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Abstract

Tropical America (the Neotropics) and tropical Africa have comparable climate and share
a geological history as parts of Gondwana. Nevertheless, the Neotropics today harbour
roughly three times more flowering plant species than tropical Africa. The role of evolutio-
nary history in generating this pattern remains poorly understood, mostly because collecting
biological specimens in the tropics is difficult. Species occurrence information from collecti-
ons in museums and herbaria has the potential to overcome this gap and, for the first time,
enable an understanding of tropical biodiversity on a global scale across the tree of life.
However, uncertain data quality and methodological limitations to process large amounts
of data often hamper the use of collection records in biogeographic analyses, especially in
historical biogeography invoking phylogenetic trees. In this thesis | first (co-)develop three
software tools to process large amounts of species occurrence data in biogeography: (1)
CoordinateCleaner to test and insure data quality in large data sets of species and fos-
sil occurrences, (2) SpeciesGeoCoder to include large-scale species distribution data in
historical biogeography, and (3) Infomap Bioregions to delimit taxon-specific bioregions. |
then apply these tools to identify processes underlying the evolution of tropical diversity
across multiple taxonomic groups. The results suggest a significantly higher species turno-
ver in the Neotropics compared to other tropical regions and identify this region, especially
Amazonia, as a global species pump. Furthermore, shifts among different bioregions and
biomes are more common than expected in evolutionary lineages of the Neotropics, and
are potential drivers of diversification. The results show that biome shifts into seasonally
dry biomes are particularly common, and increased during the last 20 million years, espe-
cially in the Bombacoideae (Malvaceae), a pantropical group with highest diversity in the
Neotropics. The presented results shed further light on the evolutionary history of the dif-
ferences in biodiversity across Earth’s tropical regions, and provide a methodological route
forward to integrate large-scale species occurrence data with information on species’ evo-
lutionary relationships to reveal general processes underlying the evolution of biodiversity
across taxonomic borders.

Keywords
Amazonia, automated data cleaning, biome shifts, Bombacoideae, data quality, GBIF, Neo-
tropics, tropical plant diversity.






Svensk sammanfattning

Tropiska Amerika (den Nya Véarldens tropiker, eller Neotropikerna) och tropiska Afrika har
jamférbara klimat och en gemensam geologisk historia, eftersom bada var delar av Gond-
wanaland. Trots detta finns idag ungeféar tre ganger fler blomvéxter i Neotropikerna an i
tropiska Afrika. Aven om det rader enighet om att den nuvarande mangfalden &r ett resultat
av en kombination av flera processer bade i nutid och i datid, s& kdnner man daligt till vilken
betydelse evolutionen har fér uppkomsten av denna méangfald; bristen pa kunskap hér i hég
grad samman med svarigheten med att samla in biologiska prover i tropikerna.

Den snabbt dkande tillgéngligheten till information fran museer och herbarier om arters
forekomst har potential att éverbrygga denna okunskap och, for férsta gangen, méjliggdra
en forstaelse pa global niva fér den tropiska biodiversiteten och for slakiskapen mellan
organismer (livets trad). Anvandningen av dessa data i biogeografiska analyser, sarskilt i
historisk biogeografi som utgar fran fylogenetiska trad, férsvaras emellertid ofta av att data
ar av lag kvalitet och av metodologiska begransningar vid bearbetning av stora dataméng-
der.

| denna avhandling (med)utvecklar jag initialt tre mjukvaror for att behandla och bearbeta
stora mangder data om artférekomst i biogeografi: (1) CoordinateCleaner for att testa och
sakerstalla datakvalitet i stora dataset av art- och fossilférekomster, (2) SpeciesGeoCoder
for att inkludera storskaliga artutbrednings data i historisk biogeografi, och (3) Infomap Bio-
regions for att avgransa taxonspecifika bioregioner. Jag anvander sedan dessa verktyg
for att identifiera processer som ligger till grund fér utvecklingen av tropisk mangfald i flera
taxonomiska grupper.

Resultaten tyder pa en signifikant hégre artomsattning i Neotropikerna jamfért med i andra
tropiska omraden och identifierar denna region, i synnerhet Amazonas, som en global “art-
pump” — en plats dar manga arter bildas och darifran sprids till hela varlden. Dessutom
ar skiften mellan olika bioregioner och biom mer vanligt forekommande an férvantat i evo-
lutionara utvecklingslinjer i Neotropikerna, och véaxlingarna utgér en potentiell drivkraft for
diversifiering. Detta ar sarskilt tydligt inom Bombacoideae (Malvaceae), dar upprepade skif-
ten till torra biomer ar vanligt férekommande.

Dessa resultat sprider ytterligare ljus éver evolutionshistorien avseende de patagliga skil-
Inaderna i biodiversitet mellan jordens tropiska omraden, och erbjuder en metodik for att
integrera artférekomstdata med information om arters evolutionara slaktskap sa att de allm-
anna processer som ligger till grund fér utveckling av biologisk mangfald éver taxonomiska
granser kan urskiljas.
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Introduction

The diversity of life on Earth—Dbiodiversity—has fascinated humans for thousands of years.
One question at the core of this fascination is: "What generates biodiversity?" or phrased
differently: "Why are there more species in some areas than others, despite a similar envi-
ronment?". A prime example are the world’s tropical regions, where tropical America har-
bours more than three times as many plant species than tropical Africa, and probably more
species than tropical Africa and Asia combined. To this date, the scientific understanding
of this pattern, and the underlying evolutionary processes remain incomplete. This lack of
knowledge is problematic, because protecting tropical biodiversity will be one of the major
challenges for the current generation (Butchart et al., 2010; Rockstrom et al., 2009; Steffen
et al., 2015), and understanding the evolutionary history of this diversity can be critical to
guide area and taxon prioritization for effective conservation.

Tropical biodiversity

Biodiversity has multiple dimensions, including genetic diversity ("How diverse is the genetic
material?"), organismic diversity ("How many species are there?") and ecological or functi-
onal diversity ("How diverse are forms and ecological roles?") (Gaston and Spicer, 2004). A
large number of indices exist to measure biodiversity, each putting focus on slightly different
aspects (Scheiner et al., 2017; Tucker et al., 2016). Species richness, the count of species
in an area, is a simple and intuitive measure of organismic diversity and among the few with
data available on a global scale; and thus often used as proxy for overall biodiversity.

There are an estimated 4—10 million species on Earth today (Costello et al., 2013), and
potentially even many more (Larsen et al., 2017). This diversity is not equally distributed
on the globe, but increases from the poles to the equator, peaking between the Tropics of
Cancer and Capricorn (app. 23.4° North and 23.4° South). This latitudinal diversity gradient
has often been explained by higher energy availability or long-term climatic stability in the
Tropics (among others; see Mittelbach et al., 2007 and Wiens and Donoghue, 2004 for
reviews). Surprisingly however, species richness also largely differs among the tropical
continents despite the similar environment (Fig. 1), suggesting a critical importance of
continental evolutionary history on global biodiversity.

Species richness among tropical realms

Tropical America, Africa and Asia vary strongly in their floristic composition. For instance,
only four percent of tropical tree species are shared among these regions and only between
14%—24% of tree genera might be shared (Dexter et al., 2015; Ricklefs and Renner, 2012;
Slik et al., 2015, but see Gentry, 1993). This divergence has inspired the classification of
the world’s Tropics into separate floristic realms (Good, 1953; Takhtajan, 1987) comparable
to zoogeographic regions for animals (Holt et al., 2013; Wallace, 1876). The exact definition
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of these realms and the affinities among them are controversial (e.g. Slik et al., 2017), but
a widely used scheme divides the Tropics into four realms: Neotropics (tropical America),
Afrotropics (tropical Africa), Australasia and Indomalaya (hereafter combined as tropical
Asia, Fig. 1, Olson et al., 2001). This definition is admittedly broad and includes habitats
often not considered tropical (e.g. based on mean annual temperature, or annual mini-
mum temperature). However, it has the advantage that area, latitudinal range, and biomes
among the three realms are similar, and these are thus more comparable for the purpose
of this thesis.

