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Abstract—In this paper, a unified Bayesian max-margin
discriminant projection framework is proposed, which is able
to jointly learn the discriminant feature space and the max-
margin classifier with different relationships between the latent
representations and observations. We assume that the latent
representation follows a normal distribution whose sufficient
statistics are functions of the observations. The function can be
flexibly realized through either shallow or deep structures. The
shallow structure includes linear, nonlinear kernel-based func-
tions, and even the convolutional projection, which can be further
trained layerwisely to build a multilayered convolutional fea-
ture learning model. To take the advantage of the deep neural
networks, especially their highly expressive ability and efficient
parameter learning, we integrate Bayesian modeling and the
popular neural networks, for example, mltilayer perceptron and
convolutional neural network, to build an end-to-end Bayesian
deep discriminant projection under the proposed framework,
which degenerated into the existing shallow linear or convo-
lutional projection with the single-layer structure. Moreover,
efficient scalable inferences for the realizations with different
functions are derived to handle large-scale data via a stochastic
gradient Markov chain Monte Carlo. Finally, we demonstrate the
effectiveness and efficiency of the proposed models by the exper-
iments on real-world data, including four image benchmarks
(MNIST, CIFAR-10, STL-10, and SVHN) and one measured
radar high-resolution range profile dataset, with the detailed
analysis about the parameters and computational complexity.

Index Terms—Deep model, feature extraction, max-margin,
stochastic gradient Markov chain Monte Carlo (SG-MCMC).

I. INTRODUCTION

IT IS well known that feature extraction is a significant
and challenging problem in machine learning [1]. Although

some optimization-based methods have recently enjoyed a
great success in quiet a few applications [2]–[4], all of them
are formulated as point estimate problems by optimizing some
deterministic objective function, which may lead to some
inconvenience [5]. Single point estimate, for instance, is often
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not sufficient in describing complex data distribution, and chal-
lenges usually occur when the objective function is nonconvex.
On the contrast, probabilistic graphical models (PGM) are
more powerful in describing data and modeling latent variables
with uncertainty thanks to performing distribution estimate [6],
which is beyond the capability of optimization-based meth-
ods. Many literatures [7]–[9] have advocated incorporation of
uncertainty estimates during model training to help improve
their models’ robustness and performance. For example, deep
neural networks (DNNs) often suffer from overfitting when the
training set is small but the parameter space is large, which
may be mitigated in Bayesian inference thanks to a distribu-
tion estimation over parameters [6]. In the past few decades,
feature extraction based on PGMs with their Bayesian nature
has exerted a tremendous fascination on researchers and shown
favorable consequence [10].

An simple but quiet essential example is the factor analy-
sis (FA) [11], where the data is decomposed into the product
of two matrices, factor loading and latent feature, plus noise.
To explore the spatial information, convolutional FA [12] was
proposed, which can be seen as a convolution-based dictio-
nary expansion of FA, since one must typically consider all
possible shifts of canonical bases or filters. Nevertheless, they
are described in an unsupervised manner without utilizing any
label information which have relatively underdeveloped dis-
crimination for supervised tasks. Recently, learning predictive
latent features with supervised information has attracted a
lot of attentions. The well known criterion in the field of
classification is the max-margin, which maximizes the mar-
gin between different classes [13]. Since Polson and Scott
proposed Bayesian SVM [14] via data augmentation tech-
nique, Bayesian max-margin supervised models have been
developed in various predictive tasks, such as text document
categorization [15] and multitask learning [16]. Pu et al. [17]
compared Bayesian SVM with optimized-based classifiers,
such as softmax function and cross-entropy, to illustrate again
the advantage of Bayesian inference. Chen et al. [18] proposed
the max-margin linear discriminant projection (MMLDP),
jointly learning the discriminative subspace and classifier
under a Bayesian framework. However, for data with com-
plicated multimodal distribution, linear projection is unlikely
to be sufficiently flexible to reveal underlying structures, so
they also employed the kernel trick to implicitly perform
a nonlinear discriminant projection in [18]. By aid of the
Dirichlet process mixture [19], Zhang et al. [20] proposed the
infinite max-margin FA (IMMFA) based on FA, which trans-
forms the global nonlinear problem as multiple local linear
problems. Along the other side, aiming at learning power-
ful nonlinear representations without the need to hand design
features, DNNs are treated as nonlinear projections that are
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embedded into some traditional models to form more power-
ful ones [21]–[24]. As an example, deep linear discriminant
analysis [21] casts LDA as an objective function for DNN
through putting an LDA-layer on the top of the DNN and
optimizing it end-to-end.

Based upon max-margin criterion, in this paper we pro-
pose a unified Bayesian max-margin discriminant projection
(MMDP) framework, which is flexible in modeling the rela-
tionships between the latent representations and the obser-
vations, and is able to jointly learn the discriminant latent
features as well as the max-margin classifier. In MMDP, the
latent representations are assumed to be drawn from a nor-
mal distribution, whose sufficient statistics are functions with
respect to the observations. Therefore, our framework is flex-
ible enough to be implemented by different functions, namely
different projections. When either a linear projection or a non-
linear one using kernel trick is chosen, the framework works
out to be an existing, but shallow model in [18]. By combin-
ing MMDP with convolutional operation, we present a new
model called max-margin convolutional discriminant projec-
tion (MMCDP). Motivated by the successful applications of
deep models, we can stack the single-layer MMCDP to form a
deep structure with layer-wise training like autoencoder (AE).
Additionally, a visualization method similar to [25] and [26] is
proposed to better understand what happens in such multilayer
model. Inspired by the idea of DNN, two representative DNNs,
mltilayer perceptron (MLP) [27] and convolutional neural
network (CNN) [28], are embedded into our framework to con-
struct a deep discriminant projection model. Different from the
stacked MMCDP, it is trained in an end-to-end fashion such
that the information interaction between two layers creates
synergy and further boost the performance.

Both MMLDP and IMMFA are inferred via Gibbs sampling
which is impractical for large-scale datasets. Shi and Zhu [5]
presented online Bayesian passive-aggressive (BayesPA) to
perform online Bayesian max-margin learning for stream-
ing data. A popular alternatives utilizing stochastic gradient
Markov chain Monte Carlo (SG-MCMC) to generate poste-
rior samples are developed with great flexibility and scal-
ability [29]–[32], and shown better consequence compared
with optimization methods like stochastic gradient descend
(SGD) or RMSprop [33]. Therefore, we design efficient online
learning algorithms for our unified framework by means of
SG-MCMC where the gradient for the framework used can be
calculated efficiently by backpropagation (BP) [11].

