
User Guide | PUBLIC
2018-12-27

SAP Solution Sales Configuration

©
 2

02
3

SA
P

SE
 o

r a
n

SA
P
affi

lia
te

 c
om

pa
ny

. A
ll r

ig
ht

s
re

se
rv

ed
.

THE BEST RUN

Content

1 SAP Solution Sales Configuration for SAP S/4HANA. 5

2 Solution Modeling Environment. 7
2.1 Introduction to Solution Models. 9

Knowledge Base. 10
Class. .15
Material. 20
Characteristic. 23
Variant Table. 37
Dependency. 43
User-Defined Function. 54
Interface Design. .61
Bill of Material. 63
Model Syntax and Logical Validations. 64
Solution Model Samples. .65

2.2 Setup of Solution Modeling Environment. 71
SAP Modeling Perspective. 72
SAP Testing Perspective. 87
Data Loader in the Solution Modeling Environment. 105

2.3 SSC DevOps Wizard. 105
2.4 Analyzing Pricing Traces. 106
2.5 Data Exchange. 107
2.6 Maintaining Modeling Templates. .108
2.7 Developing SSC User Exits. 109
2.8 Collaboration Between Modelers. 109
2.9 Setting Context Properties. 110
2.10 Automating Modeling Lifecycle. 111

Headless Export of Knowledge Bases. 111
Headless Performer Execution. 116
Headless XML Configuration Restore. 120
Headless Upload External Variant Table. 124
Headless Upload of Knowledge Bases. 128
Headless Dataloader Execution. 133

3 Solution Configuration Environment. .140
3.1 Configure-To-Order in SAP S/4HANA. 144

IDOC Inbound Interface for Sales Order Creation. 145

2 PUBLIC
SAP Solution Sales Configuration

Content

Light Engineer-to-Order. 150
3.2 Configure-To-Order in Hybris. .151

Adding Related Products to the Solution. .152
3.3 Interactive Pricing and Delta Pricing. 153

Pricing Formula and User Exits. .155
Modifying Pricing Context. 170

3.4 Creating Solution Configurations. 170
3.5 Restoring Solution Configuration. .173

4 Integration with Vehicle Management System (VMS). 174

5 Compressed Storage of XML Configuration Results. 176

6 Operations Information. 178
6.1 User Exit Deployment. 178

Deployment Using the Solution Modeling Environment. .181
SSC-USER-EXIT-MAVEN-PLUGIN Reference. 184

7 UI Composer. 205
7.1 Glossary. 206
7.2 UI Composer Design-time User Interface. 208

Workspace Screen. 208
Create Store Screen. .209
Copy Store Screen. .209
Composer Screen. 209
Interactive Preview. 210
Manage Store Definitions Screen. 211

7.3 UI Composer Runtime User Interface. .211
7.4 Roles and Authorizations in UI Composer. 213
7.5 UI Designer Tasks. 214

Creating Workspaces. 215
Adding Store Definitions to a Workspace. 215
Creating New Store Definitions. 216
Copying Store Definitions. 217
Composing Stores. 218
Committing Store Definitions. 220
Creating New Versions of Store Definitions. .220

7.6 UI Administrator Tasks. .221
Creating Master Store Definitions and Predefined Pages. 221
Publishing Store Definitions. 223
Rolling Back Store Definition Versions. 223
Migrating Store Definitions to the Product Configurator. .224

7.7 UI Composer Extension Project. 225

SAP Solution Sales Configuration
Content PUBLIC 3

Project Description. 225
Packaging the Extension Project for Deployment. 228
Deploying the Extension Project. 230

4 PUBLIC
SAP Solution Sales Configuration

Content

1 SAP Solution Sales Configuration for SAP
S/4HANA

Product Information

Product SAP Solution Sales Configuration for SAP S/4HANA

Release 1907 SP04

Based On S/4HANA 1809 SP01

Documentation Published 2020

Use

SAP Solution Sales Configuration for SAP S/4HANA is a set of software products that help customers to
configure and sell solutions made of complex product combinations. In addition to selling their own products,
many businesses also sell solutions that include products, services, and parts from other manufacturers and
providers. For example, technology companies sell solutions that would typically include multiple combinations
of highly complex hardware, software, and services, and each of these can have options or features that must
be specified by a customer during the ordering process.

From a modeling perspective, each individual product can be split into multiple components, and there
are numerous possible relationships and dependencies between the product instances. SAP Solution Sales
Configuration for SAP S/4HANA provides a flexible modeling environment, which in turn simplifies the ordering
and configuration process for the customer.

SAP Solution Sales Configuration for SAP S/4HANA also includes a configuration engine that provides the
ability to perform bottom-up configuration in addition to the normal top-down approach. The system also
offers innovations that make it easier to maintain configuration model data. The system is designed to provide
efficient configuration execution performance.

Integration

SAP Solution Sales Configuration for SAP S/4HANA is integrated with the following systems:

• SAP S/4HANA 1809 SP01 (and higher versions)
• Hybris Commerce Suite

For information about supported versions, see SAP Note 2227752 (Supported Combinations of SAP
Commerce Platform and SAP Solution Sales Configuration)

SAP Solution Sales Configuration
SAP Solution Sales Configuration for SAP S/4HANA PUBLIC 5

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/2227752

Features

• Solution Modeling Environment
The system provides a modeling environment for creating complex solution models. The solution modeling
environment is based on the Eclipse Rich Client Platform (RCP) and can be integrated with SAP S/4HANA
for exchanging configuration master data. Within the modeling environment, you define model elements
such as classes and characteristics, and then you define dependencies between your model elements.
The solution modeling environment can also be integrated with a Source Code Management System to
support collaborative modeling and allow several modelers to work on the same model simultaneously.
The solution modeling environment includes a test user interface and a configuration engine, which allow
you to test and optimize your model before transporting it to the target sales system.
For more information, see Solution Modeling Environment [page 7].

• Solution Configuration Environment
The application provides a configuration engine and a configuration user interface that fully integrate
with the ordering process in the SAP S/4HANA systems. You can enter an advanced mode product (a
solution) as an item in a sales document, and then choose to configure it. The system opens the enhanced
configuration user interface, where you can enter the solution components and configure their options.
When you save the configuration, you are returned to the sales document.
For more information, see Solution Configuration Environment [page 140].

6 PUBLIC
SAP Solution Sales Configuration

SAP Solution Sales Configuration for SAP S/4HANA

2 Solution Modeling Environment

Use

The solution modeling environment is the part of SAP Solution Sales Configuration that is used to create
advanced solution models. It is integrated with SAP S/4HANA. You can download and use existing S/4HANA
master data like products, classes, and knowledge bases. You define and test your solution model in the
solution modeling environment before transporting it to the target S/4HANA system, where it is integrated
with the sales ordering process and used during solution configuration.

Integration

The solution modeling environment is integrated with the following systems:

• SAP S/4HANA

 Note
The Solution Modeling Environment is a reusable component that can be connected with CRM, ECC,
and S/4. ECC and S/4 can be considered to be synonymous here.

Features

• Advanced Mode Solution Modeling
Models for products, such as a car, are delimited and have a finite number of component parts. Solutions
are not delimited; they can have many optional parts with complex dependencies between these parts.
The solution modeling environment allows you to create advanced solution models. For example, you can
define non-part components (instances) without using a bill of material (BOM).
For information about the elements in a solution model, see Solution Model [page 9]. For information
about the steps required to create a solution model, see Solution Modeling [page 71].

• Data Exchange
The solution modeling environment is integrated with SAP S/4HANA and can be used to exchange
configuration master data. For more information, see Data Exchange [page 107].

• Collaborative Modeling
The system supports collaboration between modelers by integrating with standard version control
systems. For more information, see Collaboration Between Modelers [page 109].

• Test User Interface and Test Configuration Engine
The system provides a test user interface and a test configuration engine, where you can test and optimize
your model before transporting it to the target system. In the test user interface, you can configure your
solution to ensure that your model is performing as expected. In addition, you can save test scripts,

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 7

identify the constraints applied during a configuration session, and test the performance of constraints.
For more information, see Testing Models Locally [page 90].

• Knowledge Base Orchestration
The system supports knowledge base orchestration in the downstream processes in the configuration
engine and the configuration user interface. Knowledge base orchestration is a process that enables
multiple knowledge bases to handle large configurations. It encapsulates large knowledge base results
into smaller, more manageable components and presents multiple independent configuration objects as a
single, coordinated configuration session to the end user.

• Solution Modeling User Interface
The solution modeling user interface is based on the Eclipse Rich Client Platform (RCP). It is designed
to support different ways of navigation and to perform quickly when modelers are working with large,
complex models.
The solution modeling user interface provides wizards for creating model elements. It also provides a text
editor for writing and maintaining element definitions. The text editor has the following features:
• Auto-Completion

You define model elements with a precise syntax. The text editor provides an auto-completion feature
to support modelers when they manually define elements. To use auto-completion, perform the
following steps:
1. Position the cursor at the relevant location and press CTRL + SPACEBAR .

The system displays a dialog box listing all of the syntactically correct elements at the current
cursor position.

2. Double-click an element to insert it into the text editor.
• Syntax Error Indicator

The syntax error icon is displayed on the left side of any lines that contain a syntax error.
Furthermore, if syntax errors exist, a red square is displayed in the top right corner of the text editor.
You can move the cursor over the red square to see the total number of syntax errors.

• Tabbed Display
Elements opened in the text editor are displayed on tab pages. You can open several elements for
editing and use the tab pages to switch between them.

• Templates
The solution modeling environment provides templates for common model elements and also allows
you to define your own templates. Templates are indicated by a green dot.
For information about maintaining templates, see Maintaining Modeling Templates [page 108].

• Data Loader
The Data Loader is a component used to download configuration data for your solutions from a SAP
S/4HANA source system to a local database management system such as Microsoft SQL Server. For more
information, see Data Loader in the Solution Modeling Environment [page 105].

Constraints

• Certain modeling syntax that works in Variant Configuration (LO-VC) is not supported in the Internet
Pricing and Configurator (IPC) configuration engine. Since SAP Solution Sales Configuration is based on
the same IPC technology, those restrictions also apply to SAP Solution Sales Configuration. For more
information about the restrictions, refer to SAP Note 1819856 (Additions to IPC VC deltalist).

• Solution modeling can be very complex as the requirements and dependencies to be considered when you
assemble a solution can be both numerous and complex. While the configuration engine in SAP Solution

8 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/1819856

Sales Configuration is built specifically to handle these processing intensive requirements, the critical
factor in ensuring efficient processing is the definition of the model. Great care must be taken in developing
solution models. It is a similar process to any other application development and requires training, abstract
thought, sophistication, and elegance of design.

2.1 Introduction to Solution Models

Definition

A solution model is a hierarchical decomposition of a solution. It defines the products (configurable materials
and the services) that can be contained within the solution. It also defines the relationships between the
various elements of the solution, including any dependencies (constraints and rules).

Structure

A solution model contains the following parts:

• Bills of Material (BOMs)
For more information, see Bill of Material [page 63].
For information about defining BOMs, see Defining Dynamic BOMs [page 63].

• Characteristics (cstics)
For more information, see Characteristic [page 23].
For information about defining characteristics, see Defining Characteristics [page 24].

• Classes
For more information, see Class [page 15].
For information about defining classes, see Defining Classes [page 15].

• Dependency Nets
For more information, see Dependency Net [page 53].
For information about defining dependency nets, see Defining Solution Dependencies [page 44].

• User-Defined Functions
For more information, see User-Defined Function [page 54].

• Interface Designs
For more information, see Interface Design [page 61].
For information about creating interface designs, see Example: Defining an Interface Design [page 61].

• Knowledge Bases (KBs)
For more information, see Knowledge Base [page 10].
For information about defining knowledge bases, see Defining Knowledge Bases [page 10].

• Materials
For more information, see Material [page 20].
For information about defining materials, see Defining Materials [page 20].

• Variant Tables
For more information, see Variant Table [page 37].
For information about defining variant tables, see Defining Variant Tables [page 42].

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 9

2.1.1 Knowledge Base

Definition

A knowledge base contains the master data for a solution model. The knowledge base is exported from the
solution modeling environment, initially to the test user interface and the test configuration engine to be tested,
and then to the target sales system where it is used by the configuration engine.

Structure

In the solution modeling environment, a knowledge base is defined with identifier, version, tasks, and profiles.

More Information

For information about defining knowledge bases, see Defining Knowledge Bases [page 10].

2.1.1.1 Defining Knowledge Bases

Use

You use this procedure to create a task, which is then used to define a knowledge base. You can define the task
in the same file as the knowledge base, or in a separate file.

Procedure

Creating a Knowledge Base

1. Choose File New Empty Model File .
The system displays a dialog prompting you to choose a folder and enter a file name for the new knowledge
base.

2. Enter the required data.
3. Choose Finish.

The system displays an empty file.
4. Press CTRL + SPACEBAR .
5. Double-click knowledgeBase.
6. Enter the required data and save the knowledge base.

10 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

2.1.1.2 Knowledge Base Runtime Version

A knowledge base runtime version (kbrtv) is created from a knowledge base definition by invoking the Export
Knowledge Base function in the solution modeling environment.

You can call the Export Knowledge Base function:

• From the File menu, by choosing File Export SAP Solution Configuration Export Knowledge Base .
• From the Model Explorer, by right-clicking a knowledge base definition and choosing Export Knowledge

Base.

When you export a knowledge base, you can include variant table content in the kbrtv even though the
externalTable keyword is specified in the variant table definition. This is useful for testing the knowledge
base locally. If external content is available and content is also included in the knowledge base, the external
content is used at runtime.

To include local content in the kbrtv (from either “rows” values or “file” content), select the Include Local
Variant Table Content During Export option in the kb export dialog, or Local VT in the export multiple kbs dialog.

2.1.1.3 Example: Defining a Knowledge Base Definition

 Note
This description uses the following conventions to illustrate the syntax requirements:

Required keyword

Optional keyword

User-specified value

Mutually exclusive keyword

A knowledge base definition indicates the materials or classes for which the knowledge base will be used. It
also lists the dependencies to be included in the knowledge base runtime version. To define a knowledge base
definition, use the following syntax:

knowledgeBase identifier {

version kb-version

validFromdate

logsys logical-system

tasks task-id

profiles

name profile-name class class-id || material material-id

}

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 11

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

knowledgeBase Denotes the start of a knowl­
edge base definition encom­
passed within {…}

- Required

identifier Knowledge base ID used in
the model.

Max. length 30 bytes

It appears in the KBOBJNAME
field in the comm_cfgkb ta­
ble.

- Required

version Keyword - Required

kb-version Version is a text field; com­
mon format is “0.0.0.0” but
any alternative format is ac­
ceptable.

- Required

logsys Keyword - Optional

logical-system Logical system name where
the materials/classes named
in profiles (below) originated.
The logical system value is
derived from the back end.
All materials defined for pro­
files of this knowledge base
are checked. If multiple en­
tries exist, a list is presented
for selection by the user.

- Optional

validFrom date Date in the format “YYYY-
MM-DD”from which this
knowledge base will be ef­
fective from. If validFrom
is not specified, the current
date is used.

Required with validFrom
keyword

tasks Keyword - Optional

task-id ID of task containing the de­
pendencies to be included in
this knowledge base

Required with tasks key­
word

12 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

profiles Denotes the start of the list
of profiles. This list can con­
tain multiple profiles. Each
name-class/material pair is a
distinct profile definition.

- Required

name Keyword - Required

'profile-name' The profile name is a key
value for the knowledge base
tables.

- Required

class Keyword At least one class or material
must be specified

Required

class-id A class-id defined in this
model

- Required with class keyword

material Keyword At least one class or material
must be specified

Required

material-id A material-id defined in this
model

- Required with material key­
word

Example

knowledgeBase PRODUCT_X_KB {

 version "0.0.0.6"

 validFrom "2020-01-01" logsys "LOCAL"

 tasks

 PRODUCT_X_TSK

 profiles

 name 'PRODUCT_X_PRF_2' class PRODUCT_X

}

2.1.1.4 Definition of External Texts

Use

After you have exported a knowledge base to the SAP backend system, you can create or change the texts that
have been defined for each characteristic, characteristic value, class, or material. Editing the texts directly in
the backend means that you do not have to export your knowledge base again if you want to make changes.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 13

 Note
A particularity of maintaining material texts externally is that if a material is also defined in the product
master in the back end, the text from the product master is taken automatically. This avoids the need for
double maintenance. If the material is not defined in the back end, you can maintain the texts manually in
the same way as all of the other objects.

Integration

You can maintain external texts manually in Customizing or you can export them from the Solution Modeling
Environment as follows:

1. Choose File Export Export Knowledge Base Localization .
2. Choose a connection.
3. Select your knowledge base and, if required, enter a date from which the texts are valid.

Activities

You maintain the texts in Customizing for S/4HANA under Logistics - General Solution Sales Configuration
Maintain External Texts .

 Note
If you expect size of the external variant table to be large, consider the recommendations provided in SAP
Note 2428939 (Implement query caching to improve Variant Table access performance).

Example

In your knowledge base, you have a characteristic with the names COLOR and FARBE for English and German
respectively. After you have exported your knowledge base to the back end, you can localize the characteristic
for the United Kingdom by changing COLOR to COLOUR, and you can also add a new translation COULEUR for
French.

More Information

For more information, see the Customizing documentation in the system.

14 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/2428939

2.1.2 Class

Definition

Classes are used to represent the different configurable parts within a solution model. Classes can be defined
in a hierarchy, with subclasses inheriting characteristics from their parent class. For example, you can define a
class called computer with two subclasses: laptop and desktop.

Structure

A class has an identifier, a name, and one or more characteristics.

More Information

For information about characteristics, see Characteristic [page 23].

For information about defining classes, see Defining Classes [page 15].

2.1.2.1 Defining Classes

Use

You use this procedure to define new classes in the Eclipse-based solution modeling environment.

Procedure

Creating a New Class Using the Main Menu

1. Choose File New Class .
2. Enter the required data.
3. Choose Finish.

The new class is opened in the text editor.

Creating a New Class Using the Context Menu

1. In the Project Explorer, right-click classes.
The context menu is displayed.

2. Choose New Other...
3. Select Class and choose Next.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 15

 Note
As you start to type class, the contents of the explorer are filtered, such that only the matching entries
are displayed.

4. Enter the required data.
5. Choose Finish.

The new class is opened in the text editor.

Adding Characteristics to a Class Using the Text Editor

1. Open the class in the text editor.
2. Place the cursor at the desired location.

 Note
Characteristics are entered in a comma-separated list under characteristics.

3. Press CTRL + SPACEBAR .
The system displays a list of all the available characteristics.

4. Double-click the characteristic you want to add to the class.

Adding More Information for a Characteristic

1. In the text editor, place the cursor after the characteristic.
2. Enter a space and press CTRL + SPACEBAR .

The system displays the following options:
• Default

You use this option to specify a default value for the characteristic.
• Invisible

You use this option to hide the characteristic in the configuration user interface (UI).
• Required

You use this option to make the characteristic mandatory in the configuration UI.
• Value

You use this option to specify the value of the characteristic.
3. Double-click the option you want to add to the characteristic.
4. You must specify a value for the default and value options.

Example

class SME_EXAMPLE_MEMORY {

name "Memory"

characteristics

SME_INSTANCE_NF invisible,

SME_MEMORY_SPEED_S required,

SME_PART_NUMBER_S required

}

16 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

2.1.2.2 Defining a Class

 Note
This description uses the following conventions to illustrate the syntax requirements:

Required keyword

Optional keyword

User-specified value

Mutually exclusive keyword

To define a class, use the following syntax:

class identifier extends super-class-id, super-class-id2,... {

name "30 bytes descriptive text" || names EN "descriptive English text"

, FR "descriptive French text"

longName "unlimited descriptive text" || longNames EN "unlimited text in multiple
languages"

urls { "url" label "30 bytes descriptive text", "url" label "30 bytes descriptive text" ... }

 Note
The urls keyword can be used at group, cstic, cstic value, class, and material level. As a general rule of
thumb, all elements that could be UI relevant have this attribute. It is also possible to define more than one
URL by using curly brackets.

characteristics characteristic-id

--remaining keywords are specified for each characteristic on this class definition--

required

noinput

urls { "url" label "30 bytes descriptive text", "url" label "30 bytes descriptive text" ... }

values (value1, value2,...)

defaultValues(value1,value2,...)

assignedValues(value1,value2,...)

}

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

class Denotes the start of
a class definition encom­
passed within {…}

- Required

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 17

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

identifier This is the class ID used in
the model to reference this
class. It must be uppercase.

Max. length 18 bytes

- Required

extends Keyword indicating inheri­
tance from a super-class

- Optional

super-class-id Identifier of the class ex­
tended by this definition

Required if extends keyword
is used

Optional

super-class-id2 Identifier(s) of additional
classes extended by this defi-
nition.

Multi-inheritance is sup­
ported.

- Optional

{ Starts the set of keywords
that define this object

- Required

} Ends class definition - Required

name or names The descriptive, language-
dependent text used as a la­
bel for this object.

If not used, the identifier is
used as the name.

See the context-sensitive
help for the full list of avail­
able two-character language
identifiers.

- Optional

longName or longNames Unlimited length text availa­
ble from the “more informa­
tion” link on the configura-
tion UI. It is possible to em­
bed hyperlinks in this text.

- Optional

characteristics Keyword indicating the start
of the list of characteristics
for this class

- Optional

The following keywords are specified for each characteristic

18 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

required Indicates that the configura-
tion is considered incomplete
unless a value is specified for
this characteristic

- Optional

noinput Blocks the field from user in­
put. Values may still be as­
signed/changed by means of
constraints or rules.

- Optional

defaultValues() Sets the default value(s) of
this characteristic for this
class.

More than one value may be
specified only if the charac­
teristic is defined as multi­
Value.

Optional

assignedValues() Assigns a value (or set of val­
ues) to this characteristic for
this class.

More than one value may be
specified only if the charac­
teristic is defined as multi­
Value.

This is a fixed assignment.
The value(s) cannot be
changed by the user, con­
straints, or rules.

- Optional

Example

class PRODUCT_Y extends SSC_SD_HIER {

name "Product Y class"

characteristics

SALES_ITEM_NAME required noinput,

NUM_SUBSCRIBERS required defaultValues (5000),

TRAFFIC_PER_SUBSCRIBER required assignedValues (25),

TOTAL_TRAFFIC invisible noinput

}

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 19

2.1.3 Material

Definition

A material is an elementary component of a solution model.

In the Eclipse-based solution modeling environment, modelers define one or more materials, which can then be
referenced in constraints and rules.

Along with products and classes, materials are associated with a knowledge base by means of a profile in the
knowledge base definition.

Structure

Materials have a class and an identifier.

More Information

For information about defining materials, see Defining Materials [page 20].

2.1.3.1 Defining Materials

Context

You use this procedure to define new materials in the Eclipse-based solution modeling environment.

Procedure

1. Choose File New Empty Model File

The system displays a dialog prompting you to choose a folder and enter a file name for the new material.
2. Enter the required data.
3. Choose Finish.

An empty file is displayed in the text editor.
4. Press CTRL + SPACEBAR and double-click material.

20 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

 Note
Alternatively you can type material.

5. Enter the required data and save the new material.

Example

material SME_LAPTOP {

name 'Laptop'

classes

SME_LAPTOP

boms

SME_LAPTOP

}

2.1.3.2 Example: Defining a Material

 Note
This description uses the following conventions to illustrate the syntax requirements:

Required keyword

Optional keyword

User-specified value

Mutually exclusive keyword

To define a material, use the following syntax:

material identifier externalID 'external_identifier' {

name "30 bytes descriptive text" || names EN "descriptive English text"

, FR "descriptive

French text"

longName "unlimited descriptive text" || longNames EN "unlimited text in multiple
languages"

urls { "url" label "30 bytes descriptive text" , "url" label "30 bytes descriptive text... }

classes class-id

boms bom-id

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 21

}

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

class Denotes the start of a class
definition

- Required

identifier This is the material ID used
in the model to reference this
material.

Max. length 18 bytes

- Required

external_ID Keyword indicating that S/
4HANA uses an alternative ID
to reference this material

- Optional

external_idenitfier The ID used by S/4HANA to
reference this material

Required if external_ID
keyword is used

Optional

{ Starts the set of keywords
that define this object

- Required

} Ends class definition - Required

name or names The descriptive, language-
dependent text used as a la­
bel for this object.

If not used, the identifier is
used as the name.

See the context-sensitive
help for the full list of avail­
able two-character language
identifiers.

- Optional

longName or longNames Unlimited length text availa­
ble from the “more informa­
tion” link on the configura-
tion UI. It is possible to em­
bed hyperlinks in this text.

- Optional

classes Keyword designating the
start of the list of classes as­
signed to this material

- Optional

class-id One or more class IDs as­
signed to this material. Sep­
arate multiple classes by a
comma.

Required if classes keyword
is used

Optional

22 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

boms Keyword designating the bill
of material associated with
this assembly material.

(Note: BOMs are not recom­
mended; best practice rec­
ommends use of ADTs to
represent “part-of” relation­
ships.)

- Optional

bom A bill of material defined to
represent the components of
this assembly material

Required if boms keyword is
used

Optional

Example

material CABLE_SET {

 name "Cable set"

 classes

 CABLE_SET

}

2.1.4 Characteristic

Definition

Characteristics are the lowest level of detail in a solution model. They are used to define the distinguishing
properties or attributes of a class. For example, a computer monitor can have a characteristic called size.

Structure

A characteristic has an identifier, a name, and a type. Depending on the type selected, you may need to specify
additional information, as shown in the following table:

Characteristic Types

Characteristic Type Information to Be Defined

Text Length

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 23

Characteristic Type Information to Be Defined

Numeric Length

Decimal Places

Date

ADT Class

Reference Characteristics

Characteristics of type Text, Numeric, and Date can be made reference characteristics by using the reference
keyword. Reference characteristics can be used to do the following:

• Pass a value to the configuration as a context
• Pass a value from the configuration to the sales document

In this case, the user is usually required to enter the value of the reference characteristic during the
configuration session (for example, size, weight, or start date).

Abstract Data Types

An abstract data type (ADT) is a special type of characteristic that is used to define the relationship between
two classes. For example, a computer monitor can have ADTs called has part and is part of.

SAP Solution Sales Configuration provides the following predefined ADTs:

• SALES HARD

• SALES SOFT

These ADTs are used to define parent-child relationships as either a hard tie or a soft tie. If two classes have
a hard tie, they cannot be split into separate sales documents. Only classes with soft ties can be split into
different sales documents.

You maintain the names of the hard and soft tie sales ADTs in Customizing for Customer Relationship
Management under Basic Functions Solution Sales Configuration Maintain Item Relationship Types .

More Information

For information about defining characteristics, see Defining Characteristics [page 24].

2.1.4.1 Defining Characteristics

Use

You use this procedure to define new characteristics in the Eclipse-based solution modeling environment.

24 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Procedure

Defining Characteristics in the Main Menu

1. In the main menu, choose File New Characteristic .
2. Enter the required data.

 Note
An Identifier must consist of uppercase alphanumeric characters and underscores; it cannot start with
a numeric character. The Name defaults to the same as identifier; it can be changed, if required.

3. Choose Finish.
The new characteristic is opened in the text editor.

Defining Characteristics in the Context Menu

1. In the Project Explorer, right-click cstics to display the context menu.

2. Choose New Other...
3. Choose Characteristic.

 Note
As you start to type characteristic, the contents of the explorer are filtered, such that only the matching
entries are displayed.

4. Choose Next.
5. Enter the required data.
6. Choose Finish.

The new characteristic is opened in the text editor.

2.1.4.2 Defining a Text Characteristic

 Note
This description uses the following conventions to illustrate the syntax requirements:

Required keyword

Optional keyword

User-specified value

Mutually exclusive keyword

To define a text characteristic, use the following syntax:

characteristic identifier {

name "30 bytes descriptive text" || names EN "descriptive English text"

, FR "descriptive French text"

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 25

longName "unlimited descriptive text" || longNames EN "unlimited text in multiple
languages"

status released || prepared || blocked

textLength 1-132

restrictable (x-additionalValues)

caseSensitive

multiValue

additionalValues (x-restrictable)

values "a" name "Aye" || names EN "descriptive English text"

, FR "descriptive French text"

,"b" name "Bee" || names EN

}

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

characteristic Denotes the start of a char­
acteristic definition encom­
passed within {…}

- Required

identifier This is the characteristic ID
used in the model to refer­
ence this characteristic. It
must be uppercase.

Max. length 40 bytes

- Required

name or names The descriptive, language-
dependent text used as a la­
bel for this object.

If not used, the identifier is
used as the name.

See the context-sensitive
help for the full list of avail­
able two-character language
identifiers.

- Optional

longName or longNames Unlimited length text availa­
ble from the “more informa­
tion” link on the configura-
tion UI. It is possible to em­
bed hyperlinks in this text.

If the name keyword is not
used, the longName is not
used as the name.

Optional

26 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

status If used, one of three ad­
ditional keywords must be
specified - required, pre­
pared, blocked.

This keyword is ignored by
the SME. It is available
for compatibility with mas­
ter data definitions imported
from S/4HANA.

- Optional

textLength Indicates that this is a text
characteristic and specifies
the maximum length of the
value.

Maximum textLength is
132.

- Required

restrictable Indicates that the domain of
values can be restricted. If
the values clause is used,
the domain is restricted to
those values, and can be fur­
ther restricted in constraints.
If no values clause is used,
the initial static domain is the
“unrestricted domain”. Any
value is valid, but can still be
restricted by constraints.

This clause and the
additionalValues clause
are mutually exclusive.

Optional

caseSensitive Indicates that values can
contain uppercase and low­
ercase values

- Optional

multiValue Indicates that more than one
value can be assigned to this
characteristic

- Optional

additionalValues Allows user entry of values.
Can be used with the val­
ues clause. The values speci­
fied in the values clause
are presented for selection,
but the user can also en­
ter a different value if the
additionalValues clause
is specified.

This clause and the
restrictable clause are
mutually exclusive.

Optional

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 27

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

values Lists the permitted values.
No values indicates an un­
restricted domain. Any type-
consistent value is allowed.

Values can be specified with
or without names and names
can be specified in multiple
languages.

- Optional

Example

characteristic CABINET_TYPE {

 name "Cabinet Type"

 textLength 1

 caseSensitive

 restrictable

 values

 'a' name 'little aye',

 'A' name 'Aye',

 'B' name 'Bee',

 'C' name 'See',

 'D' name 'Dee',

 'd' name 'little dee'

}

2.1.4.3 Defining a Numeric Characteristic

 Note
This description uses the following conventions to illustrate the syntax requirements:

Required keyword

Optional keyword

User-specified value

Mutually exclusive keyword

To define a numeric characteristic, use the following syntax:

characteristic identifier {

name "30 bytes descriptive text" || names EN "descriptive English text"

, FR "descriptive French text"

longName "unlimited descriptive text" || longNames EN "unlimited text in multiple
languages"

28 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

numericLength 1-15

decimalPlaces 0-(numericLength-1)

restrictable (x-additionalValues)

multiValue

negativeValues

additionalValues (x-restrictable)

specialFunction aggregating

intervals < n1 || <= n1 || > n2 || >= n2 || n1 - n2 || (where n1, n2 are numeric values)

values n1, n2

}

Keyword/User Value Meaning Required/Optional

characteristic Denotes the start of a characteristic
definition encompassed within {…}

Required

identifier This is the characteristic ID used in the
model to reference this characteristic. It
must be uppercase.

Max. length 30 bytes

Required

name or names The descriptive, language-dependent
text used as a label for this object.

If not used, the identifier is used as the
name.

See the context-sensitive help for the
full list of available two-character lan­
guage identifiers.

Optional

longName or longNames Unlimited length text available from the
“more information” link on the configu-
ration UI. It is possible to embed hyper­
links in this text.

Optional

numericLength Indicates that this is a numeric char­
acteristic and specifies the maximum
length of the value.

Maximum numericLength is 15.

Required

decimalPlaces Indicates the number of decimal places
of this numeric value.

Maximum decimalPlaces is one less
than the numericLength.

Optional

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 29

Keyword/User Value Meaning Required/Optional

restrictable Indicates that the domain of values can
be restricted. If the values clause is
used, the domain is restricted to those
values, and can be further restricted
in constraints. If no values clause is
used, the initial static domain is the
“unrestricted domain”. Any value is
valid, but can still be restricted by con­
straints.

Optional

multiValue Indicates that more than one value can
be assigned to this characteristic

Optional

negativeValues Allows a numeric value to be a negative
value

additionalValues Allows user entry of values. Can be
used with the values clause. The val­
ues specified in the values clause
are presented for selection, but the
user can also enter a different value
if the additionalValues clause is
specified.

Optional

specialFunction aggregating Designates this characteristic as usa­
ble in a rule with the then_increment
statement

Optional

specialFunction balanced Do not use - not supported Prohibited

values Lists the permitted values. No values
indicates an unrestricted domain. Any
type-consistent value is allowed

Optional

specialFunction default Designates this value as the default
value

Optional

Example

characteristic BLOCKING {

 name "Blocking"

 numericLength 2 decimalPlaces 1

 restrictable

 values 0.1, 0.5, 1, 2, 5

}

30 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

2.1.4.4 Defining a Date Characteristic

 Note
This description uses the following conventions to illustrate the syntax requirements:

Required keyword

Optional keyword

User-specified value

Mutually exclusive keyword

To define a date characteristic, use the following syntax:

characteristic identifier {

name "30 bytes descriptive text" || names EN "descriptive English text"

, FR "descriptive French text"

longName "unlimited descriptive text" || longNames EN "unlimited text in multiple
languages"

date

restrictable (x-additionalValues)

multiValue

additionalValues (x-restrictable)

values yyyy-mm-dd

}

Keyword/User Value Meaning Required/Optional

characteristic Denotes the start of a characteristic
definition encompassed within {…}

Required

identifier This is the characteristic ID used in the
model to reference this characteristic. It
must be uppercase.

Max. length 30 bytes

Required

{ Starts the set of keywords that define
this object

Required

} Ends the object (characteristic) defini-
tion

Required

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 31

Keyword/User Value Meaning Required/Optional

name or names The descriptive, language-dependent
text used as a label for this object.

If not used, the identifier is used as the
name.

See the context-sensitive help for the
full list of available two-character lan­
guage identifiers.

Optional

longName or longNames Unlimited length text available from the
“more information” link on the configu-
ration UI. It is possible to embed hyper­
links in this text.

Optional

date Indicates that this is a date characteris­
tic

Required

restrictable Indicates that the domain of values can
be restricted. If the values clause is
used, the domain is restricted to those
values, and can be further restricted
in constraints. If no values clause is
used, the initial static domain is the
“unrestricted domain”. Any value is
valid, but can still be restricted by con­
straints.

Optional

multiValue Indicates that more than one value can
be assigned to this characteristic

Optional

additionalValues Allows user entry of values. Can be
used with the values clause. The val­
ues specified in the values clause
are presented for selection, but the
user can also enter a different value
if the additionalValues clause is
specified.

Optional

values Lists the permitted values. No values
indicates an unrestricted domain.

 Note
The date must be specified in
“YYYY-MM-DD”format only.

Any type-consistent value is allowed.

Optional

32 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Example

characteristic BIRTHDAY {

 name "Date of Birth"

 date

 values

 1992-12-25

}

2.1.4.5 Defining an Abstract Data Type Characteristic

 Note
This description uses the following conventions to illustrate the syntax requirements:

Required keyword

Optional keyword

User-specified value

Mutually exclusive keyword

To define an abstract data type (ADT) characteristic, use the following syntax:

characteristic identifier {

name "30 bytes descriptive text" || names EN "descriptive English text"

, FR "descriptive French text"

longName "unlimited descriptive text" || longNames EN "unlimited text in multiple
languages"

classType class-identifier

multiValue

}

Keyword/User Value Meaning Required/Optional

characteristic Denotes the start of a characteristic
definition encompassed within {…}

Required

identifier This is the characteristic ID used in the
model to reference this characteristic. It
must be uppercase.

Max. length 30 bytes

Required

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 33

Keyword/User Value Meaning Required/Optional

name or names The descriptive, language-dependent
text used as a label for this object.

If not used, the identifier is used as the
name.

See the context-sensitive help for the
full list of available two-character lan­
guage identifiers.

Optional

longName or longNames Unlimited length text available from the
“more information” link on the configu-
ration UI. It is possible to embed hyper­
links in this text.