The Neotropics, Afrotropics and tropical Asia are generally comparable in size and envi-
ronmental conditions, but differ drastically in species richness of flowering plants (angio-
sperms). There are an estimated 90,000 angiosperm species in the Neotropics, 27,000
species in the Afrotropics and 50,000 species in tropical Asia (Lebrun, 2001; Thomas,
1999; Whitemore, 1998). The outstanding species richness of the Neotropics, in particular
in comparison with Africa, has long been noted from individual clades (Gentry, 1982; Raven,
1976; Richards, 1973) and was later confirmed by spatially explicit global analyses (Gova-
erts, 2001; Kreft and Jetz, 2007; Slik et al., 2015). The difference in species richness seems
to be consistent across biomes (Fig. 1) and prevails when taking into account area, climate
or productivity (Fig. 2, Banin et al., 2014; Couvreur, 2015; Parmentier et al., 2007). Interes-
tingly, the Neotropics are similarly outstanding in many animal groups, including amphibians
(Wiens, 2007), birds (Grenyer et al., 2006; Somveille et al., 2013) and mammals (Ceballos
and Ehrlich, 2006, Fig. 3), and some evidence suggests that functional diversity might fol-
low a similar pattern as species richness (Chomicki and Renner, 2015; Reu et al., 2011).

A rigorous comparison of species richness needs to standardize methodology and to ac-
count for sampling effort (Engemann et al., 2015; Whittaker et al., 2001). The few studies
directly comparing tropical species richness among continents based on standardized area
and methodology (mostly using vegetation plots), have almost exclusively focussed on trees
with more than 10 cm diameter at breast height in evergreen and semi-evergreen rainforest
(rainforest hereafter). It was based on data from rainforest that the pattern was first obser-
ved and the idea of Africa as "the odd man out" due to the unexpectedly low species counts
was developed (Richards, 1973). Since then, particularly high species richness in the Neo-
tropics (and possibly tropical Asia) as well as comparatively low species numbers in Africa
have been reported from plots repeatedly (Caceres et al., 2012; Gentry, 1988; Ricklefs and
Renner, 2012; Terborgh et al., 2016) and suggested that the Amazon basin might be up
to three times as species rich as central Africa (Parmentier et al., 2007). It must however
be noted that some areas of the Afrotropics are also very species rich on the local scale,
reaching plot-level species-counts similar to Neotropical plots, but rarely so (Céceres et al.,
2012; Couvreur, 2015; Parmentier et al., 2007).
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Virtually no information on inter-realm comparison of diversity exists from biomes other
than rainforests. Few data are available only from single locations or from case studies on
individual taxonomic groups. Realm-wide data compiled for this thesis suggest, that the
Neotropics are particular species rich for most biomes (Fig. 1) also when accounting for
area (Fig. 2), although not to the same extent as in rainforests. A well-known exception are
the three tropical Mediterranean climate regions (cold, rainy winters and dry hot summers,
Fig. 1), where the South African Cape is the most species rich, followed by South-Western
Australia and Central Chile (Cowling and Rundel, 1996; Valente and Vargas, 2013). Some
evidence suggests that diversification rates might not have been different in seasonal dry
biomes (Lavin et al., 2000), but studies explicitly comparing species richness in these bio-
mes across tropical realms are virtually non-existent, potentially due to the difficulties to
define these biomes across realm boarders (Dexter et al., 2015; Moncrieff et al., 2016). All
tropical realms include hot-spots with particularly high diversification rates, for instance the
Paramo and the Cerrado in the Neotropics, the succulent Karoo and Cape region in the
Afrotropics and South-Western Australia in tropical Asia (Madrifian et al., 2013).

Potential drivers of differences in species richness

The drivers of the diversity differences among the tropical realms of the world have puz-
zled biologist for decades (Gentry, 1982; Raven and Axelrod, 1974), but are surprisingly
little studied (Couvreur, 2015). The high diversity of the Neotropics is particularly intriguing
compared to the Afrotropics, because these realms represent comparable continental mas-
ses and shared a direct connection until c. 110 million years ago as parts of Gondwana.
Tropical Asia in contrast largely consists of islands, making comparisons more complex.
Accordingly, attempts to explain the drivers and mechanisms underlying the differences in
diversity among the tropical realms have mostly focused on the Neotropics and Afrotropics,
and rainforests in particular.

Generally, the biodiversity in any given area is shaped by three fundamental processes:
speciation, extinction, and dispersal. All of these processes are critically influenced by evo-
lutionary history, for instance via past competition and other biotic interactions, continental
drift, and mountain uplift. In this context two major (not mutually exclusive) perspectives
for the Tropics exist: to either consider the Afrotropics as relatively depauperate (e.g. Mor-
ley, 2000; Raven and Axelrod, 1974), or to consider the Neotropics as relatively enriched
(e.g. Antonelli and Sanmartin, 2011; Gentry, 1982). The former usually invokes higher
extinction rate in the Afrotropics through time, whereas the latter usually implies higher
speciation rates in the Neotropics. A considerable number of hypotheses concerning the
specific factors causing extinction and speciation in both realms exist (see Couvreur, 2015
and Antonelli and Sanmartin, 2011 for an overview).



Historically, current and past climatic conditions have been considered as major drivers of
the differences in species richness. Following the observation that species richness corre-
lates with precipitation and temperature (e.g. Barthlott et al., 2005; Jaramillo et al., 2010;
Kreft and Jetz, 2007), and that African rainforests are more seasonal (Richards, 1973) and
generally drier (Malhi and Wright, 2004), African rainforests would sustain only lower num-
bers of species. Additionally, a long term aridification throughout the Cenozoic (the last 66
million years) especially pronounced in Africa supposedly led to a continuous loss of ever-
green forest area and lower productivity (Jetz and Fine, 2012; Morley, 2000), associated
with range contractions and extinctions of rainforest lineages. This effect might have been
exacerbated by strong dry phases during the Pleistocene (the last 2.6 million years, Gasse,
2000; Stager et al., 2011), causing the retraction of rainforests into few refugia (Hamilton,
1981; Parmentier et al., 2007; Raven and Axelrod, 1974; Ray and Adams, 2001). Indeed,
past and current climate influence tree diversity in rainforests (Jaramillo et al., 2010; Stropp
et al., 2009), and fossil pollen records from the recent past support a contraction of rainfo-
rests in Africa following aridification (e.g. Bouimetarhan et al., 2015; Dupont et al., 2000;
Ivory et al., 2012; Kirchmair, 2017; Morley, 2000; Vincens et al., 2007). In contrast, cli-
mate models and fossils suggest more stable rainforests in the Neotropics throughout the
Pleistocene (Bush and Oliveira, 2006; Leite et al., 2016; Mayle et al., 2004) and the entire
Cenozoic (Jaramillo et al., 2006), although potentially with high spatial and temporal varia-
tion (Carnaval and Moritz, 2008; Jaramillo et al., 2010; Morley, 2000).

