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Abstract

Building on automatic differentiation, I propose a solution method for heterogeneous agents models with
many aggregate equations which allows to account even for strong nonlinearities. A powerful open source
reference implementation is provided which typically solves the canonical HANK model within a few sec-
onds, including the nonlinear transition dynamics of the complete distribution. I study a permanent shift in
redistribution policy in a medium-scale two-asset HANK model featuring many aggregate frictions. Since
firms wish to deplete their capital stock, the transition path is characterized by a long-lasting deflationary
episode, which may be intensified by the interest rate lower bound.
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1 Introduction

Over the last decade, heterogeneous agent models have emerged as an important new class of macroe-
conomic models.1 They allow to account for the heterogeneity of agents in their wealth, abilities, or other
characteristics, thereby permitting economists to better understand the role of different groups of agents for
the economy. Heterogeneous agent models provide more accurate predictions about how different agents
respond to changes in the economy, such as shifts in policy, changes in market conditions, or unexpected
shocks, and in turn give insight on how these changes impact on the distribution of agents. This allows these
models to capture important new economic channels, which is useful for designing policies that are more
effective and equitable, and provide a more nuanced and realistic view of the economy, ultimately leading to
a deeper understanding of how the economy works.

This paper shows how to solve and simulate heterogeneous agent models with strong nonlinearities
and many aggregate equations. The current frontier of macroeconomic research assigns a pivotal role to
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such nonlinearities. Important examples include occasionally binding constraints (e.g. the lower bound on
nominal rates), asymmetries (e.g. downwards nominal wage rigidity or asymmetric disaggregated pricing
decisions), and aggregate nonlinearities such as severe financial frictions or labor markets with search-and-
matching.2 The literature stresses that such nonlinearities are likely to play a central role in the propagation
of policies and economic shocks through the economy, or to different groups of economic agents. However,
due to the high complexity of heterogeneous agent models, current advances have focussed on methods that
involve linearization techniques, thereby discarding the nonlinear features of the model. Linearization was
in particular necessary for models that feature many aggregate equations. This paper fills this gap by find-
ing the perfect foresight solution of heterogeneous agent models while fully accounting for the underlying
nonlinearities.3

As the basis of my methodological contribution I develop a modular representation of nonlinear heteroge-
neous agent models. This representation allows to combine the disaggregated decisions of the cross-section
of agents with an arbitrary number of – potentially highly nonlinear – aggregated equilibrium conditions.
I then show that the model’s steady state and the corresponding stationary distribution can be identified by
means of a robust and generic routine based on the technique of automatic differentiation (AD).4 At the
heart of the paper, I then develop a numerical method that, based on Newton’s method, solves for the per-
fect foresight path. The solution is represented in sequence space, i.e. represents the truncated trajectory
up to a distant horizon, and fully accounts for the nonlinearity of the model. More precisely, I show that
the sub-problem of solving the system of linear equations associated with each Newton-step can be tackled
efficiently using a novel iterative procedure based on Jacobian-vector-products (JVPs). The efficiency comes
from explicitly exploiting several features that are specific to economic models, and by leveraging that JVPs
can be evaluated quickly using AD. The method not only allows to solve for the nonlinear aggregate dy-
namics, but also to obtain the full nonlinear transition sequence of the cross-sectional distribution between
different steady states.

Along with the method, I provide a high-level reference implementation that I propose as a blueprint
of best-practices for the provision of codes and numerical routines in economics: the econpizza package.
The package consequently follows the open-source paradigm and comes with an extensive online docu-
mentation.5 A core concept is the strict separation of economic model (provided by the user), underlying
simulation code (provided by the implementation), and the analysis of the results (left to the user). To achieve
this, I introduce a generic and standardized modelling syntax for the representation of heterogeneous agent
models, which levers the modular structure of these models: the aggregate equations on one side, and the
disaggregated decision problem on the other. The implementation further showcases how to provide generic,
reusable code and to adhere to the principles of modern software development. As I argue, this helps to make
these methods accessible to a larger group of researchers while allowing and fostering continuous progress
in the field.

I apply the proposed methods to a fundamental economics question: the macroeconomic costs and bene-
fits of redistributive policy. I propose a medium-scale heterogeneous agent model which features the full set

2E.g., see Gust et al. (2017) for the role of the interest rate lower bound on the empirical dynamics and Lindé and Trabandt (2018)
for the effects of nonlinearities on fiscal multipliers. Petrosky-Nadeau et al. (2018) document that nonlinear labor search frictions can
induce endogenous disasters in otherwise standard models. Klenow and Kryvtsov (2008) study the role of asymmetric state-dependent
heterogeneous firms pricing on inflation dynamics.

3While this paper focuses on models with heterogeneous households, the presented methods can equally well be applied to models
with heterogeneity across other types of agents, such as firms or banks.

4Automatic differentiation is a computational technique for efficiently computing the derivatives of a function without having to
write out the derivative by hand or use numerical methods. Section 3 gives a short primer on AD and its virtues.

5The documentation can be found at https://econpizza.readthedocs.io.
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of frictions of contemporary DSGE models. Agents may hold two classes of assets and face idiosyncratic
income risk. This gives rise to a precautionary savings motive and a non-trivial distribution of assets. If trans-
fers are financed by labor income taxes, the distortionary effects of these taxes decreases output significantly
relative to an equilibrium without transfers. My methodology allows to study the transition dynamics of the
complete cross-sectional distribution between the two equilibria. As I show, these dynamics are strongly
deflationary in the short and medium term due to the depletion of the capital stock, and their recessionary
nature may be intensified by severe nonlinearities such as a binding lower bound on the nominal interest rate
or downwards nominal wage rigidity.

Literature

The idea of solving representative agent models in sequence space dates back to the seminal paper of
Fair and Taylor (1980). Building on this idea, Laffargue (1990) and Juillard et al. (1996) show that the block
tridiagonal structure of the sequence space Jacobian of representative agent models can be exploited to
efficiently solve the system of linear equations during each single Newton step. Juillard et al. (1998) further
show that Newton-based methods are advantageous over first-order algorithms in terms of robustness and
speed. This type of algorithm (but using AD to calculate the single Jacobian blocks) is also provided in
the reference implementation for representative agent models. Appendix D contains details. Unfortunately,
the sequence space Jacobian of heterogeneous agent models does not inherit such handy block tridiagonal
structure, nor can we safely ex-ante assume its sparsity.6 For this reason I here propose a method that uses
the existing knowledge about the dynamic system of heterogeneous agent models – manifested in the steady
state sequence space Jacobian – to efficiently solve the system of linear equations during each Newton step
iteratively.

The sequence space approach to heterogeneous agent models was introduced by Boppart et al. (2018)
and further advanced by Auclert et al. (2021). Both methods focus on linearized solutions in the direct
neighborhood of the steady state. Boppart et al. (2018) propose a small-scale model which features very
few aggregated variables and equations. They show that the underlying heterogeneous agent model can be
solved giving a guess on the trajectory of these variables without having to keep track of the disaggregated
variables. The authors use the nonlinear impulse responses in the immediate neighborhood of the steady
state to generate general linear impulse responses. Building on this, Auclert et al. (2021) provide an elegant
and efficient method for calculating the steady state sequence space Jacobian which provides linear impulse
response functions for models with many aggregated variables. Auclert et al. (2021) also use the steady state
sequence space Jacobian in the context of a Newton method, which allows them to find the nonlinear perfect
foresight solution in the direct neighborhood of the steady state.7

An alternative approach for solving heterogeneous agent models is based on the state-space represen-
tation and goes back to Reiter (2009). This approach as well returns impulse responses to the linearized
model. Since the disaggregated state space of heterogeneous agent models may generally be very large,
such state-space representation usually makes a state-space reduction necessary. Such reduction routines are
given, e.g., by Algan et al. (2008), Winberry (2018), Ahn et al. (2018), or Bayer et al. (2020), where they are
also applied to the Bayesian estimation of linearized heterogeneous agent models. Similarly, Reiter (2023)
provides a method that also allows for second-order perturbation solutions. While these methods require

6Indeed, when adding the distribution and agents’ decisions as variables to the root finding problem, the block tridiagonal structure
would persist. However, this would render the problem prohibitory large.

7The strategy to use the same Jacobian for each subsequent iteration is known as the chord method. While it may provide good
results for systems with mild nonlinearities and close to the steady state, it often does not converges for more complicated models or
when simulating dynamics further away from the steady state.

3



the approximation or compression of the distribution,8 they allow for very general functional relationships
between the distribution and the aggregated economy. In contrast, the sequence state approach of Auclert
et al. (2021) does not require approximation or compression of distribution but requires the existence of
sufficiently good linear approximation of these functional forms. Other than that, my method does neither
require any of the functional forms of the model to be linear, nor any approximation or compression of the
distribution. Centrally, the method also allows to find the fully nonlinear perfect foresight solution even if
the trajectory is very far from the steady state, whereas the nonlinear solver is robust even to strong nonlin-
earities due to the use of the true Jacobian during the Newton iterations. My method further allows to fully
trace the nonlinear perfect foresight transition of the complete cross-sectional distribution.

By applying automatic differentiation to solve economic models, this paper also adds to a very recent
branch of the literature which introduces machine learning tools for quantitative economics. Examples in-
clude Scheidegger and Bilionis (2019); Maliar et al. (2021); Kahou et al. (2021); Bianchi et al. (2021);
Azinovic et al. (2022) and in particular Fernández-Villaverde et al. (2023). These papers use deep learn-
ing networks to solve nonlinear high-dimensional macroeconomic models including aggregate uncertainty.
Notably, solving this type of models was deemed impossible only a few years ago and the current progress
in this area is very impressive. The current state of this line of research documents that it is well possible
to successfully apply deep learning to solve economic models, but that these methods (and their conver-
gence properties) are not yet well understood, may take a long time to train and require additional expert
knowledge. As machine learning techniques are currently very actively researched across many fields, it is
very likely that they are the path forward to circumvent the curse of dimensionality and to solve complex
nonlinear models with aggregate uncertainty. This paper can be seen as an intermediary step contributing to
this overarching goal.9

My method is based on iteratively solving the system of linear equations of each Newton step. A class of
related numerical methods are the well-known Krylov subspace methods, see e.g. the generalized minimal
residual method (GMRES, Saad and Schultz, 1986) and the biconjugate gradient stabilized method (Van der
Vorst, 1992, BiCGSTAB). Relative to these methods the algorithm introduced here has a considerably lower
computational and memory overhead and is thus much faster.10 However, while the conditions for conver-
gence of my method are generic to the type of nonlinear systems found in economic models, they may not
be generalizable to be used outside this subclass.

