Implementation Guide CUSTOMER
SAP Manufacturina
Document Version: 30 — 2019-11-22

Typographic Conventions

Type Style Description

Example Words or characters quoted from the screen. These include field names, screen titles,
pushbuttons labels, menu names, menu paths, and menu options.

Textual cross-references to other documents.

Example Emphasized words or expressions.

EXAMPLE Technical names of system objects. These include report names, program names, transaction
codes, table names, and key concepts of a programming language when they are surrounded by
body text, for example, SELECT and INCLUDE.

Example Output on the screen. This includes file and directory names and their paths, messages, names
of variables and parameters, source text,and names of installation, upgrade and database tools.

Example Exact user entry. These are words or characters that you enter in the system exactly as they
appear in the documentation.

<Example> Variable user entry. Angle brackets indicate that you replace these words and characters with
appropriate entries to make entries in the system.

g Keys on the keyboard, for example, [F2] or [ENTER |

Typographic Conventions

Customer
© 2019 SAP SE. All rights reserved.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.3

Document History

Version ‘ Date Change ‘
1.0 2015-10-06 Updates for PCo 15.1

20 2019-06-14 Updates for PCo 15.3 (SP00)

30 2019-11-22 Updates for PCo 15.3 (SP01)

Table of Contents

1 DISCIAIMENooiiee bbb bbb 5
11 COUING SAMPIES ..c.evveeveeiriiiieeeeeesisi e ss st 512
12 INEEINEE HYPEITINKSoooooovceiiieciseeses st ssss st e sss s sssss s sss s ssss s ssssssssssssssssees 5
13 ACCESSIDITTTY .oovooerveerieeieie ettt 5
2 OVEIVIBW ..ottt bbb bbb 6
3 PrEIEOUISITES ..ottt bbb e bbbt 7
31 TEChNICAI PrErEOUISITESoovreverrereiesimnnscsessisne e sessseses 7
32 Required Knowledge and SKIllSsssesssssssssssssssssssssses 7
4 ATFCRITECTUIAL OVEIVIBW ...ttt s 8
41 MaiN BUITAING BIOCKSccouureecrmmrieesimmneesssssssesessesseses 8
42 INEEITACES ...vvveoeevei e ceeisis et et 9
421 ICustomLogic Interface (Controller INterface) ... 11
422 Enhanced Notification Processing Framework ... 13
5 How to Implement a Customer-Owned ENhancementccccovoeiininneineninensesnnens 16
51 Overview of IMpPIeMENTAtioN STEPS ... sssssssss s ssssssssss s sssss s 16
52 Implementation Activities in Microsoft Visual STUAIOvmremrreissssssssssssens 16
521 PrEIEOUISITES ...oooovvvverrceceissnecvessssssecesssssssessssssss s sss s ssss st ss st sssssssssssssssons 16
522 Create a Solution and an Implementing CIass ... 17
523 Implement ReqQUIred MEhOUScooririecemmiseisisissssseseesssssssssesssssesesens 20
524 BUIIA e ENP DLL ...oovvriierrerciesieressssmnnesesss 22
53 Configuration Activities in the PCo Management CONSOIEccouwmrermmseessnmsssssnnen 23
531 PrereqUISITEScooimmreriveimsinnnsesesesinssssssesens
532 Defining DeStiNAtioN SYSTEMS...........omrermreemmmmsessmnmsssssmsemsssssssssssssssssssssssssssas 23
533 Creating and Configuring an Agent Instance28534
Defining the ENP as Destination of @ NOtification ... 30
535 Mapping of Modules and VariabIes ... 31
54 TrOUDIESNOOTINGooovvviriiciimi e s 35
54.1 NAMING CONTHCES ...ovvovvveveeinceiesss e csssss s sssss st sss s ssesssssnes 35
542 Avoiding Thread Safety ProbIEMS ... 35
6 Sample Customer-Owned Enhancement Implementation ... 36
Enhanced Notification Processing (ENP) in Plant Connectivity 15.3 Customer

© 2019 SAP SE. All rights reserved. 3

6.1 SCONANIO v vvvvvvvvssts e s st 88 36
6.2 IMPIEMENTALION «.c.ovovvvecvrine et ssss st 36
6.3 SAMPIE COUING ..vvvvvrveerrirereismsnses e esessssse s sss sttt a7

Table of Contents

1 Disclaimer

Document classification for SAP Library: Customer

1.1 Coding Samples

Any software coding or code lines/strings ("code") included in this documentation are only examples and are not
intended to be used in a productive system environment. The code is only intended to better explain and visualize the
syntax and phrasing rules of certain coding. SAP does not warrant the correctness and completeness of the code given
herein, and SAP shall not be liable for errors or damages caused by the usage of the code, except if such damages were
caused by SAP intentionally or due to gross negligence.

1.2 Internet Hyperlinks

The SAP documentation may contain hyperlinks to the Internet. These hyperlinks are intended to serve as a hint where
to find supplementary documentation. SAP does not warrant the availability and correctness of such supplementary
documentation or the ability to serve for a particular purpose. SAP shall not be liable for any damages caused by the use
of such documentation unless such damages have been caused by SAP's gross negligence or willful misconduct.

1.3 Accessibility

The information contained in the SAP Library documentation represents SAP's current view of accessibility criteria as of
the date of publication; it is in no way intended to be a binding guideline on how to ensure accessibility of software
products. SAP specifically disclaims any liability with respect to this document and no contractual obligations or
commitments are formed either directly or indirectly by this document.

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.3
© 2019 SAP SE. All rights reserved.

Disclaimer

2 Overview

With SAP Plant Connectivity (PCo), SAP provides a software component that enables the exchange of data between an
SAP system and the industry-specific standard data sources of different manufacturers, for example, process control
systems, plant Historian systems, and programmable logic controller (PLC) systems. With PCo, you can receive tags and
events from the connected source systems in production either automatically or upon request and forward them to the
connected SAP systems.

The Plant Connectivity component supports the following basic processes:

¢ Notification process: The notification process enables you to monitor production facilities and record any sudden,
undesired events (such as rule violations or changes in measurement readings) and report them to a destination
system.

¢ Query process: This process enables you to query specific source system tags from a destination system (such as
SAP MII). This data can then be displayed on a dashboard, for example.

Enhanced notification processing (ENP) enables you to flexibly control and document the data flow in production in
connection with various destination systems, for example, with Web services. In this way, you can connect a third-party
system (such as SAP ME) to PCo and transfer data from machine level to the desired SAP ME activity using Web service
calls. This makes it possible, for example, starting from PCo, to call a Web service provided by SAP ME, evaluate the
result of the call, and then, depending on the results of the Web service call, call an additional Web service or write data
back to a source system.

SAP delivers the standard enhancement Destination System Calls with Response Processing for enhanced notification
processing with which you can execute one or multiple destination system calls and with which you can write back the
results of the calls to the data source of the agent instance or other agent instances. This covers the most common
requirements in communication between data sources of production and business systems.

If you want to implement requirements that go beyond the function scope of the SAP standard enhancement, you can
implement a customer-owned enhancement. PCo provides an interface for this purpose that you can implement. The
notification enhancement is mapped in the form of a destination system so that the enhancement is called as part of a
notification process.

Enhanced notification processing enables you to do the following:

¢ You can call one or more destination systems one after the other in any order. This might be, for example, a regular
Web service, a RESTful Web service, an SAP ESP destination, an OData destination, or an ODBC destination.

¢ You can call mass-enabled destination systems (for example, Web services) for multiple object instances, for
example, for multiple SFC numbers.

¢ You can assign the output expressions of a notification to the parameters of a Web service statically or dynamically.

¢ You can perform a program-controlled evaluation of the results of a destination system call and react to the results
accordingly.

e After a notification message is received, the destination system can send information to a specific agent and update,
for example, a tag value in the source system.

Note, that the ENP was called Customer-Specific Logic in PCo releases before 15.1.

Overview

Enhanced Notification Processing (ENP) in Plant Connectivity 15.3 Customer
© 2019 SAP SE. All rights reserved. 5

3 Prerequisites

3.1 Technical Prerequisites

The following technical prerequisites are necessary in order to build a customer-owned enhancement for PCo
15.3:

¢ NET Framework 4.7.2 or higher

¢ .NET development environment, for example, Microsoft Visual Studio 2017 Professional or higher.

3.2 Required Knowledge and Skills

¢ .NET development knowledge, preferably C#

¢ Knowledge in building and creating PCo agents O

Prerequisites
Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.3
© 2019 SAP SE. All rights reserved.

4 Architectural Overview

4.1 Main Building Blocks

The following diagram shows the main building blocks of Plant Connectivity for a notification process and illustrates how
the ENP is embedded into the architecture.

Destination
(Web Service, RESTful Web Service,
SAP ESP, OData, ODBC)

ot

Plant Connectivity (PCo)
Agent Host
Enhanced Notification Processing (ENP) Destination
System
R) Rp
Enhancement O ENP ~ .
Implementation Framework hd Destination
|
|
|
S ENP |
e Destination I
| ot
<R
N\ O I
e I
Connectivity Framework :
|
Il
Dispatcher
Internal Rp> Notification Notification
Event |—O— Mariagar Message
Handler 9 Queue
<R
Agent

(P%

Data Source
(for example, OPC DA, OPC UA,
Socket, File Monitor Agent)

Figure 1: Integration of the ENP Enhancement Implementation into Plant Connectivity 15.1

The existing process flow for a notification coming in from a source system is as follows:

Enhanced Notification Processing (ENP) in Plant Connectivity 15.3 Customer Architectural Overview © 2019 SAP SE. All rights reserved. 7

When a notification is received from a data source, an event is raised, and the notification manager takes care that a
notification message is built. The message is submitted to the destination system by the dispatcher through the
notification message queue so that reprocessing is possible in case of dispatching failures.

The ENP is hooked in as a special destination that is called by the dispatcher. The ENP destination forwards the
notification message to the enhancement implementation that implements the controller interface. The enhancement
implementation may at first execute a parsing method for the notification message in order to extract variables and their
actual values. Then a programmed sequence of steps can be executed; typically, these steps are synchronous calls of Web
services. The Web service calls are handled by the ENP framework that offers the service methods. The response of these
Web service calls is returned to the controller, interpreted, and can then be used to influence the further program flow
and to parameterize further Web service calls. The controller can also call back to the agent instance to write data back to
the source system or to read additional data from it. This feature makes it possible, for example, for machines to be
controlled based on a decision taken in SAP ME.

If the execution of the enhancement implementation fails, the message is kept in the notification message queue for
reprocessing. Since the processing sequence of Web service calls may be important, the notification message queue
provides exactly-once-in-order (EOIO) capability, meaning that notification messages are processed in exactly the same
sequence they were put into the queue.

PCo 15.1 supports enhancement implementations with the following features:

¢ Acontroller interface containing methods that allows you to retrieve module and enhancement variable names from
the enhancement implementation during design time

¢ An ENP framework containing helper methods for destination system calls, agent callbacks, tracing, and reading the
ENP configuration

¢ The integration of the controller interface call into the existing Plant Connectivity architecture by means of an ENP
destination

¢ Configuration possibilities of the enhancement through the Management Console

¢ Configurable exception handling, so that expected exceptions that occur inside the enhancement implementation do
not terminate the notification process

¢ Documentation and example implementations for the controller interface

4.2 Interfaces

In the architectural overview, the ENP was shown in the overall context of a notification scenario. Below is a drill down
into the ENP. The diagram below shows a class diagram of the CustomLogic project and its relationship to the
enhancement implementation. Note that the technical objects in PCo still carry the term CustomLogic in their names,
although the general concept has been renamed to Enhanced Notification Processing (ENP) as of PCo

15.1.