However, while aridification and linked rainforest retractions in Africa are well supported at
least for the Pleistocene, their magnitude likely varied strongly across regions (Andrews
and Bamford, 2008; Ivory and Russell, 2016) and there is fossil evidence for extensive
rainforests in Africa throughout the Cenozoic (Bonnefille, 2010; Jacobs, 2004; Pan et al.,
2006; Utescher and Mosbrugger, 2007). Hence, the role of extinctions induced by rainfo-
rest retraction as driver of current day diversity, is unclear and has recently been challenged
conceptually and empirically. The postulated past refugia of rainforests in the Afrotropics
would still have been large compared to rainforests on some oceanic islands (Terborgh
et al., 2016); nevertheless the latter can be more diverse today, as for example shown in
one hectare plots on the Solomon and Fiji islands (Keppel et al., 2010). Furthermore, newly
available molecular evidence from numerous plant clades does not support higher extinction
rates in afrotropical lineages, for instance in palms (Baker and Couvreur, 2013; Kissling et
al., 2012), Annonaceae (Erkens et al., 2012), and Chrysobalanaceae (Bardon et al., 2013).
Instead, these studies and others, for example on Campanulaceae (Lagomarsino et al.,
2016), Burseraceae (Fine et al., 2014), Fabaceae (Richardson et al., 2001), Sapotaceae
(Armstrong et al., 2014) or the Paramo vegetation (Madrinan et al., 2013) suggest parti-
cularly high speciation rates in the Neotropics, supporting the idea of the Neotropics as
particularly enriched compared to the Afrotropics. However, an integrative perspective on
the issue, synthesizing information from multiple taxonomic groups is missing to date.
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The Neotropics - a global biodiversity hotspot

The Neotropical realm roughly stretches from northern Mexico to central Argentina (inclu-
ding the Caribbean, Fig. 1), with the precise definition differing slightly among authors (Holt
et al., 2013; Morrone, 2014; Morrone, 2017; Olson et al., 2001; Schultz, 2005). The realm
includes multiple biomes and habitats (Fig. 1) as well as a large number of different ecore-
gions, such as the Andean highlands, the Amazonian and Atlantic rainforests, the Cerrado,
and large dry areas (Hughes et al., 2013; Olson et al., 2001). Climate varies significantly
(the region includes the wettest and driest places on Earth), but in large areas it is generally
moist and warm, although with varying seasonality.

Regions of particularly high diversity in the Neotropics are Central America, the northern
Andes, western Amazonia, south-east Brazil and the Caribbean (Barthlott et al., 2005). In
general, Neotropical centres of high species richness are often linked to mountain chains
(Knapp, 2002; Kruckeberg and Rabinowitz, 1985) and high topographic diversity (Kessler,
2002; Kreft and Jetz, 2007). A central pattern in Neotropical biogeography is the division
of plant taxa into two groups, being predominantly species-rich in the Andes and relatively
species-poor in Amazonia, or vice-versa (Gentry, 1982). Recent studies stress the impor-
tance of rare species, suggesting that they contribute a major proportion to the regional
species richness, at least for Amazonian trees (ter Steege et al., 2013; ter Steege et al.,
2016).

The outstanding biodiversity of the Neotropics has been linked to multiple factors, inclu-
ding: the uplift of the Andes (Luebert and Weigend, 2014; Pirie et al., 2018; Sarkinen et al.,
2007), past marine incursions (Hoorn et al., 2010), habitat specialization (Fine et al., 2014;
Gentry, 1982; Higgins et al., 2011), biotic interactions (Kursar et al., 2009; Lagomarsino
et al., 2016), favourable current climate conditions (Kreft and Jetz, 2007), long-term climate
stability or climatic fluctuations in the past (Haffer, 1969, see Antonelli and Sanmartin, 2011;
Haffer, 2008 for reviews). Most likely a combination of factors are causing the high diversity
observed today, but the mechanisms and their interaction remain elusive.

Large parts of the Neotropics are scarcely studied (Feeley and Silman, 2011; Kier et al.,
2005; Tobler et al., 2007). For instance, Pimm and Joppa (2015) expect that 41% of all
globally yet undiscovered plant species are to be found in Mexico, Panama, Colombia, Peru
and Ecuador, whereas Feeley (2015) estimates that the median number of collected seed
plant specimens in tropical America is as low as 0.01 per square kilometre and that 13%
of the area are not represented by any collections. In addition to the sparse collection
effort, collections and taxonomic knowledge are strongly biased towards few well-studied
locations (Hopkins, 2007; Nelson et al., 1990), often related to easy access and research
stations (Hijmans et al., 2000; Meyer et al., 2016).



Unfortunately, large parts of the Neotropics are conservation hot-spots under strong human
land-use pressure (Mittermeier et al., 2011; Myers et al., 2000). Increasing habitat destruc-
tion in combination with high biodiversity and the scarce knowledge of this diversity lead
to severe problems for conservation. The situation is particularly critical for rare species
with low numbers of individuals and potentially restricted range size. Thus, a better know-
ledge of Neotropical plant diversity and its spatial distribution, in particular for rare species
is needed.

10,000+
Tropical Asia
Afrotropics
5 1,000- Neotropics
o]
IS
>
[
.8 100+
[&]
(]
o
7]
10+
100 10,000 1,000,000

Area [sgkm]

Figure 2 Species richness of ecoregions in the Neotropics, Afrotropics and tropical Asia in rela-
tion to ecoregion size. Each point represents an ecoregion from Olson et al. (2001). The species
richness is consistently higher in ecoregions from the Neotropics. The lines show individual linear
regression smoothers for each realm. Estimates based on data from GBIF (2016). Note the loga-
rithmic scale.

Biomes and biome shifts

In contrast to ecoregions and realms, which are described by species or phylogenetic com-
position, biomes can be defined by functional similar plant groups and their environmental
demands (Moncrieff et al., 2015). For instance, the most widely used global definition of
biomes, based on expert-generated vegetation units, includes among others "Tropical &
Subtropical Moist Broadleaf Forests" or "Tropical & Subtropical Grasslands, Savannas &
Shrublands" (Fig. 1, Olson et al., 2001). The definition and delimitation of biomes is contro-
versial and a set of alternative definitions exists, for example based on climate, phenology
or vegetation height and productivity (e.g. Buitenwerf and Higgins, 2016; Higgins et al.,
2016; Moncrieff et al.,, 2015; Pennington et al., 2004; Séarkinen et al., 2011; Whittaker,
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Figure 3 Taxonomic richness of selected animal groups with distribution data available from main-
land South America and Africa. The species richness is consistently higher in South America. Family
richness is more balanced and does not show a clear pattern. Estimates based on species ranges
from International Union for the Conservation of Nature (IUCN).

1962). The usefulness of the individual approaches depends on the scientific question,
but despite important differences, the mentioned definitions generally agree concerning the
major biomes in the southern hemisphere. Irrespective of the definition, biomes can be
interpreted as large-scale representation of species ecological niches (= abiotic and biotic
requirements, Hutchinson, 1957).