The rest of this paper is structured as followed. Section 2 lays out a medium-scale HANK model with two
assets. Section 3 presents the main methodological contributions. Section 4 discusses details and concepts
of the reference implementation with a particular focus on repoducible and extensible code. In Section 5
the method is applied to the dynamics of a change in government redistribution, whereas Section 6 gives
concluding remarks.

2 A Class of Medium Scale Heterogeneous Agent Models

The results of this paper are based on three different models which share the same aggregate economy but
differ in the degree of heterogeneity of households: a model with a single representative household (RANK),

8In fact, Ahn et al. (2018) show that the reduction of the distribution can actually be achieved at machine level accuracy. However,
this cannot be accomplished for agents’ decisions.

9Similarly, the online appendix of Achdou et al. (2022) also applies automatic differentiation in the context of a Newton method.
Other than in the method introduced here, they calculate the full Jacobian matrix which is very costly for larger models.

10E.g. GMRES requires an Arnoldi iteration during each step, which can be computationally costly, and needs to store the results
from previous iterations.
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an heterogeneous agent model with one asset, and an heterogeneous agent model where households have
access to a liquid and an illiquid asset (two-asset HANK). For the sake of brevity I here only sketch the
setup of the two-asset HANK model and those aggregate equations that are non-standard, and redirect the
exposition of the RANK and the one-asset-HANK model to Appendix A.

I combine the two-asset HANK model (e.g. Auclert et al. (2021)) with the standard medium-scale
DSGE model in the tradition of Smets and Wouters (2007).11 This results in a rich dynamic model with
many aggregate state variables that demonstrates the potential of the method. The model hence contains a
disaggregated part with the households decisions and the distribution dynamics, and the aggregated part of a
medium-scale DSGE model. The modular setup of the method and implementation presented in Sections 3
and 4 allows to specify both parts separately.

In the disaggregated part of the model, households can hold liquid bonds bit and illiquid assets ait, the
latter pay higher returns but are subject to convex portfolio adjustment costs. Households face idiosyncratic
labor income risk eit and a borrowing constraint on both assets. They wish to accumulate net worth for the
purpose of consumption smoothing and to insure against the associated idiosyncratic income risk. Their
Bellman equation is given by

Vt(eit, bi,t−1, ai,t−1) = max
cit ,bit ,ait

 c1−σc
it

1 − σc
− χ

n1+σl
t

1 + σl
+ βtEtVt+1(ei,t+1, bit, ait)

 (1)

such that

cit + ait + bit =
(1 − τt)wtnt∫
P(e jt)e1−Ξ

jt d j
e1−Ξ

it + (1 + ra
t )ai,t−1 + (1 + rb

t )bi,t−1 − Φt(ait, ai,t−1) + Tt, (2)

ait ≥ 0, (3)
bit ≥ b̄, (4)

where nt denotes labor supply, cit the consumption of household i, and eit is their household-specific labor
productivity which follows an AR(1) process in logs,

log eit = ρe log ei,t−1 + ϵ
e
it. (5)

Φt(·) is the function specifying portfolio adjustment costs for the illiquid asset

Φt(ait, ai,t−1) =
χ1

χ2

∣∣∣∣∣∣ait − (1 + ra
t )ai,t−1

(1 + ra
t )ai,t−1 + χ0

∣∣∣∣∣∣χ2

[(1 + ra
t )ai,t−1 + χ0], (6)

with χ0, χ1 > 0 and χ2 > 1. Tt is a government lump-sum transfer specified further below.
The aggregate economy features all the bells and whistles of the medium-scale workhorse model of

Smets and Wouters (2007). To avoid linear approximations, the design of the price and wage Phillips curves
follows a Rotemberg (1982) setup as in Gust et al. (2012) rather than the Calvo (1983) price setting of Smets
and Wouters (2007). The conventional parts of the model, including labor unions, the firm side and the
government are presented in detail in Appendix A.1. Deviating from this, the setup of labor unions when

11This goes beyond the work of Bayer et al. (2020) as I additionally add various forms of inertia that are present in Smets and Wouters
(2007), such as, e.g., inflation and wage indexation.
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combined with heterogeneous households gives rise to a wage Phillips curve that takes the form

ψw

(
πw

t

π̃w
t
− 1

)
πw

t

π̃w
t
= ψwβtEt

{(
πw

t+1

π̃w
t+1
− 1

)
πw

t+1

π̃w
t+1

}
+

µw
t

µw
t − 1

(
χn1+σl

t −
(1 − τt)wtnt

µw
t

∫
eitc−σit di

)
, (7)

with wage indexation term π̃w
t and where πw

t =
wn

t
wn

t−1
πt denotes wage inflation. Wages can be subject to

downwards nominal wage rigidity governed by rigidity parameter ιw,

wt = max
{
ιw

wt−1

πt
,wn

t

}
. (8)

The setup of firms includes capital formation, capital adjustment costs, capital utilisation costs and price
indexation. Dividends are given by

Πt = yt − wtnt − it −
ψ

2

(
πt

π̃t
− 1

)2

yt. (9)

No arbitrage on financial markets requires that

Rt

Etπt+1
=

Et {Πt+1 + st+1}

st
= EtRa

t+1 = EtRb
t+1 + ζ, (10)

where Rt is the policy rate and st is the stock price. ζ parameterizes the cost for liquidity transformation
charged by the financial intermediary. Ex-post returns are subject to surprise inflation,

Rb
t =

Rt−1

πt
− ζ, (11)

and capital gains are given by

Ra
t = Θ

s
t

(
Πt + st

st−1

)
+ (1 − Θs

t )
Rt−1

πt
, (12)

with Θp denoting the share of equity in the illiquid portfolio. A balanced government budget requires

τtwtnt =

(
Rt−1

πt
− 1

)
Bg + gt + Tt, (13)

where τt is the tax rate (rather than the tax volume), and government transfers Tt are an exogenous policy
decision which is assumed to follow an AR(1) process in logs

ln Tt = (1 − ρT ) ln T̄ + ρT Tt−1 + ε
T
t . (14)

Importantly, the government taxes labor only and adjusts the labor tax rate from period to period to run a
balanced budget. The central bank sets the policy rate Rt following a conventional monetary policy rule with
interest rate inertia.

ln Rn
t = ρ ln Rn

t−1 + (1 − ρ)
(
ln R∗t + ϕπ [ln πt − ln π̄] + ϕy

[
ln yt − ln ȳ

])
+ ln vt, (15)
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that may be subject to the zero lower bound on nominal interest rates (ZLB)

Rt = max
{
1, Rn

t
}
. (16)

Market clearing requires

yt =

∫
citdi + gt + it + ψt + ζbitdi, (17)

st + bg =

∫
ait + bitdi. (18)

The calibration – for the aggregate and disaggregate part of the model – is quite conventional and an-
chored around at the values reported in Boehl (2022), where a similar model is estimated under inclusion of
the households’ preference parameters. To allow for transition dynamics from one steady state to another,
only parameters are fixed ex-ante but no steady state values. The inflation target is set to 2% annually and
the initial level of transfers is zero. Appendix A contains further details on the calibration.

3 Solving Nonlinear Heterogeneous Agent Models

This section presents the main methodological innovations. I first provide a general aggregate repre-
sentation of heterogeneous agent models. Then I review the principals of automatic differentiation (AD),
which are important for understanding the innovations of the main method. I then present an iterative pro-
cedure that uses AD to find the dynamic equilibrium transition path. Finally, I show how the steady state
and the steady state Jacobian, the latter being an important ingredient to the main method, can be calculated
efficiently using AD.

3.1 An aggregate representation of heterogeneous agent models

Let (xt)t≥0 ∈ X ⊂ Rn be the aggregated variables in period t including aggregate shocks and denote the
disaggregated state space of heterogeneous agents by S ⊂ Rns .12 For the two-asset example from Section 2,
S ⊂ R3 is the space spanning over the domains of the two types of assets ait and bit and the domain of the
household-specific productivity level eit.

A large class of heterogeneous agent models can be cast in the form

(at,wt) = W(wt+1, xt−1, xt, xt+1), (19)
dt = D(at, dt−1), (20)
0 = f (xt−1, xt, xt+1, dt, at), (21)

where (wt, at, dt)t≥0 are time-t functions defined on S as follows. wt : S → W ⊂ Rnw denotes recursive
valuations of points in S, at : S → A ⊂ Rna are agents’ actions (or functions thereof) for a given state,
and dt : S → [0, 1] is the distribution of agents across S.13 Since S is of infinite dimensionality, it must
be discretized on a grid S g with suitably chosen grid size g. Thus, in practice (wt, at, dt) are grid-based

12Any aggregate shock εk can be included in the set of aggregate variables by shifting the timing of εkt one period backwards to
εkt−1 and adding an auxiliary equation εkt = 0. Impulses can then be simulated by setting εkt−1 , 0. Expected shocks can be treated
equivalently.

13Without loss of generality, there could be several distributions. I will here use the singular term for the sake of simplicity.
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representations of the underlying functions where wt is a nw × g matrix, at is na × g and dt is the distribution
over S g represented by the g-dimensional unit hypercube [0, 1]g with

∑g
j dt, j = 1. Notably, the only type

of models not captured by this representation are models in which the agents’ actions depend on the full
distribution.

In terms of the dynamic programming problem given in Section 2, wt would represent the value function
Vt(eit, bi,t−1, ai,t−1) and W(·) represents the Bellman operator over Equations (1) to (6). This takes prices
such as wages and the return rates ra

t and rb
t as given, which, in terms of the formulation above, are part of

the set of aggregate variables xt. In practice however, wt are often the marginal values as required when
using variants of the endogenous grid method (EGM) of Carroll (2006), which usually are more efficient
computationally.14 I will therefore also refer to W as the EGM-step which maps expected marginal values
into current marginal values. The above representation is without loss of generality as it also includes cases
where W is a more complicated recursion, e.g. tracing default probabilities over time in models where agents
can default on their debt.

The object at are the decisions implied by solving the Bellman equation, e.g. for the two-asset HANK
the choices of {ait, bit, cit} for each node on the grid S g. Note that at is defined on S g but not directly related
to the distribution dt over S g. The role of the evolution of the distribution, D(·) is then to map the agents’
current decisions at and the last distribution dt−1 into the current distribution dt.15 The function f (·) = zt with
f : Rn → Rn contains the n nonlinear equations describing the law-of-motion of the aggregate economy,
formulated such that each equation (i.e. each residual in zt) must equal zero in equilibrium, i.e. zt = 0.
For the model from Section 2 this corresponds to all equations following (7) additional to the respective
aggregate relationships from Appendix A.1. Future or past aggregate variables beyond t + 1 or before t − 1
can easily be included by introducing auxiliary variables. In the following it is assumed that W, D, and f
are differentiable and that this property is retained throughout the discretization and interpolation routines.