The remainder of this paper is organized as follows. In
Section II, we talk about some related works. Section III
briefly describes the unified framework of Bayesian MMDP,
and gives three special examples including one existing model
and two new models. In Section IV, a scalable inference
for the framework is presented. Moreover, we analysis the
theoretical computational complexity of our method com-
pared with Gibbs sampling at one iteration. In Section V,
we conduct large-scale experiments on four image datasets
(MNIST, CIFAR-10, STL-10, and SVHN) and one mea-
sured radar high-resolution range profile (HRRP) dataset
to evaluate our models. Finally, the conclusion is drawn
in Section VI.

II. RELATED WORK

As a common and necessary step in many fields of machine
learning, supervised feature extraction has been widely stud-
ied over the past few decades, because it can figure out which
type of representation is relevant with the task at hand. LDA,
seeking a projection subspace with class similarity constraint
for separating data, is a representative supervised subspace
analysis method. Considering some underlying assumptions,
which are invariably not satisfied in practice [18], some vari-
ants have been presented in [34]–[37]. Although these models
achieve better performances than conventional LDA in some
problems, the learned feature subspaces enjoy no direct con-
nection to the final classifier and all of them lack probabilistic
interpretation.

Probabilistic graphic models aim to infer an entire
distribution profile for the latent structure, leading to
more powerful in data representation. Following this idea,
Yu et al. [38] proposed supervised probabilistic PCA and
Rai and Daumé [39] developed a supervised Bayesian proba-
bilistic canonical component analysis. However, these models
consider the classification problem as the imputation of miss-
ing values without taking any classification criterion into
account. Along the other side, Gonen [40] introduced the
Bayesian supervised dimension reduction model utilizing the
conventional generalized linear model (GLMs) as the sep-
aration criterion to learn the discriminative subspace and a
classifier simultaneously.

As we know, max-margin criterion has been successfully
applied in classification [13] and structured output prediction
models [41] in the last decade. The recent work in [14] pro-
vides an elegant data augmentation formulation for SVM with
fully observed input data to give distribution estimations on
classifier parameters, which results in analytical conditional
distributions that are easy to sample from and flexible to com-
bine with some PGMs. Based on this, a number of Bayesian
max-margin supervised models for document analysis [5], [15]
and multitask learning [16] were proposed by Zhu et al.
Chen et al. [18] proposed the MMLDP and implemented it
with a linear projection and a nonlinear one by kernel trick,
both of which are under our unified framework. In order to deal
with the global nonlinear problem, IMMFA [20] was proposed,
by assembling a set of local regions, where Bayesian nonpara-
metric prior is used to handle the model selection problem,
e.g., the underlying number of local regions. In other words,
it is flexible in capturing the local linear structures of data
hidden in a global nonlinear problem.

Recently, treating DNN as a module to realize nonlinear pro-
jection in PGMs becomes popular. Kingma and Welling [23]
and Rezende et al. [24] have coupled the approach of Bayesian
model with DNN giving rise to powerful probabilistic models,
called variational AE (VAE). Adding the max-margin criterion
to the original VAE and defining the joint learning problem,
Li et al. [42] proposed the max-margin deep generative model
(mmDGM). Different from VAE and mmDGM embedding the
DNN into the generative process and the variational distribu-
tion of latent representations, our proposed framework embeds
it into the prior of latent representations. Besides, mmDGM
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has to balance the ability of the model to generate and clas-
sify data, with a tradeoff parameter to be tuned, while our
framework focus on the discriminant function without any
requirement of data reconstruction.

In terms of the learning and inference algorithm, although
optimization-based methods, such as SGD, get a good point
estimation, the overfitting issue exists in many situations which
is typically addressed by early stoping, weight decay, dropout,
data augmentation, and so on. Bayesian inference is appeal-
ing due to their ability to avoid overfitting by capturing
uncertainty during learning [43] where, instead of the point
estimate, Bayesian model provides posterior distributions on
the parameters. Gibbs sampling is a standard Bayesian infer-
ence method but has difficulties in dealing with big data.
Though BayesPA [5] was given to perform online Bayesian
max-margin learning for streaming data, its requirement of
model being conjugate is not appropriate for nonconjugate
ones, such as the third special example of our framework.
Another direction for scalable Bayesian learning relies on
the theory of SG-MCMC. Specifically, Welling and Teh [29]
proposed stochastic gradient Langevin dynamics (SGLD),
which was extended to some variants to make the learning
faster and better [29]–[32]. Among them, stochastic gradient
thermostats algorithms [stochastic gradient Nose–Hoover ther-
mostat (SGNHT)] [31] introduced a proper thermostat into
the algorithm to prevent the dynamics from drifting away the
thermal equilibrium condition which should be satisfied in all
dynamics-based sampling methods [44]; combining adaptive
preconditioners with SGLD, preconditioned SGLD (pSGLD)
was developed to overcome the problem in DNN that it
often exhibit pathological curvature and saddle points [6].
Furthermore, it demonstrates that Bayesian model averaging
mitigate overfitting through posterior sampling according to
SG-MCMC and achieved better performance than SGD and
RMSprop counterparts. Given the advantages of SGNHT and
pSGLD, in this paper we extend them to our framework.

III. MAX-MARGIN DISCRIMINANT PROJECTION

In this section, we formulate the proposed Bayesian
MMDP, followed by the discussion of several special
examples to demonstrate the flexibility and effectiveness
of MMDP.

A. Unified Framework

We consider binary classification with a labeled training
dataset {xn, yn}N

n=1, where the response variable yn takes val-
ues from the output space Y = {−1,+1}. MMDP consists of
two parts: 1) a generative process of the latent feature rep-
resentation and 2) an suitable classifier for considering the
supervising information y = {yn}N

n=1, which will be introduced
each of them in turn.

