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Abstract 

The hallmark of any successful purpose-grown willow production system involves regular 

monitoring of willow growth to apply timely management techniques for supporting increased 

productivity, but also timing harvest for maximizing profit.  The objective of this study was to 

compare a conventional allometric technique (i.e., defined by a simple empirical relationship 

between stem size and mass) with a novel alternative method measuring light attenuation through 

the willow crop canopy (i.e., Stem Area Index; using a LAI-2000 Plant Canopy Analyzer) and 

relate these data to harvested willow biomass.  Two different hybrid willow clones with 

contrasting growth form, either single stem (Charlie) or multi-stem (SV1), were studied.  The 

observed allometric models were stronger for multi-stemmed SV1 (R2 = 0.81) compared to the 

single-stemmed Charlie (R2 = 0.67); however, the allometric relationships in this study were not as 

robust as those typically reported in the literature for willow and is probably due to the uncoppiced 

management of the study plantation.  Given the strong correlations (R2 > 0.98) between Stem Area 

Index and harvested willow biomass, regardless of growth form, it appears that this novel 

mensurative technique is a promising alternative to conventional allometry.  It is prudent to 

develop a rapid, cost-effective, and non-destructive mensurative technique yielding reliable 

biomass estimates, for supporting effective management decisions in a timely manner. 

 

Introduction 

Considering that harvesting operations are the greatest single cost incurred with short-

rotation willow production systems (Heller et al., 2003, 2004; Keoleian and Volk, 2005; Spitzley 

and Keoleian, 2005; Tharakan et al., 2005), it is imperative for farmers to optimize the timing of 

harvest, based on accurate estimations of current yield, for supporting the greatest economical 

return on investment.  Additionally, monitoring annual production rates will be invaluable in terms 

of making effectual management decisions prior to harvest, such as prompting fertilizer 

amendments to increase productivity, for meeting both economic objectives and/or contractual 

obligations with industrial partners relying on feedstock commitments.  The conventional non-

destructive technique is allometry – defined by a simple empirical relationship between size and 

mass, which involves calibrating measured stem diameter (at a specified height) with subsequently 

harvested biomass (Figure 1a; Heinsoo et al., 2002; Nordh and Verwijst, 2004; Arevalo et al., 

2007).  Currently, this is the industry standard with which all other approaches should be 

compared.  However, manually collecting above-ground samples for biomass estimates can be 

time consuming, costly, susceptible to subjective errors, and inherently destructive.  As such, there 

remains a need to develop a mensurative technique for estimating willow biomass, having not only 

the accuracy of allometry, but also non-destructively yielding quick and economical data. 



 

 

 

 

 

 

 

 

 

 

Figure 1. Estimating above-ground willow biomass using an allometric technique (a) and a LAI-

2000 Plant Canopy Analyzer to measure the ‘gap fraction’ (i.e., fraction of the sky 

visible from beneath the canopy) corresponding to five sensor rings centred on 

different zenithal angles (b). 

 

 

A novel alternative approach to allometry proposed in this study involves using the LAI-

2000 Plant Canopy Analyzer (LI-COR Inc., Lincoln, NE; Figure 1b) to measure the ‘gap 

fraction’, which is the fraction of the sky visible from beneath the canopy, by quantifying the 

fraction of sky that is blocked by foliage, branches, or stems (i.e., degree of canopy openness; 

Welles and Norman, 1991; LI-COR, 1992; Machado and Reich, 1999).  The Plant Canopy 

Analyzer is the foremost research instrument for measuring light attenuation (i.e., reduction in 

amplitude and intensity) as it passes through a vegetative canopy and its utility has been reported 

in hundreds of articles covering a range of vegetation types, including: shrubs and grasses 

(Welles and Norman 1991; Hanan and Bégué, 1995; White et al., 1997; Sonnentag et al., 2007); 

coniferous, deciduous, and mixedwood forests (Gower and Norman, 1991; Deblonde et al., 

1994; Vertessy et al., 1995; Strachan and McCaughey, 1996; Comeau et al., 1998); annual crops 

(Welles and Norman 1991; Dobermann et al., 1995; Hicks and Lascano, 1995; Rudorff et al., 

1996); vineyards (Ollat et al., 1998; Johnson and Pierce, 2004.); turfgrass (Yuen et al., 2002); 

and even non-crop species (Thevathasan et al., 2000).  Gap fraction is synonymous with canopy 

openness, canopy transmittance, and diffuse non-interceptance (Machado and Reich, 1999; 

