
	 	

Implementation	Guide 	
SAP Manufacturing
Document Version: 3.

0
0 – 2019-11

11
-22

CUSTOMER 	

Enhanced	Notification	Processing	(ENP)	in	Plant	
Connectivity	15.3 	

Implementation	Guide 	

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.3
2		 © 2019 SAP SE. All rights reserved. 	

Typographic	Conventions		

Type Style Description

Example Words or characters quoted from the screen. These include field names, screen titles,
pushbuttons labels, menu names, menu paths, and menu options.

Textual cross-references to other documents.

Example	 Emphasized words or expressions.

EXAMPLE Technical names of system objects. These include report names, program names, transaction
codes, table names, and key concepts of a programming language when they are surrounded by
body text, for example, SELECT and INCLUDE.

Example Output on the screen. This includes file and directory names and their paths, messages, names
of variables and parameters, source text, and names of installation, upgrade and database tools.

Example	 Exact user entry. These are words or characters that you enter in the system exactly as they
appear in the documentation.

<Example> Variable user entry. Angle brackets indicate that you replace these words and characters with
appropriate entries to make entries in the system.

EXAMPLE
Keys on the keyboard, for example, F2 or ENTER .

Typographic	Conventions

Enhanced Notification Processing (ENP) in Plant Connectivity 15.3 Customer
© 2019 SAP SE. All rights reserved. 3

Document	History		

Version Date Change

1.0 2015-10-06 Updates for PCo 15.1

 2.0 2019-06-14 Updates for PCo 15.3 (SP00)

 3.0 2019-11-22 Updates for PCo 15.3 (SP01)

Table	of	Contents		

1 Disclaimer	...	5
1.1 Coding Samples ... 5 1.2
1.2 Internet Hyperlinks .. 5

1.3 Accessibility ... 5

2 Overview	...	6

3 Prerequisites	..	7
3.1 Technical Prerequisites .. 7
3.2 Required Knowledge and Skills .. 7

4 Architectural	Overview	...	8
4.1 Main Building Blocks ... 8
4.2 Interfaces ... 9

4.2.1 ICustomLogic Interface (Controller Interface) ... 11
4.2.2 Enhanced Notification Processing Framework ... 13

5 How	to	Implement	a	Customer-Owned	Enhancement	...	16
5.1 Overview of Implementation Steps ...16
5.2 Implementation Activities in Microsoft Visual Studio ...16

5.2.1 Prerequisites ..16
5.2.2 Create a Solution and an Implementing Class .. 17
5.2.3 Implement Required Methods ... 20
5.2.4 Build the ENP DLL ... 22

5.3 Configuration Activities in the PCo Management Console .. 23
5.3.1 Prerequisites ... 23
5.3.2 Defining Destination Systems.. 23
5.3.3 Creating and Configuring an Agent Instance ... 28 5.3.4

Defining the ENP as Destination of a Notification .. 30
5.3.5 Mapping of Modules and Variables .. 31

5.4 Troubleshooting .. 35
5.4.1 Naming Conflicts ... 35
5.4.2 Avoiding Thread Safety Problems ... 35

6 Sample	Customer-Owned	Enhancement	Implementation	..	36

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.3
4		 © 2019 SAP SE. All rights reserved. 	

6.1 Scenario.. 36
6.2 Implementation ... 36
6.3 Sample Coding ... 47

Table	of	Contents

1 Disclaimer		

Document classification for SAP Library: Customer

1.1 Coding Samples

Any software coding or code lines/strings ("code") included in this documentation are only examples and are not
intended to be used in a productive system environment. The code is only intended to better explain and visualize the
syntax and phrasing rules of certain coding. SAP does not warrant the correctness and completeness of the code given
herein, and SAP shall not be liable for errors or damages caused by the usage of the code, except if such damages were
caused by SAP intentionally or due to gross negligence.

1.2 Internet Hyperlinks

The SAP documentation may contain hyperlinks to the Internet. These hyperlinks are intended to serve as a hint where
to find supplementary documentation. SAP does not warrant the availability and correctness of such supplementary
documentation or the ability to serve for a particular purpose. SAP shall not be liable for any damages caused by the use
of such documentation unless such damages have been caused by SAP's gross negligence or willful misconduct.

1.3 Accessibility

The information contained in the SAP Library documentation represents SAP's current view of accessibility criteria as of
the date of publication; it is in no way intended to be a binding guideline on how to ensure accessibility of software
products. SAP specifically disclaims any liability with respect to this document and no contractual obligations or
commitments are formed either directly or indirectly by this document.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.3 Customer
© 2019 SAP SE. All rights reserved. 5

Disclaimer	

2 Overview		

With SAP Plant Connectivity (PCo), SAP provides a software component that enables the exchange of data between an
SAP system and the industry-specific standard data sources of different manufacturers, for example, process control
systems, plant Historian systems, and programmable logic controller (PLC) systems. With PCo, you can receive tags and
events from the connected source systems in production either automatically or upon request and forward them to the
connected SAP systems.

The Plant Connectivity component supports the following basic processes:

• Notification	process: The notification process enables you to monitor production facilities and record any sudden,
undesired events (such as rule violations or changes in measurement readings) and report them to a destination
system.

• Query	process: This process enables you to query specific source system tags from a destination system (such as
SAP MII). This data can then be displayed on a dashboard, for example.

Enhanced notification processing (ENP) enables you to flexibly control and document the data flow in production in
connection with various destination systems, for example, with Web services. In this way, you can connect a third-party
system (such as SAP ME) to PCo and transfer data from machine level to the desired SAP ME activity using Web service
calls. This makes it possible, for example, starting from PCo, to call a Web service provided by SAP ME, evaluate the
result of the call, and then, depending on the results of the Web service call, call an additional Web service or write data
back to a source system.

SAP delivers the standard enhancement Destination	System	Calls	with	Response	Processing for enhanced notification
processing with which you can execute one or multiple destination system calls and with which you can write back the
results of the calls to the data source of the agent instance or other agent instances. This covers the most common
requirements in communication between data sources of production and business systems.

If you want to implement requirements that go beyond the function scope of the SAP standard enhancement, you can
implement a customer-owned enhancement. PCo provides an interface for this purpose that you can implement. The
notification enhancement is mapped in the form of a destination system so that the enhancement is called as part of a
notification process.

Enhanced notification processing enables you to do the following:

• You can call one or more destination systems one after the other in any order. This might be, for example, a regular
Web service, a RESTful Web service, an SAP ESP destination, an OData destination, or an ODBC destination.

• You can call mass-enabled destination systems (for example, Web services) for multiple object instances, for
example, for multiple SFC numbers.

• You can assign the output expressions of a notification to the parameters of a Web service statically or dynamically.

• You can perform a program-controlled evaluation of the results of a destination system call and react to the results
accordingly.

• After a notification message is received, the destination system can send information to a specific agent and update,
for example, a tag value in the source system.

Note, that the ENP was called Customer-Specific	Logic	in PCo releases before 15.1.	

Overview

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.3
6		 © 2019 SAP SE. All rights reserved. 	

3 Prerequisites		

3.1 Technical Prerequisites

The following technical prerequisites are necessary in order to build a customer-owned enhancement for PCo
15.3:

• .NET Framework 4.7.2 or higher

• .NET development environment, for example, Microsoft Visual Studio 2017 Professional or higher.

3.2 Required Knowledge and Skills

• .NET development knowledge, preferably C#

• Knowledge in building and creating PCo agents �

Prerequisites	

Enhanced Notification Processing (ENP) in Plant Connectivity 15.3 Customer Architectural	Overview		 © 2019 SAP SE. All rights reserved. 7

4 Architectural	Overview		

4.1 Main Building Blocks

The following diagram shows the main building blocks of Plant Connectivity for a notification process and illustrates how
the ENP is embedded into the architecture.

Figure 1: Integration of the ENP Enhancement Implementation into Plant Connectivity 15.1

The existing process flow for a notification coming in from a source system is as follows:

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.3
8		 © 2019 SAP SE. All rights reserved. Architectural	Overview	

When a notification is received from a data source, an event is raised, and the notification manager takes care that a
notification message is built. The message is submitted to the destination system by the dispatcher through the
notification message queue so that reprocessing is possible in case of dispatching failures.

