

SAP Customer Activity Repository 4.0 FP2 and 4.0 FP3
Document Version: 1.1

CUSTOMER

OPP Development and Extension Guide

Document History

Version Date Change

1.0 2019-11-15 Initial version

1.1 2020-07-05 Minor changes in Formatting and version-related information

OPP Development and Extension Guide for CARAB 4.0
FP02/FP03

Overview of Omnichannel Promotion Pricing
The Price and Promotion Repository (PPR)
The Promotion Pricing Service (PPS)

Promotion Pricing Service Overview
Open Source Dependencies of the PPS
PPS Module Concept

Defining and Overriding Beans
PPS Context
PPS Validation

PPS-Specific Constraints
Adjusting Constraint Checks of the Standard Delivery
Enabling or Disabling Bean Validation within Eclipselink
Further information

PPS Module api
Overview
Beans

Required Beans
Configuration Properties
Dependencies

PPS Module client-interface
Overview
Extensibility via any Elements
XSD and Currencies
Beans
Configuration Properties
Dependencies

PPS Module core
Overview
PPS Application Context
PPS Context
Bean Validation
Beans
Configuration Properties
Dependencies

PPS Module dataaccess-interface
Overview
Beans
Configuration Properties
Dependencies

PPS Module jackson
Overview

Configuring Jackson (Client Side)
Request Logging
Beans
Configuration Properties
Dependencies

PPS Module restapi
Overview
Known Issues
Beans
Configuration Properties
Dependencies

PPS Module client-impl
Overview

Request Validation
Single vs Bulk Access for Regular Prices
Handling of Business Unit Type

Beans
Required Beans

Configuration Properties
Dependencies

PPS Module calcengine-gk
Overview
Beans

Default Settings and Properties
Required Beans

Configuration Properties
Dependencies

PPS Module dataaccess-common
Overview

Regular Price
Promotional Information
Object-Related Mapping Using Spring

Multi-Step JPA Resource Mapping
Multi-Step JPA Property Definition
Support of JPA Entity Extensions
equals() and hashCode() for JPA Entities
Caching

Caching Regular Prices
Caching Promotional Information
Cache Keys
Prefetch of Price Derivation Rule Eligibility References

Support of Weaving
Support for Read-Only Transactions
Code Conversion
Handling of Currencies and Amounts
Handling Product IDs
Handling of Language-Specific Information
SAP Client and Logical System

Beans
Required Beans

Configuration Properties
Dependencies

PPS Module dataaccess-ddf
Overview
Attribute Converters

Boolean Values
Time Stamps

Beans
Configuration Properties
Dependencies

PPS Module dataaccess-localdb
Overview
Indexes
Configuring the Data Access
Beans

Required Beans
Configuration Properties
Dependencies

PPS Module idocinbound
Overview

Spring Integration Process Definition
Processing the IDoc Data
Conversion of the IDoc Payload to the Expected Java Types
Mapping Regular Prices
Mapping OPP Promotions

Validating Uploaded Data
Posting to the Database

Regular Prices
OPP Promotions

Beans
Required Beans

Configuration Properties
Dependencies

PPS Performance Hints
Creating of the Offers
Distributing of the Data
Client Side (Price Calculation)
Client Side (Data Replication)
Server Side

Common Rules
Local-PPS-Specific
XSA-Based-PPS-Specific

Database Side
PPS Logging and Tracing
PPS Authentication

Enabling XSA Authentication
Price and Promotion Repository

Overview
Modeling of OPP Promotions

Keys and Foreign Keys
Validity Period for the OPP Promotion
Database Tables
Handling of Amounts

Transformation from DDF offers into OPP Promotion
Technical Information
How We Transform DDF Offers into OPP Promotions

Transformation of Simple Discount Offers
Examples

Transformation of Offers with Transaction Discount
Transformation of Mix-and-Match Offers

Examples

Transformation of Packaged Offers
Transformation of Offers with Incentives
Default Values

ItemPriceDerivationRule
Fields Only Relevant for Coupons
Fields Only Relevant for Loyalty Points
CouponPriceDerivationRule Eligibility
PromotionPriceDerivationRule

Replication of the Price and Promotion Repository
Outbound Processing of IDocs via DRF

DRF Configuration
OPP Promotions

Outbound Implementation for Promotion-Centric Outbound Processing
Outbound Implementation for Location-Specific Outbound Procesing
Filtering the OPP Promotions
Controlling the Target Locations
Generic Mapping of Customer Enhancement Segments
Transfer OPP Promotions Using the Global Object List

Location-Specific Outbound Processing Using the Global Object List
Cleanup of the Global Object List

Regular Prices
Outbound Implementation
Data Filtering
Handling of the Expected Data Volume

OPP Extensibility
Extensibility of Demand Data Foundation (DDF)

Extensibility of DDF Offer Inbound API
Extensibility of DDF Regular Price Inbound API

Extensibility of the OPP Data Model (ABAP)
Extending SAP delivered ABAP domains

Extensibility of the OPP Business Logic (ABAP)
Extensibility of the Transformation from DDF Offer into OPP Promotion

Extensibility of the IDoc Outbound Processing (ABAP)
Extensibility of the OPP Data Model (Java)

Adding a Field to an Entity
Adding a Separate Entry
Adding an Attribute Converter to an Existing Attribute
Adding a Subentity to an Existing Entity
Adding a Specialization to an Existing Entity
Using Own Logic for Equals() and HashCode() of a JPA Entity

Extensibility of Client API (Java)
Extensibility of Enumerations
Extensibility of Content with User-Defined Attributes / Elements
Restrictions
Example: Enrich SaleForDelivery Entity with Address Information

Extending the PPS Business Logic (Java)
Plugin Concept

Calling the Plugins
Implementing a Plugin
Guaranteed Stability

Documented Stability
Your Choices for Extending the PPS Java Side

SAP Delivered Plugin Implementations
Structure of Your Extension Project
Installing your Extensions

Extensibility of the Promotion Calculation Engine (Java)
Extensibility of the sapppspricing PPS Integration (Java)
Extensibility Examples
Integrating Custom Extensions into the XSA-Based-PPS

Setting Up the Development Environment
Creating Your Extension Projects
Adding Your Extension to the PPS

Extending the PPS-Based Price Calculation in SAP ERP and SAP S/4HANA Sales Documents
Extending via BAdIs

Enriching with Further Article Hierarchy Nodes
Extending the SAP ERP/ SAP S/4HANA PPS Client
Support for Mocking of the SAP ERP/ SAP S/4HANA PPS Client

Overview of Omnichannel Promotion Pricing
Omnichannel promotion pricing provides the as central storage of regular prices and price rules as well as the price and promotion repository (PPR) pro

 to calculate effective sales prices by applying promotional rules.motion pricing service (PPS)

The Price and Promotion Repository (PPR)

The PPR is part of SAP Customer Activity Repository (SAP CAR) based on SAP HANA. This repository contains regular prices and price rules, so-called
offers. Technically, this data is located in the Demand Data Foundation (DDF) software component. This data is also used by SAP Promotion Management
(SAP PM), which is an optional add-on to SAP CAR.

For the maintenance of price rules, OPP reuses the existing options: SAP PM and SAP Fiori UI-based offer maintenance. For the import of price rules and
regular prices from external systems, an RFC-based import via standard DDF interface can be used.

To make offers consumable for the promotion pricing service, they are transformed into a different data format based on the . ARTS promotion data model
An offer with this format is called OPP promotions have similar, but not identical, features to define price rules compared to the DDF OPP promotion.
offer. If the offer can be transformed into an OPP promotion, an automatic compatibility check is performed before the offer is saved. The status of the offer
determines whether the compatibility check and the transformation can be performed. Offers with status are not considered for the In Process
transformation into OPP promotions.

 Regular prices are consumed by the promotion pricing service using the database view.

The Promotion Pricing Service (PPS)

The PPS uses a Java-based engine to calculate prices and promotions. This ensures high system performance and a flexible deployment. The service can
be deployed centrally or locally:

With a central deployment, the promotion pricing service runs on the central price and promotion repository, and is powered by SAP HANA XS
advanced (XSA).
With a local deployment, the promotion pricing service runs locally in the database of the corresponding sales channel application. Therefore,
regular prices and OPP promotions are replicated from the central price and promotion repository to the database of the sales channel
application, such as web applications and POS systems. The replication is done using the data replication framework (DRF), which is a central
reuse component in SAP Business Suite. Delta transfer is also supported. In this way, the sales channel application can work without an
additional remote system being continuously available.

OPP provides the local and the central promotion pricing service for SAP Commerce and also the GK POS solution is based on the same concepts than
The calculation is exposed using a stateless service, which is based on the ARTS Price Service Interface 1.0. This the promotion calculation engine.

interface is consumed by SAP Commerce using an additional extension () but can be used by any other client. For a local deployment, sapppspricing
embedded into SAP Commerce, the service uses the same database as SAP Commerce.

The following figure illustrates the OPP architecture:

In an SAP environment, regular prices are typically imported from an SAP ERP or an SAP S/4HANA system. However, these systems are not
mandatory components for the usage of OPP.

You have to distinguish clearly between the repository view of a price rule (the DDF offer) and the runtime view (the OPP promotion).

https://nrf.com/arts-operational-data-model-odm

Promotion Pricing Service Overview
This chapter describes the promotion pricing service (PPS), in particular its concepts and its structure. The figure below shows the inner structure of the
PPS in more detail and the data flow of a price calculation request:

The PPS is an application that exposes an API based on the ARTS Pricing Service Interface 1.0. The structure of the requests is defined in the client API
layer. The requests are forwarded to the client API implementation layer where the regular prices are determined using the data access API. Next, the
request is forwarded to the promotion calculation engine that calculates discounts, and so on. The data access API is used again to read data from the
persistence. The implementation based on JPA) calls the underlying database in which the regular prices and OPP promotions are Java Persistence API (
stored. PPS core functions are available throughout the application. Spring framework is used extensively to assemble the different parts and configure the
PPS.

Open Source Dependencies of the PPS

The PPS uses various open-source libraries. The following list only contains some of the used libraries as well as more information about what they are
used for:

Spring framework for dependency injection, transaction management, cache abstraction, and so on
EclipseLink as a JPA implementation
FasterXML Jackson for unmarshalling/marshalling HTTP requests (such as IDoc inbound processing)
Woodstox as a Stax XML API implementation
SLF4J as a logging facade
Google Guava as a general purpose toolkit and, in particular, as a cache implementation (for named queries)
Various parts of Apache Commons as a general purpose toolkit:

commons-lang
commons-lang3
commons-logging
commons-collections3

Joda Time an alternative for Java date and time classesas

PPS Module Concept

1.

2.
3.

The business logic of the PPS is implemented by Spring beans. To support extensibility, the PPS comes with its own lightweight module concept that uses
Spring concepts. A PPS module is just a set of Spring beans, which are added to the application context during its initialization. From a business
perspective, a PPS module should contain Spring beans that are used to implement a - potentially large - functional block.

A PPS module, such as M1, can have dependencies to other PPS modules, such as M2 and M3. In this case, the beans of module M1 are added to the
Spring application context after the beans of modules M2 and M3. In this way, the M1 beans could hide or redefine the M2 or M3 beans. If you want to
enhance business logic in a customer project, the corresponding Spring bean (in module sapABC, for example) can be hidden by a customer-specific
bean. This can be done without modification of the standard shipment by adding a further module (custXYZ, for example) that depends on the module
sapABC. A new bean with the same bean alias (see below) can be created in this module.

A PPS module is defined as follows.

Create the file on the PPS classpath. The following example shows the structure META-INF/<moduleName>-ppe-module-metadata.xml
of this file type:

Module declaration

<module xmlns="http://www.sap.com/ppengine/core/module"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.sap.com/ppengine/core/module ppengine-module-0.2.xsd">
 <name name="client-impl" vendor="sap" />
 <dependencies>
 <module name="dataaccess-interface" vendor="sap"/>
 <module name="client-interface" vendor="sap"/>
 <module name="core" vendor="sap"/>
 </dependencies>
</module>

The combination of the name with the vendor name is the PPS module name. This module depends on three further modules: , client-impl core
client-interface, and , all with the vendor "sap". The purpose of the vendor attribute is to avoid name collisions. Modules dataaccess-interface
delivered by SAP have the vendor "sap".
To enable schema validation, place the file ppengine-module-0.2.xsd in the same folder as the module metadata file.
Create an XML file with the name in the same folder as the metadata file. This contains (META-INF/)<moduleName>-ppe-module-spring.xml
the Spring beans. Below is an excerpt from the SAP bean definitions:

Spring beans of a module

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org
/schema/context"
 xmlns:mvc="http://www.springframework.org/schema/mvc" xmlns:tx="http://www.springframework.org/schema
/tx"
 xsi:schemaLocation="http://www.springframework.org/schema/mvc http://www.springframework.org/schema
/mvc/spring-mvc-4.1.xsd
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-
beans-4.1.xsd
 http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-4.1.
xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context
/spring-context-4.1.xsd">

 <context:property-placeholder
 location="classpath:/META-INF/client-impl-ppe-module.properties"
 ignore-unresolvable="true" />

 <!-- Validator for a price calculation request -->
 <alias name="sapDefaultCalculateRequestValidator" alias="sapCalculateRequestValidator" />
 <bean id="sapDefaultCalculateRequestValidator" class="com.sap.ppengine.client.impl.
RequestValidatorImpl">
 <property name="objectFactory" ref="sapClientApiDtoFactory" />
 </bean>

 <!-- Further beans below -->

</beans>

When the PPS is started, the PPS classpath is scanned for all modules. All the modules that are found are loaded automatically in the correct order.

A third, optional, part of a PPS module is a Java .properties file that holds default values for
Spring properties used during the definition of the Spring beans. By convention, this is
located in the same folder as the metadata and resource file of the module and has the
name META-INF/<moduleName>-ppe-module.properties. It is loaded via
the <context:property-placeholder> tag in the corresponding resource file. Defaults stored
in this file can either be changed using one dedicated file ppe-local.properties on the Java
classpath or by setting Java environment properties.

It is not possible to redefine the property values set in the .properties file of one module
within the .properties file of another module.

In addition, if modules are added to the PPS application context in several steps, it is not
possible to access the configuration properties of loaded modules during the addition of
further modules. For example, if the PPS module idocinbound is added to a PPS application
context that is already being used (as is the case for a local PPS within SAP Hybris
Commerce), only the configuration properties of the module idocinbound may be used.

The PPS offers the following modules (dependencies are represented by arrows):

The modules dataaccess-localdb and idocinbound are part of SAP Hybris Commerce,
integration package for SAP for Retail.

The modules restapi and dataaccess-ddf are part of the central promotion pricing service,
which is part of SAP Customer Activity Repository.

Defining and Overriding Beans

By default, a Spring bean offered in the standard shipment is defined and used as follows:

Specifying ID and alias of a Spring bean

<alias name="sapDefaultClientApiDtoFactory" alias="sapClientApiDtoFactory" />
<bean id="sapDefaultClientApiDtoFactory" class="com.sap.ppengine.client.dto.ObjectFactory" />

<alias name="sapDefaultClientApiHelper" alias="sapClientApiHelper" />
<bean name="sapDefaultClientApiHelper" class="com.sap.ppengine.client.util.RequestHelperImpl">
 <property name="objectFactory" ref="sapClientApiDtoFactory" />
</bean>

Each bean has a unique ID (here specified in the name attribute). If the bean is to be enhanced using subclassing within your project, the ID of the original
bean must be specified in the parent attribute of your bean. In addition, if the reference to the defined bean is to be injected into another bean, it is not
usually necessary to specify the name/ID; instead, the bean with the corresponding "purpose" should be taken (be it delivered by SAP or created at the
customer side). The "purpose" of a bean is represented by its Spring bean "alias". The majority of SAP beans have an additional alias. References to other
beans usually make use of the bean alias. In the above example, the bean sapDefaultClientApiHelper uses the bean with the alias
sapClientApiDtoFactory. In the standard shipment, this alias is provided by the bean sapDefaultClientApiDtoFactory. If this bean is to be replaced by a
customer-specific bean, this could appear as follows:

Subclassing a bean

<!-- Hide old alias -->
<alias name="myClientApiHelper" alias="sapClientApiHelper" />
<!-- Define new bean subclassing existing one -->
<bean name="myClientApiHelper" parent="sapDefaultClientApiHelper" class="com.mycompany.MyHelper" />

Note that technically it is also possible to completely hide a bean by choosing the same name (and not only the same alias). However, this is not
usually recommended as this approach can lead to inconsistent class hierarchies if the parent attribute is used elsewhere in the bean definition.

PPS Context

The PPS context () offers a global container for arbitrary information that must be accessible at very different places of com.sap.ppengine.core.Context
the application/call stack. The main use case for the PPS context is to store information that does not change for most customer installations during the
time in which a price calculation request is processed. However, it can also be used as temporary global storage. Putting this information into the container
leads to simpler methods with less parameters. Therefore, it is similar to the container offered by the interface, but javax.servlet.ServletContext can also
be used outside of a servlet environment.

The ID and alias of a bean provided by SAP always starts with "sap". The only exceptions are beans with a "magic name" expected by Spring,
such as "cacheManager".

Subclassing SAP beans offers a very flexible way to extend the application logic. However, it cannot be guaranteed that the SAP classes will be
changed in a compatible way . In other words, a method signature may change over time, making the subclass syntactically only over time
incorrect. The probability that an SAP object will be changed in an incompatible way increases from first to last entry in the following list:

Spring bean ID/alias
Java interface (methods may, however, be added)
Signature of public method of a Java class
Signature of protected method of a Java class
Protected attribute of a Java class

When you redefine a Spring bean, SAP recommends the following:

Let your custom class inherit from the SAP class. This makes sure that interface methods added by SAP are implemented.
Define the Spring bean of the SAP class as the parent bean to your replacement Spring bean. This makes sure that additional bean
properties added by SAP are set.
Set the alias of your Spring bean to the alias of the parent (SAP) bean.
If easily possible, reimplement the corresponding interface method(s).
Otherwise (code duplication needed), consider redefining protected methods as well.

.The PPS context is provided by a separate class implementing com.sap.ppengine.core.ContextProvider An implementation of the PPS context
provider () is offered that holds separate contexts for each thread. This allows the easy com.sap.ppengine.core.impl.ThreadLocalContextProviderImpl p

of further PPS context initializers using a dedicated interface . The PPS context is used to store and modify parameters lug-in ContextInitializer
within a request scope, assuming that context parameters are written and read within the same thread.

The following information is usually constant in the standard shipment:

The SAP client (parameter)SAP_CLIENT
The logical system for which external IDs are defined (parameter)SAP_LOGSYS
The configuration of the promotion calculation engine (parameter)SAP_CALCENGINE_CONFIG

In addition, the following parameters are stored in the PPS context:

The business unit type
The requested language if provided

In addition to the parameters mentioned above, it is possible to store further data in the context.

The class contains all the context parameters used in the standard shipment.com.sap.ppengine.core.ContextParameters

For more information, see the documentation for the PPS Module Core in this guide.

PPS Validation

With the PPS validation concept, regular prices and OPP promotions t ihat sent v a IDocs can be validated for consistency.

 As of PPS 4.0, a standardized way to validate data for consistency is supported. This validation contains more checks than the implementation available
until PPS 3.0. For compatibility reasons, the original validation logic until PPS 3.0 remains default and is only replaced by the successor concept available
as of PPS 4.0 if this is explicitly activated.

The PPS validation of objects is based on two concepts:

The PPS plugin concept offering a plugin interface for validation
The Java Bean Validation as defined in JSR-380 (see https://beanvalidation.org/)

The Java Bean Validation is a well established concept and standard for validation of objects. The basic idea is to add annotations to the fields or classes
to be validated defining certain constraints. When calling the validation, these annotations are evaluated and the corresponding constraints are verified.
PPS uses Hibernate Validator as implementation of the API defined in JSR-380. Besides standard constraint annotations, JSR-380 allows the definition of
additional annotations representing application-specific constraints. This is also done for PPS as described below in section . For PPS-Specific Constraints

 more information on JSR-380 and Hibernate validator, see https://hibernate.org/validator/releases/6.0/.

 Bean validation focuses on constraints on single fields or single object instances via annotations which can easily be reused. However, validation may
sometimes be very specific to certain classes with a low reuse so that the overhead to create annotations does not pay off. Also, validation may be

 required across several object instances. This isn't covered by JSR-380 in a straightforward way either. For this purpose, PPS offers a more general
 interface to invoke the validation of an object via the dedicated plugin interface .com.sap.ppengine.api.plugin.Validation This supports the validation of

 single objects as well as list of objects. Besides that, it does not expose the objects package but a Spring replacement to easily enable a javax.validation
 plugin implementation of to signal a constraint validation.com.sap.ppengine.api.plugin.Validation The invocation of the JSR-380 implementation is just

one of several possible plugin implementations wrapped in a PPS-specific class ().BeanValidationWrapper

 By default, a JSR-380 implementation is configured via the file on the Java classpath.validation.xml In an embedded context of the PPS, this may lead to
 issues if there is already such a file on the classpath. More than one files are not supported.validation.xml For this reason, the configuration and

invocation of the JSR-380 implementation is not directly done but using the Spring offered wrapper org.springframework.validation.beanvalidation.
 .LocalValidatorFactoryBean This allows the configuration without . Additionally it exposes an alternative interface to validation.xml , javax.validation.

 to call the validation providing the abstraction that is also desired when calling the PPS plugin interface.Validator

After the validation implementation representing the bean validation wrapper (having order value 0), an additional implementation wiGraphCyclesChecker
th order value 1000 is called. This implementation looks for forbidden cycles in the graphs of eligibilities or merchandise sets in an OPP promotion and
performs further consistency checks.

The following diagram shows how validation is realized in PPS:

Context parameters that are provided by SAP have the prefix . SAP_

Starting with PPS 2.0, context parameters that are taken from the incoming request and do not need defaulting may also be offered as directly
properties accessed using setter and getter methods. As an example, the requested language has been migrated from the parameter SAP_LAN

 to a regular attribute of the context.GUAGE

https://beanvalidation.org/
https://hibernate.org/validator/releases/6.0/

Invoking the validation for an object is then done as follows. For a list of objects it is similar.

Validate a single object

try {
 Class<?>[] validationGroups = (...) // could be empty, depends on the object type
 getPluginAccess().callAllWithFilterChecked(Validation.class, objectToBeValidated.getClass(),
 p -> { p.validateObject(objectToBeValidated, getContext(), validationGroups); });
} catch (final BindException be) {
 // ... do something
}

If you implement the validation interface for your own validation and want to report a constraint violation, you can proceed as follows:

Report a constraint violation

// Report an object level constraint violation
final BindException exc = new BindException(myObjectInstance, myObjectInstance.getClass().getName());
exc.addError(new ObjectError(myObjectInstance.getClass().getName(),
 new String[] { "myObjectErrorCode" }, null, "This object is not as it should be"));
throw exc;

// Report a field level constraint violation
final BindException exc = new BindException(myObjectInstance, myObjectInstance.getClass().getName());
exc.addError(new FieldError(myObjectInstance.getClass().getName(), "myFieldName",
 myObjectInstance.getMyFieldName(), true, new String[] { "myFieldErrorCode"}, null, "This field value is
wrong"));
throw exc;

1.

PPS-Specific Constraints

In addition to the standard constraints defined via JSR-380 and those added by Hibernate validator, the following constraints are offered for the PPS:

: The string representation of the annotated timestamp must match the specified pattern. This is used to Regular expression for timestamps
reject regular prices with sub-daily validities or OPP promotions with sub-second precision effective dates or expiry dates. This constraint is
offered via annotation .com.sap.ppengine.dataaccess.common.validation.TimestampPattern

: The effective date of the annotated class must occur before the expiry date. This constraint is offered via annotation Valid time range com.sap.
.ppengine.core.validation.ValidTimeRange

: If a certain property has the specified value, other properties must not be null and must not have the type-Conditionally mandatory properties
specific initial value. This constraint is offered via annotation .com.sap.ppengine.core.validation.ConditionallySet

: The value of the annotated property must be defined as a constant in the specified class. This constraint is offered via Allowed fixed values
annotation .com.sap.ppengine.core.validation.FixedValue

: The annotated instance must Valid currency with scale com.sap.ppengine.dataaccess.promotion.common.entities.CurrencyWithScale
have a valid content (scale > 0 and currency code filled). This constraints is offered via annotation com.sap.ppengine.dataaccess.common.

. validation.ScaledCurrency

Adjusting Constraint Checks of the Standard Delivery

Constraint checks implemented as regular plugin implementations of can be deactivated via the standard way com.sap.ppengine.api.plugin.Validation
 described in .PPS Module Concept Also, adding additional checks before or after SAP implementations is possible as described in OPP Extensibility.

However, constraints defined via annotations require a different approach. For this purpose, JSR-380 offers the possibility to maintain constraints in an
 additional XML file which can either be merged with the annotation based constraints or replace the annotation based constraints. For more information,

 see https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/#section-mapping-xml-constraints. The following example shows how to
adjust the standard delivery:

Create a custom constraints XML file, for example . For the JPA entity META-INF/myown-constraints.xml com.sap.ppengine.dataaccess.
, we want to add a regular expression pattern for the allowed values of the origin property. In promotion.common.entities.PromotionImpl

addition, for the property only values with pattern shall be allowed, with X being a letter between A and Z and d a logicalSystem XXXCLNTddd
digit (0-9). This pattern shall replace the existing pattern for the logical system.

Additional validation constraints via XML file

<constraint-mappings xmlns="http://xmlns.jcp.org/xml/ns/validation/mapping" xmlns:xsi="http://www.w3.org
/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/validation/mapping http://xmlns.jcp.org/xml/ns
/validation/mapping/validation-mapping-2.0.xsd" version="2.0">
 <bean class="com.sap.ppengine.dataaccess.promotion.common.entities.PromotionImpl" ignore-annotations="
false">
 <!-- Origin. ignore-annotations=false merges XML with annotations. -->
 <field name="origin" ignore-annotations="false">
 <constraint annotation="javax.validation.constraints.Pattern">
 <element name="regexp">^[A-Z]+$</element>
 </constraint>
 </field>
 <!-- External promotion ID. ignore-annotations=true deactivates all annotations for this field! -->
 <field name="logicalSystem" ignore-annotations="true">
 <!-- Define pattern for logical system -->
 <constraint annotation="javax.validation.constraints.Pattern">
 <element name="regexp">^[A-Z]{3}CLNT\d{3}$</element>
 </constraint>
 </field>
 </bean>
</constraint-mappings>

Make this file known to the JSR-380 implementation by setting the configuration property , sap.core.beanvalidationconstraintmappinglocation
either via -D or in :ppe-local.properties

Make sure bean validation is active
sap.core.usebeanvalidation=true
Make own constraints mapping file known to JSR-380 provider
sap.core.beanvalidationconstraintmappinglocation=classpath:META-INF/myown-constraints.xml

Such adjustments are required if you made a custom extension to the standard delivery, such as adjusting field lengths or the list of allowed
values for certain fields (such as eligibility types).

https://wiki.wdf.sap.corp/wiki/display/OPP/PPS+Module+Concept
https://wiki.wdf.sap.corp/wiki/display/OPP/OPP+Extensibility
https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/#section-mapping-xml-constraints

Enabling or Disabling Bean Validation within Eclipselink

Technically, it is also possible to automatically perform a validation of the JSR-380 constraints when writing JPA entities to the database. By default, this
option is not activated in the PPS, since it circumvents the additional checks of plugin . Enabling or disabling this com.sap.ppengine.api.plugin.Validation
option is controlled via the JPA property . If set to (SAP default), no bean validation takes place. Values javax.persistence.validation.mode NONE AUTO
or trigger the execution of the bean validation. Activating it within Eclipselink would call the bean validation twice when uploading IDocs, which CALLBACK
is usually not desired.

Further information

When activating the Bean validation tests, keep the following in mind:

The checks performed by the bean validation are much stricter than the very basic tests of the IDoc inbound processing done until PPS 3.0. This
leads to an increased resource consumption. The upload of IDocs will be slower and more memory will be allocated.
If you made extensions to the data model, e.g. by introducing new eligibility types, the IDocs might no longer be accepted. In this case, you can
deactivate SAP standard constraints and add your own constraints via the custom constraints file as described above.
SAP does not claim that the current checks are complete. If bean validation is active, SAP reserves the right to add further constraint checks to
reveal further issues not covered so far. This will be announced but the additional checks will be active by default if bean validation is turned on.
When running under a security manager, the bean validation requires further configuration. For more information. see https://docs.jboss.org
/hibernate/stable/validator/reference/en-US/html_single/#section-getting-started-security-manager.

PPS Module api

As of SAP Customer Activity Repository 3.0 FP2, this module provides the public API for extensions of the PPS.

Overview

As described in the chapter , the PPS provides stable extension points via Java plugin interfaces to be Extensibility of the PPS Business Logic (Java)
implemented on the customer side. The PPS module api provides these interfaces as well as the registry of all implementations found at runtime. PPS
Java types referenced by the plugin interfaces (except for types from the PPS module dataaccess-interface and client-interface) are contained in this
module as well - some (such as the interface for the PPS context) were moved from other modules into this module as well.

The annotations indicating the degree of stability of a Java object are also located here:

@ExtensionStable - indicates that the annotated type can be extended safely on the customer side
@ConsumerStable- indicates that the annotated type can be called safely on the customer side
@PlannedIncompatibleChange- indicates if an incompatible change is planned for the annotated type; will be used for types annotated with @Ext

 or ensionStable @ConsumerStable

Beans

ID Alias Description

sapDefaultContextEnrichmentPlugin
Registry

sapContextEnrichmentPluginRe
gistry

Plugin registry of the interface ContextEnrichment

sapDefaultRequestAdjustmentPlugin
Registry

sapRequestAdjustmentPluginR
egistry

Plugin registry of the interfaceRequestAdjustment

sapDefaultResponseAdjustmentPlug
inRegistry

sapResponseAdjustmentPlugin
Registry

Plugin registry of the interfaceResponseAdjustment

sapDefaultRequestValidationPlugin
Registry

sapRequestValidationPluginRe
gistry

Plugin registry of the interfaceRequestValidation

sapDefaultQueryAdjustmentPluginR
egistry

sapQueryAdjustmentPluginRegi
stry

Plugin registry of the interfaceQueryAdjustment

sapDefaultCustomEligibilityPluginRe
gistry

sapCustomEligibilityPluginRegi
stry

Plugin registry of the interfaceCustomEligibility

sapDefaultCustomPriceRulePluginR
egistry

sapCustomPriceRulePluginReg
istry

Plugin registry of the interfaceCustomPriceRule

sapDefaultPromotionServiceInitializa
tionPluginRegistry

sapPromotionServiceInitializatio
nPluginRegistry

Plugin registry of the interfacePromotionServiceInitialization

sapDefaultFeatureCheckPluginRegi
stry

sapFeatureCheckPluginRegistry Plugin registry of the interfaceFeatureCheck

https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/#section-getting-started-security-manager
https://docs.jboss.org/hibernate/stable/validator/reference/en-US/html_single/#section-getting-started-security-manager
https://wiki.wdf.sap.corp/wiki/pages/viewpage.action?pageId=1905706698
mailto:E@ExtensionStable
mailto:E@ExtensionStable
mailto:E@ExtensionStable
mailto:E@ExtensionStable
mailto:E@ExtensionStable
mailto:E@ExtensionStable

sapDefaultIDocInboundProcessingPl
uginRegistry

sapIDocInboundProcessingPlu
ginRegistry

Plugin registry of the IdocInboundProcessing interface

sapDefaultPluginAccess sapPluginAccess Provides access to the PPS plugin interfaces via the corresponding plugin
registries; PCE plugins are not accessible

sapDefaultNonUniqueBasePriceHan
dlingPluginRegistry

sapNonUniqueBasePriceHandli
ngPluginRegistry

Plugin registry of the interfaceNonUniqueBasePriceHandling

sapDefaultValidationPluginRegistry sapValidationPluginRegistry Plugin registry of the interface. Validation Available as of PPS 4.0.

Required Beans

This list contains only the additional beans to be provided if all dependencies of this module are resolved.

ID/Alias Comment

Configuration Properties

Name Description Default
Value

Comment

sap.client-impl.
nonUniqueBas
ePriceHandling
.strategy

This property refers to the interface. It enables you to switch the activated strategy NonUniqueBasePriceHandling
based on the implemented interface method. By implementing these methods, you can implement a specific logic for
processing non-unique regular prices. This Plugin is always called if a non-unique regular price is found. In this way, a
specific logic can be implemented to process this situation.

SAP00 see SAP
Note
2627591

Dependencies

This module depends on the following PPS modules:

dataaccess-interface
client-interface

PPS Module client-interface

This module provides the API of the PPS exposed to its clients. It contains the data transfer objects (DTOs) and the interface to trigger a price calculation.

Overview

This module is the outermost facade of the PPS. A client requesting a price calculation must be aware of the artifacts contained in this module. It does not
contain any logic besides simple helpers to facilitate the creation of a price calculation request and evaluation of the corresponding response. If you want
to call a central PPS, place at least this JAR onto the classpath of your client application.

For more information about the OPP client API, see the documentation on SAP Help Portal at https://help.sap.com/viewer/p/CARAB > > <Version> Develop
 > .ment Client API for Omnichannel Promotion Pricing

Extensibility via Elementsany

As also described in the client API documentation, the request structure for the price calculation as well as the response structure offer extension points via
 elements having no fixed structure. These allow arbitrary additional information to be transferred between the PPS and its client. To ensure that these any
 elements can be used in the same way for local and central deployments of the PPS, the way in which extension information is stored must be clearly any

defined.

The internal storage of an any element is a List<Object> (the only exception is the any element in LineItemChoiceDomainSpecific.java where it is only a
simple object (Object)), as can be seen in the DTO for the ARTSHeader:

The DTOs of the client interface are generated and use subclasses. SAP does not guarantee that the class hierarchy will remain stable over
time. Therefore, we strongly recommended that you do create subclasses of these DTOs on the customer side in case additional not
information is transported. Instead, use the predefined extension points via elements realized as a List<Object>.any

The internal storage documented here is determined by the use of FasterXML Jackson. It uses the same XML (where elements are any
effectively unwrapped lists) and JSON-based messages (where elements are expected to be arrays) and should therefore also be used for any
local deployments where Jackson is not used.

https://help.sap.com/viewer/p/CARAB

1.
2.
3.

a.
b.

c.

any-element in the ARTS Header DTO

public class ARTSCommonHeaderType {
 // ...
 @XmlAnyElement(lax = true)
 protected List<Object> any;
 // ...
}

What is the internal representation of the any elements and their content?

Each any element in an XML message or entry in the corresponding array of a JSON message corresponds to one entry in the .List<Object>
Each entry in the List, in other words the content of the any elements, is always a .Map<String,Object>
The value part of the Map entry can have the following types:

If the value corresponds to an elementary element in the XML/JSON message, this is a .String
If the value corresponds to a structured element in the XML/JSON message, this is a . The data definition of the Map<String,Object>
value part is recursively defined applying rule 3.
If the value corresponds to an XML list/JSON array, this is a . The element type of the list is recursively defined applying List<Object>
rule 3.

This is illustrated in the following example. The following is an excerpt of a request, showing only the ARTS header:

ARTS Header with any-elements - XML

<PriceCalculate xmlns="http://www.sap.com/IXRetail/namespace/" InternalMajorVersion="1" InternalMinorVersion="0"
>
<ARTSHeader ActionCode="Calculate" MessageType="Request">
 <MessageID>9a89f2edfd1e413ea147e334b9c2ed4b</MessageID>
 <DateTime>2250-01-13T04:48:30.427-05:00</DateTime>
 <BusinessUnit TypeCode="RetailStore">FC01</BusinessUnit>
 <any>Hello</any>
 <any>
 <foo>bar</foo>
 </any>
 <any>
 <baz>17</baz>
 <ext1>true</ext1>
 </any>
 <any>
 <top>
 <field1>value1</field1>
 <myNode>
 <field2>value2</field2>
 </myNode>
 </top>
 </any>
 <any>
 <ele>one</ele>
 <ele>two</ele>
 <ele>
 <a>b
 </ele>
 </any>
</ARTSHeader>

This is equivalent to the following JSON format:

ARTS Header with any-elements - JSON

{
 "ARTSHeader":
 {
 "MessageID":
 {
 "value":"9a89f2edfd1e413ea147e334b9c2ed4b"
 },
 "DateTime":
 [{
 "value":"2250-01-13T04:48:30.427-05:00"
 }],
 "BusinessUnit":
 [{
 "value":"FC01",
 "TypeCode":"RetailStore"
 }],
 "ActionCode":"Calculate",
 "MessageType":"Request",
 "any":[
 "Hello",
 { "foo":"bar"},
 {"baz":"17", "ext1" : "true"},
 {"top": {
 "field1":"value1",
 "mynode": { "field2":"value2"}}},
 {"ele" : ["one","two",{"a" : "b"}]}
]
 },

This leads to the following internal representation:

The attribute of the DTO is a list of length 5.any ARTSCommonHeaderType
List entry 0 is "Hello"
List entry 1 is a Map with size 1.

This contains the entry
"foo" = "bar"

List entry 2 is a Map with size 2.
This contains the entries

"baz" = "17"
"ext1" = "true"

List entry 3 is a Map with size 1.
This contains the entry

"top" = <A Map with size 2>.
This contains the entries

"field1" = "value1"
"myNode" = <A Map with size 1>

This contains the entry
"field2" = "value2"

List entry 4 is a Map with size 1.
This contains the entry

"ele" = <A List with size 3>
This contains the entries

"one"
"two"
<A Map with size 1>

This contains the entry
"a" = "b"

If you extend the PPS, you can base your coding on these rules when you process incoming requests. If you want to enhance the response to the client,
you have to fill the attributes of the DTOs accordingly. Vice versa, if you extend a client of the PPS, you have to fill the DTOs of the request sent to any
the PPS accordingly but you can rely on these rules when you process the response.

XSD and Currencies

The client interface module also contains the XSD (XML Schema Description) which is the base for the generated DTOs (Data Transfer Objects).