Engelbrecht and Herz, 2001; Comeau et al., 2003; Voicu and Comeau, 2006; Kobe and Hogarth, 

2007) and is determined by measuring the difference between the diffuse incident radiation at the 

top of the canopy with the diffuse transmitted radiation under the canopy, assessed at five 

different angles relative to the zenith concurrently, using a “fish-eye” 148° field-of-view optical 

sensor (LI-COR, 1992; Figure 1b).  The Plant Canopy Analyzer uses all five zenithal angle gap 

fraction measures to simultaneously calculate leaf area index (LAI; ratio of the canopy foliage 

area to ground area; Watson, 1947), using well established inversion and integration models 

describing radiation transfer through vegetation canopies (Welles and Norman, 1991; Leblanc 

and Chen, 2001; Breda, 2003; Broadhead et al., 2003; Jonckheere et al., 2004). 



 

Notwithstanding its popularity, a common criticism of the Plant Canopy Analyzer is that 

its measured LAI values are not ‘true’ LAI values, because of its 490 nm filter, it cannot 

distinguish between radiation intercepted by photosynthetic leaves vs. non-photosynthetic woody 

stems and branches within the canopy (i.e., leads to LAI overestimation; Welles, 1990; Chen et 

al., 1997; Whitford et al., 1995; Weiss et al., 2004).  The intention of this study, however, is to 

use the Plant Canopy Analyzer to measure ‘leaf area index’ after leaf fall, in order to test its 

utility as a surrogate measure of leafless above-ground biomass within willow plantations.  By 

measuring the gap fraction of non-photosynthetic woody material, the Plant Canopy Analyzer is, 

therefore, essentially providing a measure of ‘Stem Area Index’ (SAI), which can be calibrated 

with harvested biomass.  The objective of this study was to compare a conventional allometric 

technique with a novel alternative estimation of SAI, measured using the Plant Canopy Analyzer, 

and relate these data to harvested above-ground biomass of two different hybrid willow clones 

having contrasting growth forms.  Given that in situ observations clearly indicating the effect of 

variable above-ground willow biomass on variances in transmitted radiation at ground level 

(Figure 2), it is hypothesized that the Plant Canopy Analyzer will provide an accurate and precise 

estimates of harvestable willow biomass and, thus, serve as an effective alternative to 

conventional allometry for providing a fast and reliable indirect measure of willow plantation 

productivity. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The effect of willow canopy light interception on the fraction of transmitted radiation 

to the snow surface.  Note the marked difference in light levels within rows and 

between rows, despite the relatively sparse one-year-old willow stems. 

 

Materials and Methods 

Study site 

The data for this study were collected in the spring of 2008 from a two-year-old hybrid 

willow plantation located on the University of Saskatchewan campus in Saskatoon (Figure 3; 

UTM coordinates: 13U 389970 5776342).  The plantation was established on June 14, 2006 and 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Location of willow plantation on the University of Saskatchewan campus. 

 

 

Table 1. Selected Characteristics of hybrid willow study site located in central Saskatchewan. 

Soil Characteristics 
 

Site Characteristics  Weed Control Practices 

Association Soil Type Texture 

 

Prior Crop ACC* MAP† MAT‡ FFD§ 

 Pre-planting Post-planting 

 
 Mechanical Chemical Mechanical Chemical 

Sutherland** 
Orthic 

Vertisol 
heavy clay 

 

barley/oats 2-3 375 2 112  

Deep till, 

Light 
cultivation, 

and 

Tandem disc 
(x 2) 

Linnuron 

(1.7 L ha-1) 

Between-row 
tillage, 

mowing, and 

hand weeding 

Glyphosate 

(2 L ha-1) 

* Agriculture capability classification (Class 2-3: moderate to moderately severe limitations due to lack of precipitation). 
† Mean Annual Precipitation (mm). 

‡ Mean Annual Temperature (oC). 
§ Frost-free days. 
** For a complete description (i.e., map unit, parent material, stoniness, drainage, etc.) see SCSR (1978). 

