
1

Point Of Sale/Service and MER Interaction

SAP On Device Charging Development Guide

Sybase Mobiliser Platform
5.1 SP03

2

Document ID:
Last Revised: July 2013
Copyright © 2013 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until
otherwise indicated in new editions or technical notes. Information in this document
is subject to change without notice. The software described herein is furnished under
a license agreement, and it may be used or copied only in accordance with the terms
of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of
this publication may be reproduced, transmitted, or translated in any form or by any
means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at
http://www.sybase.com/detail?id=1011207. Sybase and the marks listed are
trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their
respective logos are trademarks or registered trademarks of SAP AG in Germany and
in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle
and/or its affiliates in the U.S. and other countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
IBM and Tivoli are registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.
All other company and product names mentioned may be trademarks of the
respective companies with which they are associated.
Use, duplication, or disclosure by the government is subject to the restrictions set
forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian
agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

3

Table Of Contents
TABLE OF CONTENTS .. 3

WELCOME TO SAP ON DEVICE CHARGING ... 7
Purpose of this guide ... 7
Readers ... 7
Guide version .. 7

SAP ON DEVICE CHARGING OVERVIEW .. 8
About SAP On Device Charging .. 8
Setting the context ... 8
What you can do in SAP On Device Charging ... 9

ARCHITECTURE OVERVIEW.. 10
Actors / Roles .. 10
Architecture ... 10
Main processes .. 11

Charging (credit/debit) an account ... 11
Working with on-device offers able to charge offline accounts ... 12

Technologies ... 12
Remarks regarding the ODC integration with Mobiliser ... 13

ODC MER Architecture Overview .. 14
Data Model ... 14

Remarks regarding the ODC integration with Mobiliser ... 15
MER APIs & rating / charging processes overview .. 15

Remarks regarding the ODC integration with Mobiliser ... 17

ODC Server architecture overview ... 17
Security architecture .. 18

POINT OF SALE / SERVICE API DESCRIPTION ... 20
Basic Types definition ... 20
Charging APIs ... 20

DEBIT_ACCOUNT_MER_COMMAND: DebitAccount() .. 20
Remarks regarding the ODC integration with Mobiliser ... 21

CREDIT_ACCOUNT_MER_COMMAND: CreditAccount() .. 21
Remarks regarding the ODC integration with Mobiliser ... 21

DEBIT_ACCOUNT_MER_RESPONSE & CREDIT_ACCOUNT_MER_RESPONSE:
DebitAccount() / CreditAccount() Output Result ... 21
CHARGE_MER_COMMAND: Charge () ... 22

Remarks regarding the ODC integration with Mobiliser ... 22
CHARGE_MER_RESPONSE: The Charge () Output Result ... 22
TLV_TOKEN: Token Type description ... 23

Remarks regarding the ODC integration with Mobiliser ... 23
TLV_CHARGEABLE_ITEM: Chargeable Item Type ... 23
TLV_PROPERTY: Property Type... 24
TLV_PURCHASE_ORDER: Purchase Order Type ... 24

4

ODC hash() function.. 24
ODC MER PIN Checking .. 25

CARD ISO7816 OVERVIEW... 26
Introduction ... 26
APDU Message Structure .. 26

Definitions .. 26
Command APDU definitions ... 27
Decoding conventions for command bodies ... 27
Decoding of the command APDUs .. 27
Response APDU definition ... 28
Coding conventions for command headers, data fields and response trailers 28
Class byte ... 29
Instruction byte ... 30
Parameter bytes ... 31
Data field bytes ... 31
Status bytes ... 32

APDUS USED BY A POS TO DIALOG WITH A MER ... 35
Introduction ... 35

MER APDU Command ... 35
MER APDU Response .. 36
Error Status Word for POS MER API .. 36

Commented Debit() Example ... 37
Description ... 37
JAVA POS Lib description ... 37
APDUs description ... 38

Remarks regarding the ODC integration with Mobiliser ... 38
MER ISO7816-5 Applet Identifier (AID) .. 39
MER Dates encoding .. 39
MER number encoding ... 40

Commented Charge() Example .. 41
Description ... 41
JAVA POS Lib description ... 41
APDUs description ... 42

List of TLV MER APDUs ... 43
MER POS API Command C-APDU .. 43
Debit() C-APDU ... 43
Debit() R-APDU ... 44
TOKEN APDU ... 44
Credit() C-APDU .. 44
Credit() R-APDU .. 45
Charge() C-APDU .. 45
Charge() R-APDU .. 45
CHARGEABLE ITEM APDU .. 45
CHARGEABLE ITEM PROPERTY APDU .. 46
TRANSACTION APDU ... 46
CheckMERPin() C-APDU .. 46

5

CheckMERPin() R-APDU .. 46

SECURITY PROTOCOL BETWEEN THE POS AND THE MER 47
Introduction ... 47

Remarks regarding the ODC integration with Mobiliser ... 47
Vendor security data generation ... 47
How does it work? ... 48
3-DES Initialization Vector determination ... 49

ODC JAVA POS LIBRARY ... 50
Charge() API ... 50
Debit() API .. 50
Credit() API ... 50
How to perform a call to the MER POS API from java code .. 51

SAP COLA FULL CODE EXAMPLE ... 53
Introduction ... 53
PosCola.java .. 54

AN EXTENSION TO THE POS APIS: THE READ API ... 58
SearchMERChargingHistory() ... 59

Java Lib Description ... 59
TLV C-APDU Description .. 59
TLV R-APDU Description .. 59

SearchMERCreditLimit()... 59
Remarks regarding the ODC integration with Mobiliser ... 59

Java Lib Description ... 59
TLV C-APDU Description .. 59
TLV R-APDU Description .. 60
TAG CREDIT_LIMIT .. 60

SearchMERETokens() ... 60
Java Lib Description ... 60
TLV C-APDU Description .. 60
TLV R-APDU Description .. 60

SearchMERExternalAccount() ... 61
Remarks regarding the ODC integration with Mobiliser ... 61

Java Lib Description ... 61
TLV C-APDU Description .. 61
TLV R-APDU Description .. 61
TAG EXTERNAL_ACCOUNT .. 61

SearchMERPrepaidAccount() .. 61
Java Lib Description ... 61
TLV C-APDU Description .. 62
TLV R-APDU Description .. 62
TAG PREPAID_ACCOUNT .. 62

SearchMERRefillHistory() .. 62
Java Lib Description ... 62

6

TLV C-APDU Description .. 62
TLV R-APDU Description .. 63
TAG REFILL_ORDER ... 63

SearchMERSubscriberAccount() ... 63
Java Lib Description ... 63
TLV C-APDU Description .. 63
TLV R-APDU Description .. 63
TAG SUBSCRIBER_ACCOUNT ... 64

SearchMERSubOfferCodes ... 65
Java Lib Description ... 65
TLV C-APDU Description .. 65
TLV R-APDU Description .. 65

SearchMERSubscriptionInfo ... 65
Remarks regarding the ODC integration with Mobiliser ... 65

Java Lib Description ... 66
TLV C-APDU Description .. 66
TLV R-APDU Description .. 66
TAG SUBSCRIPTION ... 67
TAG CHARGE_ACTIVATION ... 67
TAG COUNTER .. 67
TAG PARAMETER ... 67

SearchMERSubscriptionCounters .. 68
Remarks regarding the ODC integration with Mobiliser ... 68

Java Lib Description ... 68
TLV C-APDU Description .. 68
TLV R-APDU Description .. 68

SearchMERSubscriptionParameters ... 68
Remarks regarding the ODC integration with Mobiliser ... 69

Java Lib Description ... 69
TLV C-APDU Description .. 69
TLV R-APDU Description .. 69

Important Note .. 69

7

Welcome to SAP On Device Charging
SAP On Device Charging is built upon a powerful, flexible pricing, and charging solution. Its intuitive GUI
drives a powerful set of tools to profitably price and rate transaction directly on end user’s device. SAP On
Device Charging's modular design includes a framework for fast and low-cost integration to quickly deploy
solutions that enable you to get a rapid return on your investment.

Purpose of this guide
This development guide describes how to interact device from the Point of Service with the ODC MER
(Mobile Embedded Rater) that is installed on a customer’s. It proposes:

A general overview about the ODC architecture.

The POS APIs provided by the MER.

A brief description about ISO7816

A description of APDUs used by a POS to communicate with a MER.

A description of the security protocol between the POS and the MER.

The java POS library (com.sap.odc.mer.api.pos) proposed by ODC for a high level integration.

The SAP Cola full code that can be used as an example / tutorial.

An extension to the POS APIs: the READ API.

A description of APDU’s proposed by the READ API.

The java READ library (com.sap.odc.mer.api.read) proposed by ODC for a high level integration.

Readers
SAP On Device Charging's development guide is intended for power developers who create POS application
and manage the POS for the service provider. They should have knowledge of:

NFC, Javacard and ISO7816

Encryption libraries

ODC Charging concepts (Chargeable Items, Charging and Pricing plan)

Guide version
Document version: 0.1 - July 2013

(c) Copyright 2013 SAP AG. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the
express permission of SAP AG. The information contained herein may be changed without prior notice.
This documentation may describe use cases that are not authorized for all customers in all regions. Please
refer to your license agreement and comply with any territorial or use restrictions that apply.
Some software products marketed by SAP AG and its distributors contain proprietary software components
of other software vendors.
All other product and service names mentioned are the trademarks of their respective companies. Data
contained in this document serves informational purposes only. National product specifications may vary.
These materials are subject to change without notice. These materials are provided by SAP AG and its
affiliated companies ("SAP Group") for informational purposes only, without representation or warranty of
any kind, and SAP Group shall not be liable for errors or omissions with respect to the materials. The only
warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as
constituting an additional warranty.

8

SAP On Device Charging overview

About SAP On Device Charging
SAP On Device Charging is a modular solution for pricing and charging processes performed by the mobile
handset. You can:

Use the panel of tools to streamline the way you create price plans and charging plans

Build up complex offers without writing a line of code

Use the intuitive GUI which enables "visual programming" to

visualize subscriptions

customize your price algorithms

Subscribe to offers defined by the merchants

Synchronize the user subscriptions (price / charge plans, counters and Prepaid Accounts) with
remote devices for executing business logic locally on the device in a secure way.

To help you get the most out of SAP On Device Charging®, SAP AG has set up a Help Portal which
features a regularly updated knowledge base, the latest release notes, and expert advice from our
Support team.

Setting the context
ODC is the On-device version of the centralized SAP Convergent Charging (SAP CC) software.
ODC supports the SAP CC main features

Manage Stored Value Card also called offline SVA on the device

Rate/charge any kind of service
Implement some flexible business logics
Cascade and compose price plans for multi-partners business models

Where can it be implemented?

On Javacard Secure Element used by devices,
Ex devices : plastic cards, mobile phones (SIM), on-board-units, set-top-boxes, tablets, smart
meters, ...
Directly on smart phones (unsecure), to estimate price and control the service costs

What does it do?
Allows millions of devices to perform in a secure way the following functions locally on the device
itself:

 Business logic execution
 Rating & charging
 Stored value accounts management

 Works in both off-line and on-line modes

9

What you can do in SAP On Device Charging
The main features of SAP On Device Charging are the following:

Catalogs
To help you organize your work more efficiently, you create catalogs for storing all the objects that are
needed for the service provider.

Chargeable Item packages
You need to define Chargeable Item packages that represent services which can be rated according to
their usage. With NFC capabilities the Chargeable Items will be transmitted by the point of service through
the NFC reader.

Charges
You create charges that define the price plan and the charging plan to be applied to the usage of a
service.

Offers
You create offers which represent the way that you sell services.

Pricing macros
You can create pricing macros that are small reusable modules for applying calculation formulas within the
charges.

Translation tables
You can create translation tables used within charges and refill logic to assign specific output values to
input values.

Subscriber Accounts
Before creating subscriptions, you must create one or more subscriber accounts representing customers in
SAP On Device Charging. If you work with Sybase Money Mobiliser, the corresponding subscriber
accounts are automatically created in SAP On Device Charging. The access to existing subscriber accounts
is available in read-only mode through the SAP On Device Charging Core Tool.

Subscriptions
You can allow customers to subscribe to one or more offers proposed by service providers and manage all
the conditions relating to subscriptions. If you work with Sybase Money Mobiliser, the subscriptions will
be automatically created by Sybase Money Mobiliser. The access to existing subscriptions is available in
read-only mode through the SAP On Device Charging Core Tool.

Accesses
At subscription or provider contract level, the user access specifies the identifier under which a customer
consumes a service.

User profiles
You can assign a login, a password, and one or more roles to each SAP On Device Charging's user. But if
you work with Money Mobiliser the ODC user profile creation is completely handled by Sybase Money
Mobiliser.

Audits
SAP On Device Charging can save user operations to the database for audit purposes. You can create
filters to search for audited user operations in your database.

Tools
You are provided with specific tools to work with SAP On Device Charging.

Synchronization
The user can synchronize/push the subscriber accounts and subscriptions on the customer’s device
(mobile handset in most of time) by using OTA infrastructure. If you work with Sybase Money
Mobiliser, the synchronization is managed by Money Mobiliser but can be triggered by the end customer
from his Sybase Mobiliser Smartphone application running on his mobile.

10

Architecture overview
Actors / Roles
The following roles/actors can be defined with SAP-ODC:

Vendor / Merchant / Service Provider
o Party who sells a good or a service (tangible or intangible)
o Party who creates offers and Prepaid Accounts but who doesn’t operate a SAP ODC

platform.
o A vendor needs a SAP-ODC operator to publish his offers.
o A vendor can also delegate the offer’s implementation to the operator.
o A vendor can propose some Point of Sale / Service that can interact with the Customer
o A vendor can use some third POS which are proposed by the operator

Operator
o Party who manages a SAP-ODC platform.
o An operator implements the vendors’ offers for the customers through his platform.
o An operator can create his own offers and provide a service; in this case he plays a

vendor role too.
o An operator can also manage and share a set of POS with multiple vendors to interact

with customers.

Customer
o Party who subscribes to offers through a SAP ODC server (not mandatory).
o Party who uses Prepaid Accounts for payment or loyalty management.
o Party who consumes/uses services provided by the vendors.
o A customer can be an operator’s client or a vendor’s client or both.

Architecture

SAP ODC is defined through the following functional architecture. 3 main modules compose this
architecture:

SAP-ODC Server: the main access point for the offer cataloguing and the provisioning
processes. This module is based on SAP CC data models that have been enhanced for supporting
the embedded aspects.

MER (Mobile Embedded Rater): this functional module is embedded on the device. It’s a
container which hosts the offers and Prepaid Accounts which have been subscribed by a given
customer. At this time, this module is implemented into a Smart card or a Secured Element which

11

can support Javacard technologies. However some ODC implementations can also provide non-
secure MER able to run on Android.

POS (Point Of Service / Sale): this is mediation module in charge of sending the Chargeable
Items (CDRs/EDRs) and/or debit/credit the Prepaid Account according to the service
consumption. The POS can be implemented by a vendor or an operator. This module sends the
CDR/EDR to the MER to be rated.

The external system module represents different functional services which are out of scope
from SAP SAP-ODC but can be interfaced with. By example: online payment system,
billing/invoicing system, POS management module, CRM, vendor portal, app store, service
platform …

The connections between modules can be implemented on different protocols such as OTA, NFC, ISO,
ADSL, etc. (for OTA connections SAP ODC should be interfaced with a TSM platform for being able to
communicate with the secure elements located on mobile except if operator is the card issuer AND if the
DIRECT deployment mode is used).

Main processes
The main workflows can be summarized through the 2 main following use-cases:

Charging (credit/debit) an account

The following processes have to be performed with this use case:

Vendor offline account provisioning and refilling
 “A referenced (by the operator) vendor provisions a prepaid account for a customer”

The customer accesses to the vendor portal or the operator portal aggregating several services
through different media (web, from its mobile …).
The vendor proposes an offer which is just made of a private payment mean (prepaid card, gift
card or postpaid account) or of a balance for storing loyalty points.
The customer subscribes to the offer, a subscriber account (SUAC) is then created (if it doesn’t
still exist) on the ODC server between the vendor and the customer and the related account
(prepaid or postpaid) is created into the SUAC.
The SAP-ODC server uploads the new subscriber account (if necessary) and the account in the
customer’s MER.
For prepaid account types the user is then invited to refill the balance by using an external
payment mean.
Then, the ODC server (if the payment is validated), synchronizes the refill with the offline
customer’s account (this sub-process can be performed in a separated / standalone process).

(*) Please note that several accounts can be created in given SUAC that defines the business relationship
between a vendor and a customer.

Credit or debit the customer’s offline account
“An existing offline account is used as a payment instrument or as a loyalty point counter”.

The customer accesses to a service he wants to consume
Before delivering the service/good the vendor wants to perform the payment by debiting the
customer’s prepaid account or the vendor wants to add loyalty points on the customer balance
A communication link is created between the POS and the MER
The POS calls the debit or credit API on the MER by specifying the reference of the account that
must be debited / credited.
Then the amount is subtracted or added to the account balance amount after having checked the
currency compliance.
According to the account response (OK or insufficient balance if the empty limit has been
reached) the service is delivered or not.

12

Working with on-device offers able to charge offline accounts

The following processes have to be performed with this use case:

Vendor offer building process
“A referenced (by the operator) vendor wants to add a new offer into its catalogue about a new or an
existing service”

The vendor uses the ODC core tool to define its offer (“embeddable and compatible with the
prepaid service).
This offer will be defined according to the Chargeable Items description which will be sent by
each POS representing the service.
When the offer is ready, the vendor registers the offer onto the SAP ODC server.
He can publish the service onto its own (Web) portal or on a (Web) portal provided by the
operator aggregating other services (provided by other vendors).
Then the offer is ready for the provisioning process.

A customer wants to subscribe to the “embed-able” vendor offer (*)
“The customer chooses the service and the embed-able offer and subscribes to it”

The customer accesses to the vendor portal or the operator portal aggregating several services
through different media (web, from its mobile …).
The vendor’s offers are then listed and explained
The customer chooses the appropriate one and personalizes it with his parameters (if required).
He’s invited to pay it through an external payment system (optional)
Then, the portal creates on SAP-ODC server the subscription with customer’s parameters and the
associated account if the customer is new.
SAP-ODC server generates (through the compiler) the embedded version of this subscription.
If the client is a new one (for this vendor), the SAP-ODC Office creates a new “Subscriber
Account” (with the required balances) into the customer’s MER.
The SAP-ODC server uploads the new subscription into the customer’s MER.
SAP-ODC Office activates this new subscription into the MER.