The ENP is hooked in as a special destination that is called by the dispatcher. The ENP destination forwards the
notification message to the enhancement implementation that implements the controller interface. The enhancement
implementation may at first execute a parsing method for the notification message in order to extract variables and their
actual values. Then a programmed sequence of steps can be executed; typically, these steps are synchronous calls of Web
services. The Web service calls are handled by the ENP framework that offers the service methods. The response of these
Web service calls is returned to the controller, interpreted, and can then be used to influence the further program flow
and to parameterize further Web service calls. The controller can also call back to the agent instance to write data back to
the source system or to read additional data from it. This feature makes it possible, for example, for machines to be
controlled based on a decision taken in SAP ME.

If the execution of the enhancement implementation fails, the message is kept in the notification message queue for
reprocessing. Since the processing sequence of Web service calls may be important, the notification message queue
provides exactly-once-in-order (EOIO) capability, meaning that notification messages are processed in exactly the same
sequence they were put into the queue.

PCo 15.1 supports enhancement implementations with the following features:

• A controller interface containing methods that allows you to retrieve module and enhancement variable names from
the enhancement implementation during design time

• An ENP framework containing helper methods for destination system calls, agent callbacks, tracing, and reading the
ENP configuration

• The integration of the controller interface call into the existing Plant Connectivity architecture by means of an ENP
destination

• Configuration possibilities of the enhancement through the Management Console

• Configurable exception handling, so that expected exceptions that occur inside the enhancement implementation do
not terminate the notification process

• Documentation and example implementations for the controller interface

4.2 Interfaces

In the architectural overview, the ENP was shown in the overall context of a notification scenario. Below is a drill down
into the ENP. The diagram below shows a class diagram of the CustomLogic project and its relationship to the
enhancement implementation. Note that the technical objects in PCo still carry the term CustomLogic in their names,
although the general concept has been renamed to Enhanced	Notification	Processing	(ENP) as of PCo
15.1.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.3 Customer Architectural	Overview		 © 2019 SAP SE. All rights reserved. 9

Figure 2: Class Diagram of the CustomLogic Project

The main part of the ENP logic is handled in the CustomLogic project. The ICustomLogic interface is the central
interface that allows the customer to implement his or her own logic to process machine events meaning, for example,
parsing of a file and calling SAP ME Web services. In addition to the ICustomLogic interface, there is an abstract class
CustomLogicBase that inherits from the ICustomLogic interface and provides some basic implementations. So it is
possible to inherit directly from the ICustomLogic interface or indirectly from the abstract class CustomLogicBase
to set up the enhancement implementation.

To facilitate the enhancement implementation, the ICustomLogic interface provides four references to interfaces that
offer service methods. These interfaces are:

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.3
10		 © 2019 SAP SE. All rights reserved. Architectural	Overview	

• IDestinationCallback
The interface encapsulates the call of a destination system.

• IAgentCallback
The interface offers read and write methods for tag query agents and additional methods for the File Monitor Agent.

• ICustomLogicConfiguration
The interface provides methods for reading the configuration of the enhanced notification processing destination.

• CustomLogicTracer
A service class that provides methods to trace messages and exceptions so that they appear in the log in the
Management Console.

Another central building block of the ENP is the CustomLogicDestination class. The
CustomLogicDestination class forms a special destination system type. It inherits, like all destination systems, from
the abstract class DestinationBase. This architecture enables notification messages to be sent to the
CustomLogicDestination class and to be processed within the class. So this class is the link between the standard
message processing and the ENP message processing in the notification process.

The CustomLogicDestination class sets up the environment for the enhancement implementation, meaning that the
CustomLogicDestination class calls the different factories (CustomLogicAdapterFactory and
CustomLogicConfigFactory classes) in order to create the instances of all relevant classes.

4.2.1 ICustomLogic Interface (Controller Interface)

The ICustomLogic interface contains the definition of how an enhancement implementation has to be implemented.
The interface provides an initialization method, two design time methods for the configuration of an enhancement
implementation, and one runtime method for processing notification messages.

4.2.1.1 Initialization

The Initialize method initializes the enhancement implementation with references to agent callbacks
(AgentCallback), destination callbacks (DestinationCallback), the enhancement implementation configuration
(CustomLogicConfiguration), and a tracer object for logging purposes (CustomLogicTracer). These references
should be kept as private members of the enhancement implementation. They have to be used in the notification message
processing in order to perform the enhanced notification processing actions.

4.2.1.2 Configuration Methods

In order to understand the use of the configuration methods in the ICustomLogic interface, the following diagram
illustrates how the implementation of the enhanced notification processing is linked to the configuration of the enhanced
notification processing:

Enhanced Notification Processing (ENP) in Plant Connectivity 15.3 Customer Architectural	Overview		 © 2019 SAP SE. All rights reserved. 11

Figure 3: Mapping of Modules and Variables of the ENP

The basic assumption is that the enhancement implementation is done on an abstract level, so that it can be used in
multiple PCo installations and destination systems within an enterprise. It is assumed that the enhancement
implementation is described by modules and enhancement variables.

The modules represent steps that are executed in the ENP. The modules are described by a set of input parameters and a
set of return parameters. Potential modules are Web service calls or agent calls respectively. The modules represent
wrappers for the concrete call of a Web service or an agent. They are an abstraction layer that allows communication with
the same type of destination system in a generic way. In order to call the concrete destination system, the module has to
be mapped to a concrete destination system call or a concrete agent call, and the module parameters have to be mapped
to the real module variables.

Parsing could be another process step of the enhanced notification processing. It usually converts machine parameters
into parameters of the enhancement. Parsing is an independent, stand-alone, local process step of the enhancement
implementation that does not require a wrapper or mapping.

The abstraction of the enhancement implementation is necessary for its reuse. The same implementation is potentially
applicable to many concrete processes. The individual processes may have different parameters, depending on the
location of the machine or device.

The ENP framework provides mapping of abstract modules to concrete destination system calls or agent calls
respectively. In order to call, for example, a concrete Web service that is preconfigured in the Web Service Destination or
to call a tag query agent, it is necessary to map the abstract module parameters to the concrete parameters of a Web
service call or an agent call.

The mapping has to be performed within the Management Console of SAP Plant Connectivity during design time. In order
to build a mapping dialog that fulfills the requirements described above, the ICustomLogic interface contains two
configuration methods. The GetLogicModules method has to be implemented to return the modules of the
enhancement implementation, and the GetCustomVariables method should return the enhancement variables of the
enhancement implementation.

Enhancement
Implementation

Configuration
Enhanced Notification Processing

Parse

Module 1

Module 2

Module 3

EnhVar 1

EnhVar 2

EnhVar 3

EnhVar 4

ENP Destination

Destination
System Call 1

Agent Call 1

Destination
System Call 2

DestSystemVar 1

DestSystemVar 2

Source System Tag 1

DestSystemVar 4

Mapping between modules and variables

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.3
12		 © 2019 SAP SE. All rights reserved. Architectural	Overview	

4.2.1.3 Processing of Notification Messages

The processing of the notification messages (for example, machine events) is realized with the enhancement
implementation of the Send method. This implementation represents a customer-owned process. Typically, the
implementation starts with a parsing process step in order to extract parameters from the notification message. In the
subsequent program flow, destination system calls or agent methods could be used to build the customerowned process.
The service methods of the ICustomLogic interface can be seen as a toolset to support the implementation of the ENP.

4.2.2 Custom-Logic Framework

The CustomLogic project, which is available as a dynamic link library (DLL) in the PCo installation folder, contains a
framework that provides classes and interfaces with service functions. Some of these service functions are available in the
enhancement implementation, and help to facilitate the implementation of the customer-owned processes. In addition,
there are factory classes available for internal use. The factory classes encapsulate creating instances of helper classes.

4.2.2.1 CustomLogicBase Class

The abstract class CustomLogicBase inherits from the ICustomLogic interface. The abstract class implements the
Initialize method of the ICustomLogic interface. In addition, it provides helper methods for tracing and Web
service calls including enhancement variable validation.

The class offers another option for inheriting from the ICustomLogic interface and provides some basic method
implementations for the customer-owned enhancement implementation.

4.2.2.2 DestinationCallback Class

The DestinationCallback class is a service class that allows communication with a destination system, for example, a
given Web Service Destination. On the destination system configuration screen in the PCo Management Console, the
destination system is preconfigured with constant values or variables, called destination system variables. These
variables are accessible from the enhancement implementation during message processing, after you have configured the
ENP destination as a destination system on the notification destination screen of the Management Console. The
destination system call should be realized by calling the CallModule method in the enhancement implementation.

