− 2.5) = 2.5

Let’s calculate the income needed to afford the old bundle at the new prices. Old bundle: (5, 2.5). Cost of
this under the new prices: p1 = 2, p2 = 2. Thus the compensating income is 5 (2)+2.5 (2) = 15. We need to
construct a budget that has the new prices but enough income to afford the old bundle: p1 = 2, p2 = 2,m =

15. What does the consumer actually demand here? x1 (2, 2, 15) =
1
2 15

2 = 3.75. With this we can calculate
the substitution effect: 5− 3.75 = 1.25.

This leaves the income effect (total effect - substitution effect): 2.5 - 1.25 = 1.25

The price change decreases demand by 2.5. Demand is decreased by 1.25 due to substitution and decreased
by 1.25 due to the income effect.

8 Buying and Selling

8.1 Income to Endowments

Until this point our consumers had income in terms of money. m = $10 for instance. Now we will think
of the consumers as having an endowment of goods to start with. An endowment is a bundle of goods
denoted (w1, w2). For instance, if x1 is apples and x2 is crusts, an apple farmer might have the endowment
w1 = 10, w2 = 0. This would be an endowment of 10 apples and zero crusts. A baker might have an
endowment of 5 crusts and zero apples w1 = 0, w2 = 5.

When we move from income to endowments, the new budget condition requires that the cost of chosen
bundles is less than or equal to the value of the endowment: p1x1 + p2x2 ≤ p1w1 + p2w2. The new budget
equation is p1x1 + p2x2 = p1w1 + p2w2.

Notice how the consumer’s effective income, given by p1w1 + p2w2 reacts to changes in price. This is an
important distinction from when income was given in terms of an amount of money.

As before we can get the slope of the budget equation, which is still −p1

p2
and the intercepts. The x1 intercept

(the amount of x1 afford if I only buy x1) is w1 +
p2w2

p1
and the x2 intercept is p1w1

p2
+w2. Look carefully at

these intercepts and see if you can give them an economic interpretation.

8.2 Gross Demand vs Net Demand

In this model we distinguish between what a consumer demands, the gross demand: xi and the difference
between their demand and what they started with, the net demand: xi − wi.

When net demand is positive, we say the consumer is a net demander or a buyer of that good. When net
demand is negative, we say that they are a net supplier or seller of that good.

We can also write the budget equation in terms of net demand by rearranging things: p1 (x1 − w1) −
p2 (w2 − x2) = 0. In this form of the budget equation, it makes clear that a consumer must have budget
balance in terms of net demand. This also shows that if a consumer is a buyer of one good, they are a seller
of the other.
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Figure 8.1: The budget line. The area of the budget line above the endowment is where the consumer is a
buyer of x2 and a seller of x1. The area below is where the consumer is a buyer of x1 and seller of x2.

8.3 Drawing the Budget Line and Changes to Price

The budget line always passes through the endowment (w1, w2) . If prices change, the slope changes, and the
budget pivots through this point.

Figure 8.2: An example of how a change in p1 affects the budget equation with endowment (w1, w2) = (2, 5).
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Figure 8.3: An example of how a change in p2 affects the budget equation with endowment (w1, w2) = (3, 3).

8.4 Price Changes and Net Buyers/Sellers

Unlike with a model where the consumer has a monetary income, when a consumer has an endowment, there
are some situations where we can say for sure how a price change affects them. The proof of this will be
given in class, but you are not responsible for it.

For a consumer who is a net buyer of a good, if the price of that good decreases they will remain a net buyer
and will be strictly better off. For a consumer who is a net seller of a good, if the price of that good increases
they will remain a net seller and be strictly better off.

8.5 Example Problem

Suppose we have an apple farmer with an endowment of w1 = 10 apples and w2 = 0 crusts. Their utility
function is u = min

{
1
2x1, x2

}
. Initially the prices are p1 = 1, p2 = 1.

The consumer’s budget equation if 1x1 + 1x2 = 1 (10) + 1 (0) or x1 + x2 = 10. With this we can solve for
demand.

The No Waste Condition is 1
2x1 = x2. The budget condition is x1 + x2 = 10. Solving these two equations

gives us: x1 = 20
3 , x2 = 10

3 .

At these prices, the consumer is a seller of apples x1 and a buyer of crusts x2. If the price of apples increases
or the price of crusts decreases, the consumer will remain a seller of apples x1 and a buyer of crusts x2 and
will be strictly better off.

9 Intertemporal Choice

9.1 Bundles (Consumption Today, Consumption Tomorrow)

We can use the new model presented in the last chapter to study borrowing and saving behavior. Consider
a two period model. The bundles are denoted (c1, c2) where c1 is consumption in period 1, and c2 is
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consumption in period 2. The endowments are denoted (m1,m2) where m1 is income in period 1 and m2 is
income in period 2.

9.2 Budget Constraint

“Price” in this model is determined by the interest rate. This is the rate r that the consumer can borrow or
save at.

For instance, if the consumer wants to borrow $1000 in period 1, they have to pay back 1000 (1 + r) in period
2. If the consumer saves $1000 in period 1, they get back 1000 (1 + r) in period 2.

Suppose the consumer saves some money in period 1 such that (m1 − c1) > 0. Consumption in period 2
is m2 plus how much they saved in period 1 (m1 − c1) multiplied my 1 + r. This gives us: c2 = m2 +
(1 + r) (m1 − c1).

Suppose the consumer borrows some money in period 1 such that (c1 −m1) > 0. Consumption in period 2
is m2 minus how much they have to pay back to cover the loan from period 1 (1 + r) (c1 −m1). This gives
us: c2 = m2 − (1 + r) (c1 −m1) which we can rewrite as c2 = m2 + (1 + r) (m1 − c1).

Notice that these are exactly the same expression and represent the consumer’s budget equation whether
they choose to borrow or save. c2 = m2 + (1 + r) (m1 − c1). This can be rewritten as: (1 + r) c1 + c2 =
(1 + r)m1 + m2. This looks like a standard budget equation now. Notice that the right hand side is
(1 + r)m1+m2. This is the future value of income (how much c2 can the can consume if they only consume
c2).

We can also divide both sides of this equation by 1 + r and get the budget in terms of present value of
income: c1 +

c2
1+r = m1 +

m2

1+r .

9.3 Plotting the Budget Equation

Starting with the budget equation (1 + r) c1 + c2 = (1 + r)m1 +m2, we can plot this as usual. The slope is
− 1+r

1 and the c2 intercept is (1 + r)m1 +m2.

As before, we can define situations when (c1 −m1) is positive or negative. If (c1 −m1) is positive then
c1 > m1. This implies that the consumer is a borrower. If c1 − m1 is negative, the m1 > c1 and so the
consumer is a saver or a lender.
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Figure 9.1: The budget line for a model of saving/borrowing.

9.4 Comparative Statics

We can map the results from the last chapter into the language of this chapter. We get:

A borrower, when the interest rate goes down, remains a borrower and must be strictly better off.
A lender (saver), when the interest rate goes up, remains a lender (saver) and must be strictly better off.

9.5 Example Problem

Suppose m1 = 200, m2 = 600, and r = 1
2 . Utility is: u (c1, c2) = c1c2.

Let’s write down the budget equation: (1 + r) c1 + c2 = (1 + r)m1 +m2. Plugging in the interest rate and
incomes: 3

2c1 + c2 = 3
2200 + 600

Suppose the consumer chooses to only consume this month (set c2 = 0): c1 = m1 +
m2

(1+r) = 600. If they
choose to only consume next month (set c1 = 0): c2 = (1 + r)m1 +m2 = 900.

Let’s find their actual demand. The tangency condition is MRS = − (1 + r) or − c2
c1

= − 3
2 . Plugging this

into the budget equation and solving gives us: c1 = 300 and c2 = 450.

At this interest rate the consumer is a borrower since c1 = 300 > 200 = m1. If the interest rate were to
decrease to 1

4 we know that he will remain a borrower. See if you can figure out what the interest rate would
have to change to to make the consumer a lender/saver.

10 Market Demand

In this section, we will study the process of adding individual consumer demands together to get a market
demand curve.
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10.1 Adding Demand Curves

Suppose we have n consumers, each with a demand for good 1 and a demand for good 2. We need a notation
for both the consumer and the good. To do this, we use a subscript to refer to the consumer and superscript
to refer to the good.

For instance, the demand of consumer 2 for good 1 is x1
2 (p1, p2,m2). Notice we use m2 to indicate the

income for consumer 2. As another example, the demand for consumer 3 for good 2 is x2
3 (p1, p2,m3).

The market demand for a good is the sum of individual consumer demands. We use a capital X to refer to
market demand. Formally, the market demand for good 1 is: X1 (p1, p2,m1, ...,mn) =

∑n
i=1 x

1
i (p1, p2,mi).

The market demand for good 2 is X2 (p1, p2,m1, ...,mn) =
∑n

i=1 x
2
i (p1, p2,mi).

10.2 Example of Cobb-Douglas Demand and the Representative Consumer
Condition

Suppose we have n Cobb-Douglas consumers who all have the utility function: ui

(
x1
i , x

2
i

)
=

(
x1
i

)1 (
x2
i

)1 (the
1 and 2 superscripts are not exponents, but rather the label for the good). The consumer’s demands are:
x1
i =

1
2mi

p1
and x2

i =
1
2mi

p2
.

Market demand for good 1 is the sum of the individual demands:
∑n

i=1

(
x1
i

)
=

∑n
i=1

(
1
2mi

p1

)
. Suppose p1 = 1

and m1 = 10, m2 = 20, m3 = 30. Market demand is
(

1
2 10

1

)
+

(
1
2 20

1

)
+

(
1
2 30

1

)
= 30. Notice, if we let M be

the aggregate income M =
∑n

i=1 mi. We can write the market demand using the aggregate income:

n∑
i=1

( 1
2mi

p1

)
=

1

2

1

p1

n∑
i=1

mi =
1
2M

p1

In fact,
1
2M

p1
is exactly the demand any one of our consumers would have if they happened to have all of

the aggregate income M . This is very convenient. Instead of calculating each individual consumer demand
and adding them, we can just imagine giving all of the income to one consumer and figuring out what they
would choose. If we can, we say that the demand meets the representative consumer condition.