Beans

ID Alias Description

sapDefaultClientApiDtoFactory sapClientApiDtoFactory Factory for creating the DTOs of the client API

sapDefaultClientApiHelper sapClientApiHelper Helper class to create a request skeleton, and so on

Configuration Properties

None

Dependencies

None

PPS Module core

This module provides basic functions that are used in the PPS.

Overview

The core module offers the following functions:

PPS application context supporting PPS modules
PPS context
Debug/profiling support

As described in , the PPS offers a lightweight module concept based on Spring application contexts that support Promotion Pricing Service Overview
modification-free extensibility. The classes enabling modularization via a PPS-specific application context are located here.

PPS Application Context

The following figure shows the most important classes that contribute to the PPS application contexts and how they interact:

Until PPS 4.0, the currencies of the request and response must match a fixed list of values defined in the XSD
(enumeration CurrencyTypeCodeEnumeration). This list does not correspond to ISO currency codes. If there are XSD validations implemented
as customer extensions, a mismatch can cause issues and the calculation requests and responses might be rejected.

As of PPS 4.0, the XSD currencies of the price calculation requests and responses can have any value, either the values defined in the list or a
string containing e.g. ISO currency codes.

https://wiki.wdf.sap.corp/wiki/display/OPP/Promotion+Pricing+Service+Overview

ModuleEnabledXmlApplicationContext is the central class. This is a special Spring that supports a distributed AbstractXmlApplicationContext
definition of Spring beans in separate files without a central file that explicitly includes the other resource files. Each file corresponds to a PPS module that
has its metadata (name, dependencies to other modules) defined in a separate metadata file. By evaluating the defined dependencies, you can also
control the order in which these beans are added to the Spring application context. The order in which Spring beans are added to an application context
defines the beans that replace formerly added beans, allowing modification-free extensibility. The Spring application context that is represented by this
class is also called the main PPS application context.

ModuleLoaderHelper locates the Spring bean definitions and module metadata, evaluates module dependencies, sorts the Spring bean definitions and
modules according to their dependencies, and adds the Spring beans according to this sort sequence to the Spring application context. This class scans

 the classpath for the following file pairs located in the same directory :

Spring bean definitions as an XML file following the resource pattern classpath*:META-INF/**/*-ppe-module-spring.xml
Module metadata definitions as an XML file following the resource pattern classpath*:META-INF/**/*-ppe-module-metadata.xml

The following two options are available for the creation of the main PPS application context:

Using the class . This class does the following:ApplicationContextProviderImpl
It offers a method that allows each caller to access the main PPS application context. To do so, it calls internally the getContext()
constructor of the . ModuleEnabledXmlApplicationContext
This option is sufficient if no external initialization of the main PPS application is required because, for example, all required Spring
configuration properties are set.
It internally holds a reference to this application context once the main PPS application context has been created. In this way,
subsequent calls of the method are very fast and the same application context is returned. There may be only one instance getContext()
of a main PPS application context per classloader.

Using the class , it is easier to control the creation of the . This ApplicationContextCreatingBeanImpl ModuleEnabledXmlApplicationContext
class implements the Spring interface . If this class is defined as a Spring bean, the method is called InitializingBean afterPropertiesSet()
automatically by the Spring framework during the implementation of this interface. The following happens within this method:

The main PPS application context is created.
All injected Spring implementations are executed before the application context is refreshed. ApplicationContextInitializer These

 In particular, it is easy to set Spring configuration properties initializers allow further initialization of the main PPS application context.
during runtime via the class . This is helpful if, for example, you are running the PPS as a local deployment PropertySourceAdderImpl
within a hosting application.
Finally, the main PPS application context is refreshed and registered in the class , which makes it ApplicationContextProviderImpl
available in the application.

The main PPS application context is well suited if an application wants to call the PPS internally. Therefore, the logic to execute the price and promotion
calculation should be located within this application context. However, it is not possible to have only this application context for the following reasons:

Exposing servlets, such as the IDoc inbound, requires a web application. Spring requires a web application context as the root application context
of a web application.
The PPS relies on several open-source libraries. If these libraries are on the same classpath as a hosting application, this may lead to side
effects. For example, if you use Jackson XML processes and the corresponding library is on the classpath, Spring automatically gives Jackson
preference over the Jaxb2-based XML processes for the commonly used . Since Jaxb2 and Jackson are not 100% compatible with RestTemplate
each other, this may lead to issues.

Therefore, a that extends is offered in addition to the ModuleEnabledWebApplicationContext XmlWebApplicationContext ModuleEnabledXmlApplica
. This class does the following:tionContext

After creation this automatically tries to make itself the child of an existing using the class , context ModuleEnabledXmlApplicationContext Appl
. Therefore, all PPS modules located in the main PPS application context are available in the Web application icationContextProviderImpl

context.
It scans the classpath of the corresponding Web application for PPS modules using the . Modules that are not yet available ModuleLoaderHelper
in the main PPS application context will be added to the Web application context. Since the classpath of a Web application may be larger than the
classpath of the main PPS application context, the issues mentioned above (first bullet point) are avoided.

The Web application context needed for a Spring-based Web application must be loaded by a that is registered in the web.xml of ServletContextListener
the corresponding Web application. The implementation that creates the is the class ModuleEnabledWebApplicationContext PPSWebAppContextLoad

. Once the servlet context is initialized, it automatically creates the PPS Web application context and stores in it the servlet context attribute erListener SAP
._PPS_WEBAPPCONTEXT

Make the name of the servlet context attribute known to the following Spring :DispatcherServlet

A module located in the Web application context cannot be dependent only on a module located in the main PPS application context.

<web-app xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <display-name>Price and Promotion Engine WebApp (central)</display-name>
 <!-- One dispatcher servlet for price calculation requests as well as iDoc
 inbound processing -->
 <servlet>
 <servlet-name>Dispatcher</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <init-param>
 <!-- Name of the servlet context attribute holding the PPS web app context -->
 <param-name>contextAttribute</param-name>
 <param-value>SAP_PPS_WEBAPPCONTEXT</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Dispatcher</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
 <!-- Create & initialize PPS web app context on startup -->
 <listener>
 <listener-class>com.sap.ppengine.core.spring.impl.PPSWebAppContextLoaderListener</listener-
class>
 </listener>
</web-app>

The class is offered as a convenience class and possible root class for applications that access to the main PPS application PPSContextAware need
context. Regardless of how the subclass has been created (either explicitly or by a runtime container, such as another Spring application context), it offers
internal access to the main PPS application context.

PPS Context

The PPS context (that is more related to a Spring servlet context than to a Spring application context) serves as a container that can be used to store data
during request processing. This container . Typically, these values should be constant. However, it is also can be seen by all parts of the application
possible to modify parameters that are stored in this context. For example, the requested language is information provided by the price calculation request.
This information is not known by the promotion calculation engine. However, it is relevant for the underlying data access layer. This information can be
extracted from the price calculation request using the PPS context and can be used later when reading promotional data.

The PPS context also allows (and requires) an initialization at the beginning of request processing. This resets all of its values to a defined initial state.

The following figure shows the main components of PPS context handling:

The is the container that holds the information on which the application works. It is implemented by the class , which does not Context ContextImpl
contain additional logic besides the pure storage of data. To access the , the application requests it from a that is offered as a Context ContextProvider
Spring bean. This Spring bean can be injected into the corresponding application bean. As of now, there is only one implementation of the ContextProvider
, the . This stores the in a variable. Therefore, this implementation relies on the assumption that ThreadLocalContextProviderImpl Context ThreadLocal
the processing of one request is realized by one Thread (which may be reused later on).

The initialization of the by the is delegated to a list of instances. These are not injected into the Context ContextProvider ContextInitializer ContextProvi
. Instead, the searches in the current Spring application context for all Spring beans that implement the interface. der ContextProvider ContextInitializer

This interface extends the Spring interface and therefore allows you to control the order in which the are processed. The Ordered ContextInitializers
following two implementations of are offered that share common attributes and logic in the abstract ContextInitializer AbstractContextInitializerImpl
class:

The class writes all the entries of the (that can be injected to this class) into the PPS .ByImmutableValuesContextInitializerImpl Map Context

The following excerpt shows how a Spring bean that uses this class could look:

 <!-- Data access relevant initialization parameters of PPS context -->
 <alias name="sapDefaultDbContextInitializer" alias="sapDbContextInitializer" />
 <bean id="sapDefaultDbContextInitializer" class="com.sap.ppengine.core.impl.
ByImmutableValuesContextInitializerImpl">
 <property name="initValues">
 <map>
 <entry key="SAP_CLIENT" value="${sap.dataaccess-common.db.client}" />
 <entry key="SAP_LOGSYS" value="${sap.dataaccess-common.logSys}" />
 <entry key="SAP_BUTYPE" value="${sap.dataaccess-common.defaultBuType}" />
 </map>
 </property>
 </bean>

The class ByBeanNameContextInitializerImpl writes the reference to a bean into the PPS context. This bean is specified by its bean name. This
class should be used if the class of the references instance is not immutable, for example, a that might have been changed in previous Map
request processing. As shown in the following example, changes can be undone using prototype scoped beans:

 <!-- Calc engine relevant initialization parameters of PPS context -->
 <alias name="sapDefaultCalcEngineContextInitializer" alias="sapCalcEngineContextInitializer" />
 <bean id="sapDefaultCalcEngineContextInitializer"
 class="com.sap.ppengine.core.impl.ByBeanNameContextInitializerImpl">
 <property name="paramName" value="SAP_CALCENGINE_CONFIG"></property>
 <property name="beanName" value="sapCalcEngineConfigCopy" />
 </bean>
 <!-- Prototype scoped bean! -->
 <alias name="sapDefaultCalcEngineConfigCopy" alias="sapCalcEngineConfigCopy" />
 <bean id="sapDefaultCalcEngineConfigCopy" factory-method="toProperties"
 scope="prototype" class="org.apache.commons.collections.MapUtils">
 <constructor-arg>
 <ref bean="sapCalcEngineConfig" />
 </constructor-arg>
 </bean>

Bean Validation

As of with PPS 4.0, a validation of objects based on Bean Validation (JSR-380) is supported. The required beans are defined in this PPS module in order
to have the validation available in all PPS modules containing business logic.

For more information about this validation concept, see chapter PPS Validation.

Beans

ID Alias Description

sapDefaultTim
eResolutionRe
ducer

sapTimeRe
solutionRed
ucer

Reduces the resolution of a . With this implementation, the resolution is reduced to a day-level. This is time stamps
only used when regular prices are read. Adjust this bean if another resolution of regular price or OPP promotion
validities is required.

This class should be used if the values of the map entries are immutable, for example , , and so on.only String Integer

sapDefaultStri
ngifier

sapStringifier Helps to create a string representation of a Java class if it does not offer a suitable toString() method. Used for
creating debug messages, and so on.

sapDefaultTim
erFactory

sapTimerFa
ctory

Factory to create a timer to measure the duration of a price calculation. If the configuration parameter sap.core.
 is set to true, a timer is created that stores measurements in a container. Otherwise, a requesttimer ThreadLocal

dummy implementation that records no measurements is created.

sapDefaultThr
eadLocalTimer

sapThreadL
ocalTimer

Timer created by the . sapTimerFactory

sapDefaultCon
textProvider

sapContext
Provider

Bean that offers a PPS . The bean is implemented by default by a .Context ThreadLocalContextProviderImpl

sapDefaultEliC
acheKeyGener
ator

sapEliCach
eKeyGener
ator

Key generator used by Spring Cache abstraction. Intended for the eligibility references except for those referring to Me
. Moved from the dataccess-common PPS module into this module as of PPS 3.0.rchandiseSet Eligibilities

sapDefaultMer
chSetEliCache
KeyGenerator

sapMerchS
etEliCacheK
eyGenerator

Key generator used by Spring Cache abstraction. Intended for the eligibility references to MerchandiseSet
. Available as of PPS 3.0.Eligibilities

sapDefaultPric
eCacheKeyGe
nerator

sapPriceCa
cheKeyGen
erator

Key generator used by Spring Cache abstraction. Intended for the regular prices. Moved from the dataccess-common
PPS module into this module as of PPS 3.0.

sapDefaultSyst
emProperties

sapSystem
Properties

Java system properties exposed as a Spring bean. Available as of PPS 3.0.

sapDefaultPPS
Properties

sapPPSPro
perties

Content of the merged with Java system properties as a Spring bean. System properties have ppe-local.properties
precedence over the content of the file entries. Available as of PPS 3.0.ppe-local.properties

sapDefaultBea
nValidator

sapBeanVal
idator

Available as of PPS 4.0.
Spring framework wrapper around the JSR-380 implementation. This allows validation.xml-less configuration via
Spring configuration properties. For more information, see , sap.core.beanvalidationproviderclass sap.core.

 and bean .beanvalidationconstraintmappinglocation sapBeanValidationProperties
This bean should only be referenced if only bean validation must be done. If this is not the case, it is recommended to
call the plugin com.sap.ppengine.api.plugin.Validation.

sapDefaultBea
nValidationPro
perties

sapBeanVal
idationProp
erties

Available as of PPS 4.0.
Bean holding properties to control the bean validation implementation. The properties are expected as .properties file
specified via Spring configuration property .sap.core.beanvalidationpropertieslocation

sapDefaultBea
nValidatorWra
pper

sapBeanVal
idatorWrapp
er

.Available as of PPS 4.0
Thin wrapper calling bean , implementing . This sapBeanValidator com.sap.ppengine.api.plugin.Validation
evaluates the Spring configuration property .sap.core.usebeanvalidation

Configuration Properties

Name Description Default
Value

Comment

sap.core.
ppsconfigl
ocation

Location of the PPS configuration file in Spring resource syntax classpath:
/ppe-local.
properties

Since this property specifies the name of the configuration
file, it cannot be specified in the configuration file itself. It
must be set externally, for example, via a Java
environment variable.

sap.core.
requesttim
er

Switch to activate the request timer false The request timer can be used to measure how long the
processing of a price calculation request takes, broken
down to certain parts of the process. Note that only server-
side processing time without marshaling/unmarshaling is
considered.

sap.core.
jperftimer

Switch to activate jperf timer instead of default request timer false Available as of PPS 4.0.

If activated in combination with , the sap.core.requesttimer
default request timer is exchanged with the jperf timer
which produces log file entries in the format used by JPerf.
For more information, see the JPerf documentation under ht

.tps://github.com/sovaa/jperf

sap.core.
usebeanv
alidation

Evaluate the standard and SAP-specific JSR-380 annotations for the JPA
entities during validation.This configuration property only controls the execution
of the corresponding plugin implementation for plugin interface com.sap.

. Other implementations of this interface are ppengine.api.plugin.Validation
not afffected by this property.

false Available as of PPS version 4.0.

https://github.com/sovaa/jperf
https://github.com/sovaa/jperf

sap.core.
beanvalid
ationprovi
derclass

Class representing the JSR-380 implementation to be used for bean validation. org.
hibernate.
validator.
Hibernate
Validator

Available as of PPS 4.0.

sap.core.
beanvalid
ationprop
ertieslocat
ion

Location of the properties controlling the chosen JSR-380 implementation. classpath:
META-INF
/empty.
properties

Available as of PPS 4.0.

sap.core.
beanvalid
ationconst
raintmappi
nglocation

Location of the XML file holding additional validation constraints on customer
side. This can be used to add further constraints or deactivate constraints
defined in the standard delivery.

classpath:
META-INF
/empty-
constraints
.xml

Available as of PPS 4.0.

Dependencies

This module depends on the following modules:

api (starting with PPS 3.0)

PPS Module dataaccess-interface

This module provides the abstraction layer for the read-only persistence services and the data retrieved by them.

Overview

The main purpose of this module is to shield the implementation details of the data access to other modules. It only offers interfaces and classes
containing constants. Together with the module client-interface it offers the touch points between the promotion calculation engine and the rest of the PPS.

The following figure shows the most important objects in this module. The interface offers a generic field extension to the promotion-related AbstractEntity
entities. For more information about the entities and services, see the Javadocs.

It is not recommended to change this
configuration property.

There is no classpath: prefix.

Beans

None

Configuration Properties

None

Dependencies

Although they are logically part of the key, the SAP client and the logical system are not part of the exposed entities. They are provided via the
PPS context.

None

PPS Module jackson

This module provides a uniform configuration for a server and possible clients for the JSON- and XML-based message exchange.

Overview

The PPS uses Jackson for the conversion between request/response payload and its internal representation as Java classes. It is recommended that the
PPS client does the same. In addition, to enable a smooth integration between the PPS and its possible clients, it is necessary to have the same data
format, even using Jackson on both sides. This means that the conversion of the corresponding converters is the same on the server and client side. This
includes the following aspects:

Consideration of JAXB annotations in the Java classes for the DTOs
Date format (yyyy-MM-dd'T'HH:mm:ss.SSS)
(No) pretty printing
Handling of empty and null value fields (to be ignored)
Setting the time zone (to the corresponding default time zone). This is important because otherwise Jackson assumes that UTC is the time zone
of the request, which usually differs from the JVM time zone. Since the date and time of the price calculation request calls is assumed to be in the
local time zone of the PPS client and the price and promotion information is also stored in this schema, for example, without time zones, it is not
necessary to convert the date and time. This is achieved by the following:

Setting the converter time zone to the JVM time zone (no automatic Jackson internal conversion)
Not expecting time zone information, at least for the price validity dates in the payload

Configuring Jackson (Client Side)

Jackson is configured by declaring Spring beans. This is relevant on the server side as well as on the client side. Although technically not required, we
recommend that you place this module (more precisely, the JAR containing this module) on the classpath of the PPS clients to allow for easy reuse. If this
is the case, the configuration may look as follows (assuming the PPS client uses Spring as well):

JSON configuration on PPS client side

 <alias name="myDefaultJacksonJsonConverter" alias="myJacksonJsonConverter" />
 <bean id="myDefaultJacksonJsonConverter" factory-bean="myJacksonJsonConverterBuilder"
 factory-method="build" />
 <alias name="myDefaultJacksonJsonConverterBuilder" alias="myJacksonJsonConverterBuilder" />
 <bean id="myDefaultJacksonJsonConverterBuilder" class="com.sap.ppengine.jackson.
JacksonJsonConverterBuilder" />

The resulting bean implements and can be easily used in, for example, a Spring assuming HttpMessageConverter RestTemplate (myJacksonJson
 has been injected as a dependency):Converter

 protected RestTemplate getRestTemplate()
 {
 final HttpMessageConverter<?> converter = getHttpMessageConverter();
 RestTemplate restTemplate = new RestTemplate(Collections.<HttpMessageConverter<?>> singletonList
(converter));
 return restTemplate;
 }

Request Logging

For debugging purposes, it is helpful to trace the incoming requests with their payload on the server side. This is enabled using the class RequestToSlf4
. The requests are traced if its log level is set to TRACE. This class must be registered as a filter in :JLoggger web.xml

Although the configuration-relevant classes of the JSON- and XML-based message exchange are located here, the configuration itself does not
take place. This must be done explicitly in addition.

Although this module declares a Maven dependency to jackson-dataformat-xml, this dependency is not required if only the data format JSON is
used.

Registering the request logger in web.xml

 <!-- Filter to enable logging of ingoing requests via SLF4J - log level
 of filter class must be set to TRACE to become effective -->
 <filter>
 <filter-name>sapRequestLogger</filter-name>
 <filter-class>com.sap.ppengine.web.filter.RequestToSlf4JLogger</filter-class>
 <init-param>
 <param-name>maxPayloadLength</param-name>
 <param-value>10000</param-value>
 </init-param>
 <init-param>
 <param-name>includePayload</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>includeQueryString</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>beforeMessagePrefix</param-name>
 <param-value>REQUEST BEFORE PROCESSING---></param-value>
 </init-param>
 <init-param>
 <param-name>afterMessagePrefix</param-name>
 <param-value>REQUEST AFTER PROCESSING---></param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>sapRequestLogger</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

Beans

ID Alias Description

Configuration Properties

None

Dependencies

None

PPS Module restapi

This module exposes the price calculation as a RESTful service.

Overview

The price calculation is exposed as a RESTful service. Both XML as well as JSON format is supported. In both cases, the JAXB annotations of the client
API DTOs are considered. The conversion between JSON/XML and the Java DTOs is done using FasterXML Jackson. The REST service is exposed
using the relative path It is realized using Spring MVC. The restapi is only a thin wrapper around the actual calculation logic. It delegates the /restapi.
calculation call to the corresponding PricingPromotionService instance and receives the response from it.

If exceptions are thrown during the processing of a price calculation request, these are not propagated back to the sender of the request. Instead they are
recorded in the application log for security reasons.

The following HTTP response codes are possible:

200 (OK): This is returned if the price and promotion calculation was successful.
400 (Bad Request): This is returned if the request validation detected an error.

401 (Unauthorized): Authentication data is missing or incorrect.
403 (Forbidden): The authorization required to perform the calculation is missing for the authenticated user.
500 (Internal Server Error): This is returned if an unexpected error occurs.

Known Issues

FasterXML Jackson is used for mapping between the JSON/XML format used by external clients and the internal representation as Java classes. As of
now, this library has the following known issues:

Under some circumstances, attributes marked as optional are treated as mandatory. This is particularly true for the BusinessUnitTypeCode.
: Always specify the BusinessUnitTypeCode in the request.Workaround

The elements of unwrapped lists with an XML payload must be co-located within the corresponding parent node, in other words no other element
may be in between. For example, the following payload leads to the mapping of only part of the elements:

Illegal unwrapped list

<LineItem>
 <MerchandiseHierarchy ID="ID1" >hier1</MerchandiseHierarchy>
 <SequenceNumber>0</SequenceNumber>
 <MerchandiseHierarchy ID="ID2" >hier2</MerchandiseHierarchy>
</LineItem>

Workaround: Create the request accordingly.

Beans

ID Alias Description

sapDefaultPriceCa
lculateController

sapPriceCalcul
ateController

Spring MVC controller that accepts the price calculation requests via HTTP POST

sapDefaultJackson
JsonConverterBuil
der

sapJacksonJso
nConverterBuil
der

Factory bean: Builder for the that takes care of org.springframework.http.converter.HttpMessageConverter
the conversion between the message/request body in JSON format and the internal representation as Java
classes

sapDefaultJackson
JsonConverter

sapJacksonJso
nConverter

HttpMessageConverter built by sapJacksonJsonConverterBuilder

sapDefaultJackson
XmlConverterBuild
er

sapJacksonXm
lConverterBuild
er

HTTPMessageConverter built using the bean sapJacksonXmlConverter

sapDefaultJackson
XmlConverter

sapJacksonXm
lConverter

Factory for that uses Jackson to convert from and to XML messages using a well-HTTPMessageConverter
defined configuration; JAXB annotations are considered

Configuration Properties

None

Dependencies

This module depends on the following modules:

client-impl
jackson

PPS Module client-impl

This module provides the implementation of the client API for calculating sales prices and promotions.

Overview

The PPS calculates a shopping cart as follows:

Codes 401 and 403 are relevant if the REST service is secured by authorization checks. These are not part of this PPS module.only

1.

2.

It determines the regular prices.
This step is optional since the regular prices can also be provided by the client.
It applies the relevant promotions based on the regular prices.

The first step is performed in this module. The regular prices are determined for all the items in the shopping cart for which prices have not been provided
by the consumer of the service. Before this is done, the price calculation request is validated. This price validation checks if all the fields needed for the
look-up of regular prices are filled.

The promotion calculation itself is delegated to a delegate that is referenced as another Spring bean.

The following figure shows the most important components of the module. Note that the class is not client-impl DummyPricingPromotionServiceImpl
used productively, it is just used as a stub if the promotion calculation engine is not available in a test environment.

Request Validation

This section describes the request validation in the layer. There are also other validations inside the promotion calculation engine. For a client-impl
complete list of the possible error codes, The request see the documentation for the OPP client API for your local or central promotion pricing service.
validation on the layer fails in at least one of the following cases:client-impl

InternalMajorVersion is missing in the request
Invalid InternalMajorVersion and/or InternalMinorVersion
There is no in the calculation requestARTSHeader
Unsupported in actionCode ARTSHeader
Unsupported messageType in ARTSHeader
The and fields are together in the calculation request (for PPS requests as ofRequestedLanguage RequestedMultiLanguage client API version
2.0)
Wrong number of element in the calculation request (only one supported)PriceCalculateBody
DateTime is missing in PriceCalculateBody
Invalid BusinessUnit
BusinessUnit is longer than 60 characters (for PPS requests as of client API version 2.0)
Invalid number of in the calculation request (only one supported)BusinessUnits
There is no t in the calculation requestShoppingBaske
Invalid number of quantity elements in the calculation request (only one per line item supported)

There is no in the calculation requestLineItem
The number of line items exceeds the defined threshold
Invalid ItemID
ItemID is longer than 60 characters (for PPS requests as of client API version 2.0)
Invalid number of in the calculation request (only one per line item supported)ItemIDs
Invalid UnitOfMeasure
RegularSalesUnitPrice is missing although is set to FixedPriceFlag true
Invalid number of regular prices retrieved for a LineItem
More than two different merchandise group hierarchy identifier qualifiers for a request (depends if merchandise sets are enabled)

Once an error is detected, t errors are not collected. In the case of a validation error, the response code is set to . In he validation stops and REJECTED
addition, the of the response is filled with a element that describes the error using an SAP error code. Documentation forARTSHeader BusinessError the
SAP error codes can be found in the Javadoc for the class com.sap.ppengine.client.impl.PriceCalculateConstants.

If all validations are successful and the regular prices (if needed) have been read, the request is forwarded to the promotion calculation engine for further
processing (applies the relevant promotions).

Single vs Bulk Access for Regular Prices

A main task of this module is to determine the regular prices of items if they have not yet been provided by the consumer of the service. This is done using
the of the module. , prices that have been BasePriceService dataaccess-interface To achieve the best performance and ensure consistent results
determined for the corresponding shopping cart in former price calculation requests should be remembered on the client side and sent as part of the next
request (with set). As a result, a regular price should not have been determined yet for only a very limited number of items (ideally only fixedPriceFlag
one). The price for the remaining item can be determined by a single price look-up that is cached in the data access layer. However, this is not

 Therefore, it is also possible that the regular price has to be determined for several automatically ensured but determined by the consumer of the PPS.
items (in some cases all items). In this case, a single look-up for each article is not feasible if the corresponding prices are not within the cache.

Therefore, the following strategy is applied:

If the number of regular prices to be determined is below a fixed threshold, a single access is done for each price, considering application built-in
caches.

 If the number of regular prices to be determined is greater than or equal to the set threshold, one bulk access is performed. With PPS 1.0, this
 access bypassed the cache for regular prices. As of PPS 2.0, this access also considers and updates prices that are not provided by the client but

are already in the cache.

The threshold for the number of items without provided prices can be specified using configuration property sap.client-impl.
.basepricebulkaccessitemthreshold

Handling of Business Unit Type

The business unit type is externally provided information within the . Its handling differs from the business unit ID. This is due to a difference ARTSHeader
in the data model of the promotion calculation engine and the corresponding data model of a DDF location:

In the case of the DDF location, the location has an external compound key consisting of the location ID and the location type code.
In the case of the ARTS data model, the business unit type is a simple attribute of the business unit. Therefore, the business unit type is not
considered within the promotion calculation engine. The engine does not supply the information about the business unit type when it requests
data from the data access layer.

To provide the business unit type to the data access layer, which needs it to access the database tables, this information is stored for the corresponding
price calculation request within the PPS context as the parameter . This is done within the module.SAP_BUTYPE client-impl

Beans

ID Alias Description

sapDefaultCalculateR
equestValidator

sapCalculateRequest
Validator

Validator for a price calculation request

For more information, see Request Validation.

sapDefaultBasePrice
Reader

sapBasePriceReader Reader for regular prices

sapDefaultPricingPro
motionService

sapPricingPromotionS
ervice

 The main entry point of the PPS on Java level. This delegates the work internally to the validation,
the reading of regular prices, and the calculation of promotions.

sapDummyPricingPro
motionService

sapDelegatePricingPr
omotionService

Dummy implementation for the promotion calculation. The bean with this alias is to be replaced by
the "real" implementation, as described in .PPS Module calcengine-gk

sapCalculateRequest
Validation

sapDefaultCalculateR
equestValidation

Plugin implementation performing the actual request validation. Available as of PPS 3.0.

Due to the restrictions of the existing interface, the set of prices may be larger than needed.

sapAddBasePricesTo
Request

sapDefaultAddBasePr
icesToRequest

Plugin implementation adding the regular price to the calculation request. Available as of PPS 3.0.

Required Beans

This list contains only those additional beans to be provided if all the dependencies of this module are resolved.

ID/Alias Comment

sapBasePriceService Reads the regular prices

sapPromotionService Reads the promotions

sapTransactionManager Manages the (read) transactions

(sapDelegatePricingPromotionService) Does the real promotion calculation; by default a stub is used doing nothing

Configuration Properties

Name Description Default
Value

Comment

sap.client-impl.
basepricebulkaccessi
temthreshold

Minimum number of line items without prices
leading to a bulk access instead of single
read accesses

10 A bulk access to prices is done if the number of items without prices provided by
the client is greater than or equal to this threshold. Setting this property to 0 will
always lead to a bulk access.

sap.client-impl.
maxnumberoflineitems

Maximum number of line items that may be
within a price calculation request

200 Set to 0 if you do not want to set a threshold.

sap.client-impl.

maxcalculationretries
Maximum number of price calculation retries 10 A price calculation retry takes place when invalid cache entries are detected. In

this case, the invalid entries are evicted from the cache and the whole
calculation is restarted.

Dependencies

This module depends on the following modules:

core
client-interface
dataaccess-interface

PPS Module calcengine-gk

This module provides the promotion calculation engine.

Overview

The PPS application context is not known by the promotion calculation engine. Its internal functions are described in the technical documentation for the
promotion calculation engine (SDK Promotion Calculation Engine) This module serves only as a wrapper to include the promotion calculation engine in .
the PPS application context. In addition, it contains the default settings of the configuration parameters for the promotion calculation engine.

Beans

ID Alias Description

sapDefaultCalcEn
gineConfig

sapCalcEngineC
onfig

Default configuration for the promotion calculation engine as Java Properties. No write access from the
application.

sapDefaultCalcEn
gineConfigMap

sapContextPara
metersEngine

Maps the wrapping of the default configuration so that the whole properties are stored in one map entry for
value . This entry is automatically added to the default PPS context.SAP_CALCENGINE_CONFIG
This bean has prototype scope.

sapDefaultCalcEn
gineContextInitiali
zer

sapCalcEngineC
ontextInitializer

Initializer for the PPS context that fills the promotion calculation engine configuration parameters.

pricingPromotionS
ervice

sapDelegatePrici
ngPromotionServi
ce

This is the main bean for performing the promotion calculation. Here it is wired to the delegate that is
defaulted to a dummy implementation by the module.client-impl

sapDefaultFeature
Check

sapFeatureCheck This is the bean that checks if special features of the PPS are active (for example, offers on product groups).

(sapPromotionSer
vice)

promotionService
SAP

The existing alias is also offered as , which represents the sapPromotionService promotionServiceSAP
dataaccess service required by the promotion calculation engine.

<many more> <many more> The promotion calculation engine consists of many more Spring beans that are available on SAP Help Portal
at https://help.sap.com/viewer/p/CARAB > > > .<Version> Development SDK Promotion Calculation Engine

Default Settings and Properties

The promotion calculation engine supports a lot of configuration properties that are set to default values in the PPS standard delivery. The use of product
groups via merchandise sets was introduced with PPS 3.0 and is not active by default. The corresponding property must be merchandiseSetsEnabled
set to to use this feature. Each property of the promotion calculation engine can be set either as JVM environment property specified via the option true -D
(in the case of central deployment using XSA) or as local property located in the . The complete list of PCE config properties ppe-local.properties file
and is described in the SDK Promotion Calculation Engine on SAP Help Portal at > > > https://help.sap.com/viewer/p/CARAB <Version> Development SDK

. Promotion Calculaion Engine

Required Beans

This list contains only those additional beans to be provided if all the dependencies of this module are resolved.

ID/Alias Comment

sapPromotionService Reads the promotions

sapTransactionManager Manages the (read) transactions

Configuration Properties

Name Description Default value Comment

sap.
calcengine-
gk.
configpropslo
cation

Location of the default promotion
calculation engine configuration
properties in Spring resource syntax

classpath:META-
INF/calcengine-gk-
config.properties

The list of configuration properties is part of the promotion calculation engine
 documentation that is available on SAP Help Portal at https://help.sap.com/viewer/p

/CARAB > > > <Version> Development SDK Promotion Calculation Engine.

Dependencies

This module depends on the following PPS modules:

client-impl
dataaccess-interface (transitive dependency as of PPS 3.0)

PPS Module dataaccess-common

This module provides the implementation of the data access layer, independent of the underlying database.

Overview

The module is the main module that is needed to provide access to the persistence (OPP promotions and regular prices). It dataaccess-common
provides the implementations of the entity interfaces and of the interfaces to access the entities offered via the module . The dataaccess-interface
implementation is based on Java Persistence API (JPA) 2.1. is used as the JPA provider. The dataaccess-common module contains database-EclipseLink
independent information and, for example, to isolate database specifics so that enhancements of the database access can module dataaccess-localdb
be reused on different databases. These common artifacts are stored in , whereas contains artifacts specific to dataaccess-common dataaccess-localdb
a local, row-oriented relational database.

Regular Price

The regular price is modeled as JPA entity . It is accessed using the class . The regular price is held at the level of BasePriceImpl BasePriceServiceImpl A
 and .rticle ID/Unit of Measure Code/Price Class (Net/Gross)/Business Unit/Business Unit Type/SAP Client/Logical System Valid From

The default values of the configuration properties differ from the description in the . OPP Functional Guide for the Promotion Calculation Engine
The functional guide describes the defaullt values for properties that are not set via the file specified with sap.calcengine-gk.

.configpropslocation

https://help.sap.com/viewer/p/CARAB
https://help.sap.com/viewer/p/CARAB
https://help.sap.com/viewer/p/CARAB
https://help.sap.com/viewer/p/CARAB
http://www.eclipse.org/eclipselink/

Promotional Information

The promotion is stored in several entities located in the package . The root JPA entity is com.sap.ppengine.dataaccess.promotion.common.entities Pr
. The class hierarchy follows the interface hierarchy shown in the section . Promotional information is accessed using omotionImpl dataaccess-interface P

.romotionServiceImpl

Object-Related Mapping Using Spring

The following Spring enhancements are used for object-related mapping:

The class is used as the entity manager factory. This allows an org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean
easy configuration using Spring properties instead of having to maintain a persistence.xml file. In addition, it also supports the easy configuration
of JPA properties by reusing existing Spring concepts, such as maps stored as properties files. Setting the list of packages to scan for JPA
entities can be just a matter of Spring property configuration.
The class enables automatic injection of an entity org.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor
manager using the annotation . In addition, Spring automatically provides a thread-safe entity manager so that concurrent @PersistenceContext
requests can be handled without further precautions.
The class implements JPA transaction handling.org.springframework.orm.jpa.JpaTransactionManager

Multi-Step JPA Resource Mapping

The aim of the data access is to have the JPA entities independent of the underlying database. This will become important if several deployment options
are offered. This module provides the entity implementations, making some abstractions from specific database table design details, such as indexes.
These specifics are added using the module .dataaccess-localdb

Since JPA entities are subject to extensibility, the following strategy is used for their definition:

The properties of a JPA entity expected to be common to all deployment options are specified via annotations as an integral part of the Java class
for the JPA entity.
Properties specific to one standard deployment option, such as local Java DB, are added by XML file-based mapping (), potentially orm.xml
overruling annotations on class level. For example, specific attribute converters or database indexes may be added in this way.
Properties specific to a specific (customer) installation are expected in the file . In particular, this may contain the database ppe-schema-orm.xml
schema if not yet specified in the database connection URL. In the case of a local deployment, this file is not relevant.
Properties specific to customer extensions are expected in additional orm files that are specified using the configuration property sap.dataaccess-

.common.custmappingresources

Multi-Step JPA Property Definition

The JPA properties, such as the configuration properties for the JPA provider, are treated in a similar way as the definition of JPA entities. They are
expected in the following three files:

A file for JPA properties independent of the deployment (SAP owned)
A file for JPA properties dependent on the deployment (SAP owned)
A file for customer-specific configuration (empty in SAP shipment)

These files are specified using Spring configuration properties (see below). If a parameter appears in more than one file, the standard Spring logic is
executed to merge properties using the tag.<util:properties>

Support of JPA Entity Extensions

The entities provided by SAP support the addition of fields to existing JPA entities without replacing or extending the corresponding Java classes. This is
achieved using the concept of virtual properties offered by . Technically, additional attributes or relations of the JPA entity are stored in a map EclipseLink
that can be accessed by dedicated set- and get-methods. Both the attribute name and the property that it is a virtual attribute are specified externally in an

 file. Therefore, you can use customer-specific mapping files, such as .orm.xml ppe-local-orm.xml

Consider the following example that introduces the attribute as another database column .zzUpSellingCode ZZUP_SELL_TCD

Adding a virtual attribute via ppe-local-orm.xml

<entity-mappings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.eclipse.org/eclipselink/xsds/persistence/orm
 http://www.eclipse.org/eclipselink/xsds/eclipselink_orm_2_4.xsd"
 version="2.4">

 <!-- ... -->
 <entity
 class="com.sap.ppengine.dataaccess.promotion.common.entities.PromotionImpl">
 <attributes>
 <!-- Attribute name is zzUpSellingCode, type is String. Access is virtual -->
 <basic name="zzUpSellingCode " attribute-type="String" access="VIRTUAL">
 <!-- This maps to ordinary column name -->
 <column name="ZZUP_SELL_TCD" />

http://www.eclipse.org/eclipselink/documentation/2.6/solutions/extensible001.htm

 <!-- Name of setter and getter method for this attribute -->
 <access-methods get-method="get" set-method="set" />
 </basic>
 </attributes>
 </entity>
</entity-mappings>

The virtual attributes are inherited by the common base class .AbstractEntityImpl

More examples of how to extend entities using this concept are given in the chapter .OPP Extensibility

equals() and hashCode() for JPA Entities

The and methods are used in many places in a Java application. By default, the provided JPA entities implement the following equals() hashCode()
behavior:

Two entities are equal if they have the same type and if they have equal keys.
Two entity keys are equal if they have the same type and all their components are equal.
The hashCode of a JPA entity is the hashCode of its key.
The hashCode of a JPA entity (compound) key is calculated from the hashCodes of its components.