For each destination system that is used in the enhancement implementation, an instance of the
IDestinationAdapter interface is created. The IDestinationAdapter interface is implemented in many of the
PCo destination system classes, for example, the WSDestination class that handles the Web service communication.
This implementation provides the destination system variables and the information as to whether a destination system
variable is an input or an output variable. This information is used to map the abstract enhancement variables of the
enhancement implementation to the destination system variables provided and to hand over the values for the
destination system variables to the destination system call.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.3 Customer Architectural	Overview		 © 2019 SAP SE. All rights reserved. 13

4.2.2.3 AgentCallback Class

The AgentCallback class is a service class that allows communication with different source systems represented by
their corresponding agent types (TagQueryAgent and FileMonitorAgent). The AgentCallback class offers a
restricted but simple interface for this purpose.

The following methods are available for the communication with different source systems:

• ReadQueryExecute (TagQueryAgent/FileMonitorAgent)
This method reads tag values for a list of specified tags.

• WriteQueryExecute (TagQueryAgent/FileMonitorAgent)
This method writes tag values for a list of specified tags at given time stamps.

• DeleteFileExecute (FileMonitorAgent)
This method deletes a file.

• RenameFileExecute (FileMonitorAgent)
This method renames a file.

• CopyFileExecute (FileMonitorAgent)
This method copies a file.

• AppendFileExecute (FileMonitorAgent)
This method appends a given content to a file.

4.2.2.4 CustomLogicConfiguration Class

The CustomLogicConfiguration class is a service class that provides the configuration of the enhancement
implementation. The class consists of the following methods:

• GetLogicModuleConfiguration
This method returns the mapping of the logic modules to destination systems or agent instances respectively.

• GetModuleVariables
This method returns the mapping of the destination system variables to the enhancement variables of the
enhancement implementation.

You maintain these mappings in the configuration of the ENP in the Management Console.

4.2.2.5 CustomLogicTracer Class

The CustomLogicTracer class is a service class that provides methods to trace messages and exceptions. The traced
messages appear with respect to the ‘CustomLogicDestination’ source in the PCo application log.

4.2.2.6 CustomLogic Factories

There are factory classesCustomLogicAdapterFactory and CustomLogicConfigFactory. The
CustomLogicAdapterFactory class provides the following factory methods:

• CreateCustomLogicDestination
This method creates an instance of the ICustomLogicDestination interface.

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.3
14		 © 2019 SAP SE. All rights reserved. Architectural	Overview	

• CreateDestinationCallback
This method creates an instance of the IDestinationCallback interface. Additionally the references to the
IDestinationAdapter interface are created.

• CreateDestinationAdapter
This method creates an instance of the IDestinationAdapter interface.

• CreateAgentCallback
This method creates an instance of the IAgentCallback interface.

• CreateCustomLogic
This method creates an instance of the ICustomLogic interface.

The CustomLogicConfigFactory class provides the following factory method:

• CreateCustomLogicConfig
This method creates an instance of the ICustomLogicConfiguration interface.

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
15		 © 2015 SAP SE. All rights reserved. -Owned	Enhancement	

5 How	to	Implement	a	Customer-Owned	
Enhancement		

5.1 Overview of Implementation Steps

The implementation of a customer-owned enhancement consists mainly of two parts:

1. Implementation activities in Microsoft Visual Studio:

o Create a class that implements the ICustomLogic interface.

o Create implementations of a parameter-less class constructor, and of the interface methods
GetLogicModules, GetCustomVariables, Initialize, and Send.

o Build an ENP DLL (dynamic link library) from your class.

2. Configuration activities in the PCo Management Console:

o Create destination systems for every destination system that you want to call from the customer-owned
enhancement implementation.

o Maintain the destination system settings and operation configuration in the destination system. o Define agent

instances for the source systems with which you want to communicate within the ENP. o Create an agent

instance, and link your ENP DLL to the agent instance. o Create a notification for this agent and define the ENP

as the destination of this notification.

o Maintain the mapping of modules, variables, and source system tags for the notification destination.

The following sections describe the individual activities in detail.

5.2 Implementation Activities in Microsoft Visual Studio

5.2.1 Prerequisites

To create a customer-owned enhancement, you require an integrated development environment for .NET development.
SAP recommends using Microsoft Visual Studio 2012 or higher. The following steps are explained by using screenshots
and settings from Microsoft Visual Studio 2012.

If you want to use an ENP DLL provided by a third party, you can skip this section and proceed directly to section 5.3. Note

that the DLL has to be built for .NET framework 4.0 with platform target Any	CPU. How	to	Implement	a	Customer

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
16		 © 2015 SAP SE. All rights reserved. How	to	Implement	a	Customer-Owned	Enhancement	

5.2.2 Create a Solution and an Implementing Class

First create a new solution for your implementation. Make sure you choose .NET	Framework	4.0. Use the Class	Library
template.

Figure 4: Create a New Solution

Then set the properties of your new project. On the Application Properties tab, check if the target framework is set to
.NET	Framework	4.0 and the output type is set to Class	Library.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer
Owned	Enhancement		 © 2015 SAP SE. All rights reserved. 17

How	to	Implement	a	Customer-

Figure 5: Application Properties

Make sure that the platform target is set to Any	CPU for all configurations.

Figure 6: Project Build Configuration

Now create a reference to the PCo Custom-Logic DLL for your project.

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
18		 © 2015 SAP SE. All rights reserved. How	to	Implement	a	Customer-Owned	Enhancement	

Figure 7: Adding References to Your Project

Choose Browse then select the CustomLogic.dll from the System subfolder of the PCo program folder. The References
branch of your project should now contain the reference to the CustomLogic.dll.

Figure 8: Required Project References

You now have a solution with an almost empty class, for example, Class1.cs, which could look as follows:
using System; using

System.Collections.Generic; using

System.Linq; using System.Text;

namespace PCoCustomerImplementation

{
 public class Class1

How	to	Implement	a	Customer-

 {

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer
Owned	Enhancement		 © 2015 SAP SE. All rights reserved. 19

 }

}

5.2.3 Implement Required Methods

In order to use your implementation as an enhancement implementation in PCo, you have to implement the
ICustomLogic interface within your class. Start by adding the using directive for the namespace
SAP.Manufacturing.CustomLogic to your code. Now your class coding could look as follows:

using System; using

System.Collections.Generic; using

System.Linq; using System.Text;

using

SAP.Manufacturing.CustomLogic;

namespace

PCoCustomerImplementation

{ public class Class1 :
ICustomLogic
 {
 }
}

Then implement the required interface methods. These methods are:

• A parameter-less constructor, for example, public Class1()

• Dictionary<string, Type> ICustomLogic.GetCustomVariables(Guid notificationID)

• Dictionary<string, ModuleType> ICustomLogic.GetLogicModules()

• void ICustomLogic.Initialize(IAgentCallback agentCallback, IDestinationCallback
destinationCallback, ICustomLogicConfiguration customLogicConfig, CustomLogicTracer
customLogicTracer)

• bool ICustomLogic.Send(CustomLogicNotificationMessage notification)

Visual Studio can assist you with creating the empty methods, except the constructor: Right-click on the interface name
ICustomLogic and choose Implement	Interface	>	Implement	Interface	Explicitly.