(*) the above sequence is an interactive scenario but the offer subscription can be totally handled,
automatically, by the vendor through some provisioning integration code.

A customer consumes a service:

The customer accesses to a service he wants to consume
A communication link is created between the POS and the MER
The POS sends a CDR/EDR corresponding to the service with additional information such as the
Vendor ID, consumption date, to the customer’s MER.
The MER retrieves from the Vendor ID the right Subscriber Account (the account corresponding to
this vendor into the MER).
If no subscriber account is found the chargeable event is rejected and the service is not
delivered.
When the Subscriber Account is found, the CDR/EDR’s name is used to identify the subscription
which is involved by this service consumption.
Then, the subscription’s rating process is triggered (a price and/or counter impacts are
calculated) and this process returns an authorization (or a rejection) to the POS after having
charged the price on prepaid balances (if required by the charging plan).

According to the rating process response, the service is delivered or not.

Technologies
ODC runs on Javacard / Global Platform technologies, mainly for security reasons, to guarantee the
integrity of the code.

Javacard and GP technologies are mainly implemented by inexpensive components called Secure Element.
Several form factors exist for SE: SIM card, micro SD card, embedded SE, dongle, key fob, … .

By combining those Secure Element with the NFC (Near Field Communication) technology, the connection
with the Point of Sale/Service can now be done in a secure way with a contactless/proximity interaction
and a very efficient pairing time (less than 0.2 second).

13

The counterpart is that smart card/secure element resources are not sufficient for implementing and
running a generic rating engine on it.

To solve this issue, a compiler has been developed to produce some specific rating engines for each
customer’s subscription instead of developing a generic rating engine as it is implemented into the
centralized SAP CC version.

On ODC server, each subscription to an offer will be transformed by the compiler into a dedicated and
optimized applet which will be installed on the end user’s Secure Element.

The typical steps when creating a Java Card application are:

1. Write the Java source.

2. Compile your source.

3. Convert the class files into a Converted Applet (CAP) file.

4. Verify that the CAP is valid; this step is optional.

5. Install the CAP file.

The 3 first steps are currently performed by the ODC compiler.

The step 5 can be performed by ODC or delegated to a third party (TSM) depending of the business case
and the card issuer.

Remarks regarding the ODC integration with Mobiliser
Regarding the installation step (step 5 above), ODC with Mobiliser supports 2 modes to deploy/install the
Cardlet (including the MER) on the Secure Element.

DIRECT mode: the operator of the Mobiliser platform is the SE issuer and knows the key set
for managing the SE. With this mode, if the SE is compliant, it can be directly managed by
the ODC server in Mobiliser Core platform.

14

DELEGATED mode: the operator of the Mobiliser platform is not the SE issuer and requires
the services of a TSM (Trusted Service Management) to manage the ODC applet on the SE.
With this mode, integration with the TSM Web Services that will be selected by the Mobiliser
Operator is required.

ODC MER Architecture Overview
The Mobile Embedded Rater is a card applet installed into a reserved Security Domain implemented into a
Javacard (see Global Platform specifications). This applet plays the role of a container that manages some
subscriber accounts and the accesses to the business logics (Subscription applets) that can be installed
dynamically into the same security domain.

Data Model
A Subscriber Account represents the relationship between a Merchant and a Customer. A Subscriber
Account contains one or several accounts that can be prepaid (with a balance) or external (just a
reference to an external account). Due to limitations imposed by the SE, the number of Subscriber
Accounts which can be installed in a MER is limited and will depend on the SE profile (memory size). It’s
difficult to give some figures. By example on a referenced SE, the CredenSE from Device Fidelity with 70
kBytes can host about 10 Subscriber Accounts with a single Prepaid Account per Subscriber Account.

A Prepaid Account represents a monetary balance that can be credited, debited (from the POS) or
refilled (from the ODC server). An empty limit can be defined (default is 0) for each Prepaid Account.
Several Prepaid Accounts can be defined in a Subscriber Account and at least one Prepaid Account must
be defined as default in a given Subscriber Account. This default Prepaid Account will be automatically
selected if no Charging Plan is defined or if a Prepaid Account referenced by a charging plan cannot be
found. Moreover, a non-monetary currency (the POINT code PNT) is added for managing loyalty policy.
In addition, considering that a Prepaid Account is embedded in the SE (that is a constrained architecture)
some limitations are applied on balance values that must be comprised between -9999.9999 and

15

9999.9999. At last, the number of Prepaid Account per Subscriber Account is limited to 3 items by default
(this limitation can be changed in SE profiles).

A Subscription represents an offer that has been subscribed by a user. The Subscription mainly contains
the business logic, the offer parameters and the counters. A Subscription installed with the MER is always
a copy of a Subscription that has been created into the ODC server except for the counter values that are
updated / modified on the device itself.
At last, considering that a subscription is installed on the SE, some limitations exist on the following
elements. Those limitations are controlled by the ODC Tool and by the server before recording an offer
and a subscription into the ODC DB.
Limitations on offer:

All strings are limited to 24 characters (extended ASCII)
Number range is [-9999.9999 , 9999.9999]
Max row count for a Translation Table : 100 (max column count is 15 – 5 inputs and 10
outputs-)
Date range is [2000/1/1; 2099/12/31]
In a given Price Plan the number of counters and the number of parameters is limited to 5
(each).
The number of transient counters used in a price plan is limited to 3.
Sub-offers are not supported.

Limitations on subscription (controlled by the ODC server at creation time):
A Subscription cannot contain more than 10 Charge Activation.
Translation Table row count is limited to 100 for all translation tables used by a subscription.
The total number of counters implemented by a subscription is limited to 20.
The total count of parameters used by a subscription is limited to 20.
The total count of transient counters used by a subscription is limited to 5.

At last, the number of Subscriptions that can be deployed on a SE will depend of the size of each
Subscription and the available remaining memory in the SE. For information the smallest Subscription size
is around 4Kbytes and the largest can take 60Kbytes.

Access and Subscription are very close. The Access identifies the subscription that must be
used/triggered when a Chargeable Item is received by the MER. For performing this guiding process, the
MER will use the serviceID and the merchantID.

Chargeable Item describes the usage of a service or a purchase. This data is send to the MER by the
POS (Point Of Sale / Service) to be charged by the suitable subscription. This Chargeable Item contains
some default properties and some additional user properties that can be defined by the pricing designer.
Due to limitations imposed by the SE, only 7 user properties (date, number or string) can be added. This
limitation is controlled by the ODC Tool when the Chargeable Items are defined (see Chargeable Item
Class definition).

EToken is the result of a transaction which has been charged on a Prepaid Account. It provides a
signature that guarantees the integrity of the transaction. EToken can be stored into the SE or/and
returned to the POS. The number of eTokens that can be stored into the SE, depends of the remaining SE
memory and the cryptographic method that has been selected. The size of a eToken is 113 bytes (with 3-
DES) or 228 bytes (with RSA).

Remarks regarding the ODC integration with Mobiliser
In Mobiliser the notions of Subscriber Account and Prepaid Account are grouped under the notion of
Stored Value Account (SVA). A SVA is issued by a merchant and owned by a customer. When a new SVA
is created on a customer’s device by a merchant, Mobiliser will check if a Subscriber Account already
exists between the merchant and the customer and will create it if not. Then, this SVA will be used for
purchasing services provided (only) by the referenced merchant. At last, a special SVA (called SHARED
SVA), issued by the operator of the Mobiliser platform can be used for purchasing services/good proposed
by all the merchants that are registered in the Mobiliser platform.

MER APIs & rating / charging processes overview
The MER provides 4 sets of APIs:

- POS API that allows a POS (Point of Service – NFC or not) to credit/debit a Prepaid Account or
to charge consumption (by using NFC protocol by example) on dedicated business logic (if it
exists).

- ADMIN API that allows the ODC Server (and only the ODC Server) to read/write/delete the data

16

into the MER (incl. the MER itself and the Subscription cardlets).
- VIEWER API that allows mobile APK (such as Smartphone Mobiliser) to read the data that is

stored into the MER Applet.
- READ API that allows a merchant/vendor application deployed on a POS to read the merchant’s

data that is stored into the MER Applet.

The following schema shows how data is organized inside the Security Domain used by the MER and
Subscription. At last the reader can see how the POS APIs directly impact the SVA (debit/charge) and
trigger the global charging process as following:

1. The merchant POS builds and ciphers (thanks to a key previously generated by the ODC
server) the Chargeable Item related to the usage.

2. The POS sends to the MER a (ciphered) Chargeable Item with the consumption date, the
merchant ID and the service ID.

3. Thanks to the merchant ID the MER will check that a subscriber account with this merchant
already exists.

4. The MER deciphers the Chargeable Item thanks to the (symmetric) merchant key that is
recalculated inside the MER.

5. If the Chargeable Item cannot be deciphered, it is rejected by the MER.
6. Thanks to the service ID and the access the Chargeable Item is guided towards the

associated subscription for the rating process.
7. During this rating process, the subscription will execute the business logic, impact the

counters and generate one or several transactions.
8. After having defined the ID of the accounts (prepaid or external) on which each transaction

will be charged, the set of transactions is returned to the MER by the subscription.
9. Each transaction is then charged on the related account (debited from the Prepaid Account

or marked with the external account ID).
10. If the charging process fails a rejection result is the returned to the POS.
11. If required, those transactions are signed by the MER for building one or several some

eTokens.
12. At last, a (positive/negative) response is returned to the POS that contains or not (based on

charge() call parameters) the eTokens.

At last, when the debit/credit process is directly triggered by the merchant POS, the code of the
targeted SVA must be passed as parameter by the merchant in addition to the amount to credit/debit.

17

Then if a Subscriber Account involving the merchant is found, the MER will attempt to debit the specified
Prepaid Account if it exists. Otherwise, the MER will try to debit the default account. If the amount cannot
be (totally) charged on the account (default or not) or if an amount is out of range or if the no Subscriber
Account has been found, the transaction is discarded and the process returns a rejection code to the POS.

Remarks regarding the ODC integration with Mobiliser
As explained above, the integration has introduced the notion of SHARED SVA (unique per MER). With the
Mobiliser integration, if the debit/credit process cannot find a Subscriber Account for the specified
merchant, the process will try to debit/credit the SHARED SVA that is implemented into a different
Subscriber Account owned, in that case, by the Mobiliser platform representative/operator (that will play
the merchant role).

Each time the SHARED SVA will be charged, an eToken identifying the transaction date, the customer, the
merchant, the SVA code and the amount, will be automatically generated for feeding the clearing process
on the Mobiliser platform.

ODC Server architecture overview

The ODC server is built around a Java Message Service that is used by 5 functional core modules:

Updater: this module is used to provision all the business data required by ODC.
Synchronizer: the Synchronizer is the orchestration module that manages the (asynchronous)
interactions with the Mobile Embedded Rater
Compiler: This module is able to transform the subscriptions provisioned by the Updater into
Javacard code that can be installed with the MER into the SE Container (a Security Domain as
defined by GP).
Security: as ODC server is able to store and use the Secure Element keys (DIRECT mode), this
module manages the reliable storage of all ODC keys and the execution of the cryptographic
algorithms that are required by other modules. This module which defines a functional interface
can be connected to an external HSM solution (optional) to increase the security.
CommChannel: this module is the transportation layer that organizes and sends all the data
(APDU) to the MER and SE container. This module don’t access directly to the SE but uses some

18

WS from TSM (DELEGATED mode) or uses the connections Mobiliser already have with the
Smartphone Mobiliser (by using a push OTA notification, SMS, GCM, …). With this last case,
Smartphone Mobiliser is used as a proxy to transmit ciphered data to the MER/SE Container.

To access to ODC core, an ODC Adapter which implements a JMS client, provides to Mobiliser a
simplified API and builds the notion of Mobiliser SVA on concept implemented by ODC.

At last, the POS (Point of Service / Point of Sale) interacts with the MER by using NFC and ODC libs.

Security architecture
Based on Javacard / Global platform specifications, the access to the SE’s administration is only authorized
to the SE issuer (or trusted third party - TSM). The SE’s administration requires a dedicated key set for
creating, by example, the security domain (SD) that will be used by ODC MER. This feature is out of scope
of ODC. To deploy the MER on the SE via the DIRECT mode, a security domain must have been previously
created and the key set for acceding to this SD (see ODC_S-ENC, ODC_S-MAC, and ODC_DEK below)
must be recorded into the ODC server.

All the communications with the MER must be ciphered for getting a response from it.

We can list 3 types of interactions with the MER:

ODC Server / MER interactions: security is based on a standard Global Platform secure channel
(based on SCP02) that will cipher all the exchanges between the ODC server and the MER (symmetric
encryption). To implement this secure channel, the ODC server will use the following GP key set:
ODC_S-ENC, ODC_S-MAC, and ODC_DEK preinstalled into the SE. Depending on the pre-
personalization required by the SE issuer to the SE manufacturer, the keyset can be unique for each
Secure Element (SE).

When, the DIRECT mode is used (see above), those key sets are ciphered by a RSA public key and
stored into the ODC database. They will be deciphered (thanks to a private key) and used by the ODC
to implement the secure channel. When the DELEGATED mode is used, those keys and the secure
channel are managed by the TSM and ODC will ask the TSM to establish the secure channel.

POS / MER interactions: security is based on a single ODC private key (called MPcK – MER private
charging key -) and a vendor alea (vALEA) generated by ODC for each new merchant (identified by a
hash code vID). As an isolation mechanism is mandatory between the different subscriber accounts
(to avoid a merchant A charging a SVA issued by a merchant B), for each new merchant, the ODC
server will generate a vendor charging key (VcK = DESede[MPCK, vALEA + vID]). VcK is used by the
merchant’s POS to charge/debit/credit the customer’s subscriptions/SVA. As the MPcK is installed into
a MER during its personalization phase, when a subscriber account is created into the MER, the
vendor vALEA is also pushed into the MER. Then, the MER will be able to communicate in a secure
way with the related merchant’s POS.

Moreover, in a similar way, for allowing a merchant to read (see above READ API) its own data stored
into a customer’s MER, a vendor read key (VrK) is generated by ODC from a dedicated ODC private
key (called MPrK – MER Private readKey) and the vendor alea. Like the VcK, the VrK is also delivered
to the merchant.

Mobile APP / MER interactions: to access to the READ API provided by the MER, the mobile APP
will have to request a MER viewer Key (MvK) from the MER (to cypher the communication). This key
is randomly generated (when requested) by the MER and then stored into the mobile APP and the
MER. By example, this key is requested by Smartphone Mobiliser when a new MER is deployed or
when the application tries to access to the MER for the first time. Each time a viewer key is requested,
the MER will invite the user to enter its MER PIN code before generating the MvK (by using DESede).

This viewer key prevent non authorized applications to access to the customer’s data and prevent
authorized applications to access to the MER data from other customers when the SE is moved from a
mobile to another one.

In addition to the above secure mechanisms used for communicating with the MER, the MER uses a
private key (MPsK) for signing the eTokens.

At last, the MER provides a wallet PIN mechanism for asking the customer to enter its PIN on the

19

following configurable (by the customer or ODC server) actions/criteria:
- viewer key generation
- transaction amount threshold
- expiration of inactive period
- max count of authorized transaction

To conclude with the security architecture, ODC server implements a separated security module that
stores the different key set required for managing the SEs (DIRECT mode). This module is also used for
generating the vendor keys and running the cryptographic algorithms. Optionally, this module can be
replaced by a HSM solution to strengthen the security level.

However, without a HSM, all the keys that are stored into the ODC database must be ciphered to avoid
being read directly. By example, that’s what is has done with the Mobiliser Integration: all ODC keys have
been ciphered thanks to a RSA public key and the related private key to decipher has been stored into the
Mobiliser ‘s key store.

20

Point of Sale / Service API description
Tables may include a "MOC" column meaning "Mandatory/Optional/Conditional". This column specifies the
obligation of presence of the data in the function or in the message. The following definitions apply to
these terms:
• Mandatory (M): Means that an entry must be supplied
• Optional (O): Means that an entry can be supplied, but is not required to be supplied.
• Conditional (C): Means that the usage of an entry is dependent upon a particular condition.

Basic Types definition

String24 String with a maximum length set to 24 ASCII_CHAR.
Date5 5 bytes encoding date:
Decimal5 A 5 bytes decimal with up to 4 decimal digits strictly greater than -10,000

and strictly lower than 10,000.
HexByte2 A byte in hexadecimal (2 chars): example “2A”
Short2 2 bytes short number

Charging APIs

DEBIT_ACCOUNT_MER_COMMAND: DebitAccount()
This API allows a POS (owned by a service provider) to debit a Prepaid Account and assign the debited
amount to a payee ID (previously provisioned in an external system). Most of time the Service Provider
and the payee ID are the same party, but sometimes a service provider can collect money on behalf of a
third party.

Input data name Description Type MOC
SERVICE_
PROVIDER_CODE

The code that identifies the service provider
and consequently the Subscriber Account
into the MER (only 1 or zero Sub. Acct. per
merchant).

String24 M

ACCOUNT_CODE The code of the (prepaid) account that must
be debited. For a given service provider,
this code is unique and references an
account provisioned on the end-user’s
device. If not set, the default account is
debited.

String24 O

AMOUNT The amount that must be debited from the
Prepaid Account

Positive Decimal5 M

CURRENCY The ISO 4217 currency 3 letters code.
Please note that 2 additional non- monetary
codes are available: XXX for no currency
and PNT used for POINTS.

ASCII_CHAR[3] M

DATE The debit date. Most of time the current
date of the POS that performs the debit.

Date5

PAYEE_ID The ID of the party who receives the
amount debited from the customer’s
Prepaid Account.

String24 M

PROOF_POLICY Indicates the policy for generating the
tokens

Byte with one of the
following values:
PROOF_NOT_REQUIRED = 0;
PROOF_RETURNED = 1;
PROOF_STORED = 2;
PROOF_STORED_AND_RETURNED
= 3;

M

21

Remarks regarding the ODC integration with Mobiliser
The SERVICE PROVIDER CODE is mapped on the merchant name and the PAYEE ID input data is mapped
on the merchant ID as defined by Mobiliser.

The PROOF_POLICY is always set to STORED_AND_RETURNED: the tokens are always generated, returned
to the caller and kept into the MER.