Optional

classType Indicates that this is an abstract data
type characteristic

Required

class-identifier Identifier of the class referenced by this
characteristic

Required

multiValue Indicates that more than one value can
be assigned to this characteristic

Optional

Example

characteristic CONTAINS_THESE_ITEMS {

 name "Contains these items"

 classType ITEM

 multiValue

}

2.1.4.6 Defining a Reference Characteristic

 Note
This description uses the following conventions to illustrate the syntax requirements:

Required keyword

Optional keyword

User-specified value

Mutually exclusive keyword

34 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

A reference characteristic refers to the value of a field in the sales document. To define a reference
characteristic, use the following syntax:

characteristic identifier {

name "30 bytes descriptive text" || names EN "descriptive English text"

, FR "descriptive French text"

longName "unlimited descriptive text" || longNames EN "unlimited text in multiple
languages"

textLength 1-30 || numericLength 1-15 decimalPlaces 0-(numericLength-1) || date

reference table table-name

field field-name

}

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

characteristic Denotes the start of a char­
acteristic definition encom­
passed within {…}

- Required

identifier This is the characteristic ID
used in the model to refer­
ence this characteristic. It
must be uppercase.

Max. length 30 bytes

- Required

name or names The descriptive, language-
dependent text used as a la­
bel for this object.

If not used, the identifier is
used as the name.

See the context-sensitive
help for the full list of avail­
able two-character language
identifiers.

- Optional

longName or longNames Unlimited length text availa­
ble from the “more informa­
tion” link on the configura-
tion UI. It is possible to em­
bed hyperlinks in this text.

- Optional

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 35

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

textLength Indicates that this is a text
characteristic and specifies
the maximum length of the
value.

Maximum textLength is
30.

One of the
numericLength /
decimalPlaces,
textLength, or date key­
words is required

Required

numericLength Indicates that this is a
numeric characteristic and
specifies the maximum
length of the value.

Maximum numericLength
is 15.

One of the
numericLength /
decimalPlaces,
textLength, or date key­
words is required

Required

decimalPlaces Indicates the number of dec­
imal places in this numeric
value.

Maximum decimalPlaces
is one less than the
numericLength.

Allowed only with
numericLength keyword

Optional

date Indicates that this is a date
characteristic

One of the
numericLength /
decimalPlaces,
textLength, or date key­
words is required

Required

reference table Indicates the table containing
the field to which this charac­
teristic refers

- Required

field Indicates the field to which
this characteristic refers

- Required

Example

characteristic ITEM_QUANTITY {

names

 EN 'Component quantity',

 DE 'Komponentenmenge'

numericLength 13 decimalPlaces 3

negativeValues

reference table 'STPO' field 'MENGE'

}

36 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

2.1.5 Variant Table

Definition

Variant tables are used to store combinations of values for characteristics. They can be used to infer values as
part of constraints.

Structure

You define a variant table for one or more characteristics, whereby each characteristic has a column in the
variant table. You enter a row in the variant table for each possible combination of characteristic values.
Entering one of the characteristics then restricts the other characteristics that can be selected.

You define a variant table in the Solution Modeling environment by using the row, file, or externalTable
keywords.

 Note
The externalTable keyword references a table from the ABAP back-end system. If this table exists, its
content is loaded at runtime instead of the content that is part of the knowledge base runtime version.

If you choose to enter a table from the ABAP back-end system, you must ensure that the ABAP table
contains not only columns for the characteristics of your variant table definition, but also valid to and from
dates, as well as the client (ABAP tables should be created on a client-specific basis). The valid to and from
date columns must be named SSC_FROM_DATE and SSC_TO_DATE and must be of data type DATS.

Example

In the following example, memory description can be used to infer the memory size and memory speed:

Memory Description Memory Size Memory Speed

1_1333 1 1333

2_1333 2 1333

2_1600 2 1600

2_2000 2 2000

4_1600 4 1600

4_2000 4 2000

In this case, if a memory size of 2 is specified, the system automatically restricts the possible entries for the
memory speed to 1333, 1600, and 2000.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 37

More Information

For information about defining variant tables, see Defining Variant Tables [page 42].

2.1.5.1 Syntax for Defining a Variant Table

 Note
This description uses the following conventions to illustrate the syntax requirements:

Required keyword

Optional keyword

User-specified value

Mutually exclusive keyword

To define a variant table, use the following syntax:

variantTable identifier {

name "30 bytes descriptive text" || names EN "descriptive English text"

, FR "descriptive French text"

characteristics characteristic-id

--indented keywords are specified for each characteristic in this class definition--

Primary

externalTable 'db_tablename'

rows 'textvalue', numericvalue;

'textvalue', numericvalue

||

file "filename.csv"

type 'CSV'

options

}

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

variantTable Denotes the start of a variant
table definition

- Required

38 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

identifier This is the variant table ID
used in the model to refer­
ence this variant table.

- Required

{ Starts the set of keywords
that define this object

- Required

} Ends object definition - Required

name or names The descriptive, language-
dependent text used as a la­
bel for this object.

If not used, the identifier is
used as the name.

See the context-sensitive
help for the full list of avail­
able two-character language
identifiers.

- Optional

characteristics Keyword indicating the start
of the list of characteristics
for this variant table

- Optional

The following keywords are specified for each characteristic

primary Denotes a characteristic
used to look up values of
other characteristics. This is
treated as a key field to look
up other values from the var­
iant table.

- Required for at least one
characteristic

End characteristic-specific keywords

externalTable Used to indicate to the
knowledge base build proc­
ess that variantTable con­
tent is not to be embedded in
the knowledge base runtime
version, and instead should
be retrieved by the engine at
runtime from the named SAP
database table.

Can be used with or without
the rows or file keywords.
However, data defined in
rows or file will be used if
the variant table data is also
exported with the model and
no data is available in the ex­
ternal table (defined with the
externalTable keyword).

Optional

'db_tablename' Name of a table in SAP data­
base

Used with externalTable
only

Required

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 39

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

rows (x-file) Used to provide table content
in the table definition.

Values are separated by a
comma. Rows are delimited
by a semicolon.

Text values are enclosed
within quotes.

One of the keywords rows,
file, or externalTable
is required. externalTable
can also be used in conjunc­
tion with rows or file.

Optional

file (x-rows) Used to provide table content
from a file. The file must be
in the same project folder
as the file containing this
variant table definition. Us­
ing the .vtable suffix is rec­
ommended.

One of the keywords rows,
file, or externalTable
is required. externalTable
can also be used in conjunc­
tion with rows or file.

Optional

type Indicates the type of file be­
ing referenced. Possible val­
ues are:

• vtable (default):
Supports .vtable files
with tabulator-separated
fields, without quotes,
and without escapes

• cvs: comma separated
values

Used with file only Optional

40 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

options Used to provide options re­
lated to data present in the
file.

Available options can be
specified in the format: op­
tion1=value1 option2=value2.

For example, CSV supports
the following options:

• charset=ISO-8859

-1

The character set
of the file, such
as “ISO-8859-1” or
“UTF-8”. Default is
Eclipse/OS-dependent.

• delimiter=,

The value delimiter. De­
fault is ','. For tabulator
or space characters, use
TAB or SPACE .

• quoteChar="

The character to quote a
value. Default is '"'.

• commentChars=#

The character(s) to rec­
ognize a comment line.
Default is disabled.

• surroundingSpace

sNeedQuotes=fals

e

Flag indicating whether
spaces at the beginning
or end of a cell are to
be ignored if they're not
surrounded by quotes.
The default is false be­
cause spaces are con­
sidered part of a field
and are not to be ig­
nored according to RFC
4180. Use true to ena­
ble. Similarly for Vtable

Used with file only Optional

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 41

Example

variantTable VT_ERLANG {

 name "VT_ERLANG"

 characteristics

 ERLANG_LO primary,

 ERLANG_HI primary,

 BLOCKING primary,

 NUM_LINES

 externalTable 'MY_SAP_ERLANG'

 file "VT_ERLANG.vtable"

}

2.1.5.2 Example for Defining a Variant Table

Context

You use this procedure to create variant tables in the Eclipse-based solution modeling environment.

Procedure

1. Choose File New Variant Table .
2. Enter the required data.
3. Choose Finish.

The new variant table is opened in the text editor.

 Note
You must enter the rows for the new variant table using the text editor. The data can be entered in-line,
as shown in the example below, or in a separate table file.

Example

variantTable SME_VIDEO_CARD_EXAMPLE {

name 'SME_VIDEO_CARD_EXAMPLE'

characteristics

SME_VIDEO_CARD_S primary,

42 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

SME_PART_NUMBER_S

rows

"LOW END", "VID1";

"HIGH END", "VID2"

}

2.1.5.3 Variant Table Views

Large variant tables, especially if they are designed as external variant tables, can lead to performance
degradation of the configuration, due to slower queries. To improve the performance of these large variant
tables, it is possible to reduce the scope of the table data by defining views on the table. The view defined on
the variant table is applicable within a configuration session.

You can define a view on a variant table using available APIs in the configuration engine. You can invoke these
APIs using pFunctions. For more information about this, refer to SAP Note 2509009 (Implement Variant
table views).

 Note
Defining the variant table views improves performance in both, external and internal, variant tables.

2.1.6 Dependency

Definition

Dependency is the generic term used for constraints and rules. Dependencies are defined within a solution
model and specify the relationships between the characteristics and characteristic values of several classes.

Constraints

Constraints are interdependencies between objects and their characteristics. They are a primary form of
declarative dependency. All declarative dependencies can be modeled using constraints. You can use them
to set characteristic values or to check the consistency of assigned values. Constraints are grouped into
constraint nets, which are then assigned to tasks. Constraints are used by the configurator engine to derive or
infer any of the following:

• Contradiction
• Value assignment (for characteristics with an ADT, this means linking instances)
• Domain restriction
• Creation and placement of an instance in the PART_OF hierarchy (declarative selection)
• Specialization of an instance
• Relation link between instances for declared relations, when and if this feature becomes available

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 43

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/2509009

The configurator engine performs these derivations by applying constraint rules derived from the constraint
itself.

Rules

Rules are the primary procedural form of dependency. They act as a point of reference for the classes,
characteristics, materials, and variant tables created by the modeler. Rules are the procedural counterpart
of constraints used when procedural logic is required, for example, counting or invoking procedural functions
(pfunctions).A rule states that some action should be performed when the pattern of the rule is matched in the
DDB. It can either be one of the specially provided built-in ones or an existing function (such as built-in APIs
or user provided functions).Rules are grouped into rule nets, which are assigned to tasks. The tasks are then
assigned to the knowledge bases.In particular, a rule can:

• Perform aggregations
• Access and modify the DDB
• Access the KB
• Trigger front-end functions
• Access and modify external data
• Make logical inferences.

More Information

For information about defining dependencies, see Defining Solution Dependencies [page 44].

2.1.6.1 Defining Solution Dependencies

Use

You use this procedure to create solution dependencies by defining constraints and constraint nets as well as
rules and rule nets.

Procedure

Defining Constraints

1. Choose File New Empty Model File .
The system displays a dialog prompting you to choose a folder and enter a file name for the new constraint.

2. Enter the required data.
3. Choose Finish.

The system displays an empty file.
4. Press CTRL + SPACEBAR .
5. Double-click constraint.

44 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

 Note
You can choose a constraint template if a suitable one is available. Templates are indicated with a green
dot in the auto-completion dialog box.

6. Enter the required data and save your constraint.

Defining Constraint Nets

1. Choose File New Empty Model File .
The system displays a dialog prompting you to choose a folder and enter a file name for the new constraint
net.

2. Enter the required data.
3. Choose Finish.
4. Press CTRL + SPACEBAR .
5. Double-click constraintNet or choose a template.
6. Enter the required data and save your constraint net.

Defining Rules

1. Choose File New Empty Model File .
The system displays a dialog prompting you to choose a folder and enter a file name for the new rule.

2. Enter the required data.
3. Choose Finish.
4. Press CTRL + SPACEBAR .
5. Double-click rule or choose a template.
6. Enter the required data and save your rule.

Defining Rule Nets

1. Choose File New Empty Model File .
The system displays a dialog prompting you to choose a folder and enter a file name for the new rule net.

2. Enter the required data.
3. Choose Finish.
4. Press CTRL + SPACEBAR .
5. Double-click ruleNet or choose a template.
6. Enter the required data and save your rule net.

2.1.6.2 Defining a Rule

 Note
This description uses the following conventions to illustrate the syntax requirements:

Required keyword

Optional keyword

User-specified value

Mutually exclusive keyword

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 45

Rules are used when procedural logic is required, for example, counting or invoking procedural functions
(pfunctions). To define a rule, use the following syntax:

rule identifier {

name "30 bytes descriptive text" || names EN "descriptive English text"

, FR "descriptive French text"

objects: ? a is_a (300) class-id

where ?b = adt-cstic-on-a

,? m is_object (material) (300) (nr= material-id)

condition:

?a.cstic-on-a <|| <=|| =|| >=|| = value || specified || not specified

or || and

part_of (?m,?a)

or || and

table table-name (cstic-id = ?a.domain cstic-on-a)

 Note
A table statement in the “condition” section evaluates “True” if at least one row is found and “False” if no
row is found.

or || and

…see the inline help for a full list of potential functions/content

body: then do: pfunction pfunction-id (parameters list)

||

then do: ?a.cstic-on-a ?= value || cstic

||

then increment: ?a.cstic-on-a by i

explanations: ' any descriptive text '

}

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

rule Denotes the start of a
rule definition encompassed
within {…}

- Required

identifier Rule ID used in the model to
reference this rule.

Max. length 30 bytes

- Required

46 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

name or names The descriptive, language-
dependent text used as a la­
bel for this object.

If not used, the identifier is
used as the name.

See the context-sensitive
help for the full list of avail­
able two-character language
identifiers.

- Optional

objects Keyword indicating the start
of the objects section

- Required

?a/?m A user specified symbol to
represent the object. Must
start with a question mark
(?) but can have any alpha­
numeric characters after the
question mark.

At least one object is re­
quired

Required

is_a (300) Keyword indicating the ob­
ject is a class

- Required

class-id Class identifier of object - Required

is_object (material)

(300) (nr=)

Keyword indicating the ob­
ject is a material

- Required

material-id Material identifier of object - Required

condition Keyword indicating the start
of the condition.

Must be a single condition
statement, but can have mul­
tiple clauses joined with Boo­
lean operators “and”/ “or”

- Optional

condition content Expressions in the condition
content can include a large
range of functions. Use con­
text help (CTRL + SPACE)
to view the entire list

- Optional

body: Keyword indicating the start
of the body of the rule

- Required

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 47

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

then do: Keyword used if the rule in­
vokes a pfunction or sets a
“sticky” default value

Either then do: or then
increment: is required.

Optional

then increment: Keyword used if the rule
increments an aggregating
characteristic

Either then do: or then
increment: is required.

Optional

?a.cstic-on-a An aggregating characteristic
for instance ?a

Required with then
increment:

Required with then
increment:

by Keyword denoting the range
by which the increment is
made

Required with then
increment:

Required with then
increment:

i The number to be added to
cstic-on-a

Can be a number or the nu­
meric result of a function.

Required with by Required with by

pfunction Keyword used to indicate
that a pfunction is to be in­
voked

Allowed only with then do: Optional

pfunction-name Name of pfunction to be in­
voked

Required with pfunction Required with pfunction

parameters List of parameters; any
specified parameter must be
defined in the pfunction defi-
nition. It is not necessary to
provide all parameters.

Optional Optional

?a.cstic-on-a Any characteristic for class a - Optional

?= Indicates setting a “sticky
default”. Whenever the char­
acteristic has no value as­
signed, this value will be as­
signed as its default.

Required with pfunction Required with pfunction

parameters List of parameters; must
match the parameters in the
pfunction definition

Required with pfunction Required with pfunction

explanation Keyword indicating the start
of the explanation section.

- Optional

48 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Keyword/User Value Meaning Relation to Other Keywords Required/Optional

explanation text Text entered here is available
for debugging conflicts

- Optional

 Note
Non-sticky defaults (assigned in the class definition using the defaultValues keyword) are retained until
changed by a user input or constraint. If subsequently reset to no value (“space”), the assigned default is
not recovered. The cstic has no value assigned.

Example

rule SET_PROD_COLOR {

 objects:

 ?p is_a (300)PRODUCT

 condition:

 ?p.USAGE_TYPE = 'STEALTH'

 body:

 then do:

 pfunction SET_PROD_COLOR_PF (

 PRODUCT = ?p

)

}

rule COUNT_COMPONENTS {

 objects:

 ?bundle is_a (300)HARDWARE_BUNDLE

 where ?comp = COMPONENTS

 body:

 then increment:

 ?bundle.COMP_COUNT by 1

)

}

2.1.6.3 Defining a Constraint

 Note
This description uses the following conventions to illustrate the syntax requirements:

Required keyword

Optional keyword

User-specified value

Mutually exclusive keyword

Constraints assert facts and rely on deductive reasoning. To define a constraint, use the following syntax:

constraint identifier {

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 49

name "30 bytes descriptive text" || names EN "descriptive English text"

, FR "descriptive French text"

objects: ? a is_a (300) class-id

where ?b = adt-cstic-on-a

,? m is_object (material) (300) (nr= material-id)

condition:

?a.cstic-on-a <|| <=|| =|| >=|| = value || specified || not specified

or || and

part_of (?m,?a)

or || and

table table-name (cstic-id = ?a.domain cstic-on-a)

or || and

…see inline help for full list of potential functions/content

restrictions:

asserted facts

 Note
For an explanation of the statements that can be used to assert facts, see the “Commands Used in the
Restrictions Section of a Constraint” table below. The list, along with detailed syntax, is also available via
the inline help for editing a constraint within the solution modeling environment.

inferences:

?a.cstic-on-a

,?m.cstic-on-a

,?a.facet cstic-on-a

explanations: ' any descriptive text '

}

Keyword/User Value Meaning Required/Optional

constraint Denotes the start of a constraint defini-
tion encompasse within {…}

Required

identifier This is the constraint ID used in the
model to reference this constraint.

Max. length 30 bytes

Required

50 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Keyword/User Value Meaning Required/Optional

name or names The descriptive, language-dependent
text used as a label for this object.

If not used, the identifier is used as the
name.

See the context-sensitive help for the
full list of available two-character lan­
guage identifiers.

Optional

objects Keyword indicating the start of the ob­
jects section

Required

?a/?m A user specified symbol to represent
the object. Must start with a question
mark (?) but can have any alphanu­
meric characters after the question
mark.

Required

is_a (300) Keyword indicating the object is a class Required

class-id Class identifier of object Required

is_object (material) (300)

(nr=)

Keyword indicating the object is a ma­
terial

material-id Material identifier of object

condition Keyword indicating the start of the con­
dition.

Must be a single condition statement,
but can have multiple clauses joined
with Boolean operators “and”/ “or”

Optional

condition content Expressions in the condition content
can include a large range of functions.
Use context help (CTRL + SPACE) to
view the entire list

Optional

restrictions Keyword indicating the start of the re­
strictions section

Required

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 51

Keyword/User Value Meaning Required/Optional

restrictions content Restrictions are stated as assertions
and, like condition content, can use a
variety of functions.

Restrictions can assert either the

existence of an instance or the

value of a characteristic facet

Required

inferences Keyword indicating the start of the ob­
jects section

Optional

inferences content Lists the asserted facts to be inferred Optional

explanation Keyword indicating the start of the ex­
planation section

Optional

explanation text Text entered here is available to help
with debugging conflicts

Optional

Commands Used in the Restrictions Section of a Constraint

Command Use

false To raise a conflict, thereby making the configuration incon­
sistent

find_or_create() To create a new instance in the configuration

has_part() To add a part to a bill of material

table() To look up values in a variant table

type_of() To specialize a class object

?class.cstic To assert facts about the value of a charactristic “cstic” on
an instance of class “class”.

?class is a reference to an object list in the objects section
and cstic is a characteristic for that object.

?class.facet cstic To assert facts about a facet of a characteristic “cstic” on
an instance of class “class”. Examples of facets are domain,
invisible, required, and noinput.

52 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Command Use

Mathematical functions A large set of mathematical functions is available. Examples
include the following functions:

• rounded

• sin

• cos

• tan

• floor

• log10

For a full list of the available functions, see the inline help.

Example

constraint PLACE_FUNIT_A_1 {

 objects:

 ?CA is_a (300)CABINET_A

 ,?FA is_a (300)FUNIT_A

 condition:

 ?FA.INST_NUM = 1

 restrictions:

 ?CA.FU_A = ?FA

 inferences:

 ?CA.FU_A

 explanations:

 "first FUNIT_A goes in CAB_A"

}

2.1.6.4 Dependency Net

Definition

A dependency net is a group of constraints or rules (also referred to as dependencies), which are defined within
a solution model and specify the relationships between the characteristics and characteristic values of several
classes.

Use

Constraints

Constraints are interdependencies between objects and their characteristics. They are used as a dependency
in variant configuration. You can use them to set characteristic values or to check the consistency of assigned

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 53

values. In variant configuration, you can use constraints to address configurable assemblies in a BOM, between
which interdependencies exist.

Rules

Rules act as a point of reference for the classes, characteristics, materials, and variant tables created by
the modeler. They are used when procedural logic is required, for example, counting or invoking procedural
functions (pfunctions). Rules are grouped into rule nets, which are assigned to tasks. The tasks are then
assigned to the knowledge bases.

Structure

The dependency net is displayed in the form of a hierarchy in the model graph.

More Information

For information about defining dependency nets, see Defining Solution Dependencies [page 44].

2.1.7 User-Defined Function

Definition

User-defined functions enable you to perform (complex) tasks using external program code. They can be used
to check values and infer characteristic values. You may want to create functions for the following purposes, for
example:

• Complex calculations based on characteristic values in the configuration
• Complex validity checks for allowed values
• Efficient operations, using side effects, that overcome limitations of the dependency syntax
• Arbitrary calls to external programs, with or without side effects

User-defined functions can be used in constraints and rules. In constraints, you can use functions to check
the consistency of the values entered, perform arbitrary complex calculations on inputs to determine output
values, and look up values in external systems. In rules, you can use functions to trigger arbitrary processing.
When you invoke a user-defined function in a constraint or rule, you are referring to a Java method.

Use

There are two forms of user-defined functions: declarative functions and procedural functions (“pfunctions”).
Both declarative functions and pfunctions have the same interface.

54 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Structure

Declarative functions and pfunctions are defined using the following framework:

function <identifier> {

 characteristics

 <parameter list>

}

They use the following keywords:

Keyword/User Value Meaning Required/Optional

function Denotes the start of a function defini-
tion

Required

identifier Function ID used in the model to refer­
ence this function.

Max. length 30 bytes.

This must be the name of the class in­
voked by this function.

Required

{ Starts the set of keywords that define
this object

Required

} Ends object definition Required

characteristics Keyword indicating the start of the list
of characteristics for this class

Required

parameters List of characteristics that will be pro­
vided to the Java class as input. All
characteristics listed are required when
this function is invoked.

 Note
No values are returned from a
pfunction.

Required

primary Required for at least one parameter. It
indicates that the parameter is “input
only” to the invoked function. It does
not indicate that the parameter is re­
quired.

Required for at least one parameter

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 55

More Information

2.1.7.1 Declarative Function

Definition

Declarative functions are invoked from constraints. In their arguments, they receive data structures
representing input and output characteristics. Using these characteristics, they can read the values of the
input characteristics in the configuration and they can return values for the output characteristics.

A declarative function is insulated from the actual configuration and can neither influence the value of any
characteristic other than one that is passed to it as an output characteristic, nor create any other side effects.

More Information

Defining User-Defined Functions [page 78]

2.1.7.1.1 Example: Defining a Declarative Function

The following example shows how to define, implement, and invoke a declarative function.

Example Framework of a Declarative Function

To define a declarative function, use the following model:

function DETERMINE_LABEL_ID {

 characteristics

 CPU primary,

 HD primary,

 LABEL_ID

}

The function is implemented in a java class. The java class has to be defined as follows:

• The package of the class must be com.sap.sce.user.
• The class name must match the definition name (here: DETERMINE_LABEL_ID).
• The class must implement the interface com.sap.sce.user.sce_user_fn.

The interface defines the following method that needs to be implemented: boolean execute(fn_args
args, Object obj);

56 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

The method has two parameters:

• args contains the sequence of arguments - import arguments with an existing binding and export
arguments where the binding is to be set in the method implementation. All characteristics that have been
specified as primary in the function definition become import parameters. Other characteristics become
output parameters.

• The type of the second parameter obj depends on the context in which the function is executed. If this
parameter is executed as a declarative function, the parameter refers to the knowledge base object, which
provides access to static information such as the knowledge base name, version, and profile.

A declarative function returns a boolean value indicating success or failure. A declarative function invoked in
the condition part of a constraint, or in the if part of a restriction must return a meaningful boolean value
because the constraint is testing the return value.

Example Implementation of a Declarative Function

The following source code shows how to implement a declarative function.

public class DETERMINE_LABEL_ID implements sce_user_fn {

 public boolean execute(fn_args args, Object kbObj) {

 final sce_user_fn_logging log = new sce_user_fn_logging();

 // retrieve input characteristics

 String inputCPU = args.get_value("CPU");

 String inputHD = args.get_value("HD");

 // determine and set output characteristic

 String outputLabel = String

 .format("CPU: %s, HD: %s", inputCPU, inputHD);

 args.set_value("LABEL_ID", outputLabel);

 log.writeLogDebug(this, "Calculated label is " + outputLabel);

 return true;

 }

}

This implementation retrieves the characteristics CPU and HD from the configuration as input parameters.
These two strings are concatenated and stored in the output parameter LABEL_ID.

 Note
The implementation has only limited access to the current state of the configuration. Only the explicitly
defined input and output parameters can be accessed.

Example Invocation of a Declarative Function

The defined declarative function can be used in a constraint as follows:

function DETERMINE_LABEL_ID {

 CPU = ?PC.CPU,

 HD = ?PC.HD,

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 57

 LABEL_ID = ?PC.LABEL_ID

}

The characteristics on the left-hand side are characteristics of the function. The characteristics on the right-
hand side are characteristics of the instance (referred to with ?PC) of the configuration.

2.1.7.2 Pfunction

Definition

A “pfunction” (procedural function) provides read and write access to the configuration and dynamic database
(in contrast to a declarative function, which simply reads the knowledge base to derive export parameters).
Pfunctions can be used only in rules but address all configuration objects.

Pfunctions make all changes as side-effects and are not declarative. No actions are tracked by the TMS (unless
tracking is implemented manually). Unlike declarative functions, pfunctions can change the configuration
directly. A pfunction can explicitly invoke the execution of dependencies using the “Check” API.

More Information

Defining User-Defined Functions [page 78]

Example: Defining a Pfunction [page 59]

2.1.7.2.1 Testing Pfunctions

Prerequisites

• You have created a knowledge base.
• You have created a launch configuration (see Creating a Launch Configuration [page 77]).

Context

When you open a knowledge base to test it, pfunctions may not be executed as expected. In this case, you can
use this procedure to test and debug the pfunctions.

58 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Procedure

1. Open the Debug perspective and choose Run Debug Configurations... .
2. Expand the Eclipse Applications node.
3. Select a launch configuration.
4. Choose the Debug pushbutton.

The test UI appears in a new window. You can then set breakpoints in the Java program from the Debug
perspective in the solution modeling environment session.

2.1.7.2.2 Example: Defining a Pfunction

The following example shows how to define, implement, and invoke a pfunction.

Example Framework of a Pfunction

To define a pfunction, use the following model:

function NUMBER_OF_ITEMS {

 characteristics

 PC_REF primary,

 HOLDS_HDS primary,

}

The function is implemented in a Java class. The Java class has to be defined as follows:

• The package of the class must be com.sap.sce.user.
• The class name must match the definition name (here: NUMBER_OF_ITEMS).
• The class must implement the interface com.sap.sce.user.sce_user_fn.

The interface defines the following method that needs to be implemented: boolean execute(fn_args
args, Object obj);

The method has two parameters:

• args contains the sequence of arguments - import arguments with an existing binding and export
arguments where the binding is to be set in the method implementation. All characteristics that have been
specified as primary in the function definition become import parameters. Other characteristics become
output parameters.

• The type of the second parameter obj depends on the context in which the function is executed. If this
parameter is executed as a pfunction, the parameter refers to the configuration itself, which can be used to
perform changes in the configuration directly.

The boolean typed return parameter is of no use in the context of pfunctions. Whereas the return value of a
declarative function carries meaning, the return value of a pfunction should always be true. If the return value is
false, this can lead to errors in the engine and an inconsistent configuration.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 59

 Note
A function implementation (that is, the Java class) can be invoked as a test or for setting cstic values,
and may even be used as the implementation of a pfunction. Such multiple use requires very careful
implementation. It is permitted but not necessarily recommended.

Example Implementation of a Pfunction

The following source code shows how to implement a pfunction.

public class NUMBER_OF_ITEMS implements sce_user_fn {

 public boolean execute(fn_args args, Object configObj) {

 // retrieve input characteristic PC_REF. PC_REF is an ADT

 // characteristic and therefore can be converted to an ddb_inst

 // object

 ddb_inst instance = (ddb_inst) args.find("PC_REF").kb_get_binding();

 try {

 // retrieve the values of characteristic HOLDS_HDS

 kb_type instType = instance.ddb_get_inst_type();

 kb_cstic csticToCnt = instType.kb_has_cstic_p("HOLDS_HDS");

 read_only_sequence rs = instance.ddb_get_values(csticToCnt);

 // set the value of characteristic NUMBER_OF_HDS

 instance.ddb_set_or_replace_val(

 instType.kb_has_cstic_p("NUMBER_OF_HDS"),

 float_value_imp.get_float_value(rs.length()),

 ((cfg_imp) configObj).tms_get_generic_default_owner());

 } catch (Exception e) {

 final sce_user_fn_logging log = new sce_user_fn_logging();

 log.writeLogError(this, e.getMessage());

 }

 return true;

 }

}

This implementation counts the number of assigned values to characteristic HOLDS_HDS. The retrieved
number is assigned to characteristic NUMBER_OF_HDS.

The implementation has access to the complete state of the configuration. Argument configObj is an
instance of class cfg_imp that can be used to modify the state of the configuration in a non-declarative,
procedural way. In the example, the characteristic NUMBER_OF_HDS is modified that is not part of the argument
list of the pfunction.

The class com.sap.sce.user.scelib provides utility methods that can be used by pfunctions to read and
write from/to the current configuration. Among others, this class provides the following functionality:

Method Purpose

scelib.get_value(inst, csticName) Reads assigned value of <csticName>

60 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Method Purpose

scelib.get_values(inst, csticName) Reads assigned values of the multi-valued characteristic
<csticName>

scelib.set_value(inst, csticName, val) Sets value <val> to <csticName>

scelib.vt_select_buffered(kBase, match,

VTabName, condition, order)

Selects lines of variant table <VTabName> that obey the
<condition> , ordered by <order>

scelib.get_domain(inst, csticName) Reads current domain of <csticName>

scelib.restrict_dom(inst, csticName, dom,

owner)

Restricts the domain of <csticName> by the string-array
<dom>

Example Invocation of a Pfunction

Pfunctions are invoked in the same way as declarative functions, for example:

function NUMBER_OF_ITEMS {

 PC_REF = ?PC.PC_REF

}

Pfunctions can be invoked only in the body of rules.

2.1.8 Interface Design

An interface design is an object that defines characteristic groups and assigns characteristics to those groups.
The configuration UI uses this information to present characteristics on the screen. Interface design objects
can be associated with classes or materials allowing different presentations of the characteristics to be
displayed based on the class or material.

Interface designs are inherited by subclasses and can be overridden by superclasses. If a subclass or material
extends (inherits from) more than one superclass with an interface design, the subclass must define its own
interface design.

2.1.8.1 Defining an Interface Design

 Note
This description uses the following conventions to illustrate the syntax requirements:

Required keyword

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 61

Optional keyword

User-specified value

Mutually exclusive keyword

To define an interface design, use the following syntax:

interfaceDesign identifier-1 {

group identifier-A {

characteristics

characteristic-id, characteristic-id,

urls { "url" label "30 bytes descriptive text" , "url" label "30 bytes descriptive text"... }

}

group identifier-B {

characteristics

characteristic-id, characteristic-id,

urls { "url" label "30 bytes descriptive text" , "url" label "30 bytes descriptive text"... }

}

}

Keyword/User Value Meaning Required/Optional

interfaceDesign Denotes the start of an interface design
object encompassed within {…}

Required

identifier-1 This is the interface design ID used in
the model to reference this interface
design.

Max. length 18 bytes.

Required

group Denotes the start of a group definition Required

identifier-A This is the group ID, the technical name
of the group of characteristics. Max.
length 18 bytes.

Required

name This is the group name used to name/
label the grouping on the UI. For exam­
ple, if the UI presents groups as tabs,
this is the tab label if no name is pro­
vided.

Max. length 30 bytes.

Optional

62 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Keyword/User Value Meaning Required/Optional

characteristics Indicates the start of the list of charac­
teristics in this group

Required

cstic-1 A valid characteristic name Required

urls Keyword associating a URL with this
group. URLs are not accessible via the
engine API. We suggest that you do not
use them in this release.

Optional

label A label for the URL Optional

2.1.9 Bill of Material

Definition

A bill of material (BOM) is a list of materials, assemblies, components, and parts required to manufacture
a product. These can be used to define simple relationships where one component comprises several
subcomponents. If required, you can define a maximum and a minimum quantity for each material and class in
the BOM.

More Information

For information about defining bills of material, see Defining Dynamic Bills of Material [page 63].

2.1.9.1 Defining Dynamic Bills of Material

Context

You use this procedure to create new bills of material (BOMs) in the Eclipse-based solution modeling
environment.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 63

Procedure

1. Choose File New Empty Model File

The system displays a dialog prompting you to choose a folder and enter a file name for the new BOM.
2. Enter the required data.
3. Choose Finish.

An empty file is displayed in the text editor.
4. Press CTRL + SPACEBAR and double-click bom.

 Note
Alternatively you can type bom.

5. Enter the required data and save the new BOM.

 Note
Optionally you can specify a minimum and a maximum value for each material or class.

Example

The bill of material shown below comprises one class and two materials:

bom SME_WORKPLACE {

10 class SME_COMPUTER min 0 max 9999,

20 material SME_DESKTOP min 0 max 9999,

30 material SME_DESKTOP min 0 max 9999

}

2.1.10 Model Syntax and Logical Validations

SME not only performs language syntax validation but extends it further to also do logical validations.
These logical validations are performed at compile time which helps in providing feedback during the model
development phase itself, thus avoiding the expensive test cycle process. These logical validations include:

• Using default assignment operator “?=” is not allowed in constraint restriction.
The default assignment can be used in rules for assigning the default values, however, the same is not true
for constraints. If it used in constraints, an error is thrown.

• Warning for free variables in constraint declaration.
A free variable in a constraint is defined in the object section of a constraint, but is never used in the
condition or restriction section. Such variables have an impact on the execution of the constraint. A
warning message is shown in such scenarios. Refer to SAP Note 2877744 for more details.

• Validation check in find_or_create

64 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/
							2877744

If find_or_create is used in the restriction section using the‘with’ argument, SME does a logical check if the
characteristics used in the ‘with’ argument are defined in a class, else a validation error is shown.

• Validation check on assigning domain in constraint restriction
In a constraint, if a characteristic domain is assigned in the restriction section, then that characteristic
should be of restrictable type ,else an error is shown.

2.1.11 Solution Model Samples

The Solution Modeling Environment is shipped with a few sample solution models that serve as points of
reference when you are building live solution models.

For more information about creating live projects based on these samples, refer to the link below.

Related Information

Creating a Solution Sales Configuration Project [page 74]

2.1.11.1 KBO with MCI

SAP Solution Sales Configuration supports the application of predetermined rules to orchestrate between
knowledge bases with multi-configuration instances (MCI). This sample model provides insight into how multi
configuration instances can be created and managed across multiple configurations through the knowledge
base orchestration process.

For more information about this, refer to SAP Note 2550572 (SAP SSC Knowledge Base Orchestration
(KBO) and Multi Configuration Instances (MCI)).

2.1.11.2 FBS_SSC_CA

A model to demonstrate how the hardware, software, and services can be packaged together and how guided
selling can be enabled.

The FBS_SSC_CA model is intended to configure a data center and its supply servers, supporting an
application with various user types. Based on the number of each user type specified, the model will generate
the number of servers required, with the appropriate memory, CPU speed, and number of CPU’s.

The model also allows the user to override recommended values.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 65

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/2550572

Keywords and Key Concepts

Keywords Description

Counting Tallying, counting, and accumulating values

ADT's Use of abstract data type pointers to represent relationships
between solution components

Non-part instances Adding content without using a BoM (Bill of Materials)

Guided selling Rudimentary guided selling is illustrated here

Overriding Default Values in the System

1. Specify the number of users for one or more user type.
The model provides a list of potential servers as per the requirements of the relevant user type.