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.3
8 © 2019 SAP SE. All rights reserved. Architectural Overview

CustomLogic |

DestinationCallback

Attributes

destinationAdapters
customLogicConfig

Operations

CallModule

«interface»

IDestinationCallback

1
k 1 «interface» 4

Operations
CallModule

IAgentCallback

QOperations.

ReadQueryExecute
WriteQueryExecute
DeleteFileExecute
RenameFileExecute
CopyFileExecute
AppendFileExecute

T

AgentCallback

CustomLogicDestinat
ion

Operations

Send
Initialize

ICustomLogic

Operations

Send
GetLogicModules
GetCustomVariables

Initialize

S

CustomLogicAdapter
Factory

Operations

CreateDestinationCallback
CreateDestinationAdapter
CreateAgentCallback
CreateCustomLogic

CustomLogicConfigF

Operations

ReadQueryExecute
WriteQueryExecute
DeleteFileExecute
RenameFileExecute
CopyFileExecute
AppendFileExecute

CustomLogicTracer

Operations

actory
Operations
CreateCustomLogicConfig
winterface»
ICustomLogicConfigu
ration
Operations
GetlLogicModuleConfiguration
. GetModuleVariables
CustomLogicBase
{abstract}
Attributes

agentCallback

destinationCallback
customLogicConfig
customLogicTracer

Operations

Initialize {abstract}

Send {abstract}
GetLogicModules {abstract}
GetCustomVariables {abstract}
CallDestinationModule
TraceMessage
TraceException
ValidateVariables

CustomLogicConfigu
ration

Attributes
agentConfiguration

Operations

GetLogicModuleConfiguration
GetModuleVariables

CustomImplementation

«Custom Implementation»

CustomLogic

Attributes

agentCallback
destCallback
customLogicConfiguration
customLogicTracer

Operations

Send
GetLogicModules
GetCustomVariables
Initialize

Figure 2: Class Diagram of the CustomLogic Project

The main part of the ENP logic is handled in the CustomLogic project. The 1CustomLogic interface is the central

interface that allows the customer to implement his or her own logic to process machine events meaning, for example,
parsing of afile and calling SAP ME Web services. In addition to the I1CustomLogi c interface, there is an abstract class

CustomLogicBase that inherits from the 1 CustomLogi c interface and provides some basic implementations. So it is

possible to inherit directly from the I1CustomLogic interface or indirectly from the abstract class CustomLogi cBase

to set up the enhancement implementation.

To facilitate the enhancement implementation, the 1CustomLogi c interface provides four references to interfaces that

offer service methods. These interfaces are:

Enhanced Notification Processing (ENP) in Plant Connectivity 15.3

Customer Architectural Overview

© 2019 SAP SE. All rights reserved.

9

* IDestinationCallback
The interface encapsulates the call of a destination system.

¢ lAgentCallback
The interface offers read and write methods for tag query agents and additional methods for the File Monitor Agent.

¢ ICustomLogicConfiguration
The interface provides methods for reading the configuration of the enhanced notification processing destination.

¢ CustomLogicTracer
A service class that provides methods to trace messages and exceptions so that they appear in the log in the
Management Console.

Another central building block of the ENP is the CustomLogicDestination class. The

CustomLogicDestination class forms a special destination system type. It inherits, like all destination systems, from
the abstract class DestinationBase. This architecture enables notification messages to be sent to the
CustomLogicDestination class and to be processed within the class. So this class is the link between the standard
message processing and the ENP message processing in the notification process.

The CustomLogicDestination class sets up the environment for the enhancement implementation, meaning that the
CustomLogicDestination class calls the different factories (CustomLogi cAdapterFactory and
CustomLogicConfigFactory classes) in order to create the instances of all relevant classes.

421 ICustomLogic Interface (Controller Interface)

The ICustomLogic interface contains the definition of how an enhancement implementation has to be implemented.
The interface provides an initialization method, two design time methods for the configuration of an enhancement
implementation, and one runtime method for processing notification messages.

421.1 Initialization

The Initialize method initializes the enhancement implementation with references to agent callbacks

(AgentCal Iback), destination callbacks (DestinationCal Iback), the enhancement implementation configuration
(CustomLogicConfiguration),and atracer object for logging purposes (CustomLogicTracer). These references
should be kept as private members of the enhancement implementation. They have to be used in the notification message
processing in order to perform the enhanced notification processing actions.

4212 Configuration Methods

In order to understand the use of the configuration methods in the 1CustomLogi c interface, the following diagram
illustrates how the implementation of the enhanced notification processing is linked to the configuration of the enhanced
notification processing:

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.3
10 © 2019 SAP SE. All rights reserved. Architectural Overview

Enhancement Configuration
Implementation Enhanced Notification Processing
Parse ENP Destination

EnhVar 1 /C DestSystemVar 1 >

Module 1 Destination

System Call 1
EnhVar 2 DestSystemVar 2 >
Module 2 EnhVar 3 Agent Call 1 {Source System Tag 1)

Module 3 EnhVar 4 Destination ‘< DestSystemVar 4 > !
System Call 2 |

Figure 3: Mapping of Modules and Variables of the ENP

The basic assumption is that the enhancement implementation is done on an abstract level, so that it can be used in
multiple PCo installations and destination systems within an enterprise. It is assumed that the enhancement
implementation is described by modules and enhancement variables.

The modules represent steps that are executed in the ENP. The modules are described by a set of input parameters and a
set of return parameters. Potential modules are Web service calls or agent calls respectively. The modules represent
wrappers for the concrete call of a Web service or an agent. They are an abstraction layer that allows communication with
the same type of destination system in a generic way. In order to call the concrete destination system, the module has to
be mapped to a concrete destination system call or a concrete agent call, and the module parameters have to be mapped
to the real module variables.

Parsing could be another process step of the enhanced notification processing. It usually converts machine parameters
into parameters of the enhancement. Parsing is an independent, stand-alone, local process step of the enhancement
implementation that does not require a wrapper or mapping.

The abstraction of the enhancement implementation is necessary for its reuse. The same implementation is potentially
applicable to many concrete processes. The individual processes may have different parameters, depending on the
location of the machine or device.

The ENP framework provides mapping of abstract modules to concrete destination system calls or agent calls
respectively. In order to call, for example, a concrete Web service that is preconfigured in the Web Service Destination or
to call a tag query agent, it is necessary to map the abstract module parameters to the concrete parameters of a Web
service call or an agent call.

The mapping has to be performed within the Management Console of SAP Plant Connectivity during design time. In order
to build a mapping dialog that fulfills the requirements described above, the 1CustomLogi c interface contains two
configuration methods. The GetLogicModules method has to be implemented to return the modules of the
enhancement implementation, and the GetCustomVariables method should return the enhancement variables of the
enhancement implementation.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.3 Customer Architectural Overview © 2019 SAP SE. All rights reserved. 11

4213 Processing of Notification Messages

The processing of the notification messages (for example, machine events) is realized with the enhancement
implementation of the Send method. This implementation represents a customer-owned process. Typically, the
implementation starts with a parsing process step in order to extract parameters from the notification message. In the
subsequent program flow, destination system calls or agent methods could be used to build the customerowned process.
The service methods of the ICustomLogic interface can be seen as a toolset to support the implementation of the ENP.

422 Custom-Logic Framework

The CustomLogi c project, which is available as a dynamic link library (DLL) in the PCo installation folder, contains a
framework that provides classes and interfaces with service functions. Some of these service functions are available in the
enhancement implementation, and help to facilitate the implementation of the customer-owned processes. In addition,
there are factory classes available for internal use. The factory classes encapsulate creating instances of helper classes.

4221 CustomLogicBase Class

The abstract class CustomLogicBase inherits from the ICustomLogic interface. The abstract class implements the
Initialize method of the ICustomLogi c interface. In addition, it provides helper methods for tracing and Web
service calls including enhancement variable validation.

The class offers another option for inheriting from the 1CustomLogic interface and provides some basic method
implementations for the customer-owned enhancement implementation.

42272 DestinationCallback Class

The DestinationCal Iback class is a service class that allows communication with a destination system, for example, a
given Web Service Destination. On the destination system configuration screen in the PCo Management Console, the
destination system is preconfigured with constant values or variables, called destination system variables. These
variables are accessible from the enhancement implementation during message processing, after you have configured the
ENP destination as a destination system on the notification destination screen of the Management Console. The
destination system call should be realized by calling the Cal IModul e method in the enhancement implementation.

For each destination system that is used in the enhancement implementation, an instance of the
IDestinationAdapter interface is created. The IDestinationAdapter interface is implemented in many of the
PCo destination system classes, for example, the WSDestination class that handles the Web service communication.
This implementation provides the destination system variables and the information as to whether a destination system
variable is an input or an output variable. This information is used to map the abstract enhancement variables of the
enhancement implementation to the destination system variables provided and to hand over the values for the
destination system variables to the destination system call.

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.3
12 © 2019 SAP SE. All rights reserved. Architectural Overview

4223 AgentCallback Class

The AgentCal Iback class is a service class that allows communication with different source systems represented by
their corresponding agent types (TagQueryAgent and Fi leMonitorAgent). The AgentCal Iback class offers a
restricted but simple interface for this purpose.

The following methods are available for the communication with different source systems:

¢ ReadQueryExecute (TagQueryAgent/FileMonitorAgent)
This method reads tag values for a list of specified tags.

¢ WriteQueryExecute (TagQueryAgent/FileMonitorAgent)
This method writes tag values for a list of specified tags at given time stamps.

¢ DeleteFileExecute (FileMonitorAgent)
This method deletes afile.

¢ RenameFileExecute (FileMonitorAgent)
This method renames afile.

¢ CopyFileExecute (FileMonitorAgent)
This method copies a file.

¢ AppendFileExecute (Fi leMonitorAgent)
This method appends a given content to a file.

4224 CustomLogicConfiguration Class

The CustomLogicConfiguration class isa service class that provides the configuration of the enhancement
implementation. The class consists of the following methods:

¢ GetLogicModuleConfiguration
This method returns the mapping of the logic modules to destination systems or agent instances respectively.

« GetModuleVariables

This method returns the mapping of the destination system variables to the enhancement variables of the
enhancement implementation.

You maintain these mappings in the configuration of the ENP in the Management Console.

4225 CustomLogicTracer Class

The CustomLogicTracer class is a service class that provides methods to trace messages and exceptions. The traced
messages appear with respect to the ‘CustomLogicDestination’ source in the PCo application log.

4226 CustomLogic Factories

There are factory classes CustomLogicAdapterFactory and CustomLogicConfigFactory. The
CustomLogicAdapterFactory class provides the following factory methods:

¢ CreateCustomLogicDestination
This method creates an instance of the ICustomLogicDestination interface.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.3 Customer Architectural Overview © 2019 SAP SE. All rights reserved.

