
PUBLIC
Document Version: Latest – 2023-05-03

Best Practices to Generate Knowledge Base
Runtime Versions

©
 2

02
3

SA
P

SE
 o

r a
n

SA
P
affi

lia
te

 c
om

pa
ny

. A
ll r

ig
ht

s
re

se
rv

ed
.

THE BEST RUN

Content

1 Quick Reference – Knowledge-Base Runtime Version Generation (KBGEN). 4

2 Basic Concepts of How Knowledge Bases and Runtime Versions Work. 5
2.1 Knowledge-Base Objects. .5
2.2 Knowledge-Base Profiles. .6
2.3 Generating New Runtime Versions. 6
2.4 Regenerating Existing Runtime Versions. 7
2.5 Configuration Using Runtime Versions. 8

3 Designing Knowledge Bases and Runtime Versions. .10
3.1 Changes for Compatibility. 10
3.2 The Delta List(s). 10
3.3 Changes for User Experience. 11
3.4 Changes for Efficiency and Performance. 11

4 Naming Convention Recommendations. .13
4.1 Simplified Example. 13
4.2 Knowledge Base Object Naming. 13
4.3 Runtime Version Naming. 14

5 Knowledge Base Profiles. 16
5.1 Simplified Single Level Example. 16
5.2 Real World Considerations. 17
5.3 Extreme 1: Every KMAT In A Single KB. 18
5.4 Extreme 2: Every KMAT In Its Own KB. 18
5.5 Happy Medium: Similar KMATs In The Same KB. 19
5.6 Simplified Multi-Level Example. 20
5.7 Product Family - Single-Level Example with Additional Focus on Constraint Nets. 21
5.8 Summary. 26

6 Runtime Version Generation . 28
6.1 Number of RTVs Needed for a KB. .28
6.2 When to Generate New RTVs. 29
6.3 When to Regenerate Existing RTVs. 29
6.4 RTVs Aligned to ECM Change Numbers. 29
6.5 Real World Considerations. .30
6.6 Classic and Advanced Knowledge Base Runtime Version Generation (KBGen). 31
6.7 How to Switch the KB Generation Mode?. 32

2 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Content

6.8 KB and RTV Maintenance Utilities. 32

7 System Landscape Considerations. .34
7.1 Configuration Engine Versions. 34
7.2 Filter Unnecessary KB RTVs . 34
7.3 SAP CPQ. 34
7.4 SAP ERP. 35

8 Advanced Use Cases. .36
8.1 Multiple Configuration Profiles. 36
8.2 Runtime Version Deletion. 36
8.3 No BOM Explosion. 37

9 Conclusion. 38

10 Appendix A – Report COM_CFG_DB_STAT SCREENSHOTS. .39

Best Practices to Generate Knowledge Base Runtime Versions
Content PUBLIC 3

1 Quick Reference – Knowledge-Base
Runtime Version Generation (KBGEN)

Basic Concepts Knowledge-Base Ob­
jects [page 5]

Knowledge-Base Pro­
files [page 6]

Generating New Run­
time Versions [page
6]

Configuration Using
Runtime Versions
[page 8]

Design Planning Designing Knowledge Bases and Runtime Ver­
sions [page 10]

Naming Convention Recommendations [page
13]

Setup and Mainte­
nance

KB and RTV Mainte­
nance Utilities [page
32]

Knowledge Base Pro­
files [page 16]

When to Generate New
RTVs [page 29]

RTVs Aligned to
ECM Change Numbers
[page 29]

Advanced Concepts Multiple Configuration
Profiles [page 36]

Number of RTVs
Needed for a KB [page
28]

Filter Unnecessary KB
RTVs [page 34]

Classic and Advanced
Knowledge Base Run­
time Version Genera­
tion (KBGen) [page
31]

4 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Quick Reference – Knowledge-Base Runtime Version Generation (KBGEN)

2 Basic Concepts of How Knowledge Bases
and Runtime Versions Work

A basic understanding of Knowledge Bases (KBs) and Runtime Versions (RTVs) is required before you can
understand the best practices and decisions for your implementation. The following pages contain excerpts
from the SAP Online Help on this topic. See the online help for details on how to create and maintain these
data.

2.1 Knowledge-Base Objects

To configure a product, the Variant Configuration (VC) service of SAP Variant Configuration and Pricing cannot
directly access master data that was created and maintained in SAP S/4HANA or SAP ERP. For this reason, the
master data must be grouped together in knowledge-base objects (KB objects) and made available in the form
of runtime versions (RTVs) that can be replicated in SAP Variant Configuration and Pricing.

The KB object groups together all master data that the Variant Configuration service needs to configure a
product. This includes the following VC objects:

 Note
Note that task lists are not included in KB objects.

• Configurable materials
• Classes
• Characteristics and related values
• Object dependencies
• One configuration profile for each configurable material
• BOMs and BOM components of configurable materials
• Variant tables
• Interface designs

A KB object is characterized by:

• Basic data: name, description, and status
• Language-dependent descriptions
• Optional dependency group parameter to simplify the search for KB objects
• Optional authorization group maintenance
• One or more KB profiles.

Best Practices to Generate Knowledge Base Runtime Versions
Basic Concepts of How Knowledge Bases and Runtime Versions Work PUBLIC 5

2.2 Knowledge-Base Profiles

KB profiles are part of the KB object and allow grouping multiple products. The profile determines if a product
can be used as root product during configuration with the Variant Configuration service of SAP Variant
Configuration and Pricing.

Adding a new KB profile for a product is equivalent to assigning a product to a KB object. You can define one
or more profiles for a KB object. By defining several profiles, you can group several materials together in one
knowledge base. This way, runtime versions can be generated faster, particularly if the affected materials have
common objects, such as variant tables.

2.3 Generating New Runtime Versions

The KB object comprises the master data that describes a configurable product during configuration. The KB
runtime version is created for a specific valid-from date and context. Thus, the RTV represents a snapshot of
the master data needed for configuration. The Variant Configuration service uses KB runtime versions that are
replicated for this purpose.

You specify a runtime version with the following information:

• A valid-from date which determines the date when the snapshot of the KB object is made
• Exactly one plant
• Exactly one BOM application
• One or all languages

The graphic below illustrates the runtime generation process. The configurable material for each KB profile
is exploded using the parameters in the runtime version. The result of each explosion contains all relevant
classes, characteristics, dependencies, BOMs, variant tables, and more for that configurable material. Finally,
the distinct data from each explosion is saved for the runtime version.

6 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Basic Concepts of How Knowledge Bases and Runtime Versions Work

 Note
Note: All objects of the KB object, such as characteristics, have the same validity in the runtime version.
For future use of VC objects in the product configuration process with a valid-from date, i.e., when using
Engineering Change Management (ECM), a separate runtime version with an appropriate valid-from date is
required. See the second graphic in the following section.

2.4 Regenerating Existing Runtime Versions

A runtime version (RTV) collects the master data as it was created. You regenerate an RTV if you want to:

• Activate changes you have made to the master data
• Change the attributes of the runtime version, such as the valid-from date

Regenerating overwrites the database records of a runtime version and creates a new build. When a runtime
version is regenerated, the valid-from date is not automatically updated, it remains the same as in the previous
build. You can manually change the valid-from date when regenerating a runtime version, if you want the
valid-from date to be today. Changing the valid-from date of an RTV may change several of its objects as the
master data is read with respect to the new valid-from date.

The graphic below illustrates the runtime regeneration process. It works essentially the same way as the
generation process except that the data in the previous build is overwritten with the new result.