2. Select the relevant server name.
The model generates the required number of servers.
Up to fourteen individual servers are contained in a single blade system. Each individual server is further
configured with the appropriate memory and CPU’s. You need to simply enter the number of users and a
selection from a set of potential servers. The model executes the process automatically. If required, you
may also override the default system behavior.
For more information about this, refer to Memory Override.

3. Select additional software and/or services.
These can be associated with the servers by selecting the servers listed in the Runs on HW characteristic in
software instances or in the Serves characteristic on services instances. The association can also be made
from the hardware instances by using the Runs SW and Served by characteristics.
The model updates the line item quantity for the software and service instances based on the number of
servers associated with them. For example, if the software runs on 15 servers, the line item quantity is set
to 15. This process is controlled by the model and can also be configured otherwise.
The user can override the memory values on any blade system by setting the SPEC_MEM characteristic to
‘User’ from the system default ‘System’. When set to ‘User’, the memory field is available for update. You
can specify a new value to allocate that memory across all the servers in this specific blade system. There
is no impact on other blade systems in the configuration.

Overriding Other Default Behavior

The model was defined to automatically link all software and services to all server instances. This behavior of
the model can be overridden by changing the Auto Assign characteristic in any of the following instances:

• Server
• Software
• Service

66 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

When the settings are changed, assignments are withdrawn and can be reassigned manually.

Related Information

Description of Modeling Techniques [page 67]

2.1.11.2.1 Description of Modeling Techniques

Related Information

Guided Selling Questionnaire [page 67]
Selecting Servers [page 68]
Adding Software and Services [page 69]
Linking Services, Hardware, and Software [page 70]
Counting and Setting a Line Item Quantity [page 70]

2.1.11.2.1.1 Guided Selling Questionnaire

The root instance of the configuration contains a set of prompts/questions through which you can specify your
business needs. In this case, a single question about user volume (number of users per user type) gathers all
the required information for the model, based on which the model determines the types of appropriate servers.

The user input for this question is supplied to the following fields:

• STD_SELFSERV_USERS

• SCM_SALES_USERS

Since both the fields work in a similar fashion, you can refer to the properties of STD_SELFSERV_USERS for
further information.

Right click on the field and select Find References to find the constraints in which it is used:

• DEMAND_STD_SELF

Here, the field STD_SELFSERV_USERS is used to compute the Demand, that is, the number of CPUs, CPU
speed, and RAM required to support the type and number of users specified.

• USER_MASTER_DATA

Here, the field STD_SELFSERV_USERS is used to create an instance in the configuration to hold data
specific to a user type. In this constraint, you can see the find_or_create command and right click
on the class name USER_MASTER_DATA to find references to it. The GET_USER_MASTER_DATA constraint
pulls data from a variant table and stores it in the USER_MASTER_DATA instance.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 67

Hence, the two constraints work together to retrieve data for a particular user type for which users have
been specified. In other constraints, if user specific data is needed, the User_Master_Data instance is
referenced.

• VISIBLE_INST

Here, the field STD_SELFSERV_USERS is used to control visibility of the two other fields. If no value is
specified, the list of server names is hidden along with the list of pointers to servers that are already added
to the configuration.

2.1.11.2.1.2 Selecting Servers

The field containing the list of servers becomes visible after the number of users is entered in either or both the
Number of Users fields. These lists of values are stored in form of variant tables and can be accessed through
rules. This is discussed in more detail below:

STD_SELF_SERVER_NAME is the selection field for the server name and is restricted by the following
constraints:

• VISIBLE_INST

This constraint is discussed in the chapter Guided Selling Questionnaire.
• SERVER_MASTER_DATA

This constraint uses the same techniques as is used for USER_DATA.
• DMN_SERVER_AND_CPU_SPD

This constraint restricts the domain of both Cpu_Speed and Server_Name values by using a field computed
in constraint DEMAND_STD_SELF based on User_type. Only those CPU speeds whose values are greater
than or equal to the speed required for the user type:

?S.domain ACTL_STD_SELF_CPU_SPD >= ?S.REQ_STD_SELF_CPU_SPD

The constraint further uses the restricted domain to restrict the allowed server name values using a variant
table:

table T_SERVER_DATA

 (SERVER_NAME = ?S.domain STD_SELF_SERVER_NAME
 ,PROCESSOR_SPD = ?S.domain ACTL_STD_SELF_CPU_SPD

)

• COMPUTE_REQ_SERVERS

This constraint computes the number of servers required to meet the memory demand and the required
number of CPUs. It then compares these values and retrieves the number of servers as the greater of these
two values.

• STD_SELF_INST_1 and STD_SELF_INST_N
These constraints work together to create the required number of servers, as discussed above.
The following conditions are considered by the constraints for the calculations:
• STD_SELF_INST_1: If it is true that there is at least 1 (more than 0) server required, then it is also true

that there is a server with instance number = 1.
• STD_SELF_INST_N: If it is true that many servers are required and a server exists with an instance

number < the number required, then it is also true that there is a server with instance number 1 greater
than the existing one.
To illustrate the above, assume 3 servers are required.

68 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

1. STD_SELF_INST_1 will create a server instance with SSC_INSTANCE_NUM = 1.
2. STD_SELF_INST_N executes as its objects pattern is matched.
3. The number of servers required is 3 and a server instance exists with instance_num =1 (which is

< 3).
4. It confirms that there is another server instance with SSC_INSTANCE_NUM one greater than the

one found.
5. This constraint runs for each new server instance created, except for the one whose

instance_num = 3 (only for instances with instance_num < 3).

Related Information

Guided Selling Questionnaire [page 67]

2.1.11.2.1.3 Adding Software and Services

Software is added by selecting values in field SOFTWARE_SELECT and services are added by selecting values
either in INST_SERVICE_SELECT (installation services) or MAINT_SERVICE_SELECT (maintenance services).

Each of these are multivalued fields.

The constraint CREATE_SERVICE_INST adds service instances and will run once for each value in the
multivalued field. Using the values in the field to set a characteristic value on the service instance ensures
that each instance is unique.

constraint CREATE_SERVICE_INST {

 objects:
 ?S is_a (300) FBS_SSC_CA
 condition:
 ?S.SERVICE_SELECT specified
 restrictions:
 find_or_create
 ((300) SERVICE,
 with SERVICE_PROFILE = ?S.SERVICE_SELECT;
 IS_PART_OF_SD_SOFT = ?S;
 SERVICE_IN_SOL_ADT = ?S)
 explanations:
 "CREATE service instance. multiValue will find_create for each value."

 }

 Note
If the SERVICE_PROFILE is not set on the service instance in the find_or_create statement. In this
case, only one service instance would be created and it would be justified in the engine's truth maintenance
system, once for each value in the SERVICE_SELECT field.

A similar technique is used for adding software instances.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 69

2.1.11.2.1.4 Linking Services, Hardware, and Software

While each item added to the solution is a component of the solution, there are other relationships between the
components. These relationships are expressed by using ADT’s that function as pointers to other instances and
are restricted by the following constraints:

• LINK_SW_HW, LINK_HW_SW
• LINK_HW_SV, LINK_SV_HW
• LINK_SV_SW LINK_SW_SV

Each of the “LINK_...” constraints ensure that if item A points to item B, then item B also points back to
item A. For example, LINK_SW_HW ensures that if a software is run on a server, then it is also true that the
server runs that software.

• AUTO_ASSIGN_SW and AUTO_ASSIGN_SV
These constraints use a switch (AUTO_ASSIGN_TXT) to determine whether the system should
automatically establish these relationships, that is, assume that all software runs on all hardware, all
software and hardware are ‘serviced by’ all services in the configuration, or whether no such relationships
are assumed. If no relationships are assumed, then the user may assign the relationships manually by
making selections in the ADT characteristic fields.

2.1.11.2.1.5 Counting and Setting a Line Item Quantity

The model includes a reference characteristic that allows the model to reference information that exists on
the sales document, such as customer number, country, sales organization, etc. and for the model to set
values of fields on the sales document, such as line item quantity. The reference characteristic in this model,
STOP_MENGE, is used to set the line item quantity.

characteristic STPO_MENGE {

 names
 EN 'Component quantity',
 DE 'Komponentenmenge'
 numericLength 13 decimalPlaces 3
 negativeValues
 reference table 'STPO' field 'MENGE'

 }

To illustrate this, assume that a software’s quantity depends on the number of things it runs on.

So, if 1 server runs the software, item quantity is 1; but if it runs on 10 servers, then the quantity is 10. A similar
logic applies to service items.

For more information about how the number of software licenses is counted, see rule AGGR_SW_LIC
and constraint SET_SOFTWARE_STPO_MENGE to understand how that value is assigned to the reference
characteristic.

70 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

2.2 Setup of Solution Modeling Environment

Use

You use this process to define a solution model in the Eclipse-based solution modeling environment, test it, and
transport it to a target system for use in the sales ordering process.

You perform these steps in Eclipse, using the SAP Modeling perspective. To change to a different perspective,
choose Window Open Perspective Other...

 Note
• During SME installation, the system on which Eclipse is running must have internet connectivity.

Eclipse uses the default internet connectivity configured by proxy settings on OS level (for example, in
Windows Internet Options Connections LAN Settings or any other OS connectivity settings).

If no internet connectivity is configured, you must configure the proxy settings in Eclipse under
Windows Preferences General Network Connection , as part of the standard Eclipse set up

procedure.
• If you are working as part of a team and are using a source code management system, you must first

check out a file for editing, and then check it in after completing editing.
For more information, see chapter Collaboration Between Modelers.

Prerequisites

• You have configured the connection to the target system.
• You have imported the configuration master data (see Importing Configuration Master Data in the Solution

Modeling Environment [page 100]).
• You have maintained your model templates (see Maintaining Modeling Templates [page 108]).

Process

1. You create or open the project for the solution model (see Creating Model Projects [page 74]).
2. You define the model master data, including characteristics and classes (see Defining Characteristics

[page 24] and Defining Classes [page 15]).
3. You define materials (see Defining Materials [page 20]).
4. You define variant tables (see Defining Variant Tables [page 42]).
5. You define dynamic bills of material (BOMs) (see Defining Dynamic Bills of Material [page 63]).
6. You define dependencies and dependency nets (see Defining Solution Dependencies [page 44]).
7. You define a knowledge base (see Defining Knowledge Bases [page 10]).
8. You test the model locally (see Testing Models Locally [page 90]).
9. You export the model to the target system (See Exporting a Knowledge Base Runtime Version [page 82]).

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 71

Result

Your solution model is available for solution configuration in the target system.

Related Information

Collaboration Between Modelers [page 109]

2.2.1 SAP Modeling Perspective

The SAP Modeling perspective features a number of views that allow you to represent your solution model in
different ways:

Component Description

Project Explorer The Project Explorer view allows you to explore the project
as it exists in the file system, that is, as a set of folders and
files. New files can be added, changed, or deleted just as
they are in Windows Explorer. Updates here are also made in
the local workspace. Adding a folder here, for example, adds
a folder on the local disk in your workplace and deleting files
removes them from the local disk.

The operations available are shown in the menus or by right-
clicking an object (context menu) in the Project Explorer.

All operations, with the exception of those in the SAP
Modeling menu, are standard Eclipse functions. For more
information, see the Eclipse documentation.

Model Explorer The Model Explorer view allows you to explore the project as
it is seen by SAP Solution Sales Configuration, that is, as a
set of objects - characteristics, classes, constraints, and so
on.

 Note
Objects can be opened and edited from this view, but
not added or deleted.

72 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Component Description

Model Graph The Model Graph view shows the relationship between
classes or dependencies in a graphical view. It is useful for
understanding the relationships among classes and materi­
als, or between dependencies. To view the class hierarchy,
use the donut icon; to view the materials, click the hierarchy
icon; to view the dependency structure, click the cube icon.

When you set Link to Editor, the editor repositions to the
definition of the object selected in the graph and the graph
highlights the object based on the object definition being
edited.

The scope of objects shown in the graph can be controlled in
two ways. First, in the configuration menu (which is accessi­
ble using the upside down triangle icon), choose Workspace
to see objects from all open projects in your workspace, or
choose Selected Project to see only objects in the project
currently selected. You can also choose Selected Project
(Incl. References) to see objects in the selected project and
all of its open reference projects. The second way to control
the scope of display in the Model Graph view is to right-click
any of the displayed objects and set a filter. Setting a filter
limits the view to this object and any subordinate objects.

 Note
Objects can be opened and edited from this view, but
not added or deleted. If you open the file in which an
object is defined and set Link to Editor, the view will
reposition to the definition of the object selected in the
graph, and the graph will reposition (highlight) to the
object based on the object definition being edited.

Problems The Problems view shows messages from invoked functions,
such as Export Knowledge Base or Validate Model. Double-
click a message to go to the error location.

Search The Search view shows the results of a search. You can also
initiate a search from the Search view or the Search menu.

The yellow up and down arrows locate the next or previous
match; the plus (+) and minus (−) icons expand or collapse
all entries in the results tree. The refresh icon reruns the
current search, and the search history icon shows a list of
previous searches, which can be selected and rerun.

The downward triangle icon can be used to change the view
from a tree to a list, set a filter, and update general search
preferences through a link.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 73

Component Description

Outline The Outline view works in tandem with the editor. It shows all
the objects defined within the active file in the editor. You can
also sort the object definitions in this view.

2.2.1.1 Creating Model Projects

Use

You use this procedure to create a new SAP Solution Sales Configuration model project in the Eclipse-based
solution modeling environment.

Procedure

 Note
Creating an empty model file is a quick way to start a new object definition. You can then use the context
help to complete the definition.

1. Choose File New SAP CPQ for Solution Sales Configuration Model Project .
2. Enter the project name and location.
3. Choose Finish.

The new project is displayed in the Project Explorer.

2.2.1.1.1 Creating a Solution Sales Configuration Project

You use this procedure to create a solution configuration model from an example in the Eclipse-based solution
modeling environment

Creating an SSC Model Project

1. Choose File New Other
2. In the Select a Wizard window, expand the SAP CPQ for Solution Sales Configuration node and select SAP

CPQ for Solution Sales Configuration Model Project
3. Choose Next
4. In the next window, enter the project name and a location for the project

74 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

5. Choose Finish

Result
You can see the new project in the Project Explorer.

Creating an Example SSC Model Project

1. Choose File New Other
2. In the Select a wizard window, select Examples

From the options, select the sample project you want to include in the workspace and click on Next
3. Click on Finish

Result
You can see the sample project in the Project Explorer.

2.2.1.1.2 Importing a Project into Your Workspace

Use

As a modeler, you can work with several workspaces, each with its own logically distinct set of projects. In some
cases, you might need to copy a project from one workspace to another, or you might want to work on a model
created by another colleague. You can do this by adding the project to your workspace.

Procedure

1. Right-click the white space of the Project Explorer view.
2. Choose Import.
3. In the Import window, open the General folder and choose Existing Projects into Workspace.
4. Choose Next.
5. Decide whether you want to import the project from the folder structure on your file system or from an

archive file.

Importing from the File System

1. Choose the Select Root Directory: radio button.
2. Select the root directory containing the project(s) using the Browse... pushbutton.
3. Select the project to be imported.

 Note
Projects that are grayed out cannot be selected because they already exist in your workspace.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 75

4. To make a copy of this project and copy it to your workspace, choose Copy Projects into Workspace. If you
want to work on the files in the current location, do not choose this option.

5. Choose Finish.
The project then appears in the Project Explorer.

Importing from an Archive File

1. Choose the Select Archive File: radio button and use the Browse... pushbutton to select the archive file
containing the project.

2. Select the project to be imported. The Copy Projects into Workspace option is selected by default and is
required.

 Note
Projects that are grayed out cannot be selected because they already exist in your workspace.

3. Choose Finish.
The project then appears in the Project Explorer.

2.2.1.2 Adding Reference Projects to an Existing Project

Use

It's common practice (and even a best practice) to create one or more projects containing frequently used
routines that can be reused in other model projects. To reuse content from another project, you designate
the project as a “reference project”. The solution modeling environment then treats the content as if it were
included in a single project.

 Note
If any one of the following objects:

• Class
• Material
• Characteristic
• Constraint
• Rule
• Variant table
• Constraint net
• Rule net
• Pfunction

is defined in more than one project, it is flagged as a duplicate error. Reference projects allow you to reuse
objects without having to define them more than once.

76 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Procedure

You can view reference projects using the following procedure:

1. In the Import window, open the General folder and choose File System.
Click on Next.

2. Specify the folder(s) and file(s) to be imported, using the Browse button.
Click on Finish.

2.2.1.3 Exporting a Model Project

Context

You use this procedure to export a solution model project so that you can share it with your colleagues.

Procedure

1. Right-click the project folder in the Project Explorer view.
2. Choose Export.
3. In the Export window, open the General folder and choose Archive File.
4. Choose Next.
5. Choose the Select All pushbutton and specify the location and name of the archive file to be created.
6. Under Options, choose the options for the file format, directory structure, and compression.
7. Choose Finish.

The project is then exported to the file you specified.

2.2.1.4 Creating a Launch Configuration

Context

You use this procedure to create a launch configuration from either the Java or Debug perspective.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 77

Procedure

1. Choose Open Perspective Java Perspective .

2. Choose Run Run Configurations... or Run Debug Configurations .
3. Expand the Eclipse Application node and enter a name for the configuration.

Click on Apply and then Run.

Results

The new configuration is ready to be launched.

2.2.1.5 Defining User-Defined Functions

Use

You use this procedure to create user-defined functions in the Eclipse-based solution modeling environment.

Procedure

1. Choose File New Empty Model File
The system displays a dialog box, prompting you to select a folder and enter a file name for the new
function.

2. Enter the required data.
3. Choose Finish.

An empty file is displayed in the text editor.
4. Press CTRL + SPACEBAR and then double-click function.
5. Enter the required data and save the new function.

 Note
The compiled Java class must be added to the class path of the EJB-IPC bundles
(com.sap.custdev.projects.fbs.slc.ejb-ipc). This can be done using a fragment or the
functionality Eclipse-RegisterBuddy: com.sap.custdev.projects.fbs.slc.ejb-ipc.

The new fragment or plug-in with the function can be handed over to the Eclipse environment itself
(MyEclipse\plugins or MyEclipse\dropins), or you can start the test UI in Eclipse in a runtime configuration,
which contains all the necessary bundles.

For more information about this, see SAP Note 1701098 (Documentation Update for Implementation of
Variant Functions).

78 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/1701098

Example

function FUNCTION {

name "Name"

characteristics

CSTIC1 primary,

CSTIC2,

}

Related Information

Declarative Function [page 56]
Pfunction [page 58]

2.2.1.6 Exporting a Project

The Solution Modeling Environment allows you to export knowledge bases to different databases as well as a
file to the system.

To make this work, you would need to setup different database connections and the required drivers for the
database to which you are exporting the project, to allow successful exports.

For connections to local databases, the following factors are considered:

• MsSQL
• MySQL
• HANA
• Oracle
• MaxDB

Apart from the local databases, knowledge bases can also be exported to the S/4HANA systems.

2.2.1.6.1 Setup of Local Database Connection

Context

The SME can create connections to the following local databases:

• MsSQL
• MySQL

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 79

• HANA
• Oracle
• SAP MaxDB

You can setup a connection to the local database using the procedure below:

Procedure

1. Go to Eclipse Windows Preferences Expand SAP CPQ for Solution Sales Connections .

2. Select the Add Name .

Select the relevant radio button.
3. Select the Database Type.
4. Enter the Server Name and Database Name.
5. Enter the port and client, if this information is not populated automatically.
6. Enter the login name for the database.
7. You can add the drivers using the procedure below:

a. Go to Eclipse Windows Preferences Expand SAP CPQ for Solution Sales .
b. Add the driver pertaining to the database connection that is being added.

Click on OK.

Example

You can further refer to the example below for more information:

1. Select Microsoft SQL Server as the Database Type.
2. Set localhost as the Server.
3. Enter MsSQL Database as the Database Name.

This value is user defined.
4. The port and client should be auto-populated as 1433 and 000, respectively.
5. Enter sa as the login name.

This value is provided during the DB creation process.
6. Add Microsoft SQL Server JDBC4 Driver in the Driver section.

Click on OK.

80 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

2.2.1.6.2 Setup of CRM Connection

Context

You can use the following procedure to export a project to CRM:

Procedure

1. Go to Eclipse Windows Preferences Expand SAP CPQ for Solution Sales Connections .
2. Select the CRM radio button to add a name for the project.
3. The name will be user defined and relevant for the CRM connection.
4. Add the CRM System Number into the consideration for the connection.
5. Under the Application Server, enter the server details from the properties section of the CRM system.
6. Enter the Client number for the system.
7. Enter the login name defined above to connect to the CRM system.
8. You can refer to the example below for more information:

a. Application Name = A valid name
b. System Number = 11
c. Application Server = Server details from the properties section
d. Client = 700
e. Login Name = UNIT_TEST

 Note
No drivers are required for this connection.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 81

2.2.1.6.3 Setup of ECC and SAP S/4HANA Connection

Context

You can export a project using the following procedure:

Procedure

1. Go to Eclipse Windows Preferences Expand SAP CPQ for Solution Sales Connections .
2. Select the ECC radio button to enter the relevant name.
3. Add a Name to the S/4HANA connection.

This name is user defined.
4. Add the System Number of the S/4HANA system in the consideration for the connection.
5. Under the Application Server, enter the server details from the properties of the S/4HANA system.
6. Enter the Client number of the system.
7. Enter the login name to connect to the S/4HANA system.
8. You can refer to the example below for further information:

a. Application name = A valid name
b. System number = 11
c. Application server = Server details from the properties section
d. Client = 700
e. Login name = UNIT_TEST

 Note
No drivers are required for this connection.

2.2.1.6.4 Exporting a Knowledge Base to Database

Use

You use this procedure to export a knowledge base and create a runtime version from it.

You can export a knowledge base from the File menu, from the Project Explorer view, or from the Model Explorer
view.

82 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Procedure

From the File Menu

1. Choose File Export SAP CPQ for Solution Sales Configuration Export Knowledge Base
2. Select the knowledge base you want to export
3. Choose Next
4. Select the connection for the target database
5. Optionally, you can also do the following:

• Deactivate the validation option in the Export Knowledge Bases (multiple KB export) dialog

 Caution
If you decide to deactivate the validation, the status of the data in the back end cannot be
guaranteed after the export.

• Activate the Include local variant table content during export option
6. Enter the password and choose Finish.

From the Project Explorer View

1. Right-click anywhere in the Project Explorer and choose Export SAP CPQ for Solution Sales
Configuration Export Knowledge Base .

2. Select the knowledge base you want to export.
3. Optional in the Export Knowledge Bases dialog (multiple kb export dialog): Deactivate the validation option.

 Caution
If you decide to deactivate the validation, the status of the data in the back end cannot be guaranteed
after the export.

4. Choose Next.
5. Select the connection for the target database.
6. Enter the password.
7. Optional: Activate the Include local variant table content during export option.
8. Choose Finish.

From the Model Explorer View

1. Right-click the knowledge base definition and choose Export Knowledge Base.
2. Select the connection for the target database.
3. Enter the password and choose Finish.

 Note
Every time you export a knowledge base, the system asks you whether you want to start a test session in
the testing perspective.

 Caution
If a validation error is detected in any of the dependent .ssc files when you export a knowledge base (for
example, due to unrelated class, cstic, material, or variant tables present in that file, an error will be
thrown that prevents you from exporting the knowledge base.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 83

2.2.1.6.5 Exporting a Knowledge Base to a File

Follow this process to export a knowledge base from the workspace to a local folder.

Context

This procedure exports all the .xml files to the local folder of the knowledge base. You can export a knowledge
base from the File menu either from the Project Explorer or the Model Explorer view.

Procedure

1. Setup the file connection.

a. Go to Eclipse Windows Preferences Expand SAP CPQ for Solution Sales Connections .
b. Select Add Name.
c. Select the relevant radio button for File.
d. Provide the path to the selected local folder.
e. Click on OK.

2. Export the knowledge base.

• Exporting from the file menu

1. Choose File Export SAP CPQ for Solution Sales Configuration Export Knowledge Base .
2. Select the knowledge base you want to export.
3. Optionally, you can also deactivate the option for validation in the Export Knowledge Bases dialog

for multiple knowledge base export.
4. Choose Next.
5. Select the file connection created for the export.
6. After the export is completed, the local folder should contain all the relevant .xml files of the

project.
• Exporting the project explorer view

1. Right click anywhere in the project explorer and choose Export SAP CPQ for Solution Sales
Configuration Export Knowledge Base .

2. Select the knowledge base you want to export.
3. Optionally, you can also deactivate the option for validation in the Export Knowledge Bases dialog

for multiple knowledge base export.
4. Choose Next.
5. Select the file connection created for export.
6. After the export is completed, the local folder should contain all the relevant .xml files of the

project.
• Exporting form the model explorer view

1. Right click on the knowledge base definition and choose Export knowledge Base.
2. Select the file connection created for the export.

84 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

3. After the export is completed, the local folder should contain all the relevant .xml files of the
project.

2.2.1.7 KB Admin Tool Support

2.2.1.7.1 Uploading Knowledge Bases

You use this procedure to upload a knowledge base into the local database. On the modeling user interface
(UI), you can upload the knowledge base using the Upload Knowledge Base menu. You can upload the
knowledge base as either flat files or xml files.

Procedure

1. Go to SAP Modeling Upload Knowledge Base .
2. Choose the type of file that you want to upload.

Option Description

Flat file Choose Flat File Upload and browse for the knowledge
base flat-file directory.

XML file Choose Xml File Upload and browse for the knowledge
base XML-file directory.

3. Choose Next.
4. Choose the connection and enter the required details.
5. Choose Finish.

More Information

While downloading a runtime version via CU36 utility, some text formatting may be lost and replaced by hashes.

For more information about handling this issue, refer to SAP Note 2339258 (Japanese and Chinese texts are
lost in runtime version.).

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 85

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/2339258

2.2.1.7.2 Deleting Knowledge Bases

You can use the Delete Knowledge Base option in the Solution Modeling Environment to delete knowledge
bases from supported databases.

Procedure

1. Go to SAP Modeling Delete Knowledge Base .
2. Select the relevant connection details and click Next.
3. Select the knowledge bases that you want to delete and click Finish.
4. Click OK to continue.

Results

The selected knowledge bases are deleted from the database and a confirmation message is displayed.

2.2.1.7.3 Uploading External Variant Tables

Context

You use this procedure to upload external variant tables to local databases that can be downloaded from the
S/4HANA system.

 Note
Many models require the support of these external variant tables.

Procedure

1. Choose File Upload External Variant Tables .
2. Browse the External Variant Table directory.
3. Choose Next.
4. Enter the connection details of the database to which the variant tables are to be uploaded.
5. Choose Finish.

86 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

2.2.2 SAP Testing Perspective

The SAP Testing perspective opens automatically when you open a knowledge base. This perspective has its
own set of associated views and editors. These include the Configuration Editor, Characteristics view, Non-Part
Instances view, Properties view, and a number of debug/analysis views.

Component Description

Configuration Editor Shows the content of the configuration session in a tree
structure. The highest-level node shows the database name,
knowledge base name, profile, and version of the knowledge
base that was opened to start this configuration session.
Directly under the knowledge base node is the configuration
node, which shows the name of the configuration (same as
the knowledge base name).

 Note
Due to knowledge base orchestration (KBO), multiple
configurations driven by their own knowledge bases can
be active at the same time. These are 'orchestrated' to
work together as one configuration.

Below the configuration node are the class and material
instances, under which are the characteristics with their
assigned values. A green square indicates that all the re­
quired values have been assigned to the instance, that is,
the instance is complete. A yellow triangle indicates that
the instance is incomplete, that is, a required characteristic
has not been assigned a value. A red circle indicates a con­
flict or inconsistent configuration. For help with debugging
a conflict, open the Conflicts view and click any item in the
configuration flagged with a red circle. Information about the
conflict will be presented in the conflicts view.

You can manipulate the configuration content in this editor
by right-clicking any item or node. All of the permitted ac­
tions are then available for selection. To add an instance to
the configuration, use the Non-Part Instance view.

Characteristics View The Characteristics view lists the visible characteristics of
the instance selected in the Configuration Editor. Values can
be assigned to any characteristic, unless the model has
marked it as 'no input' or a value has already been set by
a constraint. Required characteristics are marked with a yel­
low triangle, even after a value has been assigned. Click the
inverted triangle on the view header to view the menu. You
can use the menu to show/hide invisible characteristics and
to display language-dependent names and technical names.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 87

Component Description

Non-Part Instances View The Non-Part Instances view is used to manually add instan­
ces of either classes or materials to the configuration. When
you double-click any item in the Non-Part Instances view,
it is added as an instance of that type in the form of a 'free-
standing' independent instance. It does not have a 'part of'
relation to the root instance, unless a constraint has been
added to the model to establish a relationship. It is called a
'non-part instance' because it is not part of anything else.

 Note
You can add components to a material at a given BOM
position by right-clicking the material in the Configura-
tion Editor. If a BOM has been defined for the material,
the Add Component option is available for selection. If
selected, a 'part instance' is added as a component of
that material. Non-part instances cannot be added in
this way. In this case, they must be added using the
Non-Part Instances view.

Properties View The Properties view shows information about all the proper­
ties of the current item (that is, the selected item in the
active view). This can be an instance in the Configuration
Editor or Characteristics view, or a constraint in the Justifi-
cations view. Any item you select in a view has properties,
which are displayed in this view.

Debug and Analysis Views

These views are presented as a set across the bottom of the SAP Testing Perspective.

88 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Component Description

Test Runner Tracks all actions and records them in a script file that can
be saved and re-executed. The run pushbutton runs an im­
ported script in its entirety. To run only to a particular step,
select the last line to be executed, right-click, and choose
Run to Line.

The export pushbutton exports the current test runner con­
tent to a file. The system prompts you to enter the directory
and file name.

The import pushbutton imports a test script. The system
prompts you to enter the directory and file name. The file
must have the .performer suffix.

The reset pushbutton resets the configuration session to its
initial state.

To add expected results to the script, select an object in
the configuration editor, right-click and select one of the
Expect… options.

When replaying a script containing expected content, the
SME compares the current content of the configuration with
the recorded expected content. All matches are marked
green, any unexpected content is marked red, and an ex­
planation of the delta is provided.

Conflicts View When two contradictory facts are detected, the engine raises
a conflict. The Conflicts view lists the conflicts associated
with the instance currently selected in the Configuration Edi­
tor. It also provides guidance for resolving the conflict in the
form of "conflict assumptions".

Profiling View Profiling is a function of the configuration engine that tracks
the execution of dependencies and records the number of
times each dependency is executed and the total time con­
sumed.

Profiling must be activated to start recording statistics and
displays results when it is deactivated.

To start or stop profiling, click the down arrow pushbutton in
the Profiling view toolbar and choose Start/Stop Profiling.

Justifications View Each instance and characteristic value is justified by a set
of facts asserted by the user or by dependencies and is
tracked by the Truth Maintenance System. The Justifications
view shows all the facts and the dependencies that asserted
them. Together, these facts and dependencies justify the
item that is currently selected.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 89

Component Description

Trace View The Trace view provides a detailed account of all engine ac­
tivities. For more information, see Tracing [page 94].

2.2.2.1 Testing Models Locally

Context

You use this procedure to test your model prior to exporting it to the target system for use in the sales ordering
process. In the test user interface (UI) and the test configuration engine, you can configure the solution to
ensure that the model is performing as expected. You can either configure the solution manually or use a
recorded test script. You can also measure the performance of constraints and dependencies.

Procedure

1. Choose File Open Knowledge Base...
2. Choose the Connection and enter the required details.
3. Choose Next.
4. Choose a knowledge base and a profile.
5. Choose Next.

Results

The system opens the test UI. As you configure the solution in the test UI, the system displays the information
on the following tab pages:

• Test Runner
The system records all of the actions you perform in the test UI and displays the resulting script on the
Recorded Script tab page. The script can be saved to a file. You can open a saved script on the Executable
Script tab page and then run it. You can run the whole script, or you can run the script up to a particular
line.
If you run a saved script and then continue to configure the solution, the system adds your actions to the
script.

• Conflicts
The system displays the model conflicts that occur while testing the solution model.

• Profiling

90 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

The system displays all of the constraints executed during the configuration session. For each constraint,
the system lists the number of calls and the execution time in milliseconds. You can select a column header
to sort the data by that column.

• Justifications
The system displays the justifications for configuration rules.

• Trace
The system displays the steps taken during the configuration session.

• Non-Part Instances
The view displays all of the non-part instances types. You can create a non-part instance by double-clicking
a type and then add it to your configuration for testing.

 Note
After testing your model locally, you can test the knowledge base in the sales transactions within your
back-end SAP S/4HANA system. To do so, you must export the knowledge base to a S/4HANA database
in the same way as you export it to the local database. In this case, however, you choose the S/4HANA
connection instead of the local database connection. For more information, see Exporting a Knowledge
Base Runtime Version [page 82].

2.2.2.1.1 Test Runner

The “Test Runner” view allows you to run the test scripts partially or completely. Furthermore, it provides
actions for storing and loading test scripts. When a test script is run, the configuration tree is changed based
on the actions in the test script. For expectations, the configuration tree is inspected. If the expectation does
not match the actual state of the configuration tree, the deviation is reported in the “Test Runner” view. The
Loaded Files tab displays the loaded performer scripts.

The test (performer) script is used to record all user commands as test steps with the purpose of storing and
executing them at a later time. In the Solution Modeling Environment, you can record “expectations”. This
allows you to inspect a model after executing user commands and verify that the expectations still hold, for
example, after a model has been changed. Therefore, the test scripts and test-runner UI now serve as a simple
tool for automated model tests.

2.2.2.1.1.1 Saving Test Scripts (Performer)

You use this procedure to save an SAP Solution Sales Configuration test script in the Eclipse-based Solution
Modeling Environment.

Procedure

1. Open the knowledge base.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 91

2. Modify the model configuration.
3. Choose Save Script in the Test Runner view.
4. Enter the file name and save.

The test script is saved in the specified location on the file system, in the .performer format.

Next Steps

After you have saved the test script, you can load, run, and reset the script.

2.2.2.1.1.2 Loading Test Scripts (Performer)

You use this procedure to load an SAP Solution Sales Configuration test script (performer files) in the Eclipse-
based Solution Modeling Environment.

Context

You can use this script to test the configuration for the model and can load a single or multiple test scripts to
set the configuration.

Procedure

1. Choose Load Script in the Test Runner view.
2. Select the test-script files and choose Open.

 Note
If multiple performer scripts are loaded, they must be of the same KB RTV.

Results

The performer test scripts are displayed on the Loaded Files tab.

92 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

2.2.2.1.1.3 Running Test Scripts (Performer)

You use this procedure to run an SAP Solution Sales Configuration test script in the Eclipse-based Solution
Modeling Environment.

Procedure

1. Choose Run Script in the Test Runner view.
2. Double-click on the test script on the Loaded Files tab for details.

The Executable Script tab opens with the test script details.

Results

The performer test scripts run with the status SUCCESS or FAILURE.

2.2.2.1.1.4 Resetting Test Scripts (Performer)

You use this procedure to reset an SAP Solution Sales Configuration test script in the Eclipse-based Solution
Modeling Environment.

Context

The target configuration is set when a test script for a model is executed. You can choose to reset either one or
multiple configuration scripts, as they are loaded in the test runner.

Procedure

1. Open the Test Runner view.
2. Choose either Reset Configuration (to reset a single configuration script) or Reset All Configurations (to

reset multiple configuration scripts).

Results

The performer test script is reset to Not Run.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 93

2.2.2.1.1.5 Deleting Test Scripts (Performer)

You use this procedure to delete SAP Solution Sales Configuration test scripts in the Eclipse-based Solution
Modeling Environment.

Procedure

1. Select the test script performer on the Loaded Files tab.
2. Choose Delete File in the Test Runner view.

Results

The performer test script is deleted from the Loaded Files tab.

2.2.2.1.2 Problem Filter on Executable Script Tab

You use this procedure to filter actions in the Eclipse-based solution modeling environment. You can filter the
actions based on the problem explanation to easily find out the failure actions encountered during the test
script run.

Procedure

1. Open the Executable Script tab.
2. Enter text in the Problems Filter based on the explanation of the problem.

 Note
Multiple performer scripts loaded must be of the same KB RTV.

2.2.2.2 Tracing and Logging

Use

The tracing function enables you to record selected engine activities.

94 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Prerequisites

• You have activated the trace by choosing the View Menu pushbutton in the Trace view and then choosing
Configure. In the trace configuration window, choose Enable Tracing.

• You have selected the types of activity to be traced.