13

CreateDestinationCal Iback

This method creates an instance of the IDestinationCal Iback interface. Additionally the references to the

IDestinationAdapter interface are created.

CreateDestinationAdapter
This method creates an instance of the IDestinationAdapter interface.

CreateAgentCal Iback
This method creates an instance of the IAgentCal Iback interface.

CreateCustomLogic
This method creates an instance of the ICustomLogi c interface.

The CustomLogicConfigFactory class provides the following factory method:

.

14

CreateCustomLogicConfig

This method creates an instance of the ICustomLogicConfiguration interface.

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.3

© 2019 SAP SE. All rights reserved.

Architectural Overview

5 How to Implement a Customer-Owned
Enhancement

5.1 Overview of Implementation Steps

The implementation of a customer-owned enhancement consists mainly of two parts:
1. Implementation activities in Microsoft Visual Studio:
o0 Create a class that implements the 1CustomLogi c interface.

o Create implementations of a parameter-less class constructor, and of the interface methods
GetLogicModules, GetCustomVariables, Initialize,and Send.

0 Buildan ENP DLL (dynamic link library) from your class.
2. Configuration activities in the PCo Management Console:

o Create destination systems for every destination system that you want to call from the customer-owned
enhancement implementation.

0 Maintain the destination system settings and operation configuration in the destination system. o Define agent
instances for the source systems with which you want to communicate within the ENP. o Create an agent
instance, and link your ENP DLL to the agent instance. o Create a notification for this agent and define the ENP
as the destination of this notification.

0 Maintain the mapping of modules, variables, and source system tags for the notification destination.
The following sections describe the individual activities in detail.

5.2 Implementation Activities in Microsoft Visual Studio

521 Prerequisites

To create a customer-owned enhancement, you require an integrated development environment for .NET development.
SAP recommends using Microsoft Visual Studio 2012 or higher. The following steps are explained by using screenshots
and settings from Microsoft Visual Studio 2012.

If you want to use an ENP DLL provided by a third party, you can skip this section and proceed directly to section 5.3. Note

that the DLL has to be built for NET framework 4.0 with platform target Any CPU. How to Implement a Customer

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1

15 © 2015 SAP SE. All rights reserved. -Owned Enhancement

522 Create a Solution and an Implementing Class

First create a new solution for your implementation. Make sure you choose .NET Framework 4.0. Use the Class Library

template.
- 7 .
b Recent MET Framework 4 - Sortby: Default o Search Installed Templates (Ctri+E) P~
4 Installed C# A
| | Windows Forms Application Visual C# Type: Visual C#
4 Templates A project for creating a C# class library
g " G
4 Visual C# !: WPF Application Visual C# (.di
Windows
c#
Web E Console Application Visual C#
b Office
c#
Cloud Hi! Class Library Visual C2
Reporting &
. c#
b SharePoint Hﬁ! Portable Class Library Visual C#
Silverlight &
CH#
1 WPF Browser Application Visual C#
WCF Amy
Workflow -cr .] .
e k] Empty Project Visual C#
c#
b Co)‘t:er I';an.gua-gres =| Windows Service Visual C#
i Other Project Types
Samples C# ; =
"] ! WPF Custom Control Library Visual C#
<>
B Online
« WPF User C I Lib Visual C2
ser Control Libra isual C
ofl &
—C3 : - = ;
!EJ Windows Forms Control Library Visual C#
MName: PCoCustomerlmplementation
Location: documents\visual studio 2012\Projects - Browse... |
Solution name: PCoCustomerlmplementation Create directory for solution

[] Add to Perforce SCM

QK

| [Cancel

Figure 4: Create a New Solution

Then set the properties of your new project. On the Application Properties tab, check if the target framework is set to

.NET Framework 4.0 and the output type is set to Class Library.

Customer
16 © 2015 SAP SE. All rights reserved.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
How to Implement a Customer-Owned Enhancement

How to Implement a Customer-

PCoCustomerimplementation -+ X JEFIIH

Applicati
Build ; ;
Build Events Assernbly name: Default namespace:
Debug PCoCustomerldmplementation PCoCustomermplementation
Resources Target framework: Output type:
Services FNET Framewark 4 V‘ [Class Library VJ
Settings Startup object:
Reference Paths [(Not set) '] Assembly Information.., l
Signing
Code Analysis Oessces
Specify how application resources will be managed:
Figure 5: Application Properties
Make sure that the platform target is set to Any CPU for all configurations.
PCoCustomermplementation & X Classl.cs
Application . - 5 = 1
[m Configuration: INI Cenfigurations v] Platform: | Active (Any CPU) x
Build Events General
Debug 35 canisi
Cenditional compilation symbols:
Resources 5 =
B Define DEBUG constant
Services
. | Define TRACE constant
Settings
Reference Paths EEHrin ek
Signing
Code Analysis | Allow unsafe code
& Optimize code
Figure 6: Project Build Configuration
Now create a reference to the PCo Custom-Logic DLL for your project.
Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer

Owned Enhancement

© 2015 SAP SE. All rights reserved.

17

Solution Explorer * 0 x
@ o-unda &R
Search Solution Explorer (Ctri+i) P -

stomerlmplementation’ (1 project)

Add Reference...

=8 Mic
"B Syst Add Service Reference...
»B Syst # Manage MuGet Packages...
Sy Scope to This
=0 Syst = . .
. Syst EF Mew Solution Explorer View
-8 Systern.Xml.Ling

P c# Classl.es

Figure 7: Adding References to Your Project

Choose Browse then select the CustomLogic.dll from the System subfolder of the PCo program folder. The References
branch of your project should now contain the reference to the CustomLogic.dll.

Solution Explorer * 1 x

& o-d &#H
Search Solution Explorer {Ctrl+) P -
fa Solution 'PCoCustomermplementation’ (1 project)
4 PCoCustomerImplementation
b M Properties
4 1l References
=8 CustomLogic
=0 Microsoft.CSharp
5-8 Systemn
=8 Systemn.Core
u-8 Systemn.Data
=0 Systern.Data.DataSetExtensions
5B System.Xml
=8 Systemn.Xml.Ling
pe# Classl.cs

Solution Explorer | Team Explorer
Figure 8: Required Project References

You now have a solution with an almost empty class, for example, Class1. cs, which could look as follows:
using System; using
System.Collections.Generic; using
System.Ling; using System.Text;
namespace PCoCustomerlImplementation

{

public class Classl

How to Implement a Customer-

{

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
18 © 2015 SAP SE. All rights reserved. How to Implement a Customer-Owned Enhancement

523 Implement Required Methods

In order to use your implementation as an enhancement implementation in PCo, you have to implement the
ICustomLogic interface within your class. Start by adding the using directive for the namespace
SAP _Manufacturing.CustomLogi c to your code. Now your class coding could look as follows:

using System; using
System.Collections.Generic; using
System.Ling; using System.Text;
using

SAP _Manufacturing.CustomLogic;
namespace
PCoCustomeriImplementation

{ public class Classl :
ICustomLogic

{
}

Then implement the required interface methods. These methods are:

¢ A parameter-less constructor, for example, public Class1()

¢ Dictionary<string, Type> ICustomLogic.GetCustomVariables(Guid notificationlD)
e Dictionary<string, ModuleType> ICustomLogic.GetLogicModules()

¢« void ICustomLogic. Initialize(lAgentCallback agentCallback, IDestinationCallback
destinationCallback, ICustomLogicConfiguration customLogicConfig, CustomLogicTracer
customLogicTracer)

¢« bool ICustomLogic.Send(CustomLogicNotificationMessage notification)

Visual Studio can assist you with creating the empty methods, except the constructor: Right-click on the interface name

ICustomLogic and choose Implement Interface > Implement Interface Explicitly.

Now implement the individual methods:

GetLogicModules(): This method returns the list of agent and destination system call modules mapped to their
module types Agent Call or Destination System Call. The modules appear later in the PCo Management Console in the
assignment of agent instances and destination systems to the ENP modules (see section 5.3.5.1). The method returns a
dictionary where the key is the module name, and the value is the module type. For example, in order to define the
modules Start, Complete, DataCol lection, and AgentCal l, you could write the following:

public Dictionary<string, ModuleType> ICustomLogic.GetLogicModules()
{

Dictionary<string, ModuleType> modules =
new Dictionary<string, ModuleType>();
modules._Add("'Start", ModuleType.Destination);
modules._Add(""Complete", ModuleType.Destination);
modules.Add("'DataCol lection', ModuleType.Destination);

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer
Owned Enhancement © 2015 SAP SE. All rights reserved. 19

modules.Add(""AgentCall’, ModuleType.Agent);
return modules;

}

GetCustomVariables(): This method returns the list of enhancement variables mapped to their technical types. The
variables appear later in the PCo Management Console in the assignment of enhancement variables (see section 5.3.5.2).
The method returns a dictionary for which the key is the enhancement variable name, and the value is the technical type.
If you use more than one notification in your scenario you can evaluate the parameter notificationlD and return
only those variables that belong to that specific notification. For example, in order to define the variables si te,
operation, returnScrap, shopFloorControl, col lectionParameters, resource, and revision, you
could write the following:

public Dictionary<string, Type> ICustomLogic.GetCustomVariables(Guid

notificationlD)
{

Dictionary<string, Type> variables = new Dictionary<string, Type>();
variables_Add('site"”, typeof(string)); variables.Add(‘'operation",
typeof(string)); variables_Add(*'returnScrap™, typeof(bool));

variables_Add("'shopFloorControl”, typeof(string));
variables_Add("'col lectionParameters", typeof(double[]));
variables_Add("'resource", typeof(string));
variables_Add("'revision”, typeof(string)); return variables;

}

Initialize(): This method is called by the ENP destination when the agent instance is started. It receives references
to the agent callbacks, destination callbacks, the ENP configuration, and the tracer. The tracer object is used to write
messages to the agent log. You should keep the references in class member fields so that you can use them later in the
Send(Qmethod. For example:

public void ICustomLogic.Initialize(
1AgentCallback agentCallback,
IDestinationCallback destinationCallback,
ICustomLogicConfiguration customLogicConfig,
CustomLogicTracer customLogicTracer)
{ this.agentCallback = agentCallback;
this.destinationCallback = destinationCallback;
this._.customLogicConfig = customLogicConfig;
this.customLogicTracer = customLogicTracer;

}

Send(): This method contains the ENP processing logic. Within this method, you can implement your parsing of input
data, destination system calls, and agent callbacks, for instance.

How to Implement a Customer-

5.24 Build the ENP DLL
After you have finished the implementation, you have to create the ENP DLL that is used later in the PCo

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
20 © 2015 SAP SE. All rights reserved. How to Implement a Customer-Owned Enhancement

Management Console. In Visual Studio, choose a configuration (for example, Debug or Release), then choose Build
Solution. If the build was successful, you should find the ENP DLL in the output directory defined in the project
properties.

PCoCustomerdmplementation® # 20 [EEIH«

Application : : s
m Configuration: |Release - Platform: | Active (Any CPU) hd
Build Events General
Debug . i
Conditional compilation symbols:
Resources
|| Define DEBUG constant
Services
) [¥] Define TRACE constant
Settings
Reference Pathe Platform target: Any CPU >
Signing
Code Analysis [7] Allow unsafe code

7l Optimize code

Errors and warnings

Warning level: 4 x

Suppress warnings:
Treat warnings as errors

@ Mone

@ All

() Specific warnings:

OQutput -

Output path: bin'Release, | ’ Browse...