Not all situations meet this condition. First, all the consumers need to have the same utility function. For
instance, suppose our consumers had different utility functions. One has perfect substitutes preferences
x1+x2 one has Cobb-Douglas x1x2 and one has perfect complements preferences min {x1, x2}. Who should
we pick to be the representative consumer? Whoever we choose, there is no way their choices would represent
the entire market.

Furthermore, even if the consumers all have the same utility function, the choices of a single consumer with
all of the income might not represent the market.

For example, suppose all three consumers have utility function u (x1, x2) = x1 + ln (x2) and prices are
p1 = 30 and p2 = 1. As an exercise, try confirming that the demands for the three consumers are
(0, 10) , (0, 20) , (0, 30) respectively. They each buy no x1. On the other hand, if we gave one consumer
all of the income M = 60 then that representative consumer would choose (1, 30). This demand is not the
sum of the individual consumer’s demands.

So what conditions need to be met for use to use a representative consumer?

1. Utility needs to be the same for all consumers.
2. Preferences of those consumers need to be homothetic.
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10.3 Homothetic Preferences

Preferences are homothetic if x ≿ y implies that tx ≿ ty for all possible t. For instance, suppose (1, 2) ≿ (2, 1),
then (2, 4) ≿ (4, 2) as well if preferences are homothetic.

Homothetic preferences imply that the “shape” of a consumer’s preferences depend only on the proportion
of goods, but not the scale of the bundle. In the above example, (1, 2) and (2, 4) are both bundles with a
2-to-1 ratio of x2 to x1 and (2, 1) and (4, 2) are both bundles with a 2-to-1 ratio of x1 to x2. The ratios are
the same and so the preferences must be the same between the relevant pairs.

A quick way to see if preferences are homothetic (when the utility function is differentiable) is to check
that MRS depends on the ratio of goods but not the amount. That is, check whether this condition holds:
MRS (x1, x2) = MRS (tx1, tx2). Let’s check this for Cobb-Douglas utility function xα

1x
β
2 :

MRS (x1, x2) = −
∂(xα

1 xβ
2 )

∂x1

∂(xα
1 xβ

2 )
∂x2

= −αx2

βx1

MRS (tx1, tx2) = −α (tx2)

β (tx1)
= −αx2

βx1

Let’s try x1 + ln (x2). In the previous section we saw we could not use a representative consumer for these
preferences. Notice that they are not homothetic.

MRS (x1, x2) = −
∂(x1+ln(x2))

∂x1

∂(x1+ln(x2))
∂x2

= −x2

MRS (tx1, tx2) = −tx2

There are two useful facts to know about homothetic preferences. Some intuition for these will be given in
class.

For homothetic preferences:

1. Indifference curves are parallel along a ray through the origin.
2. Engel curves are linear through the origin.

10.4 Elasticity

In economics, we like to use elasticity to measure how demand changes. Elasticity is a unit-free measure of
change. It allows us to compare the behavior of demand across goods. To see why a unit-free measure of
change is useful, consider the following scenario:

Suppose the price of a good changes from 1 to 2. Consumer 1’s demand changes from 100 to 50 and consumer
2’s changes from 10 to 5. Their behavior in terms of absolute changes in demand ∆xi

∆pi
is wildly different, a

50 unit change for the first consumer and a 5 unit change for the second consumer. However, their behavior

in terms of percentage terms
∆xi
xi

∆pi
pi

is identical– a 50% decrease since
∆xi
xi

∆pi
pi

=
100−50

100
1−2
1

= − 1
2 .

Elasticity is simply a way of quantifying comparative statics in unit-free percentage terms.
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10.5 Elasticities

We want to take a unit-free percentage change for some finite change in price
∆xi
xi

∆pi
pi

and turn it into a way

of measuring changes for very small changes in price. To do this, we take the infinitesimal analogy to
∆xi
xi

∆pi
pi

→
∂xi
xi
∂pi
pi

. This is the price elasticity. We can rearrange it a bit as follows:

ϵi,i =
∂xi

xi

∂pi

pi

=
∂xi

∂pi

pi
xi

Price elasticity measures the percent change in demand for a one percent increase in the good’s own price.

We can also look at the cross-price elasticity:

ϵi,j =
∂xi

xi

∂pj

pj

=
∂xi

∂pj

pj
xi

Cross price elasticity measures the percent change in demand for a one percent increase in the price of
another good.

Lastly, we can ask how demand changes with income. This gives us the income elasticity:

ηi =
∂xi

∂m

m

xi

Income elasticity measures the percent change in demand for a one percent increase in income.

10.6 Cobb-Douglas Example

Suppose utility is u = x1x2. Demand for good 1 is: x1 =
1
2m

p1
.

The price elasticity is: ϵ1,1 == −
(

1
2m

p2
1

)
p1

x1
we now plug in for x1 to get −

(
1
2m

p2
1

)
p1
1
2
m

p1

. We can simplify this

to get ϵ1,1 = −1. Elasticity is −1. Thus, a 1% increase in price leads to a 1% decrease in demand. We call
this unit-elastic demand.

The cross price elasticity is: ϵ1,2 = (0) p2

x1
= 0. This should make sense. For Cobb-Douglas consumer, the

demand for one good does not depend on the price of another.

The income elasticity is: η =
1
2

p1

m
x1

. Plugging in for x1, we get
1
2

p1

m
1
2
m

p1

. Simplifying this, we get η = 1. If

income increases by 1% demand will increase by 1%. This should be intuitive. The Cobb-Douglas consumer
budgets all of their their income. If income increase by 1%, their budget for all goods will also increase by
1%.

10.7 Classifications of Price Elasticity

In the Cobb-Douglas example, price elasticity was −1. A 1% increase in price leads to a 1% decrease in
demand.

Unit-Elastic |ϵ| = 1.
Elastic |ϵ| > 1. (For instance −2). Demand responds sharply to changes in price. A 1% increase in price
leads to more than 1% decrease in demand.
Inelastic |ϵ| < 1. (For instance − 1

2 ). Demand responds weakly to changes in price. A 1% increase in price
leads to less than 1% decrease in demand.

Think of some goods that might have elastic and inelastic demand.
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11 Equilibrium

11.1 Market Demand and Supply

In this chapter, we focus on where prices come from by looking at the market for one good at a time. This
is called partial equilibrium. A market is made up of the demand side (buyers) and the supply side (sellers).
For each side we need to know how their quantity (bought or sold) depends on price. Market demand Qd (p)
is the total amount demanded at price p. Market supply Qs (p) is the total amount supplied at price p.

When we “plot” a market, we tend to put p on the vertical axis. For this reason, it is also useful to define the
inverse market demand pd (Q) (at what price are Q units are demanded) and inverse market supply ps (Q)
(at what price are Q units are supplied).

Example. Suppose all consumers have utility x1x2. Each consumer demands
1
2mi

p1
units of x1. If we look

at the market for x1 then demand is Qd =
1
2M

p and inverse market demand is p =
1
2M

Qd
.

11.2 What is an equilibrium?

An equilibrium is defined as a price p∗ such that supply is equal to demand. That is Qd (p
∗) = Qs (p

∗). We
focus on situations where supply equals demand for the following reason.

Suppose at some price p, supply exceeded demand Qs (p) > Qd (p). In this case, price is too high. There
are surplus units of the good, and any firm with a surplus unit would be willing to sell at a lower price since
otherwise it will be wasted. This creates downward pressure on prices. Suppose now that demand exceeds
supply Qd (p) > Qs (p). In this case price is too low. There is a shortage and consumers willing to buy at
a higher price. There is upward pressure on prices. Thus, the only time there is no pressure for the market
price to change is when supply at the price is equal to demand at the price.

Figure 11.1: An Equilibrium Plot

11.3 Examples

Example. Suppose Qd = 2500
p , Qs = 100p.

To find the equilibrium, we look for a price p∗ such that Qd = Qs. This is done by solving 2500
p = 100p

which has a solution p = 5. To get equilibrium quantity, plug this price into either supply or demand. We
should get the same thing: Q∗ = Qs = Qd = 500. Notice, we use Q∗ to refer to the equilibrium quantity.

33



Figure 11.2: Equilibrium Example

Example. Fixed Supply

With fixed supply, the quantity supplied Qs is constant for any price. The inverse supply curve is a vertical
line. This would be the case, for instance, with concert tickets. The size of the venue is fixed regardless of
the price of tickets. For example, suppose supply is fixed at Qs = 1000 and demand is Qd = 500

p . To find
the equilibrium price, solve 1000 = 500

p . This gives us the equilibrium price of p∗ = 1
2 . This is the price at

which consumers will demand the total supply of 1000. Equilibrium quantity, of course, is Q∗ = 1000

Figure 11.3: Equilibrium with Fixed Supply

11.4 Effect of a Tax

Suppose the government imposes a tax of t per unit of the good. If we think of p as being the price that
firms charge for the good (the “sticker price”) then firms will receive p for every good sold and consumer will
have to pay p+ t. This leaves us with the following equilibrium condition with a tax: Qs (p) = Qd (p+ t).

Example. Suppose Qs = 100p and Qd = 300− 50p. The government imposes a tax of t = 3.

The equilibrium price without a tax is the solution to 100p = 300− 50p. This gives us p∗ = 2 and Q∗ = 200.
With the tax of t = 3, the new equilibrium condition is 300−50 (p+ 3) = 100p. The new equilibrium price is
p∗ = 1 and new equilibrium quantity is Q∗ = 100. Suppliers get p = 1 per unit and consumers pay 1+3 = 4.
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The effect of the tax is a lower quantity, consumers pay more then they used, and suppliers receive less than
they used to.

Notice that both consumers and producers are worse off under this tax. To quantify how much “worse off”
we use the concept of surplus.