The build number of an RTV is automatically incremented whenever an RTV is successfully regenerated. For
example, the build number after initial generation of an RTV is 1. The build number of the next regeneration of
that RTV is 2, and so on. Previous builds for a given RTV are not stored in the database. Only the latest build
persists and is loaded by Variant Configuration service for the RTV. Also, note that it is possible to check the
regeneration of an RTV without saving it in the database. This can be useful for evaluating the effect that VC
modeling changes would have on the current RTV build.

If you want to provide model versions for a valid-from date in the future, you must create a new, separate
runtime version with the appropriate validity data. The graphic below illustrates how the original runtime
version remains while a new and separate runtime version is created.

Best Practices to Generate Knowledge Base Runtime Versions
Basic Concepts of How Knowledge Bases and Runtime Versions Work PUBLIC 7

2.5 Configuration Using Runtime Versions

This example illustrates how different use cases for configuration and reconfiguration can interact with
modeling fixes and product changes for a given configurable product. The timeline graphic is explained as
follows:

1. Build 1 of RTV A is generated on March 31 with valid-from date April 1.
2. Configuration 1 is created on April 1 with effective date April 1.
→ Build 1 of RTV A is selected because it is valid from April 1.

3. On April 2, issues with the VC model are reported and fixed.
4. On April 4, RTV A is regenerated to build 2 with valid-from date April 1.
→ Build 2 of RTV A is used immediately, any model changes valid at a future date, e.g. when using ECM,
are not considered.

5. On April 5, configuration 1 is edited with effective date April 1.
→ Build 2 of RTV A is selected.

6. Build 1 of RTV B is generated on April 6 with valid-from date of April 7. The configurable product has new
features that become available and have been modeled with an ECM change number for configurations
placed on or after April 7

7. Configuration 2 is created on April 8 with effective date April 8
→ Build 1 of RTV B is selected because it is valid from April 7. RTV A still exists but is only selected for
configurations with an effective date between April 1 and April 6.

8. On April 9, issues with the new features in the VC model are reported and fixed. The previous ECM change
number with valid-from date of April 7 is used to make the model changes

9. On April 10, configuration 2 is edited (effective date remains April 8)
→ Build 1 of RTV B selected. Changes done on April 9 are note present (no new build was generated).

8 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Basic Concepts of How Knowledge Bases and Runtime Versions Work

10. On April 11, RTV B is regenerated to build 2 with valid-from date April 7.
11. On April 12, configuration 2 is again edited (effective date remains April 8).
→ Build 2 of RTV B is selected (valid from April 7).

Note that runtime versions are selected using the effective date of the configuration rather than the
system date. This can require implementing business logic to set the appropriate configuration effective
date for reconfigurations that cross over a new RTV valid-from date. Continuing the previous example, if the
first configuration is again edited on April 7, which RTV should be used?
→ If the effective date of the configuration remains April 1, then build 2 of RTV A will be selected.

12. However, the new features in RTV B are not available in RTV A even though they are offered for new
configurations on or after April 7.
→ If the effective date of the configuration should change to April 7, then build 2 of RTV B will be selected.

13. The effective date must change if any features offered in RTV A are discontinued and no longer offered as
of April 7, i.e., they must not be selected in the reconfiguration.

14. The selection of RTV B may result in inconsistencies in the configuration if obsolete features were
previously specified and saved in the configuration using RTV A.

Best Practices to Generate Knowledge Base Runtime Versions
Basic Concepts of How Knowledge Bases and Runtime Versions Work PUBLIC 9

3 Designing Knowledge Bases and Runtime
Versions

You may need to make changes to existing Variant Configuration (VC) models so that they are compatible
with the knowledge-base runtime version generation. Even if your VC models are compatible to generate
knowledge-base runtime versions (RTVs), you may choose to make changes to improve the user experience
as well as RTV generation, and runtime efficiency. This can also lead to performance improvements. The table
below summarizes the different preparations and the following sections discuss considerations for them.

KB Compatibility User Experience Efficiency / Performance

Generation errors must be resolved to
save an RTV

Characteristic granularity must be ap­
propriate for all use cases

Advanced KB generation optimally
stores variant tables

Generation warnings must be evaluated
and addressed to ensure desired RTV
behavior

Conflict situations must be avoided or
easily understood and resolved

Bloated RTVs consume more storage
and take longer to load

Delta-list discrepancies must be
avoided and/or addressed

Characteristic/value descriptions must
be understood by all users

Filter BAdI limits RTV data to the mini­
mum needed

3.1 Changes for Compatibility

Do you need to change your VC models to generate runtime versions? You can answer that question by
creating KB objects and then attempting to generate runtime versions. The runtime version generation process
will display information and potentially warnings and errors. Warnings indicate situations that you may need to
address for compatibility; errors indicate situations that you must address.

If you have many VC models, it can be very time consuming to create all the KB objects and RTVs that you
need to determine the compatibility of your models. You likely do not yet know how to optimally define your KB
objects and KB profiles which makes this more difficult. This could lead to rework when you do decide how to
do this. If you are new to KB generation, you will likely benefit from working with experts, such as consultants
and partners who have performed this conversion process many times.

3.2 The Delta List(s)

The Delta List is a synopsis of the key differences between LO-VC models and engines using RTVs. Some
items on the Delta List are informational and thus educate the reader about differences in the use of LO-VC

10 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Designing Knowledge Bases and Runtime Versions

and RTVs. Other items highlight modeling changes that may be required to make it possible to generate an
RTV of an LO-VC model. The remaining items denote LO-VC features or modeling constructs that are simply
not supported in KBGen and must be redesigned for compatibility. There are three key challenges to fully
understand the Delta List:

1. The Delta List is continually updated. Items are added if new differences are found and items are removed
when SAP makes program changes to eliminate a difference to improve compatibility. SAP removes
differences when it is determined that customers are significantly challenged by a given difference and
eliminating that difference requires a reasonable amount of development. The removal of differences is
typically delivered with an ERP Enhancement Pack or on Support Pack level. This means that you may
need to upgrade and/or install Support Packs to remove a specific difference if you are currently running
an earlier level.

2. There is not a single, comprehensive Delta List, but several sources. The SAP online help provides one
source of the Delta List, but this help occurs in multiple places and occasionally becomes out of date when
differences are removed. The most up-to-date source regarding detailed technical information is provided
via SAP notes. SAP Notes like 1819856 are a good starting point, but other notes better address specific
incompatibilities. Those SAP notes include 651112 , 664274 , 837111 , 1529481 , and 1537346 .
Be careful as some notes are superseded by other notes as differences change or are eliminated.

3. ERP message class VSCE is used in RTV Consistency Checker. Not all differences are detected by the RTV
Consistency Checker, but all those that prevent the generation of an RTV are.

3.3 Changes for User Experience

If your VC models were developed primarily by engineering or manufacturing for back office order entry,
these models may not be suitable for future use by less technical users like salespeople (in CPQ) or end
customers (in Commerce Cloud). The full scope of this topic is beyond the scope of this technical best
practices document, but it is an important consideration for successful user adoption of your configuration
solution throughout your SAP system landscape.

Perhaps the most common user experience problem is the resolution of configuration inconsistencies and
conflicts. Declarative logic enabled through restrictable characteristics and constraints are the best way to
avoid such conflicts. On the other hand, procedural logic with heavy use of procedures and preconditions may
result in conflict states that a user cannot understand how to resolve. For example, if the user is expected
to specify characteristics in a specific sequence but does not or backtracks to change a previously specified
characteristic without respecifying each subsequent characteristic.