[7] ¥ML decumentation file:

[7] Register for COM interop

Generate serialization assemnbly: Auto =

| Advanced..,

Figure 9: Check the Output Path for the ENP DLL

The resulting DLL is named <Project Name>_DLL, for example, PCoCustomerImplementation.dll

It is recommended that you copy the DLL into the System folder of the PCo installation. On Windows 32-Bit installation,
this folder is named <Installation Drive>:\Program Files\SAP\Plant Connectivity\System, in 64-Bit systems <Installation
Drive>:\Program Files (x86)\SAP\Plant Connectivity\System. If the ENP DLL resides in a different folder, the dependent
PCo DLLs are duplicated into this folder once the ENP DLLs are loaded during the runtime of the Management Console.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer
Owned Enhancement © 2015 SAP SE. All rights reserved.

21

5.3 Configuration Activities in the PCo Management Console

531 Prerequisites

Before you can configure the ENP, you create the ENP DLL as described in the previous section 5.2; in particular all of the methods
mentioned in section 5.2.3 have to be implemented. Alternatively, you could use a third-party DLL that implements a compatible
version of the 1CustomLogi c interface and is compiled for .NET framework

4.0 and platform target Any CPU.

Furthermore, you have to define an agent instance based on a source system from which you receive the data that is to be processed
in the ENP. The source system can be configured as usual; there is nothing specific to be taken into account regarding the ENP.

5.3.2 Defining Destination Systems

Define a destination system for each destination system that you plan to call in your enhancement implementation. For example, for a
Web Service destination, enter the WSDL URL and the required authentication settings, and then retrieve the service information by
pressing Retrieve Services.

Server Settings | Operation Configuration | Advanced Settings |

@

Server Settings

WSDL URL hitp:// SUUUUg'rnanufacturing-senrices,r'ProductilonSer\tice?WSdI
Timeout 30000 ms

Detailed Logging |None hal

Authentication IHttp Basic Authentication]

User Name !

Password s

Retrieve Services

Service Bindings

End Paint URL Service Mame
http:/mw2399:50000/manufacturing-services/Productions... ProductionProcessingInClie...

Figure 10: Web Service Destination Configuration

5321 Flat Variables

In your destination system, you can define destination system variables that will be used to pass request variables to the destination
system and fill response variables from the destination system at runtime.

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
22 © 2015 SAP SE. All rights reserved. How to Implement a Customer-Owned Enhancement

For example, for a Web Service Destination, on the Operation Configuration tab, you enter variables for those Web service fields that
are to be dynamically filled from the ENP. These variables are the destination system variables that will show up later in the ENP
configuration screens. To define destination system variables, select a service operation, select a Web service operation field, enter a
destination variable name in the Value column, and finally select the Variable checkbox. After you have done the variable mapping for
the request message, press Test Request Message. A popup appears where you enter values for the request destination variables.
Then the Web service operation is called with these parameters.

Request Message Configuration | Response Message Configuration |

Create Request Message [

Delete Request Message | |

Test Request Message

List of Variables

SCRAP_RET
SFC

Qrr
QTV_SPEC
OPERATION
REVISION

Request Message Configuration

Remyired Field Name
i I . 5 MessageHeader
. = StartRe”quest
SiteRef
T site
¥ j ReturnScrappedLocations |
ﬁ ReturnScrappedlocationsSpeci..
y SfcRequest .
* SiteRef
* =] ActivityRef
.SfcRef
T sic
* ' [= siteRef

% ResourceRef

Field Type

BasicBusinessDocumentMessageHeader
StartRequest)
SiteRef
String
Eoalean
BEoolean
StartRequestSFC]
StartRequestSFC
SiteRef
ActivityRef
SFCRef
string
SiteRef

ResourceRef

Create Object
| Delete Object |

| Delete Object |

Value

SITE

| scrap_RET |

[Delete Amay. |

| Delete Cbject |

[[Create Objeat |

Create Object

| Create Object |

[Delete Object |

SFE

|| Create Object [

Variable

———————

Figure 11: Mapping of Flat Variables

If the call was successful, you can continue with defining response variables and calculated variables on the Response Message

Configuration tab.

5322

One-Dimensional Arrays

In some cases, you want to call a Web service operation for multiple business documents. For example, you want to call the SAP ME
Web service Start for multiple SFCs. You have two possibilities to model this.

One possibility is to call the Web service for a fixed number of documents. In this case, you press the Create Array button next to an

array field (for example, SFcRequest), and create an array with a fixed size:

HE;;EEd Field Mame Field Type Value Variable
StartRequest_sync Start RequestMessage_sync
* -) 5 MessagéH-éader .BasichsinessDocumemMessageHeaaer |@]
4 [- :‘ El Startﬁequest StartRequest . .
[' = SteRef Steef [Create Object |
= RetumScrappedLocations Boolean 1 : El
.Hetum..gcmppedLocationsSpec:rﬁed Boolean |j_|
Sfc:Hequest. . . . StartRequestSFC] i Create Amay ||
B |

Figure 12: Create Array

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
23

Customer How to Implement a Customer-Owned Enhancement © 2015 SAP SE. All rights reserved.

When you are prompted to enter the array size, enter a numeric value, for example, 3.

i) Input Box | &=

Size of Amay: 3

Figure 13: Declare an Array of Fixed Size

Then a fixed number of document nodes are created.

HE;;EE':' Field Mame Field Type Value Varable
: Eh=] StartRequest_sync . Start RequestMessage_sync
* -) 5 I'\"iessage.H-eader .BasicEusinessDocumerﬂHessageHeaaer |@
- :‘ _— Startﬁequest - StartRequest .
= SteRef ' SteRef [[creste Obiect |
= - i ﬁ} RetumScrappedlLocations - Boolean : - &
. i ﬁ)' Hetum:ScmppedLocationsSpec:rﬁed.i Boolean =

» [=! @ SfcRequest [StartRequest SFCT | Delete Amay |
= 0 StartRequestSFC -
- 1 StartRequestSFC

= 2 [StartRequestSFC || Create Object |

Figure 14: An Array with a Fixed Size

Variable-inside arrays with a fixed size require unique variable names. For example, the Site variable inside SfcRequest O could be
named SITEO, whereas the Site variable inside SfcRequest 1 would need to be named differently, for example, SITE1.

Another possibility is to use arrays with a dynamic size. In order to define a dynamic array, declare an index variable instead of a
fixed size. The index variable is a nonnumeric character. Enter the index variable instead of a numeric value when you are prompted
for the array size, for example:

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
24 © 2015 SAP SE. All rights reserved. How to Implement a Customer-Owned Enhancement

{4 Input Box L X

Size of Amay: x

Figure 15: Declare an Index Variable for an Array with a Dynamic Size

A subnode with the name of the index variable is created:

F“’F‘ﬁ;ﬂf" Field Name Field Type Value Variable

- E}--@ StatRequest_sync i StartRequestMessage_sync -
i i I':'IaauagaHaadar [_BaaicBuulnasaDncumantMa.uaagaLIaadar -
ElE Start-F{equest Start Request [M]
5@ SteRef SiteRef Delete Object |

B Ste String PCO1 B

i Retum Scrapped Locations Boolean [

ﬁ RetumScrappedLocations Specified Boolean]}

» g SfcRequest Start Request SFC]] Delete Amay
| & & StartRequestSFC [Create Object | |

Figure 16: An Array with a Dynamic Size

An indexed variable inside the array would then be named <Variable Name>[<index variable>], for example, SFC[K] -

i Fieid Name Field Type Value Vaisble —
| == SatRequest_sme StartRequestMessage_sync [Delete Obiect |
= MessageHeader BasicBusinessDocumeniMessageHeader | Create Object |
2= StatRequest StartRequest | Delste Object | =
== SteRef SteRef | Delete Object |
- s String FCO1]
2% RetumScrappedLocations Boolean]
-2 RetumScrappedLocationsSpectied Boolean & i
B2 SicRequest SiartRequest SFCT] Delete Amay |
28 k StartRequesiSFC [Delete Object |
B SteRef SteRef [Create Object |
-5 ActiviyRef ActivityRef [Create Obiect |
| o= SicRe SFCRef Delete Object |
. B SR SteRef [Create Object |
== ResourceRef ResourceRef | Delete Object | L

Figure 17: How to Declare an Indexed Variable

If you want to address array variables in response messages, you can do the following. Declare an index variable for the direct
subnode of the array field, for example: For the subnode O of StartResponseSFC[], declare the

-Owned Enhancement

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
25 © 2015 SAP SE. All rights reserved. How to Implement a Customer

index variable m in the column Variable Name. Then you can address an array variable as <Variable Name>[<index
variable>], for example: SFC[m].

5323

| -

m

Field Name Field Type Field Value Varisble Name | “
& response StartCorfimationMessage_sync
__ﬁ MessageHeader BasicBusinessDocument MessageHeader
BE StartResponse StartResponseSFC]
it EI] StartResponseSFC m
E}ﬁ Date Time DateTime
1 B timeZoneCode String
i ﬁ daylight Saving TimeIndicator Boolean False
f daylight Saving Time IndicatarSpecified | Boolean False
LR Value String 201207-13T08:03:16.215-02:00
m 25 temRef temRef
i = em String ITEM1
il ! 2 Revision String A
=20 SteRef SiteRef
m - ste String PCO1T
il =% RouterRef RouterRef
=2 SteRef SiteRef
L Ste String PCO1
i L5 Router String ROUTER1
i Revision String A
il i RouterType RouterType u -
ﬁ RouterTypeSpecified Boolean True
mi SO SfcRef SFCRef
il L e String MS_SFC_1 SFCm] |
22 SteRef SiteRef
L e String FCO1

1

Figure 18: Array Variables in Response Mapping

Two-Dimensional Arrays

You can define arrays of up to two dimensions. For example, a one dimensional array NcLog[] with index variable m has another
array NcCustomData[] with index variable n inside. So a variable for Location with one dimension m could be named LOC[m],
whereas a two-dimensional variable inside NcCustomData[] variable could be named TEXT[m] [n].

26

Customer

© 2015 SAP SE. All rights reserved.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
How to Implement a Customer-Owned Enhancement

REF?;EECI Field Name Field Type Walue Variable i:
== NCLogRequest_sync NCLogRequestMessage_sinc Delete Object]
= -E MessageHeader BasicBusiness Document MessageHeader Create Object]
E[NCLogRequest NCLogRequest Delste Object |
SiteRef Create Object
NCLoal] Delete Amay
o= m NCLog Delete Object |
- ~E ActivityRef ActivityRef Create Object |
R I |- =2 Assemblylncident Mumber INTEGERGuantity Create[lbjed]
= ~{=| BatchlncidentMumber INTEGERGuantity CraateObjed]
* /= Comments Text Create Object]
N = Component ftemRef Create[}bgied] |
----- = ComponentSfc SFCRef Create[)bjad] T
* -=] DateTime DateTime Create Object]
5, /= DefectCount INTEGERGQuantity Create Object]
- & Failureld LENA40Name Create Object |
S = Identfier LEN40Name Create Obiect |
= = IncidenthumberRef IncidentMumberRef Create Object]
- =& Location LEN20Mame Delete Object |
ﬁ languageCode String [
BB value String LOCTm] h |
- & NcCodeRef NCCodeRef Create Object |
& MNeCortest NCCortext Create Object |
- 525 NeCustomData CustomField] Delete Arzy | j=
=& n CustomField Delete Object | |
E stribute LENEONzme oEateobjed] fi
=& Vale Text Delete Object | |
-5 languageCode String | |:| I
ﬁ Value String TEXTIm][n] ul
» = & Description Description |[W]_
= NeOwner | Owmer || Create Object |

Figure 19: Two-Dimensional Arrays

5.3.3 Creating and Configuring an Agent Instance

Create a source system from where you would like to obtain data tags. Then create an agent instance for the source system. For the
ENP it is recommended that you use the agent option Process Notification Messages Exactly Once in Order for notification messages on
the Host tab. Otherwiseg, it is not guaranteed that notification messages are processed in exactly the same order in which they came
from the source system.