CREDIT_ACCOUNT_MER_COMMAND: CreditAccount()
This API allows a POS (owned by a service provider) to refund/credit a Prepaid Account and assign the
credited amount to a payer ID (previously provisioned in an external system). Most of time the Service
Provider and the payer ID are the same party, but sometimes a service provider can refund money on
behalf of a third party.

Input data name Description Type MOC
SERVICE_
PROVIDER_CODE

The code that identifies the service
provider and consequently the
Subscriber Account into the MER (only
1 or zero Sub. Acct. per merchant).

String24 M

ACCOUNT_CODE The code of the (prepaid) account that
must be credited. For a given service
provider, this code is unique and
references an account provisioned on
the end-user’s device. If not set, the
default account is credited.

String24 O

AMOUNT The amount that must be credited on
the Prepaid Account

Positive Decimal5 M

CURRENCY The ISO 4217 currency 3 letters code.
Please note that 2 additional non-
monetary codes are available: XXX for
no currency and PNT used for POINTS.

ASCII_CHAR[3] M

DATE The credit date. Most of time the
current date of the POS that performs
the credit.

Date5

PAYER_ID The ID of the party who credits the
amount on the customer’s Prepaid
Account.

String24 M

PROOF_POLICY Indicates the policy for generating the
tokens

Byte with one of the following
values:
PROOF_NOT_REQUIRED = 0;
PROOF_RETURNED = 1;
PROOF_STORED = 2;
PROOF_STORED_AND_RETURNED = 3;

M

Remarks regarding the ODC integration with Mobiliser
The SERVICE PROVIDER CODE is mapped on the merchant name and the PAYER ID input data is mapped
on the merchant ID as defined by Mobiliser.

The PROOF_POLICY is always set to STORED_AND_RETURNED: the tokens are always generated, returned
to the caller and kept into the MER.

DEBIT_ACCOUNT_MER_RESPONSE & CREDIT_ACCOUNT_MER_RESPONSE:
DebitAccount() / CreditAccount() Output Result

Output data name Description Type MOC
STATUS The status of the debit

operation
Byte with one of the following
values:

M

22

STATUS_DEBIT_OK = 0;
STATUS_DEBIT_REJECTED = 1;
STATUS_CREDIT_OK = 2;
STATUS_CREDIT_REJECTED = 3;

REJECTION_CODE If the status is rejected, it gives
the reason of the rejection

Byte with one of the following
values :
REJECTION_NONE = 0;
REJECTION_ACCOUNT_INSUFFICIENT_BAL
ANCE = 1;

C

TOKEN The signed transaction if the
status is OK

Set if the PROOF_POLICY differs
from PROOF_NOT_REQUIRED
(See Token Type description below)

C

CHARGE_MER_COMMAND: Charge ()
This service allows the user to perform a business
Input data name Description Type MOC
SERVICE_
PROVIDER_CODE

The code that identifies the
service provider and
consequently the Subscriber
Account into the MER (only 1 or
zero Sub. Acct. per merchant).

String24 M

SERVICE_CODE The code that identifies the
service that will be used by the
MER for retrieving the access
(that points on the subscription)

String24 M

CURRENT_DATE The current DATE as returned
by the POS.

Date5 M

CONSUMPTION_DATE The date of the consumption
(often the same than
CURRENT_DATE for real time
services.

Date5 M

PROOF_POLICY Indicates the policy for
generating the tokens

Byte with:
PROOF_NOT_REQUIRED = 0;
PROOF_RETURNED = 1;
PROOF_STORED = 2;
PROOF_STORED_AND_RETURNED = 3;

M

BLANK_CHARGE_FLAG Flag for blank charge
Blank charge doesn’t impact
counters and Prepaid Accounts.

Byte with one of the following
values:
0: CHARGE (DFLT); 1: BLANK
CHARGE

M

CHARGEABLE_ITEM The consumption data record
that will be used as an input
parameter for executing the
related business logic.

Chargeable Item Type M

Remarks regarding the ODC integration with Mobiliser
The SERVICE PROVIDER CODE is mapped on the merchant name as defined in Mobiliser.

The PROOF_POLICY is always (internally) set to STORED_AND_RETURNED: the tokens are always
generated, returned to the caller and kept into the MER.

CHARGE_MER_RESPONSE: The Charge () Output Result

Output data name Description Type MOC
PURCHASE_ORDER Contains the result of the

charging process.
Purchase Order Type
(See Purchase Order description
below)

M

23

TLV_TOKEN: Token Type description
Token field name Description Type MOC
TOKEN_TYPE 3 types of token resulting of

following API calls:
- Charge()
- Debit() / Credit()
- P2P() (not yet used)

Byte with one of the following
values:
TOKEN_TYPE_CHARGE = 0;
TOKEN_TYPE_DEBIT_CREDIT = 1;
TOKEN_TYPE_P2P = 2;

M

CHARGE_TYPE The token represents a customer’s
balance’s debit or a balance‘s
credit.

CHARGE_TYPE_DEBIT = 0;
CHARGE_TYPE_CREDIT = 1;

M

DATE The transaction date Date M

AMOUNT The amount that must be credited
on the Prepaid Account

Positive Decimal5 M

CURRENCY The ISO 4217 currency 3 letters
code.
Please note that 2 additional non-
monetary codes are available: XXX
for no currency and PNT used for
POINTS.

ASCII_CHAR[3] M

ACCOUNT_CODE The code of the account that that
has been charged.

String24 M

PAYEE_ID The ID of the party who is the
“natural” amount receiver (even if
the merchant refunds the client –
credit charge -, the payee ID will
stay the merchant ID)

String24 M

PAYER_ID The ID of the party who is the
“natural” amount emitter (even if
the customer refunds the client –
credit charge -, the payer ID will
stay the customer ID)

String24 M

SIGNATURE The signature of the transaction
validating the above data.

HexByte2[128] with the default
signature method (SHA1withRSA)
HexByte2[8] if the
DESedeMac64withISO7816-
4Padding is used.

M

TOKEN_ID Internal token identifier Short2 M

Remarks regarding the ODC integration with Mobiliser
The PAYEE_ID field is always mapped on the merchant ID and the PAYER_ID is always mapped on the
customer ID.

TLV_CHARGEABLE_ITEM: Chargeable Item Type

Field name Description Type MOC
CHARGEABLE_ITEM_
ID

The hash value of the Chargeable Item
Name (as defined by the user in the
ChargeableItemClass). The hash()
function to use is described below.

Short2 M

PROPERTY_LIST The list of the properties attached to the
MER

(See Property Type
below)

M

24

TLV_PROPERTY: Property Type
Field name Description Type MOC
PROPERTY_ID The hash value of the Property Name (as

defined by the user in the
ChargeableItemClass). The hash()
function to use is described above.

Short2 M

PROPERTY_TYPE The type of the property One of the following
values:
TYPE_NUMBER : 0
TYPE_STRING : 1
TYPE_DATE : 2

M

PROPERTY_VALUE The value of the property. Decimal5 or
String24 or
Date5

M

TLV_PURCHASE_ORDER: Purchase Order Type

Field name Description Type MOC
OFFER_CODE The code of the offer that

has generated the
purchase order.

String24 M

SERVICE_CODE The code of the service
that has called the
charge() api.

String24 M

CHARGE_DATE Charging date Date5 M

ORDER_STATUS The result status Byte with one of the following
values:

ORDER_STATUS_PAID = 1;
ORDER_STATUS_FREE = 2;
ORDER_STATUS_REJECTED = 3;

M

REJECTION_CODE The reasons in case of fail. OK = 0x0000;
PREPAID_INSUFFICIENT_BALANCE=0x0001;
PREPAID_BALANCE_CLOSED = 0x0002;
PREPAID_BALANCE_LOCKED = 0x0003;
FORBIDDEN_CHARGE = 0x0010;
NO_ACCESS = 0x0011;
CHARGEABLE_ITEM_ID_INVALID = 0x0012;
SUBSCRIPTION_OR_CHARGE_EXPIRED =
0x0020;
SUBSCRIPTION_OR_CHARGE_NOT_YET_EFFEC
TIVE = 0x0021;
DEFAULT_ERROR = 0xFFFF;

M

REJECTION_REASON The (business) reason
when the NO_ACCESS is
returned as
REJECTION_CODE

String24 C

TOKEN_LIST List of TOKEN returned by
the business logic (max is
10 tokens)

Set if the PROOF_POLICY in charge()
differs from PROOF_NOT_REQUIRED
(See Token Type description above)

C

ODC hash() function
This function is used for hashing readable code into short because due to secure element memory
limitation, all the object codes are transformed into Id (short) thanks to the following function.

All reference to hash() function in this document is based on the following algorithm.

25

public static short hash(String key) {
int hash = 0;
if ((key != null) && (key.length() > 0)) {

char b[] = key.toCharArray(); // unicode based
int i = 0;
int length = b.length;
while (i < length) {

 hash = (hash * 131) + b[i++];
 }
 }
// Make it a positive int and return a short

 hash = hash & 0x0000FFFF;
return (short) hash;

}

ODC MER PIN Checking
ODC provides an API (CheckMERPIN()) which authorizes the POS to ask the MER PIN number to the end
user. See the TLV APDU description in the next sections.

26

Card ISO7816 Overview
Introduction
ISO7816 defines 4 parts:

Part1: Physical Characteristics and Integrated Circuit Cards
Part2: Dimensions and Location of the Contacts
Part3: Electronic Signals and Transmission Protocols
Part4: Inter-industry Commands for Interchange

We won’t describe the 3 first parts that defines H/W standards.
We will just present an overview of the last part that will help us to understand how the C-APDU
(Command Application Protocol Data Unit) and the R-APDU (Response) defined by the MER Charging and
Read APIs must be used.

This section is based on the ISO standard and contains some extracts of the standard document (see
www.cradwerk.com).

The part 4 of ISO/IEC 7816 smart card standard specifies:

the contents of messages, commands, and responses transmitted by the interface device to the
card and conversely,
the structure and content of the historical bytes sent by the card during the answer to reset,
the structure of files and data, as seen at the interface when processing inter-industry commands
for interchange,
access methods to files and data in the card,
methods for secure messaging,
Access methods to the algorithms processed by the card. It does not describe these algorithms.

It does not cover the internal implementation within the card and/or the outside world.

APDU Message Structure

Definitions

For the purposes of this part of the ISO/IEC 7816, the following abbreviations apply:

APDU Application protocol data unit

ATR Answer to reset

CLA Class byte

INS Instruction byte

P1-P2 Parameter bytes

Lc Command length

Le Length expected

SW1-SW2 Status bytes

TLV Tag length value

'0'-'9' and 'A'-
'F' The sixteen hexadecimal digits

(B1) Value of byte B1

B1||B2 Concatenation of bytes B1 (the most significant byte) and B2 (the least significant
byte)

Number

27

Command APDU definitions

Illustrated by figure below, the command APDU defined in this part of ISO/IEC 7816 consists of

a mandatory header of 4 bytes (CLA INS P1 P2),
a conditional body of variable length

Header (req) Body (opt)
Case 1: No cmd data & No resp
required

CLA INS P1 P2
Case 2: No cmd data & Yes resp
required

CLA INS P1 P2 Le
Case 3: Yes cmd data & No resp
required

CLA INS P1 P2 LC Data field

Case 4: Yes cmd data & Yes resp
required

CLA INS P1 P2 LC Data field Le

Table 1: The 4 structures of APDU

The number of bytes present in the data field of the command APDU is denoted by Lc.

The maximum number of bytes expected in the data field of the response APDU is denoted by Le (length
of expected data). When the Le field contains only zeros, the maximum number of available data bytes is
requested.

Decoding conventions for command bodies

In case 1, the body of the command APDU is empty. Such a command APDU carries no length field.

In cases 2, 3 and 4 the body of the command APDU consists of a string of L bytes denoted by B1 to BL as
illustrated by table 2. Such a body carries 1 or 2 length fields; B1 is [part of] the first length field.

Command body
B1 B2 (L bytes)

Table 2: not empty body

In the card capabilities, the card states that, within the command APDU, the Lc field and Le field

either shall be short (one byte, default value)
or may be extended (explicit statement)

Consequently, the cases 2, 3 and 4 are either short (one byte for each length field) or extended (B1 is
valued to '00' and the value of each length is coded on 2 other bytes).

Table 3 shows the decoding of the command APDUs according to the four cases defined in table 1 and
table 2 and according to the possible extension of Lc and Le.

Conditions Case
L=0 1

Decoding of the command APDUs

Decoding conventions for Le

If the value of Le is coded in 1 (or 2) byte(s) where the bits are not all null, then the value of Le is equal

http://www.cardwerk.com/smartcards/smartcard_standard_ISO7816-4_5_basic_organizations.aspx#table5

28

to the value of the byte(s) which lies in the range from 1 to 255 (or 65535); the null value of all the bits
means the maximum value of Le: 256 (or 65536).

The first 4 cases apply to all cards:

Case 1 - L=0 : the body is empty.

No byte is used for Lc valued to 0
No data byte is present.
No byte is used for Le valued to 0.

Case 2 - L=1

No byte is used for Lc valued to 0
No data byte is present.
B1 codes Le valued from 1 to 256

Case 3 - L=1 + (B1) and (B1) != 0

B1 codes Lc (=0) valued from 1 to 255
B2 to Bl are the Lc bytes of the data field
No byte is used for Le valued to 0.

Case 4 - L=2 + (B1) and (B1) != 0

B1 codes Lc (!=0) valued from 1 to 255
B2 to Bl-1 are the Lc bytes of the data field
Bl codes Le from 1 to 256
shows the contents of the command APDU.

Response APDU definition

Illustrated by Table 4 (see also table 5), the response APDU defined in this part of ISO/IEC 7816 consists of

a conditional body of variable length
a mandatory trailer of 2 bytes (SW1 SW2)

Body Trailer
[Data field] SW1 SW2

The number of bytes present in the data field of the response APDU is denoted by Lr.

The trailer codes the status of the receiving entity after processing the command-response pair.

NOTE - If the command is aborted, then the response APDU is a trailer coding an error condition on 2
status bytes.

Coding conventions for command headers, data fields and
response trailers

29

Code Name Length Description
CLA Class 1 Class of instruction

INS Instruction 1 Instruction code

P1 Parameter
1 1 Instruction parameter 1

P2 Parameter
2 1 Instruction parameter 2

Lc field Length variable 1 or
3 Number of bytes present in the data field of the command

Data
field Data variable=Lc String of bytes sent in the data field of the command

Le field Length variable 1 or
3

Maximum number of bytes expected in the data field of the
response to the command

Table 4 - command APDU contents

Code Name Length Description
Data field Data variable=Lr String of bytes received in the data field of the response
SW1 Status byte 1 1 Command processing status
SW2 Status byte 2 1 Command processing qualifier

Table 5 - response APDU contents

The subsequent clauses specify coding conventions for the class byte, the instruction byte, the parameter
bytes, the data field bytes and the status byte. Unless otherwise specified, in those bytes, RFU bits are
coded zero and RFU bytes are coded '00'.

Class byte
According to table 6 used in conjunctions with table 7, the class byte CLA of a command is used to
indicate :

- to what extent the command and the response comply with this part of ISO/IEC 7816
- and when applicable (see table 7), the format of secure messaging and the logical channel

number.

Value Meaning

'0X' Structure and coding of command and response according to this part of ISO/IEC
7816 (for coding of 'X' see table 7)

10 to
7F RFU

8X, 9X
Structure of command and response according to this part of ISO/IEC 7816. Except
for 'X' (for coding, see table 7), the coding and meaning of command and response
are proprietary

AX
Unless otherwise specified by the application context, structure and coding of
command and response according to this part of ISO/IEC 7816 (for coding of 'X', see
table 7)

B0 to
CF Structure of command and response according to this part of ISO/IEC 7816

D0 to
FE Proprietary structure and coding of command and response

FF Reserved for PTS

Table 6 - Coding and meaning of CLA

30

b4 b3 b2 b1 Meaning
x x -- -- Secure messaging (SM) format
0 x -- -- No SM or SM not according to 1.6

0 0 -- -- No SM or no SM indication
0 1 -- -- Proprietary SM format
1 x -- -- Secure messaging according to 1.6

1 0 -- -- Command header not authenticated
1 1 -- -- Command header authenticated (see 1.6.3.1 for command header usage)

-- -- x x Logical channel number (according to 1.5) (b2 b1 = 00 when logical
channels are not used or when logical channel #0 is selected

Table 7 - Coding and meaning of nibble 'X' when CLA='0X','8X','9X' or 'AX'

Instruction byte

The instruction byte INS of a command shall be coded to allow transmission with any of the protocols
defined in part 3 of ISO/IEC 7816. Table 8 shows the INS codes that are consequently invalid.

b8 b7 b6 b5 b4 b3 b2 b1 Meaning
x x x x x x x 1 Odd values
0 1 1 0 x x x x '6X'

1 0 0 1 x x x x '9X'

Table 8 - Invalid INS codes

Table 9 shows the INS codes defined in this part of ISO/IEC 7816. When the value of CLA lies within the
range from '00' to '7F', the other values of INS codes are to be assigned by ISO/IEC JTC 1 SC17.

Value Command name
'0E' ERASE BINARY

'20' VERIFY
'70' MANAGE CHANNEL
'82' EXTERNAL AUTHENTICATE

'84' GET CHALLENGE
'88' INTERNAL AUTHENTICATE
'A4' SELECT FILE

'B0' READ BINARY
'B2' READ RECORD(S)
'C0' GET RESPONSE
'C2' ENVELOPE

'CA' GET DATA
'D0' WRITE BINARY

31

'D2' WRITE RECORD
'D6' UPDATE BINARY
'DA' PUT DATA
'DC' UPDATE DATA

'E2' APPEND RECORD

Table 9 - INS codes defined in this part of ISO/IEC 7816

Parameter bytes

The parameter bytes P1-P2 of a command may have any value. If a parameter byte provides no further
qualification, then it shall be set to '00'.

Data field bytes

Each data field shall have one of the following three structures.

Each TLV-coded data field shall consist of one or more TLV-coded data objects.
Each non TLV-coded data field shall consist of one or more data elements, according to the
specifications of the respective command.
The structure of the proprietary-coded data fields is not specified in ISO/IEC 7816.

This part of ISO/IEC 7816 supports the following two types of TLV-coded data objects in the data fields :

BER-TLV data objects
SIMPLE-TLV data object

ISO/IEC 7816 uses neither '00' nor 'FF' as tag value.