3.4 Changes for Efficiency and Performance

Some companies have RTVs that still include every characteristic value, variant table row, and object
dependency that has ever been used in the lifecycle of a KMAT, even though most of those characteristic
values are no longer offered, and the related object dependencies are no longer relevant.

If you are not using ECM change numbers to continually update your VC models, you may have this situation.
Deleting objects from a VC model without ECM is generally not allowed, for instance if a class, characteristic, or

Best Practices to Generate Knowledge Base Runtime Versions
Designing Knowledge Bases and Runtime Versions PUBLIC 11

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1819856
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/651112
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/664274
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/837111
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/
							1529481
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1537346

value was used in a saved configuration, nor prudent, for instance when deleting an object dependency that is
needed to correctly edit or display saved configurations.

Bloated RTVs consume more storage and memory than necessary, and they take longer to generate, migrate,
and load. While you can technically operate this way, a good practice in VC design and maintenance follows the
axiom that less is more. See KB and RTV Maintenance Utilities [page 32] to determine precisely what an RTV
version contains.

Filter out unnecessary documents

You can filter unnecessary documents such as image files and PDFs linked to materials, characteristics, and
characteristic values out of your RTVs by implementing a BADI. During KB RTV generation, these data are
included in the RTV even though they are in most cases not relevant for the IPC and they are not supported
for Variant Configuration service. If these documents are not required in your implementation, it is strongly
recommended to implement the BADI described in SAP Note 1030427 to suppress the replication of the
documentation data to the COMM_CFG* tables. This will considerably lower the amount of data to be copied
and speed up both the initialize report CFG_ERP_INITIALISE_DB and the request report for an individual KB
RTV in report CFG_ERP_REQUEST_DB. In the case of Variant Configuration service, it additionally reduces the
data to be replicated to the cloud.

12 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Designing Knowledge Bases and Runtime Versions

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1030427

4 Naming Convention Recommendations

When Knowledge base (KB) objects contain multiple KB profiles with multiple runtime versions (RTVs), an
intuitive naming convention is quite useful to indicate what data each one contains. Your naming convention
could follow these generally suggested patterns:

• KB Object: a general name, e.g., the product family or product hierarchy that it represents
• KB Profiles: the same name as the configurable material in the profile
• RTVs: a concatenation of relevant key fields in its header

The following simplified example and explanations illustrate various considerations for establishing your
naming convention.

4.1 Simplified Example

A company makes two configurable bicycles, models 3000 and 4000, in two different plants. There are subtle
differences in the configuration structures of the bikes in each of the plants. The company changes the features
and options of the model of each year, for instance 2020 and 2021. The graphic below illustrates how these
names follow the suggested naming convention.

4.2 Knowledge Base Object Naming

Like other VC naming conventions, you should avoid hard coding the name of a knowledge base (KB) object
that may reasonably evolve in the future. For example, if your KB object initially contains only one KB profile
which contains only one KMAT, it may be tempting to name your KB object the same as the corresponding
KMAT. Over time however, it may be advantageous to add additional KB profiles to that KB object, making the

Best Practices to Generate Knowledge Base Runtime Versions
Naming Convention Recommendations PUBLIC 13

existing KB object name confusing since it implies the existence of only one KB profile. Remember that you can
always update the KB object’s descriptions if you wish to convey up-to-date information about an object.

4.3 Runtime Version Naming

The name should generally align with the header data of the RTV in the sequence shown below:

1. Valid-from date
2. Plant
3. BOM Application (optional, see below)
4. Language Key (optional, see below)
5. Configuration Profile (optional, see Advanced Use Case section)

Valid-from date:

From the publication of SAP note 2932857 on, the PMEVC sorts multiple runtime versions for a given KB
object by valid-from date and version name. There are four commonly used validity conventions:

1. A series designation such as the year of the model (e.g., 2020, 2021)
2. A version number, like the one used for software (e.g., 1.0, 2.0)
3. An 8-digit date, with format YYYYMMDD (e.g., 20200101, 2021010)
4. An ECM change number

The first two conventions are tied to product releases. The modeler decides when a new release, and
corresponding runtime version, is required.

While dates are commonly used in runtime version names, they do have one distinct disadvantage. If you
decide to change the valid-from date of the runtime in a later build, the runtime version name would no longer
correspond to the actual runtime version valid-from date. In such cases, you need to create a new runtime
version to keep consistent naming even if you do not need a separate version for validity purposes, therefore,
the two runtime versions may have the same contents on those valid-from dates.

Including an ECM change number in your runtime version name makes sense if you relate your VC modeling
effectivity to change numbers. In this scenario, you need one runtime version for each change number. This
assumes that each change number used in your VC model has a unique valid-from date. An advantage of
this approach is that you can date shift your ECM change number and corresponding runtime version without
causing naming confusion. Note however that ECM change numbers and runtime versions are linked by name
only, that is, changing the valid-from date of one, does not automatically change the valid-from date of the
other, you must do this manually.

Plant:

If your configurable materials are sold by multiple plants, and there are configuration differences between
those plants, then you will need separate runtime versions by plant. If there are no configuration differences
between plants, you can use the runtime version for one plant in any other plant. However, it is still
recommended to include the plant in the runtime version name in case plant-specific differences do occur
in the future.

14 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Naming Convention Recommendations

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2932857

BOM Application:

Typically, the same BOM application will be used for all runtime versions of a KB object, however it is possible
that a different BOM application is required in the future. In such cases, the BOM application can be appended
to the end of the runtime version name and omitted if it is not necessary.

Language:

Runtime versions are typically created for all languages, but it is possible to create them as language specific.
In such cases, the language key can be appended to the end of the runtime version name and omitted if the
runtime version is not language specific.

Best Practices to Generate Knowledge Base Runtime Versions
Naming Convention Recommendations PUBLIC 15

5 Knowledge Base Profiles

A knowledge base must contain one or more profiles. These profiles determine which configurable materials
can be configured at the root level using its runtime versions. Design time and runtime performance can be
optimized by strategically deciding which configurable materials have profiles in the same knowledge base. The
following example provides a simplified illustration of how knowledge base profiles can be arranged. We will
start with single-level configuration scenarios.

5.1 Simplified Single Level Example

There are three configurable materials (KMATs) in your system named A, B, and C. For the sake of clarity,
we will only consider characteristics but usually the KBs contain a multitude of other configuration objects,
such as large variant tables, which can have stronger effects on performance and memory. In our example, the
KMATs each have five characteristics.

KMAT A KMAT B KMAT C

Char1 Char2 Char6

Char2 Char3 Char7

Char3 Char4 Char8

Char4 Char5 Char9

Char5 Char6 Char10

You need to decide the best way to define the structure of the knowledge base for these three materials. The
following scenarios are possible:

• A separate KB object for each KMAT: three KB objects with each having a single KB profile for KMAT A,
KMAT B, and KMAT C

• Two KMATs share one KB object: one KB object AB with a KB profile for KMAT A and a KB profile for KMAT
B, one KB object C and KB profile for KMAT C or any other combination

• All three KMATs share a single KB object: The KB object ABC has three profiles, one for each KMAT

The characteristics that are included in each KB runtime version are shown below where KB stands for KB
object.