On agent instance level, you define which enhancement implementation is to be used. Go to the Notification Processing tab on agent
instance level, select Customer-Owned Enhancement, and browse for the ENP DLL.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer How to Implement a Customer-Owned Enhancement © 2015 SAP SE. All rights reserved.
27

PSEE—)

g M: Console (Admini:)

Plant Connectivity Edit View Tools Help

@ [_D FD afe @ Q & (’}} Source System OPC DA —~ Agent Instance DEV_OPC_DA_ENP
Source Systems Destination Systems Host | Log I Query Ports | Tag Query] Subscription ltemsll Notification Processing IQueued] for Message Failure ¢ | >

Notification Message Queue and Dispatch Settings

m

Storage of Messages [Storage in Microsoft Message Queue (MSMQ) 'J

[V] Keep Expired Messages

= [T] Process Notification Messages Exactly Once in Order
Agent Instances

D) E'] [:\o » {z 5 EE’ [T] Keep Copies of Queued Notification Messages in Journal Queue
T Al [] Make Queued Notification Messages Recoverable

Max. Queued Messages 1000 1=

Max. Dispatch Threads 100 =

Enhanced Notification Processing
None

D Gt it ity s - i
<> DEV_OPC_DA_ENP Destination System Calls with Response Processing

l © Customer-Owned Enhancement I

Details of the Enhancement Implementation

Dynamic Link Library

Class Reset
3 D System for Enhancement
Create Destination System Delete Destination System
Status Destination system not created .

Figure 20: Browse for the enhanced notification processing

The system only accepts DLLs that implement the 1 CustomLogi c interface (see section 5.2).

If there is only one class in the DLL that implements 1CustomLogic, the system automatically proposes this class in the
corresponding field. Otherwise, select the desired class from the dropdown box. Use the Reset button to undo the configuration of
DLL and class.

The ENP is hooked in as a special destination system into the Plant Connectivity framework (see the sections about architecture).
Therefore, you have to create a destination system for the ENP. You do this by clicking on the corresponding button on the

Configuration tab.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
How to Implement a Customer-Owned Enhancement

Customer
28 © 2015 SAP SE. All rights reserved.

| Host I Lag | Query Ports ITag Query I Subscription Items | Motification Processing | Queued Messages | Messages for Bundling | Message Failury * | *

Motification Message Queue and Dispatch Settings

Storage of Messages IStorage in Microsoft Message Queue (MSMQ) ']

!ZI Keep Expired Messages

|_—_| Process Motification Messages Exactly Once in Crder

D Keep Copies of Queued Motification Messages in Journal Queue
!:| Make Queued Motification Messages Recoverable

Max, Queued Messages 1000 =

Mazx. Dispatch Threads [10012

Enhanced Motification Processing
) Mane
(") Destination System Calls with Response Processing

@ Customer-Owned Enhancement
Details of the Enhancement Implementation

Dynamic Link Library C:\SAPDevelop\CS'FxM\Connecti\titySer\rices\deu\srd_connectiuityFramework\sln\.Toc Browse

Class [Weather.Weather v‘ [Reset }

Maintain Destination System for Motification Enhancement

I[Create Destination System l I Delete Destination System

Status Destination system not created .

Figure 21: Create Destination System for the ENP

The ENP destination system technically behaves like other destination systems but is not displayed in the list of destination systems
in the Management Console. Once the destination system is created, you receive a corresponding message and a flag informs you
about its existence. You can only delete the ENP destination system if it is not in use as a destination of a notification.

Maintain Destination System for Notification Enhancement

Create Destination System [Delete Destination System]

Status Destination system created FaAN

Figure 22: Created ENP Destination System

5.34 Defining the ENP as Destination of a Notification

Create a static or a versioned notification for the agent instance you created previously:

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer How to Implement a Customer-Owned Enhancement © 2015 SAP SE. All rights reserved.
29

L — S — - T .
' F U | W ada Notification =50 .
- - -
e Matification Type
[?} IE::S |:‘|° S ¥ [m] Iﬁﬂr |E:} :_ EE. @ Static Notification
: A 1 Versioned MNotification
Motification Details
. Agent Instance Name DEV_OPC_DA_ENP)
¢ Versioned Motification Name |
Mame Demao
e <> DEV_OPC_DA_ENP Description demol|
" 4 [Template
[_ OK] [Cancel onnes
o - B _Srttu e 3 Maintain Destination System for Notification Enhancement

Figure 23: Add Notification to the Agent Instance

Select the notification, change to the Destinations tab, and add a destination to this notification. The /Enhanced Notification Processing
destination is offered in the dropdown box at the beginning of the list of all available destinations.

'd ™\
Add Destination System R |
Destination System Type
[/Enhanced Notification Processing v]
Name
Demo

Description

demo

[OK][Cancel]

Figure 24: Adding a Destination to a Notification

535 Mapping of Modules and Variables

5351 Mapping of Modules

Click on the Module and Variable Assignment tree node to access the configuration screen of the notification destination for modules
and variables.

Owned Enhancement
Enhanced Notification Processing (ENP) in Plant Connectivity 15.1

Customer
How to Implement a Customer-Owned Enhancement

30 © 2015 SAP SE. All rights reserved.

| output | Message pativery| Destinations

Destinations Agent and Destination System Call Modules
B -
= Maodule Module Type ge:{hun Edit Destination System Agent Instance
[=- Demo [/Enhanced Proces| indling
-~ Module and Variable Assignment ||| p AgentCallbackCdyneWeather Agent Call DEV_OPC_DA_ENP nE
DestinationCallGetWeatherByZIP Destination System Call P

Assignment of Enhancement Variables

Destination System Variables | Source System Tags

Destination System Call Module

~ Destination System Variable

C: DataType El

nhancement Variable

Figure 25: Open the Module and Variable Assignment Screen

In the table at the top of this screen, you can assign the destination systems and agents to the modules you defined in the
enhancement implementation (see section 5.2.3). You can choose the destination system or agent by clicking on the corresponding
dropdown box. The system only shows destination systems that are prepared to interact with the ENP.

5352

Assignment of Enhancement Variables

Once you have selected a destination system in the module mapping part of the screen, the system shows you the destination system

variables that you defined for your destination system.

Assignment of Enhancement Variables

Destination System Variables Source System .]'ag\s>|
Destination System Call Module Destination System Variable Cz Data Type Enhancement Yariable |

3 DestinationCallGetWeatherByZIP IIFCODE l’j System.String
DestinationCallGetWeatherByZIP Iy "J System.String ! o .
DestinationCallGetWeatherByZIP SUCCESS 4‘3 System.Boolean Repansecmr [Sstem.Sh'm
DestinationCallGetWeatherByZIP TEMP EI System.String Respateiempeioture ;System.string_}r
DestinationCallGetWeatherByZIP STATE "j System.String)iz
DestinationCallGetWeatherByZIP CalcTempCelsius f System.Double i
DestinationCallGet\WeatherByZIP CalcComment f System.String T
DestinationCallGetWeatherByZIP Defaultl f System.String l

|__Propose Assignment _|

Figure 26: Assigning Enhancement Variables to Destination Variables

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1

Customer How to Implement a Customer- © 2015 SAP SE. All rights reserved. 31

The system only displays the enhancement variables that you defined in your interface implementation (see section 5.2.3). You can
only assign enhancement variables to destination system variables with matching data types. Enhancement variables with data types
that do not match are not displayed by the system.

Note: The Web Service destination allows the definition of calculated variables. With calculated variables, you can convert the data
type of Web Service response variables to the data types of enhancement variables.

5353 Mapping of Source System Tags

After assigning an agent instance to an agent call module, you can browse for tags and assign them to enhancement variables. You can
then, for example, write the contents of enhancement variables back to data tags of the source system. Change to the Source System
Tags tab and insert or append a new row. Select an agent instance module from the dropdown box and start the browsing dialog.

Assignment of Enhancement Variables
Destination System Variables | Source System Tags
Agent Call le ource System Tag Data Type Enhancement Yariable
[P\ enicalibackCavpeleathes T)
Insert Row] l Append Row I l Delete Row]Iil Browse .] Propose Assi_gnmem ’

Figure 27: Start the Browsing Dialog for Tags of an Agent

Owned Enhancement

Select one or more tags from the tree and choose Add Selected Items.

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
32 © 2015 SAP SE. All rights reserved. How to Implement a Customer-Owned Enhancement

(
= W

Filter

»»»»» e ComError

----- s ComErrorMessage
----- “x ComResponse

----- s ComTrigger

----- s ReqZipCode

<<<<< e RespTemperature

----- * RespTemperatureCelsius
@] Channelt

@] Data Type Example

.61 Cimulatinn E '

Add Selected Items |
"
Selected Items
Only
Name Source Deadband Change Delete
RespTemperature | CDYNE SimpleWsCaller Example.Weat... |0 | Delete

Figure 28: Browsing for Tags

When you close the browsing window with OK, the selected tags are copied into the configuration window. If you selected multiple
tags, the system creates new rows accordingly. Assign the correct enhancement variables by choosing them from the dropdown box.

Assignment of Enhancement Variables

;| Source System Tags |

Agent Call Module Source System Tag ~ Data Type Enhancement Yariable
» AgentCallbackCdyneWeather > | CDYNE SimpleWsCaller Example.Wea... | System.5tring

RequestZipCode [System.String)
ResponseCity [System.5trin:

[msetRow | [AppendRow | [Deletemow | [Browse _ Propose Assignment _|

Figure 29: Assign Enhancement Variables to Source SystemTags

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer How to Implement a Customer- © 2015 SAP SE. All rights reserved. 33

Note that the correct data type for the enhancement variable can only be determined immediately after browsing the tags. If you do
not assign variables before leaving the screen, the rows without variable assignment cannot be configured later. In this case, delete
the rows without data type information or browse again for tags.

54 Troubleshooting

541 Naming Conflicts

If the names or data types of modules and variables are changed after you have configured them in the
Management Console, you may receive a warning message if you enter the configuration dialog again. The system automatically
removes invalid configurations and allows you to correct the configuration.