However, you might want to have a different logic in these methods. Since there are no plans to replace the provided SAP JPA entities on the customer
side, not even using subclasses, it is not possible to reimplement the standard logic by overriding the methods within a subclass of the corresponding
entity. To allow extensions of the standard logic, these methods are implemented as follows:

This attribute is an ordinary column in the database. For example, you can define database indexes on it, as for any other column. Furthermore,
it is possible to use the virtual attribute like any other attribute in named queries, and so on.

How you add this column to the database depends on the deployment scenario. The PPS takes care of the creation of this column in a local
. In a central deployment that runs on an ABAP-owned database, the field must be created deployment (such as in SAP Hybris Commerce)

explicitly using the ABAP Data Dictionary (SE11). This is controlled in the corresponding deployment specific modules, such as dataaccess-
localdb or dataaccess-ddf.

Each JPA entity inheriting from has a (shared) static attribute "helper" of the type . Within AbstractEntityImpl EqualsHashCodeHelper AbstractEntityImpl
, the and methods simply delegate the work to this helper. Since the helper attribute is not managed by JPA, it is determined using equals() hashCode()
the class if not yet set. This is a wrapper that gets the PPS Spring application context and retrieves the Spring bean EqualsHashCodeHelperProvider
with the fixed name . In the default shipment this is a class of type .sapJpaEqualsHashCodeHelper KeyBasedEqualsHashCodeHelperImpl

Therefore, the and logic can be redefined by replacing a Spring bean. equals() hashCode()

Caching

Regular prices and OPP promotion have to be cached in order to achieve good performance. During the processing of a price calculation request, the
number of accesses to information about regular prices and OPP promotions can be high. To avoid cross-system communication and to free the database
server from additional load, caching is done in the application (for each Spring application context).

The following requirements were considered for the caching strategy:

It must use well-proven, fast technology.
It must provide consistent results during the processing of one price calculation request. This is particularly relevant for the promotion as a
complex object stored in many entries of several database tables.
It must be easily configurable to support installation-specific needs.
It should be possible to replace the cache provider.

The following figure illustrates how regular prices and OPP promotions are cached on the server side. The ItemPriceDerivationRuleEligibiltyCacheAwar
 that handles the bulk access of is introduced with PPS 3.0.eBulkAccessorImpl ItemPriceDerivationRuleEligibilities

The following three types of caches are used:

The EclipseLink level 1 cache that is simply the persistence context bound to the transaction The created for each price calculation request.
persistence context is attached to the entity manager.
The EclipseLink level 2 cache that holds the JPA entities of a complete OPP promotion (apart from assigned business units because they are not
needed to calculate the OPP promotions once it is known that they are relevant). This is attached to the entity manager factory that exists once in
a PPS application context.
Caches holding the results of named queries. These are defined using Spring cache abstraction (see http://docs.spring.io/spring/docs/current

). In the standard shipment, Google Guava Cache (see /spring-framework-reference/html/cache.html https://github.com/google/guava/wiki
) is used as an implementation. Two separate cache regions are offered:/CachesExplained

A cache region to hold the results of a single price lookup
A cache region to hold the results of search queries for eligibilities based on information about the corresponding shopping cart

Caching Regular Prices

Single record look-up results are cached using Spring cache abstraction. This is done by adding the corresponding annotation:

Caching the result of single price look-up

public class BasePriceServiceImpl implements BasePriceService {

 @Cacheable(value = DefaultCacheSettings.CACHE_REGION_BASEPRICE)
 public List<BasePrice> getBasePriceForProduct(final String itemId,
 final String businessUnitId, final String businessUnitType,
 final boolean isNet, final String uomCode, final Timestamp timestamp) {
 // ...
 }

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/cache.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/cache.html
https://github.com/google/guava/wiki/CachesExplained
https://github.com/google/guava/wiki/CachesExplained

This leads to the creation of a Spring-managed proxy class () during the creation of the application context. This class delegates BasePriceServiceProxy
the price look-ups to the cache manager. The logic of the class is called only if a cached entry cannot be found. Likewise, the BasePriceServiceImpl
result of the price look-up is automatically placed into the Spring-managed cache in the event of a cache miss. The cache implementations (for example,
the classes responsible for offering and updating the cache) are defined using Spring beans:

Defining caches in Spring

 <!-- Cache for regular prices - aware of the underlying cache provider -->
 <alias name="sapDefaultBasePriceCache" alias="sapBasePriceCache" />
 <bean id="sapDefaultBasePriceCache" class="org.springframework.cache.guava.GuavaCache">
 <constructor-arg
 value="#{T(com.sap.ppengine.dataaccess.promotion.common.entities.DefaultCacheSettings).
CACHE_REGION_BASEPRICE}" />
 <constructor-arg>
 <bean factory-bean="sapBasePriceCacheBuilder" factory-method="build" />
 </constructor-arg>
 </bean>

 <!-- Cache for eligibility references - omitted here -->

 <!-- Cache for named queries. Currently all named queries share a common result cache -->
 <bean id="cacheManager"
 class="com.sap.ppengine.core.spring.impl.SwitchableCacheManager">
 <constructor-arg value="${sap.dataaccess-common.cachenamedqueries}" />
 <property name="caches">
 <set>
 <ref bean="sapBasePriceCache" />
 <ref bean="sapEligibilityCache" />
 </set>
 </property>
 </bean>
 <!-- Builder for cache of promotional information omitted here -->

 <!-- Builder for cache of base prices: Create google guava cache with dedicated
 spec -->
 <alias name="sapDefaultBasePriceCacheBuilder" alias="sapBasePriceCacheBuilder" />
 <bean id="sapDefaultBasePriceCacheBuilder" class="com.google.common.cache.CacheBuilder"
 factory-method="from">
 <constructor-arg value="${sap.dataaccess-common.basepricecachespec}" />
 </bean>

The result of a price look-up is not a managed entity. Inconsistencies between several calls within one price calculation request are avoided by reading
each price only once. This is ensured by the class .BasePriceReaderImpl

Caching Promotional Information

The caching of promotional information is more complex than the caching of regular prices, since different parts of the OPP promotion are retrieved by the
promotion calculation engine in several steps. Once one part of the OPP promotion is read, it must be ensured that the other parts of the OPP promotion
are consistent. At the beginning, a search is made for OPP promotions with the requested eligibilities. Although the class PromotionServiceImpl offers
methods to find the corresponding eligibilities, it simply delegates the work to the class NamedQueryServiceImpl, which is located behind the
NamedQueryServiceProxy. Therefore, the same approach is applied as for reading the regular prices. With this approach, the result of this search is
stored in the eligibility query cache. This is configured via Spring cache abstraction and implemented by Google Guava, (starting with PPS 4.0 Caffeine
Cache) as for the regular price cache. However, only a very limited amount of information is read in this case, not the full eligibility.
All the OPP promotions for the eligibilities found are read by key (apart from the assigned business units). The assumption is that if an eligibility is found for
an OPP promotion, the OPP promotion will become effective soon. This means not necessarily within this price calculation request but in one of
the following ones if all eligibilities for the OPP promotion are met. When the OPP promotion is read, the JPA L2 cache is automatically used by the JPA
provider. Its content is shared by several price calculation requests. If the promotion to be read is already in the L2 cache, the database is not accessed. In
the case of a database access, the L2 cache is updated automatically.

Since the results of the eligibility search and the OPP promotions are stored in different caches and due to the possibility of cache eviction in the L2 cache,
it must be ensured that data inconsistencies are detected and resolved. This is done by storing the time stamp of the last write access to any part of the
OPP promotion both on promotion level, such as in the L2 cache, and eligibility level, such as in the query cache. This time stamp is introduced by the
class , which is a super class to all promotional entities except for .ChangeAwareEntity BusinessUnitAssignmentImpl

Bulk accesses for regular prices are also offered. However, the behavior slightly differs between the PPS releases: With PPS 1.0, the query
completely bypasses the cache for regular prices. As of PPS 2.0, the database query contains those products/uom codes that are not yet in only
the cache. In addition, the query result is added to the cache, leading to faster processing in the event of cache misses and therefore more
robust behavior.

The following logic is implemented:

Case
#

Description Action

1 The time stamp of the eligibility is more recent than the time stamp of the OPP promotion
(in cache) or the time stamps of OPP promotion subentities are inconsistent.

The promotion is read again from the
database

2 The OPP promotion referred to by the eligibility does not exist or is not active (any more). Eligibility is skipped

3 The time stamp of the eligibility is the same or older than the time stamp of the OPP
promotion.

Eligibility of the OPP promotion is returned if
it still exists and has the expected type

The action for may look wrong if the time stamp differs, since the returned eligibility might not have the requested content any more. However, case #3
existing eligibilities are not reused when a DDF offer is transformed into an OPP promotion. Instead, new eligibilities with new keys are created. Therefore,
existing eligibilities are not updated.

Activating the JPA L2 cache for the OPP promotion is done explicitly because the shared cache mode is set to by default:ENABLE_SELECTIVE

sap.dataaccess-common.sharedcachemode=ENABLE_SELECTIVE

All promotional entities except for the business unit assignment are defined as cacheable, using the default settings. The excerpt below shows how this is
done for the promotion header:

Making PromotionImpl cacheable

@Entity
@Table(name = DBTables.PROMOTION)
@Cacheable
@Cache
public class PromotionImpl extends ChangeAwareEntity implements Promotion {
 // the attributes etc.
}

It is not usually necessary to make changes here. However, it is possible to change the settings of the L2 cache by setting the corresponding JPA
properties (see Spring property):sap.dataaccess-common.custjpapropertieslocation

Adjust cache settings in the JPA properties file

Default cache type & size
eclipselink.cache.type.default=SoftWeak
eclipselink.cache.size.default=1000
Do it differently for promotion header - just as an example!
eclipselink.cache.type.com.sap.ppengine.dataaccess.promotion.common.entities.PromotionImpl=Soft
eclipselink.cache.size.com.sap.ppengine.dataaccess.promotion.common.entities.PromotionImpl=10000

Cache Keys

The following keys are used for the various objects stored in the Spring-managed cache:

Regular price: Business Unit ID, Business Unit Type Code, Timestamp, Unit Of Measure Code, Item ID, Net Flag
Common to all eligibility references: Business Unit ID, Business Unit Type Code, Timestamp, Status Code, Lineitem Mode, Identification of
Eligibility Type (currently: name of cached method). Note that the business unit type code is only cached from PPS 3.0.
In addition for TotalPurchaseMarketBasket Eligibility: ./.
In addition for Coupon Eligibility: Coupon ID
In addition for Customer Group Eligibility: Customer Group ID
In addition for Item Eligibility: Item ID, Unit Of Measure Code
In addition for Merchandise Hierarchy Eligibility: Node ID, Node ID Qualifier
In addition for the Manual Eligibility: Trigger Type, Trigger Value
In addition for Merchandise Set Eligibility: Item ID - and not the list of assigned merchandise hierarchy nodes(!). It is assumed that the PPS clients
have access to the same master data and provide identical hierarchy node assignments in the price calculation request.
In addition for the OtherEligibility extension: Eligibility Type, additional parameters

 The is created by Spring in order to handle transactions automatically.PromotionServiceProxy

If you want to adjust the cache key, you can replace the standard Spring beans for cache key generation. For example, in a custom key generator it would
be possible to access additional information stored in the PPS context, such as the logical system.

Prefetch of Price Derivation Rule Eligibility References

As of PPS 3.0, you can prefetch eligibility references. Depending on the number of line items in the price calculation cart, it may make sense to prefetch
(via a bulk access) certain eligibility references at the very beginning of the price calculation. If the eligibility reference cache is not completely filled, this
avoids many single selects, leading to improved performance. In particular, this helps for eligibilities that are based on the individual item ID, such as the
Item eligibilities and the eligibilities. For other eligibility types, such as the or the , the number MerchandiseSet MerchandiseHierarchy CouponEligibility
of possible distinct values across several requests (in other words, the number of different Merchandise Hierarchy nodes or coupon IDs) is much lower,
leading to a much faster population of the caches. Therefore, such eligibilities are not considered.

However, the bulk selection is not as specific as the corresponding single selects. For the Item eligibilities, many different UOM codes reduce the
selectiveness of the database queries. For eligibilities, the individual assignment of an item to merchandise hierarchy nodes gets lost. In MerchandiseSet
rare cases, this can lead to a deterioration in performance. Therefore, this optimization can be turned on or off using a threshold. The threshold for this
prefetch is defined by the configuration property for Item eligibilities and sap.dataaccess-common.bulkitemelithreshold sap.dataaccess-common.

for eligibilities. When this threshold is reached, the corresponding eligibilities that are not already cached are bulkmerchsetelithreshold MerchandiseSet
read with one database query (for each type).
Afterwards, the results are added to the cache in a way that they can be retrieved using single access from the cache later on during price calculation.

In addition to the threshold configuration property, this prefetch also needs the property to be set to true.sap.dataaccess-common.cachenamedqueries

The bulk access of eligibility references is realized as separate plugin implementations for plugin interface com.sap.ppengine.api.plugin.
.PromotionServiceInitialization

Support of Weaving

As of PPS 2.0, weaving is supported. The EclipseLink feature of weaving the JPA entities (load-time waving) leads to an improved performance, for
 example, by reading the promotional entities in a more efficient manner from the database. This approach performs the weaving of entities during startup

of the application. As a consequence, possible customer extensions automatically benefit from weaving and it is not necessary to recompile JARs. Weaving
 is enabled using the Spring profile . This must be set as an environment variable when the corresponding (Web) application is started:sapweaving

Enabling weaving

-Dspring.profiles.active=sapweaving

Load-time weaving has some requirements of the runtime environment. This environment is prepared by the Spring class org.springframework.context.
. This automatically checks whether the classloader supports load-time weaving and supports recent versions weaving.DefaultContextLoadTimeWeaver

of Tomcat 8 or later (necessary for the XSA-based PPS).

As a result of the introduction of weaving, how the promotional entities are read has changed with PPS 2.0. In PPS 1.0, the promotion for the
corresponding eligibility was read using the fetch type . In PPS 2.0, the fetch type is used.EAGER LAZY

For more information about weaving, see .http://www.eclipse.org/eclipselink/documentation/2.6/solutions/testingjpa004.htm

Support for Read-Only Transactions

As of PPS 2.0, promotional information can also be read in a read-only mode. In this mode, no change tracking of the JPA entities is done. This results in
an optimized resource consumption. Consequently, no changes to the read JPA entities are saved to the database once the transaction is committed. The
request of a read-only transaction is controlled using a dedicated attribute of the PPS context. This is set to TRUE in the case of a price calculation request.

Depending on the cache isolation set for the corresponding entities, read-only transactions may have no "working copy" of the entity in the persistence
context during the price calculation. This can lead to consistency issues in the case of concurrent read and write operations on the same entity. If you
create custom subentities of an OPP promotion, they must fulfill the following constraint:

The following values are not part of the cache key since they are expected to be constant for each PPS installation: SAP Client, Logical System.

The following issues are known to occur with weaving:

If weaving is enabled, all weaving features are activated . As a result, potentially existing constructors or field initializers of by default
JPA entities (that are not recommended) are no longer called. If this leads to issues, it is possible to selectively disable specific
weaving features by setting the corresponding JPA properties. For instance, setting can eclipselink.weaving.internal=false
help to reduce these types of issues.
In general, weaving supports the extension of JPA entities using virtual access methods. However, according to the EclipseLink
documentation, weaving is not supported when virtual access methods are used with mappings.OneToOne
Load-time weaving of a JPA entity takes place when the corresponding Java class is loaded. If it has been loaded before load-time
weaving is activated (for example, within a JUnit test), it cannot be woven anymore. As a result, exceptions due NoSuchMethodError

.to incomplete weaving will be thrown, causing the application to stop working

http://www.eclipse.org/eclipselink/documentation/2.6/solutions/testingjpa004.htm

The following subentities of an OPP promotion are not considered as critical:

The promotion texts (because they do not contain information that influences the price itself)
The assigned business units (because they are not taken into account once a promotion is considered as relevant and because they contain
only key fields)

There is no change of system behavior for regular prices. They are not cached in the JPA L2 cache.

Code Conversion

Following SAP standards, , and refer in the database to the SAP internal code lists. This is also true for the encoding of the amounts quantities texts
business unit type. The following values are allowed for the database representation of these codes:

Code Same Table Field/ABAP Domain

Language T002-SPRAS

Currency and Decimals TCURC-WAERS, TCURX-CURRDEC

Unit of Measure T006-MSEHI

Business Unit Type Domain /DMF/LOCATION_TYPE_CODE

This schema is not generally known to an external client. Therefore, the PPS works from the client API down to the JPA entities with the ISO schema of
these codes. Since there is no ISO representation for the business unit type, the ARTS schema is used. The translation between the database
representation and the JPA entity representation is realized using JPA implementations. However, it might be desirable to configure AttributeConverter
this mapping, particularly in view of the unit of measure codes. The following figure shows how to configure this mapping for unit codes:

The class is a JPA attribute converter. The lifecycle of an AttributeConverter is now managed by the JPA provider not by DelegatingUnitCodeConverter
Spring. In particular, only a default constructor is supported and does not offer further configuration. Therefore, this converter simply delegates the actual
work to a Spring bean with a fixed alias. The Spring bean is retrieved using the class . This delegate bean also ApplicationContextProviderImpl
implements but has the full support of Spring offerings, such as configuration parameters, support of properties files, and so AttributeConverter
on. Hence, the code mapping can be specified using a properties file whose location can be specified by a Spring configuration property.

At first sight, it might look surprising that the attribute converter does not simply access the content of the corresponding customizing tables and instead
reads the content of a properties file, leading to double maintenance if additional unit codes are introduced. However, reading another database table
within an attribute converter again requires access to a JPA entity manager, making the implementation of the attribute converter much more difficult and
its performance likely worse.

Handling of Currencies and Amounts

The subentities of an OPP promotion must be immutable objects if they are critical to the correct price calculation. If a new version of an OPP
promotion is created, the subentities must be new objects with new keys replacing the subentities of the former version.

As described in the section under in this guide, amounts need special handling if they refer to a Handling of Amounts Price and Promotion Repository
currency that does not have two decimals and if they are stored in a database table owned by an ABAP system. This is the case for the central XSA-based
PPS that directly accesses the database tables of the central price and promotion repository. Special handling comprises a scaling of the amounts before
they are used by the PPS, depending on the number of currency decimals:

Currency Decimals Scaling Factor Database Value > Application-Visible Value

0 100

1 10

2 1

3 0.1

4 0.01

5 0.001

In addition, the SAP internal schema for currency codes has to be converted into the ISO schema. This is achieved by a JPA attribute converter similar to
the one described for unit codes. In this case, however, one database column (the currency code containing the SAP currency code) is converted to a
tuple of values (the ISO code and the scaling factor). This conversion uses two properties files:

The properties file containing the mapping between SAP and ISO currency codes. The location of this file is read from the configuration
property sap.dataaccess-common.currencycodeslocation.
The properties file containing the decimals <> 2 for SAP codes. The content of this file depends on the deployment scenario and is used to
calculate the scaling factor. No scaling of amounts is needed for a local deployment so this file can be empty. The location of this file is read from
the configuration property sap.dataaccess-common.currencydecimalslocation.

This information is stored in the class . The following table shows the mapping of database --> JPA entity using some hypothetical CurrencyWithScale
examples:

SAP
Currency

ISO
Currency

Currency
Decimals

CurrencyWithScale Comment

EU EUR <not maintained> currencyCode=EUR
scale=1

SAP code EU would actually be EUR.

BD BHD 3 currencyCode=BHD
scale=0.1

Bahrain dinar stored in the central PPR. SAP code would actually be BHD.

BD BHD <not maintained> currencyCode=BHD
scale=1

Bahrain dinar stored in a local copy of the central PPR. SAP code would actually
be BHD.

YEN JPY 0 currencyCode=JPY
scale=100

Japanese yen stored in the central PPR. SAP code would actually be JPY.

YEN JPY <not maintained> currencyCode=JPY
scale=1

Japanese yen stored in a local copy of the central PPR. SAP code would
actually be JPY.

The scaling itself is done when the data is accessed from the database. Instead, this is performed in the getter method of the corresponding amount not
field of the JPA entity.

The reverse mapping from JPA entities to database values is simpler since this can happen only in a local PPS - the central PPS never writes data to the
database. Since the local PPS receives data always in the "natural" format (either within the IDoc inbound or within the price calculation), a scaling of
amounts is not needed. Therefore, when a currency code is set within the application, the scaling factor can simply be set to one. Consequently, the
conversion of to the SAP currency code simply converts the ISO to the SAP currency code.CurrencyWithScale

Handling Product IDs

The product ID with SAP CAR has a length of 60 characters. In addition, a conversion exit is called when products are imported from external systems,
which adds leading zeros to numeric product IDs. This has the following consequence, taking SAP Hybris Commerce as an example of a PPS client:

The SAP ERP material number of an article has the internal representation 000000001234567890.
When this article is replicated to the SAP Hybris Commerce catalog, its ID (hybris: code) has the same value: 000000001234567890.
When this article is replicated to SAP CAR via the Data Replication Framework to the DDF data model, the external product ID has the following
value: 001234567890.
When regular prices and OPP promotions are replicated to external systems (including a locally deployed PPS), the external product ID of the
DDF data model is taken, in other words 001234567890.
When a price calculation is requested, the internal ID is expected. Hence, a hybris client sends the number 000000001234567890.
No such ID exists in the database.

The following is done to overcome this:

A JPA implementation (class) is offered AttributeConverter com.sap.ppengine.dataaccess.converter.common.InternalProductIDConverter
that translates between the client side (used in JPA entity) and the database side representation of a product ID,
This becomes effective only if the corresponding ID is numeric.

When the JPA entity is converted to the database representation, leading zeros are added up to a length of 60 characters.
When the database is converted to the JPA entity representation, the prefix of the ID is removed so that the result has a fixed number of digits
that is configurable via property .sap.dataaccess-common.fixednumberofplacesinproductid
If this parameter is zero, all leading zeros are removed, not considering a fixed length.

Handling of Language-Specific Information

The client API for price calculation allows the specification of a requested language in which language-dependent information (promotion descriptions,
external action price rule texts) is returned to the caller. This information is stored in the PPS context (bean) and evaluated once the sapContext
corresponding parent object, such as the Promotion or the , is requested. If language codes are specified and the resulting set of ExternalActionPriceRule
language-dependent information differs from the original set, the caller gets a detached copy of the parent object for each method call. This copy contains
only the requested information.

SAP Client and Logical System

An SAP client and logical system must be specified in order to uniquely identify which information is to be retrieved from the database. This is particularly
true when regular prices are read with a given external product and business unit (location) ID. However, this information is not provided externally as part
of the request for the price calculation. Therefore, this information must be provided via Spring configuration properties. They are stored in the PPS
context that is globally visible with request processing via the bean .sapContext

Beans

ID Alias Description

sapDefaultPersistenceAnno
tationBeanPostProcessor

sapPersistenceAnnotati
onBeanPostProcessor

Spring postprocessor enabling automatic transaction management via annotation

@Transactional

sapDefaultJpaProperties sapJpaProperties Properties bean holding the JPA properties

Refers to configuration properties:

sap.dataaccess-common.
defaultjpapropertieslocation
sap.dataaccess-common.
jpapropertieslocation
sap.dataaccess-common.
custjpapropertieslocation

sapDefaultEntityManagerFa
ctory

sapEntityManagerFacto
ry

Spring-based entity manager factory, configurable via properties instead of a single persiste
 filence.xml

sapDefaultTransactionMana
ger

sapTransactionManager Spring-based transaction manager

sapDefaultJpaDialect sapJpaDialect Spring JPA Dialect "Eclipselink" to be used for transaction manager

sapDefaultJpaVendorAdapt
er

sapJpaVendorAdapter Registers EclipseLink as a JPA provider

sapAbstractPersistenceServ
ice

./. Base class for all persistence services

sapDefaultPromotionService sapPromotionService Central service for accessing promotional information from database

sapDefaultNamedQuerySer
vice

sapNamedQueryService Service for reading promotional information from database via named queries. Used by sapP
.romotionService

sapDefaultBasePriceService sapBasePriceService Central service for accessing regular price information from database

sapDefaultDbContextInitializ
er

sapDbContextInitializer Initializer of the PPS context adding parameters relevant for accessing the database (client,
business unit type, logical system)

sapDefaultLanguageCodes sapLanguageCodes Default mapping to translate between SAP and ISO language codes

sapDefaultCurrencyCodes sapCurrencyCodes Default mapping to translate between SAP and ISO currency codes

Requesting and returning language-specific information is supported as of PPS 2.0.

If you need to support several values for a logical system, SAP clients or business unit types for each installation, you also need to adjust the
cache key generators since this information is not considered to be part of the cache key for named queries by default.

sapDefaultUnitCodes sapUnitCodes Default mapping to translate between SAP and ISO unit of measure codes

sapDefaultCurrencyDecimals sapCurrencyDecimals Default decimals of SAP currencies

sapDefaultCurrencyMappin
gFactory

sapCurrencyMappingFa
ctory

Default factory to create mapping from SAP currency codes to tuple <ISO code + scaling
factor>. Uses beans sapDefaultCurrencyCodes and sapDefaultCurrencyDecimals.

sapDefaultCurrencyCodes
WithScale

sapCurrencyCodesWith
Scale

Default mapping between SAP currency codes and CurrencyWithDecimals. Created by the
bean sapCurrencyMappingFactory.

sapDefaultBusinessUnitLoc
ationTypes

sapBusinessUnitLocatio
nTypes

Default mapping file to translate between SAP and ARTS business unit type codes

sapDefaultLanguageCodeC
onverter

sapLanguageCodeConv
erter

Converter between SAP and ISO language codes accessing the mapping file

Called by corresponding JPA attribute converter

sapDefaultCurrencyCodeCo
nverter

sapCurrencyCodeConv
erter

Converter between SAP and ISO currency codes accessing the mapping file

Called by corresponding JPA attribute converter. Only to be used if scaling of amounts is not
needed.

sapDefaultCurrencyWithSca
leConverter

sapCurrencyWithScale
Converter

Converter between SAP currency and CurrencyWithDecimals. Uses
sapCurrencyCodesWithScale.

sapDefaultUnitCodeConvert
er

sapUnitCodeConverter Converter between SAP and ISO unit of measure codes accessing the mapping file

Called by corresponding JPA attribute converter

sapDefaultBusinessUnitLoc
ationTypeConverter

sapBusinessUnitLocatio
nTypeConverter

Converter between SAP and ARTS business unit type codes accessing the mapping file

Called by corresponding JPA attribute converter

sapDefaultInternalProductI
DConverter

sapInternalProductIDCo
nverter

Converter between SAP CAR internal representation of numeric product IDs and their
(internal) representation used by the PPS client

cacheManager ./. Spring cache manager introducing caches for promotional information (OPP promotion
eligibilities) and single accesses for regular prices

sapDefaultPromoCacheBuil
der

sapPromoCacheBuilder Cache builder for storing OPP promotion eligibility keys using Google Guava as cache
implementation

sapDefaultBasePriceCache
Builder

sapBasePriceCacheBuil
der

Cache builder for regular prices using Google Guava as cache implementation

sapDefaultEligibilityCache sapEligibilityCache Spring wrapper for the cache for regular prices
Before PPS 2.0 this was an anonymous Spring bean

sapDefaultBasePriceCache sapBasePriceCache Spring wrapper for the cache for promotional information (eligibility references)

Before PPS 2.0 this was an anonymous Spring bean

sapDefaultEliCacheKeyGen
erator

sapEliCacheKeyGenera
tor

 Enhancement of the default Spring cache key generator considering the name of the method
in addition to the provided arguments.

 Necessary if different read methods have the same arguments but should provide different
results.

sapDefaultPriceCacheKeyG
enerator

sapPriceCacheKeyGen
erator

Cache key generator used when caching regular prices.

sapDefaultItemEligibilityBulk
Accessor

sapItemEligibilityBulkAc
cessor

Default implementation for the item price derivation rule eligibility bulk access (as of PPS 3.0)

sapDefaultMSetEligibilityBul
kAccessor

sapMSetEligibilityBulkA
ccessor

Default implementation for the MerchandiseSet price derivation rule eligibility bulk access (as
of PPS 3.0)

sapDefaultJpaEqualsHashC
odeHelper

sapJpaEqualsHashCod
eHelper

Default implementation of and for JPA entitiesequals() hashCode()

sapDefaultLoadTimeWeave sapLoadTimeWeaver If weaving is active (as of PPS 2.0): provides Environment for EclipseLink weaving

As of PPS 3.0, this bean is contained in the core module.

As of PPS 3.0, this bean is contained in the core module.

r

sapDefaultSelectionInterval
Creator

sapSelectionIntervalCre
ator

As of PPS 2.0:

Converter of a provided time stamp for price calculation into an interval. This is used for
searching eligibilities only.
In order to be found, the corresponding promotion must intersect with this interval.
By default, the whole day of the given time stamp is considered as an interval.

See also bean sapTimeResolutionReducer in the core module.

 2017-30-03 12:34:56 is converted into intervalExample:
2017-30-03 00:00:00 (inclusive)
until 2017-03-31 00:00:00 (exclusive)

sapDefaultPromoCyclesChe
cker

sapPromoCyclesCheck
er

Available as of PPS 4.0.

Checks an OPP promotion for cyles in the eligibilities or merchandise sets. Implementation
of com.sap.ppengine.api.plugin.Validation

Required Beans

ID/Alias Comment

sapDataSource Provides database connection

Configuration Properties

Name Description Default
Value

Comment

sap.
dataaccess
-common.
persistence
unitname

Name of the JPA persistence unit to be used for reading and writing OPP promotion
and regular price information SAPDefa

ultPU

sap.
dataaccess
-common.
sharedcach
emode

Defines the JPA entities for which a JPA Level2 cache is to be used
ENABLE_

SELECTI
VE

Explicit enablement of caching per entity

sap.
dataaccess
-common.
defaultjpap
ropertiesloc
ation

Location of the default JPA properties (to be used independent of the underlying
database) in Spring resource syntax classpat

h:
META-
INF
/defaultjp
aprops.
properties

sap.
dataaccess
-common.
weavingdef
aultjpaprop
ertieslocati
on

Location of the default JPA properties (to be used independent of the underlying
database) in Spring resource syntax.
Used if weaving is active.

classpat
h:
META-
INF/
weaving
defaultjp
aprops.
properties

Weaving available with PPS 2.0 or later

sap.
dataaccess
-common.
custjpaprop
ertieslocati
on

Location of customer-specific JPA properties in Spring resource syntax
classpat
h:
META-
INF/
empty.pr
operties

Example value:

classpath:

METAINF/myjpapros.properties

sap.
dataaccess
-common.
packagesto
scan

Comma-separated list of package names to be scanned for JPA entities or attribute
converters com.sap.

ppengine.

dataacce

Should not be changed

ss.
promotio
n.
common.
entities,
com.sap.
ppengine.

dataacce
ss.
converte
r.
common,
com.sap.
ppengine.

dataacce
ss.
basepric
e.
common.
entities

sap.
dataaccess
-common.
custpackag
estoscan

Comma-separated list of additional package names to be scanned for JPA entities or
attribute converters <empty>

Example value:

,com.mycompany.myentities

(note the leading comma)

sap.
dataaccess
-common.
mappingre
sources

Comma-separated list of mapping resource files overruling/adding to annotations
defined in the classes for the JPA entities. Must be on the Java classpath. META-

INF/orm.
xml,ppe-
schema-
orm.xml

Should not be changed

sap.
dataaccess
-common.
custmappin
gresources

Comma-separated list of mapping resource file intended for customer-additional
specific extensions <empty>

Example value:

 ,ppe-local-orm.xml

(note the leading comma)

sap.
dataaccess
-common.
cachename
dqueries

Switch for caching the result of named queries
true

Set this to false, if you always want to access
updated regular prices and OPP promotions.

Disabling the L2 cache for OPP
promotions should not be needed.

sap.
dataaccess
-common.
promocach
espec

Cache specification of the cache for promotional information read via named queries
as defined by Google Guava maximum

Size =
10000,
expireAfte
rAccess
= 10m,
expireAfte
rWrite =
20m,
initialCap
acity =
100

Only relevant if

sap.dataaccess-common.

cachenamedqueries = true

With PPS release 4.0, the new parameter initi
 defines the initial capacity value alCapacity

for the caffeine promotion cache.

sap.
dataaccess
-common.
basepricec
achespec

Cache specification of the cache for single records of regular prices read via named
queries as defined by Google Guava maximum

Size =
10000,
expireAfte
rAccess
= 10m,
expireAfte
rWrite =
20m,
initialCap
acity =
100

Only relevant if

sap.dataaccess-common.

cachenamedqueries = true

With PPS release 4.0 the new parameter initia
 defines the initial capacity value for lCapacity

the caffeine base price cache.

sap.
dataaccess
-common.
currencyco
deslocation

Location of the mapping file to translate between SAP currency codes in the database
and ISO codes used within JPA entities. Spring resource syntax is used. classpat

h:META-
INF/
currency
codes.
properties

sap.
dataaccess
-common.
unitcodeslo
cation

Location of the mapping file to translate between SAP unit codes in the database and
ISO codes used within JPA entities. Spring resource syntax is used. classpat

h:META-
INF/
unitcode
s.
properties

sap.
dataaccess
-common.
languageco
deslocation

Location of the mapping file to translate between SAP language codes in the database
and ISO codes used within JPA entities. Spring resource syntax is used. classpat

h:META-
INF/
language
codes.
properties

sap.
dataaccess
-common.
businessun
itlocationty
pelocation

Location of the mapping file to translate between SAP encoding of business unit types
(same values as location types of SAP CAR) codes in the database and ARTS codes
used within JPA entities. Spring resource syntax is used.

classpat
h:
METAINF/

business
unitlocati
ontype.
properties

sap.
dataaccess
-common.
currencyde
cimalslocati
on

Location of the properties file containing the number of decimals for SAP currency
codes. Only codes for currencies that do not have two decimals are expected in this
file.

Not set Set in dataaccess-ddf or dataaccess-localdb

sap.
dataaccess
-common.
fixednumbe
rofplacesin
productid

Number of digits of a numerical product ID including leading zeros as provided and
expected by the consumer of the PPS

18 Length of the SAP ERP material number is 18

sap.
dataaccess
-common.
db.client

SAP client to use when accessing the database ./. To be set for each installation

sap.
dataaccess
-common.
logSys

Logical system to use when accessing information having compound key (external ID
+ logical system), such as the SAP CAR and ProductID LocationID

./. If the PPS clients provide the master source
system ID in the price calculation request, this
parameter does not need to be set statically. It
is only used as a default if the information is
missing in the price calculation request.

sap.
dataaccess
-common.
defaultBuT
ype

Default business unit type to use when reading regular prices and promotional
eligibilities

RetailStore

sap.
dataaccess
-common.
partitionSiz
eSqlInState
ment

Maximum number of list entries when using IN operator in SQL statements 100 Used, for example, during inbound processing
of regular prices

sap.
dataaccess
-common.
bulkitemelit
hreshold

Threshold for numbers of line items deciding if an item eligibility prefetch (bulk access)
is executed.
Note: The overall number of line items (without coupons, and so on) is compared
against this threshold - not only the number of items for which the ItemEligibility
reference is still missing in the cache.

10 Only relevant if

sap.dataaccess-common.

cachenamedqueries = true

Bulk access for Item Eligibilities
available with PPS 3.0 or later

sap.
dataaccess
-common.

Threshold for numbers of line items deciding if a Merchandise Set Eligibility prefetch
(bulk access) is executed.
Note: The overall number of line items (without coupons, and so on) is compared
against this threshold - not only the number of items for which the MerchandiseSet
Eligibility reference is still missing in the cache.

10 Only relevant if

sap.dataaccess-common.

cachenamedqueries = true

Providing the master data source
system ID is possible as of PPS
3.0.

bulkmerchs
etelithresho
ld

Bulk access for MerchandiseSet Eligibilities
available with PPS 3.0 or later

sap.
dataaccess
-common.
bulkmerchg
roupelithre
shold

Threshold for numbers of merchandise hierarchy nodes deciding if a Merchandise
Group Eligibility prefetch (bulk access) is executed.
Note: The overall number of merchandise hierarchy nodes is compared against this
threshold - not only the number of nodes for which the Merchandise Group Eligibility
reference is still missing in the cache.

5 Only relevant if

sap.dataaccess-common.

cachenamedqueries = true

Bulk access for Merchandise Group
Eligibilities available with PPS 3.0.14 or later

sap.
dataaccess
-common.
overwritewi
tholderdata

Switch controlling the behavior when importing OPP promotions. If set to true, the
imported promotion replaces the existing promotion on the database, regardless of the
value of the attribute (indicating when this version of the promotion was changedOn
created). If set to false, the received promotion is only written to the database if it has
been changed more recently than the promotion on the database.

true If the promotions are sent or received in the
wrong order, the most recent data are used.

It is not possible to resend an old IDoc to
revert an unwanted change of a promotion,
since the contained promotion will be ignored
due to its changedOn value.

Available as of PPS 3.0.17.

Dependencies

This module depends on the following modules:

core
dataaccess-interface (transitive dependency of core since PPS 3.0)

PPS Module dataaccess-ddf

This module provides the specifics for the data access against the SAP HANA database of the SAP Customer Activity Repository system.

Overview

As mentioned in the documentation for the module , the JPA entities should not depend on the specifics of the underlying database dataaccess-common
or system that provides the database table. In the case of the central PPS, the database tables are defined using the data dictionary of the SAP Customer
Activity Repository system running on an SAP HANA database. This has the following consequences:

No changes are made to the database schema using JPA - SAP Customer Activity Repository is the leading system. This is done by simply not
setting the JPA property .eclipselink.ddl-generation
The format for time stamps in the database is different from the usual format in a Java environment.
The format for Boolean values in the database is different from the usual format in a Java environment.
Running against an SAP HANA database, the JDBC database driver is determined.