Types of Traceable Activity

Type Description Comments

DDB (Dynamic database) The DDB is the engine-internal storage
for facts maintained by the inference
engine. Trace output of this type refers
to changes in the DDB.

Tracks all assertion and retraction of
facts in the dynamic database

PMS (Pattern matching system) The PMS is responsible for matching
patterns in a dependency against facts
in the DDB. Dependencies are evalu­
ated against the provided matches. In
other words, the PMS is responsible for
identifying the dependencies to be exe­
cuted and for providing them with the
objects (such as instances and charac­
teristics) that are required for the de­
pendency evaluation. Trace output of
this type refers to activities inside the
PMS.

Tracks all patterns in the configuration
that are detected by the pattern match­
ing system

CSTR (Constraint) Trace output of this type refers to con­
straint evaluations.

Records the execution of any constraint

RULE Trace output of this type refers to rule
evaluations.

Records the execution of any rule

SCND (Selection condition) Trace output of this type refers to the
evaluation of selection conditions.

Traces the execution of any selection
condition

PCND (Precondition) Trace output of this type refers to the
evaluation of preconditions.

Traces the execution of any precondi­
tions

PROC (Procedure) Trace output of this type refers to the
evaluation of procedures.

Traces the execution of any procedures

FUNC (User-defined functions) Trace output of this type refers to the
evaluation of user-defined functions.

Records the execution of user-defined
functions

TABL (Variant tables) Trace output of this type refers to the
access of variant tables.

Tracks interaction with a variant table

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 95

The trace result can be displayed in the configuration dialog. Each row is structured as follows:

[EngineTrace]:[<Instance Number>- <Knowledge Base Name>] <Sequential Number for

Each Trace Row> <Related Engine Activity Type> <Message Number of the Text

Displayed for the Engine Activity Performed> <Engine Activity Performed>

 Note
The message number of the text displayed for the engine activity performed corresponds to the numbers in
ABAP message class 34.

 Example
[EngineTrace]:[1-HSS_SOLUTION_KB] 1 DDB 204 New fact "sf($1, SCM_SALES_USERS,

VAL, 150.0)" inserted by "User"

Many expressions relating to the engine activity performed are self-explanatory. However, expressions about
facts need further explanation.

A fact represents an elementary assertion about the state of the configuration. For example, if the user sets a
characteristic COLOR to the value BLUE, a specific fact is created in the engine. The following types of facts can
occur in the trace:

Fact Printed in Trace (Examples) Explanation

sf($1, COLOR, VAL, BLUE) This is a simple fact (sf). For the instance $1, this fact sets
the value of the characteristic COLOR to BLUE.

VAL refers to a specific facet of a characteristic. The availa­
ble facets are described below.

to($1, product: SAP_SYS) This is a type-of (to) fact which is used for classification. The
instance $1 is of the product type SAP_SYS

rd($1, COLOR, BLUE, RED) This fact is about a restrictable domain (rd).

For the instance $1, this fact sets the domain of values for
the characteristic COLOR to the values BLUE and RED.

Facets of Characteristics

The tracing output of a simple fact (sf) always describes a certain facet of a characteristic. A facet is a property
of a characteristic. The following facets exist:

• VAL (value facet): Value of a characteristic
• DOM (domain facet): Domain of a characteristic
• REQ (required facet): Specifies whether a characteristic is required
• INV_P (invisible facet): Specifies the visibility of a characteristic
• NOINP_P (no input facet): Specifies whether a characteristic is read-only

96 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

2.2.2.3 Import/Export Configuration

You can test your configuration on the test UI of the Solution Modeling Environment. In this way, you can mimic
the restore scenario that is available on the user interface of SAP Solution Sales Configuration.

This feature in the Solution Modeling Environment enables you to perform the following tasks:

• Export configuration from the SME to XML
• Import configuration XML that has been exported from the SME
• Import configuration XML that has been exported from the user interface of SAP Solution Sales

Configuration
• After the import, edit the configuration and export the updated configuration to XML

Export Configuration

On the SAP Testing user interface, you can export knowledge base configuration as a *.cfg file.

1. Open the knowledge base and complete configuration on the SAP Testing UI.

2. Right-click the tree view and go to Configuration Export .
3. Enter a file name for your configuration.

Restore Configuration

In the Solution Modeling Environment, you can restore the configuration XML as follows:

1. Go to File Restore Configuration .

 Note
You must create a connection to the local database if a connection doesn't already exist.

2. Enter the database password and click Next to open the wizard.
3. Click Browse to select a configuration file. You can export files that have the formats *.cfg or *.xml.
4. Select the KB reference date and click Finish to see the restored configuration on the SAP Testing UI.

 Note
After the restore, you can edit the configuration on the SAP Testing UI. However, you cannot save a
performer script for this updated configuration. (The Save Script button has been disabled in Test Runner).

2.2.2.4 DDB, PMS, and TMS Dumps

The Solution Modeling Environment provides dumps to support the user in analyzing modeling problems.

The following dumps are provided by the SME to help users analyze modeling problems:

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 97

• DDB (dynamic database) Dump
The DDB is the internal storage for all facts maintained by the inference engine. The trace output for this
dump refers to changes in the DDB.

• PMS (pattern matching system) Dump
The PMS is responsible for matching patterns in a dependency against facts in the DDB. These
dependencies are then evaluated against the provided matches. In other words, the PMS is responsible
for identifying the dependencies to be executed and for providing them with the objects (such as, instances
and characteristics) required for the dependency evaluation.

• TMS (truth maintenance system) Dump
The TMS determines the status of facts given the known set of justifications. Any status changes are
communicated to the TMS client. Every time a new justification is communicated to the TMS, the status
of all facts and triggers is updated (incrementally). The TMS dump also performs an atms-label calculation
for all facts and triggers, on demand.

2.2.2.4.1 Exporting DDB Dumps

You use this procedure to export a DDB dump from the Eclipse-based Solution Modeling Environment.

Procedure

1. Right-click the knowledge base in the Model view and select Configuration DDB Dump .
2. Choose the location in which you want to save the file and enter a file name.

98 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

The DDB dump is exported as shown below:

DDB Dump

2.2.2.4.2 Exporting PMS Dumps

You use this procedure to export a PMS dump from the Eclipse-based Solution Modeling Environment.

Procedure

1. Right-click the knowledge base in the Model view and choose Configuration PMS Dump .
2. Choose a location in which to save the file and enter a file name.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 99

2.2.2.4.3 Exporting TMS Dumps

You use this procedure to export a TMS dump from the Eclipse-based Solution Modeling Environment.

Procedure

1. Right-click the knowledge base in the Model view and choose Configuration TMS Dump .
2. Choose a location in which to save the file and enter a file name.

2.2.2.5 Importing a Model in Local Database

Use this process to import a knowledge base from a SAP S/4HANA system using the data loader.

Use

You use this procedure to import the interface characteristics from compatible-mode knowledge bases in the
source SAP S/4HANA system to the solution modeling environment database. You perform these steps in the
Eclipse-based solution modeling environment.

Prerequisites

You have setup the data loader connection in the Solution Model Environment.

Procedure

1. Choose File Import... .
The system displays a dialog box prompting you to choose an import source.

2. Choose SAP CPQ for Solution Sales Configuration Data Loader .
3. Choose Next.

The system displays a dialog box prompting you to choose a Data Loader configuration from a list of the
configured connections.

4. Select the configuration for the system and choose Next.
5. Enter the required passwords and choose Finish.

100 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

 Note
Compatible mode knowledge bases imported from the SAP S/4HANA system can be tested using the test
user interface; however they cannot be changed in the solution modeling environment.

For more information, see Data Loader in the Solution Modeling Environment.

More Information

Related Information

Data Loader in the Solution Modeling Environment [page 105]

2.2.2.6 Importing a Model into a File

Prerequisites

A java project needs to be created, under which the relevant .ssc file is created.

Context

This procedure is used to import a knowledge base present in a back-end database (S/4HANA, local database)
into a file, in an existing java project. The imported file contains the following details:

• Material definition
• Class definition
• Characteristic definition
• Bill of materials definition

as per the selected KB.

Procedure

1. In the solution modeling environment, choose File Import SAP CPQ for Solution Sales Configuration
Import Model to File .

Choose Next.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 101

2. Choose one of the existing connection types: SAP S/4HANA, or the local database.
3. Enter the Client, User, and Password.

Choose Next.
4. Select the knowledge base runtime version for the product .

You can sort the results by clicking on any one of the column headers.
5. Select the master data definitions you want to import.

Choose Include Dependent Bill of Materials if you want to import the material definitions with the boms
parameter. If you do not choose this option, the material definition will not contain a reference to a BOM.

If you choose Include Dependent Material Classifications, the imported material definitions will include the
classes parameter. If you do not choose this option, the material definition will not contain a reference to
classes.

 Note
These options affect only the material definition and not the import of bill of material or class
definitions

Choose Next.
6. Specify the folder and file names to be created, to store the definitions of the imported items.

 Note
Do not select any advanced features.

Choose Finish.

2.2.2.7 Importing a Model into a New Project

Context

This procedure is used to import a knowledge base present in a backend database (S/4HANA, local
database) into a Java project. The project then created will have individual folders of bills-of-materials,
classes, characteristic and materials. Each folder shall have the relevant material definition, class definition,
characteristic definition and bill of material definition in an .ssc file as per the elements selected during creation

Procedure

1. In the solution modeling environment, choose File Import SAP CPQ for Solution Sales Configuration
Import Model to New Project .

102 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

ChooseNext.
2. Choose one of the available connections: S/4HANA, or the local database.
3. Enter the Client, User, and Password.

Choose Next.
4. Select the knowledge base runtime version for the product.

You can sort the results by clicking on any one of the column headers.
5. Select the master definitions you want to import.
6. Choose Include Bill of Material if you want to import the material definitions with the boms parameter. If you

do not choose this option, the material definition will not contain a reference to a BOM.

If you choose to Include Dependant Material Classifications, the imported material definitions will include
the classes parameter. If you do not choose this option, the material definition will not contain a reference
to classes.

 Note
These options affect only the material definition and not the import of bill of materials definitions or
class definitions.

Choose Next.
7. Enter a project name under which the project folders will be created. The .ssc files with the selected

parameter definitions will be saved here.

Choose Finish.

2.2.2.8 Importing Master Data from SAP S/4HANA
Systems

Use

At runtime in the SAP Solution Sales Configuration engine, the solution knowledge bases created in the
solution modeling environment interact with the product knowledge bases created in SAP S/4HANA.

Most of the master data for the referenced products is already defined in the SAP S/4HANA system and can
be reused in the solution modeling environment. These master data definitions are included in the knowledge
base run time versions imported into the local SQL server database.

You use this procedure to import this master data to either a file or a new project.

Prerequisites

• You have configured a connection to your SAP S/4HANA system in the Eclipse-based solution modeling
environment.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 103

Procedure

Importing Master Data to a File

1. In the solution modeling environment, choose File Import SAP CPQ for Solution Sales Configuration
Import Model to File .

2. Choose Next.
3. Choose a S/4HANA connection.
4. Enter the client, user, and password.
5. Choose Next.
6. Select the knowledge base runtime version for the product (you can sort the results by clicking any column

header).
7. Select the master data definitions you want to import.

Choose Include Dependent Bill of Materials if you want to import the material definitions with the “boms”
parameter. If you do not choose this option, the material definition will not contain a reference to a BOM.
If you choose Include Dependent Material Classifications, the imported material definitions will include the
“classes” parameter. If you do not choose this option, the material definition will not contain a reference to
classes.

 Note
These options affect only the material definition and not the import of bill of material definitions or
class definitions.

8. Choose Next.
9. Specify the folder and file name to be created to store the definitions of the imported items.

 Note
Do not select any advanced features.

10. Choose Finish.

Importing Master Data to a New Project

1. In the solution modeling environment, choose File Import SAP CPQ for Solution Sales Configuration
Import Model to new Project .

2. Choose Next.
3. Choose a S/4HANA connection.
4. Enter the client, user, and password.
5. Choose Next.
6. Select the knowledge base runtime version for the product (you can sort the results by clicking any column

header).
7. Select the master data definitions you want to import.

Choose Include Dependent Bill of Materials if you want to import the material definitions with the “boms”
parameter. If you do not choose this option, the material definition will not contain a reference to a BOM.
If you choose Include Dependent Material Classifications, the imported material definitions will include the
“classes” parameter. If you do not choose this option, the material definition will not contain a reference to
classes.

104 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

 Note
These options affect only the material definition and not the import of bill of material definitions or
class definitions.

8. Choose Next.
9. Enter a project name.
10. Choose Finish.

2.2.3 Data Loader in the Solution Modeling Environment

Use

The data loader is a tool that allows you to download the configuration master data either from a S/4HANA
system. The data loader registers with the SAP S/4HANA gateway, initiates download requests, and processes
the call-backs from the SAP S/4HANA system. The download itself is a “push” mechanism for which two RFC
connections are required:

1. Outbound connection from the data loader to the SAP S/4HANA system to read the SAP gateway
parameters and initiate download requests.

2. Inbound connection from the SAP S/4HANA system in order to process the “pushed” data.

The data loader is used in the solution modeling environment to download configuration master data, for your
solutions from the SAP S/4HANA system to the solution modeling environment database. It is installed as an
Eclipse plug-in. Before you can download data, you must configure a connection to the source SAP S/4HANA
system and then add the connection to the data loader configuration settings.

For more information about using the data loader in the solution modeling environment, see Importing a
Knowledge Base using Data Loader.

Related Information

Importing a Model in Local Database [page 100]

2.3 SSC DevOps Wizard

To facilitate faster creation of automated setup for KB exports, a new SSC DevOps Project Wizard has been
added in SME. You can create a new DevOps project from the file menu and select the knowledge bases
and destinations for export. The wizard will generate a script for individual connections, and a master script
for exporting to all the connections. The wizard uses the KB project and its dependent project information
from the eclipse workspace to generate the scripts. These scripts can also be updated later to include more
knowledge bases and connections.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 105

To create a new DevOps project, perform the following steps:

1. Go to File New SSC DevOps Project and specify the Project Name and Location.
2. In the next window, select the knowledge bases to be exported, and in the subsequent window, select the

connections to which the KBs need to be exported.
3. Upon finishing, one script for each individual connection, and a master script that can execute all the

individual scripts will be generated.
4. This DevOps project can be executed using SSC DevOps run configurations. Results of the execution are

displayed in the eclipse console.
5. To update the project, right click and select the Update Devops Project menu option. New SSC projects

added in the workspace will be listed which can be then selected for script creation.

This DevOps project can be managed in Git and can be then used to setup headless KB export on a continuous
integration server like Jenkins. For more infomartion, refer to the SSC Solution Modeling Environment Overview
presentation on the http://help.sap.com. Search for SAP Solution Sales Configuration Relevant Version

Additional Information SSC Solution Modeling Environment Overview .

2.4 Analyzing Pricing Traces

It is now possible to turn on pricing traces while testing the configuration. The pricing context parameters can
be set in preferences, and the pricing context can be set during the opening of a knowledge base in SME.

When the pricing context is enabled, pricing parameters set in preferences will be passed onto the
configuration session, and pricing will be enabled to turn on the pricing traces. It needs to be ensured that
the material and pricing data is already downloaded in the database using which the tests are being performed.

You need to perform the following steps to use this feature:

1. Go to File Open Knowledge Base and select the connection.
2. On the knowledge base selection page, select the kb.
3. Click the Pricing Context Properties button. You will be navigated to the pricing context properties

preference page. Set the pricing context properties here and click on Apply.
You can also go to this page by navigating to Window Preferences SAP SSC Pricing Context
Properties

4. On the KB selection page, select the check box to Set Pricing Context. It will turn on pricing for this
configuration.

5. Perform the configuration in the test perspective.
6. To view the pricing traces for the current configuration, right-click on the model tree and select Show

Pricing Traces. This will open the pricing traces in the eclipse xml editor.
7. Similarly, to turn on pricing for Restore Configuration, we need to set the pricing context properties in the

preferences, and select the Set Pricing Context checkbox on the restore configuration page

For more infomartion, refer to the SSC Solution Modeling Environment Overview presentation on the http://
help.sap.com. Search for SAP Solution Sales Configuration Relevant Version Additional Information
SSC Solution Modeling Environment Overview .

106 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

http://help.sap.com
http://help.sap.com
http://help.sap.com

2.5 Data Exchange

Use

Master data must be exchanged between the solution modeling environment and the target sales system, for
example, SAP S/4HANA system. The main data exchanges are as follows:

• Modelers import data such as characteristics and classes from the SAP S/4HANA system to the solution
modeling environment.

• Modelers transfer the completed solution model (knowledge base runtime version) from the solution
modeling environment to the SAP S/4HANA system.

Pricing information is not exported to the solution modeling environment.

 Note
If you want to configure and export SME into a local database (for example, for use with SAP Solution Sales
Configuration in Hybris), you must download and register the relevant database driver.

 Caution
The Data Loader does not import product data into the solution modeling environment. Therefore, you
must ensure that the products defined in the solution models also exist in the target sales system(s) where
the knowledge base is deployed.

Prerequisites

You have configured the connection between the solution modeling environment and the target sales system.

More Information

For more information about importing data, see Data Loader in the Solution Modeling Environment [page 105].

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 107

2.6 Maintaining Modeling Templates

Context

You use this procedure to maintain templates for model elements. When you open an empty text file in the
solution modeling environment, and then use the auto-completion feature (CTRL + SPACEBAR), the system
lists all of the available templates. Templates are stored as XML files.

Procedure

1. Choose Window Preferences

The system displays the preferences dialog.

2. Choose SAP CPQ for solution sales configuration Modeling Templates

The system displays the Templates dialog.

Results

The system lists all of the existing templates. A template is defined with the following information:

• Name
• Context (for example, Bill of Material, Class, Constraint, and so on)
• Description
• Pattern

If you select a template, the content of the template is displayed in the Preview area.

The Templates dialog provides the following functions:

Function Description

New... You use this function to create a new template.

Edit... You use this function to edit the selected template.

Remove You use this function to remove the selected template.

Import You use this function to import a template from an XML file.

Export You use this function to export the selected template to an XML file.

108 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

2.7 Developing SSC User Exits

To facilitate quick development of user exits, a new wizard has been added in SME. This wizard will create a
skeleton for a pFunction project in which custom classes can be added. This pFunction can be then exported
from SME to the local database or backend system for testing.

While executing a configuration in SME test perspective, pFunctions would be loaded from the database along
with the KB. The existing pFunction jar files can also be exported using this project by placing the jar files in the
target directory of the pFunction project.

You can perform the following steps to use this wizard:

1. Go to File New SSC pFunction Project .
2. Specify the Project Name, Unit Name, and Unit Version and create the project.
3. A project will be created in the eclipse workspace in which java classes can be added.

4. To export the pFunction, select the pFunction project and go to File Export SAP SSC Export SSC
pFunction .

In case a custom unit version has been used during project creation, the same needs to be specified in the
engine settings preference page before start of the configuration in the testing perspective.

For more infomartion, refer to the SSC Solution Modeling Environment Overview presentation on the http://
help.sap.com. Search for SAP Solution Sales Configuration Relevant Version Additional Information
SSC Solution Modeling Environment Overview .

2.8 Collaboration Between Modelers

Use

Complex solution models that combine different products are often maintained by more than one modeler. In
addition to this, master data can be reused in different products. This means that different modelers may have
to make changes to the same model elements. This function ensures that locally maintained models can be
merged and synchronized by using a model repository that defines the rules and workflows for collaboration.

When changes are made to a solution model, the system does not directly store the model in the SAP S/
4HANA system. It first merges the changes in a model repository that defines the rules and workflows for
collaboration. A consistent model version is then transferred from the model repository to the relevant system.

 Note
The solution modeling environment does not contain its own repository technology; instead it is designed
to be used with existing file-based Source Code Management Systems (SCMS).

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 109

http://help.sap.com
http://help.sap.com

Integration

The solution modeling environment is based on the Eclipse platform, and connector plug-ins are freely
available for the most commonly used SCMS systems, such as Subversion, CVS, and Git. Most SCMS systems
also come with the Eclipse Connector plug-in.

The SCMS system can be integrated with the solution modeling environment in the following ways:

• By downloading the required SCMS connector plug-in to the solution modeling environment using the
integrated update manager.

• By downloading the solution modeling environment as a plug-in in an existing Eclipse-integrated
development environment (IDE) with an existing SCMS connector.

2.9 Setting Context Properties

The configuration engine uses reference characteristics to obtain the context of the environment in which it is
working. An example of this context could be a sales organization, a distribution channel, etc. In SAP S/4HANA
orHybris, this context is passed on to the configuration engine through RFCs and APIs.

In SME, this context can be passed using a properties file. The format of the context properties file should be:

ref_cstic1=value1

ref_cstic2=value2

You can use this procedure to set context properties while opening a runtime knowledge base version or while
restoring configuration.

Setting Context Properties When Opening a KB and Creating a New
Configuration

1. Choose File Open Knowledge Base .
2. Enter the connection details.
3. Choose Next.
4. Select the knowledge base and profile.
5. Select Context Property.
6. Browse the property file.
7. Choose Finish.

Setting Context Properties When Restoring an Existing Configuration

1. Choose File Restore Configuration .

110 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

2. Enter the connection details.
3. Choose Next.
4. Browse the configuration file.
5. Select Context Property.
6. Browse the property file.
7. Choose Finish.

2.10 Automating Modeling Lifecycle

The solution modeling environment interface allows a user to use different features of the product.

Most of the features on the SME UI require human intervention for execution, for example, exporting a model
project to a target system, restoring a configuration, execution of performer on a model project, etc.

The headless automated process not only allows automation of these features, but also allows the user to run
regular automated jobs to ensure stability of models. The features mentioned below are currently supported in
headless automation:

• Headless Export of Knowledge base
• Headless Performer Execution
• Headless XML Restore configuration
• Headless Upload of external Variant tables

2.10.1 Headless Export of Knowledge Bases

Use

You can use this process to export solution models to a target system, for example, a standalone database,
SAP S/4HANA.

Prerequisites

• You have installed the solution modeling environment on the system from which you want to export the
solution models

• You have set up an Eclipse workspace for the solution modeling environment

• You have defined the required back-end connections under Window Preferences SAP Solution Sales
Configuration Connections

• If solution models are to be exported to any of the supported database systems (see the Product
Availability Matrix at http://support.sap.com/pam), such as Microsoft SQL Server, you have already
registered the relevant database driver under Window Preferences SAP Solution Sales Configuration

Drivers

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 111

http://help.sap.com/disclaimer?site=http%3A%2F%2Fsupport.sap.com%2Fpam

• You have configured all relevant settings in your solution modeling environment, such as source
formatting and validation settings, under Window Preferences SAP Solution Sales Configuration

Source Formatter / Validation

Preparatory Steps

The knowledge base exporter requires the following information:

• The connection details of the target system
The available connections are configured in the solution modeling environment under Window
Preferences SAP Solution Sales Configuration Connections and are stored under
<workspace_directory>\.metadata\.plugins\com.sap.custdev.projects.fbs.slc.conn.c

ore\connections.xml.
• The settings for the modeling language source formatter and model validation

These settings are configured under Window Preferences SAP Solution Sales Configuration Source
Formatter / Validation and are stored under
<workspace_directory>\.metadata\.plugins\com.sap.custdev.projects.fbs.slc.sme\se

ttings.xml.

This information can be provided in multiple ways based on the mode of operation of the exporter:

• Workspace mode
An Eclipse workspace is used to determine the settings and relevant modeling projects.

• Directory mode
A minimal Eclipse workspace is used, that is, it should contain only registered database drivers. The
settings and modeling projects are specified by parameters that are passed to the headless exporter
executable.

2.10.1.1 Executing Headless Export

To start the headless knowledge base exporter, you must execute the eclipse.exe or eclipsec.exe file in
your eclipse installation directory.

 Recommendation
Write a batch (.bat) or command (.cmd) file that calls the executable.

2.10.1.1.1 Eclipse-Specific Arguments

The behavior of the export can be controlled by the following arguments:

Eclipse-Specific Arguments

112 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Argument Name Argument Description

--launcher.suppressErrors Suppress messages and error dialogs

-application

com.sap.custdev.projects.fbs.slc.sme.export.h

eadless.application

The application to run

This must point to the headless export application.

-noSplash Do not show the splash screen

-console Show a console window

-consoleLog Log messages to the console

-vmargs Java VM arguments.

This must be the last argument because all arguments after
this one will be parsed as Java VM arguments. For example,
-vmargs -Xms128M -Xmx512M , -XX:PermSize=128M
-XX:MaxPermSize=256M , etc.

2.10.1.1.2 Export Application-Specific Argument

The behavior of the export can be controlled by the following arguments:

Export-Application-Specific Arguments

Argument Name Example Argument Description

-data -data "C:\path\to\workspace" The path to the Eclipse workspace. The
workspace has to contain at least a
JDBC driver registration (in directory
mode). In workspace mode, the work­
space also has to contain valid settings.

-kbData -kbData "C:\path\to\projects" (Relevant only in directory mode) The
path to the directory with sub-directo­
ries containing all required .ssc files.

-kbProject -kbProject model.project.name Workspace mode: The name of the
project that contains the KB to export.

Directory mode: The directory names
of all sub-directories in -kbData
to be scanned. Use -kbProject
"subDir1;subDir2".

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 113

Argument Name Example Argument Description

-kbName -kbName KB_NAME The name of the knowledge base to be
exported

-kbValidate Not applicable If specified, the knowledge base is vali­
dated before the export.

 Note
Always specify this parameter to
prevent inconsistent knowledge
bases from being exported.

-conFile -conFile

"path\to\connections.xml"

Workspace mode: Optional absolute
path to connections to be used instead
of the connections defined in the work­
space.

Directory mode: Required path to con­
nections to be used. It can be absolute
or relative to -kbData.

-conName -conName SYSTEM_1 The name of the export connection to
be used. If it is not specified, the export
uses the default connection.

-conPassword -conPassword secret The password to use for the chosen
connection.

-settingsFile -settingsFile

"path\to\settings.xml"

Workspace mode: Optional absolute
path to the settings to be used instead
of the settings defined in the work­
space.

Directory mode: Required path to set­
tings to be used. It can be absolute or
relative to -kbData.

-kbConsoleLog Not applicable Log messages and errors to the con­
sole.

-kbEclipseLog Not applicable Log messages and errors to the Eclipse
runtime logging framework.

-kbExcludeVariantTableContents Not applicable Variant tables are exported without
content.

-kbExcludeLocalizations Not applicable Localized short and long texts of model
elements are not exported.

114 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

2.10.1.1.3 Example: Headless Knowledge Base Export

If the headless export code is put into a command file called deployKb.cmd, it can be used as follows:

• Workspace mode
In case of the workspace mode, a typical call to the exporter appears as follows:

eclipse\eclipsec -vm --launcher.suppressErrors -application

com.sap.custdev.projects.fbs.slc.sme.export.headless.application -noSplash

– console

-consoleLog -kbValidate -kbProject -kbName -kbConsoleLog %* -vmargs

-Xms128M -Xmx1024M - XX:PermSize=128M -XX:MaxPermSize=256M

echo EXIT CODE: %ERRORLEVEL%

 Remember
If the default eclipse workspace is not used, then -data argument should be used to specify the
workspace path in headless export mode.

• Directory mode

eclipsec --launcher.suppressErrors -application

com.sap.custdev.projects.fbs.slc.sme.export.headless.application -noSplash

-console

-consoleLog -kbValidate -kbConsoleLog %* -vmargs -Xms128M -Xmx1024M -

XX:PermSize=128M -XX:MaxPermSize=256M echo EXIT CODE: %ERRORLEVEL% -data
"C:\path\to\workspace" -kbData

"C:\path\to\projects_root"

-kbProject your.project.with.kb -kbName KB_NAME -conFile

"C:\path\to\connections.xml" -settingsFile "C:\path\to\settings.xml"

The application returns an exit code that can be accessed through variable ERRORLEVEL.

For more information about this, a sample batch script is available in SAP Note 2174488 (Headless
Knowledge Base Export - Sample Script).

2.10.1.1.4 Exit Codes for Knowledge Base Export

Exit Codes for Knowledge Base Export

Exit Code Description

0 All OK. KB was exported.

200 Invalid or insufficient arguments or parameters.

201 Given project (-kbProject) not found.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 115

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/2174488

Exit Code Description

202 Given KB (-kbName) not found.

203 Given KB is invalid (validation issues).

204 Connection not found or invalid.

205 Cannot execute export (internal problems; see log).

2.10.2 Headless Performer Execution

Headless performer execution allows a user to run performer scripts on the exported models in the target
system, using an automated process.

You can use either the workspace scenario or the directory scenario to provide data for headless performer
execution.

Workspace Scenario

This is an Eclipse workspace with a project and defined connections and a performer script directory.

The headless performer script execution requires the following data for the workspace scenario:

• Project workspace with projects
• Valid defined connections
• Performer scripts directory (performers specific to the workspace)

The workspace should contain the projects. You can set up an export connection by choosing Window
Preferences SAP Solution Configuration Connections .

 Note
When you close the workspace, the connections are stored under:

<workspace_dir.metadata>\.plugins\com.sap.custdev.projects.fbs.slc.conn.core\conn

ections.xml

 Caution
Add a connection password to the XML at your own risk. The password is stored as unsecure plain text. To
do so, add the password attribute to the clientSettings element.

116 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Directory Scenario

This is a simple directory containing sub-directories with the .performer script files and the required
pfunctions (if any) in the respective directories and paths given by parameters to a valid connection.xml.

The headless performer script execution requires the following data for the directory scenario:

• One or more directories as a container for the .performer script files
• An XML file for the performer connection (database) to use (connections.xml)
• Path to the connection driver .jar file (for example, D:\jars\sqljdbc4.jar).

The application needs a path to a (parent) directory (-psData “dir/parent”) and it will scan all
subdirectories for the available performer scripts. The scenario also requires a path to the connections via
an XML file (-conFile “path/connections.xml”).

In both the workspace and directory scenarios, the performer run requires the pFunction.jar to be present
in the same directory as the respective script.

2.10.2.1 Executing Headless Performer

To execute the “headless performer script”, call the eclipse.exe or eclipsec.exe (without additional
console) in the Eclipse installation directory with the required arguments.

 Recommendation
We recommend using a batch (.bat) or command (.cmd) file.

2.10.2.1.1 Eclipse-Specific Arguments

Argument Description

--launcher.suppressErrors Suppress errors argument must be set before vmargs; nor­
mally one of the first arguments

-application com.sap.custdev.projects.fbs.slc.config.per-
former.headless.performerapplication

The application to start. Value (application ID) is separated
by a space from the argument.

-noSplash Do not show the splash.

-console Show a console.

-consoleLog Log to the console.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 117

Argument Description

-vmargs Java VM arguments. Must be the last Eclipse argument be­
cause all of the following arguments will be parsed as Java
VM arguments, for example:

-vmargs -Xms128M -Xmx512M

-XX:PermSize=128M -XX:MaxPermSize=256M

 Posting Instructions

For a full list of the supported arguments, see the Eclipse documentation .

2.10.2.1.2 Performer-Application-Specific Arguments

 Note
Use quotation marks ("") for values that contain spaces such as -psdata “D: \Performer Data”.

Parameter Workspace Scenario Directory Scenario

-projectWorkspace Workspace project name.

-projectWorkspace ssc_office_example

Not applicable

-psData The path to the directory with
the subdirectories containing all re­
quired .performer files.

-psData “C:\parentDirectory”

The path to the directory with
the subdirectories containing all re­
quired .performer files.

-psData “C:\parentDirectory”

-conFile Not applicable Required path to connections to use.

-conFile “C:\path\connections.xml”

-conDriver Not applicable The path to the connection driver jar
file.

-conDriver “D:\jars\sqljdbc4.jar”

-psConsoleLog Print logs on console.

-consoleLog

Print logs on console.

-consoleLog

-conName Not applicable Connection name.

-conName “localCon”

118 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

http://help.sap.com/disclaimer?site=http%3A%2F%2Fhelp.eclipse.org%2Findigo%2Findex.jsp%3Ftopic%3D%252Forg.eclipse.platform.doc.isv%252Freference%252Fmisc%252Fruntime-options.html

Parameter Workspace Scenario Directory Scenario

-conPassword Connection password (optional if speci­
fied in connections.xml file).

-conPassword “mypassword”

Connection password (optional here if
specified in connections.xml file).

-conPassword “mypassword”

-pContextPropertyFile Path for the context properties to be
set.

This is an optional field and can
be used as required by user. For ex­
ample, C:\Users\Admin\ContextProp­
erty\sme_office_prop.properties.

Path for the context properties to be
set.

This is an optional field and can
be used as required by user. For ex­
ample, C:\Users\Admin\ContextProp­
erty\sme_office_prop.properties.

-pFunction Specify the required pfunc­
tions(if any). For exam­
ple, -pFunction "C:/users/dir1/pFunc­
tion1.jar;C:/users/dir2/pFunction2.jar".

Specify the required pfunc­
tions(if any). For exam­
ple, -pFunction "C:/users/dir1/pFunc­
tion1.jar;C:/users/dir2/pFunction2.jar".

2.10.2.1.3 Example: Headless Performer Execution

 Recommendation
We recommend using a batch file (performer.bat) for this process.

The application will return an exit code (see echo %ERRORLEVEL% in example cmd).

Workspace Mode

A batch or command script could appear as follows:

 Sample Code

@echo off

eclipse\eclipsec -vm “%JRE_HOME%\bin” --launcher.suppressErrors -application
com.sap.custdev.projects.fbs.slc.config.performer.headless.performerapplicatio
n -noSplash -console -psConsoleLog -projectWorkspace “ssc_office_example”
-psData “C:\Users\Public\PROJECTWORK\Enhancements\TestRunner in Headless
Mode\PerformerData” -conName “localCon” -conPassword “mypassword”

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 119

Directory Mode

A batch or command script could appear as follows:

 Sample Code

@echo off

eclipse\eclipsec -vm "%JRE_HOME%\bin" --launcher.suppressErrors -application
com.sap.custdev.projects.fbs.slc.config.performer.headless.performerapplicatio
n -noSplash -console -psConsoleLog -conDriver
"C:\Users\Public\SOFTWARES\sqljdbc4.jar" –conFile
"C:\Users\Public\PROJECTWORK\Enhancements\TestRunner in Headless
Mode\PerformerData\config\connections.xml" –psData
"C:\Users\Public\PROJECTWORK\Enhancements\TestRunner in Headless
Mode\PerformerData"REM -Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005@echo EXIT CODE:
%ERRORLEVEL%

2.10.2.1.4 Exit Codes for Performer Execution

Exit Codes for Performer Execution

Exit Code Description

0 OK. Performer scripts have been executed.

300 Invalid or insufficient arguments or parameters.

301 Given performer scripts (-psData) not found.

302 Given workspace project not found.

303 Knowledge base not found.

304 Connection not found or invalid.

305 Cannot execute performer scripts (internal problems; see
log).

2.10.3 Headless XML Configuration Restore

The headless restore configuration feature is part of the solution modeling environment that allows
configuration restore using the .cfg/xml files through the headless automated process for the exported models
on the target system.

120 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

There are two possible scenarios to provide the data for headless restore configuration:

• Workspace scenario
An Eclipse workspace with project and its defined connections. The headless restore configuration needs
the following data for workspace scenario:
• Project workspace with projects
• Valid defined connections
• Configuration files directory (containing .cfg/.xml files)

The workspace should contain all the relevant projects. You can setup an export connection from here:
Window Preferences SAP Solution Configuration Connections .

 Note
When you close the workspace, the connections are stored under:

<workspace_dir.metadata>\.plugins\com.sap.custdev.projects.fbs.slc.conn.core\

connections.xml

 Caution
Add a connection password to the XML at your own risk. The password is stored as unsecure plain text.
To do so, add the password attribute to the clientSettings element.

• Directory scenario
A simple directory with sub-directories with the .cfg/.xml files and paths given by parameters to a valid
connection.xml. The headless restore configuration script execution needs the following data for
directory scenario:
• Configuration files directory (containing .cfg/.xml files)
• An XML file (connections.xml) for the connection (DB)
• A path to the connection driver jar file, for example, D:\jars\sqljdbs4.jar

The application needs a path to a parent directory (-rsData “dir/parent”) and it will scan all
sub-directories for the available configuration files (.cfg/.xml). The scenario requires also a path to the
connections via XML file (-conFile “path/connections.xml”).

2.10.3.1 Executing Headless XML Configuration Restore

To execute the headless restore configuration script, call the eclipse.exe or eclipsec.exe (without
additional console) in the Eclipse installation directory with the required arguments.