Now implement the individual methods:

GetLogicModules(): This method returns the list of agent and destination system call modules mapped to their
module types Agent	Call or Destination	System	Call. The modules appear later in the PCo Management Console in the
assignment of agent instances and destination systems to the ENP modules (see section 5.3.5.1). The method returns a
dictionary where the key is the module name, and the value is the module type. For example, in order to define the
modules Start, Complete, DataCollection, and AgentCall, you could write the following:

public Dictionary<string, ModuleType> ICustomLogic.GetLogicModules()

{

 Dictionary<string, ModuleType> modules =

new Dictionary<string, ModuleType>();

modules.Add("Start", ModuleType.Destination);

modules.Add("Complete", ModuleType.Destination);

modules.Add("DataCollection", ModuleType.Destination);

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
20		 © 2015 SAP SE. All rights reserved. How	to	Implement	a	Customer-Owned	Enhancement	

modules.Add("AgentCall", ModuleType.Agent);

return modules;

}

GetCustomVariables(): This method returns the list of enhancement variables mapped to their technical types. The
variables appear later in the PCo Management Console in the assignment of enhancement variables (see section 5.3.5.2).
The method returns a dictionary for which the key is the enhancement variable name, and the value is the technical type.
If you use more than one notification in your scenario you can evaluate the parameter notificationID and return
only those variables that belong to that specific notification. For example, in order to define the variables site,
operation, returnScrap, shopFloorControl, collectionParameters, resource, and revision, you
could write the following:

public Dictionary<string, Type> ICustomLogic.GetCustomVariables(Guid
notificationID)

{

 Dictionary<string, Type> variables = new Dictionary<string, Type>();

variables.Add("site", typeof(string)); variables.Add("operation",

typeof(string)); variables.Add("returnScrap", typeof(bool));

variables.Add("shopFloorControl", typeof(string));

variables.Add("collectionParameters", typeof(double[]));

variables.Add("resource", typeof(string));

variables.Add("revision", typeof(string)); return variables;

}

Initialize(): This method is called by the ENP destination when the agent instance is started. It receives references
to the agent callbacks, destination callbacks, the ENP configuration, and the tracer. The tracer object is used to write
messages to the agent log. You should keep the references in class member fields so that you can use them later in the
Send()method. For example:

public void ICustomLogic.Initialize(

 IAgentCallback agentCallback,

 IDestinationCallback destinationCallback,

 ICustomLogicConfiguration customLogicConfig,

 CustomLogicTracer customLogicTracer)

{ this.agentCallback = agentCallback;

this.destinationCallback = destinationCallback;

this.customLogicConfig = customLogicConfig;

this.customLogicTracer = customLogicTracer;

}

Send(): This method contains the ENP processing logic. Within this method, you can implement your parsing of input
data, destination system calls, and agent callbacks, for instance.

How	to	Implement	a	Customer-

5.2.4 Build the ENP DLL

After you have finished the implementation, you have to create the ENP DLL that is used later in the PCo

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer
Owned	Enhancement		 © 2015 SAP SE. All rights reserved. 21

Management Console. In Visual Studio, choose a configuration (for example, Debug or Release), then choose Build	
Solution. If the build was successful, you should find the ENP DLL in the output directory defined in the project
properties.

Figure 9: Check the Output Path for the ENP DLL

The resulting DLL is named <Project Name>.DLL, for example, PCoCustomerImplementation.dll

It is recommended that you copy the DLL into the System folder of the PCo installation. On Windows 32-Bit installation,
this folder is named <Installation	Drive>:\Program	Files\SAP\Plant	Connectivity\System, in 64-Bit systems <Installation	
Drive>:\Program	Files	(x86)\SAP\Plant	Connectivity\System. If the ENP DLL resides in a different folder, the dependent
PCo DLLs are duplicated into this folder once the ENP DLLs are loaded during the runtime of the Management Console.

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
22		 © 2015 SAP SE. All rights reserved. How	to	Implement	a	Customer-Owned	Enhancement	

5.3 Configuration Activities in the PCo Management Console

5.3.1 Prerequisites

Before you can configure the ENP, you create the ENP DLL as described in the previous section 5.2; in particular all of the methods
mentioned in section 5.2.3 have to be implemented. Alternatively, you could use a third-party DLL that implements a compatible
version of the ICustomLogic interface and is compiled for .NET framework
4.0 and platform target Any	CPU.

Furthermore, you have to define an agent instance based on a source system from which you receive the data that is to be processed
in the ENP. The source system can be configured as usual; there is nothing specific to be taken into account regarding the ENP.

5.3.2 Defining Destination Systems

Define a destination system for each destination system that you plan to call in your enhancement implementation. For example, for a
Web Service destination, enter the WSDL URL and the required authentication settings, and then retrieve the service information by
pressing Retrieve	Services.

Figure 10: Web Service Destination Configuration

5.3.2.1 Flat Variables

In your destination system, you can define destination system variables that will be used to pass request variables to the destination
system and fill response variables from the destination system at runtime.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer How	to	Implement	a	Customer-Owned	Enhancement	© 2015 SAP SE. All rights reserved.
23

For example, for a Web Service Destination, on the Operation	Configuration tab, you enter variables for those Web service fields that
are to be dynamically filled from the ENP. These variables are the destination system variables that will show up later in the ENP
configuration screens. To define destination system variables, select a service operation, select a Web service operation field, enter a
destination variable name in the Value column, and finally select the Variable checkbox. After you have done the variable mapping for
the request message, press Test	Request	Message. A popup appears where you enter values for the request destination variables.
Then the Web service operation is called with these parameters.

Figure 11: Mapping of Flat Variables

If the call was successful, you can continue with defining response variables and calculated variables on the Response	Message	
Configuration tab.

5.3.2.2 One-Dimensional Arrays

In some cases, you want to call a Web service operation for multiple business documents. For example, you want to call the SAP ME
Web service Start for multiple SFCs. You have two possibilities to model this.

One possibility is to call the Web service for a fixed number of documents. In this case, you press the Create	Array button next to an
array field (for example, SfcRequest), and create an array	with	a	fixed	size:

Figure 12: Create Array

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
24		 © 2015 SAP SE. All rights reserved. How	to	Implement	a	Customer-Owned	Enhancement	

When you are prompted to enter the array size, enter a numeric value, for example, 3.

Figure 13: Declare an Array of Fixed Size

Then a fixed number of document nodes are created.

Figure 14: An Array with a Fixed Size

Variable-inside arrays with a fixed size require unique variable names. For example, the Site variable inside SfcRequest 0 could be
named SITE0, whereas the Site variable inside SfcRequest 1 would need to be named differently, for example, SITE1.

Another possibility is to use arrays with	a	dynamic	size. In order to define a dynamic array, declare an index variable instead of a
fixed size. The index variable is a nonnumeric character. Enter the index variable instead of a numeric value when you are prompted
for the array size, for example:

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
25		 © 2015 SAP SE. All rights reserved. How	to	Implement	a	Customer	 	

Figure 15: Declare an Index Variable for an Array with a Dynamic Size

A subnode with the name of the index variable is created:

Figure 16: An Array with a Dynamic Size

An indexed variable inside the array would then be named <Variable Name>[<index variable>], for example, SFC[k].

Figure 17: How to Declare an Indexed Variable

If you want to address array	variables	in	response	messages, you can do the following. Declare an index variable for the direct
subnode of the array field, for example: For the subnode 0 of StartResponseSFC[], declare the

-Owned	Enhancement

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
26		 © 2015 SAP SE. All rights reserved. How	to	Implement	a	Customer-Owned	Enhancement	

index variable m in the column Variable	Name. Then you can address an array variable as <Variable Name>[<index
variable>], for example: SFC[m].

Figure 18: Array Variables in Response Mapping

5.3.2.3 Two-Dimensional Arrays

You can define arrays	of	up	to	two	dimensions. For example, a one dimensional array NcLog[] with index variable m has another
arrayNcCustomData[] with index variable n inside. So a variable for Location with one dimension m could be named LOC[m],
whereas a two-dimensional variable inside NcCustomData[] variable could be named TEXT[m][n].

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer How	to	Implement	a	Customer-Owned	Enhancement	© 2015 SAP SE. All rights reserved.
27

Figure 19: Two-Dimensional Arrays

5.3.3 Creating and Configuring an Agent Instance

Create a source system from where you would like to obtain data tags. Then create an agent instance for the source system. For the
ENP it is recommended that you use the agent option Process	Notification	Messages	Exactly	Once	in	Order for notification messages on
the Host tab. Otherwise, it is not guaranteed that notification messages are processed in exactly the same order in which they came
from the source system.

On agent instance level, you define which enhancement implementation is to be used. Go to the Notification	Processing tab	on agent
instance level, select Customer-Owned	Enhancement, and browse for the ENP DLL.

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
28		 © 2015 SAP SE. All rights reserved. How	to	Implement	a	Customer-Owned	Enhancement	

Figure 20: Browse for the enhanced notification processing

The system only accepts DLLs that implement the ICustomLogic interface (see section 5.2).

If there is only one class in the DLL that implements ICustomLogic, the system automatically proposes this class in the
corresponding field. Otherwise, select the desired class from the dropdown box. Use the Reset button to undo the configuration of
DLL and class.