Ecological niche conservatism is the observed tendency of species to retain their ecolo-
gical niche through time. Phylogenetic Niche Conservatism (PNC) is the resulting pattern
of closely related species having similar ecological niches (Crisp and Cook, 2012; Harvey
and Pagel, 1991; Losos, 2008; Wiens and Donoghue, 2004). PNC has been observed in
many traits and many lineages, and is a key concept for understanding speciation as well
as macro-evolutionary patterns and processes (Crisp and Cook, 2012; Wiens and Graham,
2005; Wiens et al., 2010). The assessment of how conserved a niche is depends on tem-
poral and organismic scale. Some evidence suggests that niches are little conserved over
short times and on small scale (e.g. population level) but strongly conserved on a larger
temporal and taxonomic scale (Peterson, 2011). This might be due to the fact that moving
into a new environment might be easy, but evolving a stable, competitive phenotype might
be difficult, leading to higher extinction rate in new environment (Edwards and Donoghue,
2013)

Biomes are large-scale representations of a species’ ecological niche, and thus for the
majority of plant lineages seem conserved over evolutionary time ("biome conservatism"”,
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Crisp and Cook, 2012; Crisp et al., 2009; Donoghue, 2008; Pennington et al., 2009). Howe-
ver, the alternative scenario of lineages crossing biome boarders through evolutionary time
is also observed regularly ("biome shift", Dexter et al., 2015; Donoghue and Edwards, 2014;
Edwards and Donoghue, 2013; Fine et al., 2014; Lohmann et al., 2013; Simon et al., 2009).
There is evidence for shifts into and out of all major biomes, but the numbers of these shifts
differ considerably, possibly dependent on factors such as the biome size, their spatial and
ecological adjacency, perimeter length, biome age, their connectivity through time, biotic
interactions and traits of individual evolutionary lineages (Crisp et al., 2009; Donoghue and
Edwards, 2014). Furthermore, dry and cold biomes seem less prone to receive lineages as
compared to wetter and warmer biomes (Qian et al., 2017). Biome shifts and biome con-
servatism can determine global biodiversity, but it is unclear how common they are among
tropical plant lineages and how they impact diversification (Crisp et al., 2009; Wiens and
Donoghue, 2004). Few existing case studies indicate a possible relation between biome
shifts and increased diversification in some systematic groups such as in Fabaceae and
Proteaceae (Onstein et al., 2016), or Viburnum (Koenen et al., 2013; Spriggs et al., 2015),
but not in others, e.g. Protea (Valente et al., 2009). Additionally, the effect of biome-shifts
on diversification might differ among geographic realms (Sauquet et al., 2009).

Big data - a new era in biogeography

Biogeography is "the science that attempts to document and understand spatial patterns
of biodiversity. It is the study of distributions of organisms, both past and present, and of
related patterns of variation over the Earth in numbers and kinds of living things" (Lomolino
et al., 2010; page 3). Historical biogeography is concerned with reconstructing the origin
and evolutionary history of taxa and geographic areas, by combining information of species
distribution and ecology with information on their evolutionary history (phylogenies) (Wiens
and Donoghue, 2004). The biogeography of angiosperms is of particular interest, because
they are one of the most diverse systematic groups and because of their role as primary
producers and ecosystem engineers, providing food and habitat for most other organisms.

Available data on tropical ecosystems and their biodiversity is limited. This is even the case
for basic geographic and taxonomic information on the distribution, and evolutionary rela-
tedness of species. For most part of the history of modern biogeographic research logistic
difficulties have restricted data collection in the Tropics to certain geographic areas and
taxonomic groups. While accessibility has generally improved lately, high logistic invest-
ment remains a challenge to the study of many tropical ecosystems. The aggregation of
existing data from museums and herbaria offers a unique opportunity to, at least partly,
leverage this problem and holds great potential to refine the picture of tropical diversity and
the processes underlying its evolution.
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Figure 4 The number of angiosperm collection records available from Global Biodiversity Infor-
mation Facility (GBIF) in March 2016. Only geographically unique records (no records from one
species with identical coordinates) and records falling into the sea or on country centroids were
excluded using CoordinateCleaner. More than 34 million records are available globally, but some
regions remain without records and sampling effort is very uneven. Resolution 100 x 100 km, note
the logarithmic scale.

Natural history collections and (vegetation-)survey archives are biological data repositories,
holding information of species distributions from hundreds of years of scientific collection
effort. Over the last decade the digitization of museum and herbarium collections made
unprecedented amounts of species distribution information publicly available (Feeley, 2015).
In particular, large platforms, for instance GBIF (www.gbif.org) and the IUCN (www.iucn.org)
play a critical role by enabling free access to species distribution information from museums,
herbaria, and regional observation initiatives all over the world. GBIF alone currently inclu-
des more than 140 million geo-referenced collection records from almost 200,000 angio-
sperm species (as of February 2018, see also Fig. 4), and for many animal groups even
more data are available.

While there are still large gaps to fill (Fig. 4; Bebber et al., 2010; Engemann et al., 2015;
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Feeley, 2015) and collecting biases to overcome (Daru et al., 2018; Hopkins, 2007; Meyer
et al., 2016; ter Steege et al., 2011), the increased availability of species distribution data,
for the first time, enables global-scale, data-driven approaches to biogeography, that have
increased our understanding of biodiversity and underlying patterns. A comparable revolu-
tion in data availability is currently ongoing for DNA-sequences, based on Next Generation
Sequencing (NGS) techniques. NGS allows for the cost-effective analysis of hundreds of
genes or even entire genomes for a large number of organisms (see Levy and Myers, 2016
for an overview), and can even be applied to historic specimens. This development promi-
ses an explosion in the availability of genetic data for non-model organisms, providing even
bigger and better sampled phylogenies as basis for historical biogeography, and potentially
rendering a unified phylogenetic tree of life for all (macroscopic) species possible (Eiser-
hardt et al., 2018; Hudson, 2008). Indeed, whole genome sequences for the majority of all
living bird species are currently being analysed (http://avian.genomics.cn/en/).

For historical biogeography, the increase in spatial and genetic data has enormous poten-
tial. For the first time, a better understanding of global biodiversity on evolutionary time-
scales is possible. However, the use of this "treasure box" is still limited by the inability of
current methods and work-flows to process large amounts of data in a quick and reproduci-
ble way, while ensuring high data quality (Boakes et al., 2010; Dickinson et al., 2010; Meyer
et al., 2016; Ruete, 2015).

Methods in historical biogeography

Typical analyses in historical biogeography combine information on the geographic distri-
bution of recent taxa with dated, DNA-based phylogenies to infer the potential distributions
of ancestral species (Fig. 5). The combination of geographic and phylogenetic data can
link evolution to events in Earth history (either narratively or statistically, e.g. Morlon et al.,
2016) or can even inform on these events (Bacon et al., 2015). In particular, area-specific
speciation and extinction rates, area connectivity, niche evolution, and competition can be
addressed. Most tools to reconstruct geographic ranges through time are confined to a
classification of recent taxa into relatively few, discrete areas defined by large-scale geo-
graphic barriers, such as islands, continents or biomes (FitzJohn, 2012; Goldberg et al.,
2011; Matzke, 2014; Rabosky et al., 2013; Ree and Smith, 2008; Yu et al., 2015, but see
Nylinder et al., 2014; Quintero et al., 2015 for alternative approaches that do not rely on
discrete areas).

For studies including moderate numbers of taxa and a small geographic resolution (Fig. 5)
the area classification of recent species is often based on expert knowledge or regional flo-
ras and check-lists. If occurrence records are used, they are often derived from individually
curated databases and processed with Geographic Information Systems (GIS) based on
a graphical user interface. These approaches are time-consuming, error-prone, difficult to
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reproduce and slow, and cannot be scaled to process large amounts of distribution data or
big phylogenies, especially if the number of areas analysed increases (Landis et al., 2013).
Large amounts of data call for automated and scalable data processing, accounting for data
quality. Three practical challenges to the use of large-scale species distribution data in his-
torical biogeography are:

1. Area delimitation. Higher spatial resolution is often desirable and is theoretically
possible, but finding biologically meaningful delimitations on a regional scale can be
difficult and is often arbitrary and impractical. Moreover, barriers are taxon specific.

2. Area classification. Classification of species to areas based on expert knowledge or
small individually curated data sets is time-consuming, error-prone, difficult to repro-
duce and not scalable to large data sets.