Omitting the expectations operator on t + 1-objects implies to abstract from aggregate uncertainty and
focus on the perfect foresight path. For an initial state (x0, d0) ∈ (X, [0, 1]g), an equilibrium consists of
⟨W,D, f ⟩ satisfied by sequences of {xt,wt, at, dt}

∞
t=1 for all t = 1, 2, . . . periods. The above specification nests

representative agent models if (wt, at, dt) are empty sets. The model then solely consist of the n aggregate
variables xt and the n aggregate equations in f : X→ Rn.

This representation generalizes the specification of Auclert et al. (2021) in two regards: first, the effect of
idiosyncratic variables on the aggregated economy can take arbitrary functional forms and is not restricted
to be linear in the distribution. In particular, it is not necessary to explicitly cast idiosyncratic variables into
aggregate output variables before supplying them to f . Instead, the distribution and the agents’ actions enter
f directly and the mapping from (wt, at, dt) in f can take arbitrary functional forms.16 Second, the aggregate
economy does not require a representation as a directed acyclic graph.

Take (x0, d0) as given and fix a terminal period T sufficiently large. Assume that (xT ,wT ) in period T are
known (e.g. because T is very large and the economy is thus ϵ-close to a steady state in T ). Starting with wT

and a guess for the sequence of aggregated variables {xt}
T−1
t=1 the function W(·) can be iterated backwards in

time, thereby providing the sequence of decisions {at}
T−1
t=1 . Then starting with d0, this sequence can be used

14A generalization of EGM for multiple dimensions and portfolio choice models is given by Hintermaier and Koeniger (2010). For
the two-asset HANK it is necessary to track the marginal values of liquid and illiquid assets and, hence, wt ∈ S 2

g.
15It is conceptually straightforward to let D also be a function of the aggregate variables xt . I am here abstracting from this because

I am unaware of applications where this would be necessary in practice. dt can usually be constructed from the agents’ idiosyncratic
actions and dt−1 by, e.g., using the lottery method of Young (2010).

16To be precise, the appendix of Auclert et al. (2021) provides a extension for this case which uses the Jacobians of D and f w.r.t.
dss. While this is conceptionally solid, these Jacobians are very large in practice and their evaluation is very costly.
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to iterate the function D(·) forwards in time until T , resulting in the sequence of distributions {dt}
T−1
t=1 . Using

boldface notation for time-sequences, x = {xt}
T−1
t=1 , let backwards and forwards iteration and aggregation be

represented by the functions Fa, Fd and Fx as

Fa : x→
W

a, (22)

Fd : a→
D

d, (23)

Fx : (x,d, a)→
f

z, (24)

where z = {zt}
T−1
t=1 = { f (xt−1, xt, xt+1, dt, at)}T−1

t=1 is the sequence of residuals from the aggregated equations. It
is then straightforward to define a function F : Rn(T−1) → Rn(T−1) by

F(x) = Fx(x, Fa(x), Fd(Fa(x))) = z, (25)

which is, thus, defined in aggregate terms only.17 It follows that a perfect foresight equilibrium trajectory x∗
is given by

F(x∗) = 0, (26)

implying that a fully nonlinear period-T truncated solution to the model in Eqns. (19) to (21) can be ex-
pressed as a (T − 1 × n)-dimensional root finding problem. A solution to this type of problems can be found
using Newton’s method. Starting with an initial guess on the equilibrium trajectory x0, Newton’s method is
given by the iteration

xi+1 = xi − J(xi)−1F(xi), (27)

until ||xi+1−xi|| < ϵ, where J(xi) is the Jacobian matrix of F evaluated at xi and ϵ is a given (very small) stop-
ping criterion. While Newton’s method is known for quadratic convergence, applying this method directly
is usually impractical (if not impossible) because the calculation of the Jacobian and its inverse is normally
very expensive. To circumvent this problem, I below present an iterative method to solve the linear system
of equations associated with J(xi)−1F(xi) in (27) very efficiently using automatic differentiation.

3.2 A primer on automatic differentiation

Automatic differentiation (AD) is a computational technique for efficiently computing derivatives of a
function. AD is heavily used in machine learning, where, given a model such as, e.g., a neural network, the
gradient of a loss function with respect to the model’s parameters is typically used to optimize the parameters
and train the model. With AD, the gradient can be computed efficiently and accurately, even for complex
models. This can be especially useful in large-scale optimization problems, where the number of variables
and constraints can be very large.

Many explanations of AD start by pointing out that AD works by using the chain rule of calculus to build
up the derivative of a function from the derivatives of its constituent parts. While this is technically true, it
is sometimes mistaken to imply that AD can magically and at almost zero computational costs provide the
Jacobian of any multivariate function. This, importantly, is not the case.

AD knows two distinct modes: forward mode and reverse mode. Forward accumulation is accomplished
by augmenting the algebra of real numbers and obtaining a new arithmetic: the algebra of dual numbers. An
additional component is added to every number to represent the derivative of a function at the number, and

17Note again that for a representative agent problem it simply holds that F = Fx.
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all arithmetic operators are extended for the augmented algebra. A dual number x is given by

a = b + c · ϵ, (28)

such that ϵ > 0 and ϵ2 = 0. The algebra of dual numbers has hence some similarities to the algebra of
complex numbers, with the difference that ϵ2 = 0 , −1.

Using the vector of dual numbers a = b+cϵ the algebra can be extended to multivariate analytic functions
such that

g(a) = g(b + cϵ) = g(b) + J(b)cϵ, (29)

where g is a function and J(b) its Jacobian evaluated at b. This implies that AD – via dual numbers –
allows to efficiently calculate Jacobian-vector products (JVPs) such as J(b)c just by a single forward-pass.
It does however by no way imply that the Jacobian itself is cheap to obtain. To see this, denote the JVP as
J(b)c = Λ(b, c). Assuming g : Rm → Rn, the Jacobian at b is given by

J(y) = J(y)In = J(y)
[
e⊺1 e⊺2 · · · e⊺n

]
=

[
Λ(y, e⊺1 ) Λ(y, e⊺2 ) · · · Λ(y, e⊺n )

]
, (30)

where In is the n-dimensional identity matrix and ei is the ith vector in the standard basis of Rn. This implies
that calculating the Jacobian of a function with domain Rn requires exactly n evaluations of f , which is only
one evaluation less than needed for the one-sided finite difference approximation of the Jacobian. Notably
for our application, this makes the evaluation of objects such as the Jacobian of f w.r.t. dt (as e.g. suggested
in the appendix of Auclert et al. (2021) to generalize their model specification) prohibitory expensive for
many applications.18 Thus and so far, the only clear advantage of AD over finite difference methods is
precision.

In reverse mode automatic differentiation, the computational graph of the function is traversed in reverse
order, and the derivative of each node is computed by using the derivatives of its outputs. The derivative
of each node is then used to update the derivative of its inputs. The process continues until the derivatives
of the inputs are computed. Importantly, this allows to cheaply evaluate the vector-Jacobian product (VJP)
c⊺J(b) = Γ(b, c) at a single pass of the function. Continuing to assume that the codomain of g is Rm, the
Jacobian can therefore also be evaluated by

J(y) = ImJ(y) =


e1
e2
...

em

 J(y) =


Γ(y, e1)
Γ(y, e2)

...
Γ(y, em)

 , (31)

which requires m evaluations. The use of reverse mode AD over finite differences is hence beneficial either
for evaluating VJPs at low costs or for calculating J if m < n. The next two subsections show how to apply
these insights efficiently to solve macroeconomic heterogeneous agent models.

3.3 An extended Newton’s method based on JVPs
Summarizing the last subsection, the particular strength of AD is to evaluate JVPs, VJPs, and Jacobians

of functions with either very small domain or codomain. Unfortunately, the latter is clearly not the case for

18The finite difference approximation of a JVP is given by Λ(y, z) ≈ f (y+σz)− f (y)
σ where σ is the step size. The evaluation of a JVP

using dual numbers requires one evaluation of f versus two evaluations when using a finite difference approximation. Note that the
dual number evaluation of f comes with a computational overhead.

10



the function F from Eqn. (25) – Newton’s method – which comprises a square Jacobian of size n(T − 1) ×
n(T − 1). Calculating a single Jacobian for the two-asset HANK model and a truncation horizon of T = 300
takes more than 5 minutes on a standard laptop, thereby rendering the calculation of a single transition path
prohibitory costly.19 Thus, AD alone cannot solve the problem of finding nonlinear transition paths for
heterogeneous agent models.

Rather than actually calculating and inverting the Jacobian matrix for Newton’s method in Eq. (27), we
may use the solution to the system of linear equations

J(xi)(xi+1 − xi) = −F(xi), (32)

i.e. during each iteration we are looking for an y = xi − xi+1 such that Λ(xi, y) = F(xi). Denote by x̄ the
sequence of aggregate variables in the steady state and by J̄ = J(x̄) the steady state Jacobian. Then

J(xi)y = F(xi), (33)

(J(xi) − α−1 J̄ + α−1 J̄)y = F(xi), (34)

α−1 J̄y = F(xi) − (J(xi) − α−1 J̄)y, (35)

y = y + αJ̄−1(F(xi) − J(xi)y), (36)

where α > 0 is a scalar dampening factor to ensure convergence.
This last equation can be used as the starting point for an iterative procedure. Proposition 1 provides a

first convergence result for the neighborhood of the steady state.

Proposition 1. Given an initial guess y0 and fixing α = 1, the iterative scheme

y j+1 = y j + αJ̄−1(F(xi) − Λ(xi, y j)), (37)

converges to
lim
j→∞

y j = J(xi)−1F(xi) (38)

if xi is sufficiently close to x̄ and J̄ and J(xi) are invertible.

Proof. Given invertibility of J̄ it is clearly the case that if y j+1 = y j, then F(xi) = Λ(xi, y j) = J(xi)y j. This
means we have to prove convergence of y j in (37). It is well known that the iterative procedure

y j+1 = c + Ay j (39)

converges for a square matrix A if the spectral radius ρ(A) of A is less than unity, i.e. if the modulus of all
eigenvalues of A lie within the unit circle.