Each BER-TLV data object shall consists of 2 or 3 consecutive fields (see ISO/IEC 8825 and annex D).

The tag field T consists of one or more consecutive bytes. It encodes a class, a type and a
number.
The length field consists of one or more consecutive bytes. It encodes an integer L.
If L is not null, then the value field V consists of L consecutive bytes. If L is null, then the data
object is empty: there is no value field.

Each SIMPLE-TLV data object shall consist of 2 or 3 consecutive fields.

The tag field T consists of a single byte encoding only a number from 1 to 254 (e.g. a record
identifier). It codes no class and no construction-type.
The length field consists of 1 or 3 consecutive bytes. If the leading byte of the length field is in
the range from '00' to 'FE', then the length field consists of a single byte encoding an integer L
valued from 0 to 254. If the leading byte is equal to 'FF', then the length field continues on the
two subsequent bytes which encode an integer L with a value from 0 to 65535.
If L in not null, then the value field V consists of consecutive bytes. If L is null, then the data
object is empty: there is no value field.

The data fields of some commands (e.g. SELECT FILE), the value fields of the SIMPLE-TLV data object
and the value field of the some primitive BER-TLV data objects are intended for encoding one or more
data elements.

32

The data fields of some other commands (e.g. record-oriented commands) and the value fields of the
other primitive BER-TLV data objects are intended for encoding one or more SIMPLE-TLV data objects.

The data fields of some other commands (e.g. object-oriented commands) and the value fields of the
constructed BER-TLV data objects are intended for encoding one or more BER-TLV data objects.

NOTE - Before between or after TLV-coded data objects, '00' or 'FF' bytes without any meaning may occur
(e.g. due to erase or modified TLV-coded data objects).

Important Note: ODC/MER doesn’t use the BER-TLV encoding but only the
SIMPLE-TLV.

Status bytes

The status bytes SW1-SW2 of a response denote the processing state in the card.

NOTE - When SW1='63' or '65', the state of the non-volatile memory is changed. When SW1='6X' except
'63' and '65', the state of the non-volatile memory is unchanged.

Due to specifications in part 3 of ISO/IEC 7816, this part does not define the following values of SW1-SW2
:

'60XX'
'67XX', '6BXX', '6DXX', '6EXX', '6FXX'; in each case if 'XX'!='00'
'9XXX', if 'XXX'!='000'

The following values of SW1-SW2 are defined whichever protocol is used (see examples in annex A).

If a command is aborted with a response where SW1='6C', then SW2 indicates the value to be
given to the short Le field (exact length of requested data) when re-issuing the same command
before issuing any other command.
If a command (which may be of case 2 or 4, see table 2) is processed with a response where
SW1='61', then SW2 indicates the maximum value to be given to the short Le field (length of
extra data still available) in a GET RESPONSE command issued before issuing any other
command.

NOTE - A functionality similar to that offered by '61XX' may be offered at application level by '9FXX'.
However, applications may use '9FXX' for other purposes.

Table 10 completed by tables 11 to 16 shows the general meanings of the values of SW1-SW2 defined in
this part of ISO/IEC 7816. For each command, an appropriate clause provides more detailed meanings.

Tables 11 to 16 specify values of SW2 when SW1 is valued to '62', '63', '65', '68', '69' and '6A'. The values
of SW2 not defined in tables 11 to 16 are RFU, except the values from 'F0' to 'FF' which are not defined in
this part of ISO/IEC 7816.

SW1-
SW2 Meaning

Normal processing

33

'9000' No further qualification
'61XX' SW2 indicates the number of response bytes still available (see text below)

Warning processings

'62XX' State of non-volatile memory unchanged (further qualification in SW2, see table
11)

'63XX' State of non-volatile memory changed (further qualification in SW2, see table 12)

Execution errors
'64XX' State of non-volatile memory unchanged (SW2='00', other values are RFU)
'65XX' State of non-volatile memory changed (further qualification in SW2, see table 13)

'66XX' Reserved for security-related issues (not defined in this part of ISO/IEC 7816)
Checking errors

'6700' Wrong length

'68XX' Functions in CLA not supported (further qualification in SW2, see table 14)
'69XX' Command not allowed (further qualification in SW2, see table 15)
'6AXX' Wrong parameter(s) P1-P2 (further qualification in SW2, see table 16)

'6B00' Wrong parameter(s) P1-P2
'6CXX' Wrong length Le: SW2 indicates the exact length (see text below)
'6D00' Instruction code not supported or invalid

'6E00' Class not supported
'6F00' No precise diagnosis

Table 10 - Coding of SW1-SW2

SW2 Meaning
'00' No information given

'81' Part of returned data may be corrupted
'82' End of file/record reached before reading Le bytes
'83' Selected file invalidated
'84' FCI not formatted according to 1.1.5

Table 11 - Coding of SW2 when SW1='62'

SW2 Meaning
'00' No information given

'81' File filled up by the last write

'CX' Counter provided by 'X' (valued from 0 to 15) (exact meaning depending on the
command)

Table 12 - Coding of SW2 when SW1='63'

SW2 Meaning
'00' No information given

'81' Memory failure
Table 13 - Coding of SW2 when SW1='65'

34

SW2 Meaning
'00' No information given
'81' Logical channel not supported

'82' Secure messaging not supported
Table 14 - Coding of SW2 when SW1='68'

SW2 Meaning
'00' No information given

'81' Command incompatible with file structure
'82' Security status not satisfied
'83' Authentication method blocked

'84' Referenced data invalidated
'85' Conditions of use not satisfied
'86' Command not allowed (no current EF)

'87' Expected SM data objects missing
'88' SM data objects incorrect
Table 15 - Coding of SW2 when SW1='69'

SW2 Meaning
'00' No information given
'80' Incorrect parameters in the data field
'81' Function not supported

'82' File not found
'83' Record not found
'84' Not enough memory space in the file

'85' Lc inconsistent with TLV structure
'86' Incorrect parameters P1-P2
'87' Lc inconsistent with P1-P2

'88' Referenced data not found
Table 16 - Coding of SW2 when SW1='6A'

35

APDUs used by a POS to dialog with a MER
Introduction
Note about TLV: A TLV record is always defined with a Tag (2 bytes) prefixed by a qualifier “primitive”
(0x5F) or “constructive” (0x7F), a Length coded with (2 bytes) and at least the Value with a size
corresponding to the Length.

MER APDU Command

All charging MER commands are encapsulated in the body of an ISO 7816 command APDU (case 4) as
explained below.

Header (req) Body
Case 1: No cmd data & No resp
required

CLA INS P1 P2
Case 2: No cmd data & Yes resp
required

CLA INS P1 P2 Le
Case 3: Yes cmd data & No resp
required

CLA INS P1 P2 LC Data field

Case 4: Yes cmd data & Yes resp
required

CLA INS P1 P2 LC MER API
Cmd

Le

The MER Command (with parameters) is represented with a TLV format into a bytes array.

As the connection between the POS and the MER is not always secure, the MER Command is itself made of
a security header and a command body that is ciphered.

MER API Command (0x0016)
Security Header MER Cmd Body TLV

API_ORIGINATOR SERVICE_PROVIDER_ID SERVICE _PROVIDER_ TOKEN TL ciphered data
val Byte[]

Field name Description Tag Length
(Bytes)

Values

API ORIGINATOR The type of the API that is called,
because each API uses different
security policies and keys.
From the POS device only the POS
and READER APIs are available.

0x2D 1
API_ORIGINATOR_SERVER = 0x00;
API_ORIGINATOR_VIEWER = 0x01;
API_ORIGINATOR_POS = 0x02
API_ORIGINATOR_READER = 0x03;

SERVICE_PROVID
ER_ID

This field represents the hash of
the SERVICE_PROVIDER_CODE
produced by the hash () function
defined above.

0x1A 2 (variable)

SERVICE_PROVID
ER_TOKEN

It represents a signed value of a
Service Provider Alea that is used
to authenticate the POS owner.
This token is generated by the ODC
server and transmitted to the
Service Provider previously for
being installed into the POS.

0x21 8 (variable)

BODY TLV 0x17 variable (variable)

36

MER APDU Response
The response returned by the MER is also a byte array stored into the body of the ISO 7816 APDU
response as shown below.

Body SW Trailer
MER (fragment) Response SW1-SW2

The MER response fragment is ciphered and is structured as following:

MER (fragment) Response
Data Length B1 Data Length B2 Ciphered Data Byte[]

This fragment can be re-iterated if the SW is set to 0x6310 (see below).

When the response of the MER exceeds 250 bytes, those fragments are not returned into the same APDU
COMMAND-RESPONSE.

If the caller receives a ISO 7816 response with the Status Word set to 0x6310, the caller will have to send
the INS_GET_RESPONSE (0xC0) C-APDU for getting the next fragment of the response until the SW’s
0x9000 value.

In addition, sometimes when the ciphered data size (which corresponds to a complete entity MER object –
ie an eToken containing long identifiers -) exceeds 250 bytes, an additional response buffer can be
generated (a split of the ciphered data) by the MER (at low level) that won’t be prefixed by B1||B2.

So, the best way to proceed in a POS for building the MER response is as following:
1. Allocate a final response byte array with a sufficient size (barray[8128] seems comfortable).
2. Send the MER instruction C-APDU
3. Read the response
4. If the response ends with 0x6310 value, append the response to the final response byte array by

removing the 2 end bytes (0x6310) and then send the INS_GET_RESPONSE (0xC0) C-APDU and
jump to the previous step.

5. If the response ends with the 0x9000 appends the response to the final response byte array.

At the end of the process, the POS will have built a response buffer that would be similar to the following
barray:

MER fragment Response 1 (A&B) … MER fragment Response n SW
Data 1
Length

B1

Data 1
Length

B2

Ciphered
Data 1.A
Byte[]

Ciphered
Data 1.B
Byte[]

Data n
Length

B1

Data n
Length

B2

Ciphered
Data n
Byte[]

0x9000

To decode the complete message the user will have to extract and de-cipher each data byte [] from the
array above based on data length that will match each data fragment.

Then, by concatenating the decrypted byte arrays, the POS is able to reconstitute the complete response
of the MER APDU initial command.

Error Status Word for POS MER API

Error name Description SW1 || SW2
Values

INVALID_MER_STATUS_IS_LOCKED The MER is locked and cannot be used
for charging operations.

0x6BF4

INVALID_MER_STATUS_NOT_YET_ACTI
VATED

The MER applet has been installed but
not yet personalized.

0x6BF3

ETOKEN_FULL_ARRAY_EXCEPTION When too many eTokens (not yet
flushed) are stored into the SE, the MER

0x6B42

37

is no more able to perform the API calls
(no enough memory) and returns
systematically this SW.

SW_CONDITIONS_NOT_SATISFIED The merchant POS tries to charge a MER
issued from an ODC platform that
doesn’t reference the merchant

0x6985

TAG_NOT_FOUND A TLV is missing and the message is
malformed

0x7400

SW_COMMAND_NOT_ALLOWED The MER API is not called with the
correct key

0x6986

AMOUNT_INVALID
(only with debit/credit)

When the amount is not positive or out
of bound.

0x6B40

PIN_REQUIRED The client’s MER asks for the PIN
number before executing the operation
(amount too high, max count of
transaction reached, etc.)

0x6B34

REMAINING_DATA (*) This SW indicates that the caller has to
read additional response before stopping
the communication with the MER

0x6310

OK_SATUS The response has been fully transmitted
and the MER cmd has been successfully
executed.

0x9000

(*) When the caller receives this Status Word, he’s invited to get the rest of the response by sending the
INS_GET_RESPONSE (0xC0) instruction as defined by ISO 7816 in the above section.

Commented Debit() Example
In order to allow the user to program different POS devices, we propose 2 API levels for describing the
interactions between the POS and the MER: a high level API (Java) and a low level API (APDU). Thanks to
that we hope that the user will be able to implement ODC on a large scope of POS devices.

Description
A SAP Cola vendor wants implement a POS (vending machine) able to debit the default and shared
account into a customer’s MER. This SAP Cola vendor has previously received 2 security elements from the
ODC server at provisioning time:

- A Vendor Charging symmetric Key (for ciphering/deciphering the MER Command / Response)
- A Vendor Token that authenticates the vendor

JAVA POS Lib description
This describes an implementation of a POS debit thanks to the ODC Java POS library
(com.sap.odc.mer.api.pos)

 // we create the debit operation
DebitAccount debitAccount;

 debitAccount = new DebitAccount();
// we initialize the debit operation with the Vendor Charging Key (VcK)

 debitAccount.setKey("858D88C4F3D19CAE1E3B8882C9904345A638167391C5E1E6");
// we set the MER API setID that will be called (this API must be compliant with the VcK)

 debitAccount.setOriginator(APIOriginator.pos);
// we initialize the debit operation with the Vendor Token (for authentication)

 debitAccount.setServiceProviderToken(new ByteArray("21397F742FE39389"));
// we ask the MER to store and return the generated tokens

 debitAccount.setProof(Proof.storedAndReturned);
// we set the payee ID

 debitAccount.setPayeeId("500039251");
// we set the amount to debit

 debitAccount.setAmount(new BigDecimal("0.6"));
// we set the amount currency

 debitAccount.setCurrency("EUR");
// we set the service provider code

38

 debitAccount.setServiceProviderCode("sapcola");
// we set the transaction date

 debitAccount.setCurrentDate(new Date());

APDUs description
This part describes the APDUs that are directly exchanged between the POS and the MER (trough NFC by
example). With this example the APDUs below have been generated by the Java ODC POS library.

Command => Debit account proof:3 serviceProvider:sapcola serviceProviderId:A7FB accountCode:null
accountId: amount:0.6 currency:EUR currentDate:Tue Jun 25 16:17:04 CEST 2013

Conventions/format:
 MER API CMD V.......
ISO APDU CODES API CMD TL ODC SECURITY HEADER BODY TL BODY V (CIPHERED MSG)

................. MER API RESPONSE
 RESP LENGTH CIPHERED RESPONSE SW

Command APDU description

CLA||INS||P1||P2||LC||API_CMD.T||API_CMD.L|| ORI.T||
ORI.L||ORI.V||SP_ID.T||SP_ID.L||SP_ID.V||SP_TOK.T||SP_TOK.L_||SP_TOK.V || BODY.T||BODY.L||BODY.V

CAPDU =>

80||D8||00||00||67||7F16||0063||5F2D||0001||02||5F1A||0002||A7FB||5F21||0008||21397F742FE393895F170048
9FD26510508A6C19A178606FD6377F31DC6B0F7740E2DEA94EFA2C9D0AB997E31214BA1A6C1604D632CBC4EFD7A42E73641CB5
35047386C5590706C46DD072C5B9048B62607BC919

Note 1: The following result presents the full MER CMD before ciphering that the reason why the total
Length (0x005C) differs from the total length of the ciphered message above (0x0063). This is also the
reason why the MER command BODY (0x0041) Length differs from the body’s size above (0x0048).

D8: represents the Instruction Debit()

offset:0x0000 (0) 7F16 005C (92) //API CMD TAG
offset:0x0004 (4) 5F2D 0001 (1) value:02 //TAG Type / ORIGINATOR field (here 0x02 means POS)
offset:0x0009 (9) 5F1A 0002 (2) value:A7FB // SERVICE_PROVIDER ID (hash("sapcola"))

offset:0x000F (15) 5F21 0008 (8) value:21397F742FE39389 //SERVICE PROVIDER TOKEN
 ByteArray("21397F742FE39389"))
offset:0x001B (27) 5F17 0041 (65)

value:7FD8003D5F0900086536C36AEB889CFA5F1A0002A7FB5F260001035F2800093530303033393235315F24000500000017
705F2500034555525F3300051AAF504440 // MER CMD Body

offset:0x001F (31) 7FD8 003D (61) // DEBIT OPERATION (next data represents the Debit() params)
offset:0x0023 (35) 5F09 0008 (8) value:6536C36AEB889CFA // ALEA(8) used for

 randomizing the ciphered CMD
 message (also used as seed
for ciphering the response)

offset:0x002F (47) 5F1A 0002 (2) value:A7FB //PROVIDER_ID
offset:0x0035 (53) 5F26 0001 (1) value:03 //PROOF_POLICY (PROOF_STORED_AND_RETURNED)
offset:0x003A (58) 5F28 0009 (9) value:353030303339323531 //PAYEE_ID
offset:0x0047 (71) 5F24 0005 (5) value:0000001770 //AMOUNT to debit
offset:0x0050 (80) 5F25 0003 (3) value:455552 //CURRENCY (here, “EUR” in ASCII)
offset:0x0057 (87) 5F33 0005 (5) value:1AAF504440 //CURRENT_DATE (Tue Jun 25

16:17:04 CEST 2013)

NOTE 2: Please, note that the order of the MER command parameters is very important and must be
imperatively respected.

NOTE 3: Please, note that this example doesn’t set the account code (no TAG_ACCOUNT_CODE is used),
so in that case, the default account will be debited.

Remarks regarding the ODC integration with Mobiliser
If no default account is found, Mobiliser has defined the notion of shared account (between subscriber

39

accounts) and this account can replace the missing default account

Response APDU description

RAPDU <=

00F0E9A49FCEC1A9B866D6B093C5DF6593DB13DE37FD419F7CFED471716A8B8243DC8A0634D09EB5638C3FF06A3BBE5F58E529
F1472833DF109842EE2902633E44DEDE45B0F68EBEFD4ABB6CEFB044E1EF5F8A9A8B4FDBB0B0E8716ECD076D32F30D3734920B
2558A685D6A9B2B5A005572CB0A4E4A9C20ED7E4DCF66E095E7B29B859FC6F25B71C71C5156F1FDFE74B5A9D0FF3BC651151CF
71E1A771639F151CE4AC4A72AD35D665778A8907FCA01CF77815DFB4B8E6B9AA79565EB6E7A32F31D417C5BFD5C70312505465
309BAB475E947A49FC35BEA7C2B6AB4F0132FC23A184CD0BCE57642DFD07237D43E2D8AECD9B9000

After having deciphered the response returned by the MER (the message length should have changed
following this task, see the above note 1) we can analyze the response.