The ENP is hooked in as a special destination system into the Plant Connectivity framework (see the sections about architecture).
Therefore, you have to create a destination system for the ENP. You do this by clicking on the corresponding button on the
Configuration tab.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer How	to	Implement	a	Customer-Owned	Enhancement	© 2015 SAP SE. All rights reserved.
29

Figure 21: Create Destination System for the ENP

The ENP destination system technically behaves like other destination systems but is not displayed in the list of destination systems
in the Management Console. Once the destination system is created, you receive a corresponding message and a flag informs you
about its existence. You can only delete the ENP destination system if it is not in use as a destination of a notification.

Figure 22: Created ENP Destination System

5.3.4 Defining the ENP as Destination of a Notification

Create a static or a versioned notification for the agent instance you created previously:

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
30		 © 2015 SAP SE. All rights reserved. How	to	Implement	a	Customer-Owned	Enhancement	

Figure 23: Add Notification to the Agent Instance

Select the notification, change to the Destinations tab, and add a destination to this notification. The /Enhanced	Notification	Processing
destination is offered in the dropdown box at the beginning of the list of all available destinations.

Figure 24: Adding a Destination to a Notification

5.3.5 Mapping of Modules and Variables

5.3.5.1 Mapping of Modules

Click on the Module	and	Variable	Assignment tree node to access the configuration screen of the notification destination for modules
and variables.

Owned	Enhancement

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer How	to	Implement	a	Customer-	© 2015 SAP SE. All rights reserved. 31

Figure 25: Open the Module and Variable Assignment Screen

In the table at the top of this screen, you can assign the destination systems and agents to the modules you defined in the
enhancement implementation (see section 5.2.3). You can choose the destination system or agent by clicking on the corresponding
dropdown box. The system only shows destination systems that are prepared to interact with the ENP.

5.3.5.2 Assignment of Enhancement Variables

Once you have selected a destination system in the module mapping part of the screen, the system shows you the destination system
variables that you defined for your destination system.

Figure 26: Assigning Enhancement Variables to Destination Variables

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
32		 © 2015 SAP SE. All rights reserved. How	to	Implement	a	Customer-Owned	Enhancement	

The system only displays the enhancement variables that you defined in your interface implementation (see section 5.2.3). You can
only assign enhancement variables to destination system variables with matching data types. Enhancement variables with data types
that do not match are not displayed by the system.

Note: The Web Service destination allows the definition of calculated variables. With calculated variables, you can convert the data
type of Web Service response variables to the data types of enhancement variables.

5.3.5.3 Mapping of Source System Tags

After assigning an agent instance to an agent call module, you can browse for tags and assign them to enhancement variables. You can
then, for example, write the contents of enhancement variables back to data tags of the source system. Change to the Source	System	
Tags tab and insert or append a new row. Select an agent instance module from the dropdown box and start the browsing dialog.

Figure 27: Start the Browsing Dialog for Tags of an Agent

Owned	Enhancement

Select one or more tags from the tree and choose Add	Selected	Items.	

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer How	to	Implement	a	Customer-	© 2015 SAP SE. All rights reserved. 33

Figure 28: Browsing for Tags

When you close the browsing window with OK, the selected tags are copied into the configuration window. If you selected multiple
tags, the system creates new rows accordingly. Assign the correct enhancement variables by choosing them from the dropdown box.

Figure 29: Assign Enhancement Variables to Source SystemTags

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
34		 © 2015 SAP SE. All rights reserved. How	to	Implement	a	Customer-Owned	Enhancement	

Note that the correct data type for the enhancement variable can only be determined immediately after browsing the tags. If you do
not assign variables before leaving the screen, the rows without variable assignment cannot be configured later. In this case, delete
the rows without data type information or browse again for tags.

5.4 Troubleshooting

5.4.1 Naming Conflicts

If the names or data types of modules and variables are changed after you have configured them in the
Management Console, you may receive a warning message if you enter the configuration dialog again. The system automatically
removes invalid configurations and allows you to correct the configuration.

5.4.2 Avoiding Thread Safety Problems

Unless you chose the option Process	Notification	Messages	Exactly	Once	in	Order in the agent instance configuration, the Send method
of the ICustomLogic interface is called by different parallel dispatching threads. These parallel threads use the same instance of the
class that implement the enhancement. Therefore global class attributes are used by all threads, which can cause unpredictable
effects. It is recommended that you use local variables in the Send method only, except for references to agent callbacks, destination
callbacks, ENP configuration, and the tracer. If access to global class attributes is unavoidable, try to enclose the coding parts with the
keyword lock.

Owned	Enhancement

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer Sample	Customer-Owned	Enhancement	Implementation		 © 2015 SAP SE. All
rights reserved. 35

6 Sample	Customer-Owned	Enhancement	
Implementation			

6.1 Scenario

The sample customer-owned enhancement implementation that is described in this section demonstrates how to call a
Web service from the PCo ENP. The goal is to realize a simple Web service call with as few technical prerequisites as
possible. This means that you do not have to have an SAP ME system in place, for example. The implementation calls a free
SOAP Web service instead, which is the CDYNE	Weather Web service that provides you with weather information in the
United States. For more information about the CDYNE Weather Web service, see
http://wiki.cdyne.com/index.php/CDYNE_Weather.

We use the service operation GetCityWeatherByZIP that returns the up-to-date weather information for a city in the
United States identified by its ZIP code. The ZIP code is contained in an XML input file that is passed to the enhancement
implementation by a PCo File Monitor Agent. We then read the weather information from an output file created by the
enhancement implementation.

To run the sample implementation properly, you need to be connected to the Internet to call the CDYNE Web service.

6.2 Implementation

As described in section 5, the implementation involves coding and configuration activities. We start with the coding
activities in Visual Studio (see section 5.2).

1. Start Visual Studio, choose File	>	New	>	Project, and create a new solution named Weather. Choose .NET
Framework 4.0. Use the Class	Library template.

http://wiki.cdyne.com/index.php/CDYNE_Weather
http://wiki.cdyne.com/index.php/CDYNE_Weather
http://wiki.cdyne.com/index.php/CDYNE_Weather

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
36		 © 2015 SAP SE. All rights reserved. Sample	Customer-Owned	Enhancement	Implementation	

Figure 30: Create a New Solution

2. Set the properties of your project Weather. In the Build section, choose Configurations: All Configurations,
and set Platform	target to Any CPU.

Figure 31: Set the Build Configuration of Your Project

Create a reference to the PCo ENP DLL. In the solution explorer, right-click on the References folder below the project
Weather, choose Add	Reference, go to the Browse tab, and choose the CustomLogic.dll from the System subfolder of the
PCo program folder.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer Sample	Customer-Owned	Enhancement	Implementation		 © 2015 SAP SE. All
rights reserved. 37

The References branch of your project should now contain the reference to CustomLogic.

Figure 32: Project References

3. Copy the complete coding of section 0 into the Class1.cs file.

Let us analyze the coding briefly before we continue with the implementation.

The first region Internal constants for modules, variables, and others contains definitions of
constants for the ENP module names, enhancement variable names, destination system variable names, notification
message output expression, and the XML tags used in the input file. It is good practice to use constants for the names
later on in the coding rather than literals, since some of the names are used multiple times.

The Weather class, which implements the ICustomLogic interface, resides in the second region Customer-
Owned implementation of the ICustomLogic interface. The Weather class declares some private
member attributes that are used to keep references to the agent callback, destination callback, ENP configuration data,
and the tracer. All of these references are passed to the ENP in the Initialize()method. You can use the tracer object
to write messages into the agent log. In addition, two dictionaries are declared that keep the module and enhancement
variable names.

Inside the Weather class, the Public interface methods to be defined region keeps the implementation of
the public interface methods. The first public method is the parameter-less class constructor where the dictionaries for
enhancement modules and variables are filled. The constructor calls the private methods initLogicModulesSet()
and initVariablesSet().

In method initLogicModulesSet(), we define a destination system call module named
DestinationCallGetWeatherByZIP and an agent call module AgentCallbackCdyneWeather.

In method initVariablesSet(), we define one enhancement variable for the request message (RequestZipCode)
and three enhancement variables for the message response (ResponseSuccess, ResponseTemperature, and
ResponseCity).

In the next public method Initialize(),we receive references that we copy to the class members agentCallback,
destinationCallback, enhancementConfig, and enhancementTracer for later use. Initialize() is called
when the agent is started.

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
38		 © 2015 SAP SE. All rights reserved. Sample	Customer-Owned	Enhancement	Implementation	

The two public methods GetLogicModules() and GetCustomVariables() just pass the module and enhancement
variable dictionaries to the caller. The caller could be the PCo management console during design time or the ENP
framework during runtime.