Define Σi = J(xi)− J̄ to be the deviation of the Jacobian at iteration i from the steady state Jacobian. For
α = 1 we have that

y j+1 = y j + J̄−1(F(xi) − Λ(xi, y j)), (40)

= J̄−1F(xi) +
(
I − J̄−1J(xi)

)
y j, (41)

= J̄−1F(xi) − J̄−1Σiy j, (42)

19Achdou et al. (2022) discuss this case in their online appendix but rule it out as being too costly in practice.
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and convergence thus depends on the spectral radius ρ(J̄−1Σi) of the second term.
In an ϵ-close neighborhood of the steady state we have, for very small ϵ and any norm || · ||, ||xi − x̄|| < ϵ

and thus ||J(xi) − J̄|| = ||Σi|| < ϵ. Since the determinant of a matrix equals the product of its eigenvalues
it follows that because ϵ ≪ 1, the determinant det(Σi) < ϵ is also very small. Recall that for any square
matrices B and C it holds that det(BC) = det(B) det(C) and we thus have

det(J̄−1Σi) = det(J̄−1) det(Σi) < ϵ =⇒ ρ(J̄−1Σi) < 1. (43)

■

The above result is useful because it holds as long as ρ(J̄−1Σi) < 1, which may not only be true in the
direct neighborhood of x̄. However, since we are in particular interested in those cases where the deviation
from the steady state is large, we can go one step further and refine the iterative procedure for more general
cases by adding a dampening factor α j. For this, the following Lemma 1 will be useful, which allows us to
arrive at Proposition 2.

Lemma 1. The Rayleigh quotient of a real matrix M and vector z is given by

R(M, z) =
z⊺Mz
z⊺z

. (44)

It holds that

i) If v is an eigenvector of M with associated eigenvalue λ, then

R(M, v) =
v⊺Mv
v⊺v

=
v⊺λv
v⊺v

= λ. (45)

ii) For any iterative procedure y j+1 = z+My j with square matrix M, y j grows (or shrinks) along the eigen-
vector associated with the eigenvalue of M with largest magnitude (Mises and Pollaczek-Geiringer,
1929). Together with i) this implies

lim
j→∞

R(M, y j) = ρ(M). (46)

iii) For a square matrix M and a vector z with ||z|| > 0 it holds that

|R(M, z)| ∈ [0, σmax], (47)

where σmax is the largest singular value of M (see Appendix B).

Proposition 2. Given an initial guess y0, a scaling parameter γ ∈ (1, 2) and initializing α0 = 1, the iterative
scheme

y j+1 = y j + α j J̄−1(F(xi) − Λ(xi, y j)), (48)

α j = min
{
α j−1, γ/

∣∣∣∣R (
J̄−1J(xi), y j

)∣∣∣∣} , (49)

with the Rayleigh quotient R(·) =
y⊺j J̄−1Λ(xi,y j)

y⊺j y j
, converges to

lim
j→∞

y j = J(xi)−1F(xi) (50)
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if all generalized eigenvalues of J̄ and J(xi) are real, positive and finite.

Proof. Positivity and finiteness of the generalized eigenvalues implies that J̄ and J(xi) are nonsingular. We
again have to prove convergence of y j in (48) for which ρ(A j) < 1 given A j = I − α jB with B = J̄−1J(xi) is
a sufficient condition. Denote by λk(A j) the (unordered) kth eigenvalue of A j and define λk(B) respectively.
It holds that

λk(A j) = 1 − α jλk(B), (51)

|λk(A j)| =
√

(1 − α jℜ(λk(B)))2 + (α jℑ(λk(B)))2, (52)

=

√
1 − 2α jℜ(λk(B)) + α2

j |λk(B)|2. (53)

Imposing |λk(A j)| < 1 for all k requires

α j <
2ℜ(λk(B))
|λk(B)|2

∀k = 1, 2, . . . , n(T − 1), (54)

which is an upper bound on α j. Under the given assumption that all eigenvalues of B are real and positive,
this reduces to

α j <
2

ρ(B)
, (55)

where the spectral radius ρ(B) of B is unknown. Eqn. (49) defines the recursion

α j = min
{
α j−1, γ/

∣∣∣R(B, y j)
∣∣∣} , (56)

which uses the Rayleigh quotient

R(B, y j) =
y⊺j By j

y⊺j y j
=

y⊺
j J̄−1Λ(xi, y j)

y⊺j y j
. (57)

from Lemma 1 to also iteratively approximate ρ(B) with each iteration on y j.
The remaining task is to show the convergence of α j. Since from Lemma 1 we know that |R(B, y j)| ≤

σmax(B) it follows that α j is bounded by

α j ∈

[
γ

σmax(B)
, 1

]
, (58)

and in the limit it holds

lim
j→∞

α j ∈

[
γ

σmax(B)
,min

{
1,

γ

ρ(B)

}]
, (59)

that is, α j and thereby A j = I − α jB converges with given bounds. As the eigenvalues of B are positive and
real, we have that

lim
j→∞

ρ(A j) = max
{

lim
j→∞

(
1 − α jλmin(B)

)
, lim

j→∞

(
α jρ(B) − 1

)}
(60)

with
lim
j→∞

(
1 − α jλmin(B)

)
≤ 1 − γ

λmin(B)
σmax(B)

< 1 (61)
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and

lim
j→∞

(
α jρ(B) − 1

)
∈


[
γ ρ(B)
σmax(B) − 1, γ − 1

]
if ρ(B) ≥ γ[

γ ρ(B)
σmax(B) − 1, ρ(B) − 1

]
if ρ(B) < γ

 < 1, (62)

where in the second line ρ(B) < γ implies ρ(B) − 1 < γ − 1 < 1. Thus, lim j→∞ ρ(A j) < 1 and y j converges
to a solution to the linear system of equations in (32). ■

Note that Proposition 2 contains two simultaneous iterative procedures: the procedure of solving for the
increment y associated with each Newton step, and the procedure finding a feasible dampening factor α
associated with each Newton step. Both procedures operate at the same time, which is unproblematic since
the underlying problem within one Newton step is linear.

Intuitively, for each new Newton step we set α j to equal the inverse of the approximation of the spectral
radius of B scaled by γ and thereby dampen the spectral radius of A to lie inside the unit circle, which guar-
antees convergence to a solution of the system of linear equations under the given assumptions. Numerically,
the beauty in Proposition 2 lies in the fact that both, y j and α j can be calculated by just one forward sweep
on F. F(xi) − Λ(xi, y j) is a vector and J̄−1(F(xi) − Λ(xi, y j) can hence be evaluated by the LU-factorization
of J̄, which only needs to be calculated once for a given model. All other operations are simple calculations
in vector space.

The two conditions for Proposition 2 – positivity and realness of the generalized eigenvalues – are suffi-
cient, but not necessary conditions. Importantly, this implies that the iterative procedure may converge even
if these conditions are not satisfied. The condition that the generalized eigenvalues are real is a rather weak
condition, which is related to the fact that the Rayleigh approximation cannot distinguish between the real
and imaginary part of the largest eigenvalue. If the eigenvalues are complex, (54) is still likely to be satisfied
wheneverℜ(λk(B)) > 0 because, in practice, α j ≤

γ
ρ(B) is only an upper bound (c.f. eqn. (58)).20

The value of γ ∈ (1, 2) determines the speed of convergence and can be chosen freely within the given
bounds: a value close to 2 will shift the largest eigenvalue of B close to 2, resulting in a spectral radius ρ(A)
of A close to one. A value of α j close to 0 will shift the smallest eigenvalue of B close to 0 (c.f. eqn. (60)),
which also results in ρ(A) close to one. Since convergence speed depends on the magnitude of ρ(A) (smaller
in magnitude is better) an optimal value will lie somewhere in the mid-range. While a sufficiently small γ
could compensate for the rare cases in which 2ℜ(λk(B))

|λk(B)|2 ≪
2

ρ(B) for complex eigenvalues, a value of γ = 1.5
has proven very reliable for a wide range of applications.

3.4 Finding the steady state and its Jacobian

Continue to denote steady state objects by a bar, i.e. x̄, d̄, ā and w̄. In the common cases when the steady
state is not unique some variables must be fixed ex-ante via an additional set of restrictions x = b(x), where

20A path to ensure that both conditions are guaranteed to be satisfied is to pre-multiply F(xi) and Λ(xi, y j) in (48) and (49) by
J(xi)⊺(J̄−1)⊺ J̄−1 instead of J̄−1. These expressions can efficiently be calculated using AD via

J(xi)⊺(J̄−1)⊺ J̄−1F(xi) = Γ
(
xi,

(
(J̄−1)⊺ J̄−1F(xi)

)⊺)⊺
(63)

and ensures that the central matrix in the iterative procedure is positive definite. However, convergence would be relatively slow
because the largest and smallest eigenvalues of J(xi)⊺(J̄−1)⊺ J̄−1 J(xi) are σmin(B)2 and σmax(B)2 which implies eigenvalues of the
iterative procedure with modulus considerably closer to unity.
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x is the subset of x necessary to evaluate x̄.21 The steady state must satisfy

x̄ =b(x̄), (64)
(ā, w̄) =W(w̄, x̄, x̄, x̄), (65)

d̄ =D(ā, d̄), (66)
0 = f (x̄, x̄, x̄, d̄, ā). (67)

For a given guess on x calculate the corresponding guess on x̄ using b(·). w̄ can then be found by iterating
on Eqn. (65) until it converges. Denote the function that does so as w̄ = W̄(x̄). Given x̄ and w̄, the steady-
state distribution d̄ can also be found by iterating on Eqn. (66) until convergence (or, alternatively, via the
unit-eigenvector). Denote this solver as d̄ = D̄(ā) and define f̄ equivalently for f (·). Combining those three,
x̄ must satisfy H(x̄) = 0 with H defined as

H(x̄) = f̄
(
b(x̄), D̄

(
b(x̄), W̄(b(x̄))

)
, W̄(b(x̄))

)
. (68)

Since x ∈ Rm with m small we can this time calculate the complete Jacobian of H using forward mode
automatic differentiation and, starting with some guess xi on x̄, the root of H can be found using a modified
Newton’s method

xi+1 = xi − JH(xi)+H(xi), (69)

where JH(xi)+ denotes the Moore–Penrose inverse. Using the latter is necessary because JH(xi) typically does
not have full rank since the codomain of f is Rn and n ≤ m. Proofs of convergence for the modified Newton
procedure are, e.g., given by Ben-Israel (1965). Despite not requiring any manual input, the procedure turns
out very robust in practice even for relatively bad initial guesses. In particular, it is usually not necessary to
manually provide some of the steady state relationships as an additional input to the dynamic system of the
economic model.