542 Avoiding Thread Safety Problems

Unless you chose the option Process Notification Messages Exactly Once in Order in the agent instance configuration, the Send method
of the ICustomLogic interface is called by different parallel dispatching threads. These parallel threads use the same instance of the
class that implement the enhancement. Therefore global class attributes are used by all threads, which can cause unpredictable
effects. It is recommended that you use local variables in the Send method only, except for references to agent callbacks, destination
callbacks, ENP configuration, and the tracer. If access to global class attributes is unavoidable, try to enclose the coding parts with the
keyword lock.

Owned Enhancement

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
34 © 2015 SAP SE. All rights reserved. How to Implement a Customer-Owned Enhancement

6 Sample Customer-Owned Enhancement
Implementation

6.1 Scenario

The sample customer-owned enhancement implementation that is described in this section demonstrates how to call a
Web service from the PCo ENP. The goal is to realize a simple Web service call with as few technical prerequisites as
possible. This means that you do not have to have an SAP ME system in place, for example. The implementation calls a free
SOAP Web service instead, which is the CDYNE Weather Web service that provides you with weather information in the
United States. For more information about the CDYNE Weather Web service, see
http://wiki.cdyne.com/index.php/CDYNE_Weather.

We use the service operation GetCityWeatherByZIP that returns the up-to-date weather information for a city in the
United States identified by its ZIP code. The ZIP code is contained in an XML input file that is passed to the enhancement
implementation by a PCo File Monitor Agent. We then read the weather information from an output file created by the
enhancement implementation.

To run the sample implementation properly, you need to be connected to the Internet to call the CDYNE Web service.

6.2 Implementation

As described in section 5, the implementation involves coding and configuration activities. We start with the coding
activities in Visual Studio (see section 5.2).

1. Start Visual Studio, choose File > New > Project, and create a new solution named Weather. Choose -NET
Framework 4.0.Use the Class Library template.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer Sample Customer-Owned Enhancement Implementation © 2015 SAP SE. All
rights reserved. 35

http://wiki.cdyne.com/index.php/CDYNE_Weather
http://wiki.cdyne.com/index.php/CDYNE_Weather
http://wiki.cdyne.com/index.php/CDYNE_Weather

™

Mew Project ? | i
I Recent MET Framework 4 - Sortby: Default = Search Installed Templates (Ctri+E) Pl
4 Installed (53 A

| | Windows Forms Application Visual C# Type: Visual C#
4 Templates A project for creating a C# class library
: ¥ C#
4 Visual C# ™7 weF Application Visual C# (.l
: <
Windows
C#
Web E Console Application Visual C#
b Office
C#
Cloud EI; ! Class Library Visual C2
Reporting =
% c#
b SharePoint EI, ! Portable Class Library Visual C#
Silverlight =
c#
et WPF Browser Application Visual C#
WCF 3,
Workflow -c - .)
Empty Project Visual C#
LightSwitch k“l
C#
PHELL Lan.guages 5| Windows Service Visual C#
© Other Project Types
Samples C# ; =
g ! WPF Custom Control Library Visual C#
B3
b Online «
WPF User Control Libra Visual C#
afl 2
—C3 : : = ;
!EJ Windows Forms Control Library Visual C#
MNarne: Weather
Location: chusersy ‘\documentsivisual studio 2012\Projects ~ Browse... |
Solution: Create new solution =
Solution name: Weather Create directory for solution
[[] Add to Perforce SCM
QK | [Cancel

Figure 30: Create a New Solution

2. Setthe properties of your project Weather. In the Build section, choose Configurations: All Configurations,
and set Platform target to Any CPU.

PCoCustomermplementation # X Classl.cs

Application
m Configuration: | | All Configurations i Platfarm: |Active (Any CPU) e
Build Events General
Debug e s
Conditional compilation symbols:
Resources o
[H| Define DEBUG constant
Services
L [#] Define TRACE constant
Settings

Reference Paths Platform target: Any CPU -

Signing

Code Analysis [7] &llow unsafe code

[T} Optimize code

Figure 31: Set the Build Configuration of Your Project

Create a reference to the PCo ENP DLL. In the solution explorer, right-click on the References folder below the project
Weather, choose Add Reference, go to the Browse tab, and choose the CustomLogic.dll from the System subfolder of the
PCo program folder.

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
36 © 2015 SAP SE. All rights reserved. Sample Customer-Owned Enhancement Implementation

The References branch of your project should now contain the reference to CustomLogic.

Solution Explorer

@ o-udn @

Search Selution Explorer (Chrl+) P~

fad Solution "Weather' (1 project)
4 Weather
I Properties
=B Customlogic
=B Microsoft.CSharp
50 System
=B System.Core
=B Syctemn,Data
u-B System.Data.DataSetbBxtensions
=B System.Xml
=B Systern.{ml.Ling
b c* Classl.cs

Solution Explorer | Team Explorer

Figure 32: Project References
3. Copy the complete coding of section O into the Class1.csfile.

Let us analyze the coding briefly before we continue with the implementation.

The first region Internal constants for modules, variables, and others contains definitions of
constants for the ENP module names, enhancement variable names, destination system variable names, notification
message output expression, and the XML tags used in the input file. It is good practice to use constants for the names
later on in the coding rather than literals, since some of the names are used multiple times.

The Weather class, which implements the ICustomLogic interface, resides in the second region Customer-

Owned implementation of the ICustomLogic interface. The Weather class declares some private
member attributes that are used to keep references to the agent callback, destination callback, ENP configuration data,
and the tracer. All of these references are passed to the ENP in the Initialize(Qmethod. You can use the tracer object
to write messages into the agent log. In addition, two dictionaries are declared that keep the module and enhancement
variable names.

Inside the Weather class, the Public interface methods to be defined region keeps the implementation of
the public interface methods. The first public method is the parameter-less class constructor where the dictionaries for
enhancement modules and variables are filled. The constructor calls the private methods initLogicModulesSet()
and initVariablesSet().

In method initLogicModulesSet(), we define a destination system call module named
DestinationCal IGetWeatherByZIP and an agent call module AgentCal IbackCdyneWeather.
In method initVariablesSet(), we define one enhancement variable for the request message (RequestZipCode)

and three enhancement variables for the message response (ResponseSuccess, ResponseTemperature, and
ResponseCity).

In the next public method Initialize(),we receive references that we copy to the class members agentCal Iback,
destinationCal Iback, enhancementConfig, and enhancementTracer for later use. Initialize() iscalled
when the agent is started.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer Sample Customer-Owned Enhancement Implementation © 2015 SAP SE. All
rights reserved. 37

The two public methods GetLogicModules() and GetCustomVariables() just pass the module and enhancement

variable dictionaries to the caller. The caller could be the PCo management console during design time or the ENP
framework during runtime.

The public method Send () holds the processing sequence of your customer-owned enhancement implementation. It is
called when a notification message is to be delivered to the Web Service Destination. Here you could parse the contents of
a notification message, map information from the notification message to Web service fields, call Web services or other
destination systems, analyze the destination systems responses, or write information back to the agent.

Our implementation performs the following steps:

1. Extract the ZIP code from the notification message. Since we are using a FileMonitorAgent (see below), the
notification message contains the complete content of the input file. In the input file, the ZIP code is enclosed in
XML tags. Therefore an XML reader is used to extract the ZIP code from the input file.

2. Call the Web service. First we retrieve the destination system variables from the ENP configuration, then we
build the destinationVariableValues dictionary where we assign the ZIP code value to the destination
system variable RequestZipCode. Finally, we call the Web service operation.

3. Evaluate the Web service response and create the output file. The Web service response is enclosed in the
resultdictionary. This dictionary contains the destination system response variables

(ResponseSuccess, ResponseTemperature, and ResponseCi ty) as keys together with their values.
These response values are written to a file named weather . txt in the Desktop folder of your local file
system.

If you passed a valid ZIP code (for example, 12345) to the Web service operation and if the call was successful, a
message like this is written to the file:

11.07.2012 11:55:12: Weather for 12345 Schenectady: Temperature 75F
Otherwise, for an invalid ZIP code like 11111, the file contains a message like this:
11.07.2012 11:55:12: Invalid ZIP code 11111

The output file is created using the AppendFi leExecute() method of the agent callback reference. Before
creating the output, we delete an existing file using the DeleteFi leExecute() method of the agent callback.

Now we continue with the implementation.

4. After you have implemented the coding correctly, you have to build the ENP DLL. In order to do that, choose Build >
Build Solution in Visual Studio. Check the output path of your build configuration. This is where you should find your
ENP DLL weather .dl 1.

For DLLs that are to be used in production, SAP recommends copying the DLL into the System folder of the PCo
installation. For our test example, we can keep the DLL where it is, and reference to the current path later on in the
agent configuration.

We have finished the implementation part in Visual Studio. Now open the Plant Connectivity Management Console and
start configuring a Web Service Destination and an agent instance. Remember that we want to read an XML file from a
directory that is monitored by a File Monitor Agent.

5. Onyour local file system, create two directories, preferably on your Windows Desktop. Name the first folder
FileMonitorFolder and the second folder Fi leMonitorFolderProcessed.

6. Create a new source system of connection type File Monitor Agent. Set the agent properties as follows:

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
38 © 2015 SAP SE. All rights reserved. Sample Customer-Owned Enhancement Implementation

Settings | Authertication | Aliases | Reliability |

General Settings

Folder to Monitor C:\Users'

Monitoring Frequency 1000
Processing Order
File Mask Ey
[¥] Passthe Filz Contents to Destination

[¥] Motify Only i File is Unlocked

File Handling

Destination Folder C:‘-.Users‘-.

Oldest First >

Action Move -

u --.Desktop\.ﬁleMon'rtorFoIder

Browse

ms

“w\Desktop“FileMonitorFolderProcessed Browse

Figure 33: File Monitor Agent Configuration

You can leave the other tabs Authentication, Aliases, and Reliability with their default settings.

Create a destination system of type Web Service Destination. Enter the following URL to the WSDL of the Web

service:

http://wsf.cdyne.com/WeatherWS/Weather .asmx?wsdl

No authentication is required for the CDYNE weather service. Then press Retrieve Services. If the CDYNE weather
service could be contacted, the available endpoint URL and service name should be displayed in the table Service

Bindings. Save the new destination system before you proceed.

Server Settings | Operation Configuration I Advanced Settings |

Server Settings

WSDL URL http:,{Msf.cdyne.com,aWeatherWS,eWeather.asmx?wsdi
Timeout 30000 ms

Detailed Logging |None -

Authentication [No Authentication il

User Mame

Password

Retrieve Services

Service Bindings

End Point URL

Service Name

http:/fwsf.cdyne. com/WeatherWs/ Weather.asmx

WeatherSoapClient

Figure 34: Web Service Destination Server Settings

Now do the destination variable mapping. Change to the Operation Configuration tab of the new destination system,
and select the service operation GetCityWeatherByZIP. Then click Create Request Message. Remember that we

defined the following destination variable names in our implementation coding:
internal struct DestinationVariableNames

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
rights reserved. 39

Customer Sample Customer-Owned Enhancement Implementation

© 2015 SAP SE. All

{ internal const string RequestZipCode =
*"Z1PCODE"™; internal const string ResponseSuccess =
""SUCCESS"'; internal const string
ResponseTemperature = "TEMP"; internal const string

ResponseCity = "CITY";
}

So we use the same variables in the variable mapping configuration Ul. First do the mapping of the ZIP field of the
Web service request message to the destination variable name Z1PCODE. Do not forget to select the Variable
checkbox. Check if the destination variable ZI PCODE appears in the list of variables.