1) Generative Process of Latent Feature: To build an flex-
ible relationships between the observation and the feature, we
model it as latent variable drawn from normal distribution,
whose sufficient statistics are functions with respect to the
observations. In other words, the generative process of the

latent feature representation can be formally expressed as

zn|xn ∼ N
(
μ�(xn), diag

{
σ 2

�(xn)
})

(1)

where N (μ, diag{σ 2}) denotes a Gaussian distribution with
mean vector μ ∈ R

K×1 and diagonal covariance matrix with
σ 2 being its diagonal elements, and both μ and σ 2 are any
suitable functions with parameters � with respect to xn. In
our model, we hope to build a conditional prior so as to have
a good posterior representation of latent variable, which will
be analyzed detailed through the posterior in the following.
Therefore, compared with traditional Bayesian supervised pro-
jection models [18], [40], the projection relationship in our
framework is more flexible because a suitable one can be
embedded according to the type of data and computational
complexity. Compared with DNN, we add a distribution to
the feature to give a more powerful expression of the observa-
tions. Considering the computational complexity of the model,
we directly use unit matrix as the covariance matrix, in the fol-
lowing examples. Certainly, it is worth noting that the model
can also be inferred via our proposed scalable methods if the
original one in (1) is used.

2) Classifier: Given the supervised information, one proper
criterion should be chosen to affect and promote the discrimi-
nation of the features. Different with [40] using a conventional
GLM as the separation criterion and traditional softmax regres-
sion in DNN, we prefer using the max-margin criterion to
link the label with the feature since it has been proven to
be an outstanding choice in learning discriminative mod-
els [13], [18], [42] because of a more principled classification
interface. With Bayesian max-margin classifier [14], we extend
the model (1) to the classification problem by introducing the
pseudo-likelihood φ expressed as

φ(yn|w) = exp
{−2 max

[
1 − yn

(
zT

n w
)
, 0
]}

=
∫ ∞

0

1√
2πλn

exp

(
−
[
1 + λn − yn

(
zT

n w
)]2

2λn

)
dλn

(2)

whose details of the proof is referred to [14]. For simplicity,
we use w to represent the concatenation of coefficient w and
bias b, each zn represents [zn; 1] and λn is an augmentated
variable. Therefore, the pseudo-posterior of MMDP can be
expressed as

p(Z,�, w, λ|y, X) ∝
N∏

n=1

p(zn|xn,�)φ(yn, λn|w, zn)p(w)p(�)

(3)

where p(w) and p(�) are the prior of w and �. We find
in experiments that a simple prior, commonly set p(w) =
N (0, σwI) and p(�) = N (0, α�I) like [6], is sufficient for
MMDP. As a result, the conditional posterior of zn for train-
ing instance can be expressed as p(znk|−) = N (znk;μznk , �znk)

with

σznk =
(

[σ (xn)]k + w2
k

λn

)−1

μznk = σznk

[(
1 + ξ−k

n

λn

)
ynwk + [μ(xn)]k

]
(4)
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where ξ−k
n = 1 − yn

∑K
h=1,h �=k whznh. Apparently, beside the

true label, both of μ and σ have an influence on the posterior
of zn, which demonstrates the benefits from the flexible and
powerful functions in (1) building the relationship between
observations and latent variables.

It is clear from the discussion above that different
p(zn|xn,�) results in different specific examples with other
items invariable. For convenience of subsequent description it
is desirable to give the following definition:

G(y, λ, w, Z,�)
	=

N∏
n=1

φ(yn, λn|w, zn)p(w)p(�) (5)

with which MMDP can be expressed as

p(Z,�, w, λ|y, X) ∝
N∏

n=1

p(zn|xn,�)G(y, λ, w, Z,�). (6)

In the following, some special examples of our unified frame-
work are discussed to demonstrate its flexibility including the
existing and our new proposed ones.

B. Linear Example μ(xn) = ATxn

As a fundamental projection function, linear projection is
adopted in an ocean of models. Given the data xn ∈ R

P×1 and
the linear projection matrix A ∈ R

P×K , we build the generative
process of latent feature representation in a linear manner with
the function μ(xn) = ATxn

zn ∼ N (ATxn, I
)
. (7)

Correspondingly, we get the pseudo-posterior

p(Z, A, w, λ|y, X) ∝
N∏

n=1

p(zn|A, xn)G(y, λ, w, Z, A) (8)

which is just the MMLDP [18] with Gibbs sampling shown in
Appendix A, in the supplementary material. However, for data
with complicated multimodal distribution, linear projection
is not flexible enough to reveal useful structures. Therefore,
we can kernelize the above linear feature extractor for more
flexiblity as

zn ∼ N (AT
(xn), I
)

(9)

where μ(xn) = AT
(xn) and 
 is a nonlinear mapping. In
practice, we build the model using kernel trick which is same
with kernel MMDP (KMMDP) [18]. Since we utilize some
predefined basis vectors to approximate A, it should be empha-
sized that although the kernel function is employed to do
nonlinearly transformation, KMMDP is also a linear projection
in Hilbert space. What is more, we have to choose appropri-
ate kernel function and basis vectors handcrafted, which is a
arduous problem so far though some approximation methods
were proposed in [45]. In addition, both of linear or kernel
projections vectorize the original multidimensional data with-
out considering any underlying correlation between instance
features, such as spatial and temporal information. In the fol-
lowing Section III-C, we will present a convolutional extension
of linear example called MMCDP with a deep architecture via
layer-wise training.

Fig. 1. Explanation of Bayesian approximate max-pooling and the output
from layer one, for analysis at layer two (a similar procedure is implemented
between any two layers).

C. Convolutional Example μ(xn) = A ∗ xn

With an assumption about the nature of image, namely, sta-
tionarity of statistics and locality of pixel dependencies [3],
MMCDP utilize the spatial information of image since it typ-
ically consider all feasible shifts of canonical bases or filters.
At first, we introduce its single-layer structure.