3. Data quality. Geo-referencing errors, taxonomic misidentification and sampling bia-
ses are rarely explicitly taken into account. Data cleaning is often performed using
graphical user-interface GIS (such as ArcGIS or QGIS), which is subjective, difficult
to reproduce and not feasible for large data sets.
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Figure 5 An example for an analysis in historical biogeography: The distribution of extant taxa is
classified into large discrete areas (capital letters from the inset map) from which ancestor distribu-
tions are reconstructed backwards through time (pie charts) based on a dated molecular phylogeny.
Ancestral distributions and their changes can then be interpreted in the light of past geological
events, in this case the Andean uplift. Modified from Antonelli et al. (2009).
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Objectives

The aim of this thesis is to provide a temporally and spatially large-scale perspective on the
evolution of the globally outstanding Neotropical biodiversity. To this end | combine large-
scale species occurrence data with fossils and phylogenetic information to evaluate the role
of diversification rates, bioregion connectivity and biome shifts. | co-develop new software
tools for the use of large amounts of species occurrence data in historical biogeography,
with a special focus on data quality and reproducibility. Specifically, this thesis addresses
three questions:

1. How can large-scale species distribution data best be used in historical biogeography
while ensuring high data quality?

2. What is the role of diversification and dispersal for the differences in species richness
among tropical regions?

3. Which role have bioregion connectivity and biome shifts played in the evolution of
Neotropical diversity?
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Methods

Study groups

Evidence from multiple distantly related lineages is necessary to identify and understand
general biogeographic patterns and processes and to make generalizations beyond case
studies. Therefore this thesis includes studies on multiple organism groups:

Papers I-IV used multiple systematic groups to test novel methodology and to exemplify
the functioning of the presented tools. These studies did not primarily aim to explain bio-
logical patterns and therefore are only mentioned here briefly: Paper | used the plant tribe
Cinchoneae from the Coffee family (Rubiaceae) to test the reliability of public databases;
Paper Il used angiosperms to exemplify automatic data cleaning of geographic occurren-
ces and fossils; Paper Ill used Neotropical birds to demonstrate the handling of millions of
occurrence records and Paper IV used global ranges of all amphibians and mammals to
demonstrate taxon-specific bioregionalization.

Papers V-VII explored biogeographic patterns and processes in different systematic groups.
Paper V investigated the distribution of rare Neotropical angiosperms, including more than
67,000 species. Paper VI crossed the plant-animal boundary and compared the history of
bioregion shifts in amphibians, angiosperms, birds, ferns, mammals and squamates (4,450
species in total) across the Neotropics and throughout the Cenozoic. Paper VII analysed
diversification rates and range shifts of c. 22,600 species of angiosperms globally.

Finally, Paper VIl was a case study on biogeography, dispersal and biome shifts in the
Malvaceae subfamily Bombacoideae, one of the most iconic clades of the southern hemis-
phere. The Bombacoideae comprise 176 species of woody plants in 17 genera, including
species of high economic importance, such as the African Baobab (Adansonia digitata) and
South American Kapok (Ceiba pentandra) (Fig. 6, Yoon et al., 2016; Zizka et al., 2015).
The subfamily is most likely monophyletic (Carvalho-Sobrinho et al., 2016), and distributed
throughout the Tropics, with ¢c. 90% of the species endemic to the Neotropics (Fig. 7).

Bombacoideae occur in a variety of different environments and comprise specialized local
endemics (Catostemma spp.) as well as widespread and abundant generalists (A. digi-
tata and C. pentandra). Their pan-tropical distribution and the potential high variability in
niche width, together with their economic value made the Bombacoideae a suited model to
understand drivers of diversification.

Data sources
This thesis was mostly based on three types of data:
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Geographic occurrence records

The biogeographic analyses were based on over 100 million geographic occurrence records
of angiosperms, ferns, mammals, amphibians, and squamates from GBIF (www.gbif.org).
Additionally, the analyses included information from various other sources. Paper | added
a private, expert curated data set of occurrence records obtained from field work and her-
baria. Paper lll used occurrence records of more than 9,000 bird species from the ebird
database (www.ebird.org), a public repository specific to birds. Paper IV used expert range
maps from the IUCN (www.iucn.org) for 6,069 species of amphibians. Paper V compared
GBIF data to independent data from the Amazon Tree Diversity Network (ATDN), a data-
base of Amazonian vegetation plots (ter Steege et al., 2013). Paper VIIl added data from
other public sources (www.splink.cria.org.br, African Plants Database, 2017; Dauby et al.,
2016; Schmidt et al., 2017; The Botanical Information and Ecology Network, 2015) as well
as field collections and expert knowledge from the author and collaborators. For Papers
V-VII records were geographically cleaned and processed using the tools developed in
Papers I-lll and taxonomically scrubbed using the Taxonomic Name Resolution Service
(Boyle et al., 2013) (Papers I-VIl) or manually based on taxonomic literature (Papers I,
VIi).

Fossils

Fossils are a key resource for historical biogeography. They allow to age-calibrate phy-
logenetic trees, to improve and verify ancestral state reconstruction and ancestral range
estimations, and to understand the past geographic distribution of bioregions and biomes.
Furthermore, fossils can provide an independent line of evidence to estimate diversity and
diversification rates through time (Silvestro et al., 2014). Papers Il, VIl and VIII explicitly
included fossil information. Paper Il used c. 20,000 angiosperm fossils from the Paleobio-
logy Database (PBDB) (www.paleobiodb.org) to test fossil-specific cleaning tools. Paper VI
used a data set of more than 9,500 fossils from the PBDB to test if fossils can be used for
large-scale biogeographic inferences across the Tropics. Finally, Paper VIl used two fossils
from the literature to age-calibrate a phylogeny of the Bombacoideae (see below).

Phylogenetic trees

Phylogenetic trees describe the evolutionary relationships among species, based on gene-
tic information from DNA sequences and/or morphology. Papers lll, IV, VI-VIIl included
analyses of different phylogenetic trees. Paper lll used a phylogeny of birds including
virtually all species of birds (Jetz et al., 2012) to demonstrate stochastic mapping imple-
mented in SpeciesGeoCoder and Paper IV used a phylogeny comprising all extant species
of mammals (Faurby and Svenning, 2015) to plot biogeographic regions inferred with Info-
map Bioregions. Papers VI and VIl used a comprehensive plant phylogeny including c.
32,000 plant species (Zanne et al., 2014), to estimate diversification and dispersal rates
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through time. Paper VI additionally used available phylogenies of amphibians (c. 3,300
species, Pyron and Wiens, 2011, 2013), birds (c. 9,900 species, Jetz et al., 2012), ferns (c.
1,100 species, Lehtonen et al., 2017), mammals (c. 5,000 species, Rolland et al., 2014),
and squamates (snakes, lizards, and amphisbaenians or "worm lizards", c. 4,200 spe-
cies, Pyron et al., 2013) to analyse bioregion shifts in the Neotropics. Paper VIl inferred a
new phylogeny of the Bombacoideae based on genetic data from Carvalho-Sobrinho et al.
(2016) to reconstruct geographic range evolution and the effect of biome shifts in the clade.