 Status: 9000 Time: 2.178 // ISO Status Word SUCCESSFUL
offset:0x0000 (0) 7FD9 00E6 (230) // DEBIT ACCOUNT Result

offset:0x0004 (4) 5F2F 0002 (2) value:0000 // Operation STATUS (0 means OK)
offset:0x000A (10) 5F18 0002 (2) value:0000 // REJECTION CODE (0 means no code)
offset:0x0010 (16) 7F27 00D6 (214) // Returned TOKEN

offset:0x0014 (20) 5F29 0009 (9) value:353030303437373034 // PAYER_ID (500047704)
offset:0x0021 (33) 5F28 0009 (9) value:353030303339323531 // PAYEE_ID (500039251)
offset:0x002E (46) 5F2D 0001 (1) value:01 // Token TYPE
offset:0x0033 (51) 5F32 0002 (2) value:0002 // TOKEN ID
offset:0x0039 (57) 5F0E 0005 (5) value:1AAF504440 // Transaction DATE
offset:0x0042 (66) 5F24 0005 (5) value:0000001770 // Token AMOUNT
offset:0x004B (75) 5F25 0003 (3) value:455552 // CURRENCY
offset:0x0052 (82) 5F43 000B (11) value:64656661756C745F737661 // ACCOUNT CODE
offset:0x0061 (97) 5F7A 0001 (1) value:00 // TRANSACTION TYPE
offset:0x0066 (102) 5F2A 0080 (128)

value:6BCD72864705DAD202DE7CD8116B72A5CBEF192BD1217ABBDC5EA5CEB09A39E0C00FB20BA98900648CB29CA87A5108EB
11342440366780CF8CC9580E644202B8998A3FFFEDEEC77459F7F79E27B8F900A834A538E2A2D3ADF42677B14CD19030BE3E47
5E9EE903F0F20937331C7E94763A21EB397B1FCD02BDA412F7E0747C49 // Token SIGNATURE (RSA by default)

Response <= DebitAccountMERResponse status=0 rejectionCode=0
EToken tokenType=1 tokenId=0002 date=Tue Jun 25 16:17:04 CEST 2013 amount=0.6 currency=EUR
chargeType=0 accountCode=default_sva payeeId=500039251 payerId=500047704
signature=6BCD72864705DAD202DE7CD8116B72A5CBEF192BD1217ABBDC5EA5CEB09A39E0C00FB20BA98900648CB29CA87A51
08EB11342440366780CF8CC9580E644202B8998A3FFFEDEEC77459F7F79E27B8F900A834A538E2A2D3ADF42677B14CD19030BE
3E475E9EE903F0F20937331C7E94763A21EB397B1FCD02BDA412F7E0747C49

MER ISO7816-5 Applet Identifier (AID)
The MER AID value is:

F0000000000901
MER Dates encoding

All dates are coded into the MER, on a 5-bytes buffer based on the following format:

 * YY DDD D hh mm ss reserved
 * [IIIIIII-I][IIIIIIII]-[III-IIIII]-[IIIIII-II][IIII-IIII]
 * 0 1 2 3 4
 * YY: the year (7 bits)
 * DDD : the day of the year (9bits)
 * D: the day of the week (3bits)
 * hh : the hour (5bits)
 * mm : the minute (6bits)
 * ss : the second (6bits)
 * reserved (4bits)

This format introduces some constraints and some restrictions:
- The Day of Week must correspond to the date (no calendar check is performed).
- The year must be comprised between 2000 and 2127.
- No time zone is considered.

40

Please find below an example of Java code for parsing/encoding 5 bytes buffer & java dates:

public static Date toDate(byte[] barray) {
 Date date = null;

if ((barray != null) && (barray.length == DATE_LENGTH)) {
boolean used = false;
for (byte b : barray) {

if (b != -1) {
 used = true;

break;
 }
 }

if (!used) {
return null;

 }

 Calendar calendar = Calendar.getInstance();

short year = (short) ((barray[0] & 0xFE) >> 1);
short dayOfYear = (short) (((short) (barray[0] & 0x01) << 8) | (barray[1] & 0xFF));
short dayOfWeek = (short) ((barray[(short) 2] & (short) 0xE0) >> (short) 5);
short hour = (short) (barray[2] & 0x1F);
short minute = (short) ((barray[3] & 0xFC) >> 2);
short second = (short) (((short) (barray[3] & 0x03) << 4) | ((short) (barray[4] & 0xF0) >>

4));
 calendar.set(Calendar.YEAR, year + 2000);
 calendar.set(Calendar.DAY_OF_YEAR, dayOfYear + 1);
 calendar.set(Calendar.HOUR_OF_DAY, hour);
 calendar.set(Calendar.MINUTE, minute);
 calendar.set(Calendar.SECOND, second);
 calendar.set(Calendar.MILLISECOND, 0);

assert calendar.get(Calendar.DAY_OF_WEEK) == (dayOfWeek + 1);
 date = calendar.getTime();
 }

return date;
}

public static ByteArray toByteArray(Date date) {
byte[] barray = new byte[5];

if (date != null) {
 Calendar calendar = Calendar.getInstance();
 calendar.setTime(date);

short year = (short) (calendar.get(Calendar.YEAR) % 100);
short dayOfYear = (short) (calendar.get(Calendar.DAY_OF_YEAR) - 1);
short dayOfWeek = (short) (calendar.get(Calendar.DAY_OF_WEEK) - 1);
short hour = (short) calendar.get(Calendar.HOUR_OF_DAY);
short minute = (short) calendar.get(Calendar.MINUTE);
short second = (short) calendar.get(Calendar.SECOND);

 barray[0] = (byte) ((year << 1) | ((dayOfYear & 0x0100) >> 8));
 barray[1] = (byte) (dayOfYear);
 barray[2] = (byte) ((dayOfWeek << 5) | hour);
 barray[3] = (byte) ((minute << 2) | ((second >> 4) & 0x0003));
 barray[4] = (byte) (second << 4);
 } else {
 barray[0] = (byte) 0xFF;
 barray[1] = (byte) 0xFF;
 barray[2] = (byte) 0xFF;
 barray[3] = (byte) 0xFF;
 barray[4] = (byte) 0xFF;
 }

return new ByteArray(barray);
}

MER number encoding
Here is the number format used by the MER

B4||B3||B2||B1||B0 with :
* B4: number sign (0xFF negative / 0x00 positive)
* B3||B2: integer part (from 0 to 65535)
* B1||B0: decimal part (limited to 4 decimal digits -.9999 -)

41

Please find below an example of code that map a BigDecimal (which respects the MER Number
restrictions) on a byte array as defined above.

public static ByteArray toByteArray(BigDecimal bigDecimal) {
byte[] barray = new byte[5];
if (bigDecimal != null) {

short intPart = bigDecimal.abs().shortValue();
short decPart = bigDecimal.abs().subtract(new BigDecimal(intPart)).multiply(new

BigDecimal(10000)).shortValue();
byte negative = bigDecimal.signum() < 0 ? (byte) 0xFF : (byte) 0x00;

 barray[0] = negative;
 barray[1] = (byte) ((intPart & (short) 0xFF00) >> (short) 8);
 barray[2] = (byte) (intPart & (short) 0x00FF);
 barray[3] = (byte) ((decPart & (short) 0xFF00) >> (short) 8);
 barray[4] = (byte) (decPart & (short) 0x00FF);
 }

return new ByteArray(barray);
 }

Commented Charge() Example
Description
This generic example shows to the user (the POS’ owner), how to build a Chargeable Item and how to
send it to the MER from the POS for charging. This user has previously received 2 security elements from
the ODC server at provisioning time:

- A Vendor Charging symmetric Key (for ciphering/deciphering the MER Command / Response).
- A Vendor Token that authenticates the user.

JAVA POS Lib description
This 1st part describes an implementation of a POS charge() thanks to the ODC Java POS library
(com.sap.odc.mer.api.pos).

With this example we make the assumption that a related offer has been defined and instantiated into the
ODC server and we assume that the mobile (MER) holder has subscribed to this offer.
At last, we suppose that the above offer is attached to a Chargeable Item Class previously defined (the
structure that defines the service and the Chargeable Items that can be sent by the POS) in the ODC
server.

 // we create the charge() operation
Date now = new Date();
Charge charge = new Charge();

// we build the Chargeable Item (CI)
TLVChargeableItem chargeableItem = new TLVChargeableItem();

// we set the CI name
chargeableItem.setName("ciName");

// we add the different properties that will be carried by the CI
chargeableItem.addTLVProperty(new TLVProperty("propNumber", (byte)
TLVConstants.TYPE_NUMBER, new BigDecimal("3.13")));
chargeableItem.addTLVProperty(new TLVProperty("propString", (byte)
TLVConstants.TYPE_STRING, "string value"));
chargeableItem.addTLVProperty(new TLVProperty("propDate", (byte)
TLVConstants.TYPE_DATE, now));

// we register the CI into the charge() operation (only ONE CI per call to charge() operation)
charge.setChargeableItem(chargeableItem);

// we set the current date
charge.setCurrentDate(now);

// we set the consumption date
charge.setConsumptionDate(now);

// we set the service code that will be hashed (by using above function) for having a service ID
charge.setServiceCode("callService");
// we set the service provider code that will be hashed (by using above function) for having a SP ID

42

charge.setServiceProviderCode("sapProvider");
// we ask the MER to store and return the generated tokens

charge.setProof(Proof.storedAndReturned);
// we initialize the debit operation with the Vendor Charging Key (VcK)

charge.setKey("858D88C4F3D19CAE1E3B8882C9904345A638167391C5E1E6");
// we set the MER API setID that will be called (this API must be compliant with the VcK)
charge.setOriginator(APIOriginator.pos);

// we initialize the charge operation with the Vendor Token (for authentication)
charge.setServiceProviderToken(new ByteArray("AF202DA8B3F53916"));

APDUs description
This part describes the APDUs that are directly exchanged between the POS and the MER (trough NFC by
example). With this example the APDUs below have been generated by the Java ODC POS library.

In opposite of the previous example, we directly propose here the non-ciphered version of the APDUs that
are exchanged between the POS and the MER (we make the assumption that the message has been
deciphered). That’s the reason why we have modified a little, the conventions used for the notation.

Conventions/format:
 MER API CMD V...
ISO APDU CODES API CMD TL ODC SECURITY HEADER BODY TLV MSG

................. MER API RESPONSE
 RESP LENGTH RESPONSE SW
(number in decimal)

Command APDU description

CLA||INS||P1||P2||LC||API_CMD.T||API_CMD.L|| ORI.T||ORI.L||ORI.V||SP_ID.T||SP_ID.L||
SP_ID.V||SP_TOK.T||SP_TOK.L_||SP_TOK.V || BODY.T||BODY.L||BODY.V

CAPDU =>

80||F0||00||00||B6||7F16||00AC||5F2D||0001||02||5F1A||0002||3A5B|5F21||0008||AF202DA8B3F53916||5F17||0
091||7FF0008D5F090008222726870EB063585F1A00023A5B5F3000025E6B5F3300051ABD512AD05F3100051ABD512AD05F260
001035F3F0001FF7F7100555F72000238817F7300145F76000249585F750001005F77000500000305147F73001B5F7600026A1
C5F750001015F77000C737472696E672076616C75657F7300145F76000225155F750001025F7700051ABD512AD0

F0: represents the instruction Charge().
Tue Jul 09 17:10:45 CEST 2013 (current date that has been used)
offset:0x0000 (0) 7F16 00AC (172) //API CMD TAG

offset:0x0004 (4) 5F2D 0001 (1) value:02 //TAG Type / ORIGINATOR field (here 0x02 means POS)
offset:0x0009 (9) 5F1A 0002 (2) value:3A5B // SERVICE_PROVIDER ID (hash("sapProvider"))
offset:0x000F (15) 5F21 0008 (8) value:AF202DA8B3F53916 //SERVICE PROVIDER TOKEN

 ByteArray("AF202DA8B3F53916"))
offset:0x001B (27) 5F17 0091 (145) // MER CMD Body

value:7FF0008D5F090008222726870EB063585F1A00023A5B5F3000025E6B5F3300051ABD512AD05F3100051ABD512AD05F26
0001035F3F0001FF7F7100555F72000238817F7300145F76000249585F750001005F77000500000305147F73001B5F7600026A
1C5F750001015F77000C737472696E672076616C75657F7300145F76000225155F750001025F7700051ABD512AD0

offset:0x001F (31) 7FF0 008D (141) // CHARGE OPERATION (next data are the charge() params)
offset:0x0023 (35) 5F09 0008 (8) value: 222726870EB06358 // ALEA(8) used for

 randomizing the ciphered CMD
 message (also used as seed
for ciphering the response)

offset:0x002F (47) 5F1A 0002 (2) value:3A5B //PROVIDER_ID (hash("sapProvider"))
offset:0x0035 (53) 5F30 0002 (2) value:5E6B // SERVICE_ID (hash("callService”))
offset:0x003B (59) 5F33 0005 (5) value:1ABD512AD0//CURRENT_DATE
offset:0x0044 (68) 5F31 0005 (5) value:1ABD512AD0//CONSUMPTION_DATE
offset:0x004D (77) 5F26 0001 (1) value:03 //PROOF (value means stored&returned)
offset:0x0052 (82) 5F3F 0001 (1) value:FF //BLANK CHARGE Flag: this means true
offset:0x0057 (87) 7F71 0055 (85) //CHARGEABLE_ITEM constructed TLV element
 offset:0x005B (91) 5F72 0002 (2) value:3881 // CHARGRABLE_ITEM_ID (hash("ciName”))
 offset:0x0061 (97) 7F73 0014 (20) //PROPERTY 1
 offset:0x0065 (101) 5F76 0002 (2) value:4958//PROPERTY_ID ((hash("propNumber”))
 offset:0x006B (107) 5F75 0001 (1) value:00// PROPERTY_TYPE (number)
 offset:0x0070 (112) 5F77 0005 (5) value:0000030514//PROPERTY_VALUE – 3.13
 offset:0x0079 (121) 7F73 001B (27) //PROPERTY 2

43

 offset:0x007D (125) 5F76 0002 (2) value:6A1C //PROPERTY_ID ((hash("propString”))
 offset:0x0083 (131) 5F75 0001 (1) value:01 // PROPERTY_TYPE (string)
 offset:0x0088 (136) 5F77 000C (12) value:737472696E672076616C7565//PROPERTY_VALUE

“string value”
 offset:0x0098 (152) 7F73 0014 (20) //PROPERTY 3
 offset:0x009C (156) 5F76 0002 (2) value:2515//PROPERTY_ID ((hash("propDate”))
 offset:0x00A2 (162) 5F75 0001 (1) value:02// PROPERTY_TYPE (date)
 offset:0x00A7 (167) 5F77 0005 (5) value:1ABD512AD0//PROPERTY_VALUE

Response APDU description

RAPDU <=

00667FF1003E7F61003A5F3E00021D385F3000025E6B5F3600051AB18A51E05F65000200017F78001B5F7A000200085F240005
00000423285F90000870726570616964319000

offset:0x0000 (0) 7FF1 003E (62)// INS_CHARGE_RESULT
offset:0x0004 (4) 7F61 003A (58)// PURCHASE_ORDER
 offset:0x0008 (8) 5F3E 0002 (2) value:1D38 // OFFER_ID ((hash("myOffer”))
 offset:0x000E (14) 5F30 0002 (2) value:5E6B //SERVICE_ID
 offset:0x0014 (20) 5F36 0005 (5) value: 1ABD512AD0// CHARGING_DATE (CONSUMPTION_DATE)
 offset:0x001D (29) 5F65 0002 (2) value:0001 // ORDER_STATUS
 offset:0x0023 (35) 7F78 001B (27) // TRANSACTION
 offset:0x0027 (39) 5F7A 0002 (2) value:0008 // TRANSACTION_TYPE
 offset:0x002D (45) 5F24 0005 (5) value:0000042328 // TRANSACTION AMOUNT
 offset:0x0036 (54) 5F90 0008 (8) value:7072657061696431 // TRANSACTION ACCOUNT REFERENCE

List of TLV MER APDUs
(C/P): Constructive (0x7F) / Primitive (0x5F) tag

Remark: The following table indicates the position of the field in message. This order MUST be respected.