1) Single Layer: Suppose the data xn ∈ R
ny×nx×Kc where

Kc is the number of channels, we aim to find some filters
A ∈ R

ay×ax×Kc×Kf such that the mean of latent representation
zn is obtained via convolution, that is μ(xn) = A ∗ xn, where
ax 
 nx, ay 
 ny, and Kf is the number of filters. With this
purpose we have

znk ∼ N (ak ∗ xn, I), k = 1, . . . , Kf (10)

where znk ∈ R
(ny−ay+1)(nx−ax+1) called feature map and

then they are stacked and transformed to a vector zn ∈
R

Kf (ny−ay+1)(nx−ax+1)×1 as the feature of xn. In many cases,
the length of zn is long which may result in dimensional dis-
aster if we regard it as the input of classifier directly, so a
Bayesian pooling step is applied to each znk. Concretely, we
impose in each pooling block (the red region in Fig. 1) that

Bnk ∼ Mult(1, ρ) (11)

where Mult(•) denotes multinomial distribution. As a result,
we have the generative process of latent feature with pooling
matrix B

ẑnk ∼ N ((ak ∗ xn) � Bnk, I) (12)

where the size of ẑnk and Bnk are the same as that of znk.
According to [46], Bnk should be sampled element-by-element
from its conditional posterior, that is given the tth pooling
block, we calculate the probability with only ith element being
ones

p
(
Bi

nk,t = 1|−) ∝ N (ẑnk; (ak ∗ xn) � Bnk, I
)
Mult(Bnk; ρ)

(13)

which is done for all i and t. From (13), it is noted that
the conditional posterior of Bnk depends much on ak ∗ xn. In
order to decrease the computational complexity, we introduce
an approximate method to get Bnk using prior-maxpooling.
As shown in Fig. 1, first, each matrix zprior

nk , the prior of znk

obtained by zk ∗ xn, is divided into a contiguous set of blocks,
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with each such block of size py × px, and so does Bnk; sec-
ond, the elements of one block in Bnk are all zeros except
one element being one, and its location is the same as that of
the largest-magnitude element in corresponding block in zprior

nk .
Through this simple but efficient process, we could get the
pooling matrix quickly and this strategy can be used for many
types of pooling like average pooling and stochastic pooling.

We plug (12) into (3) to get the pseudo-posterior

p(Z, A, w, λ|X, y) ∝
N∏

n=1

Kf∏
k=1

p
(
ẑnk|ak, xn

)
G(y, λ, w, Z,�)

(14)

where φ in G is denoted as φ(yn, λn|w, z̄n) with z̄n being the
vectorial form of {z̃nk}Kf

k=1 (see Fig. 1). In other words, only
those elements selected by prior-maxpooling are regarded as
the input of classifier. As stated above, K is defined as the
dimension of latent variable z̄n, thus we have

K =
(

ny − ay + 1

py

)(
nx − ax + 1

px

)
Kf (15)

much smaller than zn. Under this setting, the conditional pos-
teriors can be derived analytically. Here, we only show them
of ak and zk with others similar to that of MMLDP.

1) Sample each filter ak from p(āk|−) = N (āk;μāk
, σ āk)

with

σ āk =
(

N∑
n=1

M∑
m=1

(
x̄m

n x̄mT
n

)
bm

nk + αkI

)−1

μāk
= σ āk × Vec

(
N∑

n=1

ẑnk ∗ xn

)
(16)

where Vec(•) means transforming a matrix to a vector,
and x̄m

n = Vec(xm
n ), āk = Vec(ak). {xm

n }M
m=1 are all pos-

sible patches of xn used in convolution, and bm
nk is the

corresponding element in Bnk. It is interesting to note
that only the selective patches are used to sample the
filter ak, which is an significant reason why the learned
filters are well-structured.

2) Sample the selected element in ẑnk from p(ẑi
nk|−) =

N (ẑi
nk;μẑi

nk
, σẑi

nk
) with

σẑi
nk

=
(

1 + w2
k

λn

)−1

μẑi
nk

= σẑi
nk

[(
1 + ξ−k

n

λn

)
ynwk + āT

k x̄i
n

]
(17)

where ξ−k
n = 1 − yn

∑K
h=1,h �=k whz̄nh and those which

are not selected are sampled from their prior. In other
words, only the sampling process of selected elements
in ẑnk is affected by the true label.

In the next part, single-layer MMCDP will be stacked
to build a multilayer feature learning model with training
layerwise like [12].

2) Multilayer Architecture: After training the first layer and
pooling operation, we have K(1)

f feature maps (assuming the

number of filters at layer one is K(1)
f ), which are stacked to

constitute a tensor denoted as x(2)
n (see Fig. 1). Associated

with the nth image, x(2)
n is treated as the input image at the

next layer of the model, which is performed for all the N
images. Model fitting at layer two is done analogous to that
in (14). Note that because of the pooling step, the size of
input decreases as one moves to higher levels. As a result, the
basic computational complexity decreases with the increase
of layers. This process may be continued layer by layer, but
we consider up to three layers in the experiments. Although
no activation function is used between layers, max-pooling in
our model plays a nonlinear role. Also just for this reason, a
simple way to visualize the filters will be proposed next.

3) Model Visualization: In addition to performing classifi-
cation based on the features after pooling, it is of interest to
examine the physical meaning of filters at different layers. In
our model, we can show filters directly for l = 1, but it is
meaningless for l > 1, the representation of which should be
examined at image plane.

Specifically, given filter a ∈ R
a(l)

y ×a(l)
x ×K(l)

f at layer l, first
we select the top N′ data from all training data with high-
est response and get the value z(l)

max,n ∈ R
1, n = 1, . . . , N′.

Second corresponding to z(l)
max,n we can find a region Z(l)

block,n ∈
R

a(l)
y ×a(l)

x ×K(l)
f whose each value is pooled from a block in the

output of layer l − 1, that is the region Z(l−1)
block,n. Like this, we

go back to the original image and get a region Xregion
n with

the visualization of filter a is represented as

N′∑
n=1

Xregion
n • z(l)

max,n

z(l)
max,sum

(18)

where z(l)
max,sum = ∑N′

n=1 z(l)
max,n represents the sum of max-

imum response value for these N′ images. For a clearer
illustration, there is a figure shown in the supplementary
material.

Although this process is a heuristic one, we can analyze how
it works according to the process. For a filter at layer l we find
the region Xregion

n having a maximum response. If the filter is
well-learned, the visualized result is structured because the
region Xregion

n is very similar for all N′ images. Otherwise, the
result is smooth because Xregion

n is different for these images
and weighted summation results in smoothness.

D. Deep Network Example μ(xn) = f DN(xn)

Although single-layer MMCDP can be stacked to build a
deep model in order to improve the representation capability,
but its layer-wise training strategy is not expected because it
is hard to interact information between two layers. As DNNs
are able to extract abstract features by explicitly designed
nonlinear and can be trained end-to-end, in this section, we
consider learning flexible nonlinear deep representations via
DNN, building a deep Bayesian MMDP model directly.