Data analysis

Bioinformatic framework

Data-handling, preparation and statistical analyses for this thesis were performed in R (R
Core Team, 2018). R is an open-source programming language with a large user-base in
ecology and evolutionary biology. Many of the analyses particularly used the following R-
packages: geosphere (Hijmans, 2016), rgdal (Bivand et al., 2017), rgeos (Bivand and Run-
del, 2014), raster (Hijmans, 2016), sp (Bivand et al., 2013; Pebesma and Bivand, 2005), sf
(Pebesma, 2018) for spatial analyses; tidyverse (Wickham, 2017) and rgbif (Chamberlain
et al., 2015) for data handling and preparation; and ape (Paradis et al., 2004), diversitree
(Fitzdohn, 2012), geiger (Harmon et al., 2008) and phytools (Revell, 2012) for analyses
involving phylogenetic trees. Furthermore, parts of SpeciesGeoCoder (Paper lll) are writ-
ten in python, an open-source language common in bioinformatic applications, and Infomap
Bioregions (Paper IV) is written in JavaScript, an object-oriented programming language
common for web-applications.

Phylogenetic inference

Paper VIl used Bayesian Evolutionary Analyses Sampling Trees (BEAST) v. 1.8.1 (Drum-
mond et al., 2012) for phylogenetic inference and divergence time estimation of the Bomba-
coideae, based on five genetic markers (nuclear + plastid). The analysis used an uncorre-
lated log-normal molecular clock model, a Yule pure birth speciation model with no starting
tree and the Generalised Time-Reversible (GTR) + I' model of nucleotide substitution with
four rate categories. The topology was constraint to the topology presented by Carvalho-
Sobrinho et al. (2016), in that Pseudobombax, as well as the clade comprising Pseudobom-
bax and Pochota fendleri, Ceiba and the clade comprising Ceiba and Neobuchinia were
fixed to be monophyletic. The phylogeny was dated using two fossils. First, a macro-fossil
of Malvaciphyllum macondicus from the Cerrejon Paleocene forests of Colombia (Wing et
al., 2009) which we assigned to the crown node of Bombacoideae + the Malvoideae out-
group species (the Malvatheca clade sensu Baum et al., 2004) with an exponential prior
with mean 0.7 and an offset of 58 million years following (Carvalho et al., 2011). Second,
a flower fossil of Eriotheca prima from Rodolfo de Lima and Salard-Cheboldaeff (1981)
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assigned to the crown node of the clade comprising Ceiba, Eriotheca, Spirotheca, Pochota,
and Pseudobombax with a exponential prior with a mean of 2.3 and an offset age of 41.26
million years.

Geographic range evolution

Papers V and VIl used the Dispersal-Extinction-Cladogenesis (DEC) model (Ree and
Smith, 2008) to estimate the geographic range evolution of Neotropical clades of amphibi-
ans, angiosperms, birds, ferns, mammals, and squamates, and the Bombacoideae, respecti-
vely. The DEC model estimated geographic range evolution based on a phylogenetic tree
and discrete present-day distribution ranges. Range evolution was reconstructed along the
phylogenetic branches based on a transition rate matrix defining instantaneous transition
rates among discrete range states (i.e. defined geographic areas). The DEC model is
implemented in R as part of the BioGeoBEARS package (Matzke, 2014).

Diversification rates

Several methods exist to estimate the rates at which new species come into existence (spe-
ciation) and go extinct (extinction) from phylogenetic trees. These rates, in particular their
sum (diversification rate = speciation — extinction) can be compared among different cla-
des, areas and trait states, to infer their impact on the standing diversity of any organism
group. This thesis used a group of State-specific-Speciation-and-Extinction (SSE) models
to estimate speciation and extinction rates for specific areas or biomes. Paper VIl used the
Multiple state Speciation and Extinction (MuSSE) (FitzJohn, 2012) model to estimate speci-
ation and extinction rates in tropical vs. non-tropical as well as Neotropical vs. Afrotropical
vs. tropical Asian angiosperms. Paper VIl used the Binary state Speciation and Extinction
(BiISSE) (Maddison et al., 2007) and Geographic state Speciation and Extinction (GeoSSE)
(Goldberg et al., 2011) models to estimate the impact of biome shifts on the diversification
of Bombacoideae. BiSSE is a parametric model to calculate the probability that a group of
taxa has evolved as observed given a trait effect. The model specifies two extinction and
two speciation rates, one for each trait state, and rate of transitions between the states, thus
it can be used to compare rates between trait states. The MuSSE and GeoSSE models
are extensions of this model to allow for multiple trait states and widespread ancestors,
respectively.
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Figure 6 Examples of Bombacoideae species. (A)-(E) habit, (F)-(J) flowers, (K)-(M) fruits. (A)
Adansonia digitata, (B) Cavanillesia umbellata, (C) Pseudobombax tomentosum, (D) the succulent
stem of A. digitata with the author as scale, (E) the prickled stem of Spirotheca elegans, (F) A.
digitata flower, (G) monothecate anthers of Pochota fendleri, (H) Eriotheca sp., (I) Ceiba glaziovii,
(J) Ceiba rubriflora, (K) Eriotheca pubescens with kapok after fruit dehiscence, (L) Pseudobombax
tomentosum with kapok before fruit dehiscence, (M) Catostemma sp. with fleshy endocarp. Photos
by: A. Zizka (A), M. Machado (B, C, J, L), G. Zizka (D, F), J. Carvalho-Sobrinho (E, K), P. Kaminski
(G), L. Queiroz (H), R. Machado (I), and C. Zartman (M).
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Figure 7 The global distribution of Bombacoideae. The group is widespread across all three tropical
realms (Fig. 1), but the Neotropics are most diverse, in particular Amazonia and the Atlantic forest
in Eastern Brazil. Warmer colours indicate more species, the lines show the equator and the Tropics
of Cancer (23.4° N) and Capricorn (23.4° S).
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Results and Discussion

Paper |

Species occurrence information from public databases, such as GBIF, have become widely
used in biogeography, but taxonomic errors and geographical uncertainty put into question
to what extent such data can be used to unveil patterns of biodiversity and distribution. This
paper compares the precision and accuracy of continent-scale diversity patterns inferred
based on species occurrence data from GBIF with those inferred from highly precise, but
time-intensive manually compiled data, in the Rubiaceae clade Cinchoneae.

The two data sets overlap in the major diversity centres of the Cinchoneae, however the
data from GBIF identifies additional false centres of high species richness detached from
the core distribution of the clade. These erroneous records affect the inferred diversity pat-
terns across different scales (grid, ecoregion, biome) and can lead to an overestimation
of species richness in certain areas (false positives). Interestingly, the majority of these
erroneous coordinates represent the geographical midpoints of countries and their political
subdivisions. These coordinates supposedly have been geo-referenced long after the origi-
nal specimens had been collected based on vague locality descriptions (e.g. "Venezuela").
The results demonstrate that the estimation of species distribution still requires occurrence
data of good quality. In practice, this means ideally applying substantial amounts of taxono-
mic knowledge, time and funding on field work and verifying subsets of public databases.
However, when this is not a viable option, automatically removing uncertain data toget-
her with automatic cleaning procedures can suffice to reveal general diversity patterns and
identify main centres of diversity.

Paper Il

Species occurrence records from public databases have become an indispensable resource
in ecological, biogeographic and palaeontological research, but issues with data quality can
diminish the usefulness of these data. This paper presents CoordinateCleaner, a novel,
open-source, user-friendly tool to automatically identify records with potentially problematic
geographic information, based on errors common to biological and fossil collection data-
bases (see Paper I). CoordinateCleaner is implemented in R (R Core Team, 2018) and,
together with extensive documentation, is available through the major public repository for
this language (https://cran.r-project.org). The ongoing development of CoordinateCleaner
can be tracked via GitHub (www.github.com/azizka), an open-source software development
platform. Detailed documentation including tutorials for data cleaning is also available at
GitHub (https://github.com/azizka/CoordinateCleaner/wiki). Figure 8A shows the applica-
tion of CoordinateCleaner in an exemplary work-flow for historical biogeography.
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Empirical analyses of all angiosperm records available from GBIF and PBDB, the most com-
monly used providers for distribution information in ecology and biogeography for recent and
fossil data, respectively, suggest that 3.6% (> 3.3 million) of the records available from the
GBIF and 8% (1,521) of all angiosperm fossil records available from PBDB are potentially
problematic. Furthermore, conversion errors and rasterized collection schemes might be
relatively common in GBIF (potentially 18.5% of all contributing data sets).