Given x̄, the steady state Jacobian J̄ = J(x̄) = J({x̄}T0 ) of F can also be found using AD. To be clear on
notation, let Jx�y be the matrix whose (i, j)th entry is Ji j =

∂yi
∂x j

. The (i, j)th entry of the steady state Jacobian
is then for i > 1 given by

J̄i j =
∂zi

∂x j
=
∂ fi
∂x j
+
∂ fi
∂di

∂di

∂x j
=
∂ fi
∂x j
+
∂ fi
∂di

(
∂di

∂ai

∂ai

∂x j
+

∂di

∂di−1

∂di−1

∂x j

)
(70)

=
∂ fi
∂x j
+
∂ fi
∂di

T− j∑
k

∂di

∂dk

∂dk

∂ak

∂ak

∂x j
=
∂ fi
∂x j
+

T− j∑
k

∂ fi
∂ak

∂ak

∂x j
, (71)

which is a n-by-n matrix.
Recall that the function Fa(·) from Eqn. (22) is defined on the complete sequence x. We can calculate

the Jacobian with respect to xT−1 by stacking the JVPs of the transpose of the last n vectors of the standard

21A typical example for New-Keynesian models is that the steady state inflation needs to be fixed ex-ante since it is a policy choice
variable of the central bank.
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basis of R(T−1)n:

J̄xt−1�a =



ΛFa

(
x̄, e⊺(T−1)

)⊺
ΛFa

(
x̄, e⊺(T−1)2

)⊺
...

ΛFa

(
x̄, e⊺(T−1)(n−1)

)⊺
ΛFa

(
x̄, e⊺(T−1)n

)⊺



⊺

=



∂a0
∂xT−1
∂a1
∂xT−1
...

∂aT−2
∂xT−1
∂aT−1
∂xT−1


=



∂a0
∂xT−1
∂a0
∂xT−2
...
∂a0
∂x1
∂a0
∂x0


= J̄x�a0 , (72)

where the equivalence in the second step holds because in the steady state we have ∂a0
∂xk
= ∂al

∂xk+l
for any l. Note

that the calculation of this object requires only n evaluations of Fa(·).
Similarly, the Jacobian J̄a�zT−1 of zT−1 (i.e. the last output element of Fx) w.r.t. the sequence a can be

evaluated by using reverse mode automatic differentiation:

J̄a�zT−1 =



ΓFx◦Fd

(
x̄, e(T−1)

)
ΓFx◦Fd

(
x̄, e(T−1)2

)
...

ΓFx◦Fd

(
x̄, e(T−1)(n−1)

)
ΓFx◦Fd

(
x̄, e(T−1)n

)


=



∂zT−1
∂a0
∂zT−1
∂a1
...

∂zT−1
∂aT−2
∂zT−1
∂aT−1



⊺

=



∂zT−1
∂a0
∂zT−2
∂a0
...
∂z1
∂a0
∂z0
∂a0



⊺

= J̄a0�y, (73)

which, as above, uses the fact that ∂zk
∂a0
= ∂zk+l

∂al
in steady state. Note again that independently of the complexity

of the functions Fx and Fd this requires only n evaluations of Fx ◦ Fd.
Finally, initialize a helper matrix Ĵ with the tensor (outer) product J(x̄)a�zT−1 ⊗ J(x̄)xt−1�a and add ∂ f

∂xt
to

ĴT−1,T−1, ∂ f
∂xt+1

to ĴT−1,T−2 and ∂ f
∂xt−1

to ĴT−2,T−1. Then

Ĵ =


∂zT−1
∂a0

∂a0
∂xT−1

· · ·
∂zT−1
∂a0

∂a0
∂x1

∂zT−1
∂a0

∂a0
∂x0

...
. . .

...
...

∂z1
∂a0

∂a0
∂xT−1

· · ·
∂z1
∂a0

∂a0
∂x1

∂ f
∂xt−1
+ ∂z1

∂a0

∂a0
∂x0

∂z0
∂a0

∂a0
∂xT−1

· · ·
∂ f
∂xt+1
+

∂z0
∂a0

∂a0
∂x1

∂ f
∂xt
+

∂z0
∂a0

∂a0
∂x0

 =

∂zT−1
∂xT−1

· · ·
∂zT−1
∂x0

...
. . .

...
...

∂z1
∂xT−1

· · ·
∂ f
∂xt
+

∂z0
∂x0

 , (74)

and J̄ can be expressed as the recursion over its block components

J̄i j = J̄i−1, j−1 + ĴT−i,T− j =

min{i, j}∑
k=0

ĴT−i+k,T− j+k, (75)

which corresponds to the expression in Eqn. (70) and therefore yields J̄ for only n evaluations of Fa, Fd and
Fx each. Since J̄ is sparse for most applications, a sparse implementation of the incomplete LU decomposi-
tion can be used to pre-calculate J̄−1. For any model, this only needs to be done once.

4 Conceptual Approach and Implementation

The methods used in macroeconomics in general, and in particular the methods presented in this pa-
per, have reached a degree of complexity that not only requires expert knowledge on numerical methods
but also on computational and programming tools. Two implications follow from this insight: First, for
a methodological contribution to be useful for the general economics community it is important to provide
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high-level reference implementations that do not require expert computational knowledge. Such a high-level
implementation is a program with strong abstraction from the computational details of the implementation.
Second, it calls for a design of software that is comprehensible and extensible, but yet allows for reproducible
research that can be conducted efficiently.

This section discusses these design and implementation requirements in detail. The methodological con-
tributions of this paper are implemented in the econpizza software package, which I propose as a blueprint
to address these issues. Together with the package, I suggest a generic high-level syntax to express het-
erogeneous agent models, which is presented thereafter. I then give speed benchmarks for the reference
implementation. Concrete details on the econpizza software – including guides and tutorials – are redirected
to the extensive online documentation of the package.22

4.1 Design choices, open-source software, and the importance of reusable code

The reference implementation addresses five requirements, which I regard as central for the future
progress of macroeconomic research:

i.) Strict separation between the input representing the economic model, the code of the solution
routines, and routines for economic analysis. A primary objective is to organize frequently used
numerical routines into software libraries, which are then reusable across models. The use of such
standardized and reusable packages – instead of relying on large blobs of user-written routines – has
the potential to largely reduce the complexity of individual codes.23 Consequently, it is necessary to
strictly separate the model from the solution routines. To this end, the econpizza package not only is a
high-level library for solving heterogeneous agent models, but also implements a syntax to generically
represent heterogeneous agent models, which is discussed further below.

ii.) Adherence to the open-source paradigm. With the rising complexity of numerical methods, their
performance increasingly depends on the quality of their implementation. This means that software
libraries should improve over time, must allow for corrections or usability enhancements, and should
adapt to computational advances. Although tempting, it is not a fruitful approach for PhD students
and young scholars to write simulation programs from scratch but, rather, to build and elaborate on an
existing codebase. To allow this, the econpizza is publicly developed on the version control platform
GitHub, which allow users to suggest changes to the code, point out potential bugs, or to propose new
functionalities.24 Such version control systems play a central role in modern software development and
are also widely used in, e.g., physics or engineering.

iii.) Integration in a modern software development workflow. Another objective is to maintain a clean,
working, and well-documented code base. To satisfy this requirements, for the reference implemen-
tation tools for versioning (see above), automated unit testing, automatic code linting, and automated
module documentations are employed. Automated unit tests ensure that, after any changes, the publicly
available code produces economically correct results.25 Linting is an automated procedure to format

22The online documentation can be found at https://econpizza.readthedocs.io.
23A different dimension of this problem is that macroeconomic research is currently struggling with issues of insufficient replicability

of numerical work. It can not be assumed that journal referees have the time budget or the ability to check and verify the large amounts
of codes that are necessary for a single contemporary research project. A reduction in complexity can thus increase the transparency of
macroeconomic research.

24This is the fundamental concept behind open-source software. It is hence somewhat counterproductive, in the sense of points i and
ii, to publish a blob of inseparable model, simulation, and analysis codes on a private website where they can not evolve over time.

25Unit testing is implemented through pytest, a widely used testing framework in Python, running in GitHub Actions. The latter is a
free GitHub service that automatically employs the tests on a remote server whenever updates are pushed to the GitHub repository.
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code such that it adheres to official coding style guidelines. This greatly improves readability of code
and thus supports extensibility and reproducibility.26 Automated module documentation are webpages
that are automatically generated from the documentation strings of classes and functions, which help
to increase the transparency and traceability of the software.27

iv.) Maintenance of a high-level information flow between the user and the software. In practice,
low-level routines may – for various reasons not provide the expected results. As only a cursory under-
standing of the underlying implementation can be expected from the user, an insufficient information
flow bears the risk of unintentional misuse and false results. It is thus fatal if internal errors are not
sufficiently propagated and communicated. For this reason it is crucial to implement reliable checks
and informative warning and error messages for the underlying routines and potential pitfalls, as it is
covered in the reference implementation.

v.) Use of a modular programming language that fully supports the functional programming paradigm.
It is highly challenging to write (and maintain) code libraries written in languages with limited sup-
port for functional programming.28 This complicates writing and sharing function libraries that are
reusable across frameworks and models because the libraries quickly becomes intractable in size and
functions are inflexible. Furthermore, a programming language should integrate well with versioning
systems (such as, e.g., GitHub) and feature a straightforward packaging system.29 For these reasons,
the community has recently started to adapt free and open-source languages such as Python and Julia.
In particular, Python is highly flexible, simple to use, and is well integrated into modern development
workflows.30 The reference implementation is written in Python using the JAX framework, which
provides just-in-time compilation and automatic differentiation. Additional details on JAX are given
further below.

A fundamental design principle (cf. Point i.) above) of the econpizza package is to separate the input of
the economic model (provided by the user), the underlying solution routines (the software package), and the
economic analysis of the simulation outcomes. The reference implementation provides a simple syntax for
expressing heterogeneous agent models, which is based on the widely used YAML format.31 Details can be
found in Appendix C.

26In econpizza, automated linting is implemented through the autopep8 package (which enforces the PEP 8 style guide) and pre-
commit hooks. Such hooks are running automatically before code is uploaded to GitHub.

27Automated documentation for econpizza is implemented through Sphinx, a documentation generator widely used by the Python
community, and employed on Read the Docs, which is an open-sourced free software documentation hosting platform used by many
open-source projects.

28For example, the Matlab software widely used in economics restricts the number of function definition per file to one, and function
definitions do not allow for default arguments. A default argument is an argument to a function that a programmer is not required to
specify because a default value is provided.

29A packaging system allows to easily install additional modules/packages which provide specific functions and classes. Python and
R, and more recently also Julia, have very rich ecosystem of packages for a large variety of applications, the large majority of which are
well-tested and developed in the public domain. The econpizza package can be directly installed via the official Python repositories.

30Python is an object-oriented general purpose language used in a large field of applications. It is the de-facto industry standard in
data science and machine learning and supported by mayor big-tech firms. Python is free and open source with no limiting licences or
additional costs, has a huge active user base and its design simplicity allows for a high code quality.