It is generally known that among many types of DNN, MLP,
and CNN are widely used, which can be seen as a general

Authorized licensed use limited to: Duke University. Downloaded on February 15,2020 at 00:27:31 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: DEEP MMDP 2459

function building a mapping from one space to another. With
the help of this view, (1) can be set as

zn ∼ N (f DNN
� (xn), I

)
(19)

where the mean function f is a deterministic deep network
with � being the network parameters to be learned. Different
with traditional MLP and CNN models accomplishing super-
vised tasks directly, both of them are functional representations
to approximate the sufficient statistics of the distribution. In
the other words, we do not combine DNN with max-margin
criterion directly but build a Bayesian projection model with
flexible representative ability.

By substituting (19) into (6), the posterior of the model can
be expressed as

p(Z, w, λ|y, X) ∝
N∏

n=1

p(zn|xn,�)G(y, λ, w, Z,�). (20)

It is worth of noticing that comparing (8), (14), and (20), we
can find that MMLDP and MMCDP can be reformulated as
the special examples of MMDP-MLP and MMDP-CNN with-
out nonlinear activation function, respectively. In other words,
MMDP-MLP and MMDP-CNN have more complex functions
and the more powerful expressive capability to approximate
the parameters of the distortions of the latent representations,
Z. Moreover, unlike multilayer MMCDP, this example is an
end-to-end fashion, that is to say that all the parameters in the
functions and the classifier can be trained together instead of
layer-wise training, such that the information can be interacted
easily between each two layers.

For local parameter zn and λn, it can be sampled via Gibbs
sampling like MMLDP. However, for parameters �, Gibbs
sampling is out of work because its conditional posteriors can-
not be derived analytically, which will be solved in the next
section.

IV. SCALABLE POSTERIOR INFERENCE

Although MMLDP and MMCDP can be learned via Gibbs
sampling, it requires a full pass through the entire dataset at
each iteration, which will be prohibited to be applied directly
by emerging large-scale corpora. Moreover, the parameters in
f of the deep network example cannot be learned via Gibbs
sampling. In this section, we focus on the method for scaling
up inference by stochastic algorithm based on dynamical sam-
pling method, where mini-batch instead of the whole dataset
are utilized in each iteration of the algorithms.

Recap the posterior of MMDP shown in (3), in the learning
phase we are interested in learning the global parameters �g =
{�, w}. For dynamics-based sampling method, it works in an
extended space � = (�g, p), where �g and p simulate the
positions and the momenta of particles having unit constant
mass in the target system (e.g., a Bayesian model). If we define
the potential energy of the system as

Ũ(w) = −N

Ñ

Ñ∑
n=1

E
[
log φ(yn, λn|w, zn)

]− log p(w) (21)

Algorithm 1 Scalable Inference for MMDP

Input: Data {xn, yn}N
n=1, Parameters ε�,εw, C�,Cw

Initialize: �, w, p0
�, p0

w randomly,
for t = 1, 2, . . . do

Sample a minibatch {xn, yn}Ñ
n=1 from the dataset;

Collect samples {z(j)
n , λ

(j)
n }Ñ,J

n=1,j=1 using Gibbs sampling;
Discard the first β burn-in samples (β < J);
Use the rest J − β samples to calculate the stochastic
force of � and w according to (25) and (24);
pt,0
� = pt−1

� , pt,0
w = pt−1

w ,
for i = 1 to I do

for �g = �, w do
pt,i
�g

= pt,i−1
�g

− C�g pt,i−1
�g

ε�g + F̃�gε�g +√
2C�gN

(
0, ε�g

)
,

�g = �g + pt,i
�g

ε�g,

end for
end for
pt
� = pt,I

� , pt
w = pt,I

w
end for

Ũ(�) = −N

Ñ

Ñ∑
n=1

E
[
log p(zn|xn,�)

]− log p(�) (22)

where {xn}Ñ
n=1 represents a random subset of {xn}N

n=1 and
Ñ 
 N, the Langevin dynamics with diffusion factor C can be
described by the following stochastic differential equations:

d�g = pdt, dp = F̃
(
�g
)
dt − Cpdt + √

2CdW (23)

where W is n dependent Wiener process, dW can be infor-
mally written as N (0, dt) [30], F̃(�g) = −∇Ũ(�g) is the
stochastic force on the system calculated as follows:

F̃(w) = −N

Ñ

Ñ∑
n=1

E

[
znzT

n

λn
w − 1 + λn

λn
ynzT

n

]
− σww (24)

F̃(�) = −N

Ñ

Ñ∑
n=1

E

[
∂ log p(zn|xn,�)

∂�

]
− σ�� (25)

where the expectation is taken over posteriors. Although no
closed-form integrations can be obtained for the stochastic
force, we thus use Monte Carlo integration to approximate
the quantity. Specifically, given {w,�} we collect samples of
the local variable {λn, zn}Ñ

n=1 by running a few Gibbs sampling
to approximate the intractable integrations. Therefore, as long
as (23) is replaced by discrete equations with a proper step size
ε and I leapfrog steps [47], we get the general scalable infer-
ence for MMDP shown in Algorithm 1 which is divided into
two parts at each iteration, very similar to EM algorithm. First
part (E step), we use the last network parameters to sample
the local variables to approximat the expectation in gradi-
ent. Seconde part (M step), we update the global variables to
achieve better projection function and classifier. In addition,
different from conventional DNN updated by standard SGD
to achieve a point estimation, our algorithm is equivalent to
adding uncertainty to the parameters of DNN.
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TABLE I
COMPUTATIONAL COMPLEXITIES OF GMMLDP, OMMLDP, GMMCDP, AND OMMCDP AT EACH ITERATION.

SUPPOSE THE SIZE OF ONE KERNEL IS ax × ay × Kc AND LET Q = axayKc

For different specific examples of MMDP framework, how-
ever, the general method stated above may not the best choice.
In the next section, we will introduce some better choices for
the specific examples.

A. Stochastic Gradient Thermostats

Because of the utilization of stochastic force in (23), the
dynamics may drift away the equilibrium condition which
should be satisfied in all dynamics-based sampling meth-
ods [44]. Recently proposed SGNHT introduced a proper
thermostat, that is the additional variable ξ , which adaptively
controls the mean kinetic energy as follows:

d�g = pdt, dp = F̃
(
�g
)
dt − ξpdt + √

2CN (0, dt)

dξ =
(

1

n
pTp − 1

)
dt. (26)

Compared with (23), ξ plays a role in controlling the mean
kinetic energy adaptively instead of a constant one C. In
experiments we find that it brings about stronger robustness
for small batch size. With a little change of Algorithm 1 we
get the SGNHT method for MMDP framework given in the
Appendix B, in the supplementary material.