 

 

selected characteristics of the site are reported in Table 1.  The willow plantation is a clonal trial 

arranged in a randomized complete block design, replicated three times, using a 60 x 60 cm grid 

spacing within each triple-row bed and 200 cm spacing between beds (approximate density of 15,625 

stems/ha).  Two hybrid willow clones, having contrasting growth forms, were studied: Charlie (Salix 

alba x Salix glatfelteri; single-stem) and SV1 (Salix dasyclados; multi-stem).  Charlie and SV1 are 

the standard clones for comparison within Canada and the U.S., respectively.   



 

 

Developing Allometric Models for Estimating Willow Biomass 

Conventional allometric equations for estimating above-ground willow biomass were 

developed by calibrating measured stem diameter (at 30 cm height; Figure 1a) with harvested 

leafless biomass from 30 systematically sampled plants within the plantation for each clone 

(Arevalo et al., 2007).  The harvested stems (including branches) were cut approximately 3 cm 

above the soil surface using hand clippers, dried at 65 oC to a constant weight, and weighed.  

Typically, these allometric models are then coupled with stem density and diameter measurements 

from each of the respective clonal beds to estimate biomass per bed and then extrapolated to a 

stand level (i.e., total biomass per hectare).  In this study, however, the objective was simply to 

determine the strength of the allometric relationship between stem diameter and harvested stem 

biomass, so stand level biomass estimates were not necessary. [Note: I have done the stand level 

calculations based on the allometric estimates and will include these in the MS, because it will 

help facilitate the comparison of the two methods. Ken, this may have been what you were 

talking about when you asked about a ‘common factor’ when reviewing the poster.] 

 

Development of Stem Area Index as Surrogate for Estimating Willow Biomass 

A LAI-2000 Plant Canopy Analyzer (LI-COR Inc., Lincoln, NE) was used to measure the 

gap fraction and subsequently calculate the SAI for leafless willow within each block for each 

clone for correlation with harvested above-ground willow biomass (Figure 1b).  Briefly, three 

different sampling scales (between-row, within-row, and single plant) were used to collect SAI 

measurements using the Plant Canopy Analyzer (Figure 4).  Each of these sampling scales has been 

successfully used to measure gap fraction for a variety of plant crops with either discontinuous or 

heterogeneous canopies (Welles and Norman, 1991; LI-COR, 1992; Welles and Cohen, 1996; 

López-Serrano et al., 2000; Wilhelm et al., 2000; Malone et al., 2002; Johnson and Pierce, 2004; 

Weiss et al., 2004); however, given the exceptional growth form of coppiced willow, all three 

approaches will be assessed to determine which provides the most reliable estimate of SAI for 

routine use within the short-rotation willow plantation context.  All three sampling schemes will 

involve: placing the sensor near the soil surface; using both a 45o and 90o view cap (consisting of a 

315o and 270o opaque mask, respectively) to restrict the azimuthal range of the sensor – necessary 

to not only prevent light not transmitted through the canopy from influencing the measurements 

(common concern with discontinuous row crops), but also to obscure the operator from the sensor; 

one above-canopy measurement will be taken for every four below-canopy measurements (in the 

same azimuthal direction) to allow the Plant Canopy Analyzer to determine the fraction of diffuse 

incident radiation passing through the willow canopy – required for calculating the SAI of the plot; 

and finally, taking measurements under diffuse sky conditions (i.e., overcast, before sunrise, or 

after sunset) in order to avoid direct sunlight and/or light scattering within the canopy from 

influencing the readings.  If these were operational-scale plantations, then these sampling schemes 

would be randomly located within the plantation; however, in view of its small research-scale plot 

size, each sampling scheme was systematically set up to sample the entire triple-row bed, while 

avoiding possible edge effects (Figure 4).  For each sampling scheme, SAI was calculated based on 

a total of 16 below-canopy and four corresponding above-canopy measurements within each plot, 

and the SAI values were correlated with the corresponding willow biomass that was subsequently 

harvested, dried at 65 oC to a constant weight, and weighed.   
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Figure 4. Placement of LI-COR Plant Canopy Analyzer (with 90o view cap indicated by white fraction of circle), at varying sampling 

scales, to measure gap fraction for correlation with harvested biomass within short-rotation willow plantations.



 

 

Statistical Analyses 

Simple linear regressions were performed using the REG procedure in SAS (Version 9.1, 

SAS Institute Inc. Cary, NC). 