Paper llI

The availability of species point-occurrence records has increased exponentially in the last
decade, but there is a lack of bioinformatic tools to use these data in historical biogeo-
graphy, where often discrete areas are needed. This paper presents SpeciesGeoCoder,
an open-source tool to use large amounts of species occurrence records in biogeography,
facilitating point-to-polygon classification, visualization of diversity patterns and automated
conservation assessments (Fig. 8). SpeciesGeoCoder is implemented in python and R
and together with extensive documentation is available through the major public reposi-
tory for R (www.cran.r-project.org). The ongoing development of SpeciesGeoCoder can be
tracked via GitHub (www.github.com/azizka/speciesgeocodeR and www.github.com/mtop/
speciesgeocoder). Detailed documentation including tutorials is also available at GitHub
(www.github.com/azizka/speciesgeocoder/wiki). An empirical example based on 200 mil-
lion occurrence records suggests that lowland species of birds crossed the Isthmus of
Panama about twice as frequently as montane species with a marked increase in the
number of dispersals during the last 10 million years. Figure 8C shows the application
of SpeciesGeoCoder in an example work-flow for historical biogeography.

Paper IV

Biogeographic regions defined by species composition and turnover are a core concept in
biogeography, yet few methods for data-driven delimitation of such regions exist, and exis-
ting methods often are not accessible in a user-friendly way. This paper presents Infomap
Bioregions, an extremely fast and user-friendly software tool to identify taxon-specific bioge-
ographic areas from species occurrence information based on a recently developed method
in Network and Information theory. Infomap Bioregions is implemented in JavaScript and
available via a web-based graphical-user-interface at http://bioregions.mapequation.org/.
Infomap Bioregions handles millions of occurrence records as well as global range maps
within minutes, accounts for varying sampling intensity through adaptive resolution (i.e.
resolution is higher where more data is available) and provides concise summary output for
each bioregion, including indicator species. Empirical examples using global distributions of
mammals and amphibians are largely concordant with an expert-based bioregionalization
for both groups.
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Figure 8 Exemplary work-flow to use large-scale species occurrence data in historical biogeo-
graphy. Tools presented in this thesis work are marked in red. (A) CoordinateCleaner to clean
geo-referencing errors common in collection data, (B) Infomap bioregions to infer taxon specific
bioregions, and (C) SpeciesGeoCoder to assign records to discrete areas and visualize species
richness. Solid lines: recent occurrences and DNA, dashed lines: fossils. Light grey are tools and
methods not further developed in this thesis, but used for data analysis.
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Paper V

Rare species are a critical component of the Neotropical diversity, but their spatial distri-
bution remains poorly understood. This paper uses GBIF data to identify putatively rare
angiosperm species within the Neotropics and the Amazonian rainforest, and to analyse
their spatial distribution. The results indicate that rare species are relatively homogene-
ously distributed throughout most parts of the lowland Neotropics and lowland Amazonia,
and the fraction of rare species collections is low throughout these areas, but significantly
higher in highlands. Collections of rare species are mainly clustered in the montane areas
of Central America, the northern Andes, the Guiana shield and the Atlantic forest in eastern
Brazil; consistent with expected and known centres of endemism. The relatively lower and
constant fraction of rare species collections in the lowlands suggests that factors influen-
cing rarity might operate relatively uniformly throughout these areas, but might be different
in montane regions, possibly related to higher topographic and habitat heterogeneity.

For 20% of those species with only two occurrence records in GBIF, these records are
more than 200 km apart, and for 5% even more than 1,700 km, suggesting that a conside-
rable proportion of rare plant species have surprisingly large distribution ranges. There is
a common pattern of disjunct species distribution within the Andes, the Atlantic rainforest
in eastern Brazil and between the Atlantic rainforest and Amazonia, but no clear pattern
within other lowland areas. In lowlands, the second record of many rare species may be
found virtually anywhere (Fig. 9A), urging the need for intensive and broad biological sam-
pling. The observed common disjunctions within and among mountain ranges as well as
between Amazonia and the coastal regions of eastern Brazil confirm known taxonomic affi-
nities among these regions. The results are supported by nearly independent data from
vegetation plots.

In summary, the results of this paper confirm long-held ideas in Neotropical ecology: that
there are centres of rare plant species within the Neotropics, in particular in the montane
regions. The findings shed further light on this issue by showing that the fraction of rare
species is relatively constant in large parts of the lowland Neotropics and Amazonia, and
that some species, despite having very few collections, have surprisingly large distribution
ranges. Moreover, they show that disjunct distributions of rare species are mostly linked
within mountain ranges and in many cases largely unpredictable in lowland areas.

Paper VI

The Neotropics comprise many different biomes and habitats, and it is unclear how these
are connected on evolutionary time-scale and what role biotic interchange among these
habitats played for the evolution of the standing diversity in the region. This paper infers the
timing and origin of the living biota in all major Neotropical biomes by performing a cross-
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taxonomic biogeographic analysis based on 4,450 species from six major clades across
the tree of life (angiosperms, ferns, birds, frogs, mammals, and squamates).

The results show that biotic interchange is common among Neotropical regions on an evolu-
tionary time-scale, with a total of more than 4,500 dispersal events across all taxa and regi-
ons. All regions have served as source and recipient of lineages, and there was generally
high congruence in the directionality of dispersal events across taxa. For instance, all taxa
showed a substantial interchange between Amazonia and Mesoamerica, the Atlantic Fore-
sts, the Cerrado and Chaco, and the Andean Grasslands. Interchange with the West Indies
and the Dry Western South America was low for all groups. Rates of dispersal seem to have
fluctuated through time rather than being constant, with a particular increase in the last 10
million years. These results contrast the view that bioregion and biome shifts over evolutio-
nary time are rare events, and imply that even very dissimilar regions—in terms of climatic
and environmental variables and inherent biota—do not evolve in isolation, but are biologi-
cally interconnected over evolutionary time-scales. For instance the interchange of lineages
between the rainforests of lowland Amazonia and the Andean Grasslands shows that alt-
hough these shifts require substantial eco-physiological adaptations, they have played a
substantial role in the assembly of alpine ecosystems.

The connectivity patterns among regions across all studied taxonomic groups indicate Ama-
zonia as the primary source of diversity (Fig. 9B), supplying over 2,800 lineages to other
regions (more than four times as many as the second most important source region). Nota-
bly, Amazonia provided more species to a landmass that has only been minimally connected
to it (Mesoamerica), rather than to the surrounding dry areas in northern and central-east
South America, with which Amazonia shares long borders. The results suggest Amazo-
nia as the primary source of Neotropical biodiversity: not only did it generate enormous in
situ diversity, it also supplied lineages to all other Neotropical regions, across all studied
taxonomic groups, and throughout the Cenozoic.

Paper VI

The processes underlying the latitudinal diversity gradient and the difference in diversity
among tropical regions remain controversial. This paper estimates area-specific diversi-
fication rates, as well as the timing and direction of range shifts of extant angiosperms
between tropical and non-tropical zones, as well as into and out-of the three major tropical
realms of the world.

There are no significant differences between the speciation and extinction of tropical and
non-tropical angiosperms, suggesting that, at least in plants, the latitudinal biodiversity gra-
dient might primarily derive from other factors than differential rates of diversification. In
contrast, plant lineages in the Neotropics show significantly higher speciation and extinction
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rates, than those in the Afrotropics or tropical Asia, on average 2-2.5 times higher (Fig.
9C-D). This suggests an exceedingly rapid evolutionary turnover, i.e., Neotropical species
being formed and replaced by one another at unparalleled rates, also reflecting that South
American plant diversity is characterized by a relatively large number of recent, species-rich
radiations. The causes underlying these differences remain elusive, but might be associ-
ated with the substantial landscape dynamics that have affected northern South America
since the Miocene, among other continent-specific differences such as biome sizes, niche
space, and climatic history.

The number of range shifts out of tropical regions was higher than the number of shifts into
these areas in the first half of the Cenozoic, but reached equilibrium around 30 Million years
ago (Ma). Among the three tropical realms the Neotropics stand out from other continents
by having "pumped out" more species than it received through most of the last 66 million
years. While tropical Africa and tropical Asia showed similar mean rates of immigration
and emigration through time, range shifts out of tropical America were consistently more
frequent than those entering it throughout most of the Cenozoic. Thus, the results suggest
that the Neotropics might have functioned as a "species pump" for the rest of the world.

Paper VIl

Some evidence suggests that lineages can shift between biogeographic regions and bio-
mes more often than previously assumed on evolutionary time-scales. However only little
is known on the effect of these shifts on speciation and extinction rates of these lineages.
This paper is a case study elucidating the biogeographic history of the Bombacoideae and
testing the effect of biome shifts on the evolution of plants.

The phylogenetic dating estimates the age of the group at around 53.5 - 59.3 Ma, and con-
firms the possibility of at least two recent radiations in Ceiba and Eriotheca. The bioregio-
nalization identifies eight biogeographic regions in the group, most of them in the Americas.
Ancestral range estimation based on these dates and bioregions suggests numerous inter-
continental dispersal events: potentially ancient dispersals from South America to Africa,
and subsequent, more recent dispersals from Africa to Asia. The relative young age of the
group and the age of the inferred dispersal events contradict the hypothesis on the distribu-
tion of Bombacoideae as a relict of Gondwanan breakup.

Biome shifts seem to be common in Bombacoideae. The ancestral state reconstruction
suggests numerous shifts between biomes across the phylogeny (Fig. 9E), the majo-
rity of shifts were from rainforest into seasonally dry biomes in the last 20 million years.
The direction and timing of these shifts are remarkably congruent with the hypothesis of a
raise to ecological importance of savannas and woodlands during this period (Edwards and
Smith, 2010). Furthermore, the results reject a significant relation between seasonally dry
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biomes and increased diversification rates, suggesting other factors than biome shifts as
driver of diversification, at least in Bombacoideae.

On the importance of case studies and field work

Ultimately, a detailed understanding of each plant species, population and individual from a
genetic, physiological and evolutionary perspective would be desirable. Until this is feasible,
alternative approaches for understanding the biosphere have to be employed. As outlined
in the introduction and shown with the results, big data from collections have merits and
potentials for understanding large-scale patterns and processes in biogeography. Building
on hundreds of years of collection effort allows an unprecedented level of geographic and
taxonomic generalization and hopefully will continue to generate new insights on key pro-
cesses of the evolution of life. This is particularly promising in the Tropics, where data
generation is difficult. The results of this thesis give some examples on how large-scale
analyses can add pieces to the enormous task of understanding how tropical biodiversity
evolves. The resulting large-scale understanding of tropical biodiversity is urgently needed
and timely, as the next decade may decide on the success of conserving this diversity for
future generations (e.g. Rockstrdm et al., 2009; Steffen et al., 2015).

However, there are limitations of large-scale approaches in general and data from collecti-
ons in particular. Even leaving obvious challenges such as low data quality, sampling biases
and the vastly differing collection methodology aside, large-scale approaches should be a
complement to, and ideally inform on, data collection and in-depth studies on smaller scales
(taxonomically and geographically). Large scale cross taxonomic analyses in biogeography
combine data and results from many different individuals, populations, species and evoluti-
onary lineages, under the assumption that a common directional signal will emerge above
random noise. By definition, biological characteristics of species or populations can hardly
be accommodated. Thus, while these analyses are essential to unveil general patterns
and the underlying processes they fail to inform on the specific ecological and physiologi-
cal mechanisms. In contrast, studies focused on specific taxonomic groups can integrate
ecology, phylogeny, and physiology to understand processes and mechanisms. Therefore,
taxonomically and geographically focussed studies, and particularly data collection in the
field, despite being time and resource consuming, remain essential and were also perfor-
med on several occasions during this PhD thesis (in French Guiana, South Africa, Panama
and Chile).
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Figure 9 Main results on the evolution of tropical diversity. (A) The connectivity between two col-
lections of rare species in Amazonia. The hue of the connecting line indicates the amount of shared
rare species between sites. (B) The total number of evolutionary range shifts among Neotropi-
cal bioregions for angiosperms, amphibians, birds, ferns, mammals, and squamates. The colours
represent different bioregions shown on the inset map. (C, D) Extinction and speciation rate of 17
orders of angiosperms in the tropical realms. Rates are significantly higher in the Neotropics, indica-
ting higher species turnover. (E) The evolution of biomes in the Bombacoideae. Changes in colour
indicate a biome shift. The pie charts visualize the uncertainty in the ancestral state estimation.

32



Conclusions

Taxonomic and geographic verification of species distribution data from public repositories,
such as GBIF, remains essential for biogeographic analyses. In cases where a detailed veri-
fication is not possible, automatically removing uncertain data may be sufficient to represent
general diversity patterns. Such an automated cleaning procedure dealing with common
errors in collection data, as well as functions to use these data to identify taxon-specific
bioregions and to use them in historical biogeography are implemented in the Coordinate-
Cleaner, SpeciesGeoCoder and Infomap Bioregions presented in this thesis (Fig. 8).

The globally outstanding diversity of the Neotropics seems driven by diversification and
dispersal (Fig. 9). The results of this thesis suggest that the species richness of angio-
sperms found today in the Neotropics as compared to tropical Africa and tropical Asia is
associated with significantly higher speciation and extinction rates in the Neotropics—and
thereby higher species turnover and shorter average species longevity. Extinction probabi-
lity of a species, and therefore turnover rates of evolutionary lineages, are linked to species’
population- and range-size. For the Neotropics there seem to be centres of rare and range
restricted species, in particular in the Andes, stressing the importance of this mountain
chain for Neotropic angiosperms diversity.

A substantial fraction of the rapidly evolving Neotropical diversity has been exported to tro-
pical Africa and Asia via emigration, throughout the Cenozoic. Linage migration and the
connectivity among different regions within the Neotropics was relatively high on evolutio-
nary time-scales for plants and animals. In particular, biome shifts—the shift of evolutio-
nary lineages among broad environmental settings—were prevalent on evolutionary time,
and did, as in the case of the Bombacoideae, increase through time. Amazonia emerged
as a central source of diversity, donating an unexpectedly high number of lineages to the
surrounding regions.

In summary, this thesis demonstrates how big data driven analyses can contribute to under-
stand the evolution of the outstanding biological diversity observed today in (Neo-)tropical
ecosystems. The presented tools facilitate the use of large-scale species occurrence data
in biogeography and the results points to the evolutionary connectivity among different bio-
regions and biomes as a potentially important, but under-appreciated, factor underlying the
evolution of the globally outstanding biodiversity of the Neotropics.
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