B. Preconditioned Stochastic Gradient Langevin Dynamics
for Deep Network Examples

Although stronger robustness for small batch size is
obtained by SGNHT, it plays a little worse in DNN example
of the framework, because gradients in DNN often suffer from
the vanishing/exploding problem [48]. What is more, a fixed
stepsize ε is used which makes it difficult to choose a proper
one for different layers. Li et al. [6] proposed pSGLD to solve
this problem using the second-order information G(�g)

d�g = ε

2

[
G
(
�g
)
F̃
(
�g
)]+ G

1
2
(
�g
)N (0, εI). (27)

G(�g) is updated sequentially via only the current gradient
and only estimated a diagonal one as follows:

V
(
� t+1

g

)
= δV

(
� t

g

)
+ (1 − δ)ḡ

(
� t

g; Dt
)

� ḡ
(
� t

g; Dt
)

(28)

G
(
� t+1

g

)
= diag

(
1 �

(
γ 1 +

√
V
(
� t+1

g

)))
(29)

where δ ∈ [0, 1] balance the weight of historical and current
gradient, and γ controls the extremes of the curvature in pre-
conditioner. Operators � and � represent element-wise matrix

product and division, respectively. The mean gradient of � in
DNN example is

ḡ(�; D) = 1

Ñ

Ñ∑
n=1

−1

2

∂‖zn − f (xn)‖2
2

∂�
(30)

which can be quickly and efficiently got using BP. This is
the most crucial point of the low computational complexity of
this model. With stated above, the scalable inference for DNN
example is shown in the Appendix C, in the supplementary
material.

C. Prediction

Different with traditional optimization-based model having
a point estimation, our model performs distribution estimate
based on SG-MCMC samples. Therefore, after the burn-in
stage, we can average over all of the collected samples to
predict the label of a new data x∗ as follows:

y∗ = sign

⎛
⎝ 1

T − Tburn−in

T∑
t=Tburn−in+1

wT
t z∗

t

⎞
⎠ (31)

where {z∗
t = μ�t

(x∗)}T
t=Tburn−in+1 and �t is drawn from its cor-

responding posterior base on T − Tburn−in collected samples.
Thus, instead of integrating the latent variables, we average
the final outputs from the max-margin classifier, which is able
to boost the performance in the experiments. Although the
problem we discussed is for binary classification, there have
been several strategies to realize multiclass classification via
binary one. In this paper, we choose one-vs-all strategy, since
its effectiveness has been analyzed and proved theoretically
and experimentally.

D. Computational Complexity

In Table I, we list the per-iteration complexity of each
parameter in MMLDP and MMCDP using Gibbs sampling
(denoted as gMMLDP and gMMCDP) and scalable infer-
ence (denoted as oMMLDP and oMMCDP), respectively. For
gMMLDP to sample the projection matrix A, although we can
calculate

∑N
n=1 xnxT

n before iteration, we need inverse a P×P
matrix, making it not practical for high-dimensional data. It
is not dominant to infer other parameters in gMMLDP since
K 
 P. For oMMLDP, although we need calculate

∑Ñ
n=1 xnxT

n
to sample A, a small batchsize Ñ is needed. In addition, we
do not need to inverse a P × P matrix, which is suitable for
scalable inference. What is more, it takes a little time to per-
form I leapfrog steps, because the computational complexity
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TABLE II
ILLUSTRATION OF THE DATASETS

of every leapfrog step is low and I is small in a multitude of
cases. Since we use J samples to calculate the expectation, the
number of N in gMMLDP is replaced by ÑJ in oMMLDP.

For gMMCDP when sample A, we cannot calculate∑N
n=1

∑M
m=1 xm

n (xm
n )Tbm

nk in advance like gMMLDP, because
pooling matrix Bnk changes at each iteration. Furthermore,
the dimension of zn sometimes is large according to (15), so
we have to calculate the inverse matrix when sample w. For
oMMCDP it takes shorter time because a small batchsize Ñ
is needed and the gradients are calculated to update A and
W instead of inversing a big matrix. The computational com-
plexity of DNN example is different according to the type of
DNN, but all gradients for � can be quickly and efficiently
got by BP algorithm, with other parameters similar to that of
oMMLDP.

V. EXPERIMENTS

In this section, we illustrate the effectiveness of our
proposed framework and examples by conducting experiments
on four image bechmarks (MNIST [28], CIFAR-10 [49], STL-
10 [50], and SVHN [51]). In the following, we first introduce
four image datasets used to assess the performance of each
algorithm including the detailed parameter configurations of
each example of framework. Afterward, recognition accuracy
of different models are showed with detailed analysis and the
learned filters by MMCDP are displayed. Then in the next
part, main hyper-parameters used in our examples are evalu-
ated with MNIST dataset. What is more, we investigate how
our models work in a specific target recognition problem, radar
HRRP automatic target recognition (ATR), followed [52]–[54]
with detailed data description and result analysis.

A. Datasets and Basic Configurations of MMDP

Detailed illustrations of the four datasets are listed in
Table II, where global contrast normalization (GCN) and ZCA
whitening follows [55], while LCN represents local contrast
normalization following [42]. Some hyper-parameter used are
as follows which are consistent for all datasets. The prior in
our model is set as p(�g) = N(0, σ 2I) like [6], with σ 2 = 1
if not specifically mentioned. In addition, we employ a block
decay strategy for stepsize ε for scalable inference, which is
decreases by half every T epochs and T = 20. We apply max-
pooling and rectified linear unit in CNN-like example. The
concrete configurations for different dataset using different
models are shown in Appendix D, in the supplementary mate-
rial. All the experiments are implemented on MATLAB and
run on an Intel Core i7-4790 3.60 GHz CPU with 16.00 GB
RAM.

TABLE III
TEST ERROR OF THE CLASSIFICATION RESULTS ON ALL FOUR DATASETS

B. Classification Results on Various Datasets

The different examples of MMDP is compared with other
models, whose classification results on each dataset are
demonstrated in Table III with no data augmentation. It is
worth noting that since single-layer MMCDP can be seen a
“base layer” of MMDP-CNN, we can use the filters learned
by MMCDP to initialize the ones in MMDP-CNN.