 Recommendation
Write a batch (.bat) or command (.cmd) file that calls the executable.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 121

2.10.3.1.1 Eclipse-Specific Arguments

The behavior of the export can be controlled by the following arguments:

Eclipse-Specific Arguments

Argument Name Argument Description

--launcher.suppressErrors Suppress errors and arguments must be set before vmargs
as it is one of the first arguments.

-application

com.sap.custdev.projects.fbs.slc.config.restor

e.headless.restoreapplication

For the application to start. The Value (application ID) is
separated from the argument by a single space.

-noSplash Do not show the splash.

-console Show a console.

-consoleLog Log on to the console.

-vmargs Java VM arguments. Should be the last Eclipse argument
as all the arguments after this will be parsed as Java VM
arguments. For example, -vmargs -Xms128M -Xmx512M,
-XX:PermSize=128M -XX:MaxPermSize=256M, etc.

 Posting Instructions

For a complete list of the supported arguments, see the Eclipse documentation .

2.10.3.1.2 Restore Configuration Application-Specific
Arguments

The behavior of the export can be controlled by the following arguments:

Restore Configuration Application-Specific Arguments

Parameters Workspace Scenario Directory Scenario

-projectWorkspace Workspace project name

-projectWorkspace

ssc_office_example

N/A

122 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

http://help.sap.com/disclaimer?site=http%3A%2F%2Fhelp.eclipse.org%2Findigo%2Findex.jsp%3Ftopic%3D%252Forg.eclipse.platform.doc.isv%252Freference%252Fmisc%252Fruntime-options.html

Parameters Workspace Scenario Directory Scenario

-rsData The path to the directory with the sub-
directories containing all required con­
figuration files

-rsData “C:\parentDirectory”

The path to the directory with the sub-
directories containing all the required
configuration files

-rsData “C:\parentDirectory”

-conFile N/A Required path to the relevant connec­
tions.

-conFile

“C:\path\connections.xml”

-conDriver N/A The path to the connection driver jar
file.

-conDriver

“D:\jars\sqljdbc4.jar”

-rsConsoleLog Print logs on console.

- rsConsoleLog

Print logs on console.

- rsConsoleLog

-conName N/A Connection name.

-conName “localCon”

-conPassword Connection password (optional unless
specified in connections.xml file).

-conPassword “mypassword”

Connection password (optional unless
specified in connections.xml file).

-conPassword “mypassword”

 Note
“” are used for values containing spaces, for example, -rsdata “D: \Configuration Data”.

2.10.3.1.3 Example: Headless XML Configuration Restore

It is recommended to use a batch file, restoreConfig.bat for the restore process and the application
returns an exit code once the restore is complete.

For more information about this, see echo %ERRORLEVEL% in example cmd.

Workspace mode

eclipse\eclipsec -vm "%JRE_HOME%\bin" --launcher.suppressErrors -application
com.sap.custdev.projects.fbs.slc.config.restore.headless.restoreapplication
-noSplash -console -rsConsoleLog -projectWorkspace "ssc_office_example" -rsData
"C:\Users\Demo\PROJECTWORK\Enhancements\RestoreConfigData" -conName "localCon"
-conPassword "mypassword"

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 123

Directory mode

@echo off

eclipse\eclipsec -vm "%JRE_HOME%\bin" --launcher.suppressErrors -application
com.sap.custdev.projects.fbs.slc.config.restore.headless.restoreapplication
-noSplash -console -rsConsoleLog
-conDriver "C:\Users\Demo\SOFTWARES\sqljdbc4.jar" –conFile
"C:\Users\Demo\PROJECTWORK\Enhancements\RestoreConfigData\config\connection.xml"
–rsData "C:\Users\Demo\PROJECTWORK\Enhancements\ RestoreConfigData"
REM -Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005 @echo EXIT CODE:
%ERRORLEVEL%

2.10.3.1.4 Exit Codes for Configuration Restore

Exit Code Description

0 All OK. Configuration files restored.

300 Invalid or insufficient arguments or parameters.

301 Given configuration files (-rsData) not found.

302 Given workspace project not found.

303 Knowledge base not found.

304 Connection not found or invalid.

305 Cannot restore configuration (internal problems; see log).

306 Cannot restore configuration (internal problems; see log).

307 Database driver not found (internal problems; see log).

2.10.4 Headless Upload External Variant Table

The headless upload external variant table feature is the part of solution modeling environment that allows
upload of external variant table to a target system through headless automated process.

There are two possible scenarios to provide the data for headless upload of external variant table:

• Workspace scenario
An Eclipse workspace with a project and its defined connections. The headless upload external variant
table needs the following data for workspace scenario:
• Project workspace with projects
• Valid defined connections

124 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

• Data directory for external variant table downloaded from S/4HANA system.
The workspace should contain all the relevant projects. You can setup an export connection from

Window Preferences SAP Solution Configuration Connections .

 Note
When you close the workspace, the connections are stored under:

<workspace_dir.metadata>\.plugins\com.sap.custdev.projects.fbs.slc.conn.core\

connections.xml

 Caution
Add a connection password to the XML at your own risk. The password is stored as unsecure plain text.
To do so, add the password attribute to the clientSettings element.

• Directory scenario
A simple directory containing the external variant table data files and their paths, given by parameters to
a valid connection.xml. The headless external variant table script execution needs the following data for
directory scenario:
• Data directory for external variant table downloaded from S/4HANA system
• An XML (connections.xml) file for the connection (DB)
• A path to the connection driver jar file, for example, D:\jars\sqljdbc4.jar

The application needs a path to a parent directory (-vtData “dir/parent”), the data downloaded from
S/4HANA external variant table download utility. The scenario requires also a path to the connections via XML
file (-conFile “path/connections.xml”).

2.10.4.1 Executing Headless Upload External Variant Table

To execute the headless upload external variant table script call eclipse.exe or eclipsec.exe (without
additional console) in the Eclipse installation directory with the required arguments.

 Recommendation
Write a batch (.bat) or command (.cmd) file that calls the executable.

2.10.4.1.1 Eclipse-Specific Arguments

The behavior of the export can be controlled by the following arguments:

Eclipse-Specific Arguments

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 125

Argument Name Argument Description

-launcher.suppressErrors Suppress errors argument must be set before vmargs; nor­
mally one of the first arguments.

-application

com.sap.custdev.projects.fbs.slc.sme.extvarta

ble.upload.headless.externalvarianttableappli

cation

The application to start. Value (application ID) is separated
by a space from the argument.

-noSplash Do not show the splash.

-console Show a console.

consoleLog Log on to the console.

-vmargs Java VM arguments. This must be the last Eclipse argu­
ment as all the arguments after this will be parsed as Java
VM arguments. For example, -vmargs-Xms128M-Xmx512M,
-XX:PermSize=128, etc.

 Posting Instructions

For a full list of the supported arguments, see the Eclipse documentation .

2.10.4.1.2 Upload External Variant Table Application-Specific
Arguments

The behavior of the export can be controlled by the following arguments:

Upload External Variant Table Application-Specific Arguments

Parameter Workspace Scenario Directory Scenario

-projectWorkspace Workspace project name.

-projectWorkspace ssc_office_example

Not applicable

-vtData The path to the directory with the sub-
directories containing all required con­
figuration files.

-vtData “C:\extVarDirectory”

The path to the directory with the sub-
directories containing all required exter­
nal variant table files.

-vtData “C:\extVarDirectory”

-conFile Not applicable Required path to the relevant connec­
tions.

-conFile “C:\path\connections.xml”

126 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

http://help.sap.com/disclaimer?site=http%3A%2F%2Fhelp.eclipse.org%2Findigo%2Findex.jsp%3Ftopic%3D%252Forg.eclipse.platform.doc.isv%252Freference%252Fmisc%252Fruntime-options.html

Parameter Workspace Scenario Directory Scenario

-conDriver Not applicable The path to the connection driver jar
file.

-conDriver “D:\jars\sqljdbc4.jar”

-vtConsoleLog Print logs on console.

-vtConsoleLog

Print logs on console.

-vtConsoleLog

-conName Not applicable Connection name.

-conName “localCon”

-conPassword Connection password (optional if speci­
fied in connections.xml file).

-conPassword “mypassword”

Connection password (optional here if
specified in connections.xml file).

-conPassword “mypassword”

 Note
“” are used for values containing spaces, for example, -vtdata “D: \External Variant Data”.

2.10.4.1.3 Example: Headless Upload External Variant Table

It is recommended to use a batch file, restore Config.bat for the restore process and the application
returns an exit code once the restore is complete.

For more information about this, see echo %ERRORLEVEL% in example cmd.

Workspace mode

eclipse\eclipsec -vm "%JRE_HOME%\bin" --launcher.suppressErrors -application
com.sap.custdev.projects.fbs.slc.sme.extvartable.upload.headless.externalvariantt
ableapplication -noSplash -console -vtConsoleLog -projectWorkspace
"ssc_office_example" -vtData

"C:\Users\Demo\PROJECTWORK\Enhancements\ExternalVariantTableData" -conName
"localCon" -conPassword "mypassword"

Directory mode

@echo off

eclipse\eclipsec -vm "%JRE_HOME%\bin" --launcher.suppressErrors -application
com.sap.custdev.projects.fbs.slc.sme.extvartable.upload.headless.externalvariantt
ableapplication -noSplash -console -vtConsoleLog -conDriver
"C:\Users\Demo\SOFTWARES\sqljdbc4.jar" –conFile
"C:\Users\Demo\PROJECTWORK\Enhancements\ExtVarTabData\config\connection.xml" –
vtData "C:\Users\Demo\PROJECTWORK\Enhancements\ ExtVarTabData" REM -Xdebug
-Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005 @echo EXIT CODE:
%ERRORLEVEL%

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 127

2.10.4.1.4 Exit Codes for External Variant Tables

Exit Codes for External Variant Tables

Exit Code Description

0 All OK. External table variant files restored.

300 Invalid or insufficient arguments or parameters.

301 Given data files (-vtData) not found.

302 Given workspace project not found.

303 Knowledge base not found.

304 Connection not found or invalid.

305 Cannot execute external table script (internal problems; see
log).

306 External variant tables uploaded with errors.

307 Database driver not found (internal problems; see log)

2.10.5 Headless Upload of Knowledge Bases

The process of headless upload of knowledge bases allows upload of .xml/.txt files pertaining to a certain
knowledge base into a target system through headless automated process.

There are two possible scenarios to provide the data for headless upload of knowledge bases:

• Workspace scenario
An Eclipse workspace with a project and its defined connections. The headless upload external variant
table needs the following data for workspace scenario:
• Project workspace with projects
• Valid defined connections
• .xml/.txt files data directory for external variant table downloaded from S/4HANA system.

The workspace should contain all the relevant projects. You can setup an export connection from
Window Preferences SAP Solution Configuration Connections .

128 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

 Note
When you close the workspace, the connections are stored under:

<workspace_dir.metadata>\.plugins\com.sap.custdev.projects.fbs.slc.conn.core\

connections.xml

 Caution
Add a connection password to the XML at your own risk. The password is stored as unsecure plain text.
To do so, add the password attribute to the clientSettings element.

• Directory scenario
A simple directory containing .xml/.txt files and their paths, given by parameters to a valid
connection.xml. The headless upload of knowledge base script execution needs the following data for
directory scenario:
• .xml/.txt files directory downloaded from S/4HANA system
• An XML (connections.xml) file for the connection (DB)
• A path to the connection driver jar file, for example, D:\jars\sqljdbc4.jar

The application needs a path to a parent directory (-kbData absolute path to the .xml/.txt files), the data
downloaded from S/4HANA by download utility. The scenario also requires a path to the connections via XML
file (-conFile “path/connections.xml”).

2.10.5.1 Executing Headless Upload

To execute the script for headless upload of knowledge bases, you must call the eclipse.exe or
eclipsec.exe (without additional console) in your eclipse installation directory, with the required arguments.

 Recommendation
Write a batch (.bat) or command (.cmd) file that calls the executable.

2.10.5.1.1 Eclipse-Specific Arguments

The behavior of the export can be controlled by the following arguments:

Eclipse-Specific Arguments

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 129

Argument Name Argument Description

--launcher.suppressErrors Suppress errors

Arguments must be set before vmargs (normally one of the
first arguments)

-application

com.sap.custdev.projects.fbs.slc.sme.extvarta

ble.upload.headless.externalvarianttableappli

cation

The application to run

Value (application ID) is separated from the argument by a
single space.

-noSplash Do not show the splash screen

-console Show a console window

-consoleLog Log messages to the console

-vmargs Java VM arguments.

This must be the last Eclipse argument because all ar­
guments after this one will be parsed as Java VM argu­
ments. For example, -vmargs -Xms128M -Xmx512M ,
-XX:PermSize=128M -XX:MaxPermSize=256M , etc.

 Posting Instructions

For a full list of the supported arguments, see the Eclipse documentation .

2.10.5.1.2 Headless Upload-Specific Arguments

 Note
Use quotation marks ("") for values that contain spaces such as -kbData “D: \KnowledgeBaseData”.

Parameter Workspace Scenario Directory Scenario

-projectWorkspace Workspace project name.

-projectWorkspace ssc_office_example

Not applicable

-conFile Not applicable Path for connections to be used -con­
File "C:\path\connections.xml"

-conDriver Not applicable Path to the connection driver jar file
-conDriver "D:\jars\sqljdbc4.jar"

130 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

http://help.sap.com/disclaimer?site=http%3A%2F%2Fhelp.eclipse.org%2Findigo%2Findex.jsp%3Ftopic%3D%252Forg.eclipse.platform.doc.isv%252Freference%252Fmisc%252Fruntime-options.html

Parameter Workspace Scenario Directory Scenario

-uploadConsoleLog Print logs on console

-uploadConsoleLog

Print logs on console.

-conName Not applicable Connection name.

-conName “localCon”

-conPassword Connection password (optional if speci­
fied in connections.xml file).

-conPassword “mypassword”

Connection password (optional here if
specified in connections.xml file).

-conPassword “mypassword”

-kbData Path to the directory contain­
ing .xml/.txt files

The argument mentions the path to the
directory containing .xml/.txt files of
the knowledge base

2.10.5.1.3 Example: Headless Knowledge Base Upload

 Recommendation
We recommend using a batch file (restoreConfig.bat) for this process.

The application will return an exit code (see echo %ERRORLEVEL% in example cmd).

Workspace Mode

A batch or command script could appear as follows:

 Sample Code

eclipse\eclipsec -vm "%JRE_HOME%\bin" --launcher.suppressErrors -application
com.sap.custdev.projects.fbs.slc.sme.uploadKb.headless.uploadapplication
-noSplash– console -consoleLog -
uploadConsoleLog -projectWorkspace "ssc_office_example" -kbData
"C:\Users\Administrator\xmlModels\TestModel " -conName "localCon"
-conPassword "mypassword"

echo

EXIT CODE: %ERRORLEVEL%

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 131

Directory Mode

 Sample Code

@echo off

eclipse\eclipsec -vm "%JRE_HOME%\bin" --launcher.suppressErrors -application
com.sap.custdev.projects.fbs.slc.sme.uploadKb.headless.uploadapplication
-noSplash -console -
uploadConsoleLog -conDriver "C:\Users\Demo\SOFTWARES\sqljdbc4.jar" –conFile

"C:\Users\Demo\PROJECTWORK\Enhancements\configconnection.xml" –kbData
"C:\Users\Administrator\xmlModels\TestModel "

REM -Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005

@echo EXIT CODE: %ERRORLEVEL%

2.10.5.1.4 Exit Codes

Exit Codes for Uploading Knowledge Bases

Exit Code Description

0 OK. KB was exported.

301 Invalid or insufficient arguments/parameters.

302 No project found.

303 Connection not found or invalid.

304 Upload failure

305 Database driver not found.

132 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

2.10.6 Headless Dataloader Execution

Use

Some scenarios required a data download from SAP backend system into the local DB on frequent basis and
thus manual trigger of data loader is sub optimal. In such situations, data download can be automated by
running SME data loader in the headless mode.

Installation

The Headless Dataloader is part of SME and will be installed with SME dataloader feature installation. Hence
there is no additional step required.

Setup of Headless Dataloader Execution

Before setup of the SME in headless mode, the dataloader in SME must be setup and initial download triggered
from the UI which can help verify if dataloader is working as desired. Files generated as part of UI setup can
then be used to trigger dataloader in headless mode.

Setup of headless mode requires that the absolute path for the settings file is known and provided in the
scripts. The following are paths for the files:

• Datalaoder.xml. This is present in D:\DBdrivers\dataloader.xml directory. This file is generated in your
eclipse workspace when you add dataloader connection settings in eclipse preferences. The same file can
be used.

• The jdbc driver jar file for the destination database, for example, D:\Database
Drivers\mssql\sqljdbc4-4.0.jar

Executing the Headless Eclipse Application

To execute SME in the headless mode, eclipse.exe or eclipsec.exe (without additional console) must be invoked
in the Eclipse installation directory with the required arguments. This command can be written in a batch script
(.bat/.cmd).

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 133

Eclipse Specific Arguments

-launcher.suppressErrors Suppress errors, arguments must set before vmargs, nor­
mally one of the first arguments

-application com.sap.custdev.projects.fbs.slc.data­
loader.headless.dataloaderapplication

The application to start. Value (application ID) is separated
by a space from the argument.

-noSplash Does not show the splash screen

-console Displays a console window

-consoleLog Log messages to the console

-vmargs Java VM arguments. Must be the last Eclipse argument be­
cause all following arguments will be parsed as Java VM
arguments, eg:

-vmargs -Xms256m -Xmx1024m

XX:PermSize=128M -XX:MaxPermSize=256M

A full list of supported arguments can be found here:http://help.eclipse.org/indigo/index.jsp?
topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fmisc%2Fruntime-options.html

Application Specific Arguments

 Note
use “” for values containing spaces like conDriver D:\Database Drivers\mssql\sqljdbc4-4.0.jar.

Parameters Sample Value

-conFile Dataloader settings file to use. For example

conFile D:\DBdrivers\dataloader.xml

You can find dataloader settings xml file created from SME
inside eclipse workspace for example,
<Workspace>\.metadata\.plugins\com.sap.custdev.projects.
fbs.slc.dataloader.core

-conDriver JDBC driver jar file path. For e.g.

conDriver D:\Database Drivers\mssql\sqljdbc4-4.0.jar

-psConsoleLog Prints logs on console. psConsoleLog

134 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

http://help.sap.com/disclaimer?site=http%3A%2F%2Fhelp.eclipse.org%2Findigo%2Findex.jsp%3Ftopic%3D%252Forg.eclipse.platform.doc.isv%252Freference%252Fmisc%252Fruntime-options.html
http://help.sap.com/disclaimer?site=http%3A%2F%2Fhelp.eclipse.org%2Findigo%2Findex.jsp%3Ftopic%3D%252Forg.eclipse.platform.doc.isv%252Freference%252Fmisc%252Fruntime-options.html

Parameters Sample Value

-conName Display name of the dataloader connection setting to be
used.

You must specify the following attribute from dataloader
connection file.

displayName="con"

conName con

-conPassword Password for the source backend system is specified in the
dataloader connection setting.

conPassword mypassword

-backendPassword Password for the user specified for source backend system
in the dataloader connection settings.

backendPassword backendpassword

-createTables Specify this argument if create table needs to be run while
running dataloader. There is no value required for this argu­
ment. To run the full initial download, it is recommended to
specify this argument.

createTables

-initialDownload Dataloader runs in initial and delta download mode. In SME
only initial mode is supported. Hence initialDownload must
be specified. No value is required for this argument.

-eccCfgExtractorFlag This flag enables download from Comm Tables and must be
specified with true argument.

-eccCfgExtractorFlag TRUE

Example

The usage of a batch file (dataloader.bat) file is recommended.

The application will return an exit code (see echo %ERRORLEVEL% in example cmd).

A batch/command script could look like:

@echo off

eclipse\eclipsec -vm "%JRE_HOME%\bin" --launcher.suppressErrors -application
com.sap.custdev.projects.fbs.slc.dataloader.headless.dataloaderapplication -noSplash -console
-psConsoleLog -conDriver "D:\DBdrivers\Database_Drivers\mssql\sqljdbc4-4.0.jar" -conName "con"
-conPassword "password" -backendPassword "bkpassword" -conFile "D:\DBdrivers\dataloader.xml"
-createTables -initialDownload

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 135

REM -Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005

@echo EXIT CODE: %ERRORLEVEL%

Exit Codes

0 All ok, Dataloader executed successfully

303 Dataloader settings file not found. Please Specify conFile

304 Issues while loading dataloader settings

307 Database driver not found

308 BackendPassword not specified

309 ConPassword not specified

2.10.6.1 Executing Headless Dataloader

To execute the script for headless dataloader, you must call the eclipse.exe or eclipsec.exe (without
additional console) in your eclipse installation directory, with the required arguments.

 Recommendation
Write a batch (.bat) or command (.cmd) file that calls the executable.

2.10.6.1.1 Eclipse-Specific Arguments

Argument Name Argument Description

--launcher.suppressErrors Suppress errors

Arguments must be set before vmargs (normally one of the
first arguments)

-application

com.sap.custdev.projects.fbs.slc.sme.extvarta

ble.upload.headless.externalvarianttableappli

cation

The application to run

Value (application ID) is separated from the argument by a
single space.

136 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Argument Name Argument Description

-noSplash Do not show the splash screen

-console Show a console window

-consoleLog Log messages to the console

-vmargs Java VM arguments.

This must be the last Eclipse argument because all ar­
guments after this one will be parsed as Java VM argu­
ments. For example, -vmargs -Xms128M -Xmx512M ,
-XX:PermSize=128M -XX:MaxPermSize=256M , etc.

 Posting Instructions

For a full list of the supported arguments, see the Eclipse documentation .

2.10.6.1.2 Dataloader Application-Specific Arguments

 Note
Use quotation marks ("") for values that contain spaces such as -conDriver "D:\Database
Drivers\mssql\sqljdbc4-4.0.jar.

Argument Name Example Argument Description

-conFile -conFile

"D:\DBdrivers\dataloader.xml"
The required path to the dataloader set­
tings file to use.

-conDriver -conDriver

"D:\DBdrivers\Database_Drivers

\mssql\sqljdbc4-4.0.jar"

The path to the connection driver jar
file.

-psConsoleLog -psConsoleLog Print logs on console.

-conName -conName "con" Display name of the dataloader connec­
tion setting to be used.

-conPassword -conPassword "mypassword" Connection password for the destina­
tion database to be used for data down­
load.

-backendPassword -backendPassword

"backendpassword"
Password for the user specified for
source backend system in the data­
loader connection settings.

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 137

http://help.sap.com/disclaimer?site=http%3A%2F%2Fhelp.eclipse.org%2Findigo%2Findex.jsp%3Ftopic%3D%252Forg.eclipse.platform.doc.isv%252Freference%252Fmisc%252Fruntime-options.html

Argument Name Example Argument Description

-createTables -createTables Specify this argument if create table
needs to be run while running the da­
taloader. There is no value required for
this argument.

-initialDownload -initialDownload Specify this argument if initial down­
load needs to be run while running the
dataloader. No value required for this
argument.

-eccCfgExtractorFlag -eccCfgExtractorFlag “TRUE” This argument is used to spec­
ify the value for ECC cfg extrac­
tor flag from SME. (com.sap.sxe.da­
taloader.GET_KB_FROM_CFGEXTRAC­
TOR)

2.10.6.1.3 Example: Headless Dataloader Execution

 Recommendation
We recommend using a batch (dataloader.bat) file.

The application will return an exit code (refer to echo %ERRORLEVEL% in example command.

A batch or command script could appear as follows:

@echo off

eclipse\eclipsec -vm "%JRE_HOME%\bin" --launcher.suppressErrors -application

com.sap.custdev.projects.fbs.slc.dataloader.headless.dataloaderapplication
-noSplash

-console

-psConsoleLog -conDriver "D:\DBdrivers\Database_Drivers\mssql\sqljdbc4-4.0.jar"

-conName "con" -conPassword "password" -backendPassword "bkpassword"

-conFile "D:\DBdrivers\dataloader.xml"-createTables
-initialDownloadREM -Xdebug -Xnoagent -Djava.compiler=NONE-
Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005@echo EXIT CODE:
%ERRORLEVEL%

2.10.6.1.4 Exit Codes for Dataloader Execution

The exit codes for headless dataloader execution are given in the table below:

138 PUBLIC
SAP Solution Sales Configuration

Solution Modeling Environment

Exit Code Description

0 All OK; Dataloader executed successfully.

303 Dataloader settings file not found. Please specify conFile.

304 Issues while loading dataloader settings.

307 Database driver not found.

308 backendPassword not specified.

309 conPassword not specified

SAP Solution Sales Configuration
Solution Modeling Environment PUBLIC 139

3 Solution Configuration Environment

Use

The solution configuration environment is part of the SAP Solution Sales Configuration application. It is used to
define the configuration of a solution in a business document, such as a sales quotation or a sales order, and is
integrated with sales order processing transactions in the following systems:

• Hybris Commerce Suite
• SAP S/4HANA

Runtime Component

At run time, SAP Solution Sales Configuration comprises of the following components:

• A configuration UI: Launched from a sales application within the context of a sales document. It interacts
with the engine via a command layer with well-documented APIs.

• KBO - knowledge base orchestration layer: Enables multiple discrete knowledge bases to be accessed
dynamically as required during a configuration session.

• SPE - Sales Pricing Engine: Accesses the pricing master data to calculate pricing.
• SCE - Sales Configuration Engine: Accesses knowledge base run time versions in the back-end database

(if not already cached in memory). These can be solution knowledge bases generated from the solution
modeling environment as well as product knowledge bases from.

Components of the SCE:

Component Description

PMS - pattern matching Responsible for identifying the objects in the configuration
that are "in scope", as defined by the objects/condition sec­
tions of constraints and rules. This process is called pattern
matching.

In addition, this component is responsible for forward chain­
ing. That is, "firing" the constraints whose patterns are
matched and altering the content of the configuration ses­
sion, adding instances, or setting characteristic values.

140 PUBLIC
SAP Solution Sales Configuration

Solution Configuration Environment

Component Description

TMS - truth maintenance Tracks the facts asserted into the configuration session,
along with their justifications.

In addition, this component is responsible for retraction.
That is, if a particular fact A is the justification for an­
other fact B, and A is no longer true (for example, the
user changes an entered value), the justification must be
removed/retracted. Facts that are no longer justified must
be removed from the configuration session. This may mean
changing a characteristic value setting or deleting an in­
stance.

DDB - dynamic database This is the content of the configuration session.

The PMS and TMS invoke methods on the ddb_inst class
to request action in the configuration session, to set a value,
or to create or remove an instance.

 Note
An event is logged for each action taken by these three components. The tracing and profiling capabilities
of the engine support recording of these events, which are used in the solution modeling environment and,
if enabled, in the production run time engine.

Integration

The solution configuration environment is built and packaged as an Enterprise Java Beans (EJB) component
based on Java 2 Enterprise Edition (J2EE) standards. It is primarily intended to be deployed on an SAP J2EE
NetWeaver Server.

The solution configuration environment includes the following components:

• Database (DB) Layer
• Sales Configuration Engine (SCE)
• Sales Pricing Engine (SPE)
• Configuration Session: This component encapsulates all of the configuration engine-related functionality

and exposes the configuration engine commands to calling applications.
• Pricing Session: This component encapsulates all of the pricing-related functionality and exposes the

pricing engine commands to calling applications.
• EJB Layer
• JavaServer Pages (JSP) User Interface (UI)

SAP Solution Sales Configuration
Solution Configuration Environment PUBLIC 141

The following figure illustrates the architecture of the solution configuration environment when it is integrated
with a SAP S/4HANA system:

Architecture for Integrating Solution Configuration Environment with SAP S/4HANA

The solution configuration environment for SAP Commerce is built and packaged as a Java Archive (.jar),
which is added to the SAP Commerce class path. The Hybris service layer directly communicates with the
Solution Configuration Engine (ConfigSession) "in-process", giving the best performance using Java native
"call-by-reference".

The solution configuration environment integrates with the following business processes:

• Configure-to-Order in SAP S/4HANA
• Vehicle Management in SAP S/4HANA
• Procurement in SAP S/4HANA

When you choose to edit a configurable product in a sales document, the system opens the solution
configuration UI. When you accept your configuration and close the UI, you are returned to the transaction
document (quote, order, and vehicle), and the configuration result is reflected in the document, with any
sales-relevant components listed as sub-line items. A saved configuration can be reopened, changed, and
saved in the sales document, as necessary.

142 PUBLIC
SAP Solution Sales Configuration

Solution Configuration Environment

Features

• Advanced Mode Configuration
SAP systems provide two ways of modeling solutions: compatible mode and advanced mode. Compatible
mode is sufficient to model simple product configurations; however, advanced mode is required to model
more complex solution configurations.
SAP Internet Pricing and Configurator (IPC) is a component that is integrated into several standard SAP
systems, including SAP CRM, SAP ECC, and SAP S/4HANA. While the IPC can generate an advanced mode
configuration, the configuration result is not integrated with the processes outside the IPC. Therefore, the
advanced mode configuration result generated by the IPC cannot be used in the downstream standard
business processes. SAP Solution Sales Configuration overcomes this limitation by providing advanced
mode configuration capabilities that are fully integrated with the standard configure-to-order business
processes. For more information, see .

• Starting a Configuration from a Component
In addition to the top-down approach, where you add a solution to a sales document, and then configure
the component parts of the solution, you can also begin a solution configuration by adding a component
of the solution to a sales document. When you choose to configure the component, the system recognizes
that it is part of a solution (based on your Customizing settings), and initializes the configuration using the
knowledge base for the solution.

• Complex Relationships Between Components
A bill of material (BOM) can be used to define simple relationships where one component comprises
several subcomponents. SAP Solution Sales Configuration allows you to define more complex
relationships between the components of a solution, for example, one-to-one and one-to-many
relationships. These relationships are defined in the solution modeling environment as abstract data
types (ADTs). Moreover, simple relationships between components can also be defined using ADTs.
Therefore, SAP Solution Sales Configuration eliminates the need to maintain BOMs. The configuration
engine interprets the ADTs and reflects them in the sales document. For more information, see .

• Reference Characteristics
The system allows you to define reference characteristics as part of the solution model. The value of a
reference characteristic can be used in the following ways:
• Passed to the configuration as a context
• Passed from the configuration to the sales document in the target system

• Hard and Soft Ties in Follow-Up Documents
When you create follow-up documents for a quotation in SAP CRM, you can split the components of the
solution into separate documents. The system allows you to control which components can be split into
separate sales documents and which must remain together. For more information, see .

• Interactive Pricing
During the solution configuration process, the pricing engine recalculates the total price of the solution
after each change to the configuration. The total price of the current configuration and the delta price for
each characteristic value are displayed in the user interface. Interactive pricing is an option that can be
enabled or disabled in the configuration user interface. For more information, see Interactive Pricing and
Delta Pricing [page 153].

• Enhanced Solution Configuration User Interface (JSP UI)
The JSP UI is designed as an accordion with collapsible layers. It features a Configuration layer that
contains a layer for each component in the solution.
The following icons are used to indicate the status of each component and characteristic:
• A green square indicates that the configuration is complete.

SAP Solution Sales Configuration
Solution Configuration Environment PUBLIC 143

• A yellow triangle indicates that the configuration is incomplete.
• A gray diamond indicates that the field cannot be edited.

You can enable or disable the display of these icons using the Settings option in the Configuration layer.
For more information about the functions in the JSP UI, see Creating Solution Configurations [page 170].

Customizing the Solution Configuration Engine

As a system administrator, you can also customize the behavior of the Solution Configuration Engine, by
modifying the engine parameters. For more information about working with engine parameters, please refer
to SAP Note 2291607 (Engine Parameters for Hybris SSC, SAP Solution Sales Configuration, and Solution
Modeling Environment).

Related Information

Configure-To-Order in SAP S/4HANA [page 144]

3.1 Configure-To-Order in SAP S/4HANA

Use

You use this process to add a solution to a sales document and configure it in the SAP S/4HANA system.

 Note
SAP S/4HANA has an integrated configuration engine called the Variant Configurator, which supports
only compatible-mode configurations, however. If you install SAP Solution Sales Configuration, the SAP
S/4HANA system opens the SAP Solution Sales Configuration JavaServer Pages (JSP) user interface (UI)
or runtime UI Composer UI depending on the setup, instead of the standard Variant Configurator user
interface when you choose to configure a product (a solution) during the sales ordering process.

An alternative to the Variant Configurator for compatible-mode configurations is the use of the SSC.

Prerequisites

• You have entered product master data and configuration master data.
• You have set up the product to be configured with the SAP Solution Sales Configurator via the transaction/

SLCE/CFG_MAT.

144 PUBLIC
SAP Solution Sales Configuration

Solution Configuration Environment

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/2291607

For detailed information regarding setting up the UI for a material, see UI Composer Runtime UI. You must
follow this process even when you are only using the JSP UI to launch configuration.

Process

1. You create a sales document, such as a quotation.
2. You add a solution to the sales document.

The system displays the solution as a line item in the sales document.
3. You choose to configure the solution.

The system displays the configuration user interface for the solution and all of its component parts.
4. You configure the solution.
5. You accept the configuration.

The system closes the configuration user interface and displays the sales document. Each sales-relevant
component of the solution is displayed as a line item.

More Information

For more information about the functions in the configuration user interface, see Creating Solution
Configurations [page 170].

3.1.1 IDOC Inbound Interface for Sales Order Creation

The business scenario for enhancement of S/4HANA IDOC inbound interface for sales order creation has the
following steps:

1. You send IDOCs from a source to a target system where the source system may be an SAP- or third-party
system with SSC add-on installed and the target system is an SAP S/4HANA system with the SSC add-on
installed.

2. You use ORDERS IDOC inbound interface in the target S/4HANA system to create sales documents with
the configured items.

3. You use basic IDOC type /SLCE/ORDERS05 and the function module for IDOC_INPUT_ORDERS standard
inbound for IDOC processing.

SAP Solution Sales Configuration
Solution Configuration Environment PUBLIC 145

https://help.sap.com/viewer/f212b1c018374bf6a38f85da5474231f/1907%20001/en-US/016a788a05154238a5ed801417f9bb2b.html

IDOC Processing

A S/4HANA solution configuration created by SSC operates in the following two modes at the same time:

• The Advanced Mode model that contains the complete solution configuration, for example, including ADT
characteristics

• The Classic Mode model, also known as the Passive Receiving Structure (PRS), that contains only those
parts of the configuration that are relevant for low-level production processes in SAP S/4HANA. The PRS is
returned and stored by SSC in the CBase format.
The results of the advanced mode configuration are returned and stored by SSC in the rich-config XML
format.

Basic IDOC type ORDERS05 provides a set of segments to transfer configuration results, such as, E1CUCFG,
E1CUINS, etc. These segments must be used to transfer the PRS. As of today, the rich-config XML cannot be
transferred by a standard IDOC type or BAPI.

If you create sales orders by IDOCs that contain only the PRS configuration results but not the rich-config
XML, then the users cannot see the full advanced mode configuration when they try to open the configuration
manually in that sales order.

To solve this problem, SAP Notes 1996874 (Orders IDOC Inbound for SSC - config XML extension) and
2003665 (Orders IDOC Inbound for SSC - config XML extension (II)) enhance IDOC inbound processing in
the following way:

• Enhancement of inbound function module IDOC_INPUT_ORDERS:
• New user-exit that allows customers to read rich-config XML from own IDOC segment(s) or fetch the

XML from an external source, for example, by an own web service
• Functionality to export the retrieved XML(s) to ABAP memory

• Enhancement of sales document creation process:
• If an XML is found in ABAP memory, it will be imported from memory
• The XML will be assigned to the corresponding sales item

146 PUBLIC
SAP Solution Sales Configuration

Solution Configuration Environment

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/1996874
http://help.sap.com/disclaimer?site=https://me.sap.com/notes/2003665

Before Implementation of Solution

After implementation of solution (Read: SAP Note 1996874 (Orders IDOC Inbound for SSC - config XML
extension)).

SAP Solution Sales Configuration
Solution Configuration Environment PUBLIC 147

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/1996874

After Implementation of Solution

You can use this process to create a sales document with items configured by IDOC. You will be able to view the
advanced mode model by opening the configuration in SSC UI.

For more information about creating a sales order, refer to Enhancement of S/4HANA IDOC Inbound
Interface for Sales Order Creation.

Related Information

Enhancement of S/4HANA IDOC Inbound Interface for Sales Order Creation [page 148]

3.1.1.1 Enhancement of S/4HANA IDOC Inbound Interface
for Sales Order Creation

 Note

You need to use the enhancements provided in SAP Notes 1996874 (Orders IDOC Inbound for SSC -
config XML extension) and 2003665 (Orders IDOC Inbound for SSC - config XML extension (II)).