KB A KB B KB C KB AB KB AC KB BC KB ABC

Char1 Char2 Char6 Char1 Char1 Char2 Char1

16 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Knowledge Base Profiles

KB A KB B KB C KB AB KB AC KB BC KB ABC

Char2 Char3 Char7 Char2 Char2 Char3 Char2

Char3 Char4 Char8 Char3 Char3 Char4 Char3

Char4 Char5 Char9 Char4 Char4 Char5 Char4

Char5 Char6 Char10 Char5 Char5 Char6 Char5

Char6 Char6 Char7 Char6

Char7 Char8 Char7

Char8 Char9 Char8

Char9 Char10 Char9

Char10 Char10

Leaving aside the fact that due to the simplicity of the example, a single KB object would not be problematic
from a performance perspective, what are the optimal KB definitions for these three KMATs?

The best overall option is KB object AB and KB object C. Since KMAT A and KMAT B share most of their
characteristics, a shared KB object AB is very efficient and consumes the least memory and cache size. KMAT
C shares only one characteristic with KMAT B and no characteristics with KMAT A, so including KMAT C with
either of the other KMATs would nearly double the size of the resulting KB. If you change Char6, then you need
to regenerate runtime versions for KB AB and KB C since both KBs contain that characteristic. If you change
any other Char, then you only need to regenerate runtime versions for KB AB or KB C depending on which KB
contains the characteristic you changed.

A single KB object ABC would be the simplest to maintain. If you change any characteristic, then you
regenerate the runtime version of that KB. You do not need to decide which runtime versions to generate
because you have only one KB. Runtime versions for this KB will take nearly twice as long to load as KBs that
have half the characteristics.

Separate KB objects, KB object A, KB object B, and KB object C, would provide the best runtime performance.
Runtime versions will load as fast as possible since they contain the absolute minimum required data because
there is no data from other KMATs. However, if you change any characteristic, you must determine which
runtime versions to regenerate, that is which KB objects contain the Char that was changed

5.2 Real World Considerations

The preceding example was intentionally simplified so that it could be easily understood. In that case, a single
KB ABC would be fine because the KMATs in the example are so small. Even doubling any performance metric
would amount to a few microseconds which would be imperceptible to a user.

Best Practices to Generate Knowledge Base Runtime Versions
Knowledge Base Profiles PUBLIC 17

Furthermore, characteristics are only one of the VC objects to consider in the size of a KB or runtime version.
Variant tables with many large numbers of rows and columns often consume the most processing time, to
generate or load, and the most storage space.

The following sections describe the extremes of KB profile definition as well as the happy medium that falls
somewhere between those extremes and represents the optimal KB definition for a given implementation. For
these explanations, assume that we have 100 large and complex KMATs, so the optimal KB definition will have a
large impact on overall maintenance and performance.

5.3 Extreme 1: Every KMAT In A Single KB

As explained in the simplified example above, the simplest maintenance option is to have a single KB with
profiles for every KMAT. However, typically this is a bad design for large VC implementations for the following
reasons:

• Runtime versions will be very large and will take a long time to generate
• You must regenerate the full runtime version after any VC change
• Regeneration may time out
• Moving your runtime version to applications such as Variant Configuration and Pricing may take a long

time
• Trial and error debugging will be painfully slow: make one VC change, regenerate and move runtime

version, test
• Loading the runtime version to configure any KMAT will take a long time

• Applications like SAP Variant Configuration and Pricing must load the full KB to configure any KMAT in
the KB

• This load time will be noticeably slow because the entire KB must be loaded even though only a small
fraction of the KB data may be needed

• You may run out of memory to load such a large runtime version

5.4 Extreme 2: Every KMAT In Its Own KB

Some customers are not aware of the possibility to group several configurable materials, KB profiles, in one
KB. As a result, they create a separate KB for every configurable material. Here are some advantages and
disadvantages of this scenario:

• Individual KB runtime versions will be as compact as possible, but you will have to maintain many
• Regeneration of an individual runtime version is done as fast as possible
• Trial and error debugging of a single KMAT is done as fast as possible: make one VC change, regenerate

the runtime version for that KMAT, move runtime version, and test
• To deploy a VC change that affects multiple KBs, you must determine all KBs that are affected and

regenerate their runtime versions

18 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Knowledge Base Profiles

• Because it is often difficult to determine which KBs are affected by a VC change, many companies
regenerate all runtime versions, to make sure that none are inadvertently missed

• Regenerating runtime versions for all KBs after VC changes results in the longest cumulative
maintenance duration to generate and move runtime versions, and in storage requirement because
duplication of data is likely done across multiple KBs. To illustrate this point, we use the simplified
example from above:
• The sum of Chars in KB A, KB B, and KB C is 15. This is Extreme 2
• The sum of Chars in KB ABC is 10. This is Extreme 1
• The sum of Chars in KB AB and KB C is 11. This is the Happy Medium, see Happy Medium: Similar

KMATs In The Same KB [page 19]
• Loading a runtime version to configure any KMAT will be as fast as possible

• The runtime version will contain only the data needed to configure that KMAT
• You will also consume the least amount of memory per runtime version

5.5 Happy Medium: Similar KMATs In The Same KB

When you understand the extremes above, then you are ready to define the happy medium, a balanced
solution, for your KB definition. Keep in mind that no single approach is optimal for all implementations and
that your perfect solution depends on your needs. The following section outlines the main considerations for
making these decisions. The rest of this section outlines some common ways that KB definitions are aligned
between the two extremes described above.

If you have well-formed design patterns that leverage object orientation and good naming conventions, then
consider aligning KBs to product families, groups of configurable materials that are likely to share many VC
objects. For example, your company has various KMATs for bicycles and various KMATs for computers, the
bicycle KMATs and computer KMATs would be unlikely to share many VC objects. Combining all these KMATs
into a single KB would generally not make sense. However, combining the bicycle KMATs into one KB and
combining the computer KMATs into another KB could result in an efficient design.

Within a product family, it may be advantageous to further divide KMATs according to how they are modeled.
For example, if off-road bicycle KMATs share a set of variant classes, constraint nets, and variant tables, while
racing bicycles share a different set of variant classes, constraint nets, and variant tables, then you should
consider one KB for off-road bicycles and another KB for racing bicycle KMATs.

In the end, the VC modelers know best where there is a high degree of commonality among KMATs. This
commonality is what makes it efficient to share KB definitions.

Exception: Some companies implement VC in a way that no VC objects are shared across KMATs. All VC
objects are KMAT specific. This approach does not leverage the robust object orientation capabilities of variant
configuration and is therefore generally not considered good practice, although it is technically feasible. If this
approach is used by your company, then the Extreme 2 is your happy medium.

Best Practices to Generate Knowledge Base Runtime Versions
Knowledge Base Profiles PUBLIC 19

5.6 Simplified Multi-Level Example

You add three configurable materials (KMAT), named X, Y, and Z, to your system. They each have five
characteristics as shown below.

KMAT X KMAT Y KMAT Z

Char11 Char12 Char16

Char12 Char13 Char17

Char13 Char14 Char18

Char14 Char15 Char19

Char15 Char16 Char20

KMAT Y and KMAT Z can be configured as subassemblies under KMAT X, i.e. the root item. KMAT Y can also be
configured independently as a single level root item, KMAT Z cannot be configured independently. You need to
decide the best way to define knowledge bases for these three KMATs. The following scenarios are possible:

• A separate KB object for each KMAT X and KMAT Y: KB object X with single KB profile for KMAT X, KB
object Y with single KB profile for KMAT Y. KMAT Z should not have a KB profile in any KB object because it
cannot be the root item

• Two KMATs share a KB object XY: KB object XY has a KB profile for KMAT X and a KB profile for KMAT Y.
KMAT Z does not have any KB profile assigned

What are the optimal KB definitions for the three KMATs of this simple example?