The public method Send() holds the processing sequence of your customer-owned enhancement implementation. It is
called when a notification message is to be delivered to the Web Service Destination. Here you could parse the contents of
a notification message, map information from the notification message to Web service fields, call Web services or other
destination systems, analyze the destination systems responses, or write information back to the agent.

Our implementation performs the following steps:

1. Extract	the	ZIP	code	from	the	notification	message. Since we are using a FileMonitorAgent (see below), the
notification message contains the complete content of the input file. In the input file, the ZIP code is enclosed in
XML tags. Therefore an XML reader is used to extract the ZIP code from the input file.

2. Call	the	Web	service. First we retrieve the destination system variables from the ENP configuration, then we
build the destinationVariableValues dictionary where we assign the ZIP code value to the destination
system variable RequestZipCode. Finally, we call the Web service operation.

3. Evaluate	the	Web	service	response	and	create	the	output	file. The Web service response is enclosed in the
result dictionary. This dictionary contains the destination system response variables
(ResponseSuccess, ResponseTemperature, and ResponseCity) as keys together with their values.
These response values are written to a file named weather.txt in the Desktop folder of your local file
system.

If you passed a valid ZIP code (for example, 12345) to the Web service operation and if the call was successful, a
message like this is written to the file:

11.07.2012 11:55:12: Weather for 12345 Schenectady: Temperature 75F

Otherwise, for an invalid ZIP code like 11111, the file contains a message like this:
11.07.2012 11:55:12: Invalid ZIP code 11111

The output file is created using the AppendFileExecute() method of the agent callback reference. Before
creating the output, we delete an existing file using the DeleteFileExecute() method of the agent callback.

Now we continue with the implementation.

4. After you have implemented the coding correctly, you have to build the ENP DLL. In order to do that, choose Build	>	
Build	Solution in Visual Studio. Check the output path of your build configuration. This is where you should find your
ENP DLL weather.dll.

For DLLs that are to be used in production, SAP recommends copying the DLL into the System folder of the PCo
installation. For our test example, we can keep the DLL where it is, and reference to the current path later on in the
agent configuration.

We have finished the implementation part in Visual Studio. Now open the Plant Connectivity Management Console and
start configuring a Web Service Destination and an agent instance. Remember that we want to read an XML file from a
directory that is monitored by a File Monitor Agent.

5. On your local file system, create two directories, preferably on your Windows Desktop. Name the first folder
FileMonitorFolder and the second folder FileMonitorFolderProcessed.

6. Create a new source system of connection type File Monitor Agent. Set the agent properties as follows:

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer Sample	Customer-Owned	Enhancement	Implementation		 © 2015 SAP SE. All
rights reserved. 39

Figure 33: File Monitor Agent Configuration

You can leave the other tabs Authentication, Aliases, and Reliability with their default settings.

7. Create a destination system of type Web Service Destination. Enter the following URL to the WSDL of the Web
service:
http://wsf.cdyne.com/WeatherWS/Weather.asmx?wsdl

No authentication is required for the CDYNE weather service. Then press Retrieve	Services. If the CDYNE weather
service could be contacted, the available endpoint URL and service name should be displayed in the table Service	
Bindings. Save the new destination system before you proceed.

Figure 34: Web Service Destination Server Settings
8. Now do the destination variable mapping. Change to the Operation	Configuration tab of the new destination system,

and select the service operation GetCityWeatherByZIP. Then click Create	Request	Message. Remember that we
defined the following destination variable names in our implementation coding:

internal struct DestinationVariableNames

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
40		 © 2015 SAP SE. All rights reserved. Sample	Customer-Owned	Enhancement	Implementation	

 { internal const string RequestZipCode =

"ZIPCODE"; internal const string ResponseSuccess =

"SUCCESS"; internal const string

ResponseTemperature = "TEMP"; internal const string

ResponseCity = "CITY";

 }

So we use the same variables in the variable mapping configuration UI. First do the mapping of the ZIP field of the
Web service request message to the destination variable name ZIPCODE. Do not forget to select the Variable
checkbox. Check if the destination variable ZIPCODE appears in the list of variables.

Figure 35: Web Service Destination Request Message Configuration

Before you do the response message configuration, you have to press Test	Request	Message. When you are prompted
for a ZIP code, enter a valid United States ZIP code, such as 12345, and then press OK.

Figure 36: Test Your Request Message

You should now see a list of response message field names. Assign the destination variables SUCCESS,

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer Sample	Customer-Owned	Enhancement	Implementation		 © 2015 SAP SE. All
rights reserved. 41

TEMP, and CITY to the corresponding response field names. Check if these three destination variables appear in the list
of variables.

Figure 37: Web Service Destination Response Message Configuration

Now the destination system configuration is done. Save the destination system before you proceed.

9. Create an agent instance for the source system. On the Host tab, make the required settings for the execution of the
agent service. Enter your own service user name and password to ensure that the output weather file is written into
your Desktop folder. Set the Log	Level to Verbose.

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
42		 © 2015 SAP SE. All rights reserved. Sample	Customer-Owned	Enhancement	Implementation	

Figure 38: Agent Configuration

10. Go to the Subscription	Items tab of your agent instance. Add the subscription item ReceiveDataFileContent
that is provided by the File Monitor Agent.

Figure 39: Add a Subscription Item to the Agent

11. Go to the Notification	Processing tab of your agent instance. Select the Process	Notification	Messages	Exactly	
Once	in	Order option. Select Customer-Owned	Enhancement, and then enter the path to your ENP DLL in the Dynamic	
Link	Library field. After doing that, the Weather.Weather class should be displayed in the Class field. If there is no
class displayed, you probably chose a DLL that does not implement the ICustomLogic interface.

Then press Create	Destination	System. A destination system is created from your DLL. The status should be
Destination	system	created.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer Sample	Customer-Owned	Enhancement	Implementation		 © 2015 SAP SE. All
rights reserved. 43

Figure 40: Link the ENP DLL

12. Add a static notification to your agent instance. Change to the Output tab of the notification, and add the subscription
item to the expression list by pressing Generate	Expressions.

Figure 41: Choose an Output Expression

Remember that we defined a constant for this expression in our implementation.
internal struct NotificationOutputExpressionNames

 { internal const string NotifMsgContent =

"ReceiveDataFileContent";

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
44		 © 2015 SAP SE. All rights reserved. Sample	Customer-Owned	Enhancement	Implementation	

 }

Therefore, the output expression has to be named ReceiveDataFileContent, too.

13. Go to the Destinations tab of the notification. Add the destination system name /Enhanced Notification
Processing to your notification. Then do the module and variable assignments. Here the enhanced notification
processing module and variable names that you defined in your implementation as well as the destination system and
agent instance come into play.

First assign your Web Service destination system and your agent instance to the agent and destination system call
modules, for example:

Figure 42: Assign Agent and Destination System Call Modules

Then do the assignment of destination variables to the enhancement variables that you defined in your
implementation. You do not have to maintain source system tags for this scenario.

Figure 43: Assign Enhancement Variables

Finally save your agent configuration.

Now you have concluded all the implementation and configuration tasks. Start the agent instance and see if it runs. Of
course, there is no notification message sent to the enhancement implementation, since you have not yet moved an XML
file to the File Monitor Agent folder. But a running agent at this point in time indicates that you carried out the
configuration correctly.

Customer
45		 © 2015 SAP SE. All rights reserved. Sample	Customer-	 	

14. Create an XML file that contains the ZIP code. First create the file outside the FileMonitorFolder folder. Use a
common text editor, such as Microsoft Notepad, and create a text file with an arbitrary name (for example,
ZIP.txt). Copy the following text to the file:
<ZIP>12345</ZIP>

As you can see, the ZIP code 12345 is enclosed in two tags <ZIP> and </ZIP>. Remember that we defined a
constant for the tag ZIP in our implementation.
internal struct XMLTags

 { internal const string ZIP =

"ZIP";

 }

So we have to use the ZIP tag in our XML file, too. Save the file.