148 PUBLIC
SAP Solution Sales Configuration

Solution Configuration Environment

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/1996874
http://help.sap.com/disclaimer?site=https://me.sap.com/notes/2003665

Prerequisites

The following prerequisites should be met for creation of a sales order:

• FBS Solution Sales Configurator (SSC) add-on for SAP S/4HANA (SLCE) has been installed with the
correct version and latest support package.

• SAP Note 2003665 (Orders IDOC Inbound for SSC - config XML extension (II)) has been implemented,
including pre- and post-installation steps.

• The following notes need to be implemented as well:
• SAP Note 1991156 (IDoc order creation: Sub-item without configuration tie)
• SAP Note 1996874 (Order IDOC Inbound for SSC - config XML extension)
• SAP Note 2006212 (Additional enhancement point in function group V45CU)
• SAP Note 1923474 (Items on the Sales Document are deleted and recreated.)
• SAP Note 1880466 (ECC:Create With Reference results in Exception on Config UI)

Assumptions

The following assumptions are considered during the process of enhancement:

• You have already customized ORDERS IDOC inbound interface in the target S/4HANA system and are able
to create sales documents by basic IDOC type ORDERS05.

• The sales documents are already created with the correct PRS configuration and only the rich-config XML
is missing

Out of Scope

The out of scope processes and functions are especially but not limited to the following:

• Transfer and storage of custom relations in table /SLCE/IRT
• IDOC outbound interface
• IDOC interface for order change
• Other IDOC interfaces or BAPIs

Related Information

IDOC Inbound Interface for Sales Order Creation [page 145]

SAP Solution Sales Configuration
Solution Configuration Environment PUBLIC 149

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/2003665
http://help.sap.com/disclaimer?site=https://me.sap.com/notes/1991156
http://help.sap.com/disclaimer?site=https://me.sap.com/notes/1996874
http://help.sap.com/disclaimer?site=https://me.sap.com/notes/2006212
http://help.sap.com/disclaimer?site=https://me.sap.com/notes/1923474
http://help.sap.com/disclaimer?site=https://me.sap.com/notes/1880466

3.1.2 Light Engineer-to-Order

Use

Light engineer-to-order (“light ETO”) enables you to split a complex configuration between the sales level and
the engineering level, making the configuration process clearer. The processor of the production order BOM
can also change the configuration on an individual basis in cases where a required change is too specific to be
included in the configuration rules.

Process

1. The sales representative creates a sales order that contains a configurable material, either directly in SAP
S/4HANA (transaction VA01).

2. The sales representative starts the sales configurator by choosing the Item details: Configuration
pushbutton.

3. The sales configurator explodes the sales order BOM components.
4. The sales representative configures the components in the sales order BOM. The component may already

be partly configured as the result of rules that have been defined in the system (see Defining Solution
Dependencies [page 44]).

 Note
The component configured here is also the header of the production order BOM and is, therefore,
visible in both the solution sales configurator and the variant configurator.

5. The sales representative accepts the configuration to transfer the result to the production order. The sales
order is then saved and the sales order number communicated to the production engineer.

6. The production engineer opens the order BOM, for example, in transaction CU51 by entering the order
number and the item number that he or she wants to configure.

 Note
All standard engineering-to-order processes can be used (for example, transactions CSKB, CS6x, and
CU51).

The variant configurator opens and displays the header level of the engineering structure.
7. The production engineer navigates to the subitems and configures the relevant data.
8. The production engineer clicks the configuration tree structure to explode the BOM again. If there are

any dependencies between the data (for example, the engineer has specified a component but not the
component type), the system requests the missing data.

9. The production engineer saves the data.

150 PUBLIC
SAP Solution Sales Configuration

Solution Configuration Environment

Example

You have a material (MY_SYSTEM) that has been configured with the components RACK, SUBRACK, and
DEVICE. The device slots into the subrack, which in turn slots into the rack.

The sales representative creates a sales order for the material MY_SYSTEM and starts the sales configurator.
After the sales representative has specified the general data, the system displays three more dropdown areas
- one for RACK, one for SUBRACK, and one for DEVICE (whereby SUBRACK and DEVICE are classes only). The
sales representative configures the data for RACK and saves the order.

The production engineer opens the order BOM with the item number that is to be configured (in this example,
item 20). The engineer navigates to SUBRACK in the configuration tree structure and enters the required data.
He or she then explodes the BOM again and repeats the process to configure the required data for DEVICE.

3.1.2.1 Changing Bills of Material

Use

In certain cases, a production engineer may want to change the data in a bill of material for a specific
production order. The required change is too specific to be included in the configuration rules, and so the
engineer must change the data manually.

Procedure

1. Display the order BOM in transaction CU51 and open the configuration result by choosing the Result
pushbutton (CTRL + F9).

2. Select the checkbox for the component that you want to change and choose the Item in Full pushbutton
(SHIFT + F4).

3. Change the required data, return to the configuration result, and save.

 Note
You can also add further items to the BOM by choosing the Insert pushbutton (SHIFT + F1). Examples of
items that you can add include documents, texts, and compatible units.

3.2 Configure-To-Order in Hybris

Use

You use this process to configure a solution in Hybris and then add it to your shopping cart.

SAP Solution Sales Configuration
Solution Configuration Environment PUBLIC 151

Prerequisites

• You have created product master data and configuration master data.
• You have created the solution product in your Hybris catalog.
• You have downloaded the master data from the SAP back-end system to the Hybris database using the

Data Loader.
For more information on using the Data Loader in Hybris, see the Hybris help portal and Integrations
and Data Management SAP Integrations SAP Product Configuration (On-Premise Edition) Installing
Product Configuration Post Installation Steps Configuring and Running the Data Loader Loading
Configuration Master Data through Data Loader .

Process

1. You search for the solution product you require in the catalog.
2. You choose to configure the solution.

The system displays the configuration user interface.
3. You configure the solution.
4. You add the solution to your shopping cart.

The system closes the configuration user interface and displays your shopping cart.
5. You start the checkout process.

More Information

For more information about the functions in the configuration user interface, see Creating Solution
Configurations [page 170].

3.2.1 Adding Related Products to the Solution

Context

SAP Solution Sales Configuration enables you to manually add related products to your solution.

152 PUBLIC
SAP Solution Sales Configuration

Solution Configuration Environment

https://help.hybris.com

Procedure

1. Open the Find Related Products dialog box.

The system displays a list of related products. The default implementation of the search filter for “related
products” uses the potential “non-part instances”of the solution model. You can enhance this with your
own logic.

2. Select the product that you want to add to the solution.

The system reports that the product has been added.
3. Continue to add further products or return to the solution.

Results

The system shows the added product in the section Selected Products Related to This Solution.

3.3 Interactive Pricing and Delta Pricing

Use

During the solution configuration process, the system calculates and displays the price of the solution after
each change in the configuration, for example, when the value of a characteristic is changed, when an instance
is deleted, and when an instance is added. This is known as interactive pricing.

To inform the user about the impact of a characteristic selection on the total price, the system also displays the
surcharge price or the price reduction next to each characteristic value in the configuration user interface. This
is known as delta pricing.

Integration

The solution configuration process uses configuration and pricing data from the source system. To access the
data, therefore, the system must be connected to the relevant database. This connection is implemented as a
static destination setting between the J2EE environment, where the configuration engine is deployed, and the
source system.

To optimize performance, pricing and configuration data is cached at Java stack level.

SAP Solution Sales Configuration
Solution Configuration Environment PUBLIC 153

Prerequisites

• You have maintained prices (list prices) for the required products.
• You have maintained one-to-one variant conditions in the solution configuration model to reflect the

surcharge or the price reduction for each characteristic value.

 Recommendation
To optimize system performance, SAP recommends that you maintain a pricing procedure that is
dedicated to interactive pricing purposes. This pricing procedure should hold only the necessary condition
types and condition tables relevant for interactive pricing.

Activities

Interactive Pricing

To calculate and display interactive prices, the system performs the following steps:

1. The order mapper interprets the solution configuration and converts it into a sales product structure that
can be used by the sales pricing engine (SPE).
The sales product structure is represented in the configuration result by the following types of instance
relationship:
• Sales abstract data type (ADT) characteristics (see Characteristic [page 23])
• Compatible mode sales bill of material (BOM) explosions of the super BOM

2. The system passes the sales product structure to the SPE.
3. The system triggers the pricing determination process.

The SPE calculates the total price of the solution, which is a summation of all the instance (product) list
prices and all the variant conditions attached to the selected characteristic values.

4. The system passes the result of the pricing determination process to the configuration user interface and
updates the display.

 Caution
The pricing procedure used for interactive pricing should not propagate the prices of subitems to the root
item price.

Delta Pricing

To calculate and display delta prices, the system performs the following steps:

1. The surcharge or reduction price for each pricing-relevant characteristic value is retrieved and displayed
next to each characteristic value in the user interface.

2. After each change to the configuration, the surcharge or reduction price is recalculated based on the user's
last selection.
It is assumed that a one-to-one characteristic value/variant condition assignment is used. Therefore, the
new delta prices only need to be calculated for the values of the characteristic that was changed last.
The following formula is used to calculate the delta price:
characteristic value price = variant condition value price - selected characteristic value price
If the value is positive, the delta price is a surcharge. If the value is negative, the delta price is a reduction.

154 PUBLIC
SAP Solution Sales Configuration

Solution Configuration Environment

More Information

 Note
You can enable and disable interactive pricing and delta pricing using a checkbox in the configuration user
interface. Unlike JSP UI, UI Composer runtime UI offers only header level price display as of now.

For more information about using the configuration user interface, see Creating Solution Configurations [page
170].

3.3.1 Pricing Formula and User Exits

Pricing is a highly customizable and configurable engine. However, in some cases, the regular features and
functionalities provided by the pricing engine are not sufficient. In such cases, it is possible to meet the special
business requirements by using Pricing Formulas and User Exits. These are custom functions that allow
customization of the default behavior of existing pricing conditions.

For more information about this, refer to the SAP Help Portal and navigate to Basic Functions and Master
Data in SD Processing (SD-BF) Basic Functions in SD Pricing and Conditions .

3.3.1.1 Available User Exits and APIs

Here, you can find all the relevant information related to the available pricing-related user-exit types. First,
the standard features are explained and then the different types of user exits. The parameters that form the
interface between pricing and user exits are also described briefly.

3.3.1.1.1 Logging Capabilities

For customer pricing user exits, there is an easy way to include fast logging. The
com.sap.spe.base.logging.UserexitLogger class implements two methods for logging debug
messages or error messages. Logging is fast and done only if the appropriate log level is reached, which
you can define at runtime.

ZSpecialRoundingValueFormula (shorten)

package your.company.pricing.userexits;

import com.sap.spe.base.logging.UserexitLogger;

SAP Solution Sales Configuration
Solution Configuration Environment PUBLIC 155

https://help.sap.com/

[..]

public class ZSpecialRoundingValueFormula extends ValueFormulaAdapter {

 private static UserexitLogger userexitlogger =

 new UserexitLogger(ZSpecialRoundingValueFormula.class);

 public BigDecimal overwriteConditionValue(IPricingItemUserExit item,

 IPricingConditionUserExit condition) {

[..]

 userexitlogger.writeLogDebug("old cond value: "

 + val.getValueAsString());

[..]

 }

}

Line No. Description

8 Create a static instance of the UserexitLogger class. As
constructor parameter, pass the actual class.

13 Use writeLogDebug(String s) or
writeLogError(String s) to log the string s in the log.

3.3.1.1.2 Condition Base Formula

The condition base formula can be used to overturn the automatically calculated base value of a condition. This
type of user exit must be assigned in Customizing to the user exits type BAS (condition base formula).

This user exit is called after the condition base value has been calculated for each pricing
condition. The user exit class must be inherited from BaseFormulaAdapter and implement method
overwriteConditionBase. The overwriteConditionBase method has the parameters pricingItem
and pricingCondition, which represents the item and the actual condition.

If this method returns a null object reference, pricing will keep the base value that is called automatically.

ZSpecialBaseFormula

package your.company.pricing.userexits;

import java.math.BigDecimal;

import com.sap.spe.base.logging.UserexitLogger;

import com.sap.spe.conversion.IDimensionalValue;

import com.sap.spe.pricing.transactiondata.userexit.IPricingConditionUserExit;

import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;

import com.sap.spe.pricing.transactiondata.userexit.BaseFormulaAdapter;

public class ZSpecialBaseFormula extends BaseFormulaAdapter {

 private static UserexitLogger userexitlogger =

 new UserexitLogger(ZSpecialBaseFormula.class);

156 PUBLIC
SAP Solution Sales Configuration

Solution Configuration Environment

 public BigDecimal overwriteConditionBase(IPricingItemUserExit pricingItem,

 IPricingConditionUserExit pricingCondition) {

 BigDecimal result;

 userexitlogger.writeLogDebug("old cond base: "

 + pricingCondition.getConditionBase().getValueAsString());

 // double the base value

 result = pricingCondition.getConditionBase().getValue().

 multiply(new BigDecimal("2"));

 userexitlogger.writeLogDebug("new cond base: " + result);

 return result;

 }

}

Line No. Description

11 Extend/subclass the API BaseFormulaAdapter.

16 Overwrite the implementation of the
overwriteConditionBase method.

25 Change the value of the automatically determined condition
base.

30 Return the changed condition base value.

3.3.1.1.3 Item Calculation Begin Formula

This seldom-used user exit is available to change the document and item if necessary before item pricing takes
place. This type of user exit must be assigned in Customizing to user exit type CAB (Item Calculation Begin
Formula).

The user exit class must be inherited from PricingItemCalculateBeginFormulaAdapter. It passes a
reference to the pricing document (prDocument) and the item (prItem).

ZSpecialCalculationBeginFormula

package your.company.pricing.userexits;

import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;

import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;

import
com.sap.spe.pricing.transactiondata.userexit.PricingItemCalculateBeginFormulaAdap
ter;

public class ZSpecialCalculationBeginFormula extends
PricingItemCalculateBeginFormulaAdapter {

{

SAP Solution Sales Configuration
Solution Configuration Environment PUBLIC 157

 private int stepNumber, counter;

 public void calculationBegin(IPricingDocumentUserExit prDocument,

 IPricingItemUserExit prItem) {

 stepNumber = 10;

 counter = 1;

 prDocument.setZeroPriceActive(true);

 }

}

Line No. Description

7 Extend the API
PricingItemCalculateBeginFormulaAdapter

12 Overwrite the implementation of the calculationBegin
method

18 Set the document to accept zero prices as valid prices

3.3.1.1.4 Item Calculation End Formula

This seldom-used user exit is available to change the document and item if necessary after item pricing has
taken place. This type of user exit must be assigned in Customizing to user exit type CAE (Item Calculation End
Formula).

The user exit class must be inherited from PricingItemCalculateEndFormulaAdapter. It passes a
reference to the pricing document (prDocument) and the item (prItem).

ZSpecialCalculationEndFormula

package your.company.pricing.userexits;

import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;

import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;

import
com.sap.spe.pricing.transactiondata.userexit.PricingItemCalculateEndFormulaAdapte
r;

public class ZSpecialCalculationEndFormula extends
PricingItemCalculateEndFormulaAdapter {

 private int stepNumber, counter;

 public void calculationEnd(IPricingDocumentUserExit prDocument,

 IPricingItemUserExit prItem) {

 stepNumber = 10;

158 PUBLIC
SAP Solution Sales Configuration

Solution Configuration Environment

 counter = 1;

 prItem.findPricingCondition(stepNumber, counter).setConditionControl('A');

 }

}

Line No. Description

7 Extend the API
PricingItemCalculateEndFormulaAdapter

11 Overwrite the implementation of the calculationEnd
method

16 Set the condition control of the pricing condition at
stepNumber 10 to Automatic A

3.3.1.1.5 Configuration Formula

This seldom-used user exit is called when the product configuration process creates subitems. This type of
user exit must be assigned in Customizing to user exit type CFG (Configuration Formula), which is called for
subitems created by SCE.

The user exit class must be inherited from SPCSubItemCreatedByConfigurationFormulaAdapter. For
each subitem, method isRelevantForPricing is called and a reference to the new subitem and the
configuration instance is passed.

ZSpecialConfigurationFormula

package your.company.pricing.userexits;

import com.sap.spc.document.userexit.ISPCItemUserExitAccess;

import com.sap.sce.front.base.Instance;

import
com.sap.spc.document.userexit.SPCSubItemCreatedByConfigurationFormulaAdapter;

public class ZSpecialConfigurationFormula extends

 SPCSubItemCreatedByConfigurationFormulaAdapter {

 public boolean isRelevantForPricing(ISPCItemUserExitAccess subItem,

 Instance instance) {

 return subItem.isRelevantForPricing();

 }

}

SAP Solution Sales Configuration
Solution Configuration Environment PUBLIC 159

Line No. Description

8 Extend the API
SPCSubItemCreatedByConfigurationFormulaAdapte

r

10 Implement the isRelevantForPricing method

13 Set the configuration subitem to pricing-relevant or not

3.3.1.1.6 Condition Init Formula

After a pricing condition has been initialized, it can be changed with this user exit, which is called whenever an
internal condition (a transactional object or business entity) is created. This type of user exit must be assigned
in Customizing to user exit type CNI (Condition Init Formula).

The user exit class must be inherited from PricingConditionInitFormulaAdapter and must overwrite
the method init. It allows the new condition to be changed (parameter prCondition).

ZSpecialConditionInitFormula

package your.company.pricing.userexits;

import java.math.BigDecimal;

import com.sap.spe.pricing.transactiondata.userexit.IPricingConditionUserExit;

import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;

import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;

import
com.sap.spe.pricing.transactiondata.userexit.PricingConditionInitFormulaAdapter;

public class ZSpecialConditionInitFormula extends
PricingConditionInitFormulaAdapter {

 public void init(IPricingDocumentUserExit prDocument, IPricingItemUserExit
prItem,

 IPricingConditionUserExit prCondition) {

 if (prCondition.getConditionTypeName() != "0PR0"

 && prCondition.getChangeOfRateAllowed())

 prCondition.setConditionRateValue(new BigDecimal("2"));

 }

}

Line No. Description

10 Extend the API PricingConditionInitFormulaAdapter

160 PUBLIC
SAP Solution Sales Configuration

Solution Configuration Environment

Line No. Description

12 Implement the init method

17 Set the condition rate to 2

3.3.1.1.7 Copy Formula

While a document is being copied, the pricing condition can be fixed or other changes can take place if
required. This type of user exit must be assigned in Customizing to user exit type CPY (Copy Formula).

This user exit is called during the copying process. The user exit class must be inherited from class
PricingCopyFormulaAdapter and implement method pricingCopy. Parameters pricingDocument,
pricingItem, and pricingCondition are references to the target document, item, and condition. The
pricing type describes what should happen to the pricing result when new pricing takes place. The parameter
copyType is a reference to the Customizing used for the copy process; sourceSalesQuantity contains the
old quantity of the source item.

ZSpecialCopyFormula

package your.company.pricing.userexits;

import com.sap.spe.conversion.IQuantityValue;

import com.sap.spe.pricing.customizing.ICopyType;

import com.sap.spe.pricing.customizing.IPricingType;

import com.sap.spe.pricing.transactiondata.userexit.IPricingConditionUserExit;

import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;

import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;

import com.sap.spe.pricing.transactiondata.userexit.PricingCopyFormulaAdapter;

public class ZSpecialCopyFormula extends PricingCopyFormulaAdapter {

 public void pricingCopy(IPricingDocumentUserExit pricingDocument,
IPricingItemUserExit

 pricingItem, IPricingConditionUserExit
pricingCondition,

 IPricingType pricingType, ICopyType copyType,
IQuantityValue

 sourceSalesQuantity) {

 // fix condition value and base

 pricingCondition.setConditionControl('E');

 }

}

Line No. Description

11 Extend the API PricingCopyFormulaAdapter

SAP Solution Sales Configuration
Solution Configuration Environment PUBLIC 161

Line No. Description

13 Overwrite the implementation of the pricingCopy method

19 Fix the conditions value and base by setting the
conditionControl to E

3.3.1.1.8 Document Init Formula

After a pricing document has been initialized, it can be changed with this user exit, which is called when a new
pricing document is created. This type of user exit must be assigned in Customizing to user exits type DOI
(Document Init Formula).

The user exit class must be inherited from class PricingDocumentInitFormulaAdapter and implement
method init. A reference to the new document is passed.

ZSpecialDocumentInitFormula

package your.company.pricing.userexits;

import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;

import
com.sap.spe.pricing.transactiondata.userexit.PricingDocumentInitFormulaAdapter;

public class ZSpecialDocumentInitFormula extends
PricingDocumentInitFormulaAdapter {

 public void init(IPricingDocumentUserExit prDocument) {

 if (!prDocument.isAlwaysPerformingGroupConditionProcessing())

 prDocument.setAlwaysPerformingGroupConditionProcessing(true);

 }

}

Line No. Description

6 Extend the API DocumentInitFormula

8 Overwrite the implementation of the init method

10 Set group condition processing to active

162 PUBLIC
SAP Solution Sales Configuration

Solution Configuration Environment

3.3.1.1.9 Group Key Formula

This user exit can be used to replace the automatically determined condition value. This type of user exit must
be assigned in Customizing to user exit type VAL (Condition Value Formula).

This user exit is called after the condition value has been calculated for each pricing condition.
The user exit class must be inherited from class ValueFormulaAdapter and implement at least
overwriteConditionValue. If group condition processing is enabled for the condition type, the
implementation of method overwriteGroupConditionValue is possible. Both methods can return null to
indicate that the original value is to be taken.

ZSpecialRoundingValueFormula

package your.company.pricing.userexits;

import java.math.BigDecimal;

import com.sap.spe.base.logging.UserexitLogger;

import com.sap.spe.conversion.ICurrencyValue;

import com.sap.spe.pricing.transactiondata.userexit.IGroupConditionUserExit;

import com.sap.spe.pricing.transactiondata.userexit.IPricingConditionUserExit;

import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;

import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;

import com.sap.spe.pricing.transactiondata.userexit.ValueFormulaAdapter;

public class ZSpecialRoundingValueFormula extends ValueFormulaAdapter {

 private static UserexitLogger userexitlogger =

 new UserexitLogger(ZSpecialRoundingValueFormula.class);

 public BigDecimal overwriteConditionValue(IPricingItemUserExit item,

 IPricingConditionUserExit condition) {

 BigDecimal result;

 ICurrencyValue val = condition.getConditionValue();

 userexitlogger.writeLogDebug("old cond value: "

 + val.getValueAsString());

 result = val.getValue().setScale(0, BigDecimal.ROUND_HALF_UP);

 BigDecimal qnt = item.getProductQuantity().getValue();

 qnt = qnt.divide(new BigDecimal("100"), 2, BigDecimal.ROUND_HALF_UP);

 userexitlogger.writeLogDebug("new cond value: " + result.subtract(qnt));

 return result.subtract(qnt);

 }

 public BigDecimal overwriteGroupConditionValue(

 IPricingDocumentUserExit item, IGroupConditionUserExit condition) {

 // do nothing

 return null; }

}

SAP Solution Sales Configuration
Solution Configuration Environment PUBLIC 163

Line No. Description

13 Extend the API ValueFormulaAdapter

18 Overwrite the implementation of the
overwriteConditionValue method

33 Change the value of the automatically determined condition
value

33 Return the changed condition value

36 Overwrite the implementation of the
overwriteGroupConditionValue method

39 Return null to keep the automatically calculated value

3.3.1.1.10 Item Init Formula

After the pricing item has been initialized, it can be changed with this user exit, which is called when a new
pricing item is created. This type of user exit must be assigned in Customizing to user exit type ITI (Item Init
Formula).

The user exit class must be inherited from class PricingItemInitFormulaAdapter and implement method
init. A reference to the document and to the new item is passed.

ZSpecialItemInitFomula

package your.company.pricing.userexits;

import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;

import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;

import
com.sap.spe.pricing.transactiondata.userexit.PricingItemInitFormulaAdapter;

public class ZSpecialItemInitFomula extends PricingItemInitFormulaAdapter {

 public void init(IPricingDocumentUserExit prDocument, IPricingItemUserExit
prItem) {

 if (prItem.isStatistical())

 prItem.setExclusionFlag('$');

 }

}

Line No. Description

7 Extend the API ZSpecialItemInitFomula

164 PUBLIC
SAP Solution Sales Configuration

Solution Configuration Environment

Line No. Description

9 Overwrite the implementation of the init method

11 Set the item exclusion flag

3.3.1.1.11 Pricing Init

In previous releases, this user exit was called CRMDocumentStandardExit where it was used mainly to pass
header attributes to be used in method initializeDocument. As of Release 2.0 SP5, these attributes can
be customized. Pricing Init user exits can now be used only to set the unit of rounding to the smallest unit of a
currency. This type of user exit must be assigned in Customizing to the user exit type PRI (Pricing Init).

This user exit is called when a new pricing document is created. The user exit class must be inherited from
class PricingInitFormulaAdapter and must implement method initializeDocument. This method has
parameter documentUserExitAccess, which represents the pricing document.

ZPricingInit

package your.company.pricing.userexits;

import com.sap.spe.document.userexit.IDocumentUserExitAccess;

import com.sap.spe.document.userexit.PricingInitFormulaAdapter;

public class ZPricingInit extends PricingInitFormulaAdapter {

 public void initializeDocument(IDocumentUserExitAccess
documentUserExitAccess) {

 documentUserExitAccess.setUnitToBeRoundedTo(20);

 }

}

Line No. Description

6 Extend the API PricingInitFormulaAdapter

8 Overwrite the implementation of the initializeDocument
method

10 Set the rounding unit to 20

SAP Solution Sales Configuration
Solution Configuration Environment PUBLIC 165

3.3.1.1.12 Pricing Prepare

In previous releases, this user exit was called CRMItemStandardExit. Pricing Prepare user exits can be used
to add header and/or item attributes to be used during the pricing process. These attributes can now be
customized. This type of user exit must be assigned in Customizing to the user exit type PRP (Pricing Prepare).

The Pricing Prepare user exit is called when creating a new pricing item and when new pricing takes place. The
user exit class must be inherited from class PricingPrepareFormulaAdapter and must implement method
addAttributeBindings. This method has parameter itemUserExitAccess, which represents the pricing
item.

ZPricingPrepare

package your.company.pricing.userexits;

import com.sap.spe.document.userexit.IItemUserExitAccess;

import com.sap.spe.document.userexit.PricingPrepareFormulaAdapter;

public class ZPricingPrepare extends PricingPrepareFormulaAdapter {

 public void addAttributeBindings(IItemUserExitAccess itemUserExitAccess) {

 itemUserExitAccess.addAttributeBinding("ZLAND", "DE");

 }

}

Line No. Description

6 Extend the API PricingPrepareFormulaAdapter

8 Overwrite the implementation of the
addAttributeBindings method

10 Set the attribute ZLAND to the value “DE”.

3.3.1.1.13 Requirement

This user exit is used during condition determination at pricing procedure step/counter level and at condition
access step level. This type of user exit must be assigned in Customizing to the user exit type REQ
(Requirement).

The user exit class must be inherited from RequirementAdapter and implement method
checkRequirement. If this method returns false, the actual access is not made.

166 PUBLIC
SAP Solution Sales Configuration

Solution Configuration Environment

ZSpecialRequirement

package your.company.pricing.userexits;

import com.sap.spe.base.logging.UserexitLogger;

import com.sap.spe.condmgnt.customizing.IAccess;

import com.sap.spe.condmgnt.customizing.IStep;

import com.sap.spe.condmgnt.finding.userexit.IConditionFindingManagerUserExit;

import com.sap.spe.condmgnt.finding.userexit.RequirementAdapter;

public class ZSpecialRequirement extends RequirementAdapter {

 private static UserexitLogger userexitlogger =

 new UserexitLogger(ZSpecialRequirement.class);

 public boolean checkRequirement(IConditionFindingManagerUserExit item,

 IStep step, IAccess access)

 {

 String zland = item.getAttributeValue("ZLAND");

 if (zland == null || zland.equals("")) {

 userexitlogger.writeLogError("ZLAND attribute missing");

 return false;

 } else {

 return zland.equals("US");

 }

 }

}

Line No. Description

9 Extend the API RequirementAdapter

14 Overwrite the implementation of the checkRequirement
method

17 Retrieve an attribute value to be used for the check

22 Return the check result: “true” to make the access, “false”
not to make the access

3.3.1.1.14 Scale Base Formula

This user exit can be used to replace the automatically determined scale base. This type of user exit must be
assigned in Customizing to the user exit type SCL (Scale Base Formula).

This user exit is called after the condition-scale base value has been calculated for a pricing condition.
The user exit class must be inherited from class ScaleBaseFormulaAdapter and implement at
least overwriteScaleBase. If group condition processing is enabled for the condition type, method
overwriteGroupScaleBase can also be implemented. Both methods can return null to indicate that the
original value is to be taken.

SAP Solution Sales Configuration
Solution Configuration Environment PUBLIC 167

ZSpecialScaleBaseFormula

package your.company.pricing.userexits;

import java.math.BigDecimal;

import com.sap.spe.base.logging.UserexitLogger;

import com.sap.spe.pricing.transactiondata.userexit.IGroupConditionUserExit;

import com.sap.spe.pricing.transactiondata.userexit.IPricingConditionUserExit;

import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;

import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;

import com.sap.spe.pricing.transactiondata.userexit.ScaleBaseFormulaAdapter;

public class ZSpecialScaleBaseFormula extends ScaleBaseFormulaAdapter {

 private static UserexitLogger userexitlogger =

 new UserexitLogger(ZSpecialScaleBaseFormula.class);

 public BigDecimal overwriteScaleBase(IPricingItemUserExit item,

 IPricingConditionUserExit condition,

 IGroupConditionUserExit groupCondition) {

 userexitlogger.writeLogDebug("Old scale: " +

 groupCondition.getConditionScale().getValueAsString());

 if (groupCondition.getConditionScale() != null) {

 return groupCondition.getConditionScale().getValue().setScale(0,

 BigDecimal.ROUND_FLOOR);

 }

 else

 {

 return null;

 }

 }

 public BigDecimal overwriteGroupScaleBase(IPricingDocumentUserExit
document,

 IGroupConditionUserExit groupCondition) {

 if (groupCondition.getConditionScale() != null) {

 return groupCondition.getConditionScale().getValue().setScale(0,

 BigDecimal.ROUND_FLOOR);

 }

 else

 {

 return null;

 }

 }

}

Line No. Description

12 Extend the API ScaleBaseFormulaAdapter

17 Overwrite the implementation of the overwriteScaleBase
method

25 Return the changed scale base value

168 PUBLIC
SAP Solution Sales Configuration

Solution Configuration Environment

Line No. Description

34 Overwrite the implementation of the
overwriteGroupScaleBase method

38 Return the changed scale base value

3.3.1.1.15 Condition Value Formula

This user exit can be used to replace the automatically determined condition value. This type of user exit must
be assigned in Customizing to user exit type VAL (Condition Value Formula).

This user exit is called after the condition value has been calculated for each pricing condition.
The user exit class must be inherited from class ValueFormulaAdapter and implement at least
overwriteConditionValue. If group condition processing is enabled for the condition type, the
implementation of method overwriteGroupConditionValue is possible. Both methods can return null to
indicate that the original value is to be taken.

ZSpecialRoundingValueFormula

package your.company.pricing.userexits;

import java.math.BigDecimal;

import com.sap.spe.base.logging.UserexitLogger;

import com.sap.spe.conversion.ICurrencyValue;

import com.sap.spe.pricing.transactiondata.userexit.IGroupConditionUserExit;

import com.sap.spe.pricing.transactiondata.userexit.IPricingConditionUserExit;

import com.sap.spe.pricing.transactiondata.userexit.IPricingDocumentUserExit;

import com.sap.spe.pricing.transactiondata.userexit.IPricingItemUserExit;

import com.sap.spe.pricing.transactiondata.userexit.ValueFormulaAdapter;

public class ZSpecialRoundingValueFormula extends ValueFormulaAdapter {

 private static UserexitLogger userexitlogger =

 new UserexitLogger(ZSpecialRoundingValueFormula.class);

 public BigDecimal overwriteConditionValue(IPricingItemUserExit item,

 IPricingConditionUserExit condition) {

 BigDecimal result;

 ICurrencyValue val = condition.getConditionValue();

 userexitlogger.writeLogDebug("old cond value: "

 + val.getValueAsString());

 result = val.getValue().setScale(0, BigDecimal.ROUND_HALF_UP);

 BigDecimal qnt = item.getProductQuantity().getValue();

 qnt = qnt.divide(new BigDecimal("100"), 2, BigDecimal.ROUND_HALF_UP);

 userexitlogger.writeLogDebug("new cond value: " + result.subtract(qnt));

 return result.subtract(qnt);

SAP Solution Sales Configuration
Solution Configuration Environment PUBLIC 169

 }

 public BigDecimal overwriteGroupConditionValue(

 IPricingDocumentUserExit item, IGroupConditionUserExit condition) {

 // do nothing

 return null;

 }

}

Line No. Description

13 Extend the API ValueFormulaAdapter

18 Overwrite the implementation of the
overwriteConditionValue method

33 Change the value of the automatically determined condition
value

33 Return the changed condition value

36 Overwrite the implementation of the
overwriteGroupConditionValue method

39 Return null to keep the automatically calculated value

3.3.2 Modifying Pricing Context

If you want to change the pricing context for the header or item of a document, you can implement the /SLCC/
MODIFY_PRICING_CONTEXT BadI. SAP delivers a default implementation of this BadI and customers can have
their own implementation as this is a multiple use BadI.

3.4 Creating Solution Configurations

Use

This procedure explains how to use the main functions in the advanced-mode configuration user interface. The
user interface is presented as an accordion with collapsible layers. Within the Configuration layer, there is a
layer for each component in the solution.

Prerequisites

You have created a sales document, added an advanced mode product, and chosen to edit it.

170 PUBLIC
SAP Solution Sales Configuration

Solution Configuration Environment

Procedure

To access individual functions shown in the table, use the Configuration layer of the user interface:

Function Navigation More Information

Add a non-part instance Choose Add Non Part Instance The system displays a list of all the non-
part instances for the solution.

You can add one or more non-
part instances by choosing the Add
Component pushbutton next to the rel­
evant component.

Enable or Disable Interactive Pricing Select or deselect the Interactive
Pricing checkbox

The system enables or disables both
interactive pricing (display of the total
price) and delta pricing (display of sur­
charges and price reductions).

Display the sales structure for the solu­
tion

Select the Sales Structure checkbox The system displays the solution con­
figuration in one of the following ways:

• Flat Structure
This view displays the non-part in­
stances in a list and the bill of
material (BOM) explosion as a hi­
erarchical structure. The relation­
ships between the non-part instan­
ces are not displayed.

• Sales Structure
This view displays the hierarchical
relationships between the instan­
ces, which are interpreted from the
sales abstract data types (ADTs)
and the BOM explosion.

SAP Solution Sales Configuration
Solution Configuration Environment PUBLIC 171

Function Navigation More Information

View or specify the configuration set­
tings

Choose Settings The system displays the following infor­
mation:

• Extended Configuration Manage­
ment (XCM) Application Configu-
ration

• Knowledge Base Description

• Knowledge Base Version

• Knowledge Base Profile

• Knowledge Base Build Number

Here, you can also enable/disable the
following options:

• Display Invisible Characteristics

• Display Language-Dependent De­
scriptions

• Show Characteristic Groups

• Display All Options

• Show Status Lights

• Evaluate Characteristics Online

• Render Values in Multiple Columns

• Enable JQuery Controls

• Show Assignable Values only

• Indent Components

• Select Price Type

• Enable Customization List on Main
Screen

• Show position number of each
Sub-Component

• Show Component Quantities

172 PUBLIC
SAP Solution Sales Configuration

Solution Configuration Environment

To access individual functions shown in the table, use the layer for the relevant component:

Function Navigation More Information

Manually add a component to the con­
figuration

Choose Add Component The system displays the list of compo­
nents that can be added to the config-
uration manually, with the following in­
formation:

• Minimum quantity (How Many
Must I Have?)

• Maximum quantity (How Many
Can I Have?)

• Current quantity (How Many Do I
Have?)

This information is maintained in the
super BOM.

Choose the Add Component pushbut­
ton next to the component you want
to add. When you have completed your
entries, choose Return to Configuration
to continue.

Delete a component Choose Delete Component You cannot delete a component that is
related to another component by a con­
straint.

Specialize a component Choose Specialize The system displays a list of the possi­
ble products. The list is maintained as
part of the knowledge base for the solu­
tion.

Unspecialize a component Choose Unspecialize You use this function to reverse a spe­
cialization.

3.5 Restoring Solution Configuration

The Configuration Engine processes data used during configuration of products. It also supports configuration
processes and the final configuration can be save and restored later, for editing.