KB object Y is technically redundant to KB object X and KB object XY, because KB object X and KB object XY
contain the same data except for KB profiles.

KB object X technically contains all data needed to configure KMAT Y as a single level root item, but it will not
be used because it does not have a KB profile for KMAT Y. The fact that KMAT Y can be a subassembly under
KMAT X is not considered for root item configuration of KMAT Y. Creating a separate KB object Y for KMAT Y
therefore serves no purpose.

The best option is the KB object XY. It contains all data needed to configure KMAT X as a root item and KMAT
Y and KMAT Z as subassemblies because it contains a KB profile for KMAT X. It also contains all data needed to
configure KMAT Y as a single level root item because it contains a KB profile for it.

This example illustrates why you should identify KMAT subassemblies that can also be root item configurations
and then avoid creating separate KBs for those KMATs.

20 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Knowledge Base Profiles

5.7 Product Family - Single-Level Example with Additional
Focus on Constraint Nets

Now let us take a look at distinct single level products and when to combine them in one knowledgebase.

For different but similar products, we need to consider not only the reuse of common classes, characteristics,
dependencies, and variant tables, but also the use of constraint nets because storing and loading the
constraint nets differs slightly in the Knowledgebase Runtime-Version from the LO-VC.

Let us assume that you add two configurable materials (KMAT), named S and T to your system. Both have five
characteristics, as shown below, and both inherit the characteristics from a common class CLASS_C, as well as
from both CLASS_S and CLASS_T.

CLASS_C has assigned characteristics: Char12, Char13, Char14, and Char15.

CLASS_S has the assigned characteristic has the assigned characteristic Char11. CLASS_T has the
characteristic Char16.

which result in:

KMAT S KMAT T

Char11 Char12

Char12 Char13

Char13 Char14

Best Practices to Generate Knowledge Base Runtime Versions
Knowledge Base Profiles PUBLIC 21

KMAT S KMAT T

Char14 Char15

Char15 Char16

Additionally, let us suppose that both products use common constraints, and each product uses specific
constraints where product specific logic is implemented even for the common characteristics CHAR12 to
CHAR15. These specific constraints are assigned to extra constraint nets. The constraint nets are assigned to
the respective configuration profiles for KMAT S and KMAT T.

The following picture shows that this leads to the commonly used constraint net: Constraint ST. Specific
constraint net for product S: Constraint net S. And specific constraint net for product T: Constraint net T.

22 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Knowledge Base Profiles

Combining both products in one knowledgebase is a good approach from the data-redundancy point of view.
However, there is one particularity to be noted which is also documented in the list of deltas between the VC
and RTV usage in the Configuration Engine. For example, in SAP Variant Configuration and Pricing service:

Best Practices to Generate Knowledge Base Runtime Versions
Knowledge Base Profiles PUBLIC 23

Description Configuration Engine LO-VC

Loading constraint nets All constraint nets are loaded at the
start of the configuration process.

Constraint nets that are assigned to a
configuration profile are loaded only if
the material was selected during the
configuration.

This is true because in the Knowledgebase Runtime-Version the constraint nets are collected in a so-called
task without the previous link to the Configuration Profile as shown in the picture below. Thus, all constraints
nets and all constraints are loaded into the configuration from the generated task for any product which is
configured.

24 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Knowledge Base Profiles

Example and solution:

If both products are maintained to be configured with the same knowledgebase ST, then all maintained
constraint nets (constraint nets which are assigned to any contained configuration profile) are loaded into the
configuration during configuration start, whether it is for product S, or for product T. Thus, constraint net S, T,
and ST are all three loaded when a configuration is created!

Best Practices to Generate Knowledge Base Runtime Versions
Knowledge Base Profiles PUBLIC 25

If the constraint S makes inferences for product S only, you must make sure to use a material specific object
declaration in constraint S:

?O IS_OBJECT(MATERIAL)(300)(NR='S') WHERE C2 = Char12;
C3 = Char13 

The same applies for the declaration in constraint T:

?O IS_OBJECT(MATERIAL)(300)(NR='T') WHERE C2 = Char12;
C3 = Char13 

whereas the constraints in constraint net ST should use a declaration on class level, as they apply to both
products S and T:

?O IS_a(300)CLASS_C WHERE C2 = Char12;
C3 = Char13 

 Note
Products can be grouped by product family if you can assign all used constraint nets to all relevant
configuration profiles. Common constraints should be collected in a common net, and specific constraints
should be collected in product specific nets using the material specific declaration.

5.8 Summary

The following summarizes the main considerations for defining knowledge bases. Your weighting of these
various factors will influence your optimal KB definitions.

1. Redundancy avoidance in KBs
• Identify high commonality among KMAT data, such as:

• Variant tables and constraint nets that contain large amounts of data
• Class hierarchies with potentially many preconditions for characteristics and characteristic values

• Identify KMAT subassemblies that can also be root item for configurations
• Avoid creating separate KBs for such KMATs

2. Ongoing maintenance of runtime versions
• Ability to train support staff to maintain properly

• Which runtime versions to generate after a change?
• Overall effort

• How many runtime versions to generate after a VC change?
• Overall duration

• How long does it take to regenerate and move runtime versions?
3. Configuration load time

• How much data is there in the runtime version?

26 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Knowledge Base Profiles

• How much memory is consumed?
4. Constraint net loading, as all constraint nets, is loaded at the start of a configuration, as well as the

constraint nets from other configuration profiles!
5. Feasibility of rapid trial and error testing.

Best Practices to Generate Knowledge Base Runtime Versions
Knowledge Base Profiles PUBLIC 27

6 Runtime Version Generation

This section provides guidance on when and how to regenerate RTVs. For this document, it is assumed that
RTVs are generated in your production ERP system which is the most common scenario.

6.1 Number of RTVs Needed for a KB

As discussed in the Naming Convention section, separate RTVs are required for each combination of the
following parameters:

• Valid-from date
• Plant
• BOM Application
• Language Key
• Configuration Profile

In other words, the number of required RTVs is the multiplication of distinct (and only applicable) numbers of
valid-from dates, plants, BOM applications, language keys, and configuration profiles:

"# of RTVs"="valid-from dates"×"plants"×"BOM appl."×"language keys"×"configuration
profiles"

In the practice, the valid-from date is typically the only parameter that distinguishes from one RTV to another.

Continuing with the naming convention example, the bicycles had two separate valid-from dates for two
separate plants, which have different configuration logic each, leading to four RTVs. BOM application, language
keys, and configuration profiles are already distinct in this example and thus not applicable.

28 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Runtime Version Generation

6.2 When to Generate New RTVs

Continuing the example of the previous page, two additional RTVs will be needed in 2022:

• 2022 3000 for plant 3000
• 2022 4000 for plant 4000

Additional RTVs are needed because it is necessary to maintain separate offerings for each model year,
especially at yearend when it may be necessary to configure according to previous or next year offerings.

With SAP Note 2676709 , a new RTV that contains the exact same settings and contents as its predecessor
will not be saved. The predecessor is determined via the valid-from date.