15. Now move the XML to the FileMonitorFolder folder. The File Monitor Agent should now start processing the
file and move it to the FileMonitorFolderProcessed folder afterwards. The agent then passes the contents of
the XML file to the ENP as a notification message where it is processed according to the enhancement
implementation. If everything went well, you should find a weather.txt file on your Windows Desktop after a few
seconds. Open the file and check if it contains the weather information, for example:

09.06.2015 06:17:16: Weather for 12345 Schenectady: Temperature 45F

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
46		 © 2015 SAP SE. All rights reserved. Sample	Customer-Owned	Enhancement	Implementation	

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
Owned	Enhancement	Implementation

6.3 Sample Coding

This is the complete coding of the Class1.cs file that is used for the sample implementation:

using System; using System.Collections.Generic; using

System.Text; using System.Diagnostics; using

SAP.Manufacturing.CustomLogic; using System.Xml; using

System.IO;

namespace Weather

{

 #region Internal constants for modules, variables, and others

 /// <summary>

 /// Definition of agent and destination system call module names. These /// are the modules that

appear in the "Module and Variable Assignment" /// view inside the notification destination screen.

 /// </summary> internal struct CustLogicModuleNames

 {

 internal const string DestinationCall = "DestinationCallGetWeatherByZIP"; internal const string

AgentCallback = "AgentCallbackCdyneWeather";

 }

 /// <summary>

 /// Definition of enhancement variables. These are the variables that appear

 /// in the "Module and Variable Assignment" view inside the notification /// destination screen.

/// </summary> internal struct CustLogicVariableNames

 {

 internal const string RequestZipCode = "RequestZipCode"; internal const string

ResponseSuccess = "ResponseSuccess"; internal const string ResponseTemperature =

"ResponseTemperature"; internal const string ResponseCity = "ResponseCity";

 }

 /// <summary>

 /// Constants for the destination system variables. Use the same values

 /// in the "Module and Variable Assignment" view inside the notification

 /// destination screen, and in the web service destination request and /// response message configuration screen.

 /// </summary> internal struct DestinationVariableNames

 {

 internal const string RequestZipCode = "ZIPCODE"; internal const string ResponseSuccess =

"SUCCESS"; internal const string ResponseTemperature = "TEMP"; internal const string

ResponseCity = "CITY";

 }

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer Sample	Customer-Owned	Enhancement	Implementation		 © 2015 SAP SE. All
rights reserved. 47

 /// <summary>

 /// Constants that represent the output expression that are shown in the /// notification output tab. ///

</summary> internal struct NotificationOutputExpressionNames

 {

 internal const string NotifMsgContent = "ReceiveDataFileContent";

 }

 /// <summary>

 /// Constants for the tags in the input XML file

 /// </summary> internal struct XMLTags

 {

 internal const string ZIP = "ZIP";

 }

 #endregion

 #region Customer-owned implementation of the ICustomLogic interface

 /// <summary>

 /// Customer-owned implementation of the ICustomLogic interface.

 /// </summary> class Weather : ICustomLogic

 {

 private IAgentCallback agentCallback; private IDestinationCallback destinationCallback;

private ICustomLogicConfiguration enhancementConfig; private CustomLogicTracer

enhancementTracer;

 private Dictionary<string, ModuleType> modules; private

Dictionary<string, Type> enhancementVariables;

 // ==

 #region Public interface methods to be defined

 /// <summary>

 /// The default constructor required for the instantiation.

 /// </summary> public

Weather()

 {

 this.modules = this.initLogicModulesSet(); this.enhancementVariables =

this.initVariablesSet();

 }

 /// <summary>

 /// Initialize the enhancement with a reference to the agent callback, /// destination

callback, enhancement variable configuration, and a tracer /// (logging) instance.

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
48		 © 2015 SAP SE. All rights reserved. Sample	Customer-Owned	Enhancement	Implementation	

 /// </summary>

 /// <param name="agentCallback">Agent callback</param>

 /// <param name="destinationCallback">Destination callback</param>

 /// <param name="enhancementConfig">Enhancement configuration</param> /// <param

name="enhancementTracer">Tracer instance for logging</param> void ICustomLogic.Initialize(

 IAgentCallback agentCallback,

 IDestinationCallback destinationCallback,

 ICustomLogicConfiguration enhancementConfig,

 CustomLogicTracer enhancementTracer)

 {

 this.agentCallback = agentCallback; this.destinationCallback =

destinationCallback; this.enhancementConfig = enhancementConfig;

this.enhancementTracer = enhancementTracer;

 }

 /// <summary>

 /// Returns the module names which identify used logic modules (agents

 /// or destinations). This method is called during the design time by the

 /// configuration dialog of the Management Console.

 /// </summary>

 /// <returns>Map of module names to their types</returns>

 Dictionary<string, ModuleType> ICustomLogic.GetLogicModules()

 {

 return this.modules;

 }

 /// <summary>

 /// Returns a map of enhancement variables to their types. Each variable

 /// can be mapped to destination system variables for the destination call.

 /// The key in the map is the name of the enhancement variable, and the /// value is the data type of the

variable.

 /// </summary>

 /// <param name="notificationID">Notification ID. Should be evaluated if the

 /// scenario contains more than one notification. In such a case, only the

 /// variables that belong to that specific notification should be

 /// returned</param>

 /// <returns>Map of enhancement variables to their types</returns>

 Dictionary<string, Type> ICustomLogic.GetCustomVariables(Guid notificationID)

 {

 return this.enhancementVariables;

 }

 /// <summary>

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer Sample	Customer-Owned	Enhancement	Implementation		 © 2015 SAP SE. All
rights reserved. 49

 /// Synchronuous method which processes the notification message raised /// by the agent. The user's code

resides within this implemented method.

 /// </summary>

 /// <param name="notification">Notification message</param> /// <returns>True if the processing

was successful</returns> bool ICustomLogic.Send(CustomLogicNotificationMessage notification)

 {

 Dictionary<string, object> enhancementVariableValues = new Dictionary<string,

object>();

 // --

 // Extract the ZIP code from the notification message

 // The notification message content has to have the

 // format

 //

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
50		 © 2015 SAP SE. All rights reserved. Sample	Customer-Owned	Enhancement	Implementation	

 // <ZIP>[ZIP Code]</ZIP>, e.g. <ZIP>12345</ZIP>

 //

 // The ZIP code has to be a valid US postal code.

 // -- try

 {

 this.enhancementTracer.TraceMessage(

 TraceEventType.Verbose, "Parse the notification message");

 string inputXML = notification.DataItems[

 NotificationOutputExpressionNames.NotifMsgContent

].Value.ToString();

 XmlReader reader = XmlReader.Create(new StringReader(inputXML)); bool startZip = false;

 while (reader.Read())

 {

 switch (reader.NodeType)

 {

 case XmlNodeType.Element:

 if (reader.Name.Equals(XMLTags.ZIP))

 startZip = true; break;

 case XmlNodeType.Text: if (startZip == true)

 enhancementVariableValues.Add(

 CustLogicVariableNames.RequestZipCode,

reader.Value.ToString()); break;

 case XmlNodeType.EndElement:

 if (reader.Name.Equals(XMLTags.ZIP))

 startZip = false; break;

 }

 }

 }

 catch (Exception x)

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
Owned	Enhancement	Implementation

 {

 this.enhancementTracer.TraceException(

TraceEventType.Error, x.Message, x);

this.enhancementTracer.TraceMessage(TraceEventType.Error,

 "Parsing failed. Check if the output value 'ReceiveDataFileContent' is spelled correctly, and if the input file is
well formatted."); throw new CustomLogicException("Parsing failed");

Customer
Sample	Customer-	 		 © 2015 SAP SE. All rights reserved. 51

 }

 // ---

 // Call the destination system (= web service)

 // ---

Dictionary<string, object> result = null;

try

 {

 this.enhancementTracer.TraceMessage(TraceEventType.Verbose,

 "Call web service");

 // Get the destination system variables and their value for parametric

 ///web service call

 Dictionary<string, object> destinationSystemVariableValues

 = new Dictionary<string, object>();

 Dictionary<string, string> variableMap

 = enhancementConfig.GetModuleVariables(

notification.NotificationDestinationID,

 CustLogicModuleNames.DestinationCall);

 foreach (string destinationSystemVariable in variableMap.Keys)

 {

 if (destinationSystemVariable ==

 DestinationVariableNames.RequestZipCode)

 {

 destinationSystemVariableValues.Add(

variableMap[destinationSystemVariable], enhancementVariableValues[

variableMap[destinationSystemVariable]]);

 }

 }

 result = this.destinationCallback.CallModule(

 CustLogicModuleNames.DestinationCall,

 notification,

 destinationSystemVariableValues);

 }

 catch

 {

 result = null;

 }

 if (result == null)

 {

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
52		 © 2015 SAP SE. All rights reserved. Sample	Customer-Owned	Enhancement	Implementation	

 this.enhancementTracer.TraceMessage(TraceEventType.Verbose,

 "Web service call failed"); throw new CustomLogicException("Web service call failed");

 }

 // ---

 // Evaluate the destination system response and create the output file

 // --- List<QueryMessage> queryMsg;

 string path =

 Environment.GetFolderPath(Environment.SpecialFolder.Desktop)

 + "\\weather.txt";

 bool success = false; string city = ""; string

temp = "";

 try

 {

 city = result[CustLogicVariableNames.ResponseCity].ToString(); temp =

result[CustLogicVariableNames.ResponseTemperature].