The restore process creates/modifies facts, fires dependencies, and then deletes the facts used while
configuring the products. For more information about this process, refer to SAP Note 2365244
(Configuration restore based on the user inputs).

SAP Solution Sales Configuration
Solution Configuration Environment PUBLIC 173

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/2365244

4 Integration with Vehicle Management
System (VMS)

Use

SAP Solution Sales Configurator is an S/4HANA add-on used to process complex system and solution
configurations. It can process the LO-VC compatible product configurations with the same functionality as
the SAP Internet Pricing Configurator (IPC).

 Note
The SAP Internet Pricing Configurator (SAP IPC) has been discontinued in SAP S/4HANA according to
SAP Note 2242322 (IPC does not exist in SAP S/4HANA).

You can use the SAP Solution Sales Configurator as a compatible alternative to the IPC.

Prerequisites

• You have installed the SAP Solution Sales Configurator.
• You have connected the Vehicle Management System (VMS) to SAP Solution Sales Configuration for

SAP S/4HANA by defining an RFC destination to the SAP Solution Sales Configuration for SAP S/4HANA
engine.

• You have connected VMS to SAP Solution Sales Configuration for SAP S/4HANA by defining an https
destination to the SAP Solution Sales Configuration for SAP S/4HANA user interface.

• You have defined an Extended Configuration Management (XCM) configuration and maintained it in table
TCUUISCEN.

• You have configured the vehicle material to be used with SAP Solution Sales Configuration for SAP S/
4HANA in the transaction VELO.

For more information, see the SAP SSC Administration Guide

Features

• You can change the calling parameters for SAP Solution Sales Configuration for SAP S/4HANA by using
the BAdI VLC_SCE_PARAMETERS.

• SAP Solution Sales Configuration for SAP S/4HANA is called for every configuration transaction in VMS,

when you click on the icon Configure when you execute an action.
• You can implement the user parameter VELO_SCE_FULLSCREEN to define that SAP IPC is called in full-

screen mode and not integrated into the Action tab page.

174 PUBLIC
SAP Solution Sales Configuration

Integration with Vehicle Management System (VMS)

http://help.sap.com/disclaimer?site=https://me.sap.com/notes/2242322
https://help.sap.com/viewer/DRAFT/f212b1c018374bf6a38f85da5474231f/1907/en-US

• You can use the new SAP Solution Sales Configuration for SAP S/4HANA UI Composer user interface by
setting the user parameter VELO_CU50_ACTIVE to the value 'X'. When using this parameter, as with CU50
and LO-VC, you will not be able to provide configuration and pricing context information to SAP Solution
Sales Configuration for SAP S/4HANA. BAdIs such as ERP_CFG_ADAPT and VLC_SCE_PARAMETERS will
not be called in that case.

SAP Solution Sales Configuration
Integration with Vehicle Management System (VMS) PUBLIC 175

5 Compressed Storage of XML
Configuration Results

Use

Technical Data

Technical Name of Business Function /SLCE/BF_XML_COMPRSSION

Type of Business Function Enterprise Business Function

Available From SAP Solution Sales Configuration for SAP S/4HANA 1907

Application Component FBS Solution Configuration (LO-SLC)

Required Business Function Not relevant

You can use this business function to store XML configuration results in the database in compressed form. If
the business function is deactivated, the configuration results are stored in uncompressed form.

Integration

The business function can be activated separately in SAP S/4HANA. You can activate the business function in
one system but leave it deactivated in the other system.

Prerequisites

• You have installed the following components as of the version mentioned:

Type of Component Component
Required for the Following Features
Only

Software Component SLCE (for SAP S/4HANA)

• If sales documents with configurable products already exist before you activate the business function, you
must migrate the data manually from table /SLCE/CFG_XML to /SLCE/XML_BLOB (for SAP S/4HANA).
Unless you do so, the system cannot restore the configurations for existing sales document items.
The data migration is necessary because XML configuration results for sales document items are no longer
stored in table /SLCE/CFG_XML after you have activated the business function. Instead, they are stored
in table /SLCE/XML_BLOB. Configuration results are read either from table *CFG_XML or *XML_BLOB (for
example, when the configuration screen of an existing item is opened).

176 PUBLIC
SAP Solution Sales Configuration

Compressed Storage of XML Configuration Results

Features

Compression of XML Configuration Results

Configuration results for sales document items are stored as XML in the back-end system. In releases of
SAP Solution Sales Configuration earlier than Support Package 3, the configuration results are stored in an
uncompressed form. This is also the case in Support Package 3 if this business function is deactivated. If you
activate this business function, the configuration results are stored in a compressed form.

If you do not activate the business function, configuration results are stored in table /SLCE/CFG_XML for SAP
S/4HANA. If you activate the business function, the configuration results are stored in table /SLCE/XML_BLOB
for SAP S/4HANA.

The business function is reversible and can be deactivated again if it has been activated. Note that some
manual migration activities are required for existing configuration results.

SAP Solution Sales Configuration
Compressed Storage of XML Configuration Results PUBLIC 177

6 Operations Information

Certain administrative activities are required to use SAP Solution Sales Configuration. For more information
about the use and administration of the application, see the following sections:

Related Information

User Exit Deployment [page 178]

6.1 User Exit Deployment

Use

SAP Solution Sales Configuration offers an alternative way of providing user-defined functions that are to be
consumed by the SSC engine running on SAP Application Server Java. User-defined functions are declarative
functions and pfunctions in the configuration engine and pricing formulas in the pricing.

The following sections discuss using Apache Maven from the command line to deploy a user exit .jar file
without existence of a Maven project (pom.xml).

Deployment using the Command Line

When user exits are deployed with Maven from the command line, multiple parameters need to be specified.

The examples discussed in the succeeding sections presume the existence of the following parameters:

SET PATH_TO_FILE=user_exit_jar_file.jar

SET UNIT_NAME="My First User Exit Unit"

SET HOST=hostname_of_as_java

SET PROVIDER_URL=%HOST%:50004

SET USERNAME=user

SET PASSWORD=secret

SET SIMULATE=false

178 PUBLIC
SAP Solution Sales Configuration

Operations Information

Deploying a File

Code for Deploying a File
You can deploy a file using the following code:

call mvn ^

-Duserexit.jarFile=%PATH_TO_FILE% ^

-Duserexit.userExitUnitName=%UNIT_NAME% ^

-Duserexit.providerUrl=%PROVIDER_URL% ^

-Duserexit.username=%USERNAME% ^

-Duserexit.password=%PASSWORD% ^

-Duserexit.simulate=%SIMULATE% ^

com.sap.custdev.projects.fbs.slc:ssc-user-exit-maven-plugin:deploy-file

Output
Below you can see the possible output from the code mentioned above:

[INFO] Scanning for projects...

[INFO]

[INFO] ---

[INFO] Building Maven Stub Project <No POM> 1

[INFO] –––--

[INFO]

[INFO] –- ssc-user-exit-maven-plugin:2.0.0:deploy-file <default-cli> @
standalone-pom –-

[INFO] Deploying user-exit file to server...

[INFO] File successfully deployed to server in 2590 ms.

[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

[INFO] Total time: 3.54s

[INFO] Finished at: Tue Mar 03 13:44:21 CET 2015

[INFO] Final Memory: 8M/241M

[INFO] ---

Undeploying/Removing a File

Code for Undeploying a File
You can remove a file using the following code:

mvn ^

-Duserexit.userExitUnitName=%UNIT_NAME% ^

-Duserexit.providerUrl=%PROVIDER_URL% ^

-Duserexit.username=%USERNAME% ^

-Duserexit.password=%PASSWORD% ^

-Duserexit.simulate=%SIMULATE% ^

com.sap.custdev.projects.fbs.slc:ssc-user-exit-maven-plugin:undeploy-file

Output
Below you can see the possible output from the code mentioned above:

[INFO] Scanning for projects...

[INFO]

[INFO] ---

SAP Solution Sales Configuration
Operations Information PUBLIC 179

[INFO] Building Maven Stub Project <No POM> 1

[INFO] –––--

[INFO]

[INFO] –- ssc-user-exit-maven-plugin:2.0.0:undeploy-file <default-cli> @
standalone-pom –-

[INFO] Deleting user-exit unit from server...

[INFO] Unit successfully deleted from server in 2542 ms.

[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

[INFO] Total time: 3.260s

[INFO] Finished at: Tue Mar 03 13:49:41 CET 2015

[INFO] Final Memory: 9M/304M

[INFO] ---

Retrieving Information about Deployed Files

Code for Retrieving Information about Deployed Files

You can retrieve information on a deployed files using the following code:

mvn ^

-Duserexit.providerUrl=%PROVIDER_URL% ^

-Duserexit.username=%USERNAME% ^

-Duserexit.password=%PASSWORD% ^

-Duserexit.simulate=%SIMULATE% ^

com.sap.custdev.projects.fbs.slc:ssc-user-exit-maven-plugin:info

Output

Below you can see the possible output from the code mentioned above:

[INFO] Scanning for projects...

[INFO]

[INFO] ---

[INFO] Building Maven Stub Project <No POM> 1

[INFO] –––--

[INFO]

[INFO] –- ssc-user-exit-maven-plugin:2.0.0:info <default-cli> @ standalone-pom –-

[INFO] Retrieving user-exit unit information from server...

[INFO] User-exit unit information successfully retrieved from server in 2901 ms.

[INFO] ---

[INFO] Number of available units: 1

[INFO] - My First User Exit Unit <9 resources>

[INFO] ---

[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

[INFO] Total time: 3.967s

[INFO] Finished at: Tue Mar 03 13:51:49 CET 2015

[INFO] Final Memory: 8M/241M

[INFO] ---

For information on deployment based on a Maven project, refer to Deployment Using the Solution Modeling
Environment

180 PUBLIC
SAP Solution Sales Configuration

Operations Information

Related Information

Deployment Using the Solution Modeling Environment [page 181]

6.1.1 Deployment Using the Solution Modeling Environment

Context

The User-Exit-Maven-Plugin enables you to automatically deploy self-developed pfunctions with Maven.

Here, you can follow an alternative process for user exit deployment, using an existing Maven project. This
process also allows deployment from within the Solution Modeling Environment.

 Note
When the Solution Modeling Environment plugin is installed in an eclipse environment, there will be two
windows command/batch files that are created in the installation directory of Eclipse that shall be used
later in the procedure below:

Procedure

1. Create an example project from File Other .

2. Select SAP CPQ for Solution Sales Configuration Examples Office Model Example (with
pfunctions) .

Click Next to finish.
3. A new project ssc_office_example will be created, whose root directory contains the file pom.xml.

This file contains a sample Maven project configuration that you can use as a starting point for your
projects.

SAP Solution Sales Configuration
Operations Information PUBLIC 181

Maven Project Configuration

4. In order to start a simulation of the deployment, switch to the Java Perspective of Eclipse and choose
Run Run Configurations from the menu.

5. Create a new entry below the Maven Build.
6. Enter the following text in the Goals input field:

package com.sap.custdev.projects.fbs.slc:ssc-user-exit-maven-plugin:deploy

Input Field for Goals

7. Click Run to start the user exit deployment.

Two Maven goals will be executed during this step. The goal package compiles Java source files, for
example, pfunction class files that are in the src folder of the project and generates a jar file in the project's
target folder

8. The goal deploy (of the ssc-user-exit-maven-plugin plug-in) performs the deployment of the generated jar
file to SAP AS Java. The connection details of SAP AS Java are in the pom.xml file.

9. In the pom.xml file, enter the user name, password, and the provider URL of the server in which the plugin
needs to be deployed

 Note
If the parameters discussed above are provided, you can delete the artifactId input.

182 PUBLIC
SAP Solution Sales Configuration

Operations Information

10. By default, the simulation mode is activated (see the pom.xml file) and can be used to test the proper
installation of Maven and the user exit deployment plug-in, without having to set up SAP AS Java

11. Now, run the windows command files present in the eclipse installed directory

The ssc-mvn-install.cmd file installs the required artifacts in your local Maven repository and deploys
all necessary artifacts in a repository of your choice

12. If everything works, you will see an output similar to the following in the Console view of Eclipse:

Output Jar File

[INFO] Scanning for projects...

...

[INFO]
--

[INFO] Building ssc-user-exit-sample 0.0.1-SNAPSHOT

[INFO]
--

[INFO] --- maven-compiler-plugin:3.1:compile (default-compile) @ ssc-user-
exit-sample --- [INFO] Changes detected - recompiling the module!

...

[INFO]

[INFO] --- ssc-user-exit-maven-plugin:2.0.0:deploy (default-cli) @ ssc-user-
exit-sample --- [INFO] Deploying user-exit file to server...

[INFO] Deployment to server skipped (simulation mode).

[INFO]
--

[INFO] BUILD SUCCESS

[INFO]
--

...

SAP Solution Sales Configuration
Operations Information PUBLIC 183

6.1.2 SSC-USER-EXIT-MAVEN-PLUGIN Reference

Goals Available for this Plug-In

Goal Description

ssc-user-exit:deploy Deploys an SSC user-exit unit to SAP Application Server
Java.

An SSC user-exit unit can be one of the following:

• a JAR archive that contains declarative functions and
pfunctions to be used by the SAP Solution Sales Config-
uration for SAP S/4HANA configuration engine, or

• a JAR archive that contains pricing formulas to be used
by the SAP Solution Sales Configuration for SAP S/
4HANA pricing engine

ssc-user-exit:deploy-file Deploys an SSC user-exit unit to SAP Application Server
Java.

ssc-user-exit:info Retrieves information about all SSC user-exit units that are
installed on SAP Application Server Java.

ssc-user-exit:undeploy Undeploys/deletes an SSC user-exit unit from SAP Applica­
tion Server Java.

ssc-user-exit:undeploy-file Undeploys/deletes an SSC user-exit unit from SAP Applica­
tion Server Java.

System Requirements

Maven 3.1

JDK 1.7

Goal Details

For further information on the goals discussed above, refer to the topics below:

• SSC-USER-EXIT:DEPLOY

184 PUBLIC
SAP Solution Sales Configuration

Operations Information

• SSC-USER-EXIT:DEPLOY-FILE
• SSC-USER-EXIT:INFO
• SSC-USER-EXIT:UNDEPLOY
• SSC-USER-EXIT:UNDEPLOY-FILE

Related Information

SSC-USER-EXIT:DEPLOY-FILE [page 185]
SSC-USER-EXIT:DEPLOY [page 189]
SSC-USER-EXIT:INFO [page 193]
SSC-USER-EXIT:UNDEPLOY-FILE [page 197]
SSC-USER-EXIT:UNDEPLOY [page 201]

6.1.2.1 SSC-USER-EXIT:DEPLOY-FILE

Full Name

com.sap.custdev.projects.fbs.slc:ssc-user-exit-maven-plugin:deploy-file

Description

This goal deploys an SSC user-exit unit to SAP Application Server Java.

Prerequisites

• Maven should run in online mode.

SAP Solution Sales Configuration
Operations Information PUBLIC 185

Required Parameters

Name Type Description

initialContextFactory String The initial context factory.

See also:

javax.naming.Context.INI
TIAL_CONTEXT_FACTORY

Default value:

com.sap.engine.services.
jndi.InitialContextFacto
ryImpl

User property:

userexit.initialContextF
actory

jndiLookupString String The JNDI lookup string.

See also:

javax.naming.InitialCont
ext.lookup(String)

Default value:

ejb:/appName=sap.com/
cdev~fbs_slc_java,
jarName=sap.com~cdev~fbs
_slc_exit_mgr_ejb.jar,
beanName=UserExitBean,
interfaceName=com.sap.cu
stdev.projects.fbs.slc.e
xit.api.UserExitBeanRemo
te

User property:

userexit.jndiLookupStrin
g

186 PUBLIC
SAP Solution Sales Configuration

Operations Information

Name Type Description

provideUrl String The service provider URL.

See also:

javax.naming.Context.PRO
VIDER_URL

Default value:

localhost:50004

User property:

userexit.providerUrl

urlPkgPrefixes String The URL package prefixes.

See also:

javax.naming.Context.URL
_PKG_PREFIXES

Default value:

com.sap.engine.services

User property:

userexit.urlPkgPrefixes

Optional Parameters

Name Type Description

jarFile File The path to a jar file that should be de­
ployed.

Default value:

$
{project.build.directory
}/$
{project.build.finalName
}.jar

User property:

userexit.jarFile

SAP Solution Sales Configuration
Operations Information PUBLIC 187

Name Type Description

password String Password used to authenticate in SAP
Application Server Java. If not speci­
fied, it defaults to no password (empty
string).

See also:

javax.naming.Context.SEC
URITY_CREDENTIALS

User property:

userexit.password

serverId String The server ID in settings.xml is used
when connecting to SAP Application
Server Java. If specified, it overrides the
values specified in the username and
password properties.

User property:

userexit.serverId

settings Settings The Maven settings.

User property:

settings

simulate Boolean The flag that decides whether the de­
ployment should be simulated or not.
If set to true, no server communication
takes place.

Default value:

false

User property:

userexit.simulate

188 PUBLIC
SAP Solution Sales Configuration

Operations Information

Name Type Description

userExitUnitName String The user-exit unit name.

Default value:

$
{project.artifact.artifa
ctId}

User property:

userexit.userExitUnitNam
e

username String Username used to authenticate with
SAP Application Server Java.

See also:

javax.naming.Context.SEC
URITY_PRINCIPAL

Default value:

Administrator

User property:

userexit.username

6.1.2.2 SSC-USER-EXIT:DEPLOY

Full Name

com.sap.custdev.projects.fbs.slc:ssc-user-exit-maven-plugin:deploy

Description

This goal deploys an SSC user-exit unit to SAP Application Server Java. An SSC user-exit unit can be any one of
the following:

• a JAR archive that contains declarative functions and pfunctions to be used by the SSC configuration
engine, or

SAP Solution Sales Configuration
Operations Information PUBLIC 189

• a JAR archive that contains pricing formulas to be used by the SSC pricing engine

Prerequisites

• A Maven project should be executed
• Maven should run in online mode

Required Parameters

Name Type Description

initialCont
extFactory

String The initial context factory.

See also:

javax.naming.Context.INITIAL_CONTEXT_FACTORY

Default value:

com.sap.engine.services.jndi.InitialContextFactoryImpl

User property:

userexit.initialContextFactory

jarFile File The path to a jar file that should be deployed.

Default value:

${project.build.directory}/$
{project.build.finalName}.jar

User property:

userexit.jarFile

190 PUBLIC
SAP Solution Sales Configuration

Operations Information

Name Type Description

jndiLookupS
tring

String The JNDI lookup string.

See also:

javax.naming.InitialContext.lookup(String)

Default value:

ejb:/appName=sap.com/cdev~fbs_slc_java,
jarName=sap.com~cdev~fbs_slc_exit_mgr_ejb.jar,
beanName=UserExitBean,
interfaceName=com.sap.custdev.projects.fbs.slc.exit.api.
UserExitBeanRemote

User property:

userexit.jndiLookupString

providerURL String The service provider URL.

See also:

javax.naming.Context.PROVIDER_URL

Default value:

localhost:50004

User property:

userexit.providerUrl

urlPkgPrefi
xes

String The URL package prefixes to use.

See also:

javax.naming.Context.URL_PKG_PREFIXES

Default value:

com.sap.engine.services

User property:

userexit.urlPkgPrefixes

userExitUni
tName

String The user-exit unit name.

Default value:

${project.artifact.artifactId}

User property: userexit.userExitUnitName

SAP Solution Sales Configuration
Operations Information PUBLIC 191

Optional Parameters

Name Type Description

password String Password used for authentication in
SAP Application Server Java. If not
specified, it defaults to no password
(empty string).

See also:

javax.naming.Context.SEC
URITY_CREDENTIALS.

User property:

userexit.password

serverID String The server ID in settings.xml to use
when connecting to SAP Application
Server JAVA. If specified, it overrides
the values specified in the username
and password properties.

User property:

userexit.serverId

settings Settings The Maven settings.

User property:

settings

simulate Boolean The flag that decides whether the de­
ployment should be simulated or not.
If set to true, no server communication
takes place.

Default value:

false

User property:

userexit.simulate

192 PUBLIC
SAP Solution Sales Configuration

Operations Information

Name Type Description

username String Username used to authentication in
SAP Application Server Java.

See also:

javax.naming.Context.SEC
URITY_PRINCIPAL

Default value:

Administrator

User property:

userexit.username

6.1.2.3 SSC-USER-EXIT:INFO

Full Name

com.sap.custdev.projects.fbs.slc:ssc-user-exit-maven-plugin:info

Description

This goal retrieves information about all SSC user-exit units that are installed on SAP Application Server Java.

Prerequisites

• The Maven should run in online mode

SAP Solution Sales Configuration
Operations Information PUBLIC 193

Required Parameters

Name Type Description

initialContextFactory String The initial context factory.

See also:

javax.naming.Context.INI
TIAL_CONTEXT_FACTORY.

Default value:

com.sap.engine.services.
jndi.InitialContextFacto
ryImpl

User property:

userexit.initialContextF
actory

jndiLookupString String The JNDI lookup string.

See also:

javax.naming.InitialCont
ext.lookup(String)

Default value:

ejb:/appName=sap.com/
cdev~fbs_slc_java,
jarName=sap.com~cdev~fbs
_slc_exit_mgr_ejb.jar,
beanName=UserExitBean,
interfaceName=com.sap.cu
stdev.projects.fbs.slc.e
xit.api.UserExitBeanRemo
te

User property:

userexit.jndiLookupStrin
g

194 PUBLIC
SAP Solution Sales Configuration

Operations Information

Name Type Description

providerUrl String The service provider URL.

See also:

javax.naming.Context.PRO
VIDER_URL

Default value:

localhost:50004

User property:

 userexit.providerUrl

urlPkgPrefixes String The URL package prefixes to use.

See also:

javax.naming.Context.URL
_PKG_PREFIXES

Default value:

com.sap.engine.services

User property:

userexit.urlPkgPrefixes

Optional Parameters

Name Type Description

password String Password used for authentication in
SAP Application Server Java. If not
specified, it defaults to no password
(empty string).

See also:

javax.naming.Context.SEC
URITY_CREDENTIALS

User property:

userexit.password

SAP Solution Sales Configuration
Operations Information PUBLIC 195

Name Type Description

serverId String The server ID in settings.xml is used
when connecting to SAP Application
Server JAVA. If specified, it overrides
the values specified in the username
and password properties.

User property:

userexit.serverId

Settings Settings The Maven settings.

User property:

settings

simulate Boolean This flag decides whether the deploy­
ment should be simulated or not. If set
to true, no server communication takes
place.

Default value:

false

User property:

userexit.simulate

username String Username used for authentication in
SAP Application Server Java.

See also:

javax.naming.Context.SEC
URITY_PRINCIPAL

Default value:

Administrator

User property:

userexit.username

196 PUBLIC
SAP Solution Sales Configuration

Operations Information

6.1.2.4 SSC-USER-EXIT:UNDEPLOY-FILE

Full Name

com.sap.custdev.projects.fbs.slc:ssc-user-exit-maven-plugin:undeploy-file

Description

This goal removes (undeploys) an SSC user-exit unit from SAP Application Server Java.

Prerequisites

• The Maven runs in online mode

Required Parameters

Name Type Description

initialContextFactory String The initial context factory.

See also:

javax.naming.Context.INI
TIAL_CONTEXT_FACTORY

Default value:

com.sap.engine.services.
jndi.InitialContextFacto
ryImpl

User property:

userexit.initialContextF
actory

SAP Solution Sales Configuration
Operations Information PUBLIC 197

Name Type Description

jndiLookupString String The JNDI lookup string.

See also:

javax.naming.InitialCont
ext.lookup(String)

Default value:

ejb:/appName=sap.com/
cdev~fbs_slc_java,
jarName=sap.com~cdev~fbs
_slc_exit_mgr_ejb.jar,
beanName=UserExitBean,
interfaceName=com.sap.cu
stdev.projects.fbs.slc.e
xit.api.UserExitBeanRemo
te

User property:

userexit.jndiLookupStrin
g

provideUrl String The service provider URL.

See also:

javax.naming.Context.PRO
VIDER_URL

Default value:

localhost:50004

User property:

userexit.providerUrl

urlPkgPrefixes String The URL package prefixes to use.

See also:

javax.naming.Context.URL
_PKG_PREFIXES

Default value:

com.sap.engine.services

User property:

userexit.urlPkgPrefixes

198 PUBLIC
SAP Solution Sales Configuration

Operations Information

Optional Parameters

Name Type Description

jarFile File The path to a jar file that should be de­
ployed.

Default value:

$
{project.build.directory
}/$
{project.build.finalName
}.jar

User property:

userexit.jarFile

password String Password used to authenticate with
SAP Application Server Java. If not
specified, it defaults to no password
(empty string).

See also:

javax.naming.Context.SEC
URITY_CREDENTIALS

User property:

userexit.password

serverId String The server ID in settings.xml is used
when connecting to SAP Application
Server Java. If specified, it overrides the
values specified in the username and
password properties.

User property:

userexit.serverId

settings Settings The Maven settings.

User property:

settings

SAP Solution Sales Configuration
Operations Information PUBLIC 199

Name Type Description

simulate Boolean This flag decides whether the deploy­
ment should be simulated or not. If set
to true, no server communication takes
place.

Default value:

false

User property:

userexit.simulate

userExitUnitName String The user exit name.

Default value:

$
{project.artifact.artifa
ctId}

User property:

userexit.userExitUnitNam
e

username String The username used to authenticate
with SAP Application Server Java.

See also:

javax.naming.Context.SEC
URITY_PRINCIPAL

Default value:

Administrator

User property:

userexit.username

200 PUBLIC
SAP Solution Sales Configuration

Operations Information

6.1.2.5 SSC-USER-EXIT:UNDEPLOY

Full Name

com.sap.custdev.projects.fbs.slc:ssc-user-exit-maven-plugin:undeploy

Prerequisites

• The Maven project should be executed
• The Maven runs in online mode

Required Parameters

Name Type Description

initialContextFactory String The initial context factory.

See also:

javax.naming.Context.INI
TIAL_CONTEXT_FACTORY.

Default value:

com.sap.engine.services.
jndi.InitialContextFacto
ryImpl

User property:

userexit.initialContextF
actory

SAP Solution Sales Configuration
Operations Information PUBLIC 201

Name Type Description

jarFile File The path to a jar file that should be de­
ployed.

Default value:

$
{project.build.directory
}/$
{project.build.finalName
}.jar

User property:

userexit.jarFile

jndiLookupString String The JNDI lookup string.

See also:

javax.naming.InitialCont
ext.lookup(String)

Default value:

ejb:/appName=sap.com/
cdev~fbs_slc_java,
jarName=sap.com~cdev~fbs
_slc_exit_mgr_ejb.jar,
beanName=UserExitBean,
interfaceName=com.sap.cu
stdev.projects.fbs.slc.e
xit.api.UserExitBeanRemo
te

User property:

userexit.jndiLookupStrin
g

providerUrl String The service provider URL.

See also:

javax.naming.Context.PRO
VIDER_URL

Default value:

localhost:50004

User property:

userexit.providerUrl

202 PUBLIC
SAP Solution Sales Configuration

Operations Information

Name Type Description

urlPkgPrefixes String The URL package prefixes to use.

See also:

javax.naming.Context.URL
_PKG_PREFIXES

Default value:

com.sap.engine.services

User property:

userexit.urlPkgPrefixes

userExitUnitName String The user-exit unit name.

Default value:

$
{project.artifact.artifa
ctId}

User property:

userexit.userExitUnitNam
e

Optional Parameters

Name Type Description

password String Password used for authentication in
SAP Application Server Java. If not
specified, it defaults to no password
(empty string).

See also:

javax.naming.Context.SEC
URITY_CREDENTIALS

User property:

userexit.password

SAP Solution Sales Configuration
Operations Information PUBLIC 203

Name Type Description

serverId String The server ID in settings.xml is used
when connecting to SAP Application
Server Java. If specified, it overrides the
values specified in the username and
password properties.

User property:

userexit.serverId

settings Settings The Maven settings.

User property:

settings

simulate Boolean This flag decides whether the deploy­
ment should be simulated or not. If set
to true, no server communication takes
place.

Default value:

false

User property:

userexit.simulate

username String Username used for authentication with
SAP Application Server Java.

See also:

javax.naming.context.SEC
URITY_PRINCIPAL

Default value:

Administrator

User property:

userexit.username

204 PUBLIC
SAP Solution Sales Configuration

Operations Information

7 UI Composer

Naming Conventions

Throughout this document, the SAP Solution Sales Configuration, UI Composer is simply referred to as UIC.
This shorter name is used purely to increase readability; both names are entirely synonymous.

Purpose and Scope

The following sections aim to provide all the information required for UI designers and administrators to
use the features of the UI Composer to produce harmonized user interfaces across product families. After
designing and activating the screens in the UI Composer, the sales representatives can use the newly designed
interface. This document assumes that you have successfully performed the required configuration activities
and are ready to use the tool productively.

For information about the configuration, kindly refer to the Configuring SAP Solution Sales Configuration, UI
Composer section in the SAP SSC: Administration Guide.

Process Overview

SAP Solution Sales Configuration
UI Composer PUBLIC 205

https://help.sap.com/viewer/DRAFT/f212b1c018374bf6a38f85da5474231f/1907/en-US/ab644ced3b6045a89d524a6b60fddc79.html

In the UI Composer, UI designers use knowledge bases (classical and advanced models) from the solution
modeling environment of SAP Solution Sales Configuration as the basis for creating product configuration
screens, known as store definitions.

To compose the store definitions, UI designers select and configure UI controls for the elements of a solution
model and use page and store templates to ensure a consistent layout of the store definitions for a particular
product family or product line. The designers can view and edit the layout of the store pages by simply dragging
and dropping different UI elements on the screen, thus, requiring no programming skills to compose the store
definitions. The UI Composer also provides an interactive preview so that the designers can test the behavior
of the store pages and UI controls. If needed, you can easily extend the UI Composer to include custom store
templates and custom UI controls.

When the user launches the configuration of a product, it is launched in either of the following UIs (provided
product is set for SAP Solution Sales Configuration):

• JSP UI: If the product is set to be launched with the JSP UI in transaction /SLCE/CFG_MAT.
• Store Based UI: If the product is set to be launched with UIC in transaction /SLCE/CFG_MAT, and there is a

published store for the knowledge base of the product.
• Dynamic Runtime UI: If the product is set to be launched with UIC but there is no publish store for the

knowledge base of the product.

7.1 Glossary

Term Definition

Knowledge base A structured database that contains the master data of
a solution model created in the solution modeling environ­
ment of SAP Solution Sales Configuration.

A knowledge base contains information about the classes
and materials used in a solution.

Master store definition A collection of predefined pages that UI designers can use
in their regular store definitions for a specific product cate­
gory. Master store definitions are created by UI administra­
tor users.

Predefined page A predefined page layout used for content that is identical
for all stores of a specific product category, such as main­
tenance configuration information, contact configuration in­
formation, etc.

Predefined pages can be reused in all regular store defini-
tions.

206 PUBLIC
SAP Solution Sales Configuration

UI Composer

Term Definition

Solution A collection of interrelated components, such as hardware
components, software components, and services.

In addition to selling their own products, many businesses
also sell solutions that include products, services, and parts
from other manufacturers. For example, many technology
companies sell solutions that include combinations of highly
complex hardware, software, and services, and each of these
can have options or features that the customer must specify
during the ordering process.

Solution model A hierarchical decomposition of a solution. It defines the
products (configurable materials and the services) that can
be contained within the solution. It also defines the relation­
ships between the various elements of the solution, includ­
ing any dependencies (constraints and rules).

Store A set of pages rendered by the Product Configurator applica­
tion. A store displays the selectable options and features of
a solution. To prepare a quotation, sales representatives use
the store to configure a solution.

Store definition A configuration of a store used in the Product Configurator
application to specify options and features of a solution.

Users define the store definition in the UI Composer. To do
so, they use store templates and predefined pages to create
a uniform look for the stores of a product category. A store
definition is based on a specific version of a knowledge base.

Store template A store template contains the basic UI layout of the store
pages. For example, a store template can specify the layout
of the header and footer for all pages. The store template
also specifies the UI elements that can be used in the store
definitions.

A default store template is delivered with the UI Composer.
However, you can develop your own store templates. For
example, you might develop a different store template for
each product line.

Workspace A screen in the UI Composer where users organize and man­
age their store definition versions.

SAP Solution Sales Configuration
UI Composer PUBLIC 207

7.2 UI Composer Design-time User Interface

UI Composer Design-time UI focuses on store designing which can be launched for product configuration later.

7.2.1 Workspace Screen

The workspace screen displays your workspaces and a list of the store definitions referenced in a workspace.

You can use several workspaces to organize your store definitions.

 Note
You can only access your own workspaces and cannot share workspaces with other users.

The workspace screen appears once you start the application.

Features

• In the Workspaces screen area, you can edit and delete your workspaces, as well as create new ones. You
can choose a workspace to display the store definitions in that workspace.

• In the Store Definitions screen area, you can see the store definitions in the selected workspace and sort or
filter the list for specific store definitions. Regular store definitions in your workspace can have any of the
following statuses:
• Draft
• Committed
• Published

In the Store Definitions list, you can also choose a store definition to edit the store pages on the Composer
screen.

 Note
While you are editing store pages, the store definition is locked temporarily and cannot be edited by
other users.

You can choose (Menu) to navigate to different screens where you can perform following tasks:
• Create new store definitions
• Create a new store definition based on an existing store definition
• Add a reference for a store definition to the workspace

208 PUBLIC
SAP Solution Sales Configuration

UI Composer

7.2.2 Create Store Screen

You can create new store definitions on the Create Store screen. To access the Create Store screen, choose
Menu Create from the workspace.

Features

The Create Store screen contains the following tabs:

• Knowledge Base
Select the relevant knowledge base, its version and profile (if knowledgebase has multiple profiles).

• Store Template
Select a store template.

• Pages
Select redefined pages.

• Header Info
Enter a suitable description for the store definition.

7.2.3 Copy Store Screen

On the Copy Store screen, you can edit a copy of an existing store definition to create a new store definition. To
access the Copy Store screen, choose Menu Copyfrom from the workspace.

Features

The Copy Store screen contains following tabs:

• Store Definition
Select the store definition you want to copy.

• Knowledge Base
Select the knowledge base and its relevant version.

• Header Info
Complete the description of the store definition.

7.2.4 Composer Screen

You can configure the layout of a store on the Composer screen.

You can access the Composer screen by performing one of the following actions:

SAP Solution Sales Configuration
UI Composer PUBLIC 209

• Creating a new store on the Create Store screen
• Creating a new store definition based on an existing one, in the Copy Store screen
• Choosing a store definition in a workspace or on the Manage Store Definitions screen

On the Composer screen you can choose Menu to perform following actions:

• Commit or publish the store definition

• Delete the draft version

• View and edit the name and description of the store definition in the Header Info

• View previous versions

• Roll back to previous versions

Features

The Composer screen contains following screen areas:

• Knowledge Base Elements
A tree view of the classes and materials of the knowledge base.

• Characteristics
Characteristics of class or material selected in the Knowledge Base Elements screen area.

• Control Palette
The UI elements that you can use for the classes and materials of the knowledge base.

• Canvas
The central view of the Composer screen. On the canvas, you arrange the UI elements and map them to
classes or materials of the knowledge base.

• Properties
You configure the attributes of the UI elements on the canvas.

On the Composer screen, you can choose Menu to perform following actions:

• Commit or publish the store definition
• Delete the draft version
• View and edit the name and description of the store definition in the Header Info
• View previous versions
• Roll back to previous versions

7.2.5 Interactive Preview

From the Composer screen, you can display an interactive preview of a store in an additional browser tab.

The interactive preview simulates the store pages that you defined in the store definition. You can preview the
design of your store and interact with the UI elements to test the features of the store pages.

210 PUBLIC
SAP Solution Sales Configuration

UI Composer

7.2.6 Manage Store Definitions Screen

On the Manage Store Definitions screen, you can find all store definitions in the system and perform multiple
administrative tasks.

To display the Manage Store Definitions screen, you need to have the UI administrator role. You can access the
Manage Store screen by choosing (Manage Stores) in the header of the workspace.

Features

On the Manage Store Definitions screen, you see a list of all store definitions in the system. You can find store
definitions by sorting the list according to categories or by searching for the name, the underlying knowledge
base, or other details of the store definitions.