Furthermore, the is provided over JNDI when running on SAP HANA XS Advanced.javax.sql.DataSource

This module configures the data access accordingly.

Attribute Converters

The conversion between database values and the attributes of JPA entities is realized using an implementation of . javax.persistence.AttributeConverter
They are declared in the file on the Java classpath.META-INF/orm.xml

Boolean Values

In ABAP, there is no dedicated basic type for Boolean values. Instead, this information is usually stored in a character array of length 1 with the following
values:

ABAP Boolean

'X' TRUE

'' FALSE

This mapping is implemented by the class located in the module com.sap.ppengine.dataaccess.converter.common.AbapBooleanConverter dataacce
.ss-common

Time Stamps

In ABAP, time stamps are stored in a packed decimal number. The following time stamps are known:

A time stamp down to second level (see the domain TZNTSTMPS)
A time stamp down to sub-microsecond level (see the domain TZNTSTMPL)

Only the time stamp with a precision on seconds-level is supported. On the Java side, is usually taken to store time stamps. The java.sql.Timestamp
mapping between ABAP and Java is done as follows:

ABAP value Year Month Day Hour Minute Second Nanoseconds

YYYYMMDDHHMMSS YYYY MM DD HH MM SS 0

 This mapping is implemented by the class located in the module com.sap.ppengine.dataaccess.converter.common.AbapTimestampConverter dataa
.ccess-common

Beans

ID Alias Description

sapDefaultData
Source

sapDataS
ource

Factory bean for the data source looking up JNDI for property java:comp/env/jdbc/DefaultDB

sapDefaultData
Source

sapDataS
ource

Implementation of the data source reading Spring configuration properties (see below). Only used if the Spring profile de
 is active, replacing the JNDI variant.velopment

This option is not meant for productive use.

Configuration Properties

Name Description Default Value Comment

sap.dataaccess-common.
currencydecimalslocation

Location of the properties file containing the number of decimals for SAP currency codes.
Only codes for currencies that do not have two decimals are expected in this file.

classpath:/META-INF
/currencydecimals.
properties

Contains a copy of
TCURX

sap.dataaccess-common.
db.driverClassName

Name of the JDBC database driver com.sap.db.jdbc.Driver Might be changed
in a test
environment

sap.dataaccess-common.
db.url

URL of the database connection ./. To be set in a test
environment

sap.dataaccess-common.
db.userName

Database user ./. To be set in a test
environment

sap.dataaccess-common.
db.passWord

Password of the database user ./. To be set in a test
environment

Dependencies

This module depends on the following modules:

dataaccess-common

PPS Module dataaccess-localdb

This module the specifics for the access to a local database that is only accessed via JPA.provides

Overview

As mentioned in the documentation for the module , the JPA entities should not depend on the specifics of the underlying database dataaccess-common
or system that provides the database table. If the PPS is deployed locally in another hosting application, such as in SAP Hybris Commerce, the following
specialties of this module have to be considered:

The default name of the database tables with the prefix can lead to issues. Therefore, the prefix is replaced with the prefix /ROP/ /ROP/ SAPPS
for all PPS database tables.

1.

2.

a.

Additional (named) queries and database fields are needed for the inbound of promotional information. In particular, this is a version field for JPA
optimistic locking on promotion header level.
Additional indexes typically needed in (row store) relational databases are needed in order to speed up the process of reading data.
The database tables are created via JPA.
If you use an Oracle d or a Microsoft SQL Server atabase, the standard logic to set the lengths of character-like columns is not sufficient because
it specifies the length in bytes instead of characters. To overcome this, SAP provides an adjusted implementation of org.eclipse.persistence.
platform.database.DatabasePlatform. This is automatically checked during startup of the application context.

The adjustments are done in the file .first three orm.xml

Indexes

The following table shows the database indexes that are added to the indexes automatically created due to the foreign key relationships that are defined in
the JPA entities:

Table Index Fields Unique?

SAPPSPROMOTION SAP_BYFROMDATE EFFECTIVE_DATE No

SAPPSELIGIBILITY SAP_BYITEMID ITEM_ID
EFFECTIVE_DATE

No

SAPPSELIGIBILITY SAP_BYNODEID NODE_ID
EFFECTIVE_DATE

No

SAPPSELIGIBILITY SAP_BYTYPECODE TYPE_CODE
EFFECTIVE_DATE

No

Configuring the Data Access

Depending on the DB platform that is used by the PPS installation, you have to configure the data access of the PPS. For this, you must proceed as
follows:

Define the SQL query to remove unwanted foreign key constraints between eligibilities and their parent eligibilities via the configuration parameter
. For more information, see section below.sap.dataacess-localdb.fkremovalquery Configuration Properties

Set the DB platform used by Eclipselink to ensure, for example, that database data types and Java data types are mapped correctly. The DB
platform is part of the JPA properties evaluated by Eclipselink. These properties are not directly set as PPS configuration properties. Instead, you
need to proceed as follows:

Create a properties file containing these JPA properties and put it on the Java classpath as shown in the following example:

myJpaprops.properties in classpath folder META-INF

Set DB platform to MySQL
Supported DB platforms are subclasses of org.eclipse.persistence.platform.database.
DatabasePlatform
eclipselink.target-database=org.eclipse.persistence.platform.database.MySQLPlatform
further examples:
SQL Server
eclipselink.target-database=com.sap.ppengine.dataaccess.localdb.SQLServerPlatformOPP
Oracle
eclipselink.target-database=com.sap.ppengine.dataaccess.localdb.OraclePlatformOPP

This module does not provide a as required by the module. It is expected that this is provided by javax.sql.DataSource dataaccess-common
the hosting application.

The list of database indexes is most likely incomplete for your specific needs. The index that is used if an SQL query is executed depends on
the database used and on the amount of data in the corresponding tables. We strongly recommend that you review the database indexes for
your specific needs.

When the concept of enhanced product groups (available as of PPS 3.0) is used with a huge amount of product group entries, it could be helpful
to create indexes in table for the item or the product hierarchy node identifiers.SAPPSMERCH_SET

If you do not set this query, you may encounter unjustified errors during the upload of IDocs.

2.

a.

b.

SAP HANA
eclipselink.target-database=org.eclipse.persistence.platform.database.HANAPlatform
... further settings

Add the location of the JPA properties to to make it known to the PPS as shown in the following example:ppe-local.properties

JPA properties location in ppe-local.properties

Make location of my JPA properties known to PPS
sap.dataaccess-common.custjpapropertieslocation=classpath:META-INF/myJpaprops.properties

Beans

ID Alias Description

sapDefaul
tForeignK
eyRemov
er

sapFor
eignKe
yRemo
ver

Contains functionality to execute the native SQL query specified via configuration property sap.dataacess-localdb.
. Used to remove a problematic foreign key constraint from the database. Note that this bean itself does not fkremovalquery

actively execute the query by itself.

sapDefaul
tValidatio
nQueries

sapVali
dation
Queries

Map of known JDBC drivers and appropriate validation queries for the corresponding DBMS

sapAbstra
ctDataSo
urceFacto
ry

Abstract base class and bean for factories of DataSources supporting connection pooling with automatic determination of the
correct validation query. Can be used by the hosting application where the type of (pooling) DataSource is known. As an
example, in newer releases, the local PPS within the sapppspricing extension uses a DataSource created by a child of this
class.

sapAbstra
ctDbConsi
stencyCh
ecks

 Abstract base class for platform-specific consistency checks. Available as of PPS 3.0.22 / 4.0.10.

sapOracle
Consisten
cyChecks

Performs automatic checks during startup of the application context if you use an Oracle database. Checks if the SAP provided
database platform class is configured in the JPA properties of the entity manager factory.

sapSqlSer
verConsis
tencyChe
cks

 Performs automatic checks during startup of the application context if you use an MS SQL Server database. Checks if the SAP
provided database platform class is configured in the JPA properties of the entity manager factory. Available as of PPS 3.0.22 /
4.0.10.

Required Beans

The following table contains the additional beans that are to be provided if all the dependencies of this module are resolved:

ID/Alias Comment

sapDataSource Provides the database access

Configuration Properties

Name Description Default
Value

Comment

sap.
dataaccess-
common.

Location of the JPA properties for a local deployment classpath:
/META-
INF/

Should usually not be changed - see
property sap.dataaccesscommon.
custjpapropertieslocation

SAP does not guarantee that further platforms than SAP HANA and the DB platforms supported with SAP Commerce can be
used by the PPS.

DB platform-specific adjustments depend on the database that you use, for example, platform-specific URL parameters to improve
For these configuration parameter, see the corresponding database documentation.performance.

jpapropertiesl
ocation

dataacces
s-localdb-
jpaprops.
properties

sap.
dataaccess-
localdb.
connectionpo
ol.initialsize

Initial size of a connection pool if used to access the database via an own connection pool 10 Not used in module

sap.
dataaccess-
localdb.
connectionpo
ol.maxsize

Maximum size of a connection pool if used to access the database via an own connection
pool

50 Not used in module

sap.
dataaccess-
localdb.
connectionpo
ol.
validationQue
ry

Validation query used by the connection pool to check if the corresponding connection is
still usable

select 1
from
INFORMA
TION_SCH
EMA.
SYSTEM_
USERS

Works for HSQLDB, which is the Hybris
default.

Other queries are:

Oracle - select 1 from dual
DB2 - select 1 from sysibm.
sysdummy1
mysql - select 1
MS SQL server - select 1
Postgresql - select 1
Derby - select 1
H2 - select 1

sap.
dataaccess-
common.
currencydeci
malslocation

Location of the properties file containing the number of decimals for SAP currency codes.
Only codes for currencies that do not have two decimals are expected in this file.

classpath:
/META-INF
/empty.
properties

Java-owned database tables store
amounts in their natural format

sap.
dataacess-
localdb.
fkremovalquery

Native SQL query which deletes the foreign key constraint for the parent eligibilities of a
given eligibility record. This constraint may cause issues during IDoc inbound processing if
the used DBMS does not use deferred foreign key checks. The syntax of this query and the
name of the foreign key constraint is DBMS-specific.

To reduce the risk of data corruption
caused by a wrong SQL query, it must
have a certain format. See class RemoveF

 in case of an issue.oreignKeyImpl

Dependencies

This module depends on the following modules:

dataaccess-common

PPS Module idocinbound

If you do not set the validation query correctly, the application may not start.

You only have to set the validation query if one of the following preconditions is met:

You are using a PPS with patch levels lower than:
PPS 3.0.3
PPS 2.0.5
PPS 1.2.7
PPS 1.1.8
PPS 1.0.14

You are using a PPS with a higher patch level than in the list above, but the JDBC driver class is not in the list of known drivers. If the
driver class is known, the validation query can be determined automatically using a factory bean having bean sapAbstractDataSource

 as parent bean.Factory

The same patch levels as mentioned above are also required for the foreign key removal query to take effect.

http://classpath/META-INF/currencydecimals.properties
http://classpath/META-INF/currencydecimals.properties
http://classpath/META-INF/currencydecimals.properties
http://classpath/META-INF/currencydecimals.properties

1.

This module provides the implementation of IDoc inbound processing for OPP promotions and regular prices.

Overview

If the PPS is deployed locally, for example the PPS is embedded in SAP Hybris Commerce, it accesses its own locally stored data. The module idocinbou
 provides the possibility to receive IDocs holding regular prices and OPP promotions and to update this information on the local database. These IDocs nd

are usually created by the SAP Customer Activity Repository system that contains the central price and promotion repository (PPR). The IDoc inbound
supports the following IDoc types and the corresponding message types:

Regular prices can be processed using IDoc type (message type)/ROP/BASE_PRICE01 /ROP/BASE_PRICE
OPP promotions can be processed using IDoc type (message type)/ROP/PROMOTION01 or /ROP/PROMOTION02 /ROP/PROMOTION

These IDocs can be processed with an XML payload and with a JSON payload (available as of PPS 4.0).

The IDoc inbound processing processes the incoming requests synchronously. No staging of requests is executed. Furthermore, only very basic
consistency checks of the IDoc content are performed.

Spring Integration Process Definition

The inbound processing is realized based on . The following figure shows the process flow:Spring Integration

In detail, the following is done:

http://projects.spring.io/spring-integration/

1.
2.

a.

b.
3.

4.

5.
6.

7.
a.

b.

8.

9.

a.

b.

c.
d.

10.

The IDoc inbound processing is triggered via an HTTP POST request to the context path ./idocinbound
The incoming request is handled by a Spring Integration (). This integration is http-inbound-channel-adapter sapIdocInboundGateway
connected to the following Spring Integration channels:

The propagates the request to the next processing stage. sapIdocInboundRequestChannel As of PPS 4.0 the interceptor sapRequest
 is attached to this channel to store the HTTP header attributes of the incoming request in the PPS context. This is HeaderFieldsSaver

done to allow proper handling of the Accept header when creating the response payload.
The propagates error messages to the corresponding error handler.sapIdocInboundErrorChannel

The request forwarded by is received by , which is a Spring Integration sapIdocInboundAdapter sapIdocToStringTransformer object-to-string-
. Its output, a plain string, is propagated via the channel .transformer sapIdocInboundStringRequestChannel

The subsequent processing depends on the used PPS version:
Until PPS 3.0:

This channel is directly connected to a Spring Integration () unmarshalling-transfomer sapIdocUnmarshallTransformer
receiving this string. This is a wrapper delegating the actual unmarshaling of the string to a more structured Java class to the sa

that is an ordinary Spring bean.pIdocUnmarshaller
This Spring bean of type uses Jackson from FasterXML to convert the string into a Java Map. Each XmlToMapUnmarshaller
map entry represents one element of the XML payload. In addition, it also supports unwrapped lists in the XML document, for
example, payloads in which one XML element is contained on the same level several times together with other XML elements.
With this approach, it is not necessary to provide Java classes (usually created by XSD via XJC) for each IDoc type to be
processed.

As of PPS 4.0:
This channel is connected to the router . This determines the receiving channel based on the content sapContentTypeRouter
type of the incoming request.
For application/json, the request is forwarded via channel to the unmarshalling-sapIdocInboundStringRequestChannelJson
transformer which delegates the actual work to the bean .sapIdocUnmarshallTransformerJson sapIdocUnmarshallerJson
Otherwise, the request is forwarded via channel sapIdocInboundStringRequestChannelXml to the existing

.unmarshalling-transformer sapIdocUnmarshallTransformer
In both cases, the unmarshalled content is a LinkedHashMap.

The resulting map is propagated via the channel to the next stage.sapIdocInboundUnmarshalledChannel
This stage is a Spring Integration looking at the IDoc type that is stored in the IDoc control header. Based on the content of this field, the router
name of the channel that forwards the message to the next stage is determined dynamically. The name of the channel follows the schema is sapI

.docTypeChannel_{idocType}
The following channels exist in the standard implementation:three

sapIdocTypeChannel_/ROP/PROMOTION01 and sapIdocTypeChannel_/ROP/PROMOTION02 for IDoc type a/ROP/PROMOTION01
nd . This is connected to the Spring , delegating the /ROP/PROMOTION02 service-activator sapPromotionInboundServiceActivator
actual work to an ordinary Spring bean with the name .sapPromotionInboundProcessor
sapIdocTypeChannel_/ROP/BASE_SALES_PRICE01 for IDoc type . This is connected to the Spring /ROP/BASE_PRICE01 service-

, delegating the actual work to an ordinary Spring bean with the name activator sapBasePriceInboundServiceActivator sapBasePriceI
.nboundProcessor

If an exception is thrown during the inbound processing, this is automatically wrapped into a message forwarded via the channel sapIdocInbound
 to the Spring Integration transformer .ErrorChannel sapIdocErrorTransformer

The spring integration transformer delegates the actual work to , an ordinary Spring bean. This Spring sapIdocInboundExceptionTransformer
bean implements the following logic:

If the error message refers to an exception of type issued during the mapping from the IDoc to IllegalIdocContentExceptionindicating
the database format, the HTTP response must have the error code 400 ().Bad Request
In the case of an during posting of the received data, the HTTP response must have the error code 409 (OptimisticLockException Conf

).lict
In the case of another exception, the HTTP response must have the error code 500 ().Internal Server Error
In any other cases, the HTTP response will have the error code 200 (), which is the default return code of the HTTP inbound adapter OK
(actually not part of error handling).

The error response is sent via the channel to the Spring Integration sapIdocInboundTransformedErrorChannel object-to-string-
. This Spring Integration converts it into a string that is returned to the caller.transformersapIdocErrorToStringTransformer

Processing the IDoc Data

After the xml file has been converted into a Java , the converted IDoc content can be mapped to the corresponding entities. This Map<String,Object>
happens in an Inbound-Processor that is implemented by the class or respectively. BasePriceInboundProcessorImpl PromoInboundProcessorImpl
The inbound processor does the following:

It calls the corresponding mapper to the JPA entities.
It triggers the posting to the database.

Conversion of the IDoc Payload to the Expected Java Types

As the payload in the received IDocs is converted into a Java , you need to convert each field of the content in the Java types that are Map<String,Object>
expected by the JPA entities. The class is provided for this purpose.EntityTypeConversionHelper

The following Java types are supported by default:

String
BigDecimal
long
Timestamp
int
Character
byte

In addition, the following data is supported and requires special handling:

Unit Of Measure Code: Expected ISO code is verified to determine whether it can be mapped to database format.
Currency Code: Expected ISO code is verified to determine whether it can be mapped to database format.
Language Code: Expected ISO code is verified to determine whether it can be mapped to database format.
Business Unit Type Code: Expected SAP code (corresponding to the DDF location type code) is converted to the corresponding ARTS format.
Boolean: Expected ABAP format ('X' or '') is converted into a Java Boolean.
Product ID: Expected database format is converted into the format of the JPA entity. This may be different for numeric product IDs. For more
information, see the documentation for the module .dataaccess-common

Regardless of the target JPA entity type, the mapping follows two strategies:

For known JPA entities the received IDoc segments are only processed for the fields of the target entity. This means that if the received IDoc
segment contains unexpected additional fields, they are simply ignored.
In addition, the content of extension segments (name/value pairs) are mapped to the extension maps of the target JPA entity if the JPA
metamodel contains a field with the corresponding name. If the field is not known in the JPA metamodel, it is ignored.

Mapping Regular Prices

Regular prices are mapped by the class , which implements the interface . The regular price entity that needs to BasePriceMapperImpl BasePriceMapper
be mapped to is , which implements the interface . For more information about the regular price entity, see the documentation BasePriceImpl BasePrice
for the modules and . ppengine-dataaccess-common ppengine-dataaccess-interface

Mapping OPP Promotions

OPP promotions are mapped by the class (that implements the interface Promotion) and its subclasses that represent all the entities PromotionImpl
needed to replicate the runtime model in SAP Customer Activity Repository.
For more information about promotion entities, see the documentation for the modules and ppengine-dataaccess-common ppengine-dataaccess-

.interface

Validating Uploaded Data

Until PPS 3.0, there is a basic validation of the uploaded data which is set by default. As of PPS 4.0, a new plugin interface com.sap.ppengine.api.plugin.
 is called for the validation of uploaded data. Depending on the setting of the configuration property , you can Validation sap.core.usebeanvalidation

replace the basic default validation with the more extensive Bean Validation based validation. The structure of the validation result is defined by the class c
. It can be represented in XML and JSON (as of PPS 4.0) format.om.sap.ppengine.idocinbound.common.DataUploadResponse

Posting to the Database

After the mapping process, the JPA entities need to be posted to the database.

Regular Prices

The posting of regular prices must ensure that no overlapping prices exist. Since information about price deletions is not transferred, it has to be done on
the receiver side as follows:

As of PPS version 2.0, the PPS version is checked against the current PPS version (reflected by the promotion IDoc content-attribute MIN_PPS
)._RELEASE

The current PPS must be able to process the corresponding promotion. This is assumed to be the case if the PPS version of the promotion is
lower than or equal to the version of the local PPS. If this precondition is not fulfilled, the IDoc is rejected. The current PPS version is stored as a
configuration property (). sap.idocinbound.currentppsrelease

OPP promotions marked as obsolete that are not relevant anymore for the receiver of the IDoc, are treated as OPP for example,
promotions that have been logically deleted on the sender side.

For regular prices the validation is called several times for separate validation groups (covering different aspects), following the hierarchical
structure of the IDoc type ./ROP/BASE_PRICE01

The validation via consumes considerably more resources. The processing may take longer and com.sap.ppengine.api.plugin.Validation
needs more memory.

The inbound processing of regular prices relies on the constraint that for a given transfer session all prices for a given combination of product
ID, unit of measure code, price classification, business unit type, and logical system are in the same IDoc. If not, this can result in inconsistent
data.

For the corresponding list of business units within a top-level IDoc price segment, the existing prices are read for each product, uom, price
classification, business unit type, and logical system. This is done for all prices with an effective date that is at least the earliest effective date of
the transferred prices.
These prices are compared to the mapping result as follows:

Prices not yet existing are inserted in the database
Prices that existed before are updated in the database if at least one attribute has been changed
Prices that exist in the database that are not part of the received IDoc are removed

The data access for regular sales prices is delegated to the bean .sapBasePriceService

OPP Promotions

The data access for OPP promotions is delegated to the bean .sapPromotionService

Posting of the OPP promotions is either a or a from a JPA perspective point of view. To optimize performance, a merge is executed only if merge persist
there is already a version for the corresponding promotion ID. Otherwise a persist is done. Physical deletion of an OPP promotion is not done during IDoc
inbound processing.

Beans

ID Alias Description

sapIdocInbound
Gateway

./. Spring Integration HTTP inbound gateway receiving IDocs and sending confirmation responses

sapIdocErrorTr
ansformer

Spring Integration Transformer transforming exceptions created during request processing into HTTP responses.
Delegates work to the bean and sends the result to sapIdocInboundExceptionConverter sapIdocErrorToStringTr

.ansformer

sapDefaultIdocI
nboundExceptio
nConverter

sapIdocInbo
undExcepti
onConverter

Actual implementation of the exception conversion. Hides the stack trace from the response and sets the HTTP
response code depending on the exception type

sapIdocErrorTo
StringTransform
er

Spring Integration Transformer creating a string representation of the converted error response

sapIdocInbound
RequestChann
el

Spring Integration Channel transporting the originally received payload of the HTTP request

sapDefaultRequ
estHeaderField
sSaver

sapRequest
HeaderField
sSaver

As of PPS 4.0. Bean used by a Spring Integration Interceptor storing the HTTP request headers in the PPS context.

sapIdocInbound
ErrorChannel

Spring Integration Channel connecting and sapIdocInboundGateway sapIdocErrorTransformer

sapIdocInbound
TransformedErr
orChannel

Spring Integration Channel connecting and sapIdocErrorTransformer sapIdocErrorToStringTransformer

sapIdocToStrin
gTransformer

Spring Integration Transformer creating a string representation of the received IDoc body payload

sapIdocInbound
StringRequestC
hannel

Spring Integration Channel connecting and sapIdocToStringTransformer sapIdocUnmarshallTransformer (until
PPS 3.0) or (as of PPS 4.0). sapContentTypeRouter

sapContentTyp
eRouter

As of PPS 4.0. Spring Integration Router forwarding the request depending on the content type either to channel sapI
 or .docInboundStringRequestChannelXml sapIdocInboundStringRequestChannelJson

sapIdocInbound
StringRequestC
hannelXml

As of PPS 4.0. Spring Integration Channel connecting and sapContentTypeRouter sapIdocUnmarshallTransformer
.

sapIdocInbound
StringRequestC

As of PPS 4.0. Spring Integration Channel connecting and sapContentTypeRouter sapIdocUnmarshallTransforme
.rJson

A top level IDoc segment that contains a lot of business unit IDs reading the existing prices can lead to oversized SQL statements. The size of
these statements can be controlled by the configuration parameter that controls the sap.dataaccess-common.partitionSizeSqlInStatement
number of business unit IDs that can be part of one SQL statement. If the total number of business units exceeds this limit, the system
automatically reads the data in smaller chunks.

For more information about this configuration parameter, see the documentation for the module .dataaccess-commonin

hannelJson

sapIdocUnmars
hallTransformer

Spring Integration Unmarshalling Transformer transforming the string payload into a format consumable by the
application logic. Delegates work to . sapIdocUnmarshaller For XML requests only.

sapIdocUnmars
hallTransformer
Json

As of PPS 4.0. Spring Integration Unmarshalling Transformer transforming the string payload into a format
consumable by the application logic. Delegates work to . For JSON requests only.sapIdocUnmarshaller

sapDefaultIdoc
Unmarshaller

sapIdocUn
marshaller

Unmarshaller using Jackson to create a generic representation of the IDoc payload as a Map<String,Object>. For
XML request only.

sapDefaultIdoc
UnmarshallerJs
on

sapIdocUn
marshallerJ
son

As of PPS 4.0. Unmarshaller using Jackson to create a generic representation of the IDoc payload as a Map<String,
Object>. For JSON request only.

sapIdocInbound
UnmarshalledC
hannel

Spring Integration Channel connecting and sapIdocUnmarshallTransformer sapIdocTypeRouter

sapIdocTypeRo
uter

Spring Integration Router looking at the IDoc type as stored in the IDoc control header to decide to which channel the
message shall be forwarded. Channel name is defined as .sapIdocTypeChannel_<idocType>

sapIdocTypeCh
annel_/ROP
/BASE_PRICE01

Spring Integration Channel connecting and . Intended sapIdocTypeRouter sapBasePriceInboundServiceActivator
for IDoc type ./ROP/BASE_PRICE01

sapIdocTypeCh
annel_/ROP
/PROMOTION01

Spring Integration Channel connecting and . sapIdocTypeRouter sapPromotionInboundServiceActivator
Intended for IDoc type ./ROP/PROMOTION01

sapIdocTypeCh
annel_/ROP
/PROMOTION02

Spring Integration Channel connecting and . sapIdocTypeRouter sapPromotionInboundServiceActivator
Intended for IDoc type ./ROP/PROMOTION02

sapBasePriceIn
boundServiceA
ctivator

Spring Integration Service Activator receiving representation of a regular price IDoc, delegating work to sapDefaultBa
sePriceInboundProcessor

sapPromotionIn
boundServiceA
ctivator

Spring Integration Service Activator receiving representation of an OPP promotion IDoc with type /ROP
, delegating work to /PROMOTION01 sapDefaultPromotionInboundProcessor

sapPromotion0
2InboundServic
eActivator

As of PPS 3.0. Same as , receiving type .sapPromotionInboundServiceActivator /ROP/PROMOTION02

sapDefaultEntit
yTypeConversi
onHelper

sapEntityTy
peConversi
onHelper

Helper to read information from the Map<String,Object> representation of an IDoc and returning it in the expected
java type

sapDefaultEntit
yPromoMapper

sapEntityPr
omoMapper

Helper to map the complete content of an OPP promotion IDoc representation as Map<String,Object> into the
corresponding JPA entities

sapDefaultEntit
yBasePriceMap
per

sapEntityBa
sePriceMap
per

Helper to map the complete content regular price IDoc representation as Map<String,Object> into the corresponding
JPA entities

sapDefaultExte
nsionMapper

sapExtensio
nMapper

Generic mapper of the extension segments of the OPP promotion IDoc to the corresponding attributes of the target
JPA entities

sapDefaultProm
otionInboundPr
ocessor

sapPromoti
onInboundP
rocessor

Main entry point into the application logic for inbound processing of OPP promotion IDocs. Delegates work to
mapping helper and updates the database.

sapDefaultBase
PriceInboundPr
ocessor

sapBasePri
ceInboundP
rocessor

Main entry point into the application logic for inbound processing of regular price IDocs. Delegates work to mapping
helper and updates the database.

sapDefaultIdocI
nboundCommon

sapIdocInbo
undCommon

Parent bean for all IDoc inbound related functions, holding commonly used dependencies.

sapInboundPer
sistenceAnnotat
ionBeanPostPr
ocessor

sapInbound
AnnotationB
eanPostPro
cessor

Bean post processor that enables the support of the @Persistence annotation for a threadsafe . This EntityManager
is required for the generic mapping of IDoc extension segments.

Note that a Spring Bean of the same type also exists in the However, in a dataaccess-common module.
deployment with Hybris, the PPS application context is created in 2 steps and the postprocessor in the dataaccess-

 is no longer considered when creating the second level of the application context (containing the common module id
).ocinbound module

sapDefaultFKR
emovalExecutor

 Bean that automatically executes the native query for foreign key removal as offered via bean sapForeignKeyRemo
. The query is executed during the initialization of the PPS application context (as part of the PPS application ver

context in which the is located).idocinbound module

sapDefaultIdocI
nboundRespon
seHelper

sapIdocInbo
undRespon
seHelper

As of PPS 4.0. Helper to fill the reponse structure com.sap.ppengine.idocinbound.common.
 with the processing result for an uploaded IDoc.DataUploadResponse

Required Beans

The following table contains the additional beans to be provided if all dependencies of this module are resolved:

ID / Alias Comment

sapDataSource Provides the database access

Configuration Properties

The following properties are used by this module:

Name Description Default Value Comment

sap.idocinbound.
currentppsrelease

Reference to the current
version of the PPS

Depends on the current
PPS version

This property refers to the current PPS version as follows:

The first digits of the decimal representation indicate the major version
of the PPS version.
The next 3 digits of the property indicate the minor version of the PPS
version.
The lowest 3 digits of the property indicate the patch level of the PPS
version.

In PPS versions earlier than 2.0, this property is set to 0.

For example, the property is set to 2000000 in PPS version 2.0 and it is set
to 0 in PPS 1.1 and PPS 1.2.

Dependencies

This module depends on the following modules:

dataaccess-localdb
jackson

PPS Performance Hints

The following chapter gives hints on how to achieve optimal performance using the promotion pricing service.

Creating of the Offers

For PPS version 1.0 and 2.0: Keep the offers small. During the price calculation, an OPP promotion is validated for consistency. This is
needed because of cache eviction. The time needed for this grows with the number of OPP promotions (not considering the assigned business
units/locations assigned to the offer version). An offer with thousands of assigned articles may lead to memory and runtime issues. Try to split one
large offer into several smaller ones.

 Compared to older PPS versions, the consistency check for the entire OPP For PPS version 3.0 and higher: Do not keep the offers too small.
promotion is not required for the price calculation. Therefore, OPP promotions with many promotional rules (mapped from offers with many offer
terms) do not impact the performance of the price calculation. However, it is still recommended to make a trade-off for the size of the offer:

If you maintain many small offers, the size of the offer is dominated by the list of assigned business units. Having the same list of
business units redundantly assigned to many promotions blows up the database and increases the resource consumption during the
replication of OPP promotions.
If you maintain only a few amount of large offers, the probability increases that these offers have to be updated and resent regularly. In
this situation, the replication of a small promotion would be better.

 Each of the product dimensions used within a DDF offer correlates to a certain Consider restricting the set of product dimension types .used
eligibility type within an OPP promotion:

"Product" dimension translates to eligibility type "Item"

Configuration properties defined in other modules with dependencies on this module may be used. Because locally deployed in SAP Hybris not
Commerce, this module is loaded at a later date when other configuration properties are not visible anymore.

"Product Hierarchy Node" dimension translates to eligibility type "Merchandise Category"
"Product Group" dimension translates to eligibility type "Merchandise Set"

Each of these eligibility types must be processed, leading to database calls and entries in caches, increased response time, and memory
consumption. In particular, item and merchandise set eligibilities have a big influence on performance. Since merchandise set eligibilities
offer superior flexibility compared to item eligibilities and merchandise category eligibilities, it might be an option to always maintain offers for
product groups. How you deactivate the processing of certain eligibilities is described in the SDK for the promotion calculation engine.

Distributing of the Data

 This increases the performance of reading the data during outbound processing Restrict the filter criteria for the data as much as possible.
and avoids the expensive replication of data not needed on the receiver side.

. This delays the transfer of an active OPP promotion so that changes to it before it Consider the usage of the filter "Lead time in days"
actually becomes effective do not need to be transferred again. This reduces the amount of transferred data.

Client Side (Price Calculation)

Consider keeping regular prices that were calculated before and provide them with subsequent requests. Note that this has
consequences for the overall behavior - a regular price of a product in a basket would not change any more. Whether this is desired or not is a
business decision.
Provide only product hierarchy nodes on which it is possible to define promotions within your company. The PPS has to search for
eligibilities for each product hierarchy node provided.

 These cookies hold authentication-related information. If the received cookies are not sent back Accept and send cookies of the central PPS.
to the PPS, each request requires a complete authentication.

. Depending on the network and client CPU speed, this may lead to faster end-to-end Consider compression of the request sent to the PPS
times. In the case of small shopping carts, the effect of this is limited.

 The PPS response is compressed by default. In the case of very fast network Consider deactivation of the response compression.
connections, it may be faster to deactivate the response compression.

Client Side (Data Replication)

 When you replicate regular prices using parallel processing, the prices may be sent faster than they can be processed on Do not flood the PPS.
the receiver side. When you send large volumes of data this may lead to congestion of the Web server and connection timeouts. Try to find a
balance between the sender and receiver by setting the right number of parallel processes for outbound processing.

If an ABAP system is the PPS client, the last three settings can be configured for the corresponding RFC destination:

Server Side

Common Rules

 This applies for reading regular prices as well as for finding eligibilities. The more query Set the cache for named queries as large as possible.
results that can be cached, the less load will be put on the database.

 If you have to save memory and cannot set the cache sizes very high, it is important to have a Keep an eye on the ratio of the cache sizes.
realistic ratio of the sizes for regular price and OPP promotion reference cache. In most real-world scenarios, the ratio between promotion
references and regular prices is about 2:1. This should therefore also be the ratio of the cache sizes (cf. sap.dataaccess-common.

 and).promocachespec sap.dataaccess-common.basepricecachespec
 The longer a query result may stay in the cache, the less often it has to be Set the time to live of named query results as long as possible.

read again from the database. On the downside, emergency updates (due to wrong prices, for example) will take longer to become effective since
they will be seen only after the time to live within the cache has expired or if the information was evicted from the cache due to memory shortage.
When using your own database connection pool, make sure the pool size is large enough. To be on the safe side, set the pool to the same
maximum number of threads that may be used by the Web application.

 The log levels "debug" or "trace" should be used only in exceptional cases if something does not work as Set the log level accordingly.
expected.

 UConsider using the bulk access to read regular prices . or eligibilities sing PPS version 2.0 or higher can mean a significant performance
improvement because the bulk access also considers the cache. With PPS version 3.0 or higher, the number of searches supporting a bulk
access has increased:

PPS 2.0 or higher: Regular sales prices. Controlled via configuration parameter sap.client-impl.
basepricebulkaccessitemthreshold
PPS 3.0 or higher: Item eligibilities. Controlled via configuration parameter sap.dataaccess-common.bulkitemelithreshold
PPS 3.0 or higher: Merchandise set eligibilities. Controlled via configuration parameter sap.dataaccess-common.
bulkmerchsetelithreshold
PPS 3.0.14 or higher: Merchandise hierarchy node eligibilities. Controlled via configuration parameter sap.dataaccess-common.
bulkmerchgroupelithreshold

. This keeps the database access times low and Remove obsolete promotions and regular prices from the database on a regular basis
reduces TCO.

 (as of PPS 4.0).Consider to change the default algorithm for best price determination If several promotional rules have the same sequence
and resolution, the PPS tries to determine the combination of rules by giving the best reward for the customer. By default the PPS uses a brute-

. force attempt for this calculation Alternatively, it can use an algorithm which usually takes less time and delivers better results. This algorithm can
 be enabled by setting the property conflictHandlerStrategy to Greedy instead of the default .BruteForce

As of PPS 3.0: For a given combination of business unit and date: Keep the number of promotional rules low that have a certain coupon,
 Usually, these eligibiliies are used in conjunction with item-related eligibilities (such as item, manual eligibility or customer group eligibility.

merchandise group or merchandise set eligibilities), linked with an "&&" combination. For example, "Show coupon XYZ and get x% discount on
". Instead of creating separate rules for each item or merchandise category, it is better to define one rule refering to a merchandise set articles

containing all relevant items. In this case, eligibilities are searched separately and afterwards linked by the application. The following example
shows the behavior depending on the definition of promotional rules. It has no effect if the these rules are defined in one promotion or in separate
promotions. Assume you have a shopping cart with item X-10 and coupon ABC:

100 rules: "Get 10% on item X-i if you show coupon ABC", i=1..100

When searching for eligibilities for coupon code ABC, 100 are found.
The corresponding promotion master data are read (partially), including the combination eligibilties and so on.
For item X-10, the item eligibility is read.
The eligibility trees Only one of these trees is relevant (with eligibility for coupon for all 100 coupon eligibilites are checked.
ABC and item X-10. Only for this combination the loaded promotion is applied.
99 eligibilities and promotional rules were processed but not needed.

1 rule: "Get 10% on an item contained in merchandise group X-1 to X-100 if you show coupon ABC"
When searching for eligibilities for coupon code ABC, 1 is found. It is not required to load the definition of the merchandise set.
The corresponding promotion master data is read (partially), including the combination eligibilties and so on.
For item X-10, the item eligibility is read.
The eligibility tree The system finds out that the corresponding rule may be applied.for one coupon eligibility is checked.
No promotion was read without being needed.