According to the results we can see that: 1) the linear exam-
ple, MMLDP, achieves the worst results compared with other
examples and hard to use directly for some datasets due to
its high computational complexity for high dimensional data;
2) high-layer MMCDP evidently promotes the recognition rate
based on low-layer model, which proves that deep architecture
of MMCDP can learn more discriminative latent feature space;
and 3) our proposed example of framework, convolutional
example (MMCDP) and deep network example (MMDP-MLP
and MMDP-CNN), are competitive with related models, indi-
cating the effectiveness of special examples and universality
of the framework.

C. Computational Time

Although we give theoretical computational complexity of
MMLDP and MMCDP in Table I to illustrate the efficiency
of our scalable inference compared with Gibbs sampling, in
this part we list the average time for one epoch of some rep-
resentative algorithms (for CIFAR-10 STL-10 and SVHN, we
pay more attention on convolution-like models because a com-
parable classification performance is got by these algorithms)
at training stage in Table IV to give a more intuitive impres-
sion, especially for convolutional-type algorithms. Although
the time spent by each epoch in MMCDP and MMDP-CNN
is longer than CNN because a few sampling steps are needed
to update the posterior of z, the number of epochs in our
algorithms is smaller than CNN. In detail, to achieve the
performance listed in Table III, CNN takes 500 epochs but
our models take 300 epochs thanks to the distribution esti-
mation over parameters in DNN and the classifier. In terms
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TABLE IV
ONE EPOCH TIME OF SOME ALGORITHMS AT TRAINING STAGE

IN SECONDS (S) ON ALL FOUR DATASETS

(a) (b)

(c)

Fig. 2. Filters learned from MNIST dataset by MMCDP at different layers.
(a) Layer 1. (b) Layer 2. (c) Layer 3.

of testing time, since MMDP-CNN needs to collect some ran-
dom samples w,� according to (31), it takes a bit longer than
CNN at testing stage. For instance, it takes about 0.13 s on
one sample of SVHN and 0.38 s on one sample of STL10 for
CNN, while 0.28 s on one sample of SVHN and 0.51 s on
one sample of STL10 for MMDP-CNN.

D. Filter Visualization

For the specific example MMCDP, we introduce an efficient
method to show the visualized filters in order to understand
how the model works. In this part, we list the results of five
datasets, respectively, and give a detailed analysis.

1) MNIST: Fig. 2 shows the learned filters at each layer.
It can be observed qualitatively that the filters at layer one
are only some strong points like a texture extractor; filters at
layer two are much sharper and take on forms characteristic
of digits and parts of digits; filters at layer three have much
more meaningful shape, exceedingly similar with the digits.
In other words, different layers of the model concentrate on
different characteristics of the digits.

2) CIFAR-10: We give the visualization results on CIFAR-
10 in Fig. 3. For layer one, the filters are shown directly. Since
the pictures are small, the selective regions contain most of
colorful images, which makes no sense if we show weighted
mean results directly. Therefore, we select the top ten regions
Xregion

n in (18) with the highest activations, and choose the
more obvious meaning filters to show like [26]. It can be seen
that the top ten parts for one filter are very similar in physical,
like animals’ leg and head, the wheel and the prow.

(a) (b)

Fig. 3. Filters learned from CIFAR-10 dataset by MMCDP at different layers.
(a) Layer 1. (b) Layer 2. Note that each row corresponds one filter in (b).

(a) (b)

(c) (d)

Fig. 4. Filters learned from STL-10 and SVHN dataset by MMCDP. Learned
from STL-10 at (a) layer 1 and (b) layer 2. Learned from SVHN at (c) layer
1 and (d) layer 2.

3) STL-10: The filters learned on STL-10 dataset is shown
in Fig. 4. The layer-one filters are shown directly and some
meaningful colorful simple textures can be observed like that
on CIFAR-10. For layer 2, although the weighted mean causes
the filters having less obvious physical meaning than MNIST
dataset, the results are persuasive because the structural ones
indicate the selective regions {Xregion

n }N′
n=1 are similar. The

“black smooth” ones, we think, mean the selective regions
are not similar and their corresponding filters are meaning-
less. Moreover, we observe that the coefficients of classifier
corresponding to the features obtained by these meaningless
filters are relative small.

4) SVHN: The visualization is shown in Fig. 4. Among
them, all the filters at layer one are shown in Fig. 4(a) and
some meaningful filters at layer two are shown in Fig. 4(b)
with the first column denoting the weighted mean results and
other columns denoting top ten samples. We can come to a
similar conclusions like those stated above.

E. Sensitivity Analysis of MMDP

In this paper, we propose the scalable inference for our
MMDP framework and apply it to different examples. In this
part, we compare the convergence speed and analyze the mod-
els’ sensitivity to some key parameters on MNIST dataset,
whose results give a reference setting for other datasets.

1) Batch Size |B|: Figs. 5–7 present the test error with dif-
ferent batch sizes for three examples, respectively. We can see
that the convergence speed and accuracy of different batch
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Fig. 5. Test errors of gMMLDP and oMMLDP with different batch sizes on
the MNIST dataset.

(a) (b)

(c)

Fig. 6. Test errors of gMMCDP and oMMCDP with different batch sizes
on the MNIST dataset. (a) Layer 1. (b) Layer 2. (c) Layer 3.

sizes vary. First, the convergence speed of our scalable infer-
ence method is must faster than Gibbs sampling and both
of them have similar results when convergence. Second, if
we choose a batch size too small, such as |B| = 10, the
performance is low because each iteration would not provide
sufficient evidence for updating. Thirdly, although the larger
batch size the lower error, we usually choose medium batch
sizes in practice with the thought of the balance between test
error and convergence speed.

Moreover, since the dimension of zn decreases with the
increase of the number of layers for MMCDP, the complexity
for calculating the inverse of matrix in sampling classifier gets
smaller, which leads to a smaller difference between oMM-
CDP and gMMCDP. Comparing Figs. 5 and 6 with Fig. 7, we
find that oMMCDP and oMMLDP possess stronger robustness
with smaller batchsize than MMDP-MLP and MMDP-CNN.
It illustrates that a proper thermostat ξ introduced by SGNHT

(a) (b)

Fig. 7. Test errors of (a) MMDP-MLP and (b) MMDP-CNN with different
batch sizes on the MNIST dataset.