Server Settings | Operation Configuration | Advanced 52ﬁings|

Operation Configuration

Service Operations GetWeatherlnformation()

Request Message Configuration | Response Message cunﬁgmaiiqnl

| Create Request Meszage | [Delete Request Message] [Test Request Message
List of Variables Request Message Configuration
ZIPCODE i
RE&:{&““ Field Name Field Type Value Variable

..... S String

Figure 35: Web Service Destination Request Message Configuration

Before you do the response message configuration, you have to press Test Request Message. When you are prompted
for a ZIP code, enter a valid United States ZIP code, such as 12345, and then press OK.

Set Variables

Set the variables for calling the Web service
Variable Name Variable Type Value
ZIPCODE String

Figure 36: Test Your Request Message

You should now see a list of response message field names. Assign the destination variables SUCCESS,

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
40 © 2015 SAP SE. All rights reserved. Sample Customer-Owned Enhancement Implementation

TEMP, and CITY to the corresponding response field names. Check if these three destination variables appear in the list

of variables.

Server Settings | Operation Configuration |Ad\ranced Settings

Operation Configuration

Service Operations
GetCi

GetWeatherInformation()
ForecastByZIP(String 71
GetCityWeatherByZIP{String 71

[Delete Response Message]

List of Variables

| Request Message Conﬁgurationl Response Message Configuration |

Response Message Configuration

SUCCESS

Variable Name ||

TEMP | Field Mame Field Type Field Value
Iy = response ‘WeatherReturn
f ExtensionData ExtensionDataObject
i @ Success Boolean True SUCCESS i
f ResponseText String City Found
S state String Ny
S city String Schenectady cm
T ¥ @ WeatherstationCity | 5tring Albany I
I WeatherD Int16 2
ﬁ' Description String
E Temperature String 34 TEMP
i @ RelativeHumidity String !82 i
= wind string |wzoG29

m

Figure 37: Web Service Destination Response Message Configuration

Now the destination system configuration is done. Save the destination system before you proceed.

9. Create an agent instance for the source system. On the Host tab, make the required settings for the execution of the

agent service. Enter your own service user name and password to ensure that the output weather file is written into

your Desktop folder. Set the Log Level to Verbose.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
rights reserved. 41

Customer Sample Customer-Owned Enhancement Implementation

© 2015 SAP SE. All

Host [lu-g I Query Purts-l Tag Query I Subscription Items | MNotification Processing I Queued Messages | Messages for Bundling | Message Failures * | x;

General Settings

I:rlﬂg Level [Verbﬂse -]I
Huaost Settings

Run Host as an Executable

fsen."[ce User Name GLOBAL\DO38004

Service User Password TITITT T

Service Start Mode | Manual -

Change Service Dependendies]

Startup Settings

Startup Timeout 5:4] Min
Starting Group T @l |E| |£] |Z|

Figure 38: Agent Configuration

10. Go to the Subscription Items tab of your agent instance. Add the subscription item ReceiveDataFi leContent
that is provided by the File Monitor Agent.

| Hast I Log

I Query Purts-l Tag Queq] Subscription Items | MNotification Processing I Queued Messages | Messages for Bundling I Message Failures ! &

Subscription [tems

Only Crata
MName Source Deadband Changes Type
4 ReceiveDataFileCantent | ReceiveDataFileContent 0 System.String

Figure 39: Add a Subscription Item to the Agent

11. Go to the Notification Processing tab of your agent instance. Select the Process Notification Messages Exactly
Once in Order option. Select Customer-Owned Enhancement, and then enter the path to your ENP DLL in the Dynamic
Link Library field. After doing that, the Weather .Weather class should be displayed in the Class field. If there is no
class displayed, you probably chose a DLL that does not implement the ICustomLogic interface.

Then press Create Destination System. A destination system is created from your DLL. The status should be
Destination system created.

Customer

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
42 © 2015 SAP SE. All rights reserved.

Sample Customer-Owned Enhancement Implementation

| Hast I Log

Motification Message Queue and Dispatch Settings

I Query Purts-l Tag Query I Subscription Items | Motification Processing I Queued Messages | Messages for Bundling | Message Failures 4 [ix

Storage of Messages

lsturagg in Microsoft Message Queue (M5MQ)

Keep Expired Messages

_' Process Motification Messages Exactly Once in Order l

El Keep Copies of Queued Motification Messages in Journal Queue
Make Queued Notification Messages Recoverable
Max. Queusd Messages 1DOUE

Max. Dispatch Threads

Enhanced Matification Processing

Mane

Destination System Calls with Response Processing

IE Customer-Owned Enhancement I

Details of the Enhancement Implementation

Dynamic Link Library “P by tieagyy =AW - it ins i L rmd el (R st e e e e | I_' Browse |

Class |Weather.Weather

T| | Reset |

Maintain Destination System for Notification Enhancement

Create Destination System | |i Delete Destination System I

Status EDestina.iion system created

Figure 40: Link the ENP DLL

12. Add a static notification to your agent instance. Change to the Output tab of the notification, and add the subscription

item to the expression list by pressing Generate Expressions.

| Nutiiicatiunl Output | Message Demewl Destinat'ions|

Qutput Expressions

MName Expression

Type Context ltems

» ReceiveDataFileContent ‘ReceiveDataFileContent’

@)

System.5String | =

Figure 41: Choose an Output Expression
Remember that we defined a constant for this expression in our implementation.
internal struct NotificationOutputExpressionNames

{ internal const string NotifMsgContent =

""ReceiveDataFileContent";

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
rights reserved. 43

Customer Sample Customer-Owned Enhancement Implementation © 2015 SAP SE. All

}

Therefore, the output expression has to be named ReceiveDataFi leContent, too.

13. Go to the Destinations tab of the notification. Add the destination system name /Enhanced Notification
Processing to your notification. Then do the module and variable assignments. Here the enhanced notification
processing module and variable names that you defined in your implementation as well as the destination system and
agent instance come into play.

First assign your Web Service destination system and your agent instance to the agent and destination system call
modules, for example:

Agent and Destination System Call Modules

Your Web Service — Youragentinsance
Module Maodule Type HEx; desfnaion system Destination System : .Ii\'géini: Instance
(S ocntcalibackCdyneweather FRDILREL] | & \ [Dev_cowe meLcuie |+
DestinationCallGetWeatherByZIP | Destination System Call | EI [ﬁ ”CDYNE |v[

Figure 42: Assign Agent and Destination System Call Modules

Then do the assignment of destination variables to the enhancement variables that you defined in your
implementation. You do not have to maintain source system tags for this scenario.

Assignment of Enhancement Variables

Destination System Variables | Source System Tags|

Destination System Call Module Destination System Variable C: Data Type Enhancement Variable
3 Desﬁnatinntallﬁeﬂl}:’:a‘thﬂﬂrZIP ZIPCODE '@j System.String RequestZipCode (System.5tring) -
DestinationCallGetWeatherByZIP | cary j System.5tring ResponseCity [System.5tring) -

DestinationCallGetWeatherByZIP | SUCCESS | System.Boolean Responsesuccess (System.Boolean) >

DestinationCallGetWeatherByZIP .TEMP

j System.5tring ResponseTemperature (System.5tring) x

Propose Assignment

Figure 43: Assign Enhancement Variables

Finally save your agent configuration.

Now you have concluded all the implementation and configuration tasks. Start the agent instance and see if it runs. Of
course, there is no notification message sent to the enhancement implementation, since you have not yet moved an XML
file to the File Monitor Agent folder. But a running agent at this point in time indicates that you carried out the
configuration correctly.

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
44 © 2015 SAP SE. All rights reserved. Sample Customer-Owned Enhancement Implementation

14. Create an XML file that contains the ZIP code. First create the file outside the Fi leMonitorFolder folder. Use a

15.

45

common text editor, such as Microsoft Notepad, and create a text file with an arbitrary name (for example,
ZIP_txt). Copy the following text to the file:

<ZI1P>12345</Z1P>
As you can see, the ZIP code 12345 is enclosed in two tags <Z1P> and </Z1P>. Remember that we defined a
constant for the tag ZIP in our implementation.
internal struct XMLTags
{ internal const string ZIP =
“ZIP";
}

So we have to use the ZIP tag in our XML file, too. Save the file.

Now move the XML to the Fi leMonitorFolder folder. The File Monitor Agent should now start processing the
file and move it to the Fi leMoni torFolderProcessed folder afterwards. The agent then passes the contents of
the XML file to the ENP as a notification message where it is processed according to the enhancement
implementation. If everything went well, you should find a weather . txt file on your Windows Desktop after a few
seconds. Open the file and check if it contains the weather information, for example:

09.06.2015 06:17:16: Weather for 12345 Schenectady: Temperature 45F

Customer
© 2015 SAP SE. All rights reserved. Sample Customer-

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
Owned Enhancement Implementation

6.3 Sample Coding

This is the complete coding of the Class1 . csfile that is used for the sample implementation:

using System; using System.Collections.Generic; using
System.Text; using System.Diagnostics; using
SAP.Manufacturing.CustomLogic; using System.Xml; using
System.lO;

namespace Weather
{

#region Internal constants for modules, variables, and others

/// <summary>

/// Definition of agent and destination system call module names. These /// are the modules that
appear in the "Module and Variable Assignment" /// view inside the notification destination screen.

/// </summary> internal struct CustLogicModuleNames

{
internal const string DestinationCall = "DestinationCallGetWeatherByZIP"; internal const string
AgentCallback = "AgentCallbackCdyneWeather";
}

/// <summary>

/// Definition of enhancement variables. These are the variables that appear

/// inthe "Module and Variable Assignment" view inside the notification /// destination screen.
/// </summary> internal struct CustLogicVariableNames

{
internal const string RequestZipCode = "RequestZipCode"; internal const string
ResponseSuccess = "ResponseSuccess”; internal const string ResponseTemperature =
"ResponseTemperature"; internal const string ResponseCity = "ResponseCity";
}

/// <summary>
/// Constants for the destination system variables. Use the same values
/// in the "Module and Variable Assignment" view inside the notification
/// destination screen, and in the web service destination requestand /// response message configuration screen.
/// </summary> internal struct DestinationVariableNames
{
internal const string RequestZipCode ="ZIPCODE"; internal const string ResponseSuccess =
"SUCCESS"; internal const string ResponseTemperature ="TEMP"; internal const string
ResponseCity = "CITY";

}

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
46 © 2015 SAP SE. All rights reserved. Sample Customer-Owned Enhancement Implementation

/// <summary>
/// Constants that represent the output expression that are shown inthe /// natification output tab. ///
</summary> internal struct NotificationOutputExpressionNames

{

internal const string NotifMsgContent = "ReceiveDataFileContent™;

/// <summary>

/// Constants for the tags in the input XML file
/// </summary> internal struct XMLTags

{

internal const string ZIP ="ZIP";

#endregion

#region Customer-owned implementation of the ICustomLogic interface
/// <summary>
/// Customer-owned implementation of the ICustomLogic interface.
/// </summary> class Weather : ICustomLogic
{
private IAgentCallback agentCallback; private IDestinationCallback destinationCallback;
private ICustomLogicConfiguration enhancementConfig; private CustomLogicTracer

enhancementTracer;

private Dictionary<string, ModuleType> modules; private
Dictionary<string, Type> enhancementVariables;

1/

#region Public interface methods to be defined

/// <summary>

/// The default constructor required for the instantiation.