MER POS API Command C-APDU

Idx TAG NAME TAG LENGTH VALUE C/P
0 TAG_API_COMMAND 0x16 var var C
1 TAG_TYPE 0x2D 0x0001 0: ODC_SERVER

1:ODC_VIEWER
2:ODC_POS
3:ODC_READER

P

2 TAG_SERVICE_PROVIDER_ID 0x1A 0x0002 var P
3 TAG_SERVICE_PROVIDER_TOKEN 0x21 0x0008 var P

4 TAG_API_COMMAND_BODY 0x17 var var (ciphered) P

Debit() C-APDU

Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_DEBIT_ACCOUNT_OP 0xD8 var var C
1 TAG_ALEA 0x09 0x0008 var P

2 TAG_SERVICE_PROVIDER_ID 0x1A 0x0002 var P
3 TAG_PROOF 0x26 0x0001 0: NOT_REQUIRED

1: RETURNED
2: STORED
3: S_AND_R

P

4 TAG_PAYEE_ID 0x28 var
(max is 0x18)

var P

5 TAG_ACCOUNT_ID (Optional) 0x4A 0x0002 var P

6 TAG_AMOUNT 0x24 0x0005 var (positive) P

44

7 TAG_CURRENCY 0x25 0x0003 ISO 4217 3-letters
+ “PNT” + “XXX”

P

8 TAG_CURRENT_DATE 0x33 0x0005 var P

Debit() R-APDU

Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_DEBIT_ACCOUNT_RESULT 0xD9 var var C
1 TAG_STATUS 0x2F 0x0002 0:OK

1:REJECTED
P

2 TAG_TOKEN_REJECTION_CODE 0x1A 0x0002 0:NO_CODE
1:INSUFFICIE
NT_BALANCE

P

3 TAG_TOKEN 0x27 var var C

TOKEN APDU
Idx TAG NAME TAG LENGTH VALUE C/P
0 TAG_TOKEN 0x27 var var C
1 TAG_PAYER_ID 0x29 var

(max is 0x18)
var P

2 TAG_PAYEE_ID 0x28 var
(max is 0x18)

var P

3 TAG_TYPE 0x2D 0x0001 0:CHARGE
1:DEBIT_CRED
IT
2:P2P

P

4 TAG_TOKEN_ID 0x32 0x0002 var P
5 TAG_DATE 0x0E 0x0005 var P
6 TAG_AMOUNT 0x24 0x0005 var (positive) P
7 TAG_CURRENCY 0x25 0x0003 ISO 4217 3-letters

+ “PNT” + “XXX”
P

8 TAG_ACCOUNT_CODE 0x43 var
(max is 0x18)

var P

9 TAG_TRANSACTION_TYPE 0x7A 0x0001 0:DEBIT
1:CREDIT

P

10 TAG_SIGNATURE 0x2A 0x0080 with
RSA (default)
or 0x0008
with DESmac

var P

Credit() C-APDU

Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_CREDIT_ACCOUNT_OP 0xDA var var C
1 TAG_ALEA 0x09 0x0008 var P

2 TAG_SERVICE_PROVIDER_ID 0x1A 0x0002 var P
3 TAG_PROOF 0x26 0x0001 0: NOT_REQUIRED

1: RETURNED
2: STORED
3: S_AND_R

P

4 TAG_PAYEE_ID 0x28 var
(max is 0x18)

var P

5 TAG_ACCOUNT_ID (Optional) 0x4A 0x0002 var P

6 TAG_AMOUNT 0x24 0x0005 var (positive) P

45

7 TAG_CURRENCY 0x25 0x0003 ISO 4217 3-letters
+ “PNT” + “XXX”

P

8 TAG_CURRENT_DATE 0x33 0x0005 var P

Credit() R-APDU

Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_CREDIT_ACCOUNT_RESULT 0xDB var var C
1 TAG_STATUS 0x2F 0x0002 2:OK

3:REJECTED
P

2 TAG_TOKEN_REJECTION_CODE 0x1A 0x0002 0:NO_CODE P
3 TAG_TOKEN 0x27 var var C

Charge() C-APDU
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_CHARGE_OP 0xF0 var var C
1 TAG_ALEA 0x09 0x0008 var P

2 TAG_SERVICE_PROVIDER_ID 0x1A 0x0002 var P
3 TAG_SERVICE_ID 0x30 0x0002 var P

4 TAG_CURRENT_DATE 0X33 0x0005 var P

5 TAG_CONSUMPTION_DATE 0X31 0x0005 var P

6 TAG_PROOF 0x26 0x0001 0: NOT_REQUIRED
1: RETURNED
2: STORED
3: S_AND_R

P

7 TAG_BLANK_CHARGE 0x26 0x0001 0xFF: true
0x00: false

8 TAG_CHARGEABLE_ITEM 0x71 var var C

Charge() R-APDU
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_CHARGE_RESULT 0xF1 var var C
1 TAG_PURCHASE_ORDER 0x61 var var C

2 TAG_OFFER_ID 0x3E 0x0002 var P
3 TAG_SERVICE_ID 0x30 0x0002 var P
4 TAG_CHARGING_DATE 0x36 0X0005 var P

5 TAG_ORDER_STATUS 0x65 0X0001 0:paid
1:free
2:rejected
3:done (blank charge)

P

6 TAG_TRANSACTION 0X78 0x0005 var C

CHARGEABLE ITEM APDU
Idx TAG NAME TAG LENGTH VALUE C/P
0 TAG_CHARGEABLE_ITEM 0x71 var var C
1 TAG_ CHARGEABLE_ITEM_ID 0x72 0x0002 var P

2 TAG_PROPERTY 0x73 var var C

46

CHARGEABLE ITEM PROPERTY APDU
Idx TAG NAME TAG LENGTH VALUE C/P
0 TAG_PROPERTY 0x73 var var C
1 TAG_PROPERTY_ID 0x76 0x0002 var P

2 TAG_PROPERTY_TYPE 0x75 0x0001 0:num
1:string
2:date

P

3 TAG_PROPERTY_VALUE 0x77 0x0005 or
0x0018

var P

TRANSACTION APDU
Idx TAG NAME TAG LENGTH VALUE C/P
0 TAG_TRANSACTION 0x78 var var C
1 TAG_TRANSACTION_TYPE 0x7A 0x0002 var P

2 TAG_AMOUNT 0x24 0x0005 var P
3 TAG_TRANSACTION_REFERENCE 0x90 0x0008 var P

CheckMERPin() C-APDU

Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_CHECK_PIN_OP 0xF6 var var C
1 TAG_ALEA 0x09 0x0008 var P

2 TAG_CURRENT_DATE 0x33 0x0008 var P

3 TAG_PIN 0x07 var var P

CheckMERPin() R-APDU

Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_CHECK_PIN_RESULT 0xD9 var var C
1 TAG_STATUS 0x2F 0x0002 0:OK

FF:REJECTED
P

2 TAG_PIN_REMAINING_TRIES(*) 0x06 0x0002 var P
(*) Optional - set if the checking fails.

47

Security protocol between the POS and the MER
Introduction
2 generated secure data are required by the POS to interact with the POS in a secure way:

- A vendor 192 bits 3-DES charging key (called VcK)
- A vendor Token that authenticates the vendor.

Those data are issued for each vendor by the ODC server, when the vendor catalog is created.
This is the role of the vendor to handle those elements when they have been transmitted by the ODC
server.

Those data are not stored in the ODC DB. However, they can be regenerated by the ODC server on
demand. The cipher algorithm that is used by the POS and the MER for dialoguing is the “DESedeCBC-
PKCS5”. This symmetric algorithm has been chosen because it’s available on 99% of Secure Elements and
payment Terminal that are equipped with crypto processors.

Remarks regarding the ODC integration with Mobiliser
The 2 above secure data required for communicating with the POS (with an additional one, called Vendor
Read Key used for usin,g the MER READ API) can be obtained from the ODC Web Service Contract
provided by Money Mobiliser (see Odc.wdl) by calling the ReadMerchantKeys service.

Vendor security data generation
The vendors secure data is generated by the ODC sever from a vendor Alea and an ODC private key
(MPcK: MER Private Charging Key).

The MPcK is created at ODC installation time. This key is installed into the MER during the MER
personalization process.

The following sequence diagram presents the different steps performed by ODC.

Note 1: in addition to the VcK an additional key VrK, the Vendor Read Key, is also generated. It allows
the vendor to access to the MER Read APIs for getting information about their accounts (Prepaid Account

48

balances, eTokens, counter values, etc.).

Note 2: the installation of the vendor secure data (VcK, VrK, vToken) in the POS is out of scope of this
document.

Note 3: the merchant ID as mentioned on previous and next schemas is equivalent to the service
provider ID as described in previous sections. Similarly, the Vendor/Merchant Token and the Service
Provider Token represents the same object.

Note 4: the symmetric key encryption algorithm that is used for generating VcK, VrK and vToken is
DESedeCBC-No padding (because ODC knows exactly the ALEA to cipher and wants to control the
resulting key size – 192 bits).

Each time a end user will ask for having a commercial relationship with a vendor, a subscriber account
(SUAC), will be created on the ODC server then synchronized with the MER. This subscriber account, that
contains prepaid balances (SVA, Giftcards, …) contains also the vendor ALEA that be used by the MER to
reconstruct the VCk and the VrK as explained in the next section.

How does it work?

G
P

Co
nt

ai
ne

r

Thanks to VcK the POS will cipher the MER C-APDU that must be performed by the MER.

By example, based on the previous example only the MER CMD Body value will have to be ciphered by the
POS and the MER CMD length value and the API CMD Length will have to be adapted according to the new
size of the ciphered message (part to be ciphered by the POS):

80||F0||00||00||B6||7F16||00AC||5F2D||0001||02||5F1A||0002||3A5B|5F21||0008||AF202DA8B3F53916||5F17||0
091||7FF0008D5F090008222726870EB063585F1A00023A5B5F3000025E6B5F3300051ABD512AD05F3100051ABD512AD05F260
001035F3F0001FF7F7100555F72000238817F7300145F76000249585F750001005F77000500000305147F73001B5F7600026A1
C5F750001015F77000C737472696E672076616C75657F7300145F76000225155F750001025F7700051ABD512AD0

F0: represents the instruction Charge().
Tue Jul 09 17:10:45 CEST 2013 (current date that has been used)
offset:0x0000 (0) 7F16 00AC (172) //API CMD TAG

offset:0x0004 (4) 5F2D 0001 (1) value:02 //TAG Type / ORIGINATOR field (here 0x02 means POS)
offset:0x0009 (9) 5F1A 0002 (2) value:3A5B // SERVICE_PROVIDER ID (hash("sapProvider"))
offset:0x000F (15) 5F21 0008 (8) value:AF202DA8B3F53916 //SERVICE PROVIDER TOKEN (or vToken)

 ByteArray("AF202DA8B3F53916"))

49

offset:0x001B (27) 5F17 0091 (145) // MER CMD Body
value:7FF0008D5F090008222726870EB063585F1A00023A5B5F3000025E6B5F3300051ABD512AD05F3100051ABD512AD05F26
0001035F3F0001FF7F7100555F72000238817F7300145F76000249585F750001005F77000500000305147F73001B5F7600026A
1C5F750001015F77000C737472696E672076616C75657F7300145F76000225155F750001025F7700051ABD512AD0

In addition, before ciphering the CMD body, the POS will have to prefix the CMD BODY value by adding a
message ALEA (8 bytes) just after the API TAG.
This alea will guarantee the unicity of the ciphered message even if the same is called multiple times with
the same argument (see the message’s alea below)

 CMD BODY value:
7FF0008D||5F09||0008||222726870EB06358||5F1A00023A5B5F3000025E6B5F3300051ABD512AD05F3100051ABD512AD05F
260001035F3F0001FF7F7100555F72000238817F7300145F76000249585F750001005F77000500000305147F73001B5F760002
6A1C5F750001015F77000C737472696E672076616C75657F7300145F76000225155F750001025F7700051ABD512AD0

offset:0x001F (31) 7FF0 008D (141) // CHARGE OPERATION (next data are the charge() params)
offset:0x0023 (35) 5F09 0008 (8) value: 222726870EB06358 // ALEA(8) used for

 randomizing the ciphered CMD
 message (also used as seed
for ciphering the response)

3-DES Initialization Vector determination
When the POS will cipher the initial message with the 3-DES algorithm for the first time, a seed - the
Initialization Vector (IV) - is required by the 3-DES. To share this seed between the MER and the POS, a 8
bytes random message is generated by the MER at each SELECT. Then the POS, from this SELECT
response, will have to extract the IV from the message by keeping the 8 strong bytes.
 This 8 bytes-message will be used as seed (3-DES IV) by the POS for ciphering all the APDU commands
messages until the next SELECT APDU-command (until the NFC TAP for simplifying).

Example:

SELECT MER APDU command

00||A4||04||00||07F0000000000901:
0x00: class
0xA4: INS SELECT
0x04: P1
0x00: P2
0x07: LC
F0000000000901: MER AID

SELECT MER APDU response

Response:34EFAC4B9F365AB2049000

The response returned by the SELECT MER instruction is always structured as following:
8-bytes random sequence||the MER status || the ISO 7816 SW.

The Initialization Vector (8 bytes) to use with 3-DES is the 8 first bytes returned by select: 34||EF||AC||4B
||9F ||36||5A || B2

0x04 means that the applet is active and the 0x9000 result means that is OK.

For information, the available MER status values are:

MER_STATUS_VOID = (byte) 0x00; // ODC server side only
MER_STATUS_INSTALLED = (byte) 0x01;
MER_STATUS_PRE_PERSONALIZED = (byte) 0x02;
MER_STATUS_PERSONALIZED = (byte) 0x03;
MER_STATUS_ACTIVE = (byte) 0x04;
MER_STATUS_LOCKED = (byte) 0x05;
MER_STATUS_DISCARDED = (byte) 0x06;
MER_STATUS_CANCELED = (byte) 0x07; // ODC server side only

50

ODC java POS library

This guide presents an overview of the com.sap.odc.mer.api.pos package and doesn’t replace the java
documentation.

Those APIs are implemented as task that is registered into a macro container.
With each task/API, the user has to set the input parameters, to register the task into the macro
container, to execute the macro and then read the output/result parameters from the API/task

Note: some restrictions must be applied on the following Java types:
- for String type, the size is limited to 24
- for BigDecimal, the value must be in between]-10,000, 10,000[

Charge() API

com.sap.odc.mer.api.pos.Charge
Input parameters

ServiceProviderCode (String) The code of the merchant
ServiceCode (String) The code of the service (multiple services per merchant

allowed)
ConsumptionDate (Date) The consumption date can differ from the current date and

the consumption date is used as reference date for
triggering the recurring rates if these ones must be charged
before charging the usage fees.

CurrentDate (Date) Used for dating the transaction
Proof (enum) Define the eToken policy (notRequired, returned, stored,

storedAndReturned)
ChargeableItem (TLVChargeableItem) Represents the usage consumption data record that must

be rated.
Output/Result parameters

PurchaseOrder (TLVPurchaseOrder) The result of the charging process
Calculated values

ServiceID (short) Hash of the ServiceCode with the above hash() function
ServiceProviderID (short) Hash of the ServiceProviderCode with the above hash() function

Debit() API
com.sap.odc.mer.api.pos.Debit

Input parameters
ServiceProviderCode (String) The code of the merchant
AccountCode (String) The code of the account to debit
PayeeId (String) The code that identifies the entity that will receive the

debited amount.
Amount (BigDecimal) The Amount to debit
Currency The ISO-4217 3-letters code +”PNT” + “XXX” (XXX means

no currency)
CurrentDate (Date) Used for dating the transaction
Proof (enum) (notRequired, returned, stored, storedAndReturned)

Output/Result parameters
Status (Short) OK or KO status
RejectionCode (short) The reason why the debit has failed
Token (TLVToken) The generated proof, when the transaction is accepted

Calculated values
ServiceProviderID (short) Hash of the ServiceProviderCode with the above hash() function

Credit() API

51

com.sap.odc.mer.api.pos.Credit
Input parameters

ServiceProviderCode (String) The code of the merchant
AccountCode (String) The code of the account to debit
PayerId (String) The code that identifies the entity who credits the amount.
Amount (BigDecimal) The Amount to debit
Currency The ISO-4217 3-letters code +”PNT” + “XXX” (XXX means

no currency)
CurrentDate (Date) Used for dating the transaction
Proof (enum) (notRequired, returned, stored, storedAndReturned)

Output/Result parameters
Status (Short) OK or KO status
RejectionCode (short) The reason why the debit has failed
Token (TLVToken) The generated proof, when the transaction is accepted

Calculated values
ServiceProviderID (short) Hash of the ServiceProviderCode with the above hash() function

How to perform a call to the MER POS API from java code

In prerequisite, the caller has to implements at least the JAVA 1.6 JRE that contains the javax.smartcardio
package.

The code example below show how to charge the MER through a ISO-7816 card reader (NFC or not)

try {
//factory able to connect to any compliant smartcard readers

 JDK6TerminalFactory jdk6TerminalFactory = new JDK6TerminalFactory();

//commons GP and ISO-7816 api plus POS api mappings
 CardMappingList cardMappingList = new CardMappingList(new GPCardMapping(), new
APIPOSCardMapping());

 CommandTerminal commandTerminal = CommandTerminal(jdk6TerminalFactory.getTerminal("MY CARD
READER"), cardMappingList);

// prepare macro
 Macro macro = new Macro();

// atr task to establish a connection with the smartcard
 macro.addTask(new TaskATR());

// select task to point to the MER applet
 TaskSelect taskSelect = new TaskSelect();

// Unique and universal MER AID

 taskSelect.setAid(new ByteArray("F0000000000901"));
 macro.addTask(taskSelect);

// prepare the Chargeable Item
 TLVChargeableItem chargeableItem = new TLVChargeableItem("buyCan");
 chargeableItem.addProperty(new TLVProperty("price", Property.TYPE_NUMBER, new
BigDecimal("1.0")));

// charging operation
 Charge charge = new Charge();
 charge.setOriginator(APIOriginator.pos);
 charge.setServiceCode("drink");
 charge.setServiceProviderCode("sapcola");
 charge.setConsumptionDate(new Date());
 charge.setCurrentDate(new Date());
 charge.setChargeableItem(chargeableItem);
 charge.setProof(Proof.storedAndReturned);

// register the API call in the macro
 macro.addTask(charge);

//execute the macro
 macro.runMacro(commandTerminal);

//get the result purchase order from the charge task.
 TLVPurchaseOrder purchaseOrder = charge.getPurchaseOrder();

52

 } catch (MacroErrorException e) {
 e.printStackTrace();
 } catch (CardErrorException e) {
 e.printStackTrace();
 }

53

SAP Cola full code example
Introduction

This example simulates a vending machine. The machine has been designed by using “Flash” and is
interfaced with the code below through a “flashPlayer” class that will notify the PosCola class (that
implements FlashPlayerListener interface) each time a button is pressed.

In addition, this program is connected to a NFC reader through the javax.smartcardio package.

Before describing the PosCola class, please note that a ChargeableItemPackage (ColaProduct) and a
SAPcola offer (that contains the colaCharge) have been designed by the merchant SAPCola thanks to the
graphical ODC Core Tool.

The SAPCola offer is subscribed by a end customer that owns the above smartphone.

The picture below presents these objects as they are defined with the tool.