 As of PPS 4.0: Consider setting the initial capacity of the caches for regular prices and eligibility search results. By default, the initial
capacity is very small and the cache sizes are enlarged depending on the incoming requests. However, if the PPS receives requests requiring a

 lot of cache updates within each request, it may run into write contentions if the cache size is not large enough. This can be avoided by setting the
 initial capacity "large enough" (for instance, larger than the number of threads processing the requests). For more information, see the GitHub

 documenation under https://github.com/ben-manes/caffeine/wiki/Faq. Setting the initial capacity is done as follows:
For regular prices (setting capacity to 100): =sap.dataaccess-common.basepricecachespec =100,initialCapacity maximumS

=10000, =10m, =20mize expireAfterAccess expireAfterWrite
For eligibility search results (setting capacity to 100): =sap.dataaccess-common.promocachespec =100,initialCapacity maxim

=10000, =10m, =20mumSize expireAfterAccess expireAfterWrite

Local-PPS-Specific

. This enables the use of optimized SQL statements.Set the target database platform in the JPA parameters

XSA-Based-PPS-Specific

 Unlike the Web application of the PPS, which maintains a thread pool internally, the application router always runs Scale the application router.
in a single thread. This may become a bottleneck if the load is increased. Therefore, use the command to provide enough instances of xs scale
the application. As a starting point, choose 1 application router instance per 10 tomcat threads.

https://github.com/ben-manes/caffeine/wiki/Faq

 .Log failed login attempts only As of with XSA version 1.0.88, it is possible to configure the audit log to create log entries for failed login
attempts only. This considerably reduces the amount of entries and improves performance under high load. Enabling the audit log to consider
only failed attempts is done in the MTAEXT file as follows:

 - name: ppservice-webapp-central
 parameters:
 memory: 4096M
 properties:
 DISABLE_SUCCESSFUL_LOGIN_AUDIT_LOG: "true"

Database Side

 Proper indexes are crucial for fast access times. Since the choice of indexes heavily depends on the Check the database indexes regularly.
database platform and the content of the database tables, it is not possible to give precise recommendation here.

Example: When you use product groups (available with PPS 3.0) with a huge amount of product group entries, it is helpful to create
indexes in table for the item or the product hierarchy node identifiers.SAPPSMERCH_SET

 This may sound obvious but is often overlooked. Again, this depends greatly on the database platform Set the right configuration parameters.
used. Just as an example: if you are using MySQL, setting the option rewriteBatchedStatements=true will have a large impact on IDoc inbound
processing.

PPS Logging and Tracing

PPS uses SLF4J for logging and tracing. SLF4J provides a facade for writing log messages making the application independent from the actual logging
framework. The logging implementation behind SLF4J a common choice of the runtime environment, for example, within SAP Hybris Commerce should be
Log4J2 is used. In addition to the SAP created artifacts, PPS makes use of a variety of open source components relying on different logging frameworks.

To enable consistent logging, you have to do the following:

Spring and the promotion calculation engine (cf. module calcengine-gk) rely on Jakarta Commons Logging (https://commons.apache.org/proper
). To enable logging via the implementation of SLF4J, jcl-over-slf4j is used./commons-logging/

Google Guava relies on the logger provided via the Java JDK. To enable logging via the implementation of SLF4J, jul-over-slf4j is used.
EclipseLink comes with its own logging. To enable logging via the implementation of SLF4J, class com.sap.ppengine.dataaccess.common.util.

is used to redirect the output to SLF4J.impl.Slf4jSessionLogger

Further information about logging bridges can be found here: http://www.slf4j.org/legacy.html

PPS Authentication

Our application is authenticated in SAP HANA XS Advanced Model (XSA) using the application router. There are two methods of authentication using an
application router:

OAUTH2 authentication
BASIC authentication

The setup of both authentication methods is the same.
 authentication is always active. If you want to use authentication, you can activate this method additionally.OAUTH2 BASIC

For more information about the application router, see the SAP HANA Developer Guide for SAP HANA XS Advanced Model > Chapter 9: Maintaining XS
Advanced Application Routes and Destinations.
For more information about the XSA security concept, see SAP HANA Developer Guide for SAP HANA XS Advanced Model > Chapter 10: Setting Up
Security Artifacts.

Enabling XSA Authentication

When writing own log messages, use SLF4J as well. This ensures a fast logging and consistent configuration, also for future deployment
options where a different logging implementation might be used.

Due to the delegation of commons-logging and the native Java logging API to SLF4J, these frameworks cannot be used as logging
implementation, since this would result in an infinite loop.

https://commons.apache.org/proper/commons-logging/
https://commons.apache.org/proper/commons-logging/
http://www.slf4j.org/legacy.html

1.

2.

This section describes how to enable XSA authentication in a Web application. It is assumed that you are using Maven as your build tool. If you use
another build tool, you have to adjust the corresponding steps accordingly.

The file of your Web application must define a and a that contains the scope This scope web.xml <login-config> <security-constraint> Calculate.
is needed to use the service and the URL patterns that are to be protected.

web.xml

 <login-config>
 <auth-method>XSUAA</auth-method>
 </login-config>
 <security-constraint>
 <display-name>SecurityConstraint</display-name>
 <web-resource-collection>
 <web-resource-name>WRCollection</web-resource-name>
 <url-pattern>/restapi/*</url-pattern>
 <url-pattern>/restapi</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Calculate</role-name>
 </auth-constraint>
 </security-constraint>

XSA applications are expected to have a Web part and a back-end part. The Web part contains all the UI stuff (static content) and also the
authentication and redirection task. The back-end part contains the business logic. Authentication and redirection is executed with the application
router, which is an XSA feature. As the PPS does not need a UI, our Web part consists only of the application router part.

The application router function is configured in a file called package.json. This file defines the start script and the version of the
application router. It is located in Maven module ppservice-approuter (Web folder).

package.json

{
 "name": "ppengine-approuter",
 "dependencies": {
 "approuter": "2.3.0"
 },
 "scripts": {
 "start": "node node_modules/approuter/approuter.js"
 }
}

To redirect incoming requests correctly, our application router needs routes to be defined in the file xs-app.json. This file is also located
in Maven module ppservice-approuter (Web folder).

xs-app.json

{
 "routes": [
 {
 "source": "/restapi",
 "destination": "java",
 "authenticationType": "basic",
 "csrfProtection": false,
 "scope": "$XSAPPNAME.Calculate"
 },
 {
 "source": "^/(.*)",
 "localDir": "resources"
 }
]
}

You need at least version 1.6.3 to configure the application router function.

2.

3.

In this example, the route to our is the most important. The name of the is . It needs to be aligned with the restapi destination java
corresponding destination in the manifest file. The is set to . With this parameter you can, for example, authenticationType basic
specify that basic authentication should also be supported). is disabled and the for our webapp is set.csrfProtection scope

Since the PPS does not need a UI, the file is just an empty HTML page. The is called after a successful login index.html index.html
(only in the case of authentication).OAUTH
This file is also located in Maven module (folder).ppservice-approuter web/resources

index.html

<!DOCTYPE HTML>
<html>
 <head>
 <title>ppservice-approuter</title>
 </head>
 <body>
 </body>
</html>

To deploy your application router and your Web application, you need to create the following files:

assembly.xml

<!-- Artifact: assembly @Copyright (c) 2016, SAP SE, Germany, All rights
 reserved. -->
<assembly
 xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.3
http://maven.apache.org/xsd/assembly-1.1.3.xsd">
 <id>mta</id>
 <formats>
 <format>jar</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <files>
 <file>
 <source>./mtad.yaml</source>
 <outputDirectory>META-INF</outputDirectory>
 </file>
 <file>
 <source>./xs-security.json</source>
 <outputDirectory>.</outputDirectory>
 </file>
 </files>
 <fileSets>
 <fileSet>
 <directory>../ppservice-approuter/web</directory>
 <outputDirectory>web</outputDirectory>
 <excludes>
 <exclude>pom.xml</exclude>
 </excludes>
 </fileSet>
 </fileSets>
 <dependencySets>
 <dependencySet>
 <includes>
 <include>com.sap.retail.ppservice:ppservice-webapp-central</include>
 </includes>
 <outputDirectory>/</outputDirectory>
 <outputFileNameMapping>ppservice-webapp-central.war</outputFileNameMapping>
 </dependencySet>
 <dependencySet>
 <includes>
 <include>*:sources</include>
 </includes>
 <outputDirectory>src</outputDirectory>

3.

 </dependencySet>
 <dependencySet>
 <includes>
 <include>*:javadoc</include>
 </includes>
 <outputDirectory>javadoc</outputDirectory>
 </dependencySet>
 </dependencySets>
</assembly>

The file contains the linking of the different files that are needed for the deployment and the dependency to the webapp.assembly.xml

mtad.yaml

_schema-version: "2.0.0"
ID: com.sap.retail.ppservice.XSAC_OPP_PPS
version: 1.0.0
modules:
 - name: ppservice-approuter
 type: javascript.nodejs
 path: ./web
 requires:
 - name: ppServiceUaa
 - name: java
 group: destinations
 properties:
 name: java
 url: ~{url}
 forwardAuthToken: true

 - name: ppservice-webapp-central
 type: java.tomcat
 path: ppservice-webapp-central.war
 properties:
 JBP_CONFIG_RESOURCE_CONFIGURATION:
 JBP_CONFIG_JAVA_OPTS:
 provides:
 - name: java
 properties:
 url: "${default-url}"
 requires:
 - name: ppeHana
 - name: ppServiceUaa

resources:
 - name: ppeHana
 type: org.cloudfoundry.user-provided-service

 - name: ppServiceUaa
 type: com.sap.xs.uaa-space
 parameters:
 config_path: xs-security.json

The file contains both modules (approuter and webapp) and the resources (only services).mtad.yaml

SL_MANIFEST.xml

<!--
Artifact: SL_MANIFEST
@Copyright (c) 2016, SAP SE, Germany, All rights reserved.
-->
<software-component-version formatVersion="1.0" schemaVersion="1.0">
 <software-component-version-key>
 <PPMS-ID>73554900100200005395</PPMS-ID>
 <name>XSAC_OPP_PPS</name> <!--change also in mtad.yaml-->
 <version>1</version>
 <vendor>sap.com</vendor>

3.

 </software-component-version-key>
 <caption>XSAC_OPP_PPS 1</caption>
 <sp>
 <sp-key>
 <name>SP000</name>
 <sp-level>000</sp-level>
 <vendor>sap.com</vendor>
 </sp-key>
 <patch-level>0</patch-level>
 <sp-caption>SP000 for XSAC_OPP_PPS 1</sp-caption>
 </sp>
 <runtime-type>XSART</runtime-type>
</software-component-version>

The file contains only some naming and version information.SL_MANIFEST.xml

sap-xsac-opp-pps pom.xml

<?xml version="1.0"?>
<!-- Artifact: pom @Copyright (c) 2016, SAP SE, Germany, All rights reserved. -->
<project
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>xsac-pps-parent</artifactId>
 <version>1.0.0</version>
 </parent>
 <artifactId>sap-xsac-opp-pps</artifactId>
 <name>sap-xsac-opp-pps</name>
 <packaging>pom</packaging>
 <url>http://sap.com</url>
 <dependencies>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppservice-webapp-central</artifactId>
 <version>${project.version}</version>
 <type>war</type>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppservice-approuter</artifactId>
 <version>${project.version}</version>
 <type>pom</type>
 </dependency>
 <!-- Set dependency to Source JARs. Unfortunately they seem to be not transitive -->
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-core</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-client-impl</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-dataaccess-interface</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-dataaccess-common</artifactId>
 <version>${version.pps}</version>

3.

 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-jackson</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-restapi</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-client-interface</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-psi-sap</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-core</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-dataaccess-sap</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>

 <!-- Set dependency to JavaDoc JARs. Unfortunately they seem to be not transitive -->
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-core</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-client-impl</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-dataaccess-interface</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-dataaccess-common</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-jackson</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>

3.

 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-restapi</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-client-interface</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-psi-sap</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-core</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-dataaccess-sap</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>

 </dependencies>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptors>
 <descriptor>assembly.xml</descriptor>
 </descriptors>
 </configuration>
 <executions>
 <execution>
 <id>assemble-mta-archive</id>
 <phase>prepare-package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <archive>
 <addMavenDescriptor>false</addMavenDescriptor>
 <manifest>
 <addDefaultImplementationEntries>false<
/addDefaultImplementationEntries>
 <addDefaultSpecificationEntries>false<
/addDefaultSpecificationEntries>
 </manifest>
 <manifestSections>
 <manifestSection>
 <name>web/</name>
 <manifestEntries>
 <Content-Type>text/directory</Content-Type>
 <MTA-Module>ppservice-approuter</MTA-Module>
 </manifestEntries>
 </manifestSection>
 <manifestSection>
 <name>ppservice-webapp-central.war</name>
 <manifestEntries>
 <Content-Type>application/zip</Content-Type>
 <MTA-Module>ppservice-webapp-central</MTA-Module>
 </manifestEntries>
 </manifestSection>

3.

 <manifestSection>
 <name>xs-security.json</name>
 <manifestEntries>
 <Content-Type>application/json</Content-Type>
 <MTA-Resource>ppServiceUaa</MTA-Resource>
 </manifestEntries>
 </manifestSection>
 <manifestSection>
 <name>META-INF/mtad.yaml</name>
 <manifestEntries>
 <Content-Type>text/plain</Content-Type>
 </manifestEntries>
 </manifestSection>
 </manifestSections>
 </archive>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>${version.maven.antrun}</version>
 <executions>
 <execution>
 <id>filter-metadata</id>
 <phase>none</phase>
 </execution>
 <execution>
 <id>copy-jar-to-mtar</id>
 <phase>package</phase>
 <goals>
 <goal>run</goal>
 </goals>
 <configuration>
 <target>
 <copy
 file="${project.build.directory}/sap-xsac-opp-pps-${project.version}-
mta.jar"
 tofile="${project.build.directory}/sap-xsac-opp-pps-${project.
version}.mtar" />
 </target>
 </configuration>
 </execution>
 <execution>
 <id>copy-SL_MANIFEST.XML</id>
 <phase>prepare-package</phase>
 <goals>
 <goal>run</goal>
 </goals>
 <configuration>
 <target>
 <copy file="${basedir}/SL_MANIFEST.XML" tofile="${project.build.
directory}/SL_MANIFEST.XML" />
 </target>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>com.sap.lm.sl.alm.prod.assembler</groupId>
 <artifactId>alm-prod-assembler-maven-plugin</artifactId>
 <version>${version.maven.alm.assembler}</version>
 <configuration>
 <mtaSourceDirs>
 <param>${project.build.directory}</param>
 </mtaSourceDirs>
 <targetDir>${project.build.directory}</targetDir>
 <resultZip>${project.build.directory}/sap-xsac-opp-pps-${project.version}.zip<
/resultZip>
 <overwrite>true</overwrite>
 </configuration>

3.

4.

 <executions>
 <execution>
 <id>create-SCA</id>
 <phase>package</phase>
 <goals>
 <goal>assemble</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <executions>
 <execution>
 <id>attach-distributions</id>
 <phase>verify</phase>
 <goals>
 <goal>attach-artifact</goal>
 </goals>
 <configuration>
 <artifacts>
 <artifact>
 <file>${project.build.directory}/sap-xsac-opp-pps-${project.version}.
mtar</file>
 <type>mtar</type>
 </artifact>
 <artifact>
 <file>${project.build.directory}/XSACOPPPPS${version.software.
component}.ZIP</file>
 <type>zip</type>
 </artifact>
 </artifacts>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

The block in this pom file ensures the creation of the MTA and SCV files. All these files are located in Maven module (<build> sap-xsac-opp-pps
directly under the root folder).

A file is needed to define the , and of our application. This can be done with a file called scopes attributes role-templates xs-security.json. This
:file is also located directly under Maven module , and could look as followssap-xsac-opp-pps

xs-security.json

{
 "xsappname" : "ppservice-webapp-central",
 "scopes" : [{
 "name" : "$XSAPPNAME.Calculate",
 "description" : "calculate" }
],
 "role-templates": [{
 "name" : "PPE_ROLE_TEMPLATE",
 "description" : "PPE Role Template",
 "scope-references" : [
 "$XSAPPNAME.Calculate"]
 }
]
}

In this example, one and one are defined. The scope is checked by the application router and in the file.role-template scope web.xml

Price and Promotion Repository
This chapter describes how the price and promotion repository () is PPR realized.

Overview

The effective sales price is calculated by the promotion pricing service. This service uses a promotion and provides an interface (client calculation engine
API) to request a price calculation and an interface to read the data from the database (data access API). The data access API reads price-relevant data in
an ARTS-like format. Therefore, we can speak of price rules that calculate the effective sales price. The price rules are maintained based on the DDF offer
model that is currently included only in SAP Customer Activity Repository.

As the promotion needs the data delivered in an ARTS-like format, the DDF offer has to be translated into this ARTS-like format and the calculation engine
translated price rule has to be stored in the OPP promotion.

The following sections give an overview of the modeling of an OPP promotion and the transformation of a DDF offer into an OPP promotion.

Modeling of OPP Promotions

In the OPP promotion, the entity represents the root entity. This entity consists of status information, validity, DDF offer ID, and others. Promotion
A language-dependent promotion description is assigned to each OPP promotion in the entity. At least one business unit is assigned in PromotionText
the entity. BusinessUnitAssignment Contains the DDF offer terms for product groups, the several items or product hierarchy nodes assigned to the
product groups are stored as subentity to the in the entity.Promotion MerchandiseSet

An OPP promotion can have one or more promotion derivation rules that are independent of each other. For the customer who triggers the promotion,
these promotion derivation rules represent the individual Therefore, each has one or more triggers (reward. PromotionPriceDerivationRule PriceDerivati

) and one . The is effective if all assigned triggers are fulfilled. The following onRuleEligibilities PriceDerivationRule PromotionPriceDerivationRule
triggers are supported:

Trigger Description

ItemPriceDerivationRuleEligibility Is triggered if the specified item (can also include the specified quantity or unit of measurement) is in the
shopping cart.

MerchandiseHierarchyPriceDerivatio
nRuleEligibility

Is triggered if items from the specified merchandise group or article hierarchy node are in the shopping cart.

The standard delivery supports two types of merchandise structures:

Retailer's Merchandise Category Hierarchy
Retailer's Article Hierarchy

TotalPurchaseMarketBasketPriceDeri
vationRuleEligibility

Is triggered if the value of the shopping cart exceeds the specified threshold.

CouponPriceDerivationRuleEligibility Is triggered if the specified coupon number is recorded in a sale.

CustomerPriceDerivationRuleEligibili
ty

This entity associates a price derivation rule with a customer group.

The customer card is the only condition in the DDF offer that is supported for the identification of a customer
group. Therefore, the customer card type from the DDF,

such as "Gold Card", is used as the customer group ID with OPP in the standard delivery.

Individual card numbers are not supported.

ManualPriceDerivationRuleEligibility Is triggered if a manual promotion is coming from the client, for example, by pressing a special key at the
cash register.

The DDF incentive concept is used to specify the manual promotion in the DDF offer.

For the incentive type , you can use , or for . Manual Promotions FreeText Yes No Product is Required

If a product identifier is specified in the offer for the manual promotion, this product identifier and the
incentive class identifier represent the manual promotion.
If there is no product identifier specified in the offer, the incentive type code of the incentive and

 the incentive class identifier represent the manual promotion.

CombinationPriceDerivationRuleEligi
bility

Is triggered the logical combination of its child triggers is fulfilled.if (Logic AND, Logic OR)

All eligibilities described above can be child eligibilities of this combination eligibility.

This trigger can be used to create eligibility trees.

MerchandiseSetPriceDerivationRule
Eligibility

Is triggered if the specified item is in the product group that is modeled as the merchandise set in the PPR.

The specified item is in the merchandise set and valid as a trigger for the associated price derivation rule
when:

The item itself or one of the product hierarchy node where the item is assigned is included in the
product group
and
The item or one of the product hierarchy node where the item is assigned is not excluded in the
product group

The standard delivery supports two types of merchandise structures:

Retailer's Merchandise Category Hierarchy
Retailer's Article Hierarchy

Exactly one , The following specific PriceDerivationRule representing the reward, is assigned to a .PromotionPriceDerivationRule PriceDerivationRules
 are supported:

Reward Description

ItemPriceDerivationRule Denotes discounts for the items on the trigger side.

MixAndMatchPriceDerivationRule

Allows more complex discounting.

A refers to a set of MixAndMatchPriceDerivationRule MixAndMatchPriceDerivationItems

that can be logically linked (AND/OR/ SET).

A specifies the MixAndMatchPriceDerivationItem PromotionalProduct

(either a single product or a merchandise hierarchy group) for which the discount is to be applied,
and the discount as such.

ExternalActionPriceDerivationRule This kind of does not define a specific reward or discount, but itPriceDerivationRule

contains information that is to be processed by the client of the promotion pricing service (PPS).

The DDF incentives are used to provide information to the caller in a generic way.

The promotion pricing service returns the information about the external action to the client.

An refers to a set of ExternalActionPriceDerivationRule ExternalActionRuleParameters

containing simple Key/Value pairs that can be interpreted by the caller.

In the standard shipment, the following language-independent attributes of an incentive

are provided (if filled) as : ExternalActionRuleParameters

Product ID/free style ID
Incentive quantity
Incentive value
Incentive value adjustment

Additionally, the refers to a set of ExternalActionPriceDerivationRule ExternalActionRuleTexts

containing the language-dependent texts for the external action.

In the standard shipment, the attribute Incentive Type description

is provided as ExternalActionRuleTexts.

ManualPriceDerivationRule This type of specifies the item discount on trigger side, or determines that the item PriceDerivationRule
discount comes from the client.

Keys and Foreign Keys

Unique identifiers (IDs) are generated for the promotion-related entities during the mapping. A new number range object is used for this. /ROP/PROID
Additionally, the identifier for the DDF offer is also in the entity. Promotion

Eligibilities can be modeled as condition trees. Therefore, all eligibility entities have also a and a ParentPriceDerivationRuleEligibilityID RootPriceDeriva
 as a foreign key. In an eligibility tree, the refers to the key of the parent node and the tionRuleEligibilityID ParentPriceDerivationRuleEligibilityID RootP

 to the key of the root node. If the condition for the is not a tree, the riceDerivationRuleEligibilityID PromotionPriceDerivationRule ParentPriceDerivatio
and the are identical to the .nRuleEligibilityID RootPriceDerivationRuleEligibilityID PriceDerivationRuleEligibilityID

As the provides the association between the eligibilities and price derivation rule, the anPromotionPriceDerivationRule PriceDerivationRuleEligibilityID
d the are foreign keys in this entity. For eligibility trees, the refers to the key of the root node.PriceDerivationRuleID PriceDerivationRuleEligibilityID

Validity Period for the OPP Promotion

The validity period for an OPP promotion (and) is mapped EffectiveDate ExpiryDate from the DDF offer. This date is interpreted as the local time of the
client that is using the OPP promotion.

Database Tables

The OPP promotions are stored in the following database tables in SAP Customer Activity Repository:

/ROP/PROMOTION
A table for promotion-relevant header data. A promotion can have one or more promotion price derivation rules.
/ROP/PROMO_RULE
A table for promotion price derivation rules that provides the association between eligibility and price derivation rule to determine the price
modification.
/ROP/ELIGIBILITY
A table for all data that is relevant for the eligibilities of the promotion.
/ROP/PRICE_RULE
A table for price derivation rules that represent the reward for the customer at the point of sale.
/ROP/MAM_ITEM
A table for mix-and match price derivation items that specifies matching items that may be used to trigger the price derivation rule.
/ROP/PROMO_BU
A table for the business units for which the promotion is relevant.
/ROP/PROMO_TEXT
A table for the language-dependent texts of a promotion.
/ROP/EX_ACT_PARM
A table for the language-independent attributes of an external action.
/ROP/EX_ACT_TEXT
A table for the language-dependent texts of an external action.
/ROP/MERCH_SET
A table to store the entries of the merchandise sets (product groups) within the promotion.

Handling of Amounts

In the database tables of an ABAP system, amounts are stored in a special format. In this format, amounts always have 2 decimals, regardless of whether
this number of decimals is allowed for the corresponding currency of the stored amount. Consider the following examples (comma ',' used as thousands
separator, dot '.' used as decimal mark):

Currency Decimals Amount Value stored on DB (using a CURR 19,5 field)

EUR (Euro) 2 1234.56€ 1,234.56000

All ABAP data elements referring to ABAP domain will be mapped to Java Long values in the promotion pricing service. In /ROP/LONG
addition, the database type BIGINT will be used by default . Therefore, values exceeding the range of Java Long if the service is deployed locally
must be avoided.

This is particularly important when defining the number range intervals Furthermore, this is important for IDs of the promotion and other entities.
for the control parameters and of a promotion price derivation rule as these parameters refer to this domain. This means sequence resolution
they with values outside of the Java Long range. The following tables show the difference in the value ranges: cannot be provided

Type From To

java.lang.Long -9,223,372,036,854,775,808 9,223,372,036,854,775,807

/ROP/LONG -9,999,999,999,999,999,999 9,999,999,999,999,999,999

1.

JPY (Japanese Yen) 0 ¥1234 12.34000

BHD (Bahrain Dinar) 3 1234.567 BD 12,345.67000

The correct display of the amounts within the using ABAP application is usually achieved via conversion exits on the UI level - within the program logic of
ABAP application the database format is used. However, in the context of OPP, this storage of amounts has the following consequences if currencies with
other than 2 decimals are used:

Amounts sent via IDocs must be converted into an external format having the decimal mark at the correct position (for regular prices as well as
promotional entities).
Java applications directly accessing the database of the central Price and Promotion Repository must be aware of this format and must perform a
scaling of values prior to the calculation. How this is done is explained in the documentation of the PPS module dataaccess-common.
ABAP applications receiving amounts in external format having the decimal place at the right position (either within IDocs or when requesting the
price calculation from a PPS) must convert between the ABAP internal representation of amount and the external format. In particular, this is the
case for the integration of the PPS based price calculation into the ERP sales order processing.

Note that local copies of the Price and Promotion Repository exclusively used by the Java based PPS store amounts in the "natural" format, having the
decimal place at the correct position. This is e.g. the case for the local PPS integrated into SAP Hybris Commerce.

The decimals of a currency are stored in an ABAP system in database table , containing only those currencies having not 2 decimals. The number TCURX
of decimals also influences the rounding control data of an OPP promotion. By default discounts are to be rounded to the smallest amount which can be
expressed in the corresponding currency.

Transformation from DDF offers into OPP Promotion

Technical Information

The offer transformation transforms a DDF offer into an OPP promotion. This promotion is then saved in the . price and promotion repository This
transformation is performed automatically during the creation and update as well as during the preceding validation of a DDF offer.

During the validation of the offer it is checked if the offer can be transformed into an OPP promotion. This depends on the offer types and the combination
of offer features that are supported with OPP. The validation of the transformation of a DDF offer into an OPP promotion is triggered if the status of the
offer is switched to a status that is relevant for transformation. The following table shows which offer status translate to which status of an OPP promotion.

DDF Offer Status OPP Promotion Status Comment

In Process Inactive OPP promotion will be written with this status only if it was previously in status "Active"

Recommended Inactive OPP promotion will be written with this status only if it was previously in status "Active"

Approved Active

Released Active

Cancelled Inactive OPP promotion will be written with this status only if it was previously in status "Active"

<Logically Deleted> Cancelled Actually not an offer status

The use of the offer statuses "Released" and "Cancelled" is controlled via a Customizing switch located in Customizing under Cross-Application
. The name of the switch is "Offer Status Components > Demand Data Foundation > Data Maintenance > Offer > Maintain Indicators for Offer Calculations

Management". For more information about offer status management, see the application help of SAP Promotion Management on SAP Help Portal at https:/
 > > > > > . The mapping of /help.sap.com/viewer/p/CARAB <Version> Application Help SAP Promotion Management Promotion Planning Maintain Offers

status values is independent of this Customizing switch. The class controls which values of the offer status are translated into status /ROP/CL_CONFIG
"Active" for an OPP promotion.

You can also manually transform DDF offers using program in SAP Customer Activity Repository. This program reads all /ROP/R_OFFER_TRANSFORM
DDF offers with the relevant status according to the selection criteria and validates and converts the DDF offers into OPP promotions. Afterwards, it saves
the OPP promotions in the SAP Customer Activity database for reuse. If an offer cannot be transformed, the other offers will still be processed using
resumable exceptions. The following classes and BAdIs are relevant for the transformation of DDF offers into OPP promotions:

/ROP/CL_OFFER_MAPPER is the entry point for the offer transformation. It expects a list of DDF offers and returns a list of OPP promotions.
This class implements both the interface for the mapping and the validation of an offer.
The mapping logic is realized by calling a number of BAdIs that are contained in enhancement spot . These BAdIs offer /ROP/OFFER_MAPPING
(but do not enforce) a three-step process to :

Offer classification (mandatory)
The offer is analyzed and classified in this step. For example, Only BUY terms linked with OR.
This step results in an offer classification, an offer classification group, and information about whether a promotion recipe has to be

In this chapter, the term reflects the result of the offer classification as, for example, .offer classes simple discount offer

https://help.sap.com/viewer/p/CARAB
https://help.sap.com/viewer/p/CARAB

1.

2.

3.

created. The corresponding BAdI is . OPP offers an implementation using the class /ROP/OFFER_CLASSIFIER /ROP
./CL_OFFER_CLASSIFIER

Creation of a promotion recipe (optional)
A recipe can be created for a given classified offer in this step. A recipe is a structure () with detailed /ROP/BL_PROMO_RECIPE_STY
information about how to create the OPP promotions in step 3. The recipe determines the transformation from a high-level perspective.
The following main instructions for the mapping are offered in the promotion recipe:

How many promotion rules are to be created
Which types of price rules are to be created
Which offer terms are to be used to create eligibility trees and how these trees are to be combined
Which offer terms are to be used to create mix-and-match items and how these items are to be combined

 The corresponding BAdI is . This BAdI has the classification group determined in step 1 as filter. /ROP/PROMO_RECIPE_BUILDER a
We offer one implementation using the class ./ROP/CL_PROMO_RECIPE_BUILDER
Building the promotion (mandatory)

the offer (and optionally the recipe determined in step 2) are used to create the promotion. If you are using the recipe, the In this step,
implementation can be done in a generic and straightforward way. The corresponding BAdI has the /ROP/PROMO_BUILDER
classification group determined in step 1 as a filter. We offer one implementation using the class ./ROP/CL_PROMO_BUILDER

All three BAdIs have multiple implementations. In addition, the sequence in which the implementations are executed can be determined. This
is done by implementing the BAdI for all BAdIs of the three-step process and by offering an execution sequence number that is BADI_SORTER
specified for each BAdI implementation. SAP implementations have the sequence number 0.
This means that you are free to add preprocessing (sequence number < 0) and postprocessing (sequence number > 0) steps for the SAP
implementations. These SAP implementations can be deactivated.

For more information about the offer transformation, see the corresponding BAdI documentation for enhancement spot /ROP/OFFER_MAPPING.

Change pointers can be created when DDF offers are transformed into OPP promotions. These change pointers are used during the delta replication of
the data replication framework (DRF). The change pointers are created using an implementation of the BAdI in /ROP/PROMO_CHANGE_POINTER
enhancement spot . The standard SAP system offers an implementation of this BAdI using the class /ROP/PROMOTION_DB /ROP

This class creates master data governance (MDG) change pointers based on the business object . You can /CL_PROMO_OUT_MDG_CP. ROP_PROMO
use this BAdI to modify the pointer creation or implement your own pointer creation. If you do not want to use the DRF change message, or if no MDG
change pointers are to be created, you can deactivate the BAdI implementation.

For more information about change pointers for the OPP promotion outbound, see the corresponding BAdI documentation for enhancement spot /ROP
/PROMOTION_DB.

How We Transform DDF Offers into OPP Promotions

A DDF offer can have one or more BUY terms and no GET term. However, a BUY term in an offer is mandatory. A combination of BUY terms and one or
more GET terms is possible. GET or BUY terms are logically linked with AND or OR. If terms linked with OR means that at least one term must match the

 A discount can be basket and AND means that all terms must match the shopping cart (means all terms of the offer must be in the cart to get the reward).
defined on the BUY side and on the GET side of an offer. The GET lines are relevant only if the BUY lines are filled. However, the discounts of the BUY
side become effective even if the GET side has no entries. The prerequisites for getting a reward can also be defined on the BUY side and on the GET
side. Prerequisites are defined on the GET side if there are terms linked with AND on the GET side. To get the discount, all the products defined in the
GET terms have to be in the shopping cart. A DDF offer can also have one or more incentives. These incentives can have the type and the type Condition

. The offers for all incentives supported by the OPP need to be linked with AND. Reward

The ARTS-like OPP promotion makes a distinction between triggers and rewards. The transformation of offers into OPP promotions means that discounts
granted on the offer BUY side are pulled to the ARTS reward side (). Prerequisites defined on the GET side have to be pulled from PriceDerivationRule
the GET (reward) side to the trigger side. Rewards that are independent of each other (such as a reward defined in BUY terms linked with OR) lead to
several .PromotionPriceDerivationRules

To simplify these complex transformation rules, several offer types are classified in offer classes. This classification is done in the BAdI /ROP
. Based on an offer class, a recipe can be built that contains the construction information to create a promotion. This recipe is built /OFFER_CLASSIFIER

in the BAdI /ROP/PROMO_RECIPE_BUILDER. Based on the offer class and the construction recipe, the mapping can be done in a generic
 These BAdIs are called during the validation and transformation of straightforward way with the BAdI that builds the promotion. /ROP/PROMO_BUILDER

a DDF offer into an OPP promotion.

Sequence & Resolution

The OPP promotion data model offers the fields sequence and resolution that control the behavior in the following cases:

Several OPP promotions related to the shopping cart are eligible for the same shopping cart.
Several OPP promotions related to the line items are eligible for the same line item.

In this case, the sequence number determines the order in which the promotion price derivation rules are applied. If the sequence numbers are
the same, only the promotion price derivation rule with the highest resolution number is applied. If the sequence number and the resolution
number are the same, a best price calculation is performed.

Note that there is a strict separation of line item-related price rules and transaction-related price rules. All line item-related price rules are
executed before all transaction-related, in other words the scope of the price rule can be seen as an additional sort criterion to the sequence
numbers.

The sequence and resolution are set in the standard shipment as follows:

Transformation of Simple Discount Offers

A simple discount is an offer without get terms that can have one or multiple buy terms with a defined discount. If this offer type has multiple buy terms,
they are linked with Or and do not depend on each other. This offer type can be combined with incentives of class types Condition and Reward.

This offer type is a separate offer class. The SAP recipe for this offer class defines that one is to be created for each BUY PromotionPriceDerivationRule
term, and the assigned to the are of type .PriceDerivationRules PromotionPriceDerivationRules ItemPriceDerivationRule

Examples

The following examples for simple discount offers and tables show how these offers are transformed into OPP promotions. The examples are restricted to
the most relevant database fields. Fields that are always filled with a default value are listed separately in the section .Default Values

Example 1: Buy one item of product A for a discount of 10%, or buy three items of product B for a discount of 20%

This offer is translated to the following independent for one promotion per product:PromotionPriceDerivationRules

A rule that sets a discount for each product A in the shopping cart.
A rule that sets a discount for each three items of product B.
In this case, the customer has to purchase at least three items of product B (or multiples of three) to receive the discount. After the multiple of
three is reached the remaining items will be sold at the regular price.

The following table shows how this example is translated to the price and promotion repository:

ENTITY Field Mapping

Promotion

 PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

 ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
= 1IntervalQuantity

 = ACStatusCode

 ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = TPPriceModificationMethodCode
 = 10.000PriceModificationPercent

 = 00DiscountMethodCode

 PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 2
 = 2Sequence
 = 0Resolution

 ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTIThresholdTypeCode
 = 3ThresholdQuantity

The sequence of a promotion price derivation rule is the same as its ID.
Exception: If an offer consists of a BUY and a GET side, two promotion price derivation rules are created, both with the same
sequence.
The resolution of a promotion price derivation rule is set to . 0
Exception: If an offer consists of a BUY and a GET side, two promotion price derivation rules are created. The rule containing only the
terms of the BUY side has the resolution , the rule containing the BUY and GET side has the resolution .0 1

The sequence and resolution can be set for each promotion price derivation rule easily during creation of the promotion recipe.

Handling of regular price and EDLP

By default, offers with discount type are transformed like offers with discount type Everyday Low Price (EDLP) Regular Price. In this case, no
discount is defined, and the discount type Everyday Low Price can only be used to define a condition to get a reward. As of PPS 4.0, you can
enable a zero discount for the offer in Customizing. In this case, offers are transformed into OPP promotions with a zero discount. For these
promotions, a monetary discount of zero is applied to the previous price. Hence, a retail price modifier is returned in the calculation response,
but the previous price does not change.