In the above example, if a new RTV is generated using plant 4000 and:

• The new valid-from date is in 2022, the predecessor version will be RTV 2021 4000
• The new valid-from date lies between the one of RTV 2020 4000 and RTV 2021 4000, the predecessor

version will be RTV 2020 4000
• The new valid-from date lies in 2019, no predecessor exists

6.3 When to Regenerate Existing RTVs

RTVs are typically regenerated (i.e., rebuilt) whenever changes need to be immediate and retroactive to existing
configurations for that RTV. There are typically two scenarios for such updates:

• When there are corrections to the VC model data or logic, because it was previously incorrect
• When the midstream product changes have certain features that are immediately available or discontinued

Continuing with the previous bicycle example, a certain handlebar configuration becomes immediately
discontinued due to a quality problem. The option is excluded in the VC models and the RTVs for that
model year are regenerated and deployed. Existing quotations where that handlebar was allowed will now
be inconsistent during reconfiguration or order submission which is ofcourse the desired outcome. The user
would be alerted that a different handlebar configuration must now be selected.

6.4 RTVs Aligned to ECM Change Numbers

As mentioned in the Naming Convention section, RTV valid-from dates can be aligned with the valid-from
dates of the ECM Change Number (ECN) when ECNs are used for maintaining the corresponding VC models.
Note that RTVs themselves cannot be maintained with ECNs, therefore RTV valid-from dates must be aligned
manually and realigned manually, and then regenerated, after a date shift of the ECN.

Using this approach, you will need one or more RTVs (see Number of RTVs Needed for a KB [page 28]) for
each Change Number that was used to maintain the VC models. This approach works well for scenarios where

Best Practices to Generate Knowledge Base Runtime Versions
Runtime Version Generation PUBLIC 29

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2676709

you do periodic releases to your VC models, to introduce and discontinue certain features, and perform the
maintenance across all relevant VC models with a single change number. You may also decide that the effective
date for introduction of these changes needs to move slightly in response to market or production readiness.
The Change Number ensures that the VC model changes are coordinated between your ERP system and your
RTVs.

Note that you can use various Change Numbers on manufacturing BOMs, assuming that manufacturing BOMs
are not included in your RTV, and this will not affect the Change Number that is used to align with the
RTV validity. Also note that you cannot use two Change Numbers with the same valid-from date since the
Configuration Service will not be able to select both RTVs on that date.

As a footnote, KB objects cannot be maintained with ECM even though a read only and blank Change Number
field appears on the initial screens of the classic transactions CU31-33.

In general, it is recommended to use engineering change management, but it is particularly important to do
it when using Variant Configuration service with AVC forwarding enabled. That is to ensure that the version
of the product model processed by AVC is the same as the knowledge-base version that is used by Variant
Configuration service.

Variant configuration service does not process AVC configuration results that contain objects like
characteristics or products that are unknown to the knowledge base, because this would lead to errors in
SAP CPQ.

6.5 Real World Considerations

The following table summarizes approaches and extremes for regenerating existing or generating new RTVs for
a given KB. Expected behavior of reconfiguration (i.e., changing a saved configuration) use cases play a key
factor in the decision process along with the frequency of VC model changes.

Frequency Regenerate an Existing RTV Generate a New RTV

Daily Reasonable if all fixes should become
effective immediately and retroactively

Bad practice unless daily changes must
not affect reconfiguration use case

Never No fixes made to previous RTVs; always
reconfigure with current effective date

Reconfiguration always uses a single
(i.e., latest) version of VC data and logic

After ALE to Production Common practice, especially reusing a
previous change number (or no ECM)

Common practice, especially when ALE
and RTV aligned to new change number

The following are comparisons of approaches and extremes for regenerating existing RTVs for a given KB:

1. Regenerate your RTVs daily: This is a reasonable practice if you want to ensure that VC model changes,
especially changes made directly in your production system, are properly reflected in your RTVs, i.e.,
changes should be effective immediately and retroactively. Note that a new build will not be saved if there
is no difference with the current build.

2. Never regenerate your RTVs: This implies that you create a new RTV whenever you make VC model
changes. This approach does not provide accurate reconfiguration when changes must be immediate and

30 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Runtime Version Generation

retroactive. For example, a configuration is created with RTV1. The next day, a VC model issue is corrected
and a new RTV2 is generated. Any new configurations or reconfigurations using RTV1 will still be incorrect

3. Regenerate RTVs after ALE: This is a common practice. It assumes that VC models in your production
system are not changed except by ALE from a VC Gold Client or similar. Relevant RTVs should be
regenerated immediately following the ALE, without a Change Number or reusing a previous Change
Number, to ensure that your ERP VC Models and corresponding RTVs remain synchronized.

The following are comparisons of approaches and extremes for generating new RTVs for a given KB:

1. Generate a New RTV Daily: This is a bad practice unless you have daily differences in your underlying
VC models and need your configurations to work differently for each configuration date. More likely, this
approach will result in many RTVs with the same contents when there was no change in the underlying VC
models from one day to the next. Such redundancy will eventually impact storage and performance. With
SAP Note 2676709 , a new RTV that contains the exact same settings and contents as its predecessor
will not be saved.

2. Never Generate New RTVs:: This implies that you regenerate your single RTV whenever you make VC
model changes. In effect, all VC changes become effective immediately and retroactively. It will not be
possible to reconfigure existing configurations with the same configuration logic that was valid when a
configuration was created. All reconfiguration scenarios will use the current VC model logic.

3. Generate New RTVs after ALE: This is a common practice and similar to Regenerate RTVs after ALE (see
above). The difference is that a new RTV should be generated following ALE with a new Change Number
for the related VC model(s). Beware of using this approach without a Change Number; see the System
Landscape Considerations [page 34] section for SAP ERP.

6.6 Classic and Advanced Knowledge Base Runtime Version
Generation (KBGen)

Advanced knowledge base runtime version generation (KBGen) was introduced especially for SAP Variant
Configuration and Pricing to provide solutions to various classic KBGen limitations. The prefix advanced refers
to the literal meaning, it was not exclusively developed to support the Advanced Variant Configuration (AVC).

SAP Note 3022814 explains the differences between classic and advanced KBGen as well as general
features, limitations, and instructions for use. The key improvements of the advanced KBGen are:

• Advanced runtime versions are not replicated to CRM systems via middleware, as the middleware is based
on the SCE* tables

• Runtime version data is saved directly to the COMM_CFG* tables only, making any copy process
unnecessary

• Runtime version data includes an additional identifier for BOM position, implemented by a new field in the
DB table COMM_CFGCLPART

• Characteristics of new compressed storage of variant tables, generically in new DB tables
COMM_CFGVARVAL and COMM_CFGVTGVAL:
• Variant table cells with multiple values are no longer divided into separate rows during RTV generation,

reducing the amount of processing time and data storage required for generated RTV variant tables
• Numeric interval values
• Wildcard values, for AVC variant tables only.

Best Practices to Generate Knowledge Base Runtime Versions
Runtime Version Generation PUBLIC 31

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2676709
https://help.sap.com/viewer/product/SAP_VARIANT_CONFIGURATION_AND_PRICING/Cloud/en-US?task=discover_task
https://help.sap.com/viewer/product/SAP_VARIANT_CONFIGURATION_AND_PRICING/Cloud/en-US?task=discover_task
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/3022814

• Advanced RTVs cannot be processed by the IPC if they contain variant tables.
• Only one selection screen to pick all classic configuration profiles
• The RTV header table, DB table COMM_CFGKB now includes additional fields for:

• BOM Application
• Plant
• Authorization Group
• KB Schema, lassic or advanced KBGen
• Engine Processing Mode (e.g. AVC).

To distinguish between classic and advanced KBGen, a KB schema was introduced as part of the RTV header
table. The classic KBGen sets the KB schema to the value 2 whereas the advanced KBGen sets it to 4. Note
that it is not possible to change the KB schema of an existing RTV, all future builds of an RTV will continue to
use the KB schema of the original RTV build following regeneration.