/// </summary> public
Weather()

{

this.modules = this.initLogicModulesSet(); this.enhancementVariables =

this.initVariablesSet();

}

/// <summary>
/// Initialize the enhancement with a reference to the agent callback, /// destination
callback, enhancement variable configuration, and a tracer /// (logging) instance.

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer Sample Customer-Owned Enhancement Implementation
rights reserved. 47

© 2015 SAP SE. All

/// </summary>
/// <param name="agentCallback">Agent callback</param>
/// <param name="destinationCallback">Destination callback</param>
/// <param name="enhancementConfig">Enhancement configuration</param> /// <param
name="enhancementTracer">Tracer instance for logging</param> void ICustomLogic.Initialize(
IAgentCallback agentCallback,
IDestinationCallback destinationCallback,
ICustomLogicConfiguration enhancementConfig,
CustomLogicTracer enhancementTracer)

this.agentCallback = agentCallback; this.destinationCallback =
destinationCallback; this.enhancementConfig = enhancementConfig;
this.enhancementTracer = enhancementTracer;

}

/// <summary>

/// Returns the module names which identify used logic modules (agents
/// or destinations). This method is called during the design time by the
/// configuration dialog of the Management Console.

/// </summary>

/// <returns>Map of module names to their types</returns>
Dictionary<string, ModuleType> ICustomLogic.GetLogicModules()

{

return this.modules;

/// <summary>

/// Returns a map of enhancement variables to their types. Each variable

/// can be mapped to destination system variables for the destination call.

/// The key in the map is the name of the enhancement variable, and the /// value is the data type of the
variable.

/// </summary>

/// <param name="notificationID">Notification ID. Should be evaluated if the

/// scenario contains more than one notification. In such a case, only the

/// variables that belong to that specific notification should be

/// returned</param>

/// <returns>Map of enhancement variables to their types</returns>

Dictionary<string, Type> ICustomLogic.GetCustomVariables(Guid notificationID)

{

return this.enhancementVariables;

/// <summary>

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
48 © 2015 SAP SE. All rights reserved. Sample Customer-Owned Enhancement Implementation

/// Synchronuous method which processes the notification message raised /// by the agent. The user's code
resides within this implemented method.

/// </summary>

/// <param name="notification">Notification message</param> /// <returns>True if the processing

was successful</returns> bool ICustomLogic.Send(CustomLogicNotificationMessage notification)

{

Dictionary<string, object> enhancementVariableValues = new Dictionary<string,
object>();

//
// Extract the ZIP code from the notification message
// The notification message content has to have the
// format

//

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1 Customer Sample Customer-Owned Enhancement Implementation
rights reserved. 49

© 2015 SAP SE. All

// <ZIP>[ZIP Code]</ZIP>, e.g. <ZIP>12345</ZIP>
//

// The ZIP code has to be a valid US postal code.

// try
{

this.enhancementTracer.TraceMessage(

TraceEventType.Verbose, "Parse the notification message");

string inputXML = notification.Dataltems|[
NotificationOutputExpressionNames.NotifMsgContent
]-Value.ToString();

XmIReader reader = XmIReader.Create(new StringReader(inputXMmL)); bool startZip = false;

while (reader.Read())

{
switch (reader.NodeType)

{
case XmINodeType.Element:
if (reader.Name.Equals(XMLTags.ZIP))
startZip = true; break;

case XmINodeType.Text: if (startZip ==true)
enhancementVariableValues.Add(
CustLogicVariableNames.RequestZipCode,
reader.Value.ToString()); break;

case XmINodeType.EndElement:
if (reader.Name.Equals(XMLTags.ZIP))
startZip = false; break;

}

catch (Exception x)

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
Owned Enhancement Implementation

this.enhancementTracer.TraceException(
TraceEventType.Error, x.Message, X);
this.enhancementTracer. TraceMessage(TraceEventType.Error,

"Parsing failed. Check if the output value 'ReceiveDataFileContent' is spelled correctly, and if the input file is

well formatted."); throw new CustomLogicException("Parsing failed");
Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
50 © 2015 SAP SE. All rights reserved. Sample Customer-Owned Enhancement Implementation

//
// Call the destination system (= web service)
//

Dictionary<string, object> result = null;

try

this.enhancementTracer.TraceMessage(TraceEventType.Verbose,

"Call web service");

// Get the destination system variables and their value for parametric
///web service call
Dictionary<string, object> destinationSystemVariableValues
= new Dictionary<string, object>();
Dictionary<string, string> variableMap
= enhancementConfig.GetModuleVariables(
notification.NotificationDestinationID,

CustLogicModuleNames.DestinationCall);

foreach (string destinationSystemVariable in variableMap.Keys)

{

if (destinationSystemVariable ==

DestinationVariableNames.RequestZipCode)

destinationSystemVariableValues.Add(

variableMap[destinationSystemVariable], enhancementVariableValues[

variableMap[destinationSystemVariable]]);

}

result = this.destinationCallback.CallModule(
CustLogicModuleNames.DestinationCall,
notification,

destinationSystemVariableValues);

}

catch

{

result = null;

if (result == null)
{

Sample Customer-

Customer
© 2015 SAP SE. All rights reserved.

51

this.enhancementTracer.TraceMessage(TraceEventType.Verbose,

"Web service call failed"); throw new CustomLogicException("Web service call failed");
}
//
// Evaluate the destination system response and create the output file
// List<QueryMessage> queryMsg;
string path =

Environment.GetFolderPath(Environment.SpecialFolder.Desktop)
+ "\\weather.txt";

bool success = false; string city =""; string
temp="";
try
{
city = result[CustLogicVariableNames.ResponseCity].ToString(); temp =
result[CustLogicVariableNames.ResponseTemperature].
ToString();

success = (bool)result[CustLogicVariableNames.ResponseSuccess];
}
catch
{

success = false;
}

string outtext ="";

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
Owned Enhancement Implementation

if (success == true) outtext =
String.Format(
"{0}: Weather for {1} {2}: Temperature {3}F\n",
DateTime.UtcNow.ToString(), enhancementVariableValues[
CustLogicVariableNames.RequestZipCode],
city, temp); else
outtext = String.Format(
"{0}: Invalid ZIP code {1}\n", DateTime.UtcNow.ToString(),
enhancementVariableValues[
CustLogicVariableNames.RequestZipCode]);

Dictionary<string, LogicModuleStruct> custLogicModuleConfig =

this.enhancementConfig.GetLogicModuleConfiguration(notification.NotificationDestinationID);
Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
52 © 2015 SAP SE. All rights reserved. Sample Customer-Owned Enhancement Implementation

this.agentCallback.DeleteFileExecute(custLogicModuleConfig[
CustLogicModuleNames.AgentCallback].agentName, path,
out queryMsg); this.agentCallback.AppendFileExecute(
custLogicModuleConfig[
CustLogicModuleNames.AgentCallback].agentName, path,
outtext, out queryMsg);
return true;
}
#endregion
//

#region Private helper methods

/// <summary>

/// Map module names to their types.

/// </summary>

/// <returns>Map of modules names to their types.</returns> private Dictionary<string,
ModuleType> initLogicModulesSet()

{

Dictionary<string, ModuleType> modules = new Dictionary<string,

ModuleType>();

modules.Add(
CustLogicModuleNames.DestinationCall,
ModuleType.Destination); modules.Add(
CustLogicModuleNames.AgentCallback,
ModuleType.Agent);

return modules;

/// <summary>

/// Map custom-logic variables to their types.

/// </summary>

/// <returns>Map of enhancement variables to their types.</returns> private Dictionary<string, Type>
initVariablesSet()

{
Dictionary<string, Type>enhancementVariables = new Dictionary<string,
Type>();
enhancementVariables.Add(CustLogicVariableNames.RequestZipCode, typeof(string));

Customer
Sample Customer- © 2015 SAP SE. All rights reserved. 53

enhancementVariables.Add(CustLogicVariableNames.ResponseSuccess, typeof(bool));
enhancementVariables.Add(CustLogicVariableNames.ResponseTemperature, typeof(string));
enhancementVariables.Add(CustLogicVariableNames.ResponseCity, typeof(string));
return enhancementVariables;
}
#endregion
}
#endregion
}

Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
Owned Enhancement Implementation

Customer Enhanced Notification Processing (ENP) in Plant Connectivity 15.1
54 © 2015 SAP SE. All rights reserved. Sample Customer-Owned Enhancement Implementation

eIpris

| AAATRACY -
‘”_ ®penRower, WerPC‘ BatchPipes,
Orage, GPFS, HACMP ETAIR, DB2
O el SPRedbooks, 0S/2, Parallel-St %, M(S/ESA, Al X,
b [}
l "' Viner, WebSpher.e; Netfidtty, Fivoliandinforfix are
g gy .
arks or registered traqﬁafks.oleM orporation.
| ! inif IWge registered trademark of Linus Torvalds imthe U.S.and
; v © -

>

@demark of Qxa

	Typographic Conventions
	Document History
	Table of Contents
	1 Disclaimer
	1.1 Coding Samples
	1.2 Internet Hyperlinks
	1.3 Accessibility

	2 Overview
	3 Prerequisites
	3.1 Technical Prerequisites
	3.2 Required Knowledge and Skills

	4 Architectural Overview
	4.1 Main Building Blocks
	4.2 Interfaces
	4.2.1 ICustomLogic Interface (Controller Interface)
	4.2.1.1 Initialization
	4.2.1.2 Configuration Methods
	4.2.1.3 Processing of Notification Messages

	4.2.2 Custom-Logic Framework
	4.2.2.1 CustomLogicBase Class
	4.2.2.2 DestinationCallback Class
	4.2.2.3 AgentCallback Class
	4.2.2.4 CustomLogicConfiguration Class
	4.2.2.5 CustomLogicTracer Class
	4.2.2.6 CustomLogic Factories

	5 How to Implement a Customer-Owned Enhancement
	5.1 Overview of Implementation Steps
	5.2 Implementation Activities in Microsoft Visual Studio
	5.2.1 Prerequisites
	5.2.2 Create a Solution and an Implementing Class
	5.2.3 Implement Required Methods
	5.2.4 Build the ENP DLL

	5.3 Configuration Activities in the PCo Management Console
	5.3.1 Prerequisites
	5.3.2 Defining Destination Systems
	5.3.2.1 Flat Variables
	5.3.2.2 One-Dimensional Arrays
	5.3.2.3 Two-Dimensional Arrays

	5.3.3 Creating and Configuring an Agent Instance
	5.3.4 Defining the ENP as Destination of a Notification
	5.3.5 Mapping of Modules and Variables
	5.3.5.1 Mapping of Modules
	5.3.5.2 Assignment of Enhancement Variables
	5.3.5.3 Mapping of Source System Tags

	5.4 Troubleshooting
	5.4.1 Naming Conflicts
	5.4.2 Avoiding Thread Safety Problems

	6 Sample Customer-Owned Enhancement Implementation
	6.1 Scenario
	6.2 Implementation
	6.3 Sample Coding