 

Results and Discussion 

Allometric Relationship Between Stem Diameter and Harvested Above-ground Willow Biomass 

The allometric relationships in this study, for either the single-stemmed Charlie or multi-

stemmed SV1 clones (Figures 5a and b), were not as robust as those typically reported in the 

literature for willow (i.e., R2 values ~ 0.95; Arevalo et al., 2007; Bond-Lamberty et al., 2002; 

Hytönen and Kaunisto, 1999).  These relatively poor correlations are probably due to the 

uncoppiced management of the study plantation.  Along with adopting a triple-row bed design, 

the Canadian Forest Service production system also differs from conventional purpose-grown 

willow plantation protocols by harvesting after four years of growth without coppicing after the 

first year.  Coppicing promotes the production of larger numbers of uniformly-shaped stems (i.e., 

relatively homogeneous diameter:mass), which also helps to explain the observed larger R2 value 

of the multi-stemmed SV1 clone allometric model compared to the single-stemmed Charlie 

model.  Specifically, unlike the shrub growth form of SV1, the tree growth form of Charlie is 

inherently more variable within a plantation due to inconsistent branching and, therefore, results 

in relatively weaker correlations between stem diameter and biomass, which can occur among 

trees having a relatively heterogeneous structure (Lambert et al., 2005; Ter-Mikaelian and 

Korzukhin, 1997).  Likewise with the uncoppiced management of the multi-stemmed SV1, 

where the marked presence of varying degrees of sylleptic branching (i.e., branching along the 

upper part of the stem) was evident in this plantation, whereas this is uncharacteristic of coppiced 

SV1 plantations. 

 

Relationship Between Measured Stem Area Index and Harvested Above-ground Willow Biomass 

There was a much stronger correlation between SAI, measured using the Plant Canopy 

Analyzer, and above-ground biomass of the two hybrid willow clones compared to the observed 

allometric relationships (Figures 5c and d).  For the multi-stemmed SV1 clone, the within-row 

sampling scheme (using the 90o view cap) provided the best estimates of willow biomass, 

whereas the single-tree sampling scheme (using the 45o view cap) was superior for the single-

stemmed Charlie (data not shown).  Presumably, these differences in efficacy among the 

sampling scheme/view cap combinations used to measure the SAI of the two clones is due to the 

effect of growth form on gap fraction distributions within the clonal plots.  Specifically, when 

measuring SAI of the single-stemmed Charlie, evidently it is prudent to use the single-tree 

sample approach with a narrower view cap in order to sample more of the woody material and 

less interplant area, otherwise the Plant Canopy Analyzer will measure a larger gap fraction, 

thereby underestimating the SAI.  Conversely with the multi-stemmed SV1, where the within-

row sample approach with the wider view cap samples a larger area of these relatively dense 

beds, or else the Plant Canopy Analyzer measures a smaller gap fraction, in so doing 

overestimating the SAI.  The relationship between SAI and harvested biomass, using pooled data 

from both willow clones, remained significant although was not as strong (R2 = 0.56; P < 0.05), 

and is not surprising considering the marked differences in growth form and concomitant 



 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Modelling above-ground biomass of different two-year-old willow clones using an allometric relationship between stem 

diameter (at 30 cm height) and leafless stem weight of 30 systematically sampled plants (a and b) or relating Stem Area 

Index, measured using a LAI-2000 Plant Canopy Analyzer, with harvested bed biomass (c and d).  Note: single-tree (45o 

view cap) and within-row (90o view cap) sampling schemes were used to measure the Stem Area Index for Charlie and 

SV1 clones, respectively.
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Figure 6. Theoretical dataset illustrating the effect of increasing willow stem diameter (0.5, 1, 2, 

and 4 cm) on the linear and quadratic relationships between projected stem area and 

stem biomass (assuming a constant height of 100 cm, cylindrical stem shape, and 

wood density of 1 g cm-3). 