On the Manage Store Definitions screen, you can perform the following tasks:

• Choose the store definitions you want to edit in the composer
• Unlock store definitions that are locked by other users
• Delete store definitions

7.3 UI Composer Runtime User Interface

To launch the JSP UI or UIC Runtime UI for product configuration, the following setup is required:

1. Execute the transaction /SLCE/V_CONFIG_SETUP.
2. Create setup IDs for the JSP UI and UIC. The following screenshot shows an example of the setup IDs:

 Note
You need to mention the SSC JAVA destination in the RFC Destination field for the JSP UI setup ID.

SAP Solution Sales Configuration
UI Composer PUBLIC 211

For the UIC setup id, please maintain entries as follows:

UI Type: ICF Service name

RFC destination: ABAP connection to gateway system

HTTP service path: Initial URL to launch UIC service in gateway system

3. You must provide the configuration scenarios where each of these UIs should appear. To do this, select
the setup ID and double-click Config Scenario in the Dialog Structure. This provides you control over
configuration UI. For example, if you do not want SAP Solution Sales Configuration UI to come up in
purchase requisition, you may choose not to provide EBAN as a configuration scenario.

You can provide the same scenarios for both JSP UI and UIC. You may find possible scenarios in table
T371F.

4. Execute the transaction /SLCE/CFG_MAT to setup UI for a material.

5. You can execute and add a new entry for material.

In the previous image, since we have specified the Setup ID as 1 for JSP UI, whenever TEST_MATERIAL is
configured, the JSP UI will be launched.
If the Setup ID is set as 2, then either the store-based UI (if a published store exists) or a dynamic runtime
UI will be launched.

212 PUBLIC
SAP Solution Sales Configuration

UI Composer

7.4 Roles and Authorizations in UI Composer

Prerequisites

Before you can use the UI Composer, you must meet the following prerequisites:

• The system is configured as per the SAP Solution Sales Configuration for SAP S/4HANA: Administration
Guide.

• For recommended browser versions, refer to SAP Note 1716423 (SAPUI5 Browser Support)

Logon and Site Authorizations

To access the UI Composer application, use your browser to navigate to the following URL:

<https,http>://<host>:<port>/sap/bc/ui5_ui5/slcui/uic_web/index.html?sap-

client=<client>&Endpoint=ECC}

Authorizations

You need to have users in the following systems:

• SAP S/4HANA
• SAP NetWeaver Gateway Hub
• SAP NetWeaver Application Server for Java of SAP Solution Sales Configuration

In addition, you need one of the user roles for the UI Composer. For more information about this, refer to User
Roles for UI Composer.

User Roles for UI Composer

UI Designer

The UI designer creates regular store definitions and configures them by composing store pages. The designer
can also save the store definitions as a draft, commit store definitions, or create new draft versions, however,
cannot cannot publish or delete store definitions that are created by other users.

SAP Solution Sales Configuration
UI Composer PUBLIC 213

https://help.sap.com/viewer/DRAFT/f212b1c018374bf6a38f85da5474231f/1907/en-US
https://help.sap.com/viewer/DRAFT/f212b1c018374bf6a38f85da5474231f/1907/en-US
http://help.sap.com/disclaimer?site=https://me.sap.com/notes/1716423

UI Administrator

The UI administrator reviews the store definitions that the UI designers have committed and can publish
these committed store definitions so that they are available in the Product Configurator application. The
administrator also configures predefined pages by creating master store definitions.

The UI administrator can perform all the tasks of a UI designer but can also delete store definitions, unlock
store definitions locked by other users, and revert store definitions to previous versions

UI Developer

The UI developer develops store templates and custom UI controls.

For more information on UI developer user tasks, kindly refer to the Configuring SAP Solution Sales
Configuration, UI Composer Add-on section in the SAP Solution Sales Configuration for SAP S/4HANA:
Administration Guide.

7.5 UI Designer Tasks

The following tasks can be performed by users with the UI designer role. However, the UI administrator role
also contains authorizations for all these tasks, as well as for some additional administration tasks:

• Creating workspaces
• Adding store definitions to a workspace
• Creating new store definitions
• Copying store definitions
• Composing stores
• Committing store definitions
• Creating new versions of store definitions

Related Information

Creating Workspaces [page 215]
Adding Store Definitions to a Workspace [page 215]
Creating New Store Definitions [page 216]
Copying Store Definitions [page 217]
Composing Stores [page 218]
Committing Store Definitions [page 220]
Creating New Versions of Store Definitions [page 220]

214 PUBLIC
SAP Solution Sales Configuration

UI Composer

https://help.sap.com/viewer/DRAFT/f212b1c018374bf6a38f85da5474231f/1907/en-US/ab644ced3b6045a89d524a6b60fddc79.html
https://help.sap.com/viewer/DRAFT/f212b1c018374bf6a38f85da5474231f/1907/en-US/ab644ced3b6045a89d524a6b60fddc79.html

7.5.1 Creating Workspaces

You can create several workspaces to organize your store definitions.

Procedure

1. Start the UI Composer application
2. In the Workspaces screen area, choose Add
3. Enter a name for the workspace and save it
4. You can also change the name of or remove existing workspaces

 Note
Workspaces are specific to each individual user. You cannot share workspaces with other users.

7.5.2 Adding Store Definitions to a Workspace

In a workspace, you can add references to store definitions.

Procedure

1. In the Workspaces screen area, select the relevant workspace

2. In the Store Definitions screen area, navigate to Menu Add Reference
3. Select the store definition you want to add

You can find the store definition by sorting the list according to available categories or by searching for
the name, the underlying knowledge base, or other details of the store definition. Only store definitions
that were created for a knowledge base in the selected source system are displayed. If a store definition is
already referenced by the selected workspace, this definition will not appear in the list.

4. Choose Done

 Note
Store definitions are not saved in workspaces; the workspace only contains references to store
definitions. If you remove the reference to a store definition in your workspace, the store definition
can still be used in another workspace by another user.

SAP Solution Sales Configuration
UI Composer PUBLIC 215

7.5.3 Creating New Store Definitions

Prerequisites

To create a new store definition, you need to fulfill the following prerequisites:

• A solution or product model has been created in the solution modeling environment of SAP Solution Sales
Configuration and the knowledge base runtme version is deployed in the backend system (SAP S/4HANA).

• The configurable product has been created in the backend system (SAP S/4HANA).

Procedure

1. On the Workspace screen, select a relevant workspace

2. On the Store Definitions screen area, navigate to Menu Create

The Create Store screen opens.
3. On the Knowledge Base tab, select the knowledge base version of the solution for which you want to create

the store definition

 Note
The list contains only the knowledge base versions that are available in the selected source system and
for which no store definitions have been created yet. This ensures that only one store definition exists
for each knowledge base version.

4. On the Store Template tab, select the store template that you want to use for the store
5. On the Pages tab, select the predefined that you want to use in the store

 Note
On the Pages tab, you can search and filter for all the predefined pages that are available in the system.
You must ensure to select pages that are specific to the product category of the solution.

A blank page is a page that is not predefined for specific content.
6. On the Header Info tab, enter a name and a description for the store definition. You can also specify tags for

product categories.

The information specified on the Header Info tab can be used to search and filter for the store definition, on
various screens of the application.

7. Choose Done

The store definition is added to the workspace and the Composer screen opens.

 Note
For more information about designing and configuring the store pages, see Composing Stores.

216 PUBLIC
SAP Solution Sales Configuration

UI Composer

Related Information

Composing Stores [page 218]

7.5.4 Copying Store Definitions

You can create new store definitions that use the same store templates, predefined pages, and UI controls as
an existing store definition.

Context

When a new version of a knowledge base is available, you can copy a store definition that is based on a previous
version of the knowledge base, to create a store definition for the new version. This way, you only need to
configure UI controls for knowledge base elements that are different in the new version when you compose the
store pages.

Procedure

1. On the Workspace screen, select a relevant workspace

2. In the Store Definitions screen area, navigate to Menu Copy Store

The Copy Store screen opens up.
3. on the Store Definitions tab, select the store definition you want to copy.

You can find the store definition by sorting the list according to categories or by searching for the name, the
underlying knowledge base, or other details of the store definition.

4. On the Knowledge Base tab, select the knowledge base of the solution

 Note
There can be several versions of a knowledge base. You must ensure you select the correct version.

The list only shows the knowledge base versions available in the selected source system.

5. On the Header Info tab, enter a name and a description for the store definition. You can also specify tags for
product categories.

The information specified on the Header Info tab can be used to search and filter for the store definition on
various screens of the application.

 Note
If there are discrepancies between the original store definition and the knowledge base that you have
selected for your copy of the store definition, an error message appears. UI controls that are used in

SAP Solution Sales Configuration
UI Composer PUBLIC 217

the original store definition and are incompatible with the knowledge base of your new store definition
are automatically removed from the store design. You can download a summary of the incompatible
knowledge base elements and the removed UI controls.

6. Choose Done

The store definition is added to the workspace and the Composer screen opens up.

 Note
For more information about designing and configuring the store pages, see Composing Stores.

Related Information

Composing Stores [page 218]

7.5.5 Composing Stores

Context

You can access the Composer screen by performing one of the following actions:

• Creating a new store in the Create Store screen
• Creating a new store definition based on an existing one in the Copy Store screen
• Choosing a store definition in a workspace

Procedure

1. Open the Composer screen.
2. Above the canvas, there is a tab for each store page. Select the store page that you want to configure.
3. In the Knowledge Base Elements area, select a class, material, or characteristic group that you want to

configure on the selected store page. Drag and drop the material or class onto the canvas.

In the Characteristics screen area, you see the characteristics of the class or material that you selected.

 Note
Classes, materials, or characteristics that are already used in the store are indicated by a check.

4. In the Knowledge Base tab of the Control Palette, select a UI control or another UI element that you want to
use for the class or material. Drag and drop the UI element onto the class or material on the canvas.

218 PUBLIC
SAP Solution Sales Configuration

UI Composer

If the class or material has characteristics that need separate UI controls, these characteristics appear on
the canvas. You can drag and drop the UI controls onto the characteristics. You can also copy UI elements
on the canvas and paste them to other knowledge base elements or other areas of the store.

The UI elements you can select depend on the class, material, or characteristic that you want to configure
for the store page.

 Note
• On the General tab of the Control Palette, you can find basic UI elements, such as headers, vertical

sections, or horizontal sections. You can use these UI elements as static UI controls; they will not
be bound to any knowledge base elements. Therefore, this category of UI controls is always visible
at runtime.

• On the Custom tab of the Control Palette, you can find custom UI Controls which were created by
your UI5 developers as extensions of the solution. You can use them the same way as the controls
on the Knowledge Base tab.

• When binding the UI Controls to knowledge base elements (Characteristic), the tool validates the
metadata of the characteristic to verify the use of the control to configure the characteristic. For
example, you cannot use Checkbox to configure single-valued characteristic.

• You can nest UI elements within superordinate UI elements. For example, you can use a UI element
for a whole class or material and then use additional UI controls for the characteristics within the
class or material.
You can use the Store Navigation UI control to create a navigation to a nested store definition. You
use the Store Navigation if the knowledge base contains a material that is modelled as a solution
and has its own knowledge base for which you have already composed a store definition. The Store
Navigation UI control creates a hierarchical structure for the store pages.

5. Configure the UI controls and other UI elements by choosing each UI element on the canvas and
configuring it in the Properties screen area.

 Note
Which options you have for configuring a UI element depends on the type of UI element. For example,
you can enter text for a header, or specify width and height.

6. Complete the page by selecting other knowledge base elements and matching them with UI elements.
7. If required, perform the following optional steps:

• To compose other pages in the store, choose the tab for the page.
• To add an additional page, choose (Add) above the canvas and select a predefined page.
• To change the order of the store pages, drag the tabs and move them into the right order.

8. Choose Preview.

The interactive preview opens in a separate browser tab. You can interact with the UI elements to test the
functionality of the store. Error messages contain information about any configuration errors.

 Note
The UI controls for saving, importing, and exporting a product configuration are disabled in the preview.

9. To save the store definition as a draft, choose Save.

SAP Solution Sales Configuration
UI Composer PUBLIC 219

10. Choose the home button at the top of the screen to unlock the store definition and return to the
workspace. If you close the browser without first navigating to the workspace, the store definition will
remain locked and can only be unlocked by a UI administrator.

7.5.6 Committing Store Definitions

Context

You commit a store definition to signal to other users that you have finished composing the store definition and
that it is now ready to be reviewed by a UI administrator.

Procedure

1. Choose the store definition to open the Composer screen.

2. On the Composer screen, navigate to Menu Commit .

7.5.7 Creating New Versions of Store Definitions

Context

You can create new versions of committed or published store definitions.

 Note
You can only create new versions of regular store definitions, not of master store definitions. Master store
definitions can be edited, updated, and saved but their version number does not change.

Procedure

1. Choose a committed or published store definition and edit the store definition on the Composer screen

2. On the Composer screen, navigate to Menu Create New Version
3. A new version of store definition is created in draft mode. A new version number is automatically assigned

depending on the original status of the store definition

220 PUBLIC
SAP Solution Sales Configuration

UI Composer

Example

If you edit a committed store definition with the version 1.0 and then save the edited store definition as a
draft, the version number of the new draft is 1.1.

If you edit a published store definition with the version 1.0 and then save the edited store definition as a
draft, the version number of the new draft is 2.0.

7.6 UI Administrator Tasks

The following tasks can only be performed by users with the UI administrator role:

• Creating Master Store Definitions and Predefined Pages
• Publishing Store Definitions
• Rolling Back Store Definition Versions
• Migrating Store Definitions to the Product Configurator
• Migrating Store Definitions to the Product Configurator

Related Information

Creating Master Store Definitions and Predefined Pages [page 221]
Publishing Store Definitions [page 223]
Rolling Back Store Definition Versions [page 223]
Migrating Store Definitions to the Product Configurator [page 224]

7.6.1 Creating Master Store Definitions and Predefined Pages

You create master store definitions to configure predefined pages.

Prerequisites

You have UI administrator authorization.

Procedure

1. On the Create Store screen, select a relevant workspace

SAP Solution Sales Configuration
UI Composer PUBLIC 221

2. In the Store Definitions list, navigate to Menu Create
3. On the Knowledge Base tab, select a knowledge base

Recommendation

As this product will not be configured in the Product Configurator, we recommend selecting the knowledge
base of a product for which you do not need to create a store definition. If a knowledge base serves as
the basis for a master store definition, you cannot create a regular store definition for the same knowledge
base.

 Note
The list contains only the knowledge bases for which no store definitions have been created yet. This
ensures that only one store definition exists for each knowledge base.

Only knowledge base versions that are available in the selected source system are displayed.

4. On the Store Template tab, select a store template

 Note
You can select any store template in this step.

5. On the Pages tab, select the predefined pages that you want to use as the basis for the new predefined
pages that you want to configure.

 Note
A blank page is a page that is not predefined for a specific content.

6. On the Header Info tab, enter a name and a description for the store definition. You can also specify tags for
product categories

The information specified on the Header Info tab can be used to search and filter for the store definition on
various screens of the application.

7. To save the store definition as a master store definition in the Type field, select Master and click on Done
8. On the Composer screen, compose the predefined pages using the UI elements in the Control Palette
9. Choose the tab of each predefined page and edit the name and description in the Properties screen area

Recommendation

When UI designers create new store definitions, they need to be able to find the predefined pages they
should use for their product or solution. Therefore, it is recommended that you specify this in the name
and description of the predefined pages.

10. To save the master store definition and predefined pages, choose Save

You cannot commit or publish master store definitions. They can only be edited, updated, and saved. The
version number of the master store definitions does not change in any of these cases.

222 PUBLIC
SAP Solution Sales Configuration

UI Composer

7.6.2 Publishing Store Definitions

You need to publish store definitions before migrating them to the Product Configurator.

Prerequisites

• You have UI administrator authorization
• The store definition is in Commit mode

Procedure

1. Choose the store definition and open the Composer screen

2. On the Composer screen, navigate to Menu Publish

7.6.3 Rolling Back Store Definition Versions

You can roll back a store definition to remove any changes and restore the definition to a previous version.

Prerequisites

• You have UI administrator user authorization
• The store definitions is in Draft mode

Procedure

1. Choose the store definition to open the Composer screen

2. On the Composer screen, navigate to Menu History

A list displays the current and previous versions of the store definition.
3. 3. Select the version you want to restore and choose Roll Back

The restored version is saved as a draft version.

SAP Solution Sales Configuration
UI Composer PUBLIC 223

 Note
You can roll back a published store definition to the state of a previous draft version or committed
version. However, the published version remains active in the Product Configurator until you publish
the restored version.

Example

If your current version is published with the version number 1.0, you can roll back the store definition to the
state of a draft or committed version. In this case, the restored version has the version number 2.0 and is
a draft version. The published version 1.0 remains active in the Product Configurator until the new version
2.0 is published

7.6.4 Migrating Store Definitions to the Product Configurator

You use an ABAP report to migrate the published store definitions from the modeling system to the productive
or test UI Composer system.

Prerequisites

You need to fulfill the following prerequisites before migrating the store definitions to the product configurator:

• The regular store definitions that you want to migrate are published
• The knowledge bases of your store definitions are created in the S/4HANA system.
• The transport request is created in the S/4HANA system.

Procedure

1. In the S/4HANA system, execute the report /SLCE/TRANSPORT_STORE_LIST.
2. Select the store definitions that you want to migrate
3. Choose Execute
4. Create or select a customizing transport request
5. Release the transport request

The store definitions are now available in the productive or test system.

224 PUBLIC
SAP Solution Sales Configuration

UI Composer

7.7 UI Composer Extension Project

7.7.1 Project Description

The UI Composer extension project is an eclipse-based Web application project. It is used to host the following
custom components used by the UI Composer:

• Custom Components
• Custom Templates
• Custom Widgets
• Custom metadata files
• Custom CSS

Important areas of the Web application are described in detail below

Apache Maven Files

Files Description

assembly.xml Assembly descriptor file used by the Maven build.

pom.xml Maven build file.

In order to avoid caching on the browser, before uploading
the files to the server, it is important to increment the ver­
sion number in the pom.xml file. The build will then update
the manifest.properties file which the UI COMPOSER
references.

Web Content Folder

Files Description

Ui5RepositoryTextFiles File contains the list of file extensions that the ABAP upload
program (explained later in this document) needs to inter­
pret as text files.

index.html Dummy index.html file; currently not used.

SAP Solution Sales Configuration
UI Composer PUBLIC 225

Files Description

manifest.properties File containing the project version number.

This version number is used as part of the deployment
path of the extension project when uploading it to the SAP
Gateway Hub. This file is referenced by the UI Composer
to dynamically fetch the project version number in order to
properly locate the extension project deployed on the server.

Resources Folder

Files Description

components.scss SASS file containing all the styles of the custom compo­
nents, templates and widgets.

This file needs to be compiled by the Compass tool in order
to generate the corresponding components.css file which is
referenced by the UI Composer.

custom.scss SASS file containing all style overrides of existing standard
components, templates and widgets.

This file needs to be compiled by the Compass tool in order
to generate the corresponding custom.css file which is refer­
enced by the UI Composer.

compile.command config.rb Compass tool-specific files, you do not need to change these
unless you are familiar with how the Compass tool works.

226 PUBLIC
SAP Solution Sales Configuration

UI Composer

WEB-INF Folder

Files Description

web.xml File containing the web application parameters for local de­
ployment in Apache Tomcat (or any Java web server).

The important section to maintain is:

 Sample Code

<context-param>

<param-
name>com.sap.ui5.proxy.REMOTE_LOCAT
ION</param-name>
<param-value><protocol>:<Gateway
host>:<Gateway port></param-value>

</context-param>

If the SAP Gateway Hub server name or port ever changes,
you will need to update the param value field.

Javascript File Package Structure

Files Description

sap/UI Composer/extension/component

CustomWeatherButton.js Example of a custom component that can be added to the UI
Composer.

CustomWeatherButtonRen derer.js Renderer class for the CustomWeatherButton component.
The standard is always to use the component name in the
renderer name and just append “Renderer”.

sap/UI Composer/extension/metadata

CustomControl.json Custom JSON metadata file for the custom components and
widgets

CustomStoreTemplate.json Custom JSON metadata file for the custom store templates

sap/UI Composer/extension/storetemplate

FooterViewExtension.js Example of a custom FooterView used in a custom store
template

FooterViewExtensionRenderer.js Renderer class for the FooterViewExtension

SAP Solution Sales Configuration
UI Composer PUBLIC 227

Files Description

HeaderViewExtension.js Example of a custom HeaderView used in a custom store
template

HeaderViewExtensionRenderer.js Renderer class for the HeaderViewExtension

StoreTemplateExtension.js Example of a custom store template

StoreTemplateExtensionRenderer Renderer class for the StoreTemplateExtension

sap/UI Composer/extension/widget

Empty placeholder folder for custom widgets

7.7.2 Packaging the Extension Project for Deployment

Context

In order to upload the files to the SAP Gateway Hub server, the extension project needs to be packaged in a
certain way.

The manifest.properties file contains the version number of the project. This version number is used as
means to reference the project from the UI Composer and to avoid caching issues after each deployment.

The tool used to package the extension project is Apache Maven (Maven). Maven is built-in to Eclipse, so there
are no additional plug-ins to install.

Procedure

1. To run Maven, right-click on the project and choose Run As Maven build

228 PUBLIC
SAP Solution Sales Configuration

UI Composer

Running the Maven Build

2. Enter clean install in the Goals field of the resultant dialog box
3. Choose Run

When the build completes, you should see a success message.

For example,

Maven Success Message

The build process creates a folder in the target directory, as shown below:

SAP Solution Sales Configuration
UI Composer PUBLIC 229

Maven Build Target Folder

When using the upload program (described in Deploying the Extension Project) to deploy the app on the
SAP Gateway server, you need to point to a folder. For this purpose, use the upload-files folder shown
in the figure above. This folder contains all the necessary files that the UI Composer needs to integrate the
custom components, JSON files, and CSS files.

Related Information

Deploying the Extension Project [page 230]

7.7.3 Deploying the Extension Project

Uploading the Files to the SAP Gateway Hub Back-End

1. In the SAP Gateway Hub system, go to transaction SE38 and run the program /UI5/
UI5_REPOSITORY_LOAD.

2. Enter the name of the extension BSP application: /SLCUI/UIC_EXT Composer_ext

230 PUBLIC
SAP Solution Sales Configuration

UI Composer

SAPUI5 Upload Program
3. Select the upload-files folder that you have generated with the Maven build of the UI Composer

extension project, and choose OK

Folder Selection
4. The confirmation screen appears.

You will be informed if certain files cannot be uploaded. For example, if the file type isn't recognized. If so,
you will need to add the file type in the .Ui5RepositoryTextFiles file.

5. If there are no errors, scroll to the bottom of the screen and choose Click here to Upload.
6. Enter the transport request number and the codepage parameter UTF-8
7. When the upload is complete, you will be returned to the initial screen of the program
8. Test your extensions in the UI Composer and Store Preview using the URLs:

SAP Solution Sales Configuration
UI Composer PUBLIC 231

• UI Composer: http://[gateway:port]/sap/bc/ui5_ui5/slcui/UI Composer_web
• Store Preview: http://[gateway:port]/sap/bc/ui5_ui5/slcui/stpr_web

Local Deployment

The UI Composer extension web application can be deployed on your local Apache Tomcat (Tomcat) and it will
load the UI Composer application deployed on the SAP Gateway Hub, taking your local extensions into account.
This way, you do not need to upload your extension code to SAP Gateway Hub to test it in the UI Composer.

Once deployed through eclipse to your local Tomcat installation, you can access the app via this URL
(assuming your Tomcat http port is 8080):

http://localhost:8080/UIComposerExtension

232 PUBLIC
SAP Solution Sales Configuration

UI Composer

Important Disclaimers and Legal Information

Hyperlinks
Some links are classified by an icon and/or a mouseover text. These links provide additional information.
About the icons:

• Links with the icon : You are entering a Web site that is not hosted by SAP. By using such links, you agree (unless expressly stated otherwise in your
agreements with SAP) to this:

• The content of the linked-to site is not SAP documentation. You may not infer any product claims against SAP based on this information.

• SAP does not agree or disagree with the content on the linked-to site, nor does SAP warrant the availability and correctness. SAP shall not be liable for any
damages caused by the use of such content unless damages have been caused by SAP's gross negligence or willful misconduct.

• Links with the icon : You are leaving the documentation for that particular SAP product or service and are entering an SAP-hosted Web site. By using
such links, you agree that (unless expressly stated otherwise in your agreements with SAP) you may not infer any product claims against SAP based on this
information.

Videos Hosted on External Platforms
Some videos may point to third-party video hosting platforms. SAP cannot guarantee the future availability of videos stored on these platforms. Furthermore, any
advertisements or other content hosted on these platforms (for example, suggested videos or by navigating to other videos hosted on the same site), are not within
the control or responsibility of SAP.

Beta and Other Experimental Features
Experimental features are not part of the officially delivered scope that SAP guarantees for future releases. This means that experimental features may be changed by
SAP at any time for any reason without notice. Experimental features are not for productive use. You may not demonstrate, test, examine, evaluate or otherwise use
the experimental features in a live operating environment or with data that has not been sufficiently backed up.
The purpose of experimental features is to get feedback early on, allowing customers and partners to influence the future product accordingly. By providing your
feedback (e.g. in the SAP Community), you accept that intellectual property rights of the contributions or derivative works shall remain the exclusive property of SAP.

Example Code
Any software coding and/or code snippets are examples. They are not for productive use. The example code is only intended to better explain and visualize the syntax
and phrasing rules. SAP does not warrant the correctness and completeness of the example code. SAP shall not be liable for errors or damages caused by the use of
example code unless damages have been caused by SAP's gross negligence or willful misconduct.

Bias-Free Language
SAP supports a culture of diversity and inclusion. Whenever possible, we use unbiased language in our documentation to refer to people of all cultures, ethnicities,
genders, and abilities.

SAP Solution Sales Configuration
Important Disclaimers and Legal Information PUBLIC 233

www.sap.com/contactsap

© 2023 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form
or for any purpose without the express permission of SAP SE or an SAP
affiliate company. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software vendors.
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for
informational purposes only, without representation or warranty of any
kind, and SAP or its affiliated companies shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP or
SAP affiliate company products and services are those that are set forth
in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an
additional warranty.

SAP and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP
SE (or an SAP affiliate company) in Germany and other countries. All
other product and service names mentioned are the trademarks of their
respective companies.

Please see https://www.sap.com/about/legal/trademark.html for
additional trademark information and notices.

THE BEST RUN

https://www.sap.com/about/legal/trademark.html

	SAP Solution Sales Configuration
	Content
	1 SAP Solution Sales Configuration for SAP S/4HANA
	2 Solution Modeling Environment
	2.1 Introduction to Solution Models
	2.1.1 Knowledge Base
	2.1.1.1 Defining Knowledge Bases
	2.1.1.2 Knowledge Base Runtime Version
	2.1.1.3 Example: Defining a Knowledge Base Definition
	2.1.1.4 Definition of External Texts

	2.1.2 Class
	2.1.2.1 Defining Classes
	2.1.2.2 Defining a Class

	2.1.3 Material
	2.1.3.1 Defining Materials
	2.1.3.2 Example: Defining a Material

	2.1.4 Characteristic
	2.1.4.1 Defining Characteristics
	2.1.4.2 Defining a Text Characteristic
	2.1.4.3 Defining a Numeric Characteristic
	2.1.4.4 Defining a Date Characteristic
	2.1.4.5 Defining an Abstract Data Type Characteristic
	2.1.4.6 Defining a Reference Characteristic

	2.1.5 Variant Table
	2.1.5.1 Syntax for Defining a Variant Table
	2.1.5.2 Example for Defining a Variant Table
	2.1.5.3 Variant Table Views

	2.1.6 Dependency
	2.1.6.1 Defining Solution Dependencies
	2.1.6.2 Defining a Rule
	2.1.6.3 Defining a Constraint
	2.1.6.4 Dependency Net

	2.1.7 User-Defined Function
	2.1.7.1 Declarative Function
	2.1.7.1.1 Example: Defining a Declarative Function

	2.1.7.2 Pfunction
	2.1.7.2.1 Testing Pfunctions
	2.1.7.2.2 Example: Defining a Pfunction

	2.1.8 Interface Design
	2.1.8.1 Defining an Interface Design

	2.1.9 Bill of Material
	2.1.9.1 Defining Dynamic Bills of Material

	2.1.10 Model Syntax and Logical Validations
	2.1.11 Solution Model Samples
	2.1.11.1 KBO with MCI
	2.1.11.2 FBS_SSC_CA
	2.1.11.2.1 Description of Modeling Techniques
	2.1.11.2.1.1 Guided Selling Questionnaire
	2.1.11.2.1.2 Selecting Servers
	2.1.11.2.1.3 Adding Software and Services
	2.1.11.2.1.4 Linking Services, Hardware, and Software
	2.1.11.2.1.5 Counting and Setting a Line Item Quantity

	2.2 Setup of Solution Modeling Environment
	2.2.1 SAP Modeling Perspective
	2.2.1.1 Creating Model Projects
	2.2.1.1.1 Creating a Solution Sales Configuration Project
	2.2.1.1.2 Importing a Project into Your Workspace

	2.2.1.2 Adding Reference Projects to an Existing Project
	2.2.1.3 Exporting a Model Project
	2.2.1.4 Creating a Launch Configuration
	2.2.1.5 Defining User-Defined Functions
	2.2.1.6 Exporting a Project
	2.2.1.6.1 Setup of Local Database Connection
	2.2.1.6.2 Setup of CRM Connection
	2.2.1.6.3 Setup of ECC and SAP S/4HANA Connection
	2.2.1.6.4 Exporting a Knowledge Base to Database
	2.2.1.6.5 Exporting a Knowledge Base to a File

	2.2.1.7 KB Admin Tool Support
	2.2.1.7.1 Uploading Knowledge Bases
	More Information

	2.2.1.7.2 Deleting Knowledge Bases
	2.2.1.7.3 Uploading External Variant Tables

	2.2.2 SAP Testing Perspective
	2.2.2.1 Testing Models Locally
	2.2.2.1.1 Test Runner
	2.2.2.1.1.1 Saving Test Scripts (Performer)
	2.2.2.1.1.2 Loading Test Scripts (Performer)
	2.2.2.1.1.3 Running Test Scripts (Performer)
	2.2.2.1.1.4 Resetting Test Scripts (Performer)
	2.2.2.1.1.5 Deleting Test Scripts (Performer)

	2.2.2.1.2 Problem Filter on Executable Script Tab

	2.2.2.2 Tracing and Logging
	2.2.2.3 Import/Export Configuration
	2.2.2.4 DDB, PMS, and TMS Dumps
	2.2.2.4.1 Exporting DDB Dumps
	2.2.2.4.2 Exporting PMS Dumps
	2.2.2.4.3 Exporting TMS Dumps

	2.2.2.5 Importing a Model in Local Database
	2.2.2.6 Importing a Model into a File
	2.2.2.7 Importing a Model into a New Project
	2.2.2.8 Importing Master Data from SAP S/4HANA Systems

	2.2.3 Data Loader in the Solution Modeling Environment

	2.3 SSC DevOps Wizard
	2.4 Analyzing Pricing Traces
	2.5 Data Exchange
	2.6 Maintaining Modeling Templates
	2.7 Developing SSC User Exits
	2.8 Collaboration Between Modelers
	2.9 Setting Context Properties
	2.10 Automating Modeling Lifecycle
	2.10.1 Headless Export of Knowledge Bases
	2.10.1.1 Executing Headless Export
	2.10.1.1.1 Eclipse-Specific Arguments
	2.10.1.1.2 Export Application-Specific Argument
	2.10.1.1.3 Example: Headless Knowledge Base Export
	2.10.1.1.4 Exit Codes for Knowledge Base Export

	2.10.2 Headless Performer Execution
	2.10.2.1 Executing Headless Performer
	2.10.2.1.1 Eclipse-Specific Arguments
	2.10.2.1.2 Performer-Application-Specific Arguments
	2.10.2.1.3 Example: Headless Performer Execution
	2.10.2.1.4 Exit Codes for Performer Execution

	2.10.3 Headless XML Configuration Restore
	2.10.3.1 Executing Headless XML Configuration Restore
	2.10.3.1.1 Eclipse-Specific Arguments
	2.10.3.1.2 Restore Configuration Application-Specific Arguments
	2.10.3.1.3 Example: Headless XML Configuration Restore
	2.10.3.1.4 Exit Codes for Configuration Restore

	2.10.4 Headless Upload External Variant Table
	2.10.4.1 Executing Headless Upload External Variant Table
	2.10.4.1.1 Eclipse-Specific Arguments
	2.10.4.1.2 Upload External Variant Table Application-Specific Arguments
	2.10.4.1.3 Example: Headless Upload External Variant Table
	2.10.4.1.4 Exit Codes for External Variant Tables

	2.10.5 Headless Upload of Knowledge Bases
	2.10.5.1 Executing Headless Upload
	2.10.5.1.1 Eclipse-Specific Arguments
	2.10.5.1.2 Headless Upload-Specific Arguments
	2.10.5.1.3 Example: Headless Knowledge Base Upload
	2.10.5.1.4 Exit Codes

	2.10.6 Headless Dataloader Execution
	2.10.6.1 Executing Headless Dataloader
	2.10.6.1.1 Eclipse-Specific Arguments
	2.10.6.1.2 Dataloader Application-Specific Arguments
	2.10.6.1.3 Example: Headless Dataloader Execution
	2.10.6.1.4 Exit Codes for Dataloader Execution

	3 Solution Configuration Environment
	3.1 Configure-To-Order in SAP S/4HANA
	3.1.1 IDOC Inbound Interface for Sales Order Creation
	3.1.1.1 Enhancement of S/4HANA IDOC Inbound Interface for Sales Order Creation

	3.1.2 Light Engineer-to-Order
	3.1.2.1 Changing Bills of Material

	3.2 Configure-To-Order in Hybris
	3.2.1 Adding Related Products to the Solution

	3.3 Interactive Pricing and Delta Pricing
	3.3.1 Pricing Formula and User Exits
	3.3.1.1 Available User Exits and APIs
	3.3.1.1.1 Logging Capabilities
	3.3.1.1.2 Condition Base Formula
	3.3.1.1.3 Item Calculation Begin Formula
	3.3.1.1.4 Item Calculation End Formula
	3.3.1.1.5 Configuration Formula
	3.3.1.1.6 Condition Init Formula
	3.3.1.1.7 Copy Formula
	3.3.1.1.8 Document Init Formula
	3.3.1.1.9 Group Key Formula
	3.3.1.1.10 Item Init Formula
	3.3.1.1.11 Pricing Init
	3.3.1.1.12 Pricing Prepare
	3.3.1.1.13 Requirement
	3.3.1.1.14 Scale Base Formula
	3.3.1.1.15 Condition Value Formula

	3.3.2 Modifying Pricing Context

	3.4 Creating Solution Configurations
	3.5 Restoring Solution Configuration

	4 Integration with Vehicle Management System (VMS)
	5 Compressed Storage of XML Configuration Results
	6 Operations Information
	6.1 User Exit Deployment
	6.1.1 Deployment Using the Solution Modeling Environment
	6.1.2 SSC-USER-EXIT-MAVEN-PLUGIN Reference
	6.1.2.1 SSC-USER-EXIT:DEPLOY-FILE
	6.1.2.2 SSC-USER-EXIT:DEPLOY
	6.1.2.3 SSC-USER-EXIT:INFO
	6.1.2.4 SSC-USER-EXIT:UNDEPLOY-FILE
	6.1.2.5 SSC-USER-EXIT:UNDEPLOY

	7 UI Composer
	7.1 Glossary
	7.2 UI Composer Design-time User Interface
	7.2.1 Workspace Screen
	7.2.2 Create Store Screen
	7.2.3 Copy Store Screen
	7.2.4 Composer Screen
	7.2.5 Interactive Preview
	7.2.6 Manage Store Definitions Screen

	7.3 UI Composer Runtime User Interface
	7.4 Roles and Authorizations in UI Composer
	7.5 UI Designer Tasks
	7.5.1 Creating Workspaces
	7.5.2 Adding Store Definitions to a Workspace
	7.5.3 Creating New Store Definitions
	7.5.4 Copying Store Definitions
	7.5.5 Composing Stores
	7.5.6 Committing Store Definitions
	7.5.7 Creating New Versions of Store Definitions

	7.6 UI Administrator Tasks
	7.6.1 Creating Master Store Definitions and Predefined Pages
	7.6.2 Publishing Store Definitions
	7.6.3 Rolling Back Store Definition Versions
	7.6.4 Migrating Store Definitions to the Product Configurator

	7.7 UI Composer Extension Project
	7.7.1 Project Description
	7.7.2 Packaging the Extension Project for Deployment
	7.7.3 Deploying the Extension Project

	Important Disclaimers and Legal Information
	Copyright / Legal Notice