 ToString();

 success = (bool)result[CustLogicVariableNames.ResponseSuccess];

 }

 catch

 {

 success = false;

 }

 string outtext = "";

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
Owned	Enhancement	Implementation

 if (success == true) outtext =

String.Format(

 "{0}: Weather for {1} {2}: Temperature {3}F\n",

DateTime.UtcNow.ToString(), enhancementVariableValues[

 CustLogicVariableNames.RequestZipCode],

city, temp); else

 outtext = String.Format(

 "{0}: Invalid ZIP code {1}.\n", DateTime.UtcNow.ToString(),

enhancementVariableValues[

 CustLogicVariableNames.RequestZipCode]);

 Dictionary<string, LogicModuleStruct> custLogicModuleConfig =

this.enhancementConfig.GetLogicModuleConfiguration(notification.NotificationDestinationID);

Customer
Sample	Customer-	 		 © 2015 SAP SE. All rights reserved. 53

 this.agentCallback.DeleteFileExecute(custLogicModuleConfig[

 CustLogicModuleNames.AgentCallback].agentName, path,

out queryMsg); this.agentCallback.AppendFileExecute(

custLogicModuleConfig[

 CustLogicModuleNames.AgentCallback].agentName, path,

outtext, out queryMsg);

 return true;

 }

 #endregion

 // ==

 #region Private helper methods

 /// <summary>

 /// Map module names to their types.

 /// </summary>

 /// <returns>Map of modules names to their types.</returns> private Dictionary<string,

ModuleType> initLogicModulesSet()

 {

 Dictionary<string, ModuleType> modules = new Dictionary<string,

ModuleType>();

 modules.Add(

 CustLogicModuleNames.DestinationCall,

ModuleType.Destination); modules.Add(

 CustLogicModuleNames.AgentCallback,

 ModuleType.Agent);

 return modules;

 }

 /// <summary>

 /// Map custom-logic variables to their types.

 /// </summary>

 /// <returns>Map of enhancement variables to their types.</returns> private Dictionary<string, Type>

initVariablesSet()

 {

 Dictionary<string, Type> enhancementVariables = new Dictionary<string,

Type>();

 enhancementVariables.Add(CustLogicVariableNames.RequestZipCode, typeof(string));

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
54		 © 2015 SAP SE. All rights reserved. Sample	Customer-Owned	Enhancement	Implementation	

 enhancementVariables.Add(CustLogicVariableNames.ResponseSuccess, typeof(bool));

 enhancementVariables.Add(CustLogicVariableNames.ResponseTemperature, typeof(string));

 enhancementVariables.Add(CustLogicVariableNames.ResponseCity, typeof(string));

return enhancementVariables;

 }

 #endregion

 }

 #endregion

}

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
Owned	Enhancement	Implementation

www.sap.com/contactsap 	

Material	Number 	

© 2015 SAP SE . All rights reserv ed.
No part of this publication may be reproduced or transmitted in any
form or for any purpose without the express permission of SAP AG.
The information contained herein may be changed without prior
notice.
Some software products marketed by SAP AG and its distributors
contain proprietary software components of other software
vendors.
Microsoft, Windows, Excel, Outlook, and PowerPoint are registered
trademarks of Microsoft Corpor ation.
IBM, DB2, DB2 Universal Database, System ads, System i5, System
p, System p5, System x, System z, System z10, System z9, z10, z9,
iSeries, pSeries, xSeries, zSeries, eServer, z/VM, z/OS, i5/OS,
S/390, OS/390, OS/400, AS/400, S/390 Parallel Enterpris e
Server, PowerVM, Power Architecture, POWER6+, POWER6,
POWER5+, POWER5, POWER, OpenPower, PowerPC, BatchPipes,
BladeCenter, System Storage, GPFS, HACMP, RETAIN, DB2
Connect, RACF, Redbooks, OS/2, Parallel Sysplex, MVS/ESA, AIX,
Intelligent Miner, WebSpher e, Netfinity, Tivoli and Informix are
trademarks or registered trademarks of IBM Corporation.
Linux is the registered trademark of Linus Torvalds in the U.S. and
other countries.
Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either
trademarks or registered trademarks of Adobe Systems
Incorporated in the United States and/or other countries.
Oracle is a registered trademark of Oracle Corporation.
UNIX, X/Open, OSF/1, and Motif are registered trademark s of the
Open Group.
Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame,
VideoFrame, and MultiWin are trademarks or registered tra demarks
of Citrix Systems, Inc.
HTML, XML, XHTML and W3C are trademarks or registered
trademarks of W3C®, World Wide Web Consortium, Massach usetts
Institute of Tech nology.
Java is a registered trad emark of Sun Microsystems, Inc.
JavaScript is a registered trademark of Sun Microsystems, Inc.,
used under license for technology invent ed and implemented by
Netscape.
SAP, R/3, xApps, xApp, SAP NetWeaver, Duet, PartnerEdge,
ByDesign, SAP Business ByDesign, and other SAP products and
services mentioned herein as well as their respective logos are
trademarks or registered trademarks of SAP AG in Germany and in
several other countries all over the world. All other p roduct and
service names mentioned are the trademarks of their respective
companies. Data contained in this document serves informational
purposes only. National product specifications may vary.
These materials are subject to change without notice. These
materials are provided by SAP AG and its affiliated companies ("SAP
Group") for informational purposes only, without representation or
warranty of any kind, and SAP Group shall not be liable for errors or
omissions with respect to the materials. The only wa rranties for SAP
Group products and services are those that are set forth in the
express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting
an additional warranty.

	Typographic Conventions
	Document History
	Table of Contents
	1 Disclaimer
	1.1 Coding Samples
	1.2 Internet Hyperlinks
	1.3 Accessibility

	2 Overview
	3 Prerequisites
	3.1 Technical Prerequisites
	3.2 Required Knowledge and Skills

	4 Architectural Overview
	4.1 Main Building Blocks
	4.2 Interfaces
	4.2.1 ICustomLogic Interface (Controller Interface)
	4.2.1.1 Initialization
	4.2.1.2 Configuration Methods
	4.2.1.3 Processing of Notification Messages

	4.2.2 Custom-Logic Framework
	4.2.2.1 CustomLogicBase Class
	4.2.2.2 DestinationCallback Class
	4.2.2.3 AgentCallback Class
	4.2.2.4 CustomLogicConfiguration Class
	4.2.2.5 CustomLogicTracer Class
	4.2.2.6 CustomLogic Factories

	5 How to Implement a Customer-Owned Enhancement
	5.1 Overview of Implementation Steps
	5.2 Implementation Activities in Microsoft Visual Studio
	5.2.1 Prerequisites
	5.2.2 Create a Solution and an Implementing Class
	5.2.3 Implement Required Methods
	5.2.4 Build the ENP DLL

	5.3 Configuration Activities in the PCo Management Console
	5.3.1 Prerequisites
	5.3.2 Defining Destination Systems
	5.3.2.1 Flat Variables
	5.3.2.2 One-Dimensional Arrays
	5.3.2.3 Two-Dimensional Arrays

	5.3.3 Creating and Configuring an Agent Instance
	5.3.4 Defining the ENP as Destination of a Notification
	5.3.5 Mapping of Modules and Variables
	5.3.5.1 Mapping of Modules
	5.3.5.2 Assignment of Enhancement Variables
	5.3.5.3 Mapping of Source System Tags

	5.4 Troubleshooting
	5.4.1 Naming Conflicts
	5.4.2 Avoiding Thread Safety Problems

	6 Sample Customer-Owned Enhancement Implementation
	6.1 Scenario
	6.2 Implementation
	6.3 Sample Coding