54

PosCola.java

POSpackage com.sap.odc.pos.cola;

import java.awt.BorderLayout;
import java.awt.Toolkit;
import java.io.FileInputStream;
import java.io.IOException;
import java.math.BigDecimal;
import java.util.Arrays;
import java.util.Date;
import java.util.Properties;

import javax.swing.JFrame;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.SwingUtilities;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import chrriis.common.UIUtils;
import chrriis.dj.nativeswing.swtimpl.NativeInterface;
import chrriis.dj.nativeswing.swtimpl.components.FlashPlayerCommandEvent;
import chrriis.dj.nativeswing.swtimpl.components.FlashPlayerListener;
import chrriis.dj.nativeswing.swtimpl.components.JFlashPlayer;
import chrriis.dj.nativeswing.swtimpl.components.JWebBrowser;
import chrriis.dj.nativeswing.swtimpl.components.WebBrowserFunction;

import com.sap.odc.cload.CommandTerminal;
import com.sap.odc.cload.Macro;
import com.sap.odc.cload.MacroErrorException;
import com.sap.odc.commons.error.IError;
import com.sap.odc.commons.io.CardMappingList;
import com.sap.odc.commons.io.exception.CardErrorException;
import com.sap.odc.commons.io.exception.StatusWordErrorException;
import com.sap.odc.commons.util.ByteArray;
import com.sap.odc.gp.api.TaskATR;
import com.sap.odc.gp.api.TaskSelect;
import com.sap.odc.gp.api.intern.GPCardMapping;
import com.sap.odc.mer.api.core.APIOriginator;
import com.sap.odc.mer.api.core.MERApduHook;
import com.sap.odc.mer.api.pos.APIPOSCardMapping;
import com.sap.odc.mer.api.pos.DebitAccount;
import com.sap.odc.mer.api.pos.Proof;
import com.sap.odc.mer.models.ChargeableItem;
import com.sap.odc.mer.models.Property;
import com.sap.odc.mer.tlv.models.TLVEToken;
import com.sap.odc.pos.base.reader.ReadersSelectionListener;
import com.sap.odc.shared.TokenConstants;
import com.sap.odc.tool.cload.terminal.JDK6TerminalFactory;

55

public class PosCola extends JPanel implements FlashPlayerListener, ReadersSelectionListener {

 /**
 * Constructor of Example Frame
 */
 public PosCola() {
 super(new BorderLayout());

 properties = getPropertiesResource(System.getProperty("hd.config"));

 if (properties.getProperty("merchantName") == null) {
 JOptionPane.showMessageDialog(this, "The merchantName property is mandatory, Please check your config
file", "SAPCola", JOptionPane.ERROR_MESSAGE);
 System.exit(0);
 return;
 }
 if (properties.getProperty("merchantId") == null) {
 JOptionPane.showMessageDialog(this, "The merchantId property is mandatory, Please check your config file",
"SAPCola", JOptionPane.ERROR_MESSAGE);
 System.exit(0);
 return;
 }
 if (properties.getProperty("merchantToken") == null) {
 JOptionPane.showMessageDialog(this, "The merchantToken property is mandatory, Please check your config
file", "SAPCola",JOptionPane.ERROR_MESSAGE);
 System.exit(0);
 return;
 }
 if (properties.getProperty("merchantChargingKey") == null) {
 JOptionPane.showMessageDialog(this, "The merchantChargingKey property is mandatory, Please check your
config file", "SAPCola",JOptionPane.ERROR_MESSAGE);
 System.exit(0);
 return;
 }
 if (properties.getProperty("merchantCurrency") == null) {
 JOptionPane.showMessageDialog(this, "The merchantCurrency property is mandatory, Please check your config
file", "SAPCola",JOptionPane.ERROR_MESSAGE);
 System.exit(0);
 return;
 }

 flashPlayer = new JFlashPlayer();
 flashPlayer.load(getClass(), "/flash/SAP-Cola.swf");
 flashPlayer.addFlashPlayerListener(this);

 flashPlayer.getWebBrowser().registerFunction(new WebBrowserFunction("buyCan") {
 @Override
 public Object invoke(JWebBrowser webBrowser, Object... args) {
 LOG.debug("buyCan");
 return buyCan((String) args[0]);
 }
 });
 flashPlayer.getWebBrowser().registerFunction(new WebBrowserFunction("getMessage") {
 @Override
 public Object invoke(JWebBrowser webBrowser, Object... args) {
 LOG.debug("getMessage");
 return getMessage();
 }
 });

 add(flashPlayer, BorderLayout.CENTER);
 }

 public boolean buyCan(String type) {
 LOG.debug("buyCan {} ", type);
 BigDecimal price = null;
 if (type.equals("zero")) {
 price = new BigDecimal("0.7");
 } else if (type.equals("light")) {
 price = new BigDecimal("0.6");
 } else if (type.equals("original")) {
 price = new BigDecimal("1");
 } else if (type.equals("black")) {
 price = new BigDecimal("0.4");
 } else {
 price = new BigDecimal("0.5");

 }

 CommandTerminal commandTerminal;
 try {
 commandTerminal = waitForTerminal();
 if (commandTerminal == null) {
 return false;
 }
 sb = new StringBuilder();
 Macro macro = initMacro("F0000000000901", commandTerminal);

 DebitAccount debitAccount;
 debitAccount = new DebitAccount();
 debitAccount.setKey(properties.getProperty("merchantChargingKey"));
 debitAccount.setOriginator(APIOriginator.pos);
 debitAccount.setServiceProviderToken(new ByteArray(properties.getProperty("merchantToken")));
 debitAccount.setProof(Proof.storedAndReturned);
 debitAccount.setPayeeId(properties.getProperty("merchantId"));

56

 debitAccount.setAmount(price);
 debitAccount.setCurrency(properties.getProperty("merchantCurrency"));
 debitAccount.setServiceProviderCode(properties.getProperty("merchantName"));
 debitAccount.setCurrentDate(new Date());

 macro.addTask(debitAccount);

 MERApduHook hook = new MERApduHook();
 commandTerminal.addCommandHook(hook);
 commandTerminal.addResponseHook(hook);

 try {
 macro.runMacro(commandTerminal);
 if (debitAccount.getStatus() == TokenConstants.STATUS_DEBIT_OK) {
 TLVEToken token = debitAccount.getToken();
 sb.append("Status : PAID").append("\n");
 sb.append("Amount : " + token.getAmount()).append("\n");
 return true;
 } else {
 sb.append("Status : ERROR").append("\n");
 return false;
 }
 } catch (MacroErrorException exception) {
 LOG.error("MacroErrorException", exception);
 Throwable throwable = exception;
 do {
 throwable = throwable.getCause();
 } while (throwable.getCause() != null);
 if (throwable instanceof StatusWordErrorException) {
 IError error = ((StatusWordErrorException) throwable).getError();
 sb.append(error.getMessage());
 } else {
 sb.append(exception.getError().getMessage());
 }
 } catch (CardErrorException exception) {
 LOG.error("CardErrorException", exception);
 sb.append(exception.getError().getMessage());
 }

 } catch (InterruptedException exception) {
 LOG.error("InterruptedException", exception);
 sb.append(exception.getMessage());
 }

 return false;
 }

 public CommandTerminal waitForTerminal() throws InterruptedException {
 LOG.info("Approach your mobile phone...");

 JDK6TerminalFactory jdk6TerminalFactory = new JDK6TerminalFactory();
 int maxTimeout = 100;
 while (jdk6TerminalFactory.getAvailableTerminals().isEmpty() && maxTimeout > 0) {
 Thread.sleep(100);
 maxTimeout--;
 }

 if (!jdk6TerminalFactory.getAvailableTerminals().isEmpty()) {
 LOG.info("Mobile phone decteted on reader %s", jdk6TerminalFactory.getAvailableTerminalNames().get(0));
 return new CommandTerminal(jdk6TerminalFactory.getAvailableTerminals().get(0), cardMappingList);
 } else {
 LOG.info("No Mobile phone found in time");
 sb = new StringBuilder("No Mobile phone found in time");
 return null;
 }
 }

 protected ChargeableItem createPayChargeableItem(BigDecimal amount, String currency, BigDecimal type, String
merchantID) {
 ChargeableItem chargeableItem = new ChargeableItem();
 chargeableItem.setName("pay");
 chargeableItem.addProperty(new Property("amount", Property.TYPE_NUMBER, amount));
 chargeableItem.addProperty(new Property("currency", Property.TYPE_STRING, currency));
 chargeableItem.addProperty(new Property("type", Property.TYPE_NUMBER, type));
 chargeableItem.addProperty(new Property("merchantId", Property.TYPE_STRING, merchantID));

 return chargeableItem;
 }

 public String getMessage() {
 LOG.debug("getMessage {}", sb);
 return sb.toString();
 }

 /**
 * Called from Flash by ExternalInterface.call to indicate mouse over and out events on a Flash symbol.
 */
 public void notifyFlashMouseEvent(String event) {
 LOG.debug("Flash mouse event: " + event);
 }

 /**
 * Called if no flash is present then exit application
 */
 private void exitError(String message) {

57

 JOptionPane.showMessageDialog(null, message, "Error", JOptionPane.ERROR_MESSAGE);
 System.exit(1);
 }

 @Override
 public void notifyReaderSelected(String reader) {
 // selectedReader = reader;
 }

 @Override
 public void commandReceived(FlashPlayerCommandEvent flashPlayerCommandEvent) {
 LOG.debug("commandReceived {} ", flashPlayerCommandEvent.getCommand());
 LOG.debug("commandReceived args {} ", Arrays.toString(flashPlayerCommandEvent.getParameters()));
 if (flashPlayerCommandEvent.getCommand().equals("quit")) {
 System.exit(0);
 }
 }

 @Override
 public String getIcon() {
 return "img/cola.jpg";
 }

 @Override
 public String getTitle() {
 return "SAP Cola";
 }

 public JFlashPlayer getFlashPlayer() {
 return flashPlayer;
 }

 public static void main(String[] args) {
 UIUtils.setPreferredLookAndFeel();
 NativeInterface.open();
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 PosCola posCola = new PosCola();
 JFrame frame = new JFrame(posCola.getTitle());
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setContentPane(posCola);
 frame.setIconImage(Toolkit.getDefaultToolkit().getImage(ClassLoader.getSystemResource(
posCola.getIcon())));
 frame.setSize(1024, 768);
 frame.setLocationByPlatform(true);
 frame.setVisible(true);
 }
 });
 NativeInterface.runEventPump();
 }

 private static Properties getPropertiesResource(String configFile) {
 LOG.debug("load properties from {}", configFile);
 Properties propertiesResource = new Properties();
 try {
 propertiesResource.load(new FileInputStream(configFile));
 } catch (IOException exception) {
 LOG.error("Unable to load properties ", exception);
 }

 return propertiesResource;
 }

 private static Macro initMacro(String aid, CommandTerminal commandTerminal) {
 Macro macro = new Macro();
 macro.addTask(new TaskATR());

 TaskSelect taskSelect = new TaskSelect();
 taskSelect.setAid(new ByteArray(aid));
 macro.addTask(taskSelect);

 return macro;
 }

 private Properties properties;
 private JFlashPlayer flashPlayer;
 private StringBuilder sb = new StringBuilder();
 private static final long serialVersionUID = 1L;
 private static final Logger LOG = LoggerFactory.getLogger(PosCola.class);

 protected static final CardMappingList cardMappingList = new CardMappingList(new GPCardMapping(), new
APIPOSCardMapping());

}

58

An extension to the POS APIs: the READ API
This API allows a merchant/vendor to read his own data that are stored into a MER installed on customer’s
device.

The working of this API is completely similar to the POS API. However, this API requires a dedicated
vendor key that differs from the vendor charging key: This key is called Vendor read Key (VrK).

The read API limits the access to the data that belongs to the vendor subscriber account and the
accessible data are the tokens, merchant’s Prepaid Account, merchant subscriptions data (parameters and
related counters), charge history and refill history.

Please find below the description of this API that proposes a high (Java) and low (bytes) interfaces.
We recommend using the Java interface that is easier to manipulate but if the merchant needs to access
to customer’s data from a basic terminal; the low level API description will be useful, the high level
interface requiring a JVM for running.

59

SearchMERChargingHistory()
This API allows the merchant to access to the customer’s charging history limited to the list of purchase
orders generated by the subscriptions issued from merchant’s offers.

Java Lib Description
com.sap.odc.mer.api.pos.SearchMERChargingHistory

Input parameters
ServiceProviderCode (String) The code of the merchant

Output/Result parameters
PurchaseOrders
(List<TLVPurchaseOrder>)

Return the list of purchase orders stored into the history

TLV C-APDU Description
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_CHARGING_H

ISTORY_OP
0xCA var var C

1 TAG_ALEA 0x09 0x0008 var P
0 TAG_SERVICE_PROVIDER_ID 0x1A 0x0002 var P

TLV R-APDU Description
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_CHARGING_H

ISTORY_RESULT
0xCB var var C

1 TAG_PURCHASE_ORDER (*)
(sequence of)

0x61 var var C

(*)see purchase order in previous document section

SearchMERCreditLimit()
This API allows a merchant to read the credit limits of his customer which has been set in the related
subscriber account (max 3).

Remarks regarding the ODC integration with Mobiliser
This API is not used because Mobiliser doesn’t allow creating credit limits.

Java Lib Description
com.sap.odc.mer.api.pos.SearchMERCreditLimit

Input parameters
ServiceProviderCode (String) The code of the merchant

Output/Result parameters
CreditLimits (List<TLVCreditLimit>) Return the list of credit limits that are set on the related

merchant account.

TLV C-APDU Description
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_CREDIT_LIM

IT_OP
0xCF var var C

1 TAG_ALEA 0x09 0x0008 var P
2 TAG_SERVICE_PROVIDER_ID 0x1A 0x0002 var P

60

TLV R-APDU Description
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_CREDIT_LIM

IT_RESULT
0xD0 var var C

1 TAG_CREDIT_LIMIT
(sequence of)

0x42 var var C

TAG CREDIT_LIMIT
Idx TAG NAME TAG LENGTH VALUE C/P
0 TAG_CREDIT_LIMIT 0x42 var var C
1 TAG_ACCOUNT_ID 0x4A 0x0002 var P

2 TAG_ACCOUNT_CODE 0x43 var var P

3 TAG_AMOUNT 0x24 0x0005 var (positive) P

4 TAG_CURRENCY 0x25 0x0003 ISO 4217 3-letters
+ “PNT” + “XXX”

P

5 TAG_ACCOUNT_RECURRING_TYP
E

0x4B 0x0002 0: Daily
1:Weekly
2:Monthly
3:Yearly
-5:Unset
-1:Not Recurring

P

6 TAG_ACCOUNT_RECURRING_DAT
E

0x4C 0x0005 var P

7 TAG_ACCOUNT_RECURRING_AMO
UNT

0x4D 0x0005 var P

SearchMERETokens()
Allows the merchant to read all the Electronic Tokens (currently registered into the MER) for which the
merchant is involved as payee or payer.

Java Lib Description
com.sap.odc.mer.api.pos.SearchMERETokens

Input parameters
ServiceProviderCode (String) The code of the merchant

Output/Result parameters
ETOkens (List<TLVEToken>) the list of ETokens

TLV C-APDU Description

Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_TOKENS_OP 0xC3 var var C
1 TAG_ALEA 0x09 0x0008 var P
2 TAG_SERVICE_PROVIDER_ID 0x1A 0x0002 var P

TLV R-APDU Description
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_TOKENS_RES

ULT
0xC4 var var C

1 TAG_TOKEN(*)
(sequence of)

0x27 var var C

(*) See TLV description in previous POS API section.

61

SearchMERExternalAccount()
Returns the list of the external account defined in the merchant’s subscriber account.

Remarks regarding the ODC integration with Mobiliser
This API is not used because Mobiliser doesn’t create/use some external accounts.

Java Lib Description
com.sap.odc.mer.api.pos.SearchMERExternalAccount

Input parameters
ServiceProviderCode (String) The code of the merchant

Output/Result parameters
ExternalAccounts
 (List< TLVExternalAccount>)

the list of External accounts defined into the merchant
account.

TLV C-APDU Description

Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_EXTERNAL_A

CCOUNT_OP
0xCD var var C

1 TAG_ALEA 0x09 0x0008 var P
2 TAG_SERVICE_PROVIDER_ID 0x1A 0x0002 var P

TLV R-APDU Description
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_EXTERNAL_A

CCOUNT_RESULT
0xCE var var C

1 TAG_EXTERNAL_ACCOUNT
(sequence of)

0x41 var var C

TAG EXTERNAL_ACCOUNT
Idx TAG NAME TAG LENGTH VALUE C/P
0 TAG_EXTERNAL_ACCOUNT 0x41 var var C
1 TAG_ACCOUNT_ID 0x4A 0x0002 var P
2 TAG_ACCOUNT_CODE 0x43 var var P

3 TAG_ACCOUNT_OWNER 0x44 var var P

4 TAG_AMOUNT 0x24 0x0005 var (positive) P

5 TAG_CURRENCY 0x25 0x0003 ISO 4217 3-letters
+ “PNT” + “XXX”

P

SearchMERPrepaidAccount()
Returns the list of Prepaid Accounts which are defined by the merchant in a subscriber account.

Java Lib Description
com.sap.odc.mer.api.pos.SearchMERPrepaidAccount

Input parameters
ServiceProviderCode (String) The code of the merchant

Output/Result parameters

62

PrepaidAccounts
(List<TLVPrepaidAccount>)

The list of Prepaid Accounts defined into the merchant
MER’s account.

TLV C-APDU Description
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_PREPAID_AC

COUNT_OP
0xB2 var var C

1 TAG_ALEA 0x09 0x0008 var P
2 TAG_SERVICE_PROVIDER_ID 0x1A 0x0002 var P

TLV R-APDU Description
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_PREPAID_AC

COUNT_RESULT
0xB3 var var C

1 TAG_PREPAID_ACCOUNT
(sequence of)

0x40 var var C

TAG PREPAID_ACCOUNT

Idx TAG NAME TAG LENGTH VALUE C/P
0 TAG_PREPAID_ACCOUNT 0x40 var var C
1 TAG_ACCOUNT_ID 0x4A 0x0002 var P
2 TAG_ACCOUNT_CODE 0x43 var var P

3 TAG_ACCOUNT_OWNER 0x44 var var P

4 TAG_AMOUNT 0x24 0x0005 var (positive) P

5 TAG_CURRENCY 0x25 0x0003 ISO 4217 3-letters
+ “PNT” + “XXX”

P

6 TAG_ACCOUNT_EMPTY_LIMIT 0x48 0x0005 var P

7 TAG_ACCOUNT_BLOCKED_STATE
_DATE

0x45 0x0005 var P

8 TAG_ACCOUNT_LOCKED_STATE_
DATE

0x46 0x0005 var P

9 TAG_ACCOUNT_CLOSED_STATE_
DATE

0x47 0x0005 var P

SearchMERRefillHistory()
This API allows the merchant to access to the customer’s refill history which has been performed by the
customer on Prepaid Accounts defined into the merchant’s MER account (subscriber account).

Java Lib Description
com.sap.odc.mer.api.pos.SearchMERRefillHistory

Input parameters
ServiceProviderCode (String) The code of the merchant

Output/Result parameters
RefillOrders (List<TLVRefillOrder>) The list of refill orders performed into the merchant MER’s

account.

