Course: MSc MICROBIOLOGY SEMESTER II Subject: Virology (MIC 204)

Lecture 2 Classification of Viruses

Dr Shilpa Kaistha Dept of Microbiology IBSBT, CSJMU, Kanpur

Virology; the study of viruses

Viruses have one major characteristic in common: they are obligate intracellular parasites.

Viruses are UNABLE to grow and reproduce outside of a living cell. No virus is able to produce its own energy (ATP) to drive macromolecular synthesis.

However, in many other respects, they are a highly diverse group.

How are viruses named?

- Based on:
 - the disease they cause poliovirus, rabies virus
 - the type of disease murine leukemia virus
 - geographic locations

Sendai virus, Coxsackie virus

- their discovers

Epstein-Barr virus

- how they were originally thought to be contracted

dengue virus ("evil spirit"), influenza virus (the "influence" of bad air)

- combinations of the above

Rous Sarcoma virus

Virus classification and nomenclature

- Latin binomials were proposed first by Holmes in 1939
- Various other schemes proposed between 1940 and 1966
- 1966 the International Committee for the Nomenclature of Viruses formed; met in 1970
- Changed to the International Committee for the Taxonomy of Viruses in 1973

- Viruses not classified as members of Kingdoms
- Do not obey biological taxanomy
- Based
 - Classical system: host based
 - Genomics: Baltimore classification
 - Serology: Diagnostic virology Corona virus have antigenic differences but very few host or genetic differences (single/double mutant variants)

Virus Classification

Taxonomy from Order downward

•Family often the highest classification. Ends in -viridae.

•Many families have subfamilies. Ends in -virinae.

•Bacterial viruses referred to as bacteriophage or phage (with a few exceptions).

Examples

family *Myoviridae* genus T4-like phages type species *Enterobacteria phage* T4

family *Herpesviridae*, subfamily *Betaherpesvirinae* genus *Muromegalovirus* type species *Murine herpesvirus* 1

Holme's Classification

- 1948. Linnaean Taxanomy with binomial nomenclature
- Group I : Phaginae
- Group II: Phytophaginae
- Group III: Zoophaginae
- Rejected as no consideration for morphological characteristics

LHT System of Classification

- 1962. Lwoff, Horne and Tournier proposed system adopted by Provisional Committee on Nomenclaure of Viruses (PCNV) formed by International Association of Microbiological Society
- LHT based on
 - Nature of NA
 - Symmetry of viral particle
 - Envelop presence or absence
 - Diameter of capsid
 - Number of capsomere
- Phylum Vira
 - Subphylum Deoxyvira and SubPhylum Ribovira
 - Class
 - Order
 - » Family
- Disadv: No evolutionary relationship , not a natural classification (traits to find similarity/dissimilarity)

1967. Bellet classification based on

- -MW
- % GC
- Phenotypic, serological and antigenic properties also considered
- 1969. Gibbs system of classification for Plant Viruses (135 viruses into 6 broad groups
 - Shape of Capsid
 - Mode of transmission
 - Type of vector
 - Symptoms on host
 - Name of accessory particles

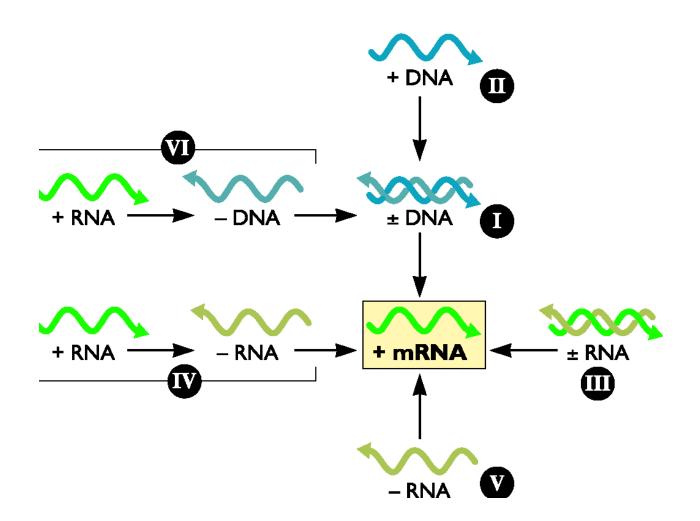
1975. Casjens and King's Classification

- NA type
 - (4 :ssRNA,dsRNA,ssDNA,dsDNA)
- Capsid symmetry
 - (Helical, Iscosahedral, Icosahedral complex)
- Presence /absence of envelop
- Site of assembly of envelop (nuclear or cytoplasmic)

The Baltimore classification system

1971-2008. David Baltimore: Based on genetic contents and replication strategies of viruses. According to the Baltimore classification, viruses are divided into the following seven classes:

- 1. dsDNA viruses
- 2. ssDNA viruses
- 3. dsRNA viruses
- 4. (+) sense ssRNA viruses (codes directly for protein)
- 5. (-) sense ssRNA viruses
- 6. RNA reverse transcribing viruses
- 7. DNA reverse transcribing viruses (added later- modified Baltimore Classification)


where "ds" represents "double strand" and "ss" denotes "single strand".

Dimmock's modified Baltimore Classification

- 2001. Dimmock classified viruses into 6 sections (based on host preference): animal, plant, fungi, bacteria, satellite and viroid.
- Each section divided into 7 Classes (revised Baltimore scheme) and each class into family

Virus Classification I - the Baltimore classification

- All viruses must produce mRNA, or (+) sense RNA
- A complementary strand of nucleic acid is (–) sense
- The Baltimore classification has + RNA as its central point
- Its principles are fundamental to an understanding of virus classification and genome replication, but it is rarely used as a classification system in its own right

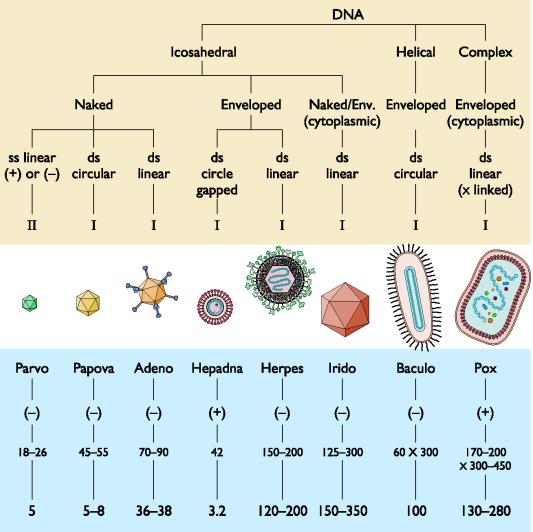
From Principles of Virology Flint et al ASM Press

Virus classification II the Classical system

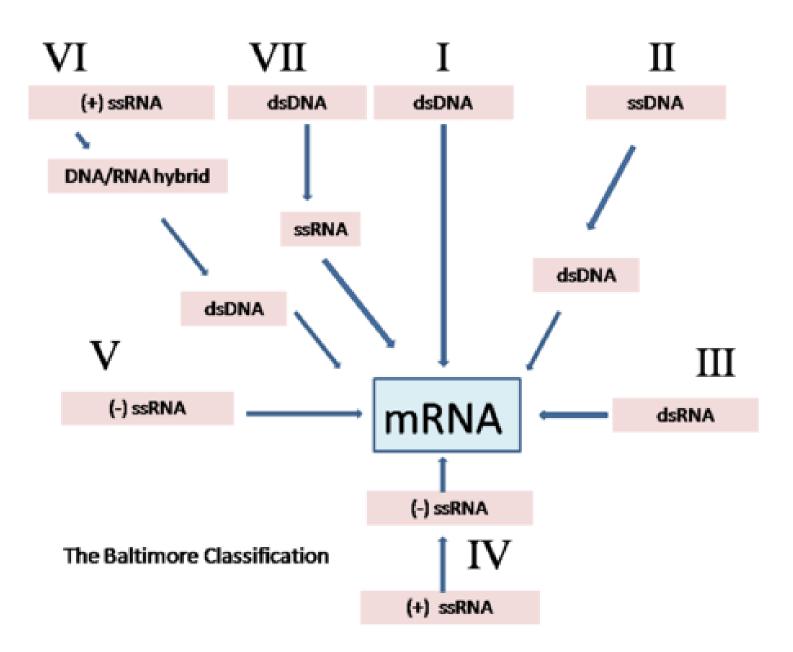

- This is a based on three principles -
 - 1) that we are classifying the virus itself, not the host
 - -2) the nucleic acid genome
 - -3) the shared physical properties of the infectious agent (e.g capsid symmetry, dimensions, lipid envelope)

Virus classification III the genomic system

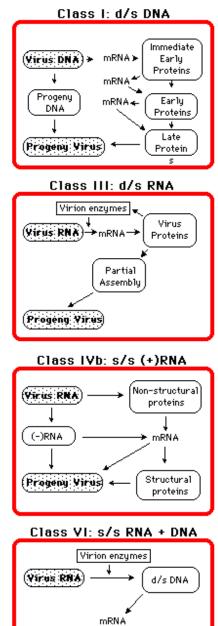
- More recently a precise ordering of viruses within and between families is possible based on DNA/RNA sequence
- 2019. ICTV agreed to adopt a 15-rank classification system for viruses, ranging from realm to species
- 4 realms, 9 kingdoms, 16 phyla, 2 subphyla, 36 classes, 55 orders, 8 suborders, 168 families, 103 subfamilies, 1421 genera, 68 subgenera, 6590 species (ictvonline.org/taxonomy)


- Four virus realms are recognized by ICTV based on specific highly conserved traits (based on genomics & proteomics) but no common ancestor (polyphyletic)
- Duplodnaviria, which contains all double-stranded DNA (dsDNA) viruses that encode the HK97-fold major capsid protein;
- Monodnaviria, which contains all single-stranded DNA (ssDNA) viruses that encode a circular rep (replication associated protein) encoding ssDNA (CRESS DNA), HUH superfamily endonuclease and their descendents;
- Riboviria, which contains all RNA viruses that encode RNA-dependent RNA polymerase and all viruses that encode reverse transcriptase; and ~paraphyletic
- Varidnaviria, which contains all dsDNA viruses that encode a vertical jelly roll major capsid protein.

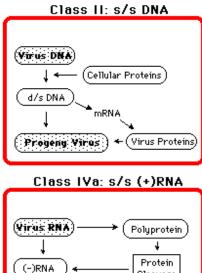
RNA viruses



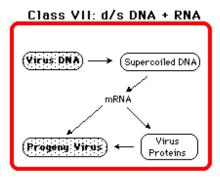
From Principles of Virology Flint et al ASM Press


DNA viruses

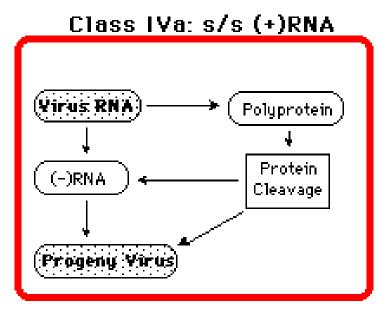
From Principles of Virology Flint et al ASM Press

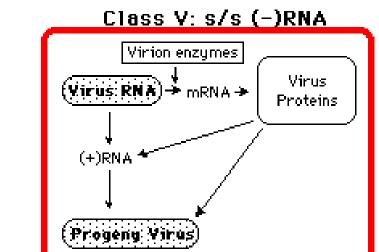

The seven "Baltimore" replication classes

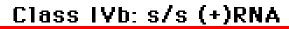
Vinus

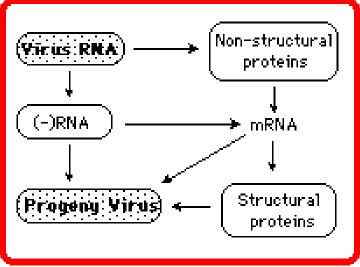

Proteins

(Progeny: Viras




(-)RNA (-)RNA Protein Cleavage Progeny Virus


Class V: s/s (-)RNA Virus RNA → mRNA → Virus Proteins (+)RNA ↓ Proteins



RNA virus replication

Replication Strategy of ss(-)RNA Viruses

Steps in Replication

- Primary transcription of virion (-)sense RNA by RNA-Dependent RNA Pol in virion core in cytoplasm, production (mainly) mRNA and (+)sense RNA, formation replicative complex (RC)
- 2. Translation mRNAs, accumulation of products
- 3. Virion proteins interact with RC, bias it towards production of fulllength (+)sense RNA and therefore of genomic (-)sense RNA
- 4. Secondary transcription from progeny (-)sense RNA, translation, accumulation structural proteins
- 5. Nucleocapsid assembly and maturation, budding of nucleocapsid through host membrane containing viral envelope proteins