The indicator is set to and no is to be set.Enforce Multiple Yes Limit

 = 9,999,999,999LimitQuantity
 = 3IntervalQuantity

 ItemPriceDerivationRule = RBTypeCode
 = POPriceRuleContolCode

PriceModificationMethodCode = TP
 = 20.000PriceModifcationPercent

DiscountMethodCode = 00

Example 2: Buy for at least USD 50 and get a discount value of USD 10 for your shopping cart total

The prerequisite for the transaction is as on the Minimum spend amount modeled TotalPurchaseMarketBasketPriceDerivationRuleEligibility
eligibility side. The discount for the shopping cart is stored in the with a (ItemPriceDerivationRule PriceRuleControlCode SU Transaction Discount

).Calculated After Subtotal

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

TotalPurchaseMarketBasketPriceDerivationRuleEligibility TypeCode = TOTL
 = 50.000TransactionItemTotalRetailTriggerAmount

 = USD CurrencyCode

ItemPriceDerivationRule TypeCode = RB
 = SUPriceRuleControlCode

 = RTPriceModificationMethodCode
= 10.000PriceModificationAmount

DiscountMethodCode = 00

Example 3: Buy for at least USD 50 from merchandise category MC1 and get a discount of 10%

The prerequisite for the merchandise category is modeled as on the Minimum spend amount MC1 MerchandiseHierarchyPriceDerivationRuleEligibility
eligibility side. The discount is stored in the with a ().ItemPriceDerivationRule PriceRuleControlCode PO Item Discount Calculated After Each Item

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

MerchandiseHierarchyPriceDerivationRuleEligibility TypeCode = MSTR
= 1MerchandiseHierarchyGroupIDQualifier

 = MC1MerchandiseHierarchyGroupID
ThresholdTypeCode = AMTI
ThresholdAmount = 50.000
LimitAmount = 150.000
IntervalAmount = 50.000

 = USDCurrencyCode

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = TPPriceModificationMethodCode
= 10.000PriceModificationPercent

 = 00DiscountMethodCode

The indicator is set to and is to be set to 1.Enforce Multiple Yes Limit

The indicator is set to and the is to be set to 3.Enforce Multiple Yes Limit

Example 4: Buy three products of product group 'Yoghurt' for a discount price of USD 1.33

 The product group 'Yoghurt' has the following components:

 - Merchandise groups MC1 and MC2
 - Item A and Item B are also included

This offer is translated to one PromotionPriceDerivationRule. As the threshold quantity is greater than one, the PromotionPriceDerivationRule is consi
dered as only "Shopping Cart" relevant and the corresponding indicator (attribute) is set. The product group is notConsideredInLineItemModeFlag
modeled as an eligibility tree with the two merchandise categories and the two products as child eligibilities below the CombinationPriceDerivationRuleEl
igibility that uses the combination code (OR with total quantity)OR . The threshold quantity and the limit information is also stored in the CombinationPric
eDerivationRuleEligibility. The discount is stored in the ItemPriceDerivationRule with a PriceRuleControlCode PO (Item Discount Calculated After
Each Item). Information about the indicator is stored in the (attribute Regular Price Only ItemPriceDerivationRule noPreviousMonetaryDiscountAllowed

).Flag

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

= X NotConsideredInLineItemModeFlag

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = ORCombinationCode

 = QUTIThresholdTypeCode
 = 3ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 3IntervalQuantity

 = PCUomCode

 MerchandiseHierarchyPriceDerivationRuleEligibility TypeCode = MSTR
= 1MerchandiseHierarchyGroupIDQualifier

 = MC1MerchandiseHierarchyGroupID
 = COMBThresholdTypeCode

MerchandiseHierarchyPriceDerivationRuleEligibility TypeCode = MSTR
= 1MerchandiseHierarchyGroupIDQualifier

 = MC2MerchandiseHierarchyGroupID
 = COMBThresholdTypeCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = PTPriceModificationMethodCode
= 1.33PriceModificationPercent

 = 00DiscountMethodCode
= XNoPreviousMonetaryDiscountAllowedFlag

Example 5: Buy three products of product group 'Yoghurt' for a discount price of USD 1.33

 The product group 'Yoghurt' has the following components:

Merchandise Hierarchy

A merchandise hierarchy (DDF: product hierarchy) can be an article hierarchy or a merchandise category hierarchy. When replicated from SAP
ERP, an article hierarchy has an alphanumeric indicator that uniquely identifies the article hierarchy. The merchandise category hierarchy has
no such an indicator in SAP ERP. Therefore, the DDF default indicator for the merchandise category hierarchy is . This value is also mapped 1
to the price and promotion repository in the field and can be used to identify the merchandise MerchandiseHierarchyGroupIDQualifier
category hierarchy. The identifier from SAP ERP is mapped to this field for article hierarchies.

 In this example the Customizing switch for using the enhanced product groups is inactive and so the inclusion of items and
merchandise hierarchy nodes is supported.

The product group 'Yoghurt' consists of a subset of assignments of two merchandise categories and two single products. The inEnforce Multiple
dicator is set to indicator is also be set and no is to be set.Yes, the Regular Price Only Limit

 - Merchandise group MC1 is included

 - Merchandise group MC2 is excluded

 - Item A and Item B are also included

This offer is translated to one . As the threshold quantity is greater than one, the consiPromotionPriceDerivationRule PromotionPriceDerivationRule is
dered as only "Shopping Cart" relevant and the corresponding indicator (attribute) is set. notConsideredInLineItemModeFlag

The product group is modeled as , which contains the threshold values and a reference to the MerchandiseSetPriceDerivationRuleEligibility
MerchandiseSet, which is a subentity to the The components of the product group (items and merchandise hierarchy nodes) are stored in the Promotion.

The consists of a root node with type code . Below this root node, there are the items and merchandise groups MerchandiseSet. MerchandiseSet OPR
modeled as child nodes. The for child nodes marks the node as included, the means the child node is excluded in the Combination '1' Combination '2'
product group. The discount is stored in the with a (The ItemPriceDerivationRule PriceRuleControlCode PO Item Discount Calculated After Each Item)
information about the indicator is stored in the (attribute).Regular Price Only ItemPriceDerivationRule noPreviousMonetaryDiscountAllowedFlag

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion PromotionID = 1

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

= X NotConsideredInLineItemModeFlag

 MerchandiseSetPriceDerivationRuleEligibility TypeCode = MSET
 = QUTIThresholdTypeCode

 = 3ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 3IntervalQuantity
 = 123MerchandiseSetID

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = PTPriceModificationMethodCode
= 1.33PriceModificationPercent

 = 00DiscountMethodCode
= XNoPreviousMonetaryDiscountAllowedFlag

MerchandiseSet MerchandiseSetNodeID = 100
 MerchandiseSetID = 123

 = 100ParentMerchSetNodeID
 = 100RootMerchSetNodeID

 = 0Combination
 = OPRTypeCode
 = DFOperation

 = 1PromotionID

MerchandiseSet MerchandiseSetNodeID = 101
 MerchandiseSetID = 123

 ParentMerchSetNodeID = 100
 RootMerchSetNodeID = 100

 Combination = 1
 TypeCode = ITEM

 ItemID = A
 PromotionID = 1

MerchandiseSet MerchandiseSetNodeID = 102
 MerchandiseSetID = 123

 ParentMerchSetNodeID = 100
 RootMerchSetNodeID = 100

 Combination = 1
 TypeCode = ITEM

 ItemID = B
 PromotionID = 1

MerchandiseSet MerchandiseSetNodeID = 103
 MerchandiseSetID = 123

 ParentMerchSetNodeID = 100
 RootMerchSetNodeID = 100

 Combination = 1
 TypeCode = MSTR

In this example the Customizing switch for using the enhanced product groups is active. The indicator is set to Enforce Multiple Yes, the
indicator is also be set and no is to be set.Regular Price Only Limit

 MerchandiseHierarchyGroupID = MC1
 MerchandiseHierarchyGroupIDQualifier = 1

 PromotionID = 1

MerchandiseSet MerchandiseSetNodeID = 104
 MerchandiseSetID = 123

 ParentMerchSetNodeID = 100
 RootMerchSetNodeID = 100

 Combination = 2
 TypeCode = MSTR

 MerchandiseHierarchyGroupID = MC2
 MerchandiseHierarchyGroupIDQualifier = 1

 PromotionID = 1

Example 6: Simple Discount Offer with Target Groups

Target groups can be used to provide a customized offer to a specific customer base to maximize margins or sales.

In an SAP CARAB context a target group consists of a set of customers, suspects, or contact persons, categorized according to criteria, such as
geographical location, or common interest that can be used in marketing activities to promote products or services. Based on a target group, the marketing
expert can create a campaign to prepare for follow-on actions, such as marketing campaigns. A target group in an SAP CARAB environment contains the
several information, such as key information (targed group ID), status, member.

As of CARAB 4.0 FP2, offers with target groups are processed and transformed into OPP promotions.

During the transformation of an offer with target group into the OPP promotion, the target group ID is written in the .customer group ID

One or more target groups can be assigned to an offer. However, already one target group can trigger an assigned promotion.

The transformation of offers with target groups is similar to transformation of offers with incentives, e.g. the eligibility tree is also built up with an And-
linking.

Example: Buy one item of product A and get a 10% discount if you belong to at least one of 2 offer target groups TG1 and TG2

If both possible target groups are assigned to the offer, the offer is transformed into the following OPP promotion:

 ENTITY Field Mapping

 Promotion

 PromotionPriceDerivationRule = 1PromotionPriceDerivationRuleID
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility = COMBTypeCode
 = &&CombinationCode

ItemPriceDerivationRuleEligibility = ITEMTypeCode
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
= 1IntervalQuantity

 = ACStatusCode

CombinationPriceDerivationRuleEligibility = COMBTypeCode
 = ||CombinationCode

CustomerPriceDerivationRuleEligibility = CGRPTypeCode
 = TG1CustomerGroupID

CustomerPriceDerivationRuleEligibility = CGRPTypeCode
 = TG2CustomerGroupID

 ItemPriceDerivationRule = RBTypeCode
 = POPriceRuleControlCode

 = TPPriceModificationMethodCode
 = 10.000PriceModificationPercent

 = 00DiscountMethodCode

If only one of the possible target groups is assigned to the offer, the offer is transformed as follows:

 ENTITY Field Mapping

 Promotion

 PromotionPriceDerivationRule = 1PromotionPriceDerivationRuleID
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility = COMBTypeCode
 = &&CombinationCode

ItemPriceDerivationRuleEligibility = ITEMTypeCode
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
= 1IntervalQuantity

 = ACStatusCode

CustomerPriceDerivationRuleEligibility = CGRPTypeCode
 = TG1CustomerGroupID

 ItemPriceDerivationRule = RBTypeCode
 = POPriceRuleControlCode

 = TPPriceModificationMethodCode
 = 10.000PriceModificationPercent

 = 00DiscountMethodCode

Transformation of Offers with Transaction Discount

You use offers with transaction discount to define a discount for an entire shopping cart.

Offers with a transaction discount can have more than one buy term. All other buy terms (except the one term defining the transaction discount) must have
discount type , or if is not enabled in the Customizing.Regular Price EDLP Zero Discount

Additionally, offers with transaction discount can have a get term. In this case, the get term must define the transaction discount and no further discounts
are supported.

As of CARAB 4.0 FP2, offers with transaction discount are transformed into OPP promotions. This offer type is transformed as a simple discount offer. The
type code of the ItemPriceDerivationRule is (Simple Discount) and the price rule control code is (Transaction Discount). The offer term which RB SU
contains the condition to get the reward is only used on the eligibility side (see Example below:).Buy for at least USD 50 of merchandise category MC1

Example: Buy for at least USD 50 of merchandise category MC1 and get a discount of 10% on your entire shopping cart

Entity Field Mapping

Promotion

PromotionPriceDerivationRule = 1PromotionPriceDerivationRuleID
 = 1Sequence
 = 0Resolution

MerchandiseHierarchyPriceDerivationRuleEligibility = MSTRTypeCode
= 1MerchandiseHierarchyGroupIDQualifier

 = MC1MerchandiseHierarchyGroupID
 = AMTIThresholdTypeCode

 = 50.000ThresholdAmount
 = 99,999,999,999,999.000LimitAmount

= 50.000IntervalAmount
 = USDCurrencyCode

ItemPriceDerivationRule = RBTypeCode
 = SUPriceRuleControlCode

 = TPPriceModificationMethodCode
= 10.000PriceModificationPercent

 = 00DiscountMethodCode

Transformation of Mix-and-Match Offers

A mix-and-match offer is an offer with buy terms that are linked with And or with get terms. It defines a combination of products and product counts that
results in a customer reward when purchased together.

This reward can affect prices of products that do not trigger this offer type, for example, buy item A and get items B, C or D at 50% off. Items B, C and D
get the reward and item A would be the trigger item. Items B, C and D are linked to the sale of item A. It is also possible to give a discount on the products
that are the trigger, for example, buy product A and B and get product A for a discount of 50%. In both cases, a mix-and-match offer depends on the
content of an entire transaction.

The Enforce Multiple Indicator is set to Yes and no Limit is set

This offer type into three offer classes with different recipes for the promotion building:can be divided

An offer class for offers with buy terms that are linked with AND and without GET terms.
The recipe defines that only one is to be created for all BUY terms. Furthermore, it defines that the PromotionPriceDerivationRule PriceDerivati

assigned to the is of type and that all BUY terms are linked with onRule PromotionPriceDerivationRule MixAndMatchPriceDerivationRule
AND on the eligibility side.
An offer class for offers with BUY and GET terms that are linked with AND.
The recipe defines that two are to be created. The first is defined only for the PromotionPriceDerivationRules PromotionPriceDerivationRule
reward on the buy side. Therefore, the assigned to the is of type PriceDerivationRule PromotionPriceDerivationRule MixAndMatchPriceDeriv

 and all BUY terms with a discount are that are linked with AND. On the eligibility side all BUY terms are also ationRule MixAndMatchItems
linked with AND. The second is defined for the reward on the GET side. The assigned to PromotionPriceDerivationRule PriceDerivationRule
the is of type and all GET terms with a discount are thaPromotionPriceDerivationRule MixAndMatchPriceDerivationRule MixAndMatchItems
t are linked with AND. On the eligibility side all BUY and all GET terms are linked with AND.
An offer class for offers with BUY and GET terms in which the BUY terms are linked with OR and the GET terms are linked with AND. This means
that each BUY term defines a reward, independent of the content of the entire transaction. The reward on the GET side is given only if all
products from the GET side are in the shopping cart and if at least one of the conditions from the buy side is fulfilled.
The recipe defines that one for each BUY term with a discount is to be created and that the PromotionPriceDerivationRule PriceDerivationRules
 assigned to the is of type Furthermore, a for the PromotionPriceDerivationRules ItemPriceDerivationRule. PromotionPriceDerivationRule
GET terms is be created that refers to an eligibility tree in which all BUY terms are linked with OR and all GET terms are linked with AND. The
linkage between BUY and GET terms is also AND. The assigned to the is of typePriceDerivationRule PromotionPriceDerivationRule MixAnd

and all GET terms with a discount are linked with AND. MatchPriceDerivationRule MixAndMatchItems

Examples

The following section contains some examples for mix-and-match offers and tables that show how these offers are transformed into OPP promotions.

The mapping examples are restricted to the most relevant database fields. Fields that are always filled with a default value are listed separately.

Example 1: Buy one item of product A for a discount price of USD 2,99 and buy one item of product B for a discount of USD 2

The discount for the products is given in this offer only if the two products are purchased together.

This offer is translated to one . The two products are combined with AND as eligibilities and PromotionPriceDerivationRule MixAndMatchPriceDerivatio
.nItems

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
Sequence = 1
Resolution = 0

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
IntervalQuantity = 1

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 IntervalQuantity = 1

MixAndMatchPriceDerivationRule TypeCode = MM
 = &&CombinationCode

 = POPriceRuleControlCode
DiscountMethodCode = 00

MixAndMatchPriceDerivationItem TypeCode = IT
 = AItemID

 = PSPriceModificationMethodCode
= 2.99NewPriceAmount
 = 1 RequiredQuantity

MixAndMatchPriceDerivationItem TypeCode = IT
 = BItemID

Regular Price and Everday Low Price

The discount types and do not define a discount. They are used to define a condition (eligibility) to get a Everyday Low Price Regular Price only
reward. They will be included in the eligibilities but no will be created for them. MixAndMatchItems

 = RSPriceModificationMethodCode
 = 2.00PriceModificationAmount

 = 1 RequiredQuantity

Example 2: Buy one item of product A for its regular price and buy one item of product B for a discount of 10% and you will get one item of
product A for free

The discount for product B is given in this offer only if at least one item of product A is purchased. The reward for product A (one item for free) is given
only if the customer buys at least two items of product A and one additional item of product B.

This offer is translated to the following two independent with the same sequence number but different resolution PromotionPriceDerivationRules
numbers:

The first rule is for the reward on the buy side. The two products are eligibilities and are combined with AND. The is of typePriceDerivationRule
 and the discount for product B is provided as . MixAndMatchPriceDerivationRule MixAndMatchPriceDerivationItem

The second rule is for the reward on the get side. The two products from the BUY terms plus the product from the get side are eligibilities and are
combined with AND. The is of type and product B that has a discount on the BUY side PriceDerivationRule MixAndMatchPriceDerivationRule
and the GET reward for product A as . are provided MixAndMatchPriceDerivationItem

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

MixAndMatchPriceDerivationRule TypeCode = MM
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00 DiscountMethodCode

MixAndMatchPriceDerivationItem TypeCode = IT
 = BItemID

 = RPPriceModificationMethodCode
 = 10.000PriceModificationPercent

 = 1 RequiredQuantity

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 2
 = 1Sequence
 = 1Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode

 = 1ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 1 IntervalQuantity

MixAndMatchPriceDerivationRule TypeCode = MM
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00 DiscountMethodCode

MixAndMatchPriceDerivationItem TypeCode = IT
 = AItemID

 = PSPriceModificationMethodCode
= 0.000NewPriceAmount
 = 1 RequiredQuantity

MixAndMatchPriceDerivationItem TypeCode = IT
 = BItemID

 = RPPriceModificationMethodCode
 = 10.000PriceModificationPercent

 = 1 RequiredQuantity

Example 3: Buy for at least USD 50 and you will get product A for free

The discount for product A is given in this offer only if the customer buys for at least USD 50.
This offer translates to one The transaction condition and the item condition are linked with AND as eligibilities The PromotionPriceDerivationRule. .
discount for product A is modeled as .MixAndMatchPriceDerivationItem

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

 PromotionPriceDerivationRule = 1PromotionPriceDerivationRuleID
 = 1Sequence
 = 0Resolution

 CombinationPriceDerivationRuleEligibility = COMBTypeCode
 = &&CombinationCode

 TotalPurchaseMarketBasketPriceDerivationRuleEligibility = TOTLTypeCode
= 50.000TransactionItemTotalRetailTriggerAmount

 = USD CurrencyCode

 ItemPriceDerivationRuleEligibility = ITEMTypeCode
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = LimitQuantity 1
 = 1 IntervalQuantity

 MixAndMatchPriceDerivationRule = MMTypeCode
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00DiscountMethodCode

 MixAndMatchPriceDerivationItem = ITTypeCode
 = AItemID

 = PSPriceModificationMethodCode
= 0,000NewPriceAmount
 = 1 RequiredQuantity

Example 4: Buy three products of product group 'Yoghurt' and get one product of product group 'Yoghurt' for free.
 The product group 'Yoghurt' has the following components:

 - Merchandise group MC1 is included

The Enforce Multiple flag is to be set to YES and the limit must be 1.

 - Merchandise group MC2 is excluded

 - Item A and Item B are also included

This offer is translated to one the Buy and the Get condition are linked with AND as eligibilities PromotionPriceDerivationRule, MerchandiseSetPriceDer
, which contains the threshold values and a reference to the , which is a subentity to the ivationRuleEligibility MerchandiseSet Promotion.

As the threshold quantity is greater than one, the is considered as only "Shopping Cart" relevant and the corresponding PromotionPriceDerivationRule
indicator (attribute) is set. notConsideredInLineItemModeFlag

The components of the product group (items and merchandise hierarchy nodes) are stored in the The consists of a MerchandiseSet. MerchandiseSet
root node with type code . Below this root node are the items and merchandise groups modeled as child nodes. The for child nodes OPR Combination '1'
marks the node as included, the means the child node is excluded in the product group. The discount is modeled as Combination '2' MixAndMatchPriceDe

. This contains again a reference to the the type code for the item is (product rivationItem MixAndMatchPriceDerivationItem MerchandiseSet, PG
group).

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion = 1PromotionID

PromotionPriceDerivationRule = 1PromotionPriceDerivationRuleID
 = 1Sequence
 = 0Resolution

= X NotConsideredInLineItemModeFlag

CombinationPriceDerivationRuleEligibility = COMBTypeCode
 = &&CombinationCode

MerchandiseSetPriceDerivationRuleEligibility = MSETTypeCode
 = QUTIThresholdTypeCode

 = 3ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 3IntervalQuantity
 = 123MerchandiseSetID

MerchandiseSetPriceDerivationRuleEligibility = MSETTypeCode
 = QUTIThresholdTypeCode

 = 3ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 3IntervalQuantity
 = 123MerchandiseSetID

MixAndMatchPriceDerivationRule = MMTypeCode
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00DiscountMethodCode

MixAndMatchPriceDerivationItem = PGTypeCode
 = PSPriceModificationMethodCode

= 0,000NewPriceAmount
 = 1 RequiredQuantity
= 123MerchandiseSetID

MerchandiseSet = 100MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100ParentMerchSetNodeID
 = 100RootMerchSetNodeID

 = 0Combination
 = OPRTypeCode
 = DFOperation

 = 1PromotionID

MerchandiseSet = 101 MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100 ParentMerchSetNodeID
 = 100 RootMerchSetNodeID

 = 1 Combination
 = ITEM TypeCode

 = A ItemID
 = 1PromotionID

MerchandiseSet = 102 MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100 ParentMerchSetNodeID
 = 100 RootMerchSetNodeID

In this example the Customizing switch for using the enhanced product groups is active. The indicator is set to and no Enforce Multiple Yes Limit
 is to be set.

 = 1 Combination
 = ITEM TypeCode

 = B ItemID
 = 1PromotionID

MerchandiseSet = 103 MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100 ParentMerchSetNodeID
 = 100 RootMerchSetNodeID

 = 1 Combination
 = MSTR TypeCode

 = MC1 MerchandiseHierarchyGroupID
 = MerchandiseHierarchyGroupIDQualifier

1
 = 1PromotionID

MerchandiseSet = 104 MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100 ParentMerchSetNodeID
 = 100 RootMerchSetNodeID

 = 2 Combination
 = MSTR TypeCode

 = MC2 MerchandiseHierarchyGroupID
 = MerchandiseHierarchyGroupIDQualifier

1
 = 1PromotionID

Transformation of Packaged Offers

A packaged offer is a bundling of different items with individual sales prices. When brought together this bundle is sold at a fixed price. The different items
are specified as buy terms and linked with And. This offer type is a separate offer class.

Example: Buy two products of merchandise category MC1 and one item of product A for a fixed total price of USD 24.99

The fixed total price for the products is given in this offer only if the specified products are purchased together.

This offer is translated to one . The buy terms are combined with AND as eligibilities, the set price is stored in the PromotionPriceDerivationRule ItemPric
 with a The package apportioned discount percentages that can be maintained eDerivationRule PriceModificationMethodCode ST (Total Set Price).

during the offer maintenance are not considered.

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

MerchandiseHierarchyPriceDerivationRuleEligibility TypeCode = MSTR
= 1MerchandiseHierarchyGroupIDQualifier

 = MC1MerchandiseHierarchyGroupID
 = QUTIThresholdTypeCode

 = 2ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 2 IntervalQuantity

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

The Enforce Multiple indicator must be set to Yes and no Limit is to be set.

 = STPriceModificationMethodCode
= 24,99NewPriceAmount

 = 00DiscountMethodCode

Transformation of Offers with Incentives

Incentives can be combined with both simple discounts and mix-and-match offers. The following examples show how to transform offers with incentives
into OPP promotions:

Example 1: Mix-and-match offer with incentive category customer card

Pay with your gold card and buy one item of product A for a discount price of USD 3.33, or buy product B for a discount of 10% and get 50% off
for two items of product C.

The discounts for the products A and B are given in this offer only if the customers pay with their gold card. The reward for the two items of product C is
given only if the customers buy at least two items of product C, one item of product A, one item of product B and additionally pay with their gold card.

This offer is translated to four independent :PromotionPriceDerivationRules

The first and the second rule are for the reward on the buy side, one for each BUY term. These two have PromotionPriceDerivationRules
different sequence numbers and the resolution number is 0. On the eligibility side, each BUY term results in an ItemPriceDerivationRuleEligibility
and is linked with AND with a . The assigned to the CustomerPriceDerivationRuleEligibility PriceDerivationRules PromotionPriceDerivation

have the type Rules ItemPriceDerivationRule.
The third and the fourth are for the reward on the get side. The third combined PromotionPriceDerivationRule PromotionPriceDerivationRule
the first BUY term (product A) with the GET term and the customer card, this has the same sequence number as PromotionPriceDerivationRule
the first that contains only the discount from product A and the resolution number is 1. The fourth PromotionPriceDerivationRule PromotionPric

 combined the second BUY term (product B) with the GET term and the customer card, this haseDerivationRule PromotionPriceDerivationRule
the same sequence number as the second that contains only the discount from product B and resolution number PromotionPriceDerivationRule
is also 1.
Eligibility trees are built on the eligibility side. The is combined with the GET term and each with one of CustomerPriceDerivationRuleEligibility
the BUY terms via AND linkage. The assigned to the has the type PriceDerivationRule PromotionPriceDerivationRules MixAndMatchPriceDe

. The discount for the GET term is defined in the and via AND linkage combined with one of the rivationRule MixAndMatchPriceDerivationItem
BUY terms (the same as defined in the eligibility tree).

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

CustomerPriceDerivationRuleEligibility TypeCode = CGRP
 = GOLDCustomerGroupID

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = PTPriceModificationMethodCode
 = 3.33NewPriceAmount

 = 00DiscountMethodCode

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 2
 = 2Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

CustomerPriceDerivationRuleEligibility TypeCode = CGRP
 = GOLDCustomerGroupID

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTIThresholdTypeCode

The indicator is to be set to and no is to be set.Enforce Multiple Yes Limit

 = 1ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 1 IntervalQuantity

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = TPPriceModificationMethodCode
 = 10.000PriceModificationPercent

 = 00 DiscountMethodCode

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 3
 = 1Sequence
 = 1Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

CustomerPriceDerivationRuleEligibility TypeCode = CGRP
 = GOLDCustomerGroupID

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = CItemID

 = QUTIThresholdTypeCode
 = 2ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 2 IntervalQuantity

ItemPriceDerivationRuleEligibility
TypeCode = ITEM

 = AItemID
 = QUTIThresholdTypeCode

 = 1ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 1 IntervalQuantity

MixAndMatchPriceDerivationRule TypeCode = MM
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00 DiscountMethodCode

MixAndMatchPriceDerivationItem TypeCode = IT
 = CItemID

 = RPPriceModificationMethodCode
= 50.000PriceModificationPercent

 = 2 RequiredQuantity

MixAndMatchPriceDerivationItem TypeCode = IT
 = AItemID

 = PSPriceModificationMethodCode
 = 3.33NewPriceAmount
 = 1 RequiredQuantity

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 4
 = 2Sequence
 = 1Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

CustomerPriceDerivationRuleEligibility TypeCode = CGRP
 = GOLDCustomerGroupID

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = CItemID

 = QUTIThresholdTypeCode
 = 2ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 2 IntervalQuantity

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

ThresholdTypeCode = QUTI
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

MixAndMatchPriceDerivationRule TypeCode = MM
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00 DiscountMethodCode

MixAndMatchPriceDerivationItem TypeCode = IT
 = CItemID

 = RPPriceModificationMethodCode
= 50.000PriceModificationPercent

 = 2 RequiredQuantity

MixAndMatchPriceDerivationItem TypeCode = IT
 = BItemID

 = RPPriceModificationMethodCode
= 10.000PriceModificationPercent

 = 1 RequiredQuantity

Example 2: Simple discount offer with incentive category Show Coupon

 0815 and buy one item of product A for a discount of 10% or buy three items of product B for a discount price of Show coupon USD 10.

In this example, the coupon is a condition. This means that the customer has to show the corresponding coupon in order to be eligible for the offer.
Incentives are always linked with AND to its offer. So the offer in this example is translated to the following independent PromotionPriceDerivationRules,
one for each product:

A rule that defines a discount for each product A that is in the shopping cart. On the eligibility side the prerequisite is modeled as Coupon Coupon
 and linked with AND to the for product A. The linkage with AND is done via a PriceDerivationRule ItemPriceDerivationRuleEligibility Combina

. tionPriceDerivationRuleEligibility
In this rule, the prerequisite is linked with AND to the for product B. Even though the discount price Coupon ItemPriceDerivationRuleEligibility
in the offer is defined for three items of product B, the threshold quantity is always 1 in the because the ItemPriceDerivationRule Enforce Multiple
indicator in the offer is set to . So this rule will not require the quantity criteria to be met. For any quantity in this example, the discount unit price No
will be USD 3.33 in the . (results from USD 10 divided by three items) ItemPriceDerivationRule

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

CouponPriceDerivationRuleEligibility TypeCode = COUP
 = 0815CouponNumber

 = 00ConsumptionTypeCode

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = RPPriceModificationMethodCode
 = 10.000PriceModificationPercent

 = 00DiscountMethodCode

 PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 2
 = 2Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

CouponPriceDerivationRuleEligibility TypeCode = COUP
 = 0815CouponNumber

 = 00ConsumptionTypeCode

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = PSPriceModificationMethodCode
= 3.33000NewPriceAmount

 = 00DiscountMethodCode

Example 3: Simple discount offer with incentive category Get Coupon as Reward

Buy one item of product A for and 0815 as reward. Everyday Low Price Get coupon

The indicator is to be set to and no is to be set.Enforce Multiple No Limit

The offer in this example is translated to one Product A with is the condition to get a coupon as a PromotionPriceDerivationRule. Everyday Low Price
reward. As does not define a discount, product A is used only on the eligibility side. Everyday Low Price The reward is modeled as ItemPriceDerivationRu

 with a () and (le PriceRuleControlCode PO Item Discount Calculated After Each Item DiscountMethodCode 04 A coupon is given to the customer
).instead of a discount

 The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = RTPriceModificationMethodCode
 = 0.01PriceModificationAmount

 = 04DiscountMethodCode
 = 0815CouponPrintOutID

 = 00CouponPrintoutRule
 = 0CouponValidityInDays

: Simple discount offer with incentive category Example 4 Get Points as Reward

When they show coupon 0815, the customer will get an extra 25 bonus points when they buy product A.

The offer in this example is translated to one . On the eligibility side, the prerequisite is linked with AND to the PromotionPriceDerivationRule Coupon Ite
 for product A. The reward is modeled as with a (mPriceDerivationRuleEligibility ItemPriceDerivationRule PriceRuleControlCode PO Item Discount

) and is set ().Calculated After Each Item RewardGrantedAsLoyaltyPoints X

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

CouponPriceDerivationRuleEligibility TypeCode = COUP
 = 0815CouponNumber

 = 00ConsumptionTypeCode

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

The indicator is to be set to and no is to be set.Enforce Multiple Yes Limit

The discount type Zero Discount is not enabled in Customizing.

The indicator is to be set to and no is to be set.Enforce Multiple Yes Limit

 = RTPriceModificationMethodCode
 = 25.000PriceModificationAmount

 = 00DiscountMethodCode
 = XRewardGrantedAsLoyaltyPoints

CalculationBase = 00

Example 5: Incentive category External Action

. Today you can get the shipping for product A for only USD 5

You have created incentive type for an incentive and you use the incentive value to maintain the special price DSHP - Discount Shipping External Action
for shipping.

The offer in this example is translated to one with a for product A. The reward is PromotionPriceDerivationRule ItemPriceDerivationRuleEligibility
modeled as with type code (). The incentive type is mapped into the TheExternalActionPriceDerivationRule EX External Action DSHP ExternalActionID.
maintained incentive value and the incentive value adjustment are modeled as . The incentive type description is modeled ExternalActionRuleParameter
as ExternalActionRuleText.

The following table shows how this example is translated to price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

ExternalActionPriceDerivationRule TypeCode = EX
 = SUPriceRuleControlCode

 = DSHPExternalActionID

ExternalActionRuleParameter ParameterID = SAP_INC_VALUE
 = 5.000Value

ExternalActionRuleParameter ParameterID = SAP_INC_VALUE_ADJUST
 = 5.000 Value

ExternalActionRuleText LanguageCode = EN
 = SAP_INC_TYPE_DESCRTextCode

 = 'Discount Shipping'Text

Example 6: Incentive category Manual Promotion as Reward

When buying product A: manually triggered discount is allowed.

You have created incentive class with incentive class type ' '. For this incentive class, you have also created '31 - Manually triggered Discount' Reward
incentive type ' ' with Incentive category 'Manual '. You use the product identifier as free text to identify the manual promotion.M2 Promotion

The offer in this example is translated to one with a for the manual promotion and PromotionPriceDerivationRule ManualPriceDerivationRuleEligibility
a for product A as child eligibilities below the . ItemPriceDerivationRuleEligibility CombinationPriceDerivationRuleEligibility

On reward side, there is a with type code (). This price rule does not specify a discount, but the ManualPriceDerivationRule MA Manual Promotion
discount can be specified by the client, for example, the cashier can specify the exact amount and type of the discount.

The following table shows how this example is translated to price and promotion repository:

The indicator is to be set to and no is to be set.Enforce Multiple Yes Limit

Enforce Multiple indicator is to be set to Yes and no Limit is to be set.

Entity Field mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 ItemID = A

 ThresholdTypeCode = QUTI
 ThresholdQuantity = 1

 LimitQuantity = 9,999,999,999
 IntervalQuantity = 1

ManualPriceDerivationRuleEligibility TypeCode = MANU
 TriggerTCD = 31

 TriggerValue = Defect (Free text coming from the product identifier)

ManualPriceDerivationRule TypeCode = MA
 PriceRuleControlCode = PO

Example 7: Incentive category Manual Promotion as Condition

Get 10 % discount for your transaction when manual promotion is triggered and when a specified customer card is shown.

You have created incentive class with incentive class type ' '. For this incentive class, you have also created '30 - Manual Trigger for discount' Condition
incentive type ' ' with incentive category 'Manual '. You do not use the product identifier to identify the manual promotion, but the incentive M1 Promotion
class and the incentive type.

The offer in this example is translated to one On eligibility side the prerequisite is modeled as with a PromotionPriceDerivationRule. Customer Card Cus
and linked with AND to the and to the tomerPriceDerivationRuleEligibility ManualPriceDerivationRuleEligibility TotalPurchaseMarketBasketPriceDe

. The linkage with AND is done via a . rivationRuleEligibility CombinationPriceDerivationRuleEligibility

On reward side, there is a with type code RB (Simple Discount). This price rule specifies the 10 % discount for the transaction if ItemPriceDerivationRule
the prerequisite 'GOLD card' is fulfilled and the manual trigger is coming from the client, for example, the cashier presses a 'Manual Promotion' button on
the point of sale).

The following table shows how this example is translated to price and promotion repository:

Entity Field mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

TotalPurchaseMarketBasketPriceDerivationRuleEligibility = TOTLTypeCode
= 0.000TransactionItemTotalRetailTriggerAmount

 = USD CurrencyCode

ManualPriceDerivationRuleEligibility TypeCode = MANU
 = 30 TriggerTCD

 = M1TriggerValue

CustomerPriceDerivationRuleEligibility TypeCode = CGRP
 = GOLDCustomerGroupID

ItemPriceDerivationRule TypeCode = RB
 = SUPriceRuleControlCode

 = TPPriceModificationMethodCode
= 10.000PriceModificationPercent

 = 00DiscountMethodCode

Enforce Multiple indicator is to be set to Yes and the limit must be 1.

Default Values

ItemPriceDerivationRule

RoundDestinationValue
This value defines the multiple of the lowest allowed digit according to the currency to which rounding takes place.
Example: If the currency is EUR, the value 5 means that the rounding should not be done down to single cents but to 5-cent multiples.
If the default value is , there is no further handling of the rounding result.1
RoundingMethodCode
The default value is ().00 Commercial Rounding
ConsiderPreviousPriceRules
This indicator controls whether the current price derivation rule is based on the result of formerly applied rules. If this indicator is false, the rule is
to be applied on the regular sales price. This indicator is relevant only if the is (priceRuleControlCode PO Item Discount Calculated After Each

).Item
The default value is true.
CalculationBaseSequence
This value defines the sequence value for . The resulting price is to be used as the calculation base for the PromotionPriceDerivationRule
current rule.
The default value is , which means that -1 none of the previous rules are considered and the regular price is used as the calculation base.
ChooseItemMethodCode
This code defines the sequence in which the items to be discounted are chosen in the case of a .MixAndMatchPriceDerivationRule
The default value is ()00 Determined by the Promotion Calculation Engine
CalculationBase
The default value is , which means that the total sales is the calculation base for this rule.00
DiscountMethodCode
The default value is , which means that the discount reduces the transaction total. 00
Exceptions:
If the has the type , this field is not mapped.PriceDerivationRule External Action
If a coupon is given to the customer instead of a discount, the value is .04
NoEffectOnSubsequentRules
The default value is false, except for coupons.

Fields Only Relevant for Coupons

The following fields are only relevant and filled if the customer gets coupons instead of a discount:

CouponPrintoutRule
The coupon printout rule defines the printout type that is to be given to the customer.
The default value is , which means that a coupon is to be printed on a separate document. 00
CouponValidityInDays
The default value for the validity period for printout coupons is , which means that the coupon has no validity limit.0
NoEffectOnSubsequentRules
The default value is true for coupons.

Fields Only Relevant for Loyalty Points

The following field is only relevant and filled if the customer gets loyalty points instead of a discount:

RewardGrantedAsLoyaltyPoints
The default value is true if the type of reward is loyalty points.

CouponPriceDerivationRule Eligibility

ConsumptionTypeCode
The default value is 00, which means that coupons are also consumed if is applied with a different sequence. PromotionPriceDerivationRules

PromotionPriceDerivationRule

SaleReturnTypeCode;
This value specifies if the promotion rule can be used only for sales, for returns, or for both.
The default value is ().00 For Sales and Returns
Exclusive
Specifies if this promotion rule is an exclusive promotion rule.
The default value is false.

Note

You can have promotions if the same coupon should trigger more than one . For example: If they PromotionPriceDerivationRule
show a coupon, the customer gets a discount for a certain product and additional loyalty points.

This promotion only works with 02, which means 'Coupon Is Not Consumed'. In this case, you have to adapt ConsumptionTypeCode
the default value.

NotPrinted
If this indicator is true, the result of the promotion rule is to be suppressed.
The default value is false, except of null discount promotions which are indroduced with CARAB 4.0 FP02.

NotConsideredInLineItemModeFlag
Specifies if the promotion rule is applied to prices calculated by the promotion pricing service. It can be applied in the folllwing modes:

Item mode ()LineItem
If the promotion pricing service is called in this mode, the discount is calculated independently for each item. Promotion rules that are not
relevant on item level are not applied (for example, promotion rules on transaction level).
Shopping cart mode ()Basket
If the promotion pricing sevice is called in this mode, the discount is calculated for the total of the shopping cart considering all promotion
rules.

If this indicator is set, the promotion rule is only applied in shopping cart mode.

Per default, promotion price derivation rules are considered as only "Shopping Cart" relevant and the default value for this field is true, if the
following parameters are fulfilled:

It is not product-related, for example discounts-based on transaction level, product groups or product hierarchies
The offer type is mix-and-match
The product quantity is greater than one
The minimum spend amount is set
A coupon fulfills the condition

Replication of the Price and Promotion Repository

The OPP promotions and the regular prices can be replicated to an external system via IDocs. Enhancement segments have been designed so that
additional information can be added to the IDoc. For more information see the about the extensibility of the IDocs, section in this guide.OPP Extensibility

Outbound Processing of IDocs via DRF

The data replication framework (DRF), a reuse component of SAP Business Suite, is used to replicate the OPP promotions and the regular prices to other
systems.