TLV C-APDU Description

63

Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_REFILL_HIS

TORY_OP
0xB4 var var C

1 TAG_ALEA 0x09 0x0008 var P
2 TAG_SERVICE_PROVIDER_ID 0x1A 0x0002 var P

TLV R-APDU Description
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_REFILL_HIS

TORY_RESULT
0xB5 var var C

1 TAG_REFILL_ORDER
(sequence of)

0x68 var var C

TAG REFILL_ORDER
Idx TAG NAME TAG LENGTH VALUE C/P
0 TAG_REFILL_ORDER 0x68 var var C
1 TAG_ACCOUNT_CODE 0x43 var var P
2 TAG_REFILL_ORDER_AMOUNT 0x69 0x0005 var P

3 TAG_REFILL_ORDER_PRE_AMOU
NT

0x6A 0x0005 var P

4 TAG_REFILL_ORDER_POST_AMO
UNT

0x6B 0x0005 var P

5 TAG_REFILL_ORDER_STATUS 0x6C 0x0002 0: refilled
1: rejected

P

6 TAG_REFILL_ORDER_REJECT_C
ODE

0x6D 0x0002 0:balance
rejected
1: invalid
account code

P

7 TAG_REFILL_DATE 0x35 0x0005 var P

SearchMERSubscriberAccount()
This API allows the merchant to access to his subscriber code (if it exists) that will contain all the nested
objects such as Eternal Accounts, Credit Limits and Prepaid Accounts.

Java Lib Description
com.sap.odc.mer.api.pos.SearchMERSubscriberAccount

Input parameters
ServiceProviderCode (String) The code of the merchant

Output/Result parameters
TLVSubscriberAccount The merchant MER’s account.

TLV C-APDU Description
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_SUBSCRIBER

_ACCOUNT_OP
0xB0 var var C

1 TAG_ALEA 0x09 0x0008 var P
2 TAG_SERVICE_PROVIDER_ID 0x1A 0x0002 var P

TLV R-APDU Description

64

Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_SUBSCRIBER

_ACCOUNT_RESULT
0xB1 var var C

1 TAG_SUAC 0x10 var var C

TAG SUBSCRIBER_ACCOUNT

Idx TAG NAME TAG LENGTH VALUE C/P
0 TAG_SUAC 0x10 var var C
1 TAG_SUAC_ID 0x11 0x0002 var P
2 TAG_SUAC_CODE 0x14 var var P
3 TAG_SUAC_DEFAULT_CHARGE_A

CCOUNT_ID
0x12 0x0002 var P

4 TAG_SUAC_SUBSCRIBER 0x13 0x0005 var P

5 TAG_SERVICE_PROVIDER_CODE 0x20 var var P

6 TAG_SERVICE_PROVIDER_ID 0x1A 0x0002 var P

65

SearchMERSubOfferCodes
This API allows the merchant to access to the list of subscribed offer codes. It returns the Offer codes
stored into the embedded subscription installed into the end-user Secure Element.

Java Lib Description
com.sap.odc.mer.api.pos.SearchMERSubOfferCodes

Input parameters
ServiceProviderCode (String) The code of the merchant

Output/Result parameters
Codes (List<String>) The list of the subscribed offer codes.

TLV C-APDU Description
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_SUB_OFFER_CODE

S_OP
0xB6 var var C

1 TAG_ALEA 0x09 0x0008 var P
2 TAG_SERVICE_PROVIDER_ID 0x1A 0x0002 var P

TLV R-APDU Description
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_SUB_OFFER_CODE

S_RESULT
0xB7 var var C

1 TAG_OFFER_CODE (optional)
(sequence of)

0x22 var var C

SearchMERSubscriptionInfo
Remarks regarding the ODC integration with Mobiliser
Each API that returns a subscription (TLVSubscription) will reference a simplified version of the ODC
subscription. This simplified version of the ODC Subscription can be consulted in the WS definition file
(Odc.wsdl) and is named “SubscriptionDD3Form”. The “SubscriptionDD3Form” can be viewed as a
TLVSubscription with restrictions. Here is an overview of the SubscriptionDD3Form (for the complete
definition, please consult the Odc.wsdl file):

 <xs:complexType name="SubscriptionDD3Form">
 <xs:sequence>
 <xs:element ref="parameterSet" minOccurs="0" />
 <xs:element ref="counterSet" minOccurs="0" />
 <xs:element ref="translationInstanceSet" minOccurs="0" />
 <xs:element name="chargeActivationD3Form" type="ChargeActivationD3Form" minOccurs="1"
maxOccurs="10" />
 </xs:sequence>
 <xs:attribute name="code" type="core:String24" use="required" />
 <xs:attribute name="merchantId" type="base:idLong" use="optional" />
 <xs:attribute name="customerId" type="base:idLong" use="optional" />
 <xs:attribute name="offerCode" type="xs:string" use="required" />
 <xs:attribute name="effectiveDate" type="xs:dateTime" />
 <xs:attribute name="expirationDate" type="xs:dateTime" />
 <xs:attribute name="dependentMaxDeph" type="xs:short" fixed="3" />
 </xs:complexType>
===
 <xs:complexType name="ChargeActivationD3Form">
 <xs:sequence>
 <xs:element ref="parameterSet" minOccurs="0" maxOccurs="1" />
 <xs:element ref="counterSet" minOccurs="0" maxOccurs="1" />
 <xs:element ref="translationInstanceSet" minOccurs="0" maxOccurs="1" />
 <xs:element name="serviceId" type="core:String24" minOccurs="0" maxOccurs="1">
 <xs:annotation>
 <xs:documentation>
 Mandatory if the charge type is master.

66

 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element ref="chargingMapping" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 If not set, the charging is done on the default account.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="chargeConditionOccurenceNumber" type="xs:short" default="0">

 <xs:annotation>
 <xs:documentation>
 If several Charge Activations reference the same Charge Condition, each CA

will be indexed by a number indicating the CA range.
 </xs:documentation>
 </xs:annotation>

</xs:attribute>
 <xs:attribute name="description" type="xs:string" use="optional" />
 <xs:attribute name="effectiveDate" type="xs:dateTime" use="required" />
 <xs:attribute name="expirationDate" type="xs:dateTime" />
 <xs:attribute name="chargeConditionCode" type="xs:string" use="required" />
 <xs:attribute name="chargeType" type="CAType" default="master" />
 <xs:attribute name="dependentMaxCount" type="xs:integer" fixed="3" />

<xs:attribute name="internalCode" type="core:String24">
<xs:annotation>

 <xs:documentation>
 The internalCode is calculated by ODC.
 </xs:documentation>
 </xs:annotation>

</xs:attribute>
 </xs:complexType>

This API allows the merchant to access to the information of a subscription identified by its offer code.

Java Lib Description
com.sap.odc.mer.api.pos.SearchMERSubscriptionInfo

Input parameters
ServiceProviderCode (String) The code of the merchant
OfferCode (String) The code of the offer

Output/Result parameters
Subscription (TLVSubscription) The details of the subscription that will contain the data for

the following fields:
- subscription code
- subscription ID
- the service provider code
- the offer code
- the offer ID
- the effective date of the subscription
- the expiration date of the subscription

TLV C-APDU Description
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_SUBSCRIPTI

ON_INFO_OP
0xBE var var C

1 TAG_ALEA 0x09 0x0008 var P
2 TAG_SERVICE_PROVIDER_ID 0x1A 0x0002 var P
3 TAG_OFFER_ID 0x3E 0x0002 var P

TLV R-APDU Description
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_SUBSCRIPTI

ON_INFO_RESULT
0xBF var var C

67

1 TAG_SUBSCRIPTION 0x51 var var C

TAG SUBSCRIPTION
Idx TAG NAME TAG LENGTH VALUE C/P
0 TAG_SUBSCRIPTION 0x51 var var C
1 TAG_SUBSCRIPTION_CODE 0x52 var var P
2 TAG_SUBSCRIPTION_ID 0x56 0x0002 var P
3 TAG_SERVICE_PROVIDER_CODE 0x20 var var P

4 TAG_OFFER_ID 0x3E 0x0002 var P

5 TAG_OFFER_CODE 0x22 var var P

6 TAG_CHARGE_ACTIVATION (*)
(sequence of)

0x1A var var C

7 TAG_COUNTER (sequence of) 0x7D var var C

8 TAG_PARAMETER (sequence
of)

0x7C var var C

(*) represents the list of master charge activation

TAG CHARGE_ACTIVATION
Idx TAG NAME TAG LENGTH VALUE C/P
0 TAG_CHARGE_ACTIVATION 0x1A var var C
1 TAG_CHARGE_ACTIVATION_COD

E
0x5C var var P

2 TAG_CHARGE_ACTIVATION_ID 0x5D 0x0002 var P
3 TAG_CHARGE_ACTIVATION_EFF

ECTIVE_DATE
0x60 0x0005 var P

4 TAG_CHARGE_ACTIVATION_EXP
IRATION_DATE

0x5F 0x0005 var P

5 TAG_CHARGE_ACTIVATION_CAN
CELLATION_DATE

0x5E 0x0005 var P

6 TAG_CHARGE_ACTIVATION_ONE
_SHOT (sequence of)

0x62 0x0001 0: applied
other not applied

P

7 TAG_CHARGE_ACTIVATION_REC
URRING_DATE (sequence of)

0x61 0x0001 0: applied
other not applied

P

8 TAG_COUNTER
(sequence of)

0x7D var var C

9 TAG_PARAMETER (sequence
of)

0x7C var var C

10 TAG_CHARGE_ACTIVATION (*)
(sequence of)

0x1A var var C

(*) this nested structure represents the list of dependent charge activation associated to the current
master master charge.

TAG COUNTER
Idx TAG NAME TAG LENGTH VALUE C/P
0 TAG_COUNTER 0x7D var var C
1 TAG_NAME 0x2C var var P
2 TAG_VALUE 0x2B 0x0005 var P

TAG PARAMETER

68

Idx TAG NAME TAG LENGTH VALUE C/P
0 TAG_PARAMETER 0x7C var var C
1 TAG_NAME 0x2C var var P
2 TAG_TYPE 0x2D 0x0001 0:number

1:string
2:date

P

3 TAG_VALUE 0x2B var var P

SearchMERSubscriptionCounters
This API allows the merchant to access to the counters’ values contained in a subscription identified by its
offer code.

Remarks regarding the ODC integration with Mobiliser
Each API that returns a subscription (TLVSubscription) references a simpler version of the ODC
subscription. This simplified version of the ODC Subscription can be consulted in the WS definition file
(Odc.wsdl) and is renamed “SubscriptionDD3Form”. The “SubscriptionDD3Form” can be viewed as a
TLVSubscription with restrictions. Here is an overview of the SubscriptionDD3Form (for the complete
definition, please consult the Odc.wsdl file):

Java Lib Description
com.sap.odc.mer.api.pos.SearchMERSubscriptionCounters

Input parameters
ServiceProviderCode (String) The code of the merchant
OfferCode (String) The code of the offer

Output/Result parameters
Subscription (TLVSubscription) The details of the subscription that will contain the data for

the following fields which contain counters
(List<TLVCounter>):

- SharedCounters (List<TLVCounter>
- ChargeActivations

(List<TLVChargeActivation>)
o Counters (List<TLVCounter>

TLV C-APDU Description

Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_SUBSCRIPTI

ON_COUNTER_OP
0xB8 var var C

1 TAG_ALEA 0x09 0x0008 var P
2 TAG_SERVICE_PROVIDER_ID 0x1A 0x0002 var P
3 TAG_OFFER_ID 0x3E 0x0002 var P

TLV R-APDU Description
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_SUBSCRIPTI

ON_COUNTER_RESULT
0xB9 var var C

1 TAG_SUBSCRIPTION (*) 0x51 var var C

(*) defined in previous section

SearchMERSubscriptionParameters

69

This API allows the merchant to access to the parameters’ values contained in a subscription identified by
its offer code.

Remarks regarding the ODC integration with Mobiliser
Each API that returns a subscription (TLVSubscription) references a simpler version of the ODC
subscription. This simplified version of the ODC Subscription can be consulted in the WS definition file
(Odc.wsdl) and is renamed “SubscriptionDD3Form”. The “SubscriptionDD3Form” can be viewed as a
TLVSubscription with restrictions. Here is an overview of the SubscriptionDD3Form (for the complete
definition, please consult the Odc.wsdl file):

Java Lib Description
com.sap.odc.mer.api.pos.SearchMERSubscriptionParameters

Input parameters
ServiceProviderCode (String) The code of the merchant
OfferCode (String) The code of the offer

Output/Result parameters
Subscription (TLVSubscription) The details of the subscription that will contain the data for

the following fields which contain paramters
(List<TLVParameter>):

- SharedParameters (List<TLVParameter>
- ChargeActivations

(List<TLVChargeActivation>)
o Parameters (List<TLVParameter>

TLV C-APDU Description
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_SUBSCRIPTI

ON_PARAMETER_OP
0xBA var var C

1 TAG_ALEA 0x09 0x0008 var P
2 TAG_SERVICE_PROVIDER_ID 0x1A 0x0002 var P
3 TAG_OFFER_ID 0x3E 0x0002 var P

TLV R-APDU Description
Idx TAG NAME TAG LENGTH VALUE C/P
0 INS_SEARCH_MER_SUBSCRIPTI

ON_PARAMETER_RESULT
0xBB var var C

1 TAG_SUBSCRIPTION (*) 0x51 var var C

(*) defined in previous section

Important Note

Considering the complexity of the Subscription, we recommend the user to use the high-level java API for
getting information from the embedded subscriptions.

The involved API are:

SearchMERSubscriptionInfo()

SearchMERSubscriptionCounters()

70

SearchMERSubscriptionParameters()

	Table Of Contents
	Purpose of this guide
	Readers
	Guide version

	SAP On Device Charging overview
	About SAP On Device Charging
	Setting the context
	What you can do in SAP On Device Charging

	Architecture overview
	Actors / Roles
	Architecture
	Main processes
	Charging (credit/debit) an account
	Working with on-device offers able to charge offline accounts

	Technologies
	Remarks regarding the ODC integration with Mobiliser

	ODC MER Architecture Overview
	Data Model
	Remarks regarding the ODC integration with Mobiliser

	MER APIs & rating / charging processes overview
	Remarks regarding the ODC integration with Mobiliser

	ODC Server architecture overview
	Security architecture

	Point of Sale / Service API description
	Basic Types definition
	Charging APIs
	DEBIT_ACCOUNT_MER_COMMAND: DebitAccount()
	Remarks regarding the ODC integration with Mobiliser

	CREDIT_ACCOUNT_MER_COMMAND: CreditAccount()
	Remarks regarding the ODC integration with Mobiliser

	DEBIT_ACCOUNT_MER_RESPONSE & CREDIT_ACCOUNT_MER_RESPONSE: DebitAccount() / CreditAccount() Output Result
	CHARGE_MER_COMMAND: Charge ()
	Remarks regarding the ODC integration with Mobiliser

	CHARGE_MER_RESPONSE: The Charge () Output Result
	TLV_TOKEN: Token Type description
	Remarks regarding the ODC integration with Mobiliser

	TLV_CHARGEABLE_ITEM: Chargeable Item Type
	TLV_PROPERTY: Property Type
	TLV_PURCHASE_ORDER: Purchase Order Type

	ODC hash() function
	ODC MER PIN Checking

	Card ISO7816 Overview
	Introduction
	APDU Message Structure
	Definitions
	Command APDU definitions
	Decoding conventions for command bodies
	Decoding of the command APDUs
	Response APDU definition
	Coding conventions for command headers, data fields and response trailers
	Class byte
	Instruction byte
	Parameter bytes
	Data field bytes
	Status bytes

	APDUs used by a POS to dialog with a MER
	Introduction
	MER APDU Command
	MER APDU Response
	Error Status Word for POS MER API

	Commented Debit() Example
	Description
	JAVA POS Lib description
	APDUs description
	Remarks regarding the ODC integration with Mobiliser

	MER
	MER Dates encoding
	MER number encoding

	Commented Charge() Example
	Description
	JAVA POS Lib description
	APDUs description

	List of TLV MER APDUs
	MER POS API Command C-APDU
	Debit() C-APDU
	Debit() R-APDU
	TOKEN APDU
	Credit() C-APDU
	Credit() R-APDU
	Charge() C-APDU
	Charge() R-APDU
	CHARGEABLE ITEM APDU
	CHARGEABLE ITEM PROPERTY APDU
	TRANSACTION APDU
	CheckMERPin() C-APDU
	CheckMERPin() R-APDU

	Security protocol between the POS and the MER
	Introduction
	Remarks regarding the ODC integration with Mobiliser

	Vendor security data generation
	How does it work?
	3-DES Initialization Vector determination

	ODC java POS library
	Charge() API
	Debit() API
	Credit() API
	How to perform a call to the MER POS API from java code

	SAP Cola full code example
	Introduction
	PosCola.java

	An extension to the POS APIs: the READ API
	SearchMERChargingHistory()
	Java Lib Description
	TLV C-APDU Description
	TLV R-APDU Description

	SearchMERCreditLimit()
	Remarks regarding the ODC integration with Mobiliser
	Java Lib Description
	TLV C-APDU Description
	TLV R-APDU Description
	TAG CREDIT_LIMIT

	SearchMERETokens()
	Java Lib Description
	TLV C-APDU Description
	TLV R-APDU Description

	SearchMERExternalAccount()
	Remarks regarding the ODC integration with Mobiliser
	Java Lib Description
	TLV C-APDU Description
	TLV R-APDU Description
	TAG EXTERNAL_ACCOUNT

	SearchMERPrepaidAccount()
	Java Lib Description
	TLV C-APDU Description
	TLV R-APDU Description
	TAG PREPAID_ACCOUNT

	SearchMERRefillHistory()
	Java Lib Description
	TLV C-APDU Description
	TLV R-APDU Description
	TAG REFILL_ORDER

	SearchMERSubscriberAccount()
	Java Lib Description
	TLV C-APDU Description
	TLV R-APDU Description
	TAG SUBSCRIBER_ACCOUNT

	SearchMERSubOfferCodes
	Java Lib Description
	TLV C-APDU Description
	TLV R-APDU Description

	SearchMERSubscriptionInfo
	Remarks regarding the ODC integration with Mobiliser
	Java Lib Description
	TLV C-APDU Description
	TLV R-APDU Description
	TAG SUBSCRIPTION
	TAG CHARGE_ACTIVATION
	TAG COUNTER
	TAG PARAMETER

	SearchMERSubscriptionCounters
	Remarks regarding the ODC integration with Mobiliser
	Java Lib Description
	TLV C-APDU Description
	TLV R-APDU Description

	SearchMERSubscriptionParameters
	Remarks regarding the ODC integration with Mobiliser
	Java Lib Description
	TLV C-APDU Description
	TLV R-APDU Description

	Important Note