Figure 11.4: Effect of a Tax

11.5 Surplus and Deadweight Loss

Consumer surplus is a measure of welfare that tells us how much “better-off” the consumers are because the
market sells them quantity q at price p compared to if the market did not exist at all. The consumer surplus
is measured by the area under the inverse demand curve and above price. The producer surplus is the area
above inverse supply and below price.

Using the area under inverse demand but above price to measure consumer surplus is motivated by thinking
of the height of the inverse demand at some point as the price some consumer is willing to pay for a unit of
that good. The difference between that height and the price the consumer actually has to pay is one measure
of how happy they are to pay less than they were willing to. That is, one consumer’s surplus from buying
the good at price p. “Summing” over all the consumers gives that area below the inverse demand curve and
above price. The same argument motivates the area above the inverse demand and below price as being the
producer surplus.

In the tax example above, the consumer surplus (with no tax) is 1
2 (4 ∗ 200) = 400. The producer surplus

(with no tax) is 1
2 (2 ∗ 200) = 200. To find these plot the inverse demand and supply, along with the price,

and calculate the area of the resulting triangles. The total welfare is the sum of consumer and producer
surplus. In this case, that is 600.
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Figure 11.5: Surplus Without Tax

This total surplus of 600 is actually the most we could possibly get in this market. That is because to
produce any more surplus we would need to sell more units. However, there is no consumer left who is
willing to buy at a price that a firm is willing to sell. That is because to the left of equilibrium, the inverse
demand curve is below the inverse supply curve. Since total surplus is maximized here, there is no way to
make any consumer or firm better off without making some other consumer or firm worse off. When this is
the case, we say that the market has reached Pareto efficiency. In the absence of taxes or other complicating
factors, a market equilibrium will always be Pareto efficient.

A tax, however, will lower the total surplus. In the example above, after the tax is imposed, the consumer
surplus is (6−4)100

2 = 100 and the producer surplus is: (1)100
2 = 50. When there is a tax, we include the

government revenue in the calculation of total surplus. This is because tax revenue is not lost. It could be
transferred back to consumer or producers in some way, so it contributes to total surplus. The government
revenue under the tax in the example above is 3∗100 = 300. Total surplus is 100+50+300 = 450. Compare
this to the original surplus which was 600. The difference is 150. We call this amount the deadweight loss.
It measures the amount of total surplus lost due to a tax. This deadweight loss occurs because the tax
prevents some firms and consumers from trading even thought there is some price at which they would both
be happy to trade at.

Figure 11.6: Surplus With Tax
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11.6 Tax Burden

In the tax example above, after the tax is imposed, consumers pay 4. Before the tax, they only paid 2.
Similarly, before the tax producers got 2 per unit sold but now only get 1. Consumers pay 2 more than
before and producers get 1 less than before. These differences are called the tax burden or tax incidence.
They allow us to determine who ends up “paying” for the tax.

Notice, these amounts sum to the size of the tax (3 in this case). This will always be the case. This also
allows us to calculate the tax burden as a proportion of the tax. Just divide the burden on each “side” of
the market by the size of the tax. Here, the proportion of the tax paid by consumers is 2

3 ≈ 66.67% and the
proportion paid by producers is 1

3 ≈ 33.34%.

The burden of the tax is determined by the relative elasticities of supply and demand. If demand is relatively
elastic and supply is relatively inelastic, then most of burden will be on producers. This is because suppliers
cannot not “pass on” much of the tax to consumers. If they did, because demand is relatively elastic, demand
would decrease too much. On the other hand, when demand is relatively inelastic compared to supply, most
of the burden of the tax will be on the consumers. The suppliers “pass on” most of the tax to consumers
because demand is inelastic. We will discuss the graphical intuition for these claims more in class.

12 Technology

We now begin our study of the supply side of the market. Our first task is modeling firms in a mathematical
and abstract way. The nature of a firm is that they use inputs to produce outputs and then they sell those
outputs to consumers in order to maximize their profits. At lease, that’s how we will think of them in this
class. In this chapter, we focus just on defining the process by which firms turn inputs into outputs. We do
this by defining a technology.

A technology is made up of inputs x1, x2 and an output y. For instance, x1 and x2 might be apples and crusts
and y would be pies. The way that inputs become output is described by the firm’s production function.

12.1 Production Functions

A production function maps an amount of each input into an amount of output. Generically, we will write
it like this: f (x1, x2).

Example. Baker.

A baker can always take 1 crust and 2 apples and produce a pie. If x1 is crusts and x2 is apples then we have
f (1, 2) = 1, f (2, 4) = 2, f (3, 6) = 3 and so on. Generally we can write: f (x1, x2) = min

{
x1,

1
2x2

}
. This is

the baker’s production function for pie. Whereas we could with consumers, we cannot take transformations
of this function. For instance, the production function 2min

{
x1,

1
2x2

}
is one that turns 1 crust and 2 apples

into 2 pies. That is a more productive technology, not the same technology. When we are given a production
function, that’s the one we are stuck with. No transformations allowed.

12.2 Isoquants

Isoquants are combinations of input that give you the same amount of output. They are analogous to
indifference curves for consumers. Think of them as recipes for the same output. Let’s look at the baker
example again. One crust and two apples (1, 2) makes one pie, but so does (1, 3) , (1, 4) , (2, 2) , (3, 2). These
are all input bundles on the isoquant for 1 unit of output. Isoquants for this production function are plotted
below for y = 1, 2, 3, 4, 5.
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Figure 12.1: Isoquants for f (x1, x2) = y for y = 1, 2, 3, 4, 5 with fixed-proportion technology min
{
x1,

1
2x2

}
.

Working with isoquants is identical to working with indifference curves. The techniques we learned for
indifference curves apply when finding isoquants, sketching them, analyzing them, etc., so we will not dwell
on those techniques much here.

12.3 Marginal Products

When we talked about utility functions, the partial derivatives (the marginal utilities) were useful in finding
the marginal rate of substitution, but were not that useful on their own. This is because “how much” utility
increases when we increase a good is not meaningful since “how much” utility is not itself meaningful. The
marginal utilities are only meaningful in comparison to each other. On the other hand, specific quantities of
production are meaningful and tangible. 5 pies is 5 pies, while 5 points of utility is not tangible.

Because of the fact that the amount of production is a meaningful number, how that number changes when we
change one of the inputs is also meaningful information. These are the marginal products MPi =

∂f(x1,x2)
∂xi

.
This is the partial derivative of the production function with respect to input i. For example, suppose
f (x1, x2) = 2x1 + x2. MP1 = 2,MP2 = 1. If we increase input 1 by one unit (holding x2 fixed), we get 2
more units of output. If we increase x2 by one unit (holding x1 fixed) we get 1 more unit of output.

As another example, suppose f (x1, x2) = (x1 + x2)
1
2 . The name of this function is the CES production

function (constant elasticity of substitution). Don’t worry about what constant elasticity of substitution

means just yet, we will discuss it later if there is time. The marginal products are MP1 =
∂
(
(x1+x2)

1
2

)
∂x1

=
1
2

1√
x1+x2

and MP2 = 1
2

1√
x1+x2

. Notice the extra output for increasing either of the inputs only depends on
the sum of the input amounts x1 + x2 and is decreasing in both.

As a final example, consider f (x1, x2) = x
1
2
1 x

1
2
2 (Cobb-Douglas production). MP1 =

∂

(
x

1
2
1 x

1
2
2

)
∂x1

= 1
2x

1
2−1
1 x

1
2
2 =

1
2x

− 1
2

1 x
1
2
2 = 1

2
x

1
2
2

x
1
2
1

=
√
x2

2
√
x1

and MP2 =
√
x1

2
√
x2

. The marginal product of 1 is decreasing in x1 but increasing in

x2 and vise versa.
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12.4 Diminishing Marginal Product

Diminishing marginal product is the property that as you increase one of the inputs while holding the other
fixed, the additional output you get will decrease. That is, each input becomes less productive as you
increase only that input. The definition is that, ∂(MPi)

∂xi
= ∂f(x1,x2)

∂xi∂xi
< 0. This is the second derivative of

f with respect to xi. For marginal product to be diminishing in both inputs, the second partial derivative
of f has to be negative for both inputs. Have a look at the Cobb-Douglas example above, MP1 =

√
x2

2
√
x1

.
∂
( √

x2
2
√

x1

)
∂x1

= −
√
x2

4x
3/2
1

< 0. Thus, there is diminishing marginal product for input one of the production function

f (x1, x2) = x
1
2
1 x

1
2
2 . There will also be diminishing marginal product for input 2. Not all production functions

have diminishing marginal product. For instance, the Cobb-Douglas production function x2
1x

2
2 has increasing

marginal product for both x1 and x2.

12.5 Returns to Scale

While marginal product measures how production changes as we change one of the inputs, the returns to
scale measures how production changes when all of the inputs are scaled up. Take our baker example. If we
start with the input bundle (1, 2) 1 crust, 2 apples, we get 1 pie. If we double either of the inputs, we still
get one pie. For instance f (2, 2) and f (1, 4) both give 1 pie. However, if we double both inputs to (2, 4), we
get 2 pie. Doubling the inputs doubles the outputs. We call this linear returns to scale. However, for some
production functions, when we double the inputs, we get less than double the outputs (decreasing returns
to scale) or when we double inputs, we get more than double the output (increasing returns to scale).

Formally for any t > 1:

Linear (constant) returns to scale requires: f (tx1, tx2) = tf (x1, x1).

Decreasing returns to scale requires: f (tx1, tx2) < tf (x1, x1).

Increasing returns to scale requires: f (tx1, tx2) > tf (x1, x1).

For example, consider f (x1, x2) = (x1 + x2)
1
2 . f (2, 2) = (2 + 2)

1
2 = 2. If we double the inputs we get:

f (4, 4) = (4 + 4)
1
2 = 2.82843. Doubling the inputs leads to less than double the output. We have decreasing

returns to scale at (2, 2). To prove this function has decreasing returns to scale everywhere note that
f (tx1, tx2) = (tx1 + tx2)

1
2 =

√
t (x1 + x2)

1
2 . Since

√
t < t for any t > 1, f (tx1, tx2) < tf (tx1, tx2) which is

the definition of decreasing returns to scale. In class we will look more closely at how we check the returns
to scale of various production functions.