 

variation in light attenuation characteristics between the two canopy types.  Considering that the 

Plant Canopy Analyzer is designed to estimate two-dimensional leaf shading area, it can be 

argued that the instrument will be insensitive to variations in plant morphology, in particular, 

stem diameter.  For instance, a stem with a radius of 0.5 cm and height of 100 cm will have a 

projected area of 50 cm2 (i.e., 0.5 x 100 cm) and a volume of 19.6 cm3 (i.e., Π x 0.252 x 100 cm), 

while another stem having an identical height but double the diameter, has a projected area of 

100 cm2 and volume of 78.5 cm3.  Thus, a doubling of stem diameter results in a doubling of 

projected stem area (i.e., SAI), but the volume (and presumably biomass too – assuming similar 

wood density) will be four times larger (Figure 6).  Consequently, thicker stems will have a 

smaller SAI to mass ratio than thinner stems of similar height.  Such a relationship is inherently 

non-linear and helps to explain the negative intercept in the observed linear models in this study, 

compared to using a polynomial equation that allows for the possibility of a zero intercept using 

a quadratic fit instead of a linear fit (Figure 6).  This apparent shortcoming is also inherent to 

photogrammetric methods used to estimate willow biomass, but like this study, evidently has a 

negligible effect on the resultant empirical linear or quadratic models predicting willow biomass 

(Ens et al., 2009). 

 

Conclusion 

Notwithstanding the apparent influence of the uncoppiced management of the study 

plantation on the observed allometric relationships, the strong relationship between SAI, 

measured using the Plant Canopy Analyzer, and harvested willow biomass compares very well 

with the robust allometric models often reported in the literature.  Although very accurate, 

traditional methods of estimating willow plantation productivity by developing allometric 



 

 

relationships for these multi-stemmed species can be time consuming, costly, and susceptible to 

subjective errors.  Consequently, it appears that this novel mensurative technique is a promising 

alternative to conventional allometry, thereby supporting effective management decisions 

throughout the rotation of purpose-grown hybrid willow plantations.  Further research is needed, 

however, to determine if the observed relationships between SAI and above-ground willow 

biomass remains consistent with different clones growing across a geoclimatic gradient, on a 

variety of soil types, under a coppiced management system typically used in the U.S. and 

Europe. 

 

 

Acknowledgements 

The authors wish to thank the Saskatchewan Ministry of Agriculture for funding this 

research; D. Sidders (Canadian Forest Service) for providing the field site; X. Guo for supplying 

the LAI-2000; B. Amichev, D. Jackson, S. Konecsni, and C. Stadnyk for their help in the field; 

and, T. Demetriades-Shah (LI-COR Inc.) for his technical assistance. 

 

References 

Arevalo, C.B.M., T.A. Volk, E. Bevilacqua, and L. Abrahamson. 2007. Development and 

validation of aboveground biomass estimations for four Salix clones in central New 

York. Biomass and Bioenerg. 31:1-12. 
 

Bond-Lamberty B., Wang C., and Gower S.T. 2002. Aboveground and belowground biomass 

and sapwood area allometric equations for six boreal tree species of northern Manitoba. 

Can. J. For. Res. 32: 1441-1450. 
 

Breda, N.J. 2003. Ground-based measurements of leaf area index: a review of methods, 

instruments and current controversies. J. Exp. Bot. 54: 2403-2417. 
 

Broadhead, J.S., Muxworthy, A.R., Ong, C.K., and Black, C.R. 2003. Comparison of methods 

for determining leaf area in tree rows. Agr. Forest Meteorol. 115: 151-161. 
 

Chen, J.M., Rich, P.M., Gower, S.T., Norman, J.M., and Plummer, S., 1997. Leaf area index of 

boreal forests: theory, techniques and measurements. J. Geophys. Res. 102: 29429-29443. 
 

Comeau P., Gendron F., and Letchford T. 1998. A comparison of several methods for estimating 

light under a paper birch mixedwood stand. Can. J. For. Res. 28: 1843-1850. 
 

Comeau, P.G., Wang, J.R., Letchford, T., 2003. Influences of paper birch competition on growth 

of understory white spruce and subalpine fir following spacing. Can. J. For. Res. 33: 

1962-1973. 
 

Deblonde G., Penner M., and Royer A. 1994. Measuring leaf area index with Li-Cor LAI-2000 

in pine stand. Ecology 75: 1507-1511. 
 

Dobermann, A., Pampolino, M.F., and Neue, H.U. 1995. Spatial and temporal variability of 

transplanted rice at the field scale. Agron. J. 87: 712-720. 
 

Ens, J.A., R.E. Farrell, and N. Bélanger. 2009. Rapid biomass estimation using optical stem 

density of willow (Salix spp.) grown in short rotation. Biomass and Bioenerg. 33:174-

179. 
 



 

 

Engelbrecht, B.M.J. and Herz, H.M. 2001. Evaluation of different methods to estimate 

understorey light conditions in tropical forests. J. Trop. Ecol. 17: 207-224. 
 