The engine processing mode is set according to the configuration profile used. All configuration profiles of a
runtime version must have the same processing mode, it is not allowed to mix classic and AVC configuration
profiles in the same RTV. If an AVC configuration profile exists and is released, it will be used automatically with
the new KBGen.

Advanced KB Generation is available in S/4HANA and ECC EhP8 SP16 or higher. See SAP Note 3022814 for
specific details about how to enable and use advanced KBGen by product version.

6.7 How to Switch the KB Generation Mode?

In package VSCE, add an implementation for method GET_DEFAULT_KBSCHEMA of enhancement spot
KBSCHEMA_CURT. This method has one export parameter EV_KBSCHEMA which needs to return either the
value 4 for advanced KB generation or value 2 for the classic KB generation.

Please note that only newly-generated KB runtime versions will take the changed schema into account. If
previously generated runtime versions exist, the new build will consider the KB schema of the previous build. It
is not possible to re-generate existing runtime versions with a different KB schema.

6.8 KB and RTV Maintenance Utilities

VC Modeling Environment, transaction PMEVC, provides a way to see all KB objects where a configurable
material has a KB profile. It shows all RTVs for a given KB object and provides a way to generate a new RTV or
regenerate an existing RTV.

Report COM_CFG_DB_STAT provides a detailed overview of the contents of an RTV. See examples of this report
in Appendix A. Follow these steps to use the report:

1. Execute report COM_CFG_DB_STAT
2. Enter filter criteria for KB IDs if desired, then execute (button or F8)

32 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Runtime Version Generation

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/3022814

3. See the matching KB IDs with their high-level statistics, note the abbreviations in the legend at the bottom
4. Double click on a KB ID to see the detailed contents of the RTV, including header data at the top
5. Double click on any object to see additional details about that object

The material table lists all materials in the RTV, and those with a KB profile show an X in the Pro column.
This means that relevant subordinate KMATs are included regardless of whether the KB has a profile for those
KMATs.

Transaction EXPO_TEST is useful to diagnose the framework of explosion (FOX) paths which is used for
product data replication (PDR). It can also help to understand why certain materials and other objects are
included, or not, in an RTV.

Best Practices to Generate Knowledge Base Runtime Versions
Runtime Version Generation PUBLIC 33

7 System Landscape Considerations

For integration testing, the mechanics of knowledge base objects and runtime versions (RTVs) are, for the most
part, easily learned and tested with simple Variant Configuration (VC) models and various RTVs that illustrate
various change states of a VC model.

7.1 Configuration Engine Versions

SAP continually updates the Variant Configuration service to improve performance and remove so called deltas
to the LO-VC (SAPGUI) configurator.

The Configuration Engine as part of SAP_AP, aka IPC, is not updated with all the improvements from the
Variant Configuration service. The innovation focus is clearly on the service side. As mentioned earlier, the
advanced knowledge base generation, for example, is not supported by the Configuration Engine (IPC).

7.2 Filter Unnecessary KB RTVs

Classic KB RTVs are stored in two sets of database tables in ERP/S4H, namely SCE tables and COMM_CFG
tables. Contents of the SCE tables must be copied to the COMM_CFG tables for use with the Variant
Configuration service on the SAP Business Technology Platform (used by CPQ) or with the Configuration
Engine in ERP. CRM middleware, for example, only uses data from the SCE tables and copies the data to the
COMM_CFG tables in CRM to be used by the Configuration Engine.

All runtime version data in the COMM_CFG tables are sent to the Business Technology Platform if that
integration is implemented. You can filter the runtime version data copied to the COMM_CFG tables as
explained in SAP Note 3006114 . This is useful to reduce communication with and storage in the Business
Technology Platform to only those runtime versions that are needed in the Variant Configuration service. The
note explains how to implement a BADI that contains your required filter logic.

When creating a filter logic, avoid filtering out future builds of an existing RTV, because the Business
Technology Platform might continue using an out-of-date, previous build. You must also avoid filtering in a
later build of a previously filtered out RTV, because the later build will be ignored if the previous builds of that
RTV were filtered out.

7.3 SAP CPQ

CPQ can be integrated with SAP Variant Configuration and Pricing in the SAP Business Technology Platform.
When there are multiple runtime versions for a KMAT, each runtime version will create a corresponding CPQ

34 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

System Landscape Considerations

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/3006114

Product Version when those runtime versions are synchronized to CPQ via the Variant Configuration service.
The effective date of a CPQ quote is used to select the appropriate runtime version for a configuration based on
the valid-from date of the runtime versions.

There are nuances to this integration regarding the maintenance of CPQ product data and the product catalog
that are addressed in the CPQ Setup Guide. Note that to prevent a KMAT material from being used as a main
item in CPQ, you can assign its CPQ product to a CPQ category where no end user has permissions.

7.4 SAP ERP

Because runtime versions are typically generated in SAP ERP, there is a common assumption that a variant
configuration created outside of ERP using a runtime version will always be valid when sent to ERP via
integration, e.g., submitting a CRM quote to become an ERP sales order. While good practices make this true,
bad practices can result in failures. The following example explains how this integration can fail:

1. Create a KMAT in ERP
2. Create runtime version for that KMAT in ERP and load the runtime version into CRM
3. Make changes to that KMAT in ERP, disallowing a specific characteristic value
4. Create a quote in CRM selecting that specific characteristic value
5. Submit the CRM quote to become an ERP sales order
6. The integration fails because CRM allows the specific characteristic while ERP does not

This example illustrates how VC changes made in ERP are not known to runtime versions that were previously
generated. One way to avoid the failure in step 6 is to perform step 3 with an ECM Change Number with a
valid-from date that is later than the valid-from date of the runtime version. You must also ensure that the
configuration date used in the ERP sales order matches that of the CRM runtime version, there are user exits
in ERP that could have a different configuration date. Note that the same situation also applies for the cloud
integrations.

The good practices also dictate that you create a new runtime version for the KMAT with a valid-from date
in the future and equal to the valid-from date of the ECM Change Number. See RTVs Aligned to ECM Change
Numbers [page 29] for additional details.

Best Practices to Generate Knowledge Base Runtime Versions
System Landscape Considerations PUBLIC 35

8 Advanced Use Cases

The following topics are about advanced use cases such as multiple configuration profiles, runtime versino
deletion and no BOM explosion.

8.1 Multiple Configuration Profiles

If you maintain multiple released configuration profiles for a KMAT, you may be prompted to select a
configuration profile when RTVs are regenerated for a KB that contains that KMAT. The system will match
the RTV BOM application with the configuration profile BOM explosion. For example, you have a KMAT with
three released configuration profiles as follows:

• Profile A, BOM Application = SD01
• Profile B, BOM Application = SD01
• Profile C, BOM Application = PP01

If you are regenerating an RTV with BOM application SD01 that includes this KMAT, you will be prompted to
select either Profile A or B. If you are regenerating an RTV with BOM application PP01 that includes this KMAT,
Profile C will be selected automatically.

Your RTV name should distinguish which configuration profile is used if a manual selection is made at RTV
regeneration. You will have to select that configuration profile each time you regenerate the RTV, assuming
there continues to be more than one matching configuration profile for the RTV. Continuing the example above
with the previously recommended naming convention, RTVs for each configuration profile for the year 2021
would be named as follows, respectively:

• 2021 SD01 A
• 2021 SD01 B
• 2021 PP01

8.2 Runtime Version Deletion

In principle, an RTV can be deleted using transactions PMEVC or CU35 when all the following are true:

• New configurations are no longer allowed to use it and
• All existing configurations that used it have been archived along with the sales documents which are

referring to the configurations

36 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Advanced Use Cases

8.3 No BOM Explosion

Plant and BOM application are required fields in an RTV. If you want to create a runtime version without
including manufacturing BOM explosion, use a BOM application where no BOM will be found to create a
runtime version without a BOM. Keep in mind that the BOM application of the RTV and the BOM explosion of
the configuration profile must match.