The following ways of replicating data are supported with the OPP:

Initial replication
Manual request
Change request

The initial replication is used to send all relevant data for a receiver by one single request. The initial load expects to have no data on the receiver side.

The change request considers only objects that have to be sent compared to the previous (initial or delta) replication. Usually (but not always, see
promotion outbound processing) this includes objects that have changed since the last transfer and that match the specified filter criteria. If an object is
considered as transfer relevant, it is sent as a whole. There is no support for marking object internal changes. The initial and delta request share a
common filter, the static filter maintained in transaction DRFF.

The manual request allows the replication of specific data that can be filtered by adhoc specified filter criteria. There is no merge logic for the static and
manual filter. The manual request does not modify the list of objects that are marked as changed since the last initial or delta load.

DRF Configuration

A configuration needs to be done before DRF can be used. SAP delivers outbound implementations and preconfigured settings for the outbound
implementations, such as predefined outbound parameters, filter objects, and business objects. Customizing needs to be enhanced for these predelivered
conditions only if you want to replicate your own business objects and create or enhance the outbound implementation.

The following custom settings are needed for the data replication:

The landscape definition (determines the technical settings for business systems)
The replication models (determines the data that is to be sent to a corresponding location)
The business object-specific settings (Application Link Enabling)

OPP Promotions

The outbound interface that is needed to send OPP promotions to external systems is based on IDocs. IDoc types and /ROP/PROMOTION01 /ROP
are provided for this. The following picture shows the structure for IDoc type /PROMOTION02 /ROP/PROMOTION02:

There is no support for considering changes of static filters before a delta request. If you change the filter, relevant changes may not be
detected by the system.

Use the manual request to make urgent fixes only.

This structure reflects the database structure of the OPP promotion. The corresponding message type for the IDoc types is ./ROP/PROMOTION

As with the regular prices, the outbound is realized using the data replication framework (DRF). Different outbound implementations and filter objects are
offered for this.

As of CAR 3.0 FP2, the outbound of OPP promotions is supported in the following ways:

The business object-centric outbound as offered starting with CAR 2.0 FP3: The underlying principle of this option is to replicate the business
object structure of the OPP promotion as it is and to make no changes to the message content. The business system assigned to the
corresponding DRF replication model determines the receiver of the created IDocs.
The location-specific outbound: This is optimized for the supply store like receivers not interested in the whole content of the OPP promotion - in
particular with regards to the overall set of location assigned to that promotion. The business units assigned to the OPP promotion determine the
receivers of the created IDocs. Each receiver gets only a view to the OPP promotion, with only "his" location assigned. In addition, OPP
promotions that do not have the status "active" or are no longer relevant for the receiver of the IDoc are transferred only in a truncated version
containing only the header with CHANGE_INDICATOR set to 'D' and the assigned location/business unit.

Outbound Implementation for Promotion-Centric Outbound Processing

The predefined outbound implementation for OPP promotions is . This implementation uses filter object . The filter execution ROP_PROMO ROP_PROMO
time during change analysis is predefined in the data processing and you cannot change it when you configure a replication model. This means that the
filter is always applied after the change analysis. The outbound implementation class is This class implements /ROP/CL_PROMOTION_OUTBOUND.
interface . This outbound implementation has two predefined outbound parameters:IF_DRF_OUTBOUND

TASK_SIZE_PROCMSG
This parameter is relevant only if you execute data replication and have set the indicator to . The parameter sets the maximum Parallel Processing
number of OPP promotions processed in each parallel package.
PACK_SIZE_BULK
This parameter sets the maximum number of OPP promotions processed for each IDoc. If you want to use the parallel processing, set this
parameter to a smaller value then parameter .TASK_SIZE_PROCMSG

In addition to these a specific OPP outbound parameter is given:

/ROP/GENERIC_ENH_MAP
This parameter enables DRF outbound for promotion to execute a generic mapping. In that case it must be set to "X". For more information about
this feature, see below under chapter "Generic Mapping of Customer Enhancement Segments".

Outbound Implementation for Location-Specific Outbound Procesing

The predefined outbound implementation for OPP promotions is . This implementation uses filter object containing two ROP_PRO_ST ROP_PRO_ST
filters: the same filter as for the business object-centric outbound for determining the OPP promotions, and an additional filter for specifying the target
locations of the IDocs to be created. The filter execution time during change analysis is predefined in the data processing and you cannot change it when
you configure a replication model. This means that the filter is always applied after the change analysis. The outbound implementation class is /ROP

This class implements interface . The supported outbound parameters are the same as for the /CL_PROMO_STORE_OUTBOUND. IF_DRF_OUTBOUND
business object-centric outbound.

Filtering the OPP Promotions

Data filtering allows you to replicate specific OPP promotions. The following criteria can be used for filtering:

Field In Static Filter
/ROP
/PROMO_DRF_FILTER_STY

In Manual Request Filter
/ROP
/PROMO_DRF_MAN_FILTER_STY

Comment

Master data system

Sales organization List of single values only, no
exclusions

Distribution channel List of single values only, no
exclusions

Location hierarchy type

Location hierarchy ID

Location hierarchy node ID

Location ID

Location type

Promotion ID

External ID of the promotion (the offer
ID)

The implementation of the Promotion Outbound assumes that the combination of outbound implementation and assigned business system is
unique. This is a slightly different assumption than that made by DRF, which expects (and ensures) that the combination of business object type
and business system is unique. This does not make a difference for the standard delivery but it must be kept in mind if you create your own
outbound implementations based on the logic delivered by SAP.

Further differences between these two options are listed in the SAP application help.

Promotion type

Start of the validity period Daily granularity only

End of the validity period Daily granularity only

Lead time in days Single value only, no exclusion

Latest change date Daily granularity only

The filter class is for the business object-centric outbound and for the location- /ROP/CL_PROMOTION_FILTER /ROP/CL_PROMO_STORE_FILTER
specific outbound. Both classes implement interface . IF_DRF_FILTER

Controlling the Target Locations

This is relevant only for the location-specific outbound. The following criteria can be used to specify the target locations and therefore the set of IDocs to be
created:

Field In Static Filter
/ROP
/PROMO_STO_FILTER_STY

In Manual Request Filter
/ROP
/PROMO_STO_MAN_FILTER_STY

Comment

Target location ID

Target location
type

Flag "Send Also
Deletions"

Only single values "Yes" or "No" allowed. If set to "Yes", then both
target location ID and target location type must be specified.

The meaning of the "Send Also Deletions" flag is described in the system documentation for data element ./ROP/SEND_DELETIONS

Generic Mapping of Customer Enhancement Segments

When doing simple customer enhancements in the OPP data model by adding additional attributes so called customer includes (SAP CI) might be
implemented. Each OPP table contains such a possibility to add customer specific attributes. The DRF outbound for sending OPP promotions offers a
possibility to map these additional attributes to the corresponding enhancement segment of the IDoc type /ROP/PROMOTION01 or /ROP/PROMOTION02
respectively in a generic way. Each IDoc segment of the OPP promotion IDoc types includes a correspondning enhancement segment (see above) which
structure is well defined. It contains 3 fields : One for the field group (filled with "SAP_CI" when generic mapping is active) , a second one for the attribute
name (generically filled with customer's attribute name) and a third one for the attribute value (generically filled with the corresponding attribute value).
From customer point of view these enhancement segments can be mapped by implementing a BAdI or by activating a generic mapping that executes a 1:
1 mapping from the additional attribute to the enhancement segment. The generic mapping feature can be activated by a specific DRF outbound
parameter called /ROP/GENERIC_ENH_MAP. (This OPP specific parameter exists beside of the DRF standard parameters already mentioned above).
When creating the DRF outbound replication model for OPP Promotions this parameter must be maintained and set to "X". Doing this the generic mapping
is activated. Nevertheless, a combination of this 1:1 mapping and a more complex mapping process implemnted by a BAdI is possible.

 In the following overview all types are listed that can be used for this generic mapping:

Character Container and Strings
Numerical Characters (n)
Long, Integer, Short, Byte
Packed Number (p)
Float, Decfloat
Date
Time

There are following restrictions :

Internal tables
Referneces
Deep structures
RAW
RAWSTRING
Boxed Components
Strings longer than 255 characters

Transfer OPP Promotions Using the Global Object List

The following applies for the business object-centric outbound as well as the location-specific outbound.

During the initial and delta load, the filter criteria and the database table are evaluated to decide which OPP promotions have been /ROP/DRF_OBJLIST
changed and are to be replicated. This list serves the following purposes:

There are no filter criteria for the external action attributes as these attributes are only subordinated elements of the price rule. From a business
point of view, filtering by these fields is not relevant.

1.
2.

3.

4.

5.

6.

7.
8.

9.

It detects that a formerly relevant and transferred OPP promotion is obsolete. This may happen if an attribute of an OPP promotion (such as
promotion type) is specified in the filter but its new value no longer matches the filter. This must be communicated to the corresponding receiver.
It supports the filter criterion . This makes sure that an OPP promotion is not transferred unless it is close to its validation date. To keep Lead Time
track of these OPP promotions, it is necessary to observe OPP promotions that are to be valid soon so that they are sent via the delta load even if
there have been no changes. If not, only OPP promotions with unprocessed change pointers are to be considered.

In addition, MDG change pointers are created for the delta load when creating, updating, and deleting an OPP promotion.

The following logic is applied, depending on whether an OPP promotion matches filter criteria and its transfer status in the global object list:

Promotion Matches Complete
Filter Criteria

Promotion Matches Filter Criteria
Without Lead Time

Promotion Does Not Match
Filter Criteria

OPP promotion in global object list in
status TRANSFERRED

1 2 3

OPP promotion in global object list in
status PENDING

4 5 6

OPP promotion not in global object list 7 8 9

Cases 1 to 9 are described in detail below including the system reaction:

A promotion already transferred has changed --> transfer again. No change to the global object list.
A promotion already transferred is classified as not yet transfer relevant. This occurs if the start date of the promotion has been delayed. The
receivers must be informed about this change --> transfer again. No change to the global object list.
A promotion already transferred is not filter relevant any more, in other words it is now obsolete. This may happen if the filter criteria are defined
for an attribute that changed to a value not covered by the filter --> transfer the promotion as "obsolete" (CHANGE_INDICATOR = 'D'). Remove it
from the global object list.
A promotion with a pending transfer has reached its transfer due date. (Transfer due date = valid_from (of the promotion) MINUS "lead time") -->
if not in status "cancelled" send it, set its status in the global object list to TRANSFERRED. Cancelled promotions with a pending transfer are
removed from the global object list.
A promotion with a pending transfer has been changed but has not yet reached its transfer due date --> if it is not in status "cancelled", do not
transfer (yet) but update its transfer due date in the global object list (if valid_from has changed). The promotion will be considered again in the
next delta load. Status stays at PENDING. Cancelled promotions are not added to the global object list.
A promotion originally set as pending (to be transferred later) is not transfer relevant any more --> since it has not yet been transferred, do not
transfer it, and remove it from the global object list.
A promotion not examined before is transfer relevant now --> send it and include it in the global object list in status TRANSFERRED.
A promotion not examined before is considered as transfer relevant later --> do not transfer it yet but include it in the global object list in status
PENDING with the corresponding transfer due date.
A promotion not examined before is not considered as transfer relevant --> ignore.

If the corresponding promotion has the status 'CN' (Cancelled), no insert or update to the global object list takes place - instead the promotion is removed
from the global object list. This happens in the following cases: 1, 2, 4, 5, 7 and 8. The decision matrix for the initial load differs from that of the delta load in
the sense that rows 1 and 2 are not relevant since the global object list is cleared at the beginning of the initial load.

All replication modes (initial, delta, manual) update the global object list.

If no lead time is specified in the static filter, an "infinite" lead time is assumed. This means no promotion is set to pending. In other words, column 2
("Promotion matches filter criteria without lead time") is not relevant.

The initial load expects that all data is cleared on the receiver side, in other words the receiver must not have any promotions in its database. The initial
load automatically clears the global object list for the corresponding outbound implementation and business systems. For the decision matrix, the initial
load corresponds to the row "promotion not in global object list". For the initial load, only promotions in status 'AC' (active) are considered.

The delta load and manual request do not filter by the promotion status.

Location-Specific Outbound Processing Using the Global Object List

In the case of the location-specific outbound, the tracking of the replication status on business system level is not sufficient, it must take place on the level
of the individual target location. This status is stored in database table . Each record indicates that the corresponding OPP /ROP/LOC_REPL_ST
promotion is expected to be present as active on target location side. The link between the overall replication status and the location-specific replication
status is established using the field OBJ_GUID in both tables and ./ROP/DRF_OBJLIST /ROP/LOC_REPL_ST

The meaning of the overall replication status slightly changes for the location-specific outbound:

Obsolete or deleted?

The meaning of the field CHANGE_INDICATOR differs between the object-centric and location-specific outbound of OPP promotions:

Object-centric outbound: If a promotion is logically deleted, it is sent as a regular IDoc record with CHANGE_INDICATOR = 'I'. Its
promotion status is 'CN'. If a promotion is considered as obsolete for a certain receiver, it is sent as a "deletion" IDoc record with
CHANGE_INDICATOR = 'D'. Its promotion status is not changed.
Location-specific outbound: CHANGE_INDICATOR is set to 'D' as soon as the corresponding OPP promotion is no longer to be
evaluated by the receiver. This can be the case if is it not in status "active", if the corresponding target location is not assigned to the
OPP promotion, or if the target location is not contained in the filter for target locations.

If a record is not present in then the promotion does not exist as active in any target location and hence no record exists /ROP/DRF_OBJLIST /R
 for that promotion. The reverse conclusion is not possible.OP/LOC_REPL_ST

If a record is in status T(ransferred) in then it was sent as active to at least one target locations. This does not necessarily /ROP/DRF_OBJLIST
mean that this is still the case.
The meaning of the status P(ending) does not change.

View provides an overview of the current replication status for each location./ROP/V_PREPSTAT

Cleanup of the Global Object List

In the case of an unchanged DRF replication model, the global object list is automatically managed by the promotion outbound processing and kept in a
consistent state. However, if a replication model is deleted, a business system for a replication model is removed, its content of the global object list is not
removed automatically. For this purpose, transaction can be used. This can be used for the object-centric as well as the location-/ROP/DEL_REPLSTAT
specific replication status.

Regular Prices

The outbound interface to send regular prices to external systems is also based on IDocs. For this reason, a new IDoc type has /ROP/BASE_PRICE01
been created with the following structure:

Compared to the promotion IDoc, the regular price IDoc is . To prevent redundant data being sent, all items with the same regular price are quite flat
grouped in several business units (locations) and all locations that are assigned to the corresponding items (items with the same regular price in the

are assigned to the segment. This explains the following structure of the IDoc:grouped locations) /ROP/E1_BASE_PRICE

Segments of segment type under one segment contain all business units (locations) /ROP/E1_BUSINESS_UNIT /ROP/E1_BASE_PRICE with a unique
 The advantage of this structure is that these locations have to be added only once to the IDoc. This applies to all items under the same item price. /ROP

segment. Therefore, the group for these locations is called . The price is a child segment of the item segment. /E1_BASE_PRICE reusable location group
This item segment only contains the item ID and the change indicator.

In addition to the new price IDoc type, there is a new message type ./ROP/BASE_PRICE

Outbound Implementation

The predefined outbound implementation for OPP promotions is . This implementation uses filter object . The filter execution ROP_PRICE ROP_PRICE
time during change analysis is predefined in the data processing. You cannot choose when you configure a replication model. Therefore, the filter time
must be set to when you create the replication model. Furthermore, you cannot activate a replication model with a wrong Filter Before Change Analysis
filter time or execute an outbound implementation in transaction . The outbound implementation class is . TDRFOUT /ROP/CL_BASE_PRICE_OUTBOUND
his class implements interface . T is supported for this outbound implementation.IF_DRF_OUTBOUND he option for parallel processing

The outbound implementation has the following predefined outbound parameters:

TASK_SIZE_PROCMSG
This parameter is relevant only if you execute the data replication using parallel processing. It sets the maximum number of products that are
processed for each parallel package. It must be greater than or equal to the PACK_SIZE_BULK parameter. This parameter value does not define
the number of regular prices per package.
If this parameter is set to 0, all products are processed in one package. This means that parallel processing is not possible.

PACK_SIZE_BULK
This parameter controls the number of products for which regular prices can be stored in a compressed format at the same time, and sets the maximum
number of products that are processed for each IDoc. If this parameter is not set, the default is 1.
If you increase this value, performance at runtime is improved since fewer IDocs need to be processed.

/ROP/PACK_SIZE_BULK
This parameter sets the maximum number of regular prices that are processed for each IDoc. This is an approximate value because regular
prices are assigned to different IDocs for each group of business unit with items and prices.
If this parameter is set to 0, it is not possible to restrict regular prices and it is only the number of products that determines the IDoc size.

Hint: Both parameters and restrict the size of an IDoc in a way that the IDocs are as small as PACK_SIZE_BULK /ROP/PACK_SIZE_BULK
possible.
Example 1: Assume = 500 and = 100000. The system reads all prices for 500 products that are, PACK_SIZE_BULK /ROP/PACK_SIZE_BULK
for example, 500000. The system will create 5 IDocs and each IDoc will have 100000 prices.
Example 2: Assume = 50 and /ROP/PACK_SIZE_BULK = 100000. The system reads all prices for 50 products that are, for PACK_SIZE_BULK
example, 50000. The system will create 1 IDoc and this IDoc will have 50000 prices.

/ROP/SEQ_READ_SIZE
This parameter sets the maximum number of products for which the regular prices are read in one select statement. In this way, you can limit
memory consumption for products with a large number of regular prices.

If this parameter is set to 0, all products of the corresponding package are read within one call.

/ROP/DAY_OFFSET_PAST

This parameter is only used if the selection of prices lying in the past is restricted with a valid-to date as filter criteria and if the entered valid-to
date is not far enough in the past.
During a delta replication, this parameter defines a time range in days that lies before the date of the last replication run. If the the entered valid-to
date is after the calculated date, the system subtracts this value from the last replication date and uses the calculated date to construct the select-
option for the valid-to date.
During an initial replication, a calculated date (current date minus the time range in days) is defined in this parameter. This date is used
automatically if the value entered in field is after the calculated date.End of Validity Period
In this way, you ensure that regular prices with a valid-to date in the specified past time range are also transferred.

If this parameter is not set, relevant regular prices might not be transferred. See SAP Note 2338714. In this case, the default is set to 30 days.

Data Filtering

Data filtering allows you to replicate specific prices. uses a complex filter. You need to distinguish between manual Regular price outbound filtering
request, initial, and delta load. The following table gives an overview of the filter attributes:

Field In Static Filter
/ROP
/BASE_PRICE_DRF_FILTER_STY

In Manual Request Filter
/ROP
/BASE_PRICE_MAN_FILTER_STY

Comment

Master data system

Sales organization List of single values only, no exclusions

Distribution channel List of single values only, no exclusions

Location hierarchy type code Necessary to uniquely identify a location

Location hierarchy ID
(external)

Location hierarchy node ID
(external)

Location ID (external)

Location type code

Qualifier of merchandise
structure

Only for article hierarchy and merchandise group

All the recommendations for parameter values given above are based on performance measurements. These can be changed
depending on the actual customer-specific runtime behavior and situation.

1.

2.

Identifier for merchandise
hierarchy node

Product identifier Only available for manual load

Classification information for
regular price

 Fixed values are provided

End of validity period Daily granularity only. Only one filter criteria for
inclusion allowed with "is later than".

Date of latest change Daily granularity only

It is possible to maintain one or more single values for each criteria. For most of them it is also possible to maintain ranges (except of sales organization
and distribution channel). A combination is also possible for the filter criteria.

The filter criterion is provided only for delta and initial load. This parameter could be used to improve the runtime behavior by End of Validity Period
reducing the data load. You can use this parameter to reduce the number of selected prices. You can also prevent the sending of obsolete price records.
The attribute is mandatory due to performance reasons. The price outbound implementation does not process Classification Information for Regular Price
only regular prices, it can also process other like and . Usually only net or gross sales prices are chosen price types Average Purchase Price Delivery Cost
using this application.

The attribute is available only for the manual load. It has only a daily granularity. Therefore, several select options are possible and Date of Latest Change
will be interpreted as follows:

Equal: internally time interval 00:00:00 to 23:59:59 is applied because externally only a daily granularity is given
Greater Than: internally time is set to 23:59:59
Greater Equals Than: internally time is set to 00:00:00
Lower Than: internally time is set to 00:00:00
Lower Equals Than: internally time is set to 23:59:59
Between: internally for start date time 00:00:00 is used and for end date 23:59:59

The filter class is This class implements interface . /ROP/CL_BASE_PRICE_FILTER. IF_DRF_FILTER

The defined filter time can be configured when you create the replication model. However, you must set the filter time to . It is Filter Before Change Analysis
not possible to activate the DRF replication model with a filter criterion other than this one. So there is a preselection of the regular price objects before
change analysis is started. This is done due to performance issues.

Handling of the Expected Data Volume

As we expect mass data in the price outbound, SAP implements a special logic for filtering and processing the price data.

To avoid memory issues for mass data, the data filtering does not provide all relevant item price attributes to be processed. Instead, the filter provides the
following information for the outbound implementation based on the selection criteria:

All product IDs (GUIDS)
All locations (GUIDS) if there is a restriction by the selection screen; if there is no restriction, no locations are passed.
All selection criteria as provided by the selection screen

This data is passed as "relevant objects" (import parameter) to the outbound implementation. There is one entry for each CT_RELEVANT_OBJECTS
product ID in this internal table and the selected locations and the selection criteria are given in the first entry. The tables and LOCATIONS SELECT_OPTI

 are empty in all subsequent entries. The internal table has the structure .ONS /ROP/BASE_PRICE_PACKAGE_STY

If you start the outbound processing in manual or initial mode, the internal table contains all the products provided by the filter. CT_RELEVANT_OBJECTS
This information is passed to the major outbound process (class). Due to performance reasons, the option for /ROP/CL_BASE_PRICE_OUTBOUND
parallel processing can be used. During parallel processing the table contains the number of products specified with CT_RELEVANT_OBJECTS
parameter for each call of the outbound implementation. The construction of these parallel packages is carried out in TASK_SIZE_PROCMSG IF_DRF_OU

.TBOUND~BUILD_PARALLEL_PACKAGE

The processing of takes place in the outbound implementation in the following main steps:CT_RELEVANT_OBJECTS

DRF method IF_DRF_OUTBOUND~READ_COMPLETE_DATA
To avoid memory problems, the prices are read in this method. Instead the data in is stored only in the instance not CT_RELEVANT_OBJETCS
variables , and .MT_PRODUCTS MT_LOCATIONS MT_SELECT_OPTIONS

Method IF_DRF_OUTBOUND~MAP_DATA2MESSAGE
This method is called from the DRF framework for each entry in . CT_RELEVANT_OBJECTS

The entries in (all products that were in before) are divided into logical packages with the size MT_PRODUCTS CT_RELEVANT_OBJECTS
given in parameter . When method is called for the first product of one of PACK_SIZE_BULK IF_DRF_OUTBOUND~MAP_DATA2MESSAGE
these logical packages, all prices are read for all products of this package. The prices for all products of this logical package are not read within
one select statement because this could generate memory issues. Instead, only the number of products defined in parameter /ROP

are read in one select statement. The result of the select statement is compressed before the next select statement is /SEQ_READ_SIZE
performed. One part of the compressed result is stored in the table and the second part, the reusable location groups, are LT_BASE_PRICE
collected by class . /ROP/CL_LOCATION_GROUP_HANDLER Using these two data sources, the instance table is MT_BASE_PRICE_IDOC
created that contains all pricing information.

2.

3.

Even though the DRF framework calls this method sequentially for each product in , prices are read for all products of CT_RELEVANT_OBJECTS
the package when the first product is processed. If an error occurred during reading of the prices for a product, the exception CX_DRF_PROCESS

 is only raised when method is called for the entry in c_MESSAGES IF_DRF_OUTBOUND~MAP_DATA2MESSAGE CT_RELEVANT_OBJECTS
ontaining that erroneous product.

Method IF_DRF_OUTBOUND~SEND_MESSAGE
The data is mapped in this method from into the IDoc structure, and one or several IDocs are sent. The data is split into MT_BASE_PRICE_IDOC
several IDocs according to the parameter . /ROP/PACK_SIZE_BULK

If performing the delta load, an additional DRF interface method is called. The analysis of changes is based on the ANALYZE_CHANGES_BY_OTHERS
time stamp provided in table . This is to select all relevant products and locations concerning all LAST_SALES_PRICE_CHANGE /DMF/PRODLOC
changed regular prices. The interface method also passes the relevant data to the methods above to map and build up the IDoc segments. Since the
whole delta process is not based on change pointers, it is not possible to apply the manual time selection .Limit Changes Using Interval

OPP Extensibility
Modification-free extensibility is a major asset of SAP software. The following figure shows which parts of the overall OPP architecture are relevant for
extensibility. Further details on how the parts can be extended will be explained in the following sections.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

The processing of DDF offers and regular prices including the inbound processing and persistence
The data model of the OPP promotion in the price and promotion repository in SAP Customer Activity Repository (ABAP)
The logic used to process OPP promotions and regular prices, in particular how DDF offers are transformed into OPP promotions
The outbound processing of OPP promotions and regular prices
Extending the PPS: general concepts (Java)
The data model of the OPP promotion and regular prices in the promotion calculation engine (Java)
The inbound processing of OPP promotions and regular prices for a local deployment
The data model and processing logic of OPP promotions in the promotion calculation engine of the promotion pricing service
The data model of the price calculation requests against the PPS
The creation and consumption of price calculation requests for PPS clients, in particular of the extension within SAP Commercesapppspricing

Extensibility of Demand Data Foundation (DDF)

The existing concepts of SAP Customer Activity Repository are reused. There are no changes here. Mainly the following concepts are offered:

Data dictionary structures offer Customizing includes that can be used on the customer side. If a table or structure in the standard system is
enhanced with customer fields using a Customizing include, there is no need to modify the table and structure definitions of the standard system.
The customer fields are automatically inserted in the new delivered table or structure definition during an upgrade. These enhancements cannot
be lost during the upgrade. For more information about Customizing includes, see in SAP Library on SAP Help Portal.Customizing Includes
Business Add-Ins (BAdIs) are offered at various places, allowing the modification-free enhancement of business logic. For more information, see
the application help for SAP Customer Activity Repository in SAP Library on SAP Help Portal.

Extensibility of DDF Offer Inbound API

This is applicable for the local deployment of the PPS as part of SAP Industry Package for SAP for Retail.only

https://help.sap.com/saphelp_nw70/helpdata/en/cf/21eb54446011d189700000e8322d00/content.htm

1.
2.
3.
4.

The offer master data is used to plan promotions or to schedule demand modeling and forecasting processes. DDF uses an inbound interface to receive
the offer master data through a Remote Function Call (RFC). For more information about this offer inbound API and the ways in which you can enhance
this interface, see in SAP Library on SAP Help Portal and read the documentation for enhancement spot Offer Master Data /DMF

 in the SAP Customer Activity Repository system./CUSTOMER_EXT_OFFER

Extensibility of DDF Regular Price Inbound API

The product location master data is used to determine the regular price for a product at a specific location in a given time frame. DDF uses an inbound
interface to receive the product location master data with a Remote Function Call (RFC). For more information about this and the regular price inbound API
ways in which you can enhance this interface, see in SAP Library on SAP Help Portal and read the documentation for Product Location Master Data
enhancement spot in the SAP Customer Activity Repository system./DMF/CUSTOMER_EXT_PRODLOC

Extensibility of the OPP Data Model (ABAP)

The concepts to enhance the OPP data model follow those of the Demand Data Foundation (DDF) offer. For example, in every database table the Data
Dictionary offers Customizing includes. Since the structures on which the application logic is based refer to the structure definition of the database tables.
Additional fields are immediately available within the business logic, for example, during the transformation of DDF offers into OPP promotions.

The following database tables are relevant for the OPP promotion model:

/ROP/PROMOTION
Table for promotion-relevant header data. The for this table is Customizing include CI_ ROP_PROMOTION.
/ROP/PROMO_RULE
Table for promotion price derivation rules. The Customizing include for this table is CI_ ROP_PROMO_RULE.
/ ROP/ELIGIBILITY
Table for all data that is relevant for the eligibilities of the OPP promotion. The Customizing include for this table is CI_ ROP_ELIGIBILITY.
/ROP/PRICE_RULE
Table for price derivation rules. The Customizing include for this table is CI_ ROP_PRICE_RULE.
/ROP/MAM_ITEM
Table for mix-and-match price derivation items. The Customizing include for this table is CI_ ROP_MAM_ITEM.
/ROP/PROMO_BU
Table for the business units for which the promotion is relevant. The Customizing include for this table is CI_ ROP_PROMO_BU.
/ROP/PROMO_TEXT
Table for the language-dependent texts of a promotion. The Customizing include for this table is CI_ ROP_PROMO_TEXT.
/ROP/EX_ACT_PARM
Table for the parameters of a price derivation rule of type . The Customizing include for this table is external action CI_ROP_PROMO_EXT_ACTIO

.N_PARAM
/ROP/EX_ACT_TEXT
Table for the language-dependent texts of a price derivation rule of type . The Customizing include for this table is external action CI_ROP_PROM

.O_EXT_ACTION_TEXT
(available as of CAR 3.0 FP02)/ROP/MERCH_SET

Table for the promotion relevant merchandise. In this table the product groups used in the DDF offer are stored. The Customizing include for this
table is CI_ROP_MERCH_SET.

Example:

This example applies only for OPP promotions not for regular prices. You can use the following steps to add a new field to an existing database table via a
Customizing include:

To add the upselling code to the OPP promotion header table, go to transaction and display the database table .SE11 /ROP/PROMOTION
Double-click and create the structure of the data element.CI_ ROP_PROMOTION
Add the field to the structure. In this example, data type is used since the code should be a string with two characters. ZZUP_SELL_TCD CHAR2
Activate the structure. The new field is available in database table and in the structures used by the business logic./ROP/PROMOTION

Extending SAP delivered ABAP domains

With the concept of domain appends, it is possible to extend the list of allowed values on customer side without any modifications. To avoid a collision
:between SAP delivered and your own defined domain values, it is strongly recommended that they are in the reserved customer namespace

Custom domain values with alphanumeric type definition (for example,): Z* or Y*CHAR
Custom domain values with numeric or numerical text as type definition (for example or): 9*INT4 NUMC

To find out if new domain values are required, or if an existing domain value is suitable to cover your specific use case, check the the OPP Functional
 and search for domains referenced by the OPP promotion data model.Guide for the Promotion Calculation Engine

If a value is part of the standard shipment of an ABAP domain, it is not necessarily used in the standard mapping of DDF offers into OPP promotions.
There is no guaranteed support for this domain value within the PPS/PCE, for example:

The value of the domain is part of the standard shipment, but currently not used by the PPS (only UN /ROP/DB_MERCH_SET_OPERATION DF
is used) and therefore also not used in the standard mapping.

If you want to add fields to the SAP delivered types via CI includes, use the prefix for field names to avoid name collisions in future versions.ZZ

http://help.sap.com/saphelp_pmr810/helpdata/en/83/ad905117e0223ae10000000a44176d/content.htm?current_toc=%2Fen%2F76%2Fa05b5392e21f37e10000000a423f68%2Fplain.htm&frameset=%2Fen%2Fdd%2F1c9c51107dfc53e10000000a44538d%2Fframeset.htm&node_id=197
http://help.sap.com/saphelp_pmr810/helpdata/en/4b/7e9f517f472166e10000000a441470/content.htm?current_toc=%2Fen%2F76%2Fa05b5392e21f37e10000000a423f68%2Fplain.htm&frameset=%2Fen%2F83%2Fad905117e0223ae10000000a44176d%2Fframeset.htm&node_id=200

1.

2.

3.

1.
2.

3.

4.

The value of the domain is part of the standard shipment, but not used in the standard mapping. However, the 01 /ROP/DB_DISC_METHOD
PCE supports this value as described in the .OPP Functional Guide for the Promotion Calculation Engine

Extensibility of the OPP Business Logic (ABAP)

The business logic on the ABAP side is based on the general SAP Enhancement Framework, which uses enhancement spots for customer-specific
enhancements. This framework allows a modification-free adjustment of the application logic delivered by SAP. To keep the upgrade effort as low as
possible, SAP recommends you apply the following options for objects in the /ROP/ namespace:

Use the predefined enhancement spots via Business Add-Ins (BAdIs). They can be used to accommodate most of your specific requirements
that are not included in the standard delivery.

If this is not possible, use the applied factory/interface paradigm. Instances of SAP standard classes are centrally created in dedicated factory
classes. The classes containing business logic expose it via interfaces. Consumers of the business logic refer only to the interfaces not to the
concrete implementations. In addition, most classes are not final and have protected methods, allowing subclassing and overriding specific
methods. Compared to direct source code enhancements, this option offers a better defined signature for the extension. Redefine the required

 You should be able to use this approach to cover the vast majority of your factory classes to create subclasses of the SAP standard classes.
requirements.

Use implicit enhancement implementations, such as direct source code adjustments, only in very exceptional cases. These implementations have
the big disadvantage that there is no defined interface on which you can rely. Source code enhancements may even refer to local variables.
These enhancements should be needed only in order to adjust the SAP standard factory classes with your customer-specific factories, in order to
realize option two.

Example: Extending the OPP Business Logic (Options 2 and Option 3)

To change the transformation logic from offers into OPP promotions so that offers in the status are also to be considered (in the standard Recommended
shipment only offers in the status are to be considered), proceed as follows:Approved

Create a new class, as a subclass to .ZZCL_CONFIG /ROP/CL_CONFIG
In the constructor, add the following lines (option 2):

 METHOD constructor.
 super->constructor().
 APPEND /dmf/cl_offer_status=>recommended TO mt_relevant_status. " <- This is the actual enhancement
 ENDMETHOD.

Create a new factory class, such as , as a subclass to , redefine methodZZCL_COMMON_FAC /ROP/CL_COMMON_FAC /ROP
 as follows (option 2): /IF_COMMON_FAC~GET_CONFIG

 METHOD /rop/if_common_fac~get_config.
 IF mo_config IS INITIAL.
 mo_config = NEW zzcl_config(). " <- New class!
 ENDIF.
 ro_config = mo_config.
 ENDMETHOD.

In method of class , make the following replacement (option 3):CLASS_CONSTRUCTOR /ROP/CL_COMMON_FAC

 METHOD class_constructor.
 g_factory_name = 'ZZCL_COMMON_FAC'. " <- Your factory class!
 ENDMETHOD.

Extensibility of the Transformation from DDF Offer into OPP Promotion

If a BAdI is missing, or the existing BAdI does not support your specific use case, you can address your issue .here

SAP guarantees the upward compatibility of all BAdI interfaces. Release upgrades do not affect enhancement calls from within the
standard software nor the validity of calling interfaces.

Use this option only as long as no suitable BAdI is available to support your use case. SAP does not guarantee that classes or
interfaces remain stable across releases.

SAP strongly recommends you do not use this option outside of factory classes since this is the least stable way to extend standard
functions.

http://scn.sap.com/community/retail/blog/2016/04/18/promotion-pricing-in-sap-retail-omni-channel-commerce

1.

2.
3.
4.
5.

6.

1.

2.
3.

4.

As described in the section "Transformation from DDF Offers into OPP Promotions", the transformation logic is realized by calling a number of BAdIs
contained in enhancement spot These BAdIs may have multiple implementations and the sequence in which the /ROP/OFFER_MAPPING.
implementations are executed can be determined.

For more information, see the BAdI documentation for enhancement spot in the system./ROP/OFFER_MAPPING

 Example: Extending the Transformation from DDF Offer into OPP Promotion

A DDF offer has the field with an entered value. The value has to be mapped from the offer field to the new field in ZZUP_SELL_TCD ZZUP_SELL_TCD
the promotion header. A new BAdI implementation of needs to be created for this mapping. To create this BAdI implementation, /ROP/PROMO_BUILDER
proceed as follows:

In transaction , create a new enhancement implementation for spot , such as SE19 /ROP/OFFER_MAPPING Z_ROP_ CUSTOMER_MAPPING_IM
P.
Create a new BAdI implementation for /ROP/PROMO_BUILDER.
Choose a greater than , for example . In this way, you can guarantee a post-execution of the new implementation. sequence number 0 100
Create a new class that implements the interface /ROP/IF_PROMO_BUILDER.
Implement the method of the BAdI. This implementation performs the customer-specific mapping. The signature of the BUILD_PROMOTION
method provides all the information you need: (import parameter that includes all information about the offer) and IS_OFFER_BO CS_PROMOTIO

 (changing parameter that includes all the information about the mapped offer that is to be changed).N_BO
You can analyze and change the changing parameter accordingly. The following code snippet shows how the requirement mentioned above can
be fulfilled:

METHOD /rop/if_promo_builder~build_promotion.

cs_promotion-zzup_sell_tcd = is_ofr_bo-zzup_sell_code.

Extensibility of the IDoc Outbound Processing (ABAP)

The promotions as well as the regular prices can be replicated to an external system using IDocs. The promotions are replicated using IDoc /ROP
the regular prices are replicated using IDoc ./PROMOTION01 or (as of PPS 3.0), /ROP/PROMOTION02 /ROP/BASE_PRICE01

Both IDocs have dedicated extension segments to each IDoc subsegment. There are also several BAdIs to extend the logic that is used to transfer the
price rules via IDocs.

The BAdIs for the outbound of the OPP promotions are contained in enhancement spot /ROP/PROMO_OUTBOUND.

The BAdI can be used to change the IDoc control record of the basis IDoc or an extended type of it./ROP/IDOC_CONTROL
The BAdI can be used to change the IDoc content of the basis IDoc or an extended type. /ROP/IDOC_DATA
The BAdI can be used to change the mapping process within the promotion outbound procedure./ROP/MAP_OUTBOUND_DATA

The BAdIs for the outbound of the regular prices are contained in enhancement spot /ROP/BASE_PRICE_OUTBOUND.