12.6 Technical Rate of Substitution

Along a particular isoquant, the slope of the isoquant measures how much x2 you can give up if you add
1 unit of x1 so that you continue producing the same amount of output. This slope and tradeoff are
measured by the technical rate of substitution. It is analogous to the marginal rate of substitution. TRS =

−
∂f(x1,x2)

∂x1
∂f(x1,x2)

∂x2

= −MP1

MP2
. This is measuring the tradeoffs that a firm is willing to make to produce the same

amount. Eventually it will play a key role in finding optimal input bundles.

13 Profit Maximization / Cost Minimization

13.1 Profit Function

In this class, we will assume a firm’s goal is to maximize profits. The profit function of a firm is made up of
revenue and costs.
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Revenue is the price the firm gets multiplied by the output of the firm. Usually, the price a firm gets is a
function of how much it produces. How this price is determined depends on details of the market. We will
look at some possibilities in later chapters. But for now, we just leave this as some unknown price function
p (y). Output is simply y. Firm revenue is p (y) y. Notice, since y = f (x1, x2), so we could also write revenue
in terms of the amounts of inputs used instead of outputs. p (f (x1, x2)) f (x1, x2).

Costs are determined by the amount of inputs used and the price of those inputs. Here, we will assume the
price of inputs is fixed at w1 and w2. (We use w because price of inputs are often called “wages”). Thus,
costs are w1x1 + w2x2. This leads to the following profit function:

Firm profit function: π (x1, x2) = p (f (x1, x2)) f (x1, x2)− (w1x1 + w2x2)

Sometimes a firm cannot change one of its inputs. When this is the case, we refer to the situation as “short-
run”. In the long-run, all of the firms inputs are variable. For instance, suppose x2 is fixed at x̄2. Then the
firm’s short-run profit function is: π (x1, x̄2) = p (f (x1, x̄2)) f (x1, x̄2)− (w1x1 + w2x̄2).

13.2 Profit Maximization Requires Cost Minimization

In the long-run, a firm’s goal is to maximize this profit function by choosing x1 and x2. Doing this in one
step by maximizing this function is possible. However, it is much easier to break the problem down into two
parts using the following observation.

Profit maximization implies cost minimization.

To see this, notice that whatever values of x1 and x2 maximize profit, there is some amount of output
produced y∗, this is the profit maximizing level of output. However, if the firm is using any x1 and x2 except
the cheapest possible way of producing y∗: (x∗

1, x
∗
2) then if could produce the same output and get the same

revenue while reducing cost. This would lead to an increase in profit. Thus, if a firm was not minimizing
the cost of producing what they thought was the profit maximizing level of output, there is a cheaper way
to earn the same revenue, and thus get more profit.

This lets us break down the profit maximization problem into two steps:

1. Calculate the cheapest way to produce any level of output y.

2. Calculate the most profitable y.

Step 1 is what we will focus on in this chapter. It looks like this:

Minx1,x2
w1x1 + w2x2 subject to f (x1, x2) = y.

Notice when we minimize cost to complete this step, we can ignore revenue, which depends on that pesky
function p (y) and allows us to put off talking about how price depends on output.

13.3 Cost Minimization

When we discussed utility maximization, we argued that a bundle that maximizes utility must be on an
indifference curve that does not cross through the budget line. A very similar property will hold for cost
minimization. First, we need to define the notion of “isocost” lines. These are sets of input bundles that cost
the same to use. They are sets of (x1, x2) that meet the condition w1x1 + w2x2 = c for some c. These look
a lot like the budget line from the consumer problem. These are straight lines with slope −w1

w2
. What a firm

does in trying to find a cost minimizing bundle for producing output y is to look for a bundle of inputs that
is on the isoquant for output y but is on the lowest isocost. This process is plotted below.
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Notice that the bundle x is on the isoquant for y units of output. So it produces the right amount of output,
but notice that the isocost through x′ crosses the isoquant and includes the bundle x′′ which costs the same
as x′ but produces strictly more that y. Thus, x could not possibly be cost minimizing, since it costs the
same as another bundle that produces more than y. The firm could always find a bundle like x′ that produces
y and uses less of both inputs than x′′. Thus a bundle like x could not possibly be cost minimizing. In this
case, x′ is the cost minimizing bundle.

A cost minimizing bundle must lie on an isocost that does not cross through the isoquant for y.

Figure 13.1: Demonstration of cost minimization. The bundle x′ is cost minimizing.

The result of this is that, as long as the production function is smooth and we can take its derivatives,
the cost minimizing bundle must occur where the slope of the isoquant is equal to the slope of the isocost.

TRS = −w1

w2
. This is identical to −

∂f
∂x1
∂f
∂x2

= −w1

w2
which can also be written MP1

w1
= MP2

w2
. This equation implies

that the cost of increasing output by 1 unit using x1

(
MP1

w1

)
is the same as the cost of increasing output

by 1 unit using x2

(
MP2

w2

)
. I hope you will find this to be an intuitive condition for cost minimization. If

it were not the case, the firm could reduce their use of the more expensive input (per unit of output), and
increase their use of the less expensive (per unit of output) input and lower their cost while producing the
same amount.

13.4 Minimizing Cost for a Cobb-Douglas Production Function

Since the mathematical conditions for cost minimization are so similar to the conditions for maximizing
utility, you will find the examples to be very familiar. For instance, let’s minimize the cost of producing y

units of output with production function f(x1, x2) =x
1
4
1 x

1
4
2 .

The TRS is −
∂

(
x

1
4
1 x

1
4
2

)
∂x1

∂

(
x

1
4
1 x

1
4
2

)
∂x2

= −x2

x1
. This gives us the equal-slope condition −x2

x1
= −w1

w2
. Solving this condition

for x1: x1 = x2w2

w1
.
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Instead of plugging this into a budget equation like we would for the consumer utility maximization, we need
to plug it into the producer’s constraint, the production constraint, which is x

1
4
1 x

1
4
2 = y. Plug in the condition

above for x1 :
(

x2w2

w1

) 1
4

x
1
4
2 = y. Solving this for x2 gives us the so-called conditional factor demand for x2:

x2 = y2
(

w1

w2

) 1
2

. This is the amount of x2 to use to produce y in the cheapest way possible. Plug this back

into the tangency condition above to get the conditional factor demand for x1 : x1 = y2
(

w2

w1

) 1
2

.

To calculate the cheapest cost for producing y, calculate the cost of the conditional factor demands using

w1x1 + w2x2. Plugging these demands in gives us: w1

(
y2

(
w2

w1

) 1
2

)
+ w2

(
y2

(
w1

w2

) 1
2

)
= 2w

1
2
1 w

1
2
2 y

2. This is

the so-called cost function for the producer. c (y) = 2w
1
2
1 w

1
2
2 y

2. This is the amount it costs to produce y in
the cheapest way possible. It is a very important function.

13.5 Profit Maximization Through Cost Minimization

Once we have the cost function for a firm, we can write the profit function as a function of y by replacing
w1x1 +w2x2 with c (y) to get π (y) = p (y) y− c (y). Since c (y) is the cheapest way of producing y, this will
give the most profit a firm could possibly earn if it produces output y. The firm is just left to chose the
optimal y. This is very easy to maximize since it is just one-dimensional. It only depends on y.

We still need to know what p (y) is. But for now, let’s use a simple assumption that price does not depend
on output y, the firm just assumes the price they will get for each unit of output is fixed at p. This is called
the price-taking assumption. This assumption is not valid in many cases. The idea that the price a firm can
get for any amount of output it chooses is unreasonable. But if the firm is a very small part of a market
(we call this perfect competition) it is probably an assumption we can get away with. We will discuss this
more in class.

In any case, if we make the price-taking assumption, we can write profit as π (y) = py − c (y). Let’s look at
the example from above. If we want to maximize profit with the production function f(x1, x2) =x

1
4
1 x

1
4
2 and

the price of output is assumed to be fixed at p, profit is π (y) = py − 2w
1
2
1 w

1
2
2 y

2. Notice we have plugged in
the cost function we found above.

For an interior maximum (y is some number greater than 0), the slope of this will have to be zero at the
optimum y∗. Otherwise, the firm could increase or decrease output and increase profit. The first order
condition is: ∂(π(y))

∂y = 0 which here is p− 4
√
w1

√
w2y = 0. Notice, we can rewrite this as: p = 4

√
w1

√
w2y.

The left side of this is the extra revenue from increasing output by one unit (the marginal revenue (MR).
The right side of this is the extra cost from increasing output by one unit (the marginal cost, MC). It will
always be true that the firms optimal output solves where MR = MC.

Under the price taking assumption (that price p does not depen\d on y) the marginal revenue is just p and
we have p = MC. Returning to the example, we can solve y to get the optimal y for any set of prices:
y∗ (p, w1, w2) =

p
4
√
w1

√
w2

.

This the optimal (profit maximizing) level of output for any price. We can also write the “profit function”.
Take this optimal level of output and plug it back into the “conditional profit function”. We found previously
that this conditional profit function is: π (y) = py − 2w

1
2
1 w

1
2
2 y

2.

Plugging in the optimal level of production yields the profit function: π (y∗) = p
(

p
4
√
w1

√
w2

)
−2w

1
2
1 w

1
2
2

(
p

4
√
w1

√
w2

)2

=

p2

8
√
w1

√
w2

. Suppose p = 10 and w1 = w2 = 1 the maximum profit the firm can earn is (plug prices into the
profit function above): π∗ = 100

8 = 25
2 . Find the optimal level of output by plugging prices into the optimal

output function y∗ (p, w1, w2) =
p

4
√
w1

√
w2

. y∗ = 10
4 = 5

2 .
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13.6 More on Supply Under Price-Taking

When we make the price-taking assumption, firms do not consider how their quantity chosen affects the
market price. Their profit function is π = py − c (y). Maximizing this requires finding the point where the
slope of the profit function is zero. This occurs where: p = ∂(c(y))

∂y .