31YAML (”Yet Another Markup Language”) and is a standardized human-readable data-serialization language. The format is similar
to XML but has a minimal syntax in order to be easily usable. It is useful to provide data input in a clear and simple way across
programming languages, and is widely used in applications that require a high level human-computer interaction, such as configuration
files or data storage.
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4.2 Speed benchmarks

The implementation in the econpizza package heavily levers on just-in-time (“jit”) compilation via the
Python framework JAX. JAX is an open-source machine learning framework developed by Google which
supports high-level automatic differentiation and jiting while providing the same syntax as NumPy, which is
the primary Python library for numerical computing. The execution speed of JAX-jitted functions is en-par
with execution speed of compiled code from languages as Fortran or C.

tentative full
Model once subsequent once subsequent

RANK 2.289 0.104 2.392 0.160
HANK1 13.408 1.020 17.494 3.0678
HANK2 (no capital) 30.722 1.435 62.120 8.927
HANK2 33.881 1.177 79.496 6.836

Table 1: Speed benchmarks for the three models provided in Appendix A. All numbers are in seconds. The HANK2 model without
capital is the small-scale HANK model with two assets as described in Section 5.3.

Table 1 provides speed benchmarks for the four baseline models presented in Appendix A.32 Note
that RANK models are not solved using the method from Section 3 but rely on a simpler procedure that
exploits the block tridiagonal structure of the sequence space Jacobian, which is outlined in Appendix D.
The simulations listed under “tentative” use a truncation horizon of 150 (vs. 300 for “full”) and a slightly
smaller grid (50 grid points for the asset grid of the HANK1 model and 10 and 20 grid points for the liquid
and illiquid assets in the HANK2 models) than reported in Appendix A. The simulation results from these
tentative simulations are very similar to the results obtained when using the full grid as specified in Appendix
A.

The table documents a large speed difference between the first simulation (“once”) and each successive
simulation (“subsequent”). Subsequent simulations allow to use different shocks, initial conditions, or pa-
rameters that do not alter the steady state. These simulations are much faster for two reasons. First, for each
new steady state the steady state sequence space Jacobian must be recomputed including its LU decomposi-
tion. The computational load of the Jacobian and the LU decomposition vary substantially with the length
of the truncation horizon. Second, the model functions must be compiled (which is done automatically by
JAX). Both steps are not necessary if the steady state remains unaltered when the objects can simply be
reused.

Runtimes of the RANK model are much faster since solving the RANK model does not require the
calculation of the steady state Jacobian and its LU decomposition. Additionally, automatic differentiation
does not have to traverse through the distribution and value functions. Comparing the HANK1 model to the
HANK2 model, calculation and compilation times roughly double while the number of grid points remains
roughly the same. Further, calculation and compilation times of the medium-scale HANK2 model with
capital compared to the small-scale HANK2 model without capital are only marginally larger although the
complexity of the aggregate system of equations of the medium-scale model is considerably larger than the
complexity of the small scale model. Since the disaggregated problem is exactly the same for both models,
this suggests that the complexity of the aggregated system of equations is of second order importance for the
computational complexity.

32All benchmarks are done on a standard laptop with 8 Intel(R) Core(TM) i7-8650U CPUs (1.90GHz). The package does not make
explicit use of parallel computing.
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5 Nonlinear Transition Dynamics

A key feature of models with heterogeneous households is that they allow to study the dynamic effects
of government transfers, taxes, and redistribution over the cross-sectional distribution of households and
over business cycle aggregates. This section applies the introduced method to study the nonlinear transition
dynamics of – permanent or transitory – changes in government redistribution policy. I first discuss the
dynamic responses of a change in steady state transfers. I then study the effects of two severe nonlinearities
on the transition dynamics, the first being downwards nominal wage rigidity and the second being the zero
lower bound on nominal interest rates. Finally, I analyse the role of the distribution of wealth for the trans-
mission of policy shocks. To allow for a realistic account of the distribution of assets while being en-par
with the business cycle literature, simulations in this section are based on the two-asset HANK model from
Section 2.

Figure 1: The stationary distribution of the heterogeneous agent New Keynesian model with two-assets. Note that for the sake of clearer
display, quantities are given as shares of nodes on a log-grid (rather than true densities), meaning that shares for larger values on the
grid are overrepresented.

5.1 A permanent increase in government redistribution

Assume a permanent increase in government transfers from zero to 10% of (old) GDP. After announce-
ment, the government gradually increases the volume of transfers with an autocorrelation of ρT = 0.8. Since
the government is running a balanced budget, the labor tax rate must adjust simultaneously and the policy
thus redistributes income of high labor income earners to those with low labor income. Importantly, this
permanent shift in transfers and taxes implies the transition from one steady state to another.

Before looking at the dynamics it is useful to study and compare the two steady states in detail. Figure 1
shows the stationary distribution of assets in the steady state without redistribution. The distribution is
bimodal: the majority of agents holds a fair amount of assets and bonds, where agents with many bonds
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tend to hold fewer assets and vice versa. Roughly one-third (34.3%) of all agents do not hold any bonds but
yet a considerable volume of assets. These are the famous wealthy hand-to-mouth households of Kaplan
et al. (2018). These households have experienced a series of negative income shocks and thus depleted their
stock of liquid bonds. Since they only hold illiquid bonds and liquidations of these bonds are subject to
portfolio adjustment cost, they face limited insurance and have a higher marginal propensity to consume out
of income.

Table 2 presents the redistributive steady state relative to the steady state without redistribution. Clearly,
the distorting effect of the necessary additional 20% in labor tax rate is massive. Production in the new steady
state is more than ten percent below the old level, with the capital stock almost 20% below the previous level
and an accompanying decline in real wages. The fall in output reflects in lower dividends and an associated
drop in equity. Since households are better insured through the new system of government transfers, the
demand for liquid bonds falls by almost 50%. Since poor households wish to insure less, inequality as
measured by top-10-percentiles increases for both types of assets while it falls slightly for consumption.

Figure 2: Nonlinear transition dynamics for a permanent increase in government transfers. All measures are given in levels. Interest
and inflation rates are given in quarterly gross-rates. The dashed gray and red lines represent the old steady state without and with
redistribution, respectively.

The magnitude of these very negative effects may, at first, be surprising. A common intuition for HANK
models prescribes rather positive effects of transfers as households have different marginal propensities to
consume. The main driver of the negative response documented by the simulations in this section is the
response of labor supply determined by the wage Phillips curve in (7). In its core and absent any nominal
wage rigidities (thus, for ψw = 0 and µw

t = 1) the collective bargaining decision would read

χnσl
t = (1 − τt)wt

∫
eitc−σit di, (76)

which includes the aggregated individual marginal utilities of consumption
∫

eitc−σit di as well as the tax rate
τt, which acts as a wedge between wage and labor supply. Since in the steady state, wages, via marginal
costs, are closely tied to the steady state markup, labor supply must fall in response to an increase in τt.
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Figure 3: Nonlinear transition dynamics for a permanent increase in government transfers. All measures are given in levels. Interest
and inflation rates are given in quarterly gross-rates. The dashed gray and red lines represent the old steady state without and with
redistribution, respectively.

Aggregated marginal utility of consumption act as an additional amplifier since they are dominated by the
negative consumption response of productive households.33 The overall responses to a redistributive shock
are thus, both in the short and long run, mainly determined by the supply-side.

relative change relative change

output -11.1% top-10% share assets +8.1%
wages -1.8% top-10% share bonds +11.8%
labor hours -9.4% top-10% share consumption -3.7%
capital -17.5% assets -21.6%
consumption -11.6% bonds -43.5%
interest rates +0.27% equity -26.8%
dividends -7.6% tax rate +20.2%

Table 2: Difference of the steady states with redistribution relative to the old steady state without redistribution.

Turn next to the aggregate dynamic effects of such policy. As we have seen in Table 2, the new steady
state comes with a higher real interest rate because with higher lump-sum transfers, the households wish
less insurance and thus demand higher bond and asset returns. The central bank leaves the inflation target
unchanged but immediately adjusts its target rate to the new steady state real rate. Yet, the adjustment of the
nominal rate is gradual due to interest rate smoothing.

Figures 2 and 3 show the aggregate dynamics. Most centrally, after the announcement of the new policy

33The use of Greenwood et al. (1988) preferences allows to eliminate the wealth effect manifested by aggregated marginal utilities
of consumption. The distortionary effect of labor taxation still prevails, even if the increase in transfers would be largely debt financed.
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firms strive to downsize their capital stock. They wish to do so smoothly due to the presence of capital
adjustment costs, resulting in a relatively high ratio of capital to output and a fall of the marginal productivity
of capital. The firms’ new choice of optimal factor inputs then leads to a dampening of labor demand and
causes wages to decrease, leading to a decline in marginal costs and inflation. Monetary policy responds
with lowering the nominal interest rate to stimulate consumption. When the increase in transfers gains
momentum, so does the surge in the labor tax rate. Consequently, pre-tax wages increase which, in turn,
stimulates inflation. This effect is, however, dampened by price and wage inertia.

Figure 4: Nonlinear transition dynamics of the distribution of illiquid asset for a permanent increase in government transfers. Each
line presents the transition over time of the share associated with one grid node, meaning that the shares of larger grid values are
overrepresented.

Firms reduce their capital stock by distributing disproportionally large dividends and, consequently,
dividends fluctuate around their old level for an extended period of time. However, the anticipation of lower
dividends in the future causes a large contraction in the volume of equity which leads to a crash in the asset
market that is reflected by a massive one-time devaluation of assets. While the transition to the new system
of transfers is by large completed after 20 quarters (i.e. five years), the response of the economy shows a
high degree of persistence. As such, the new level of the capital stock and the new wage rate is only reached
after about 60 quarters or, respectively, 15 years.

Figure 4 shows the transition dynamics of the distribution of assets. Wealthy households experience the
announcement of the new policy as a strong negative news shock. The large change in the expected flow of
future dividends triggers an ample change in the volume of equity, which causes assets to devaluate heavily.
This destroys a considerable amount of wealth in the economy and the weak positive effect of a larger return
to assets due to higher dividend payments can not offset this effect. Consequently, the finding that the new
steady state supply of assets is significantly below the old steady state (c.f. Table 2) reflects in a shrinkage
of the tail-mass of the distribution over time, as documented in Figure 4. This effect – the convergence of
the distribution – is considerably slower than the convergence of aggregate variables. This can also be seen
when converging the convergence speed of inequality dynamics in asset holdings as measured in top-10-
percentiles in Figure 3.
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5.2 The role of DNWR and the ZLB during transition
The presence of strong nonlinearities such as the zero lower bound (ZLB) on nominal interest rate an

downwards nominal wage rigidity (DNWR) can have large effects on the transition dynamics. At the ZLB,
the central bank is reluctant to set the nominal rate below zero to avoid that households start hoarding cash.
DNWR implies that, either due to regulatory reasons or for incentive considerations, firms are unable to
lower nominal wages below a certain threshold. Both are known to pose severe challenges to numerical
solution techniques.