Gower, S.T. and Norman, J.M. 1991. Rapid estimation of leaf area index in conifer and broad 

leaf plantations. Ecology 72: 1896-1900. 
 

Hanan, N.P. and Bégué, A.1995. A method to estimate instantaneous and daily intercepted 

photosynthetically active radiation using a hemispherical sensor. Agr. Forest Meteorol. 

74: 155-168. 
 

Heinsoo, K., Sild, E., Koppel, A. 2002. Estimation of shoot biomass productivity in Estonian 

Salix plantations. Forest Ecol. Manag. 170: 67-74. 
 

Heller, M.C., Keoleian, G.A., and Volk, T.A. 2003. Life cycle assessment of a willow bioenergy 

cropping system. Biomass Bioenerg. 25: 147-165. 
 

Heller, M.C., Keoleian, G.A., Mann, M.K., and Volk, T.A. 2004. Life cycle energy and 

environmental benefits of generating electricity from willow biomass. Renew. Energ. 29: 

1023-1042. 
 

Hicks, S. and Lascano, R. 1995. Estimation of leaf area Index for cotton canopies using the Li-

Cor LAI 2000 plant canopy analyser. Agron. J. 87: 458-464. 
 

Hytönen, J., and Kaunisto, S. 1999. Effect of fertilization on the biomass production of coppiced 

mixed birch and willow stands on a cut-away peatland. Biomass Bioenerg. 17:455-469. 
 

Johnson, L.F. and Pierce, L.L. 2004. Indirect measurement of leaf area index in California north 

coast vineyards. Hort. Sci. 39: 236-238. 
 

Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., and Baret, F. 2004. 

Review of methods for in-situ leaf area index determination. Part I. Theories, sensors and 

hemispherical photography, Agric. Forest Meteorol. 121: 19-35. 
 

Keoleian, G.A. and Volk, T.A. 2005. Renewable energy from willow biomass crops: life cycle 

energy, environmental and economic performance. Crit. Rev. Plant Sci. 24:385-406. 
 

Kobe, R.K. and Hogarth, L.J. 2007. Evaluation of irradiance metrics with respect to predicting 

sapling growth. Can. J. For. Res. 37: 1203-1213. 
 

Lambert, M.C., C.H. Ung, and F. Raulier. 2005. Canadian national tree aboveground biomass 

equations. Can. J. For. Res. 35:1996-2018. 
 

Leblanc, S.G. and Chen, J.M. 2001. A practical scheme for correcting multiple scattering effects 

on optical LAI measurements. Agric. Forest Meteorol. 110: 125-139. 
 

LI-COR. 1992. Plant Canopy Analyser Operating Manual. Li-Cor Inc, Lincoln, NE, USA. 
 

López-Serrano, F.R., Landete-Castillejos, T.,Mart´ınez-Millán, J., and del Cerro-Barja, A. 2000. 

LAI estimation of natural pine forest using a non-standard sampling technique. Agric. 

For. Meteorol. 101: 95-111. 
 

Machado, J.-L. and Reich, P.B. 1999. Evaluation of several measures of canopy openness as 

predictors of photosynthetic photon flux density in deeply shaded conifer-dominated 

forest understory. Can. J. For. Res. 29: 1438-1444. 
 

Malone, S., Herbert, Jr., D.A., and Holshouser, D.L. 2002. Evaluation of the LAI-2000 Plant 

Canopy Analyzer to Estimate Leaf Area in Manually Defoliated Soybean. Agron. J. 94: 

1012-1019. 
 



 

 

Nordh, N.E. and Verwijst, T. 2004. Above-ground biomass assessments and first cutting cycle 

production in willow (Salix spp.) coppice-a comparison between destructive and non-

destructive methods. Biomass Bioenerg. 27: 1-8. 
 

Ollat, N., Fermaud, M., Tandonnet, J.P., and Neveux, M. 1998. Evaluation of an indirect method 

for leaf area index determination in the vineyard: combined effects of cultivar, year and 

training system. Vitis 37: 73-78. 
 

Rudorff, B.F.T., Mulchi, C.L., Daughtry, C.S.T., Lee, E.H., 1996. Growth, radiation use 

efficiency, and canopy reflectance of wheat and corn grown under elevated ozone and 

carbon dioxide atmospheres. Remote Sens. Environ. 55: 163-173. 
 