For example, suppose c (y) = 5y2. Marginal cost (MC) is 10y. Setting p = mc we have p = 10y. This is the
inverse supply. It tells us for any output y what the price p needs to be to get the firm to supply the output.
We can invert it to get the supply function: y = p

10 .

13.7 What can go wrong– Linear/Increasing Returns to Scale

If returns to scale are linear or increasing, then if we can find any output level y where the firm earns positive
profit there is no profit maximizing level of y. The firm wants to produce as much as possible. This is because
with linear or increasing returns to scale, doubling inputs will double cost and at least double output, so
profit will at least double. Thus, if we can find a point were profit is positive, we can always use more of all
inputs and increase profit.

Let’s see this in an example. Suppose f (x1, x2) = x
1
2
1 x

1
2
2 . Price of output is p = 100 and w1 = 1, w2 = 1. In

this case, the cost minimizing level of inputs are (try this yourself using cost minimization): x1 = x2 = y.
The cost function is: c (y) = 2y. The profit function in terms of y is: π (y) = 100y − 2y = 98y. This profit
function is increasing in y... there is not profit maximizing solution!

As another example, suppose you want to maximize profit using production function f(x1, x2) =min
{

1
2x1, x2

}
.

To minimize costs, the firm should use: 1
2x1 = x2. Plug this back into the production function to get the

conditional factor demands: x1 = 2y and x2 = y. The cost function is c (y) = (2w1 + w2) y.

The conditional profit function is: π (y) = py− (2w1 + w2) y = (p− 2w1 − w2) y. If p > 2w1+w2 there is no
profit maximizing level, and thus the firm wants to produce as much as possible. If p < 2w1 + w2 optimal
level is y = 0 and profit is 0. If they are equal the profit is always zero and the firm can choose whatever
they want.

14 Monopoly

14.1 Monopolies and the Price-Taking Assumption

A single firm serving a market cannot reasonably assume that price is fixed in their output. If a monopoly
wants to sell 100 units of a good, they will try to sell it at the highest price they can. What will consumers
pay for 100 units? They will pay p (100) where p () is the inverse demand function. Suppose demand is:
Q (p) =

1
2 (200)

p . Then inverse demand is p(Q) =
1
2 (200)

Q = 100
Q . The most this monopolist could charge to sell

100 units is $1. If the monopolist wants to sell 200, the most they could charge is p (200) = 100
200 = 1

2 . As y
increases, they amount they can charge will decrease. The point of this is that a monopolist cannot possibly
take price as fixed. They have to take into account the fact that they can charge more if they produce lower
output and less if they produce higher output.

14.2 The Monopolist’s Profit Function

The price that the monopolist can sell y units of a good for is the inverse demand function p (y) . We write
the profit function as: π (y) = p (y) y − c (y).

Profit function: π (y) = p (y) y − c (y)
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The revenue is p (y) y and the cost is c (y). The first-order condition for the firm is still setting marginal
revenue to marginal cost. Suppose that was not the case. If marginal revenue is higher, then the firm can
increase revenue more than cost by increasing output. This will increase profit. If marginal cost is more
than marginal revenue, decreasing output will increase profit by lowering cost more than revenue. The key
difference between this and perfect competition (where p is fixed) is the the marginal revenue now has an
extra term and takes into account the indirect effect of increasing output on price.

14.3 Example of Maximizing Profit

Suppose demand is qd (p) = 100− p. Cost is c (q) = 10q. The inverse demand function is: p = 100− q. The
firm’s profit function is: π (q) = (100− q) q − 10q. The first order condition is: ∂((100−q)q−10q)

∂q = 0 which is
90− 2q = 0.

Solving this for q gives us the optimal level of output: q∗ = 45. Plugging this into the inverse demand
function gives us the price the monopolist can sell for p = 55.

We can now calculate the firm’s profit: π (45) = (55) (45)− 10 (45) = 2025.

What if we consider this monopolist to be a price taker instead? Let price be some fixed amount p. A price
take has the profit function π (q) = pq − c (q). At any q > 0 which maximizes profit the derivative must be
zero. Thus for a price taker we get: p− ∂c(q)

∂q = 0 or p = ∂c(q)
∂q since ∂c(q)

∂q is the marginal cost, we can write
this as p = mc. Thus, for price takers, price will always be equal to marginal cost if they are selling q > 0.
In this case, that implies that for a price taker, p = 10 since marginal cost of c (q) = 10q is 10. At a price
of 10, consumers will buy 90 units and the firms profit is: π = 10 (90)− 10 (90) = 0. Compare again to the
monopolist actual solution: p = 55, q = 45,π = 2025.

I will reiterate that price-taking is not a valid assumption for monopolists. The effect that a monopolist’s
output has on the price in the market cannot be ignored like it can if there are many firms and each firm is
just a small part of the market. In this case, we can see how far off that assumption gets us. The predicted
quantity for the monopolist is half of the price-taking quantity, and the predicted price is more than five
times higher!

14.4 What does a monopoly do?

Inelastic demand implies that raising price by 1 percent lowers demand by less than one percent. On the
other hand, lowering quantity by one percent allows them to raise price by more than one percent. This
implies lowering quantity by one percent will increase revenue because price increases proportionally more
than quantity decreases. Lowering quantity will also lower costs. This has to increase profit! This tells us
that if a monopolist is acting optimally, it will always continue lowering quantity as long as demand remains
inelastic, and can only be choosing an optimal quantity when demand is elastic. Thus, a monopolist will
always operate in the elastic portion of demand (assuming one exists).

Looking again at the example in the previous section (Section 14.3)

q = 100 − p and c (q) = 10p, we found the firm operated where p = 55. Let’s check this is in the inelastic
portion of the demand curve. The elasticity is:

∂ (100− p)

∂p

p

100− p
= − p

100− p

This is inelastic when − p
100−p < −1 which occurs where 50 < p < 100. Since p = 55 in that example, we

confirm the firm is operating in the elastic portion of the demand curve.

We can calculate something called a “markup” using the first order condition. I will go over the derivation
in class but you are not responsible for knowing exactly how it is derived. The markup calculation is as
follows: p = ϵ

ϵ+1mc. This says the firm marks up price ϵ
1+ϵ over their cost. For example, suppose ϵ = −2.

This is slightly elastic demand and ϵ
1+ϵ = −2

−2+1 = 2. So the firm will charge 2 times more than their cost.
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14.5 In Action

Suppose a firm has a cost function c (y) = y. Thus, marginal cost is constant at 1. Suppose demand is

y = 100
p2 . Let’s construct the monopolist’s profit function. First we need the inverse demand: p =

(
100
y

) 1
2

.

Profit is π =
(

100
y

) 1
2

y − y. The first order condition is
∂

(
( 100

y )
1
2 y−y

)
∂y = 5

√
1
y − 1 = 0. This is solved where

y = 25. At this price, the consumers will pay p =
(
100
25

) 1
2 = 2 and this is what the firm will charge. Notice,

the firm marks up price 2 times over marginal cost (which is 1).

Let’s check the markup. First we need the consumer’s elasticity of demand: ϵ = ∂y
∂p

p
y =

∂
(

100
p2

)
∂p

p
100
p2

= −2.

This gives a markup of −2
−2+1 = 2 and confirms the price the firm is charging. But notice we could have

simplified our work by using elasticity in the first place.

Suppose you knew consumers have a constant elasticity demand of −1.5 (demand is y = 100
p1.5 ) and the firm

has a constant marginal cost of 1. What would the monopolist charge? We calculate the markup: −1.5
−1.5+1 = 3.

Thus, they would charge 3. At a price of 3 consumers demand y = 100
31.5 ≈ 19.245. Thus, we get the price

and quantity without even needing to write down the firm’s profit function.

14.6 Consumer Surplus Under Monopoly

As we saw above, suppose a firm had constant marginal cost of c (y) = 10y and demand is q = 100−p, then,
if the firm acts as a monopolist, it will sell 45 units at a price of 55.

If we calculate the producer surplus it is the area below the inverse demand of p = 100−q but above the price
of 55. This is the triangle labeled in the graph below. It has an area of 45∗(100−55)

2 = 1012.5. Thus, despite
trying their best to capture as much of consumer surplus as possible by finding the q that will maximize
profit and setting p as high as possible, the firm leaves some surplus on the table. How can they get even
more? They will need to charge different prices. We will look at that in the next chapter.

Figure 14.1: Monopoly Profit, Consumer Surplus, and Deadweight Loss.
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15 Monopoly Behavior

In the pervious chapter, we looked at what a monopolist can achieve by leveraging their market power
to create scarcity and drive up the price in order to increase profit. However, as seen in figure 14.1, the
monopolist ends up leaving a lot of surplus on the table both in terms of remaining consumer surplus (charging
some consumers less than they are willing to pay) and deadweight loss (lost surplus due to excluding some
consumers from the market through the artificial scarcity). In this chapter, we look at more complex ways
a monoplist can sell their products to try and capture some of this surplus.

15.1 Types of Price Discrimination

There are several methods monopoilists use when pricing their goods to get more profit. Here is a list:

• First Degree Price Discrimination: The firm can identify every consumer, learn their willingness to
pay, and charge different prices.

– This is an extreme form of price discrimination. It is best understood as a thought experiment
about what an extreme monopolist could do rather than something actually achievable.

– Examples: Airlines sometimes come close to this when they use complex pricing schemes to try
and extract more and more surplus from consumers. Everyone on the airplane probably paid a
different price for their tickets, but it is unlikely they all paid their highest willingness.

• Second Degree Price Discrimination: The firm cannot identify individual consumers, but can offer
different packages or qualities of goods at different prices.

– Examples: Quantity discounts, quality differences (first-class/coach tickets, “reserve” wines, “flag-
ship” high-end products that differ little
from cheaper counterparts.

• Third Degree Price Discrimination: Can identify groups and charge those groups different amounts.

– Examples: Student tickets, senior discounts.

• Bundling: Combine different goods and force consumers to buy them in bundles.

– Examples: Cable TV packages, Microsoft Office Software Bundle.

• Two-Part Tariff: Charge the consumer an entry fee for membership that gives the consumer the right
to buy the good at the lowest efficient price (the marginal cost of the firm).

– Examples: Netflix (compare this to streaming rental services), theme park tickets (rides are free),
free-coffee for the month when you pay $19.99 to buy a special mug.

15.2 First Degree Price Discrimination in Action

Suppose there are three people willing to pay $3, $2, $1 for a good respectively. Suppose the monopolist has
zero marginal cost. Here is the monopoly profit at different prices if it charges everyone the same price:

Price # Buyers Profit
$3 1 $3
$2 2 $4
$1 3 $3
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The most the firm can make is $4. But if it knew everyone’s willingness to pay and could charge them
different prices, the firm could earn $6!

When the monopolist charges one price, the consumers get some consumer surplus (refer to Figure 14.1)
This is because there are some consumers who get the good at a price lower than they are willing to pay. On
other hand, there is also some deadweight loss because the monopolist restricts quantity from the efficient
level where price is equal to marginal cost. When a monopolist uses first degree price discrimination there
is no deadweight loss and they capture all of the consumer surplus! This is because the firm can sell to
everyone who it is efficient to sell to (they are willing to pay more than marginal cost) at exactly the price
they are willing to pay.

15.3 Third Degree Price Discrimination in Action

Suppose there are two groups of people: students and non-students. A movie theater sells tickets to both
groups. Assume the firm has zero marginal cost so that c (y) = 0 (cost is zero regardless of output). Students
have demand function: ys = 100− 2p and non-students have demand function: yn = 100− p.

If we add up both types of consumer, entire market demand is: Y = 100 − 2p + 100 − p = 200 − 3p (as
long as p ≤ 50). The inverse demands for both groups, and the market as a whole are ps = 100−ys

2 , pn =

100− yn, p = 200−Y
3 .

Suppose the monopolist was going to set one price for the entire market. Their profit function would be:
π = 200−Y

3 Y . By taking the first order condition and solving we find that the optimal Y = 100 and the
optimal price is p = 100

3 . At this price ys = 1
3 (100) (about 33) is the student demand and yn = 2

3 (100)
about 66 is the non-student demand. The firm’s profit is: π ≈ 3333.33.

What if the firm wanted to set prices differently for students and non-students?

The profit earned from students is: πs = 100−ys

2 ys. The profit earned from non-students is: πn =
(100− yn) yn. Solving the first-order conditions, we get that the optimal ys = 50 and the optimal yn = 50.
The prices the firm can charge are ps = 25 and pn = 50. The profits are: πs = 1250 and πn = 2500.

The total profit is: π = πs + πn = 3750. Notice the firm can earn about 416.67 more by setting different
prices!

15.4 Bundling

Bundling can occur when a firm sells multiple products. The goal of bundling is to take advantage of
differences in types of demand by forcing consumers to buy bundles of goods at a single price rather than
selling each good at a separate price.

For example, suppose a firm sells pants and shirts. There are two consumers who each demand up to one
shirt and one pair of pants. They are willing to pay the following:

Shirt Pants Both
Consumer 1 50 30 80
Consumer 2 10 80 90

Pricing Shirts.

If they price shirts at $50, they sell one shirt and earn $50. If they price at $10, they sell two shirts and earn
$20.

Pricing Pants.

If they price pants at $80, they sell one pair of pants and earn $80. If they price at $30, they sell two pairs
of pants and earn $60.
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Thus, the best they can do is sell one shirt at $50 and one pair of pants at $80 to earn $130.

Pricing Bundles.

If the firm forces consumers to buy a bundle of a shirt and a pair of pants they can price that bundle at $80,
sell two bundles and earn $160.

15.5 Two-Part Tariff

Two-part tariffs can be used when consumers demand multiple units of a good. An example of this is theme
park tickets. The theme park could charge a price per ride. In fact, this happens at some fairs. However,
instead, rides are free once you have purchased the ticket. The goal of a two-part tariff is to create as
much consumer surplus as possible by selling the consumer as much as is efficient (this occurs where price is
marginal cost). This will create the most consumer surplus possible. Instead of leaving that consumer with
the surplus, charge them an “entry fee” (this is the other part of the tariff) equal to their consumer surplus.

For example, suppose a consumer’s demand for coffee is q = 10− p and the firm has zero marginal cost for
coffee. If the firm sells to that consumer at a single price it’s profit of selling the consumer q cups of coffee
at the most they will pay for those q cups is: π = (10− q) q. The best thing to do is sell them 5 cups of
coffee at 5 dollars and earn $25.

If the firm prices at marginal cost ($0) the consumer will demand 10 cups of coffee. Their surplus is the
area below the inverse demand but above price of zero. That surplus is $50, so they would be willing to pay
up to $50 for the right to buy cups of coffee at $0 (assuming you don’t give them the option to buy at $5
per cup). So the firm can earn $50 by forcing the consumer to pay an “entry fee” of $50 and then give them
coffee for free.

Figure 15.1: Earning more with a two-part tariff. Orange is the profit under optimal unit pricing. Blue plus
orange area is the consumer surplus under marginal cost pricing that is then captured with an entry fee.
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16 The Cournot Model of Competition

16.1 Extending the Monopoly Model

To relax the price-taking assumption, we need to know the relationship between a firm’s quantity and the
market price. For a monopoly, that relationship is easy to figure out, it is the inverse demand. The inverse
demand is the most that consumers will pay to buy q units of the good. So, if a monopolist produces q units
of the good, they can charge the inverse demand p (q) at that quantity.

But what about when there are multiple firms? The inverse demand represents the relationship between
the price and the market quantity. But when there are many firms, each firm’s quantity is only a part of
the market quantity. The first set to extending the model is to make sure we can keep track of each firm’s
quantity, and the total market quantity. We use the following notation:

qi: firm i’s quantity

Q: Total (market) quantity Q =
∑n

i=1 qi

Q−i: Total (market) quantity of all firms except i. Q−i = Q− qi.

We know that the amount consumers will pay for the total market quantity is the inverse demand p (Q).
Thus, the profit of a firm is dependent both on the quantity they produce and the total market quantity.
This lets us write each firm’s profit function like this: π (qi, Q) = p (Q) qi − c (qi).

Notice here, the market price is determined by the total market quantity. Revenue is that price multiplied by
the firms own quantity. Of course, costs are specific to a firm and dependent only on their own quantity. One
issue with writing the profit this way is that Q itself depends on qi. It is more convenient to write the profit
function in terms of qi and Q−i. Noting that Q = Q−i+qi, we can write: π (qi, Q−i) = p (Q−i + qi) qi−c (qi).

If the firm knew (or even had some assumption about) what Q−i is, they could calculate their profit for any
quantity qi they produce and even maximize it. Let’s look at an example.

16.2 Example of Maximizing Profit with Two Firms

Suppose inverse demand is p (Q) = 100 − Q, there are two firms, and the cost function of each firm is
c (qi) = 10qi.

Firm 1’s profit function is π1 (q1, q2) = (100− q1 − q2) q1 − 10q1 which simplifies to π1 (q1, q2) = 90q1 − q2i −
q1q2.

Similarly 2’s profit function is π2 (q1, q2) = 90q2 − q22 − q1q2.

16.2.1 Game Theory

This model is a Game. A game is a formal mathematical object studied in game theory. For our purposes,
we can think of a game as a set of players, a set of actions for each player, and a set of payoffs for each player
that depend on the actions chosen by everyone.

There are many ways to “solve” a game. That is, to make predictions about what might happen in that game
given the strategic sophistication of players in the game. The most common way to solve a game in game
theory is to use the Nash equilibrium. To define a Nash Equilibrium, let’s first look at best responses.

16.2.2 Nash Equilibrium for 2 Firms

Suppose firm 1 believes firm 2 will produce q2 = 50. Then they believe their profit function is π1 (q1, 50) =
40q1 − q21 . To maximize this, find where the derivative is zero. This occurs at q2 = 20.
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In game theory, q1 = 20 is what we call a best response to q2 = 50.

When a set of quantities are simultaneously best responses to each other, we say that are a Nash Equilib-
rium of the game. Since Nash Equilibrium requires all players to be simultaneously best responding to each
other, it will also imply that no player has incentive to change their action.

While q1 = 20 is a best response to q2 = 50. Firm 2’s profit if firm 1 produces q1 = 20 is: π2 (20, q2) =
90q2 − q22 − 20q2 which is maximized at 35. Thus, q2 = 35 is the best response to q1 = 50 and so the pair
(20, 50) is not a Nash equilibrium since firm 2 is not best responding in choosing q2 = 50.

To find the Nash equilibrium, let’s look again at each firm’s profit function:

π1 (q1, q2) = (100− q1 − q2) q1 − 10q1 = 90q1 − q21 − q1q2.

π2 (q2, q1) = (100− q1 − q2) q2 − 10q2 = 90q2 − q22 − q2q1.

To find firm 1’s best response to any q2, maximize their profit by finding where their marginal profit is zero

(the first-order condition). The marginal profit is:
∂(90q1−q21−q1q2)

∂q1
= 90 − 2q1 − q2. This is equal to zero

where q1 = 90−q2
2 . This is firm 1’s best response function. It tells firm 1 what quantity to choose given

what firm 2 chooses. Firm 2’s best response is likewise q2 = 90−q1
2 .

A Nash Equilibrium is a pair (q1, q2) that solves both of these at the same time. That is, firm 1 is best
responding to firm 2 and firm 2 is best responding to firm 1.

Solving this system of equations,
{
q1 = 90−q2

2 , q2 = 90−q1
2

}
, the only pair of quantities that solve this are

q1 = 30, q2 = 30.

16.3 Equilibrium with N firms.

Now suppose we have N firms. Each firm’s profit is πi (qi, Q−i) = (100− qi −Q−i) qi− 10qi which simplifies
to πi (qi, Q−i) = 90qi − q2i − qiQ−i. If we maximize the profit for firm i conditional on Q−i, we need to look

for where the marginal profit of i is zero. This occurs where
∂(90qi−q2i−qiQ−i)

∂qi
= 90− 2qi −Q−i = 0. Solving

this for qi gives firm i’s best response function to Q−i by the other firms qi =
90−Q−i

2 .

To find the Nash equilibrium, we would need to solve N equations of the form qi = 90−Q−i

2 for the n
unknowns. However, notice each firm’s best response function looks identical because they all have the
same cost function. When this is the case, instead of solving N equations to find the N firm’s quantities
in equilibrium, we can impose symmetry on the set of equations. That is, assume in equilibrium all firms
will produce the same output. There will always be an equilibrium like this in our simple models when the
costs are symmetric. Thus, we can assume that qi = qj = q for all i and j and solve just one equation for
one unknown... q. Noting that Q−i = (N − 1) q since there are (N − 1) firms that aren’t firm i, imposing
symmetry, we get the equation: q = 90−((N−1)q)

2 .

Solving this for q gives us q∗ = 90
N+1 . Thus, in equilibrium, with N firms, all will produce q = 90

N+1 . The
market quantity in equilibrium will be Q = (N) q∗ = N

N+190 and the market price will be. p∗ = 100− N
N+190.

Let’s look at this market price and market quantity as the number of firms changes:

N p Q
1 55 45
2 40 60
5 25 75
100 10.9 89.1
1000 10.1 89.9

Figure 16.1: Price and quantity in Nash equilibrium of the Cournot model with N firms when each has cost
c (q) = 10q and inverse demand is p = 100−Q.
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For N = 1 we get the monopoly solution p = 55, q = 45. As N increases, the price approaches 10 and the
market quantity approaches 90. This is what would occur if firms were price takers. That is, under perfect
competition. This is because as N increases, each firm becomes a less less important part of the market,
their market power shrinks to zero and they become, effectively, price takers.

17 Collusion and Cooperation

17.1 A Basic Example

Let’s start with a two firm Cournot model. Inverse demand is p (Q) = 25−Q, and the cost function of each
firm is c (qi) = q2i . We can write the profit functions of each firm as follows:

π1 (q1, q2) = (25− (q1 + q2)) q1 − q21

π2 (q1, q2) = (25− (q1 + q2)) q2 − q22

If each firm maximizes its profit by choosing their quantity, we get the best response functions (see the
section on the Cournot model for details on this): q1 = 25−q2

4 , q2 = 25−q1
4 . Since the firms have the same

cost function, we can impose symmetry and solve to find the symmetric Nash equilibrium. This is where
q = 25−q

4 . The solution to this is q = 5, which gives the Nash equilibrium of the game. When both firms
play the Nash equilibrium, both earn π = 50.

Now, suppose the firms get together and collude to maximize their joint profit. They look for a quantity
they can both choose that maximizes the sum of their profits πjoint = 2

(
(25− (q + q)) q − q2

)
. Taking the

derivative of this with respect to q we get 2(25 − 6q). Solving for where this is equal to zero gives us the
quantity that jointly maximizes their profits. This is qcollusion = 25

6 . When both firms play this collusive
quantity, they both earn πcollusion = 625

12 ≈ 52.1.

Note that collusion is not an equilibrium. Playing 25
6 when the other plays 25

6 is sub-optimal. The optimal
strategy is to best respond to 25

6 . Plugging 25
6 in for the quantity of the other firm in the above the best

response functions gives us: that given the other will stick to the agreement of playing 25
6 , it is actually best

to play qdeviating = 125
24 ≈ 5.2. By doing this the deviating firm gets π ≈ 54.3 and the other firm who sticks

to 25
6 gets π = 47.7431. If both happen t deviate by playing 125

24 , they both get π ≈ 48.8281.

If we boil down this scenario for the firms to the choice of whether to cooperate by playing the collusive
quantity, or to back-stab the other firm and deviate by playing 125

24 , we get what game theory called a “2x2
game”. These are the simplest “games” in game theory. There are many of these 2x2 games. The one
that results from this particular strategic scenario is probably the most famous. It is called the prisoner’s
dilemma. In a prisoner’s dilemma game, each player has incentive to deviate from some cooperative outcome
regardless of what they think the other person will do. We can represent this 2x2 game in the following
table. Firm 1’s strategy determines the row and firm 2’s determines the column. Notice that regardless of
what the other firm chooses, a firm always does better by deviating.

cooperate q2 = 25
6 deviate q2 = 125

24

cooperate q1 = 25
6 52.1, 52.1 47.7,54.3

deviate q1 = 125
24 54.3, 47.7 48.8,48.8

Figure 17.1: The “prisoner’s dilemma” game resulting from two firms agreeing to collude in a market where
both have cost function c (q) = q2 and inverse demand is 25−Q. Firm 1’s decision determines the row, firm
2’s decision determines the column. Payoffs are written with firm 1’s payoff first.
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17.2 Prisoner’s Dilemma

In the previous section, we saw how two firms agreeing to collude in a market results in a strategic scenario
known in game theory as the “prisoner’s dilemma”. In this section, we will simplify the payments from that
game slightly and look at how, despite having incentive to deviate from the agreement when played one time,
firms that repeat this game over and over can agree to cooperate in a way that is self-enforcing.

Let’s suppose we worked through the analysis for two firms colluding as in the previous section and got this
simplified game instead of the one in Figure 17.1.

cooperate defect
cooperate 4,4 0,10

defect 10,0 2,2

Figure 17.2: A simplified prisoner’s dilemma game.

Now, let’s suppose these firms play this game repeatedly, forever. Each firm is a little impatient and likes
money in the next period β (with 0 < β < 1) as much as they like money today. And they like money in
two periods β times as much than money one periods from now so that they like money in two periods β2 as
much as money right now... and so on. The payoff of a firm in this game can be represented as a discounted
stream of the stage-game payoffs like this. If time t = 0 is now the payoffs from getting payoffs π0 now, π1

next period, π2 in the period after that , and so on:

∞∑
t=0

βtπt = π0 + βπ1 + β2π2 + β3π3 + ...

As an example, suppose the firms cooperate in every period. Using the fact that
∑∞

t=0 β
t = 1

1−β , the payoff
is:

4 + 4β + 4β2 + 4β3 + .... =

∞∑
t=0

4βt = 4

∞∑
t=0

βt =
4

1− β

17.3 Sustaining Cooperation

We have seen that if firms play this game once, both have incentive to deviate from cooperation. However,
what if they repeat the game? If they are patient enough, the following agreement will be self-enforcing:
“Cooperate as long we have always (both) cooperated in the past. If either of us have ever deviated, we will
both deviate forever.”

To see that this is self-enforcing, we need to check whether any firm ever has incentive to deviate from the
agreement as long as the other is following the agreement. If someone has deviated in the past, then the
other firm will deviate forever, no matter what. The best a firm can do is to deviate for ever. What if no
one has deviated? Does a firm have incentive to deviate? If they go along with the agreement, they will
cooperate forever and get 4 in every period. If they deviate, they will get 10 today, but both of the firms
will then deviate forever after. We can summarize the payments of both options:

Follow the agreement and cooperate: 4 + β (4) + β2 (4) + β3 (4) + .... = 4
∑∞

t=0 β
t = 4

1−β

Deviate: 10 + 2β2 + 2β2 + 2β3 + ... = 10 +
∑∞

t=1 2β
t = 10 + β

∑∞
t=0 2β

t = 10 + β 2
1−β

Cooperating is better than deviating, and thus the agreement is self-enforcing as long as 4
1−β > 10 + β 2

1−β .
Solving this for β, we get β > 3

4 . As long as these firms are patient enough (they care about tomorrow at
least 3

4 what they care about today) then they can sustain cooperation.
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18 Externalities

Externalities occur when the choices of one person affect the outcomes of other people. For instance, if
someone smokes, it can affect the health of others. If one person drives to work, it creates a little more traffic
congestion that slows down everyone else (even if it is just by a little bit). These are both externalities. Let’s
see how externalities can create inefficient outcomes in simple models and how policy can improve efficiency.

18.1 Tragedy of the Commons Example

A simple model that demonstrates negative externalities without a lot of complexity is the tragedy of the
commons model. In this model, a group of people share a common resource. When use of this resource is
unregulated the outcomes will be inefficient because everyone ignores how their use of the resource diminishes
the effectiveness for everyone else.

For example, suppose 100
√
B fish will be caught on a lake when B boats are fishing. Fish can be sold for

$1 but it costs $10 to buy fuel and supplies to fish. If there are B boats, each catches 100
√
B

B . The profit of
each boat is: π = 100

√
B

B − 10 = 100√
B
− 10. Notice that as more boats come to the lake, it reduces the profit

of all other boats, a negative externality.

How many boats will be on the lake if fishing is unregulated? Each boat will decide to fish as long as they
can earn positive profit. That is, as long as 100√

B
−10 ≥ 0. Solving this for B we get B ≤ 100. Thus, if fishing

is not regulated, there will be 100 boats on the lake. 1000 fish will be caught. Each boat catches 10 fish and
earns $0 profit.

The total profit earned by all B fishing boats is π (B) = B
(

100
√
B

B − 10
)
= 100

√
B−10B. This is maximized

where
∂(100

√
B−10B)

∂B = 0. Solving this, we get B = 25. Thus, the optimal number of boats to have on the
lake is 25. They would catch 500 fish and each boat would earn $10.

Suppose the government wants to charge for a permit to fish $p to get the optimal number of fish on the
lake. What permit fee will bring the number of boats to the efficient level? We need to find what price p

will make profit of each boat zero when there are 25 boats π = 100
√
B

B − 10 − p. Plugging in B = 25 and
solving for where the profit is zero: 100

√
25

25 − 10 − p = 0. We get p = 10. If the government charges a $10
fishing fee, the efficient number of boats will fish.