Best Practices to Generate Knowledge Base Runtime Versions
Advanced Use Cases PUBLIC 37

9 Conclusion

Like variant configuration (VC) itself, knowledge bases (KBs) are a very powerful and nuanced functionality.
Successful implementations and maintenance can be ensured when you do the following:

• Follow the generally regarded best practices in VC modeling
• Understand the mechanics of how KB objects and runtime versions work and then define your knowledge

bases in the best way to meet your implementation and maintenance objectives
• Develop and follow a KB runtime version generation policy and procedure
• Understand the mechanics of runtime version integration within your system landscape
• Ensure that your runtime versions stay in synchronization with the VC models from which they are

generated

38 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions

Conclusion

10 Appendix A – Report COM_CFG_DB_STAT
SCREENSHOTS

The following screenshots show the output of report COM_CFG_DB_STAT for the Simplified Multi-Level
Example in the knowledge base profiles section. Knowledge base object XY with version 1 can also be found in
the ECC sandbox system of the SAP Configuration Workgroup.

The top section of the report output shows the classes and materials in the KB RTV. The Pro column indicates
that a material or class has a KB profile in this KB object. The Superclass column indicates to which classes a
material or class is allocated. In this example, there is a one-to-one relationship between configurable material
and class. The bottom section of the report output shows the distinct characteristics from the list of classes.

If we compare the following KBs and RTVs with the one above, we will see that KB X and KB Y have identical
contents except that KB X cannot be used to configure material Y as a root item because it has no KB profile for
material Y. You will also see that the contents of KB Y are entirely contained within KB XY therefore, a separate
KB Y would be technically redundant.

Best Practices to Generate Knowledge Base Runtime Versions
Appendix A – Report COM_CFG_DB_STAT SCREENSHOTS PUBLIC 39

40 PUBLIC
Best Practices to Generate Knowledge Base Runtime Versions
Appendix A – Report COM_CFG_DB_STAT SCREENSHOTS

Important Disclaimers and Legal Information

Hyperlinks
Some links are classified by an icon and/or a mouseover text. These links provide additional information.
About the icons:

• Links with the icon : You are entering a Web site that is not hosted by SAP. By using such links, you agree (unless expressly stated otherwise in your
agreements with SAP) to this:

• The content of the linked-to site is not SAP documentation. You may not infer any product claims against SAP based on this information.

• SAP does not agree or disagree with the content on the linked-to site, nor does SAP warrant the availability and correctness. SAP shall not be liable for any
damages caused by the use of such content unless damages have been caused by SAP's gross negligence or willful misconduct.

• Links with the icon : You are leaving the documentation for that particular SAP product or service and are entering an SAP-hosted Web site. By using
such links, you agree that (unless expressly stated otherwise in your agreements with SAP) you may not infer any product claims against SAP based on this
information.

Videos Hosted on External Platforms
Some videos may point to third-party video hosting platforms. SAP cannot guarantee the future availability of videos stored on these platforms. Furthermore, any
advertisements or other content hosted on these platforms (for example, suggested videos or by navigating to other videos hosted on the same site), are not within
the control or responsibility of SAP.

Beta and Other Experimental Features
Experimental features are not part of the officially delivered scope that SAP guarantees for future releases. This means that experimental features may be changed by
SAP at any time for any reason without notice. Experimental features are not for productive use. You may not demonstrate, test, examine, evaluate or otherwise use
the experimental features in a live operating environment or with data that has not been sufficiently backed up.
The purpose of experimental features is to get feedback early on, allowing customers and partners to influence the future product accordingly. By providing your
feedback (e.g. in the SAP Community), you accept that intellectual property rights of the contributions or derivative works shall remain the exclusive property of SAP.

Example Code
Any software coding and/or code snippets are examples. They are not for productive use. The example code is only intended to better explain and visualize the syntax
and phrasing rules. SAP does not warrant the correctness and completeness of the example code. SAP shall not be liable for errors or damages caused by the use of
example code unless damages have been caused by SAP's gross negligence or willful misconduct.

Bias-Free Language
SAP supports a culture of diversity and inclusion. Whenever possible, we use unbiased language in our documentation to refer to people of all cultures, ethnicities,
genders, and abilities.

Best Practices to Generate Knowledge Base Runtime Versions
Important Disclaimers and Legal Information PUBLIC 41

www.sap.com/contactsap

© 2023 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form
or for any purpose without the express permission of SAP SE or an SAP
affiliate company. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software vendors.
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for
informational purposes only, without representation or warranty of any
kind, and SAP or its affiliated companies shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP or
SAP affiliate company products and services are those that are set forth
in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an
additional warranty.

SAP and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP
SE (or an SAP affiliate company) in Germany and other countries. All
other product and service names mentioned are the trademarks of their
respective companies.

Please see https://www.sap.com/about/legal/trademark.html for
additional trademark information and notices.

THE BEST RUN

https://www.sap.com/about/legal/trademark.html

	Best Practices to Generate Knowledge Base Runtime Versions
	Content
	1 Quick Reference – Knowledge-Base Runtime Version Generation (KBGEN)
	2 Basic Concepts of How Knowledge Bases and Runtime Versions Work
	2.1 Knowledge-Base Objects
	2.2 Knowledge-Base Profiles
	2.3 Generating New Runtime Versions
	2.4 Regenerating Existing Runtime Versions
	2.5 Configuration Using Runtime Versions

	3 Designing Knowledge Bases and Runtime Versions
	3.1 Changes for Compatibility
	3.2 The Delta List(s)
	3.3 Changes for User Experience
	3.4 Changes for Efficiency and Performance

	4 Naming Convention Recommendations
	4.1 Simplified Example
	4.2 Knowledge Base Object Naming
	4.3 Runtime Version Naming

	5 Knowledge Base Profiles
	5.1 Simplified Single Level Example
	5.2 Real World Considerations
	5.3 Extreme 1: Every KMAT In A Single KB
	5.4 Extreme 2: Every KMAT In Its Own KB
	5.5 Happy Medium: Similar KMATs In The Same KB
	5.6 Simplified Multi-Level Example
	5.7 Product Family - Single-Level Example with Additional Focus on Constraint Nets
	5.8 Summary

	6 Runtime Version Generation
	6.1 Number of RTVs Needed for a KB
	6.2 When to Generate New RTVs
	6.3 When to Regenerate Existing RTVs
	6.4 RTVs Aligned to ECM Change Numbers
	6.5 Real World Considerations
	6.6 Classic and Advanced Knowledge Base Runtime Version Generation (KBGen)
	6.7 How to Switch the KB Generation Mode?
	6.8 KB and RTV Maintenance Utilities

	7 System Landscape Considerations
	7.1 Configuration Engine Versions
	7.2 Filter Unnecessary KB RTVs
	7.3 SAP CPQ
	7.4 SAP ERP

	8 Advanced Use Cases
	8.1 Multiple Configuration Profiles
	8.2 Runtime Version Deletion
	8.3 No BOM Explosion

	9 Conclusion
	10 Appendix A – Report COM_CFG_DB_STAT SCREENSHOTS
	Important Disclaimers and Legal Information
	Copyright / Legal Notice