Figure 5: Nonlinear transition dynamics for a permanent increase in government transfers. The blue and orange lines show the transition
dynamics with an active ZLB and DNWR, respectively. Both are inactive for the dashed black line. All measures are given in levels.
Interest and inflation rates are given in quarterly gross-rates. The dashed gray and red lines represent the old steady state without and
with redistribution, respectively.

Figure 5 again shows the transition dynamics after the announced gradual and permanent increase in
transfers from the previous subsection. The gray dashed line is the same as in Figures 2 and 3 where I
abstract from the ZLB and DNWR. The blue line shows responses where the ZLB is present and active. The
dynamic effects of the ZLB are qualitatively quite similar to those implied by a representative agent model
with the ZLB: since the central bank can no longer respond and stimulate the economy by decreasing the
real rate, consumption falls. Households are willing to accept lower wages because the marginal utility of
consumption increases. The associated fall in marginal costs leads to an additional drop in inflation which
causes a further increase in the real rate. The response of inequality – as measured by top percentiles – is
striking: both measures double in the initial spike relative to the scenario without the ZLB. Clearly, only the
wealthy benefit from relatively higher interest rates while the lack of an additional monetary stimulus harms
those households with low net worth.

The orange line in Figure 5 shows simulations where nominal wages are downward-rigid (DNWR). The
setup is calibrated to allow wages to fall by a maximum of 2% quarterly, which corresponds to realistic
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estimates. The constraint keeps wages from falling in the beginning of the transition period, which in turn
dampens the response of inflation. While this has some negative impact on output during the transition
phase, the overall effects are rather moderate compared to the simulations with ZLB.

5.3 The role of the distribution for the transition of shocks

Figure 6: Nonlinear impulse responses to a one-time increase in government transfers. All measures are given in levels. Interest and
inflation rates are given in quarterly gross-rates.

As a final exercise, let me focus on the role of the distribution of wealth for the transmission of tran-
sitory shocks, i.e. to one-time shocks without any persistence. For this purpose, let me simplify the setup
considerably by abstracting from capital (i.e., α = 0), labor unions (ψw = 0, µw

t = 1) and price and wage in-
dexation (ωp = ωw = 0). Additionally, I set the interest rate smoothing parameter ρ to zero. The model then
collapses to the two-asset HANK pendant of the canonical 3-equation model and all persistence in response
to economic shocks comes from temporary shifts in the distribution of wealth.

Consider again a one-time transfer of the size of 10% of GDP. As before, the government runs a balanced
budget and the increase in transfers must be compensated by an increase in taxes. By assumption, all taxes in
the model are labor taxes and the shock can thus right away be interpreted as a redistribution shock. Figure 6
shows the impulse responses to such redistributive shock. When taxes increase, households see their after-
tax income decreasing and respond by lowering their labor supply. To counteract this, firms have to increase
pre-tax wages. The increase in the tax rate thus acts like a classic distortionary wedge between supply and
demand, causing hours worked and output to decline.

Additionally, the increase in real wages triggers an increase in prices, thereby causing inflation. This is
different to the previous results since the effect coming from the depletion of the capital stock is absent in this
model. The central bank reacts instantaneously by raising the nominal (and real) interest rate, which in turn
causes two effects. First, the government has to further increase taxes to finance the higher interest payments
on government debt. Second, the increase in the real rate triggers an increase in savings. Since dividends
are falling due to lower revenues and higher costs, the return on assets falls and bonds become relatively
more attractive than assets. Correspondingly the total volume of bonds increases while asset demand falls.
However, the effect of lower dividends on equity causes aggregate wealth to decline overall.

Since the effect of the shock is short lived, the inequality effects of this measure are of second order.
Households with a larger share of assets loose a small fraction of their wealth due to the fall in dividends.
Since the transfer is only transitory, less productive households with no liquid assets save parts of their
transfer. Overall, this causes a slight increase in inequality in asset holdings (top-10% hold more) and a
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slight decrease in inequality in bond holdings (top-10% hold less). Households are slowly melting off their
excess savings after the one-time transfer.

6 Conclusion

This paper introduces an iterative method to find nonlinear solutions to macroeconomic models with
heterogeneous agents. The method is based on Newton iterations and levers the techique of automatic dif-
ferentiation. I provide an easy-to-use reference implementation and suggest a series of central requirements
of such an implementation. These are, among others, the consequent separation of economic model, solu-
tion code, and analysis, the generation of reusable code (across models), and adherence to the open-source
philosophy.

The solution method is applied to study the nonlinear transition dynamics of a gradual but permanent
change in government redistribution. The overall effects of such policy, both in the short and in the long run,
are contractionary and can be aggravated by strong nonlinearities such as a lower bound on interest rates or
downwards nominal wage rigidity.
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Appendix A Models

This section presents the three main models used throughout the paper and which are provided with the
package. A fourth model, applied in Section 5, is the two-asset-model without capital, which is a special
case of the two-asset-model reseted below. Wherever possible, the three models share the same parameters,
which are given in Table A.3.

Appendix A.1 A medium scale RANK model

This model is based on Gust et al. (2012), which is an early working paper version of Gust et al. (2017).
Relative to this reference it contains a series of simplifications, e.g. no growth in steady state. The model
features all the bells and whistles of the medium-scale workhorse model of Smets and Wouters (2007) but
uses Rotemberg pricing instead of Calvo pricing. This model also forms the basis for the aggregate equations
for the two HANK models.
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The last equation is the households budget constraint which not necessary for the aggregate dynamics due
to Walras’ law.
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t+1
Λt+1

Λt
qt+1ψi

(
it+1

it
− 1

) (
it+1

it

)2

(A.12)

qt−1
Rt

πt+1
= MPKtut + (1 − δ)qt −C(ut−1) (A.13)

wt = (1 − α)mct
y f

t

nt
(A.14)

MPKt = αmct
y f

t

(utkt−1)
(A.15)

C(ut) = ¯MPK(ut − 1) +
1
2

ψu

1 − ψu
(ut − 1)2 (A.16)

ψu(ut − 1) = (1 − ψu)(MPKt − ¯MPK) (A.17)

Πt =

1 − mct −
ψp

2

(
πt

π̃t
− 1

)2 y f
t −

1 − qt

1 − ψi

2

(
it

it−1
− 1

)2 it (A.18)

Financial sector

dt = qb
t bt + qtkt (A.19)

Rt =
(1 + κqb

t+1)

qb
t

(A.20)

Πb
t =

(
(1 + κqb

t )bt−1 + Rt−1qt−1kt−1 − Rt−1dt−1

)
/πt (A.21)

Government

qb
t bt + τt = gt +

(1 + κqb
t )

πt
bt−1 (A.22)

bt =
ȳ
q̄b (A.23)

ln Rn
t = ρ ln Rn

t−1 + (1 − ρ)
(
ln R∗t + ϕπ [ln πt − ln π̄] + ϕy

[
ln yt − ln ȳ

])
+ ln vt (A.24)

Rt = max
{
1, Rn

t
}

(A.25)
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Clearing conditions

ct + it + gt + utkt−1 +
ψw

2

(
πw

t

π̃w
t
− 1

)2

=

1 − ψ2
(
πt

πss
− 1

)2 y f
t (A.26)

ct + it + gt = yt (A.27)

Exogenous processes

ln βt = (1 − ρβ) ln β̄ + ρβ ln βt−1 + ε
β
t (A.28)

ln zt = (1 − ρz) ln z̄ + ρz ln zt−1 + ε
z
t (A.29)

ln µw
t = (1 − ρw) ln µ̄w + ρw ln µw

t−1 + ε
w
t (A.30)

ln µt = (1 − ρp) ln µ̄ + ρp ln µt−1 + ε
p
t (A.31)

ln gt = (1 − ρg) ln(0.2ȳ) + ρg ln gt−1 + ε
g
t (A.32)

ln ϵ i
t = ρi ln ϵ i

t−1 + ε
i
t (A.33)

ln ϵΛt = ρΛ ln ϵΛt−1 + ε
Λ
t (A.34)

ln R∗t = (1 − ρr) ln R̄ + ρr ln R∗t−1 + ε
r
t (A.35)

(A.36)

Parameters
The parameters are set as in Table A.3.

Appendix A.2 A small scale HANK model with one asset

Households can hold one type of assets ait and face idiosyncratic income risk and a borrowing constraint.
They have GHH preferences with the composite good xi,t, and the Bellman equation is given by

Vt(eit, ai,t−1) = max
cit ,nit ,ait

 x1−σc
it

1 − σc
+ βEt

[
Vt+1(ei,t+1, ait)|e

] (A.37)

xit = cit − eit
n1+σl

it

1 + σl
(A.38)

cit + ait =
Rt−1

πt
ai,t−1 + wteitnit − τtτ̄(eit) + ΠtΠ̄(eit) (A.39)

ait ≥ 0 (A.40)

where eit is i’s household-specific productivity which follows an AR(1) process in logs as in (5). τ̄(e) and
Π̄(e) are skill-specific incidence rules for taxes and dividends.

The aggregate model is as in Appendix A.1 but parameters are chosen such that labor is the only
production factor (i.e. no capital accumulation with α = 0) and such that there are no price inertia in the
Phillips curve (ω = 0). Dividends are given by (9). The government is running a balanced budget with

τt =

(
Rt−1

πt
− 1

)
B̄ + gt. (A.41)
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Parameter Value Target

σl inverse Frisch elasticity of labour supply 2
χ weight on the disutility of labour – n̄ = 0.33
β steady state discount factor 0.995
θ elasticity of substitution 6
θw elasticity of substitution for wages 11
κ decay parameter for coupon payments of perpetual bonds 0.975
δ depreciation rate 0.025
h habit formation parameter 0.74
ψi parameter on the costs of investment adjustment 5.6
ψp parameter on the costs of price adjustment 60.
ψw parameter on the costs of wage adjustment 96.
ψu parameter on the capital utilisation costs 0.8
α capital income share 0.33
π∗ inflation target 1.02

1
4

ϕpi Monetary policy rule coefficient on inflation 1.5
ϕy Monetary policy rule coefficient on output 0.1
ρ persistence in (notional) nominal interest rate 0.8
ωp coefficient on steady state inflation in price indexation 0.44
ωw coefficient on steady state wage inflation in wage indexation 0.66
ιw degree of dowards nominal wage rigidity 1.