18.2 Positive Externalities - Public Goods

As we have seen above, when there are negative externalities, people tend to use “too much” of something
that makes others worse off. The opposite happens when there are positive externalities. When using or
doing something makes others better, off individuals will tend to not do it enough.

For example, suppose 100 people share a park and are asked to donate money to it. Each individual has
income mi and their contribution is gi. The total contributions are G =

∑100
i=1 gi. Each individuals utility

function is quasilinear in money and the total contributed to the public good and is given by u (gi) =
mi− gi+100

√
G−i + gi where G−i = G− gi. For convenience, let’s assume mi = 1000000 for all consumers.

What does each individual contribute? The individual marginal utility of contribution is
∂(10000−gi+100

√
G−i+gi)

∂gi
=

50√
gi+G−i

− 1. This is maximized where 50√
gi+G−i

= 1 or where gi = 2500 − G−i. This is each individual’s

best response. Notice that each individual has the same best response function. We can look for a sym-
metric Nash equilibrium here just as we did in the Cournot model. If we impose symmetry by having
all contribute g then we get the best response function: g = 2500 − (100− 1) g which is solved by g = 25.
Thus, in the symmetric Nash equilibrium, all contribute $25.

Each individual’s utility is 1000000 − 25 + 100
√
2500 = 1004975. Could we make these individuals better

off?
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18.2.1 Social Optimum

What if the government could tax individuals and use those taxes to contribute to the park? What would
the optimum tax be? Suppose we set the tax to t for everyone. Each individual’s utility function is:
u (t) = 10000 − t + 100

√
100t. Let’s maximize this with respect to t. u (t) = 1000000 − t + 100

√
100t. The

marginal utility with respect to t is
∂(1000000−t+100

√
100t)

∂t = 500√
t
−1. Utility for every individual is maximized

where this derivative is equal to zero. Thus, utility is maximized where 500 =
√
t or where t = 250000. At

this tax level the utility of every individual is 1000000− 250000 + 100
√
100 (250000) = 1250000.

19 Exchange

19.1 Pies - An Equilibrium

Suppose there is a baker who has 30 crusts and a farmer who has 60 apples. Both eat only pies (perfect
complements) that use 1 crust and 2 apples. Prices are p1 = 2, p2 = 1. Since it requires two apples and a
crust to make a pie, a pie costs $4 at these prices. Notice there are ingredients for 10 pies available between
the endowments of the two consumers. We call such a model an exchange economy.

Since the baker has 30 crusts and each is worth $2, this endowment is worth $60. The baker can afford 15
pies. Since the farmer has 60 apples and each is worth $1, this endowment is worth $260. The farmer can
afford 15 pies. At these prices, the baker demands 15 crusts, 30 apples and the farmer demands: 15 crusts,
30 apples.

At these prices, the pair would agree on the following trade: the farmer gives 30 apples to the barker in
exchange for 15 crusts. Whenever the sum of the demands at some set of prices is exactly equal to the total
endowments of the goods in the economy, a mutually agreeable trade like this is possible. We call this an
equilibrium. An equilibrium in an exchange economy is a set of prices such that the demands of each good
at those prices sum to the total endowment of those goods. That is, there is no over supply or over demand
of any of the goods at these prices.

19.2 Pies - Not an Equilibrium

Suppose there is a baker who has 30 crusts and a farmer who has 60 apples. The baker eat pies that
use 1 crust, 2 apples. The farmer eats anything (perfect substitutes utility u = x1 + x2). Prices are
p1 = 2, p2 = 1. Notice the only difference between this exchange economy and the previous example is the
farmer’s preferences.

Again, a pie costs $4. Since the baker has 30 crusts and each is worth $2, this endowment is worth $60. The
baker can afford 15 pies. Since the farmer has 60 apples and each is worth $1, this endowment is worth $60.
The demands are... baker: 15 crusts, 30 apples. farmer: 0 crusts, 60 apples.

This is not a equilibrium because at these prices, the demands of the consumers do not sum to the
endowments. There is an over demand for apples (90 demanded with 60 available) and an over supply of
crusts (15 demanded with 30 available).

Since there is an over demand for apple and an oversupply of crusts, to find an equilibrium, the price of
crusts will need to increase relative to the price of apples. Let’s try: p1 = p2 = 1. At these prices, the baker
demands: (10, 20). The farmer demands anything that cots $60. For instance, the farmer might demand:
(20, 40). At these prices and with these demands, total demand for crusts is 30, total demand for apples is
60. There is no over-supply or over demand. This is an equilibrium.
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19.3 General Environment

To see how we can find an equilibrium more generally, let’s set up the problem. We need the demands and
endowments for two people. Let’s call them A and B.

Person A: Demands: xA
1 , x

A
2 . Endowments: ωA

1 , ω
A
2 . Utility: uA

(
xA
1 , x

A
2

)
.

Person B: Demands: xB
1 , x

B
2 . Endowments: ωB

1 , ωB
2 . Utility: uB

(
xB
1 , x

B
2

)
.

The prices apply to both people, so we will not need to designate person A or person B. The prices are just
as we are used to: p1, p2.

19.3.1 Equilibrium Conditions

There are two conditions for equilibrium.

1. Consumers maximize utility ui

(
xi
1, x

i
2

)
subject to their budget equations: p1x

i
1 + p2x

i
2 = p1ω

i
1 + p2ω

i
2.

2. Those demands “clear” the market: xA
1 + xB

1 = ωA
1 + ωB

1 and xA
2 + xB

2 = ωA
2 + ωB

2 .

19.3.2 Walras’ Law

One useful result is Walras’ Law. This law tells us that if all but one markets clears, the last one will clear
as well. If we just have two markets as in our examples, this allows us to find the prices that will clear one
market and be assured they will clear the other market.

19.3.3 Normalizing Prices

Suppose some set of prices is an equilibrium. If we multiply all of the prices by some number, that will also
to be an equilibrium. This is because, if we scale all of the prices by, let’s say t, each consumer’s budget
equation goes from p1x

i
1 + p2x

i
2 = p1ω

i
1 + p2ω

i
2 to tp1x

i
1 + tp2x

i
2 = tp1ω

i
1 + tp2ω

i
2. Since we can factor out

t from this second equation and get the first equation, the budget set for each consumer must be the same
when we scale the prices. Thus, the markets will also clear at prices tp1, tp2.

Because an equilibrium only depends on the relative prices of the goods, we are always free to pick one of
the goods and set it’s price to 1 and then find the price of the other good that brings the markets into
equilibrium. This is called normalizing the prices. I usually like to choose good 1 to normalize the prices to
by setting p1 = 1. I will demonstrate this in the example below.

19.4 Example

Suppose uA

(
xA
1 , x

A
2

)
= xA

1 x
A
2 , ωA

1 = 10, ωA
2 = 0, uB

(
xB
1 , x

B
2

)
= xB

1 x
B
2 , ωB

1 = 0, ωB
2 = 20.

Find the demands for each consumer by maximizing utility. Consumer A’s demands are:

xA
1 =

1
2 (10p1)

p1
, xA

2 =
1
2 (10p1)

p2

Consumer B’s demands are:

xB
1 =

1
2 (20p2)

p1
, xB

2 =
1
2 (20p2)

p2

Now we need to apply the market clearing condition. By Walras’ law, if one market clears, the other will
clear as well. We only need to check one market. Let’s pick market for good 1. For the market to clear we
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need xA
1 + xB

1 = ωA
1 + ωB

1 . Plugging in demands and endowments, we get:
1
2 (10p1)

p1
+

1
2 (20p2)

p1
= 10. Let’s

normalizes prices by setting p1 = 1 and we have
1
2 (10)

1 +
1
2 (20p2)

1 = 10. Solving this for p2, we get p2 = 1
2 .

Thus, p1 = 1 and p2 = 1
2 are equilibrium prices. More generally, any set of prices such that p2 = 1

2p1 are
an equilibrium. Let’s figure out what each consumer demands at these prices by plugging in the prices into
demands above. xA

1 = 5, xA
2 = 10, xB

1 = 5, xB
2 = 10.

19.5 One More General Equilibrium Example.

Suppose we have uA = ln (x1) + x2, wA
1 = 10, wA

2 = 10. uB = x1x2, wB
1 = 10, wB

2 = 10.

Let’s find A’s demand. Maximizing utility, we get: xA
1 = p2

p1
, xA

2 =
(10p1+10p2)−p1

(
p2
p1

)
p2

. B’s demand is

xB
1 =

1
2 (10p1+10p2)

p1
and xB

2 =
1
2 (10p1+10p2)

p2
.

Now let’s normalize prices by setting p1 = 1 to simplify the expressions.

xa
1 = p2, x

a
2 =

10 + 9p2
p2

xb
1 =

1

2
(10 + 10p2) , x

b
2 =

1
2 (10 + 10p2)

p2

Finally, we find the p2 that makes this an equilibrium by finding the p2 that makes either market clear. By
walras’ law we only need to check this for one of the two markets. Let’s find the p2 that makes market one
clear by solving p2 +

1
2 (10 + 10p2) = 20. We get p2 = 5

2 .

19.6 Pareto Efficiency and Equilibrium

Pareto efficient. You can’t make someone better off without making someone else worse off.

First welfare theorem. An equilibrium in an exchange economy has to be pareto efficient.

Second welfare theorem. Every possible Pareto efficient outcome can be arrived at in equilibrium from
some starting set of endowments.

Having the equilibrium outcome of a market be Pareto efficient requires some assumptions. One of the key
reasons that markets in a simple exchange economy are Pareto efficient is that there are no externalities.
What one consumer chooses does not affect the utility of the other.

In markets that have externalities, we should not expect equilibria to be efficient. In these instances, there
is good reason for regulators to get involved to change the market outcomes and improve efficiency. Let’s
have a look at some simple models with externalities.
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