The BAdI can be used to change the IDoc control record of the basic IDoc or an extended type of it./ROP/BASE_PRICE_IDOC_CONTROL
The BAdI can be used to change the IDoc content of the basic IDoc or an extended type. /ROP/BASE_PRICE_IDOC_DATA

For more information, see the BAdI documentation for enhancement spots and ./ROP/PROMO_OUTBOUND /ROP/BASE_PRICE_OUTBOUND

Example: Extending the IDoc Outbound

To enhance the IDoc /ROP/PROMOTION01 with the new field in database table you need to create a new BAdI ZZUP_SELL_TCD /ROP/PROMOTION,
implementation of :/ROP/MAP_OUTBOUND_DATA

In transaction , create a new enhancement implementation for spot , such as SE19 /ROP/PROMO_OUTBOUND Z_ROP_ CUSTOMER_OUTBOU
ND_IMP.
Create a new BAdI implementation for ./ROP/MAP_OUTBOUND_DATA
Implement the method of the BAdI. You can use this method to modify the mapping process when a promotion is mapped to MODIFY_MAPPING
the corresponding IDoc structure. The signature of the method provides all the information you need: (import parameter that IS_PROMOTION
includes all information about the promotion) and (changing parameter that represent the IDoc data CT_PROMOTION_OUTBOUND_DATA
structure that is to be changed)
The following code snippet shows how the extension segment could be mapped:

METHOD /rop/if_map_outbound_data~modify_mapping.

It is not necessary to create your own implementation for the BAdIs /ROP/OFFER_CLASSIFIER and /ROP/PROMO_RECIPE_BUILDER.

4.

5.

 DATA: ls_idoc TYPE edidd,
 ls_enhanc TYPE /rop/e1_promotion_enhanc.

 READ TABLE ct_promotion_outbound_data ASSIGNING FIELD-SYMBOL(<fs_idoc>) WITH KEY segnam = '/ROP
/E1_PROMOTION'.
 IF sy-subrc = 0.
 ls_enhanc-fldgrp = 'HEADER'.
 ls_enhanc-fldname = 'ZZUP_SELL_TCD'.
 ls_enhanc-fldval = is_promotion-zzup_sell_tcd.
 ENDIF.
 ls_idoc-segnam = '/ROP/E1_PROMOTION_ENH'.
 ls_idoc-sdata = ls_enhanc.
 INSERT ls_idoc INTO ct_promotion_outbound_data INDEX sy-tabix + 1.

As a result, the IDoc extension segment is filled as follows:/ROP/E1_PROMOTION_ENH

Field Name Field Content

FLDGRP HEADER

FLDNAME ZZUP_SELL_TCD

FLDVAL XY

Extensibility of the OPP Data Model (Java)

The specific use case determines what you need to do when you extend the predelivered entities. The following cases are described below:

An existing entity is to be enhanced for a field
A completely separate new entity is to be introduced
Attribute converters are to be added to existing fields
A new entity is to be added as a child entity to an existing entity (reachable via a relation, such as the texts for a promotion)
A new entity is to be added as a specialization of an existing entity (such as the different types of eligibilities)
The existing logic for equals() and hashCode() of a JPA entity is to be changed

Adding a Field to an Entity

If the existing entity is a subclass of , you can add a field to an entity com.sap.ppengine.dataaccess.promotion.common.entities.AbstractEntityImpl
without any coding on the data access level. This is possible because OPP uses the concept of virtual access methods offered by EclipseLink. For more
information, see the documentation on the Eclipse website.

The additional mapping information is stored in a separate object relational mapping file (orm), for example, . This file must be located ppe-local-orm.xml
on the classpath. To make this file known to the PPS, add the following line to the :ppe-local.properties file

Note the leading comma!!
sap.dataaccess-common.custmappingresources=,ppe-local-orm.xml

 Using the example of the upsell type code of a promotion, the file needs to contain the following:ppe-local-orm.xml

Adding a single field to an existing entity

<entity-mappings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.eclipse.org/eclipselink/xsds/persistence/orm
 http://www.eclipse.org/eclipselink/xsds/eclipselink_orm_2_4.xsd"
 version="2.4">

 <!-- ... -->

As of SAP CAR 3.0 FP03, CI include fields of the OPP promotion tables are automatically mapped to the corresponding IDoc extension
segments if the DRF outbound parameter is set to 'X'./ROP/GENERIC_ENH_MAP

It is possible to add several orm files separated by a comma.

 <entity
 class="com.sap.ppengine.dataaccess.promotion.common.entities.PromotionImpl">
 <attributes>
 <basic name="ZZUPSELLING_CODE" attribute-type="String" access="VIRTUAL">
 <column name="ZZUP_SELL_TCD" />
 <access-methods get-method="get" set-method="set" />
 </basic>
 </attributes>
 </entity>
</entity-mappings>

Assuming that the column has been added to table on the ABAP side, this is mapped to the new JPA entity ZZUP_SELL_TCD /ROP/PROMOTION
attribute . Its content is stored in map inherited from . The access takes place via get() ZZUPSELLING_CODE extensions AbstractEntityImpl
method and set() method. The get() and set() method are already part of the corresponding entity interface in PPS module .dataaccess-interface

Adding a Separate Entry

After you define the new entity, you have to proceed with the standard approach. The new entity is made visible to the entity manager factory (in other
words it is added to the list of packages scanned by the entity manager factory for JPA entities or attribute converters) by adding its package name to the
Spring property . Assuming that the new entity is in packages and sap.dataaccess-common.custpackagestoscan com.mycompany.myentities1 com.

, the property must have the following value:mycompany.myentities2

... you saw the leading comma...?
sap.dataaccess-common.custpackagestoscan=,com.mycompany.myentities1,com.mycompany.myentities2

Adding an Attribute Converter to an Existing Attribute

If writing the attribute converter, only the converter is made visible to the entity manager factory by adding its package name to the Spring property sap.
. The attribute converter is added to the JPA entity attribute using , as shown in the dataaccess-common.custpackagestoscan ppe-local-orm.xml

following example for the OPP promotion:

Adding an attribute converter to an existing field

<entity-mappings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.eclipse.org/eclipselink/xsds/persistence/orm
 http://www.eclipse.org/eclipselink/xsds/eclipselink_orm_2_4.xsd"
 version="2.4">

 <!-- ... -->
 <entity
 class="com.sap.ppengine.dataaccess.promotion.common.entities.PromotionImpl">
 <convert
 converter="com.mycompany.converters.MyNewConverter"
 attribute-name="someExistingAttribute"/>
 </entity>
</entity-mappings>

Adding a Subentity to an Existing Entity

You can create the JPA entity in the way you create a new entity. You can provide a relation from the new entity to predelivered entities via the separate
standard JPA way (). If the relation from the existing entity to the new subentity is required, the existing entity must be enhanced by this @OneToMany
relation. In , this is done as shown in the following example in which a new subentity is added to the OPP promotion. We assume that ppe-local-orm.xml
the new entity has SAP client as table column and the promotion ID as table column as attributes.MANDT PROMOTION_ID

Adding a relation from an existing to a new entity

<entity-mappings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.eclipse.org/eclipselink/xsds/persistence/orm
 http://www.eclipse.org/eclipselink/xsds/eclipselink_orm_2_4.xsd"

 version="2.4">

 <!-- ... -->
 <entity
 class="com.sap.ppengine.dataaccess.promotion.common.entities.PromotionImpl">
 <attributes>
 <one-to-many name="myOwnEntities" access="VIRTUAL" attribute-type="java.util.List"
 target-entity="com.mycompany.entities.MyOwnEntity">
 <join-column name="MANDT" referenced-column-name="MANDT" />
 <join-column name="PROMOTION_ID" referenced-column-name="PROMOTION_ID" />
 </one-to-many>
 </attributes>
 </entity>

</entity-mappings>

Adding a Specialization to an Existing Entity

You can only add a specialization to an existing entry if the existing entity is prepared accordingly, as it is the case for the price derivation rule and the
price derivation rule eligibility. Inheritance is represented in the database via a dedicated column holding the discriminator determining the specific type
that is stored in the database table record. For the price derivation rule and th eligibilit this is the column . The new e price derivation rule y, TYPE_CODE
entity is to be defined as shown in the following example of a new eligibility type:

Adding another specializaton to an existing entity

package com.mycompany.entities;

@Entity
@DiscriminatorValue(value = "ABCD")
public class AbcdPriceDerivationRuleEligibilityImpl extends
 PriceDerivationRuleEligibilityImpl implements
 AbcdPriceDerivationRuleEligibility {

 // New fields may come here
}

In the example above, the new entity also implements a new interface . We AbcdPriceDerivationRuleEligibilityImpl AbcdPriceDerivationRuleEligibility
recommend you extend the existing classes and interfaces to provide a clean interface to the promotion calculation engine:

PromotionService (add new access methods)
Optionally (add new access methods)NamedQueryService
This is needed if new search methods are required that use Spring caches. Then the method performing the to-be-cached access must be
external to the calling method within PromotionServiceImpl.
PromotionServiceImpl (also redefine the bean)sapPromotionService
Optionally (also redefine)NamedQueryServicelmpl sapNamedQueryService

The new entity is made visible to the entity manager factory by adding its package name to the Spring property sap.dataaccess-common.
custpackagestoscan.

Using Own Logic for Equals() and HashCode() of a JPA Entity

You can use your own logic for equals () and hashcode () by replacing the Spring bean . For more information, see the sapJpaEqualsHashCodeHelper
description of PPS module . dataaccess-common

Extensibility of Client API (Java)

The extensibility of the client API is an and effective way to meet customer requirements. The underlying standard of the Association for Retail easy
Technology Standards (ARTS) already offers a lot of functions. However, it does not provide an overall solution for customer-specific requirements.
Therefore, customers might have to extend the data model. Some of the extensions will be part of the ARTS standard in later versions, others may be too
customer-specific to be part of the ARTS standard.

Use virtual attributes only?

It is possible to define JPA entities using only virtual attributes. If the entity is a specialization of an existing SAP entity, this approach would
makes it unnecessary to define a new IDoc type since all fields go to the extension segments of existing segments. However, the use of virtual
attributes is more resource intensive than the use of ordinary attributes of the corresponding Java class.

Therefore, we recommend you start with virtual attributes and switch to non-virtual attributes if resource consumption is noticeably higher.

An extension of the client API is not enough since the underlying promotion calculation engine also has to be extended to be able to process extension
data provided by the client API.
There are two types of possible extensions for the client API:

Extensibility of Enumerations

All type code enumerations contain the values needed for the corresponding fields that are determined by ARTS. However, these fields are of type inString
the Java classes and you can, therefore, add your custom values.

: For any of the enumerations listed below, your custom values must match the following pattern (as defined in the XSD provided with the Client API) [0-9A-
 Za-z][0-9A-Za-z]*:[0-9A-Za-z]*. If not, the following problems can occur:

The value that you have added is the same as introduced later on in the standard delivery
A future XSD validation will reject the request

Entity Attribute/Element Possible Value

ARTSCommonHeaderType ActionCode Any value from ActionCommonDataTypeCodesEnumeration
or any other string matching the pattern above

ARTSCommonHeaderType MessageType Any value from MessageTypeCodeEnumeration
or any other string matching the pattern above

ResponseCommonData ResponseCode Any value from ResponseTypeCodeEnumeration
or any other string matching the pattern above

BusinessErrorCommonData Severity Any value from SeverityCodeEnumeration
or any other string matching the pattern above

BusinessUnitCommonData TypeCode Any value from BusinessUnitTypeCodeEnumeration
or any other string matching the pattern above

PriceCalculateBase TransactionType Any value from TransactionTypeEnumeration
or any other string matching the pattern above

LoyaltyRewardBase TypeCode Any value from LoyaltyRewardTypeCodeEnumeration
or any other string matching the pattern above

PointsCommonData Type Any value from PointsTypeCodeEnumeration
or any other string matching the pattern above

PriceDerivationRuleBase ApplicationType Any value from PriceDerivationApplicationTypeCodeEnumeration
or any other string matching the pattern above

PriceDerivationRuleEligibility Type Any value from DerivationRuleEligibilityTypeEnumeration
or any other string matching the pattern above

ItemBase ItemType Any value from RetailTransactionItemTypeEnumeration
or any other string matching the pattern above

RetailPriceModifierBase Amount Any value from RetailPriceModifierAmountActionEnumeration
or any other string matching the pattern above

RetailPriceModifierBase Percent Any value from RetailPriceModifierPercentActionEnumeration
or any other string matching the pattern above

AmountCommonData Currency Any value from CurrencyTypeCodeEnumeration
or any other string matching the pattern above

RoundingRuleType RoundingMethod Any value from RoundingMethodEnumeration
or any other string matching the pattern above

CalculationModeTypeCode CalculationMode Any value from CalculationModeEnumeration
or any other string matching the pattern above

Extensibility of Content with User-Defined Attributes / Elements

Well-defined points in the ARTS data model, so-called are provided. These attributes allow the extension of the client API with attributes/elements any
anything a customer wants to add.

OPP only supports because of problems with the Jackson XML/JSON parser. The following entities contain these extension points:any elements

Entity Object Type

LineItemChoiceDomainSpecific Object

SaleBase List<Object>

SaleForDeliveryBase List<Object>

SaleForPickupBase List<Object>

ReturnBase List<Object>

ReturnForDeliveryBase List<Object>

ReturnForPickupBase List<Object>

CustomerOrderForDeliveryBase List<Object>

CustomerOrderForPickupBase List<Object>

ItemDomainSpecific List<Object>

PriceDerivationRuleBase List<Object>

PriceDerivationRuleEligibility List<Object>

RetailPriceModifierDomainSpecific List<Object>

DiscountBase List<Object>

TenderCouponBase List<Object>

ARTSCommonHeaderType List<Object>

ExternalActionType List<Object>

LoyaltyAccountType List<Object>

LoyaltyRewardBase List<Object>

PriceCalculate List<Object>

PriceCalculateBase List<Object>

PriceCalculateResponse List<Object>

PromotionExternalTriggerType List<Object>

PromotionManualTriggerType List<Object>

PromotionPriceDerivationRuleReferenceType List<Object>

RoundingRuleType List<Object>

ShoppingBasketBase List<Object>

More information about the general ARTS extension concept of the XML schemas can be found .here

Restrictions

It is not possible to use XML attributes within any elements, for example:

Restrictions

<any>
 <SimpleExtension myAttribute='hello'>MyExtension</SimpleExtension>
</any>

Instead, you could use the following attributes:

Alternative

<any>
 <SimpleExtension>
 <myAttribute>hello</myAttribute>
 <data>MyExtension</data>
 </SimpleExtension>

https://nrf.com/

</any>

Example: Enrich SaleForDelivery Entity with Address Information

A customer wants to enrich the entity with address information.SaleForDelivery

Request excerpt

 ...
 <ShoppingBasket>
 <LineItem>
 <SequenceNumber>0</SequenceNumber>
 <MerchandiseHierarchy ID="ID1" >hier1</MerchandiseHierarchy>
 <SaleForDelivery ItemType="Stock" NonDiscountableFlag="false" FixedPriceFlag="false">
 <TaxIncludedInPriceFlag>false</TaxIncludedInPriceFlag>
 <NonPieceGoodFlag>false</NonPieceGoodFlag>
 <FrequentShopperPointsEligibilityFlag>false</FrequentShopperPointsEligibilityFlag>
 <DiscountTypeCode>2</DiscountTypeCode>
 <PriceTypeCode>00</PriceTypeCode>
 <NotConsideredByPriceEngineFlag>false</NotConsideredByPriceEngineFlag>
 <ItemID>CHA2111012</ItemID>
 <Quantity Units="1" UnitOfMeasureCode="PCE">5</Quantity>
 <any>
 <Street>Neue Bahnhofstrasse 21</Street>
 <City>Sankt Ingbert</City>
 <PostalCode>66386</PostalCode>
 <Country>Deutschland</Country>
 </any>
 <any>
 <Street>Dietmar-Hopp-Allee 16</Street>
 <City>Walldorf</City>
 <PostalCode>69160</PostalCode>
 <Country>Deutschland</Country>
 </any>
 </SaleForDelivery>
 </LineItem>
 ...

This example shows that the line item has been enriched with two addresses.

To access this information from Java, you can use the following code snipplet as reference:

Access any information in Java

final List<Object> anyList = priceCalculate.getPriceCalculateBody().get(0).getShoppingBasket().getLineItem().get
(0).getSaleForDelivery().getAny();

for (int i = 0; i < anyList.size(); i++)
{
 //Do whatever you want with the address information
}

Extending the PPS Business Logic (Java)

This chapter is relevant as of PPS version 3.0.

In order to extend business logic on the customer side, it is crucial that the extended application offers an well-defined API that:

Has a clearly defined facade
Calls the extension at a defined point during the application logic
Is well documented
Is stable across releases
Does not require modification of the delivered code
Is easy to consume

In addition, it is necessary to write the customer extension in such a way that it is independent of its later runtime environment. In particular, this is relevant
for extensions of the promotion calculation engine, which can be used within the PPS as well as within a GK OmniPOS deployment. This implies the
following:

There must be one file structure of the Java project containing the customer extension
It must be possible to distribute and install the built customer artifact independently of the standard artifacts

For this purpose, the PPS and the contained promotion calculation engine (PCE) offer the following:

A plugin concept to allow customer extensions of the standard business logic
The guaranteed stability of certain artifacts

Plugin Concept

This is similar to the concept of the Business Add-Ins ("BAdI") offered by ABAP: The following figure illustrates its components and how it works:

The plugin concept is based on the Spring plugin framework (see). The Spring plugin framework offers the https://github.com/spring-projects/spring-plugin
interface This is the parent interface for all application-specific interfaces that provide extension hooks. org.springframework.plugin.core.Plugin<S>.

https://github.com/spring-projects/spring-plugin

The interface offers the type parameter <S>, which allows an implementation of this interface to tell for in which context the corresponding Plugin
implementation shall be used. This is realized via the method, allowing a caller to filter implementations by a specific criterion. How to supports()
implement this is described below.

The PPS/PCE now offers interfaces extending , offering specific methods. These interfaces are called . Plugin interfaces offer the Plugin Plugin interfaces
extensibility for a certain aspect of the application logic. The meaning of the type parameter <S>, i.e. the filter criterion, depends on the individual plugin
interface. The interface is a special case, serving as the parent for all Plugin interfaces where a filter on implementation is not feasible or NonFilterPlugin
required. In the diagram above, two example plugin interfaces are shown:

Interface which enables the addition of further validations of the incoming Price Calculation request. This does not offer the RequestValidation
selection of individual plugin implementations based on a filter value. Therefore it extends .NoFilterPlugin
Interface which allows changing query parameters of JPA NamedQueries, setting query hints etc. This works per query to be QueryAdjustment
executed. Hence, the query name (of type) is a filter criterion. In the method, an implementation of this interface would String supports()
compare the provided query name with the query name this implementation is intended for.

The implementation of a Plugin Interface is called . This consists of two parts:Plugin Implementation

The Java class implementing the Plugin Interface
The Spring Bean adding an instance of the Java class to the Spring Application Context.

Having the Plugin Implementations created, they must be somehow collected so that within the application all implementations of a plugin interface can be
called. This is done by the . During startup of the Spring Application Context, for a given Plugin Interface it looks for all Spring Beans Plugin Registry
implementing this interface. When calling the Plugin Implementations, the No static wiring of the implementations to the Plugin Registry is needed.
Plugin Registry offers the list of references to the corresponding Spring Beans. The Plugin Registry itself is an ordinary Spring Bean as well. However, the
Spring Plugin framework adds another XML namespace to the Spring XML file, making it easier to define the registry. As a second possibility, the plugin
implementations can be collected by the registry which itself is not exposed - instead the collected implementations are exposed as a simple list which can
be injected into the Spring bean calling the plugin.

The following example shows how a Plugin Registry and a Plugin Implementation is created. The Plugin Registry is added in a Spring XML of the SAP
delivered artifacts.

Defining a Plugin Registry in SAP Spring XML

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org
/schema/context"
 xmlns:util="http://www.springframework.org/schema/util" xmlns:plugin="http://www.springframework.org
/schema/plugin"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema
/beans/spring-beans.xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context
/spring-context.xsd
 http://www.springframework.org/schema/plugin http://www.springframework.org/schema/plugin
/spring-plugin.xsd
 http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-
util.xsd">

 <!-- Option 1: Plugin registry for adjustment of named queries -->
 <alias name="sapDefaultQueryAdjustmentPluginRegistry" alias="sapQueryAdjustmentPluginRegistry" />
 <plugin:registry id="sapDefaultQueryAdjustmentPluginRegistry"
 class="com.sap.ppengine.api.plugin.QueryAdjustment" />

 <!-- Option 2: Plugin collect plugin implementations as list -->
 <alias name="queryAdjustments" alias="queryAdjustmentImplsAsList" />
 <plugin:list id="queryAdjustmentImplsAsList"
 class="com.sap.ppengine.api.plugin.QueryAdjustment" />
</beans>

The non-PCE part of the PPS uses the registry approach, the PCE part uses the list approach. From an implementor's view this does not make a
difference though.

Calling the Plugins

PPS Only

This section is only valid for the PPS and does not apply for the promotion calculation engine (PCE) that is part of it.

Calling the Plugins - to be more precise: the relevant implementations of the corresponding Plugin Interfaces - is done via the helper class . PluginAccess
For a given Plugin Interface and Plugin Registry, it allows a simple invokation of the desired interface method for all relevant implementations. Some
examples are shown below:

Calling Plugins via CallPlugins class

// Injected via Spring
PluginAccess pluginAccess;

// Call the validate() method of all implementations for plugin RequestValidation expecting a checked exception
pluginAccess.callAll(ContextEnrichment.class, p -> p.enrichContext(getContext(), priceCalculate));

// Call the validate() method of all implementations for plugin RequestValidation expecting a checked exception
pluginAccess.callAllChecked(RequestValidation.class, p -> p.validate(priceCalculate));

// Call the single implementation of a method with return parameter
Class<T> clazz = pluginAccess.callFunction(CustomEligibility.class, eliType, p -> p.classForType());

Implementing a Plugin

A corresponding implementation on customer side is just a regular Spring Bean to be added to the Spring XML:

Defining a Plugin Implementation in Customer Spring XML

<bean id="myQueryAdjustment" class="com.customer.MyQueryAdjustmentImpl"/>

The corresponding Java class implements the Plugin Interface. In this example we want to adjust the query "findItemEligibilityIDsByItemID" after any
potential SAP implementation.

Customer class implementing a Plugin Interface

package com.customer;

import org.springframework.core.annotation.Order;
import com.sap.ppengine.client.dto.PriceCalculate;
import com.sap.ppengine.api.plugin.QueryAdjustment;
import com.sap.ppengine.client.impl.RequestValidationException;

// Note that order -10000000 to 10000000 is reserved for SAP
// ... but only multiples of 100
@Order(value = 10000001)
public class MyQueryAdjustmentImpl implements QueryAdjustment {

 @Override
 public boolean supports(final String queryName) {
 return "findItemEligibilityIDsByItemID".equals(queryName);
 }

 @Override
 public void adjustQuery(final Query query, final Context context) {
 // Do something
 }

 void adjustResult(final Query query, final Context context, final Object result) {
 // Do something else
 }
}

Currently, only Spring beans with scope "singleton" (which is the default scope) are supported for plugin implementations.

Note that the implementation of a Plugin Interface is not only possible on customer side but done on SAP side as well. For example, the standard request
validation is an implementation of this Plugin Interface:

<alias name="sapDefaultCalculateRequestValidation" alias="sapCalculateRequestValidation" />
<bean id="sapDefaultCalculateRequestValidation" class="com.sap.ppengine.client.impl.RequestValidation30Impl">
 <property name="objectFactory" ref="sapClientApiDtoFactory" />
 <property name="maxNumberOfLineItems" value="${sap.client-impl.maxnumberoflineitems}" />
 <property name="requestHelper" ref="sapClientApiHelper" />
</bean>

This raises the question in which sequence the implementations are called. The used Plugin Registry supports the sorting of Plugin Implementations either
via Java interface or via annotation . The specified integer value org.springframework.core.Ordered org.springframework.core.annotation.Order
determines the sort sequence of the implementations - negative values are allowed. To avoid collisions, it is strongly recommended to use separate order
values for each implementation of a certain Plugin Interface.

If you want to replace an SAP implementation of a Plugin Interface, this is also possible using the PPS Module concept. In this case, define your Spring
bean with the same ID (and not just alias) as the SAP standard bean:

Replacing an SAP standard Plugin Implementation

<alias name="sapDefaultCalculateRequestValidation" alias="sapCalculateRequestValidation" />
<bean id="sapDefaultCalculateRequestValidation" class="com.customer.MyReplacingValidationImpl" />

To make sure this bean is taken instead of the SAP standard bean, your PPS module must depend on the PPS module where the SAP standard bean was
defined. In the example above this would be the module. This is specified in the (..)-ppe-module-metadata.xml file of your module:client-impl

Defining the dependency to the PPS module of the bean to be replaced

<module xmlns="http://www.sap.com/ppengine/core/module"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.sap.com/ppengine/core/module ppengine-module-0.2.xsd">
 <name name="custextension" vendor="customer" />
 <dependencies>
 <module name="client-impl" vendor="sap"/>
 </dependencies>
</module>

If you just define an additional Plugin Implementation, declaring such a dependency is not required.

In order to easily find the list of Plugin Interfaces offered for the PPS and the PCE, they are bundled at central places:

For the PPS this is the PPS module , which exists as of PPS 3.0api
For the PCE, this is module (which is not a PPS module). pricing-engine-api

Due to constraints of the usage of common Java classes, plugins are identified differently for the PCE and non-PCE part of the PPS. The following table
illustrates differences and similarities of the plugin definitions:

Aspect Non-PCE PCE

Inherits from org.springframework.plugin.core.Plugin<S>

Annotated wit @ExtensionStable @ExtensionPoint(ExtensionType.Plugin)

Reserved order values

Order values being multiples of 100 are reserved for the Plugin Implementations of the standard shipment. If you want to have your Plugin
Implementation executed between delivered implementations, use a value which is not a multiple of 100. In case you want to make sure your
implementation is execute before or after any current or future implementation, use order values below -10,000,000 or above 10,000,000.

Stability of SAP Spring Bean IDs

Although SAP tries to ensure compatibility, there is no guarantee that for a provided Plugin Interface the number of standard implementations,
the contained logic, the execution sequence or the IDs remain stable.

Located in package com.sap.ppengine.api.plugin com.gk_software.pricing_engine.api.*

Further details of the offered Plugin Interfaces are documented in the corresponding chapter of these modules.

Guaranteed Stability

As of PPS 3.0, dedicated objects of the standard shipment offer a guaranteed stability for future releases.

What does that mean? When referring to the stability of an artifact two degrees of stability must be distinguished:

The stability of an object towards the external callers / users of this object, in the following called . It is guaranteed that the Consumer stability
usage of the artifact does not lead to in future releases. Example: The artifact is a Java interface, the caller invokes a method of compile errors
this interface. The addition or removal of a method parameter would violate the caller stability contstraint for that interface. On the other hand,
replacing the type of a method parameter with a super type would not violate the caller stability.
The stability of an object towards extenders of this object, in the following called . This only applies for Java interfaces and Extension stability
classes. It is guaranteed that an implementor or an interface or a subclass of a class will not have compile errors in future releases. Example: The
artifact is a Java class which has been extended. The extension uses a protected method. The removal or this method or changing its signature
would violate the extension stability contraint for the extended class. On the other hand, adding a method to a Java interface using the Java 8
concept of (empty) default implementations is considered as uncritical, even if this leads to name collisions with customer implementations.

Unforeseen requirements to change something may come, and this is also true for the guaranteed stability. It may turn out that an artifact declared as
(consumer or extension) stable must be changed in an incompatible way. In this situation, the following happens:

In release X, it is announced that a certain incompatible change is required. The change itself is not yet done though.
The change is also not done in releases X+1, X+2, X+3, X+4. However, during that time an alternative to the incompatible change will be offered
(e.g. a method to be called instead if the original method will be removed).
In release X+5 the incompatible change is performed.

Example:

Release number changes from 3.0.0 to 3.0.1: patch number changes no change of PPS release
Release number changes from 3.0.1 to 3.1.0: minor version number changes new PPS release
Release number changes from 3.1.0 to 4.0.0: major version number changes new PPS release

Documented Stability

The guaranteed stability applies for the following PPS modules:

dataaccess-interface: All contained artifacts are guaranteed to be consumer stable. Incompatible changes will be documented via JavaDoc.
client-interface: All contained artifacts are guaranteed to be consumer stable. Incompatible changes will happen. Changes to the expected not
way of using the client API will lead to new interface versions.
api: The degree of stability (caller / extension) is documented via the Java annotations and com.sap.ppengine.api.ConsumerStable com.sap.

. Incompatible changes are documented via JavaDoc and Java annotation ppengine.api.ExtensionStable com.sap.ppengine.api.
.PlannedIncompatibleChange

Your Choices for Extending the PPS Java Side

Often the PPS context is provided as a method parameter. This is done on purpose - you are encouraged to store data you need throughout the
application within a parameter of the PPS context. Note that this parameter can have any type - it is neither needed nor good practice to define
a new PPS context parameter for every piece of information you want to store.

To be on the safe side and avoid name collisions, it is recommended to prefix customer specific methods and attributes, e.g. "zz" or
<customerName>.

Extension stability includes consumer stability since an extension can always act like an external caller.

In this context a "release" means a PPS release (i.e. the version number of the shipped JAR files), not the release of the software component
used to ship the PPS. Example: PPS 2.0.3 is contained in software component version 1.1.2. A new PPS release means that XSAC_OPP_PPS
either the major or minor release number changes.

This chapter does not apply for the promotion calculation engine (PCE) of the PPS. For further information about the PCE, please consult the
SDK of the Promotion Calculation Engine (chapter "PCE Extensions").

In addition, PPS-specific DB tables have guaranteed extension stability in the sense that the DB key will not change and no delivered fields will
be removed in any future release.

With the introduction of the Plugin Interfaces, you have three options for extending the PPS business logic. SAP recommends to use them in the following
order of preference:

SAP Delivered Plugin Implementations

The following tables contains the Plugin Implementations of PPS Plugin Interfaces (excluding the PCE) which are part of the SAP standard shipment.
Implementations of the PCE Plugin Interfaces can be found in the SDK of the PCE.

Plugin Interface Plugin Implementation Class Order Plugin Implementation
Bean

Description

ContextEnrichment ContextFromRequestEnrichmentImpl 0 sapDefaultContextFromRequ
estEnrichment

Enrich PPS context with BU Type etc

FeatureCheck FeatureCheckImpl 0 sapDefaultFeatureCheck Checks PCE features from config stored in PPS
context

PromotionServiceIniti
alization

ItemPriceDerivationRuleEligibilityCacheAwar
eBulkAccessorImpl

0 sapDefaultItemEligibilityBulk
Accessor

Bulk access for Item Eligibilities

MerchandiseSetEligibilityCacheAwareBulkAc
cessorImpl

1000 sapDefaultMSetEligibilityBulk
Accessor

Bulkd access for MerchandiseSet Eligibilities

RequestAdjustment AddBasePricesToRequestImpl 0 sapDefaultAddBasePricesTo
Request

Read needed regular prices and write them into
request forwarded to PCE

RequestValidation RequestValidationImpl 0 sapDefaultCalculateRequest
Validation

SAP standard consistency checks of request

Validation BeanValidationWrapper 0 sapBeanValidatorWrapper Available as of PPS 4.0. Wrapper for calling bean
validation

CheckPromotionForCycles 1000 sapPromoCyclesChecker Checks for cylces in promotional subentities.

NonUniqueBasePric
eHandling

NonUniqueBasePriceHandlingDefaultImpl n/a sapDefaultNonUniqueBasePr
iceHandling

Raises an exception if strategy SAP00 is configured
in the PPS configuration.

Structure of Your Extension Project

If you create an extension of the PPS, it may be the case that this extension shall also be used in a GK OmniPOS solution (at least the PCE extension part
of it). The extension concepts of the PPS and the PCE (in a non PPS context) are slightly different (see below). This needs to be kept in mind when
creating the extension. This chapter describes how to set up the file and folder structrure of a Java project which compiles to one JAR which can be used
by the PPS as well as by the PCE in an OmniPOS context. This documentation assumes that you use Eclipse. In the simplest setup (shown below), the
needed dependencies for compiling your extensions could be placed into the lib folder a separate Java project with a build path dependency set. However,
it is recommended to use a build management tool such as Apache Maven in order to have a cleaner project setup. How to set up Maven dependencies to
the provided JARs is described in the extensibility example "Promotions on Brand Level". Regardless of how the dependencies are resolved, the basic
structure of the source (or resource folders) of an extension project remains the same.

First, you need to categorize your extension objects into the following categories:

Objects that shall only be used in a PPS context. As an example, extensions of the data access layer (incl. changes to the DB table definition) of
the PPS or of the mapping between SAP data access interfaces and PCE objects fall into that category.
Objects that shall be used in both a PPS and an OmniPOS context. These are extensions of the PCE itself.
Objects that shall only be used in an OmniPOS context.

In all cases, the extension of the business logic is done by defining customer specific Spring Beans which are searched for in dedicated XML files when
setting up the Spring Application Context.

For the PPS, the XML files must match the following pattern (as defined in the PPS module) in Spring resource syntax:core
PPS Module metadata are located in classpath*:META-INF/**/*-ppe-module-metadata.xml
PPS Spring Beans are located in classpath*:META-INF/**/*-ppe-module-spring.xml
Metadata and Bean definition files are located in the same folder.

For the PCE in an OmniPOS environment, further beans are searched for in classpath*:META-INF/**/*-pos-plugin-pce.xml

This leads to the following recommended file and folder structure, using some speaking prefixes. Note that this introduces the PPS module .ppsext

1.
2.

3.

Implement the offered Plugin Interfaces. These are guaranteed to keep stable.
Use the PPS Module concept to replace SAP provided beans using a subclass of the Java class offered by SAP. Try to use as few of
the protected methods of the super class as possible in order to reduce the risk of an incompatible change.
Use Spring AOP if option 2 is not feasible or requires the redefinition of too many beans. Depending on the kind of change, this
approach may be very robust (e.g. if you want to grab the methods of the call of a ConsumerStable interface) or very risky. A general
recommendation cannot be given here.

1.
2.

... which looks as follows in the IDE:

In order to make sure that your extension runs both in the PPS and in the OmniPOS environment, you also have to consider the version of the Java
Runtime Environment. The PPS runs on Java 8 or later. However, some versions of GK OmniPOS still run on Java 6. If this is the case for you, you have
to compile your extension for a Java 6 target runtime. if you are in doubt about the used Java runtime, please contact your GK Software contact person.

Installing your Extensions

How to install your extensions depends on the hosting application and is described in the corresponding documentation. The common idea is the following:

Build the extension JAR once.
Add the extension JAR to the classpath of the hosting application.

For the central XSA based PPS, this is described in chapter . For the local PPS in Integrating Custom Extensions into the XSA Based PPS
SAP Commerce, this is described in the Adminstration Guide of under SAP Commerce, integration package for SAP for Retail Omnichannel Promotion

.Pricing

Extensibility of the Promotion Calculation Engine (Java)

The extensibility of the promotion calculation engine is described in the that can be found on the product page of SDK of the Promotion Calculation Engine
SAP Customer Activity Repository.

Extensibility of the sapppspricing PPS Integration (Java)

The extensibility of the sapppspricing PPS integration is described in the Administrator Guide that can be found on the product page of SAP Hybris
Commerce, integration package for SAP for Retail.

If you do not intend to extend the OmniPOS based PCE you can simply follow the PPS module concept and directly add the PCE extensions to
the Spring XML of the PPS module.

In some cases it may be required to split up your PPS extension into several parts, i.e. several PPS Modules. This is the case when the PPS
Spring Application Context is a real hierarchy as it is the case for the local PPS within SAP Commerce. Do not introduce dependencies to PPS
modules which are not visible in the Spring Application Context, to which your PPS Module is added. In the example of the local PPS wihin SAP
Commerce, an extension to the module must be loaded into the Web Application Context as well.idocinbound

1.
2.

3.

4.

Extensibility Examples

The collective SAP note contains references to examples showing how the extensibility concept can be used to implement certain requirements. 2542001
It is planned to add further examples over time.

Integrating Custom Extensions into the XSA-Based-PPS

The only requirement for the use of a PPS module is that it is located on the classpath. In this case, the PPS Spring application context finds the module
automatically and loads the contained Spring beans. The XSA-based PPS is shipped as follows:

When you install the Software Component Archive on XSA, the Multi Target Archive is deployed. This archive contains an application router and the Web
application itself (provided as a Web archive). The Web application consists mainly of Java archives containing the actual business logic.

A JAR inside the folder of the Web application looks like the obvious place for custom logic extending the PPS. However, deploying such an WEB-INF/lib
extended PPS comprises the creation of a new Web archive replacing the SAP standard archive and the creation of a new Multi Target Archive replacing
the SAP standard shipment, which is not recommended. SAP is working on a clean way to add custom logic to a Web application without breaking its
integrity. This chapter describes only the currently recommended way of adding further modules to the PPS shipped by SAP.

Setting Up the Development Environment

Extract the Multi Target Archive from the Software Component Archive shipped by SAP.
Extract the following from the Multi Target Archive:

The Web archive (ppservice-webapp-central)
The source JARs
The Javadoc JARs

Extract the content of the folder of the Web archive.WEB-INF/lib

SAP does not require the use of a specific development environment (Build Tool, Source Code Management, Editor, and so on). However, in
order to be able to provide a concrete example Eclipse is used as use a more advanced setup, IDE in the following description. You can
including the use of Maven and GIT, for example.

4.

5.

6.
7.

1.

2.
3.
4.
5.

In your Eclipse workspace, create a new Java project, such as , create a folder and include all JARs of the folder of sapppslibs lib/ WEB-INF