ρβ persistence of discount factor shock 0.9
ρz persistence of technology shocks 0.9
ρp persistence of price MU shock 0.9
ρw persistence of wage MU shock 0.9
ρg persistence of government spending shock 0.9
ρi persistence of MEI shock 0.9
ρr persistence of MP shock 0.9
ρu persistence of wage MU shock 0.9

Table A.3: Joint parameters

I further abstract from labor unions and thus, due to GHH preferences, labor supply simplifies to

nσl
t = wt. (A.42)

Markets clear with ∫
citdi = Ct =

(
1 −

ψ

2

(
πt

π̄
− 1

)2
)

yt, (A.43)∫
aitdi = B̄, (A.44)

and the parameters specific to this model are given in Table A.4.
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Parameter Value

σc intertemporal elasticity of substitution 2
β̄ discount factor 0.98
B̄ bond supply 5.6
α capital factor share 0
ωp coefficient on steady state inflation in price indexation 1

ā borrowing constraint 0
σe standard error of earnings 0.6
ρe autocorrelation of earnings 0.966
ne points for Markov chain of e 4
na points for asset grid 50

Table A.4: Parameters specific to the one-asset-HANK model.

Appendix A.3 A medium scale HANK model with two assets

The two-asset HANK model shares many of the aggregate features with the representative agent model
in Appendix A.1 and is presented in Section 2. A central difference is the setup of households. Based on
the endogenous grid method of Carroll (2006), the appendix of Auclert et al. (2021) describes an efficient
algorithm to solve the two-asset household problem with convex adjustment costs. All equations that are not
stated in 2 are as in the RANK model, including the exogenous processes from Equations (A.28)-(A.35).
Parameters specific to the two-asset HANK model are given in Table A.5.
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Parameter Value

σc intertemporal elasticity of substitution 2
σl inverse Frisch elasticity of labour supply 2.9
χ weight on the disutility of labour 0.5
ψp parameter on the costs of price adjustment 60
ψw parameter on the costs of price adjustment 96
ψa0 parameter on portfolio adjustment no.1 0.25
ψa1 parameter on portfolio adjustment no.2 15
ψa2 parameter on portfolio adjustment no.3 2
ζ liquidity premium 0.005
BG government bond supply 2.8
β̄ discount factor 0.98
T̄ steady state government transfers 1e-5
ρT autocorrelation government transfers 0.8

b̄ borrowing constraint 0
σe standard error of earnings 0.92
ρe autocorrelation of earnings 0.966
ζ steady state liquidity premium 0.1
ne points for Markov chain of e 3
nb points for liquid asset grid 20
na points for illiquid asset grid 25

Table A.5: Parameters specific to the two-asset HANK model.

Appendix B Proof of part iii) of Lemma 1

The Lemma states that for a real square matrix M and a vector z with ||z|| > 0 it holds that

|R(M, z)| ∈ [0, σmax], (B.1)

where σmax is the largest singular value of M.

Proof. It is well known that
R(M⊺M, z) ∈ [σ2

min, σ
2
max], (B.2)

with σmin as the respective smallest singular value of M. The result from the Lemma follows immediately if
we can show that

R(M⊺M, z) ≥ R(M, z)2. (B.3)

Define w = Mz. Then the above is is equivalent to

z⊺M⊺Mz
z⊺z

−
z⊺Mzz⊺Mz

(z⊺z)2 =
w⊺w
z⊺z

−
z⊺wz⊺w
(z⊺z)2 ≥ 0, (B.4)

w⊺w −
w⊺zz⊺w

z⊺z
≥ 0, (B.5)

w⊺

(
I −

zz⊺

z⊺z

)
w ≥ 0, (B.6)
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which uses the fact that R(M, z) = R(M⊺, z). It is further that

w⊺w −
w⊺zz⊺w

z⊺z
= w⊺w

(
1 −

(w⊺z)2

(z⊺z)(w⊺w)

)
. (B.7)

Since from the Cauchy-Schwarz inequality we have

(w⊺z)2
≥ (z⊺z)(w⊺w), (B.8)

and thus
(w⊺z)2

z⊺zw⊺w
< 1, (B.9)

it follows that

w⊺

(
I −

zz⊺

z⊺z

)
w ≥ 0. (B.10)

■

Appendix C A generic syntax to express heterogeneous agent models

Using the formalization from Section 3, the necessary user input to describe a heterogeneous agent model
can be reduced to two elements: the EGM step manifesting in the function W(·) from Equation (19) and the n
aggregate equations in f (·) from Equation (21). In contrast, it is typically not necessary to explicitly specify
the mapping from agents’ decisions to the distribution, D(·), from (20) since this function is generic and
standard routinen such as, e.g., the lottery method of Young (2010) can be used.
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# EGM stage: marginal values & decisions
decisions:
inputs: [WaPrime,WbPrime]
calls: |
z grid = income(skills grid, tax, w, n, transfers)
Psi = marginal cost grid(a grid, Ra−1, psi a0, psi a1, psi a2)
WaPrimeExp = expect transition(skills transition, WaPrime)
WbPrimeExp = expect transition(skills transition, WbPrime)
Wa, Wb, a, b, c, uce = egm step(WaPrimeExp, WbPrimeExp, a grid, b grid, z grid, skills grid, kappa grid, \

beta, sigma c, Rb−1, Ra−1, psi a0, psi a1, psi a2, Psi)
outputs: [a,b,c,uce]

# intermediate stage: aggregation
aux equations: |

# calculate asset share of top−10%
top10a = 1 - percentile(a, dist, .9)
# aggregation
UCE = sum(dist*uce, axis=(0,1,2))
. . .

# main stage: aggregate equations
equations:
∼ psi w*(piwn/piwntilde - 1)*piwn/piwntilde = wage markup/(wage markup−1)*chi*n**(1+sigma l) + \

1/(1−wage markup)*(1 - tax)*w*n*UCE + \
psi w*beta*(piwnPrime/piwntildePrime - 1)*piwnPrime/piwntildePrime # wage Phillips curve

∼ piwn = wn/wnLag*pi # wage inflation
∼ w = max(iota*wLag/pi, wn) # dowards nominal wage rigidity

∼ div = (1 - psi p/2*(pi/pitilde - 1)**2)*y - w * n - i # dividends
∼ Rb = Rr - zeta # real bond returns
∼ Ra = assetshareLag * (div + equity) / equityLag + (1 - assetshareLag) * Rr # real asset returns
. . .

Figure C.7: Part of the YAML-file which specifies the two-asset HANK from 2. The block decisions represents the function W(·)
which depends on wt+1 (here: WaPrime and WbPrime) and aggregate variables such as wages w, labor hours n, and parameters such
as σc (here sigma_c). The outputs are disaggregated savings ait and bit , consumption cit and marginal utilities. The equations block
shows the first aggregate equations starting with Equation (7).

The reference implementation provides a simple syntax for expressing heterogeneous agent models,
which is based on the widely used YAML format.34 Similar as the mod-file in Dynare, the file allows to
specify variables and parameters as well as meta-parameters such as, e.g., the grids used to represent the
distribution of idiosyncratic states across agents. Importantly, the package – via the YAML file – permits
a standardized way to specify the function W(·) including its inputs and outputs. This is illustrated in Fig-
ure C.7 (key: “decisions”) for a part of the specification of the one-asset-HANK model from Appendix
A. Subfunctions of W(·) (e.g. the function egm_step) can be described as a conventional Python function
that is defined in an external functions file and referenced in the YAML. In the example, Wa and Wb are the
recursive decision object wt from Section 3.1 while a,b,c,uce are the agents actions in at.

34YAML (”Yet Another Markup Language”) and is a standardized human-readable data-serialization language. The format is similar
to XML but has a minimal syntax in order to be easily usable. It is useful to provide data input in a clear and simple way across
programming languages, and is widely used in applications that require a high level human-computer interaction, such as configuration
files or data storage.
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WaPrime
WbPrime
w
n
sigma_c
decisions
egm_step
Wa
Wb
a,b,c,uce


The figure further shows a part of the system of aggregate equations (“equations”), which constitute
the function f (·).35 Together with the specification of W(·), this allows the combination of the disaggregated
parts of various heterogeneous agents models with arbitrary systems of aggregate equations. Additionally,
the file further allows to stage parameter values and the inputs required for the steady state search (not shown
in the figure).

Appendix D Representative agent models and automatic differentiation

This appendix is merely given for completeness and documents how the software implementation han-
dles nonlinear representative agent models. Analog to the representation in Section 3 for heterogeneous
agent models, a representative agent model can simply be written as

zt = f (xt−1, xt, xt+1), (D.1)

where the solution requires zt = 0. For simplicity, denote the three Jacobians of this function as

fA(x) = ∂ f /∂xt−1, (D.2)
fB(x) = ∂ f /∂xt, (D.3)
fC(x) = ∂ f /∂xt+1. (D.4)

For each f (xt−1, xt, xt+1) = zt, these three Jacobians can be obtained at low costs via backwards propagation
with only n evaluations of f . Since dim(zt) = n ≪ dim(z) = n(T − 1), each evaluation is computationally
cheap. The sequence space Jacobian is then given by the block tridiagonal matrix

J(x) =



fB(x1) fC(x2)
fA(x1) fB(x2) fC(x3)

fA(x2) fB(x3) fC(x4)
. . .

. . .
. . .

fA(xT−3) fB(xT−2) fC(xT−1)
fA(xT−2) fB(xT−1)


. (D.5)

During each Newton iteration we seek to solve

J(xi)(xi+1 − xi) = −F(xi) = −zi. (D.6)

Following the ideas of Laffargue (1990), Juillard et al. (1996) and, in the context of a relaxation method for
continuous time models, Trimborn et al. (2008), this can be solved efficiently by bringing J(x) in a block

35For example, expressing the aggregate relationships in f (·) is, in its core, what the “model” block in Dynare’s mod-file does.
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equations


bidiagonal form

Ĵ =



I M1
I M2

I M3
. . .

. . .

I MT−2
I


. (D.7)

This can be done by initializing M0 = 0 and ẑ0 = 0 and for i ∈ 1, 2, . . . ,T − 1 setting

Mi = K−1
i fA(xi), (D.8)

ẑi = K−1
i zi − fC(xi)ẑi−1, (D.9)

with Ki = fB(xi) − fC(xi)Mi−1, which is equivalent to recursively solving for and subtracting each a pair of
equations in J(x).

Each yt in yi = xi+1 − xi can then simply be found via the recursion

yt = ẑt − Mtyt+1. (D.10)
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