Saskatchewan Centre for Soil Research (SCSR). 1978. The Soils of the Saskatoon Map Area, 

Number 73B. SCSR-Soil Survey Staff, University of Saskatchewan, Saskatoon, SK. 
 

Sonnentag, O., Talbot, J., Chen, J.M., and Roulet, N.T. 2007. Using direct and indirect 

measurements of leaf area index to characterize the shrub canopy in an ombrotrophic 

peatland, Agric. For. Meteorol. 144: 200-212. 
 

Spitzley, D.V. and Keoleian, G.A. 2005. Life Cycle Environmental and Economic Assessment of 

Willow Biomass Electricity: A Comparison with Other Renewable and Non-Renewable 

Sources Center for Sustainable Systems. Report No. CSS04-05, University of Michigan, 

Ann Arbor, Michigan. 72 pp. 
 

Strachan, I.B. and McCaughey, J.H. 1996. Spatial and vertical leaf area index of a deciduous 

forest resolved using the LAI-2000 plant canopy analyzer. For. Sci. 42: 176-181. 
 

Ter-Mikaelian, M.T. and Korzukhin, M.D. 1997. Biomass equations for sixty-five North 

American tree species. Forest Ecology and Management 97:1-24. 
 

Tharakan, P.J., Volk, T.A., Nowak, C.A., and Abrahamson, L.P. 2005. Morphological traits of 

30 willow clones and their relationship to biomass production. Can. J. For. Res. 35: 421-

431. 
 

Tharakan, P.J., Volk, T.A., Lindsey, C.A., Abrahamson, L.P., White, E.H. 2005. Evaluating the 

impact of three incentive programs on cofiring willow biomass with coal in New York 

State. Energ. Policy. 33: 337-47. 
 

Thevathasan, N.V., Reynolds, P.E., Kuessner, R., Bell, W.F., 2000. Effects of controlled weed 

densities and soil types on soil nitrate accumulation, spruce growth, and weed growth. 

For. Ecol. Manage. 133: 135-144. 
 

Vertessy, R.A., Benyon, R.G., O’sullivan, S.K., Gribben, P.R. 1995. Relationships between stem 

diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. Tree 

Physiol. 15: 559-567. 
 

Voicu, M.F. and Comeau, P.G. 2006. Microclimatic and spruce growth gradients adjacent to 

young aspen stands. For. Ecol. Manage. 221: 13-26. 
 

Watson, D.J., 1947. Comparative physiological studies in growth of field crops. I. Variation in 

net assimilation rate and leaf area between species and varieties, and within and between 

years. Ann. Bot. 11: 41-76. 
 

Weiss, M., Baret, F., Smith, G.J., Jonckheere, I., and Coppin, P. 2004. Review of methods for in 

situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling. 

Agric. For. Meteorol. 121: 37-53. 

 



 

 

Welles, J.M. 1990. Some indirect methods of estimating canopy structure. Rem. Sens. Rev. 5: 

31-43. 
 

Welles, J.M. and Norman, J.M. 1991. Instrument for indirect measurement of canopy 

architecture. Agron. J. 83: 818-825. 
 

Welles, J.M. and Cohen, S., 1996. Canopy structure measurement by gap fraction analysis using 

commercial instrumentation. J. Exp. Bot. 47: 1335-1342. 
 

White, J.D., Running, S.W., Nemani, R., Keane, R.E., and Ryan, K.C. 1997. Measurement and 

remote sensing of LAI in Rocky Mountain montane ecosystems. Can. J. For. Res. 27: 

1714-1727. 
 

Whitford, K.R., Colquhoun, I.J., Lang, A.R.G., and Harper, B.M. 1995. Measuring leaf area 

index in a sparse eucalypt forest: a comparison of estimates from direct measurement, 

hemispherical photography, sunlight transmittance and allometric regression. Agric. For. 

Meteorol. 74: 237-249. 
 

Wilhelm, W.W., Ruwe, K, and Schlemmer, M.R. 2000. Comparison of three leaf area index 

meters in a corn canopy. Crop Sci. 40: 1179-1183. 
 

Yuen, G.Y., Jochum, C.C., Giesler, L.J., Shulski, M.D., Walter-Shea, E.A., Hubbard, K.G., and 

Horst, G.L. 2002. UV-B Biodosimetry in Turfgrass Canopies. Crop Sci. 42: 859-868. 