TABLE V
EFFECT OF THE NUMBER OF SAMPLES AND BURN-IN STEPS

USED MMDP-CNN ON MNIST DATASET

adaptively controls the stochastic noise caused by small batch-
size. In our experiment, we attempt to use SGNHT for DNN
example but find that although it have stronger robustness for
small batchsize, the convergence speed is much slower than
pSGLD. So in the future research, we consider add thermostat
ξ into pSGLD to increase the robustness of our model.

2) Number of Leapfrog and Samples: Since the computa-
tional complexity of Algorithm 1 is linear in both I and J,
while Algorithm 2 is linear in J, we desire to know how these
parameters influence the quality of the models.

First, in order to understand how large β samples which
are discarded after burn-in step, is sufficient, we consider the
setting of the pairs (J, β) and check the consequence of three
examples with |B| = 200. We conduct the experiment on the
model of MMDP-CNN with the results shown in Table V. It
can be seen that the number of collected samples to calculate
the expectation in (24) and (25) exhibits a more significant
role in the performance than the burn-in steps. In other words,
we often choose small β and big J to achieve better accuracy.

Second, we analyze which pair of (I, J) in Algorithm 1
makes superior classification, whose result is presented in
Fig. 8. As we can see, for J = 1, the accuracy is lower for
all I because of noisy approximation of the expectation. But
for large enough J, simply I = 1 is promising. In addition,
we observe that algorithms with medium number of itera-
tions (I = 3, 5) result in better performance, which may be
attributed to the fact that too small I may lead to updating
incompletely and too big I may lead to falling into local solu-
tion. It means that it is better for the minibatch and worse for
the whole data.

F. Model Uncertainty

In this section, we do another experiment to give more evi-
dence to support the motivation of using Bayesian methods.

Authorized licensed use limited to: Duke University. Downloaded on February 15,2020 at 00:27:31 UTC from IEEE Xplore.  Restrictions apply. 



2464 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 49, NO. 7, JULY 2019

(a) (b)

Fig. 8. Test errors of oMMLDP and MMCDP with different combinations
of (I, J) on the MNIST dataset. (a) oMMLDP. (b) MMCDP at layer 3.

TABLE VI
MNIST CLASSIFICATION TASK WITH DIFFERENT TRAINING SIZES

We train standard CNN and MMDP-CNN on MNIST with dif-
ferent training data sizes with results shown in Table VI. The
results were achieved by 100 independent experiments. From
Table VI, we can see that when the number of training data is
large enough, the performance of the point estimation-based
CNN is as good as Bayesian method, but Bayesian method
performs better when the training set is relative small, which
illustrates the advantage of the Bayesian method: do a better
response for out-of-sample [6]. In addition, the variance of
Bayesian method is smaller than that of the point estimation
especially when the training data is small which is attributed
to the distribution estimation of Bayesian SVM and model
uncertainty in network’s parameters.

G. Radar High-Resolution Range Profile Target Recognition

We consider measured radar HRRP signal from three real
airplanes including Yak-42 (a large and medium-sized jet air-
craft), Cessna Citation S/II (a small-sized jet aircraft), and
An-26 (a medium-sized propeller aircraft), which are widely
used in this paper field [52]–[54]. The detailed parameters
about radar and airplanes have been listed in Appendix E, in
the supplementary material. including some data examples.

In order to demonstrate the robustness about elevation
angles, according to [53], we choose the data from the second
and the fifth segments of Yak-4, the sixth and the seventh
segments of Cessna Citation S/II, the fifth and the sexth
segments of An-26 as the training samples, and other data
segments are taken as test samples with concrete illustra-
tion shown in the supplementary material. Therefore, there
are 14 000 HRRP samples for training and 5200 samples for
test with each sample being a 256-D vector. In this exper-
iment, the L2-norm normalized power spectrum feature of
HRRP was used to perform classification on account of its
time-shift invariance. Following the parameter setting-up given
Appendix D, in the supplementary material. We report the
classification performance of related methods on this applica-
tion in Table VII, where includes the shallow models (LDA,

TABLE VII
CLASSIFICATION PERFORMANCE FOR THE HRRP DATASET

(a)

(b)

Fig. 9. Filters learned from HRRP dataset by MMCDP. (a) Layer 1.
(b) Layer 2.

KSVD, and PCA), deep models (DBN, DAE, and CNN)
and our models (MMCDP, MMDP-MLP, and MMDP-CNN).
LSVM here only serves as a simple baseline with no feature
extraction. From the Table VII, we can find several phenomena
as follows. First, compared with shallow models, the nonlin-
ear hierarchical architecture of DNN is more advantageous to
learn the effective feature for HRRP target recognition which
results in a higher recognition rate. Second, our Bayesian
deep projection models perform better than DBN and DAE
for HRRP recognition. We attribute it to the distribution esti-
mation in Bayesian model and the utilization of supervised
information. Third, we apply CNN using 1-D convolution on
HRRP dataset as a baseline of our MMDP-CNN algorithm.
we find that MMDP-CNN achieves better performance even
without pretraining. In the future, the average profile can be
taken into account for our framework to extract more robust
features like [53]. In addition, Fig. 9 shows the filters learned
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by MMCDP on HRRP dataset, which is rarely shown in other
models. Different with previous image datasets, HRRP is a
1-D signal resulting in less meaningful filters. However, we
can also observe some structural information like wavelet.

VI. CONCLUSION

We propose a unified framework for Bayesian MMDP
called MMDP with three special examples discussed, includ-
ing MMLDP, MMCDP, and MMDP-DNN. Among them,
MMLDP is an existing linear projection which can be also ker-
nelized for nonlinear projection. MMCDP and MMDP-DNN
are our proposed new models based on the framework. Both of
them have deep structure and utilize convolution operation to
improve the capability of feature extraction. Furthermore, we
also provide different scalable inference for different exam-
ples. In experiments, we achieve comparable classification
accuracy on MNIST, CIFAR-10, STL-10, SVHN, and radar
HRRP target recognition. Moreover, we can see that MMCDP
can learn meaningful filters via the visualization method. In
addition, we conduct our models in radar HRRP ATR field
and achieve excellent performance.

In all experiments, we choose MATLAB as our comput-
ing platform, which may limit the computation ability. In the
future, we are interested in building better structure under our
framework with help of GPU on some sophisticated package
and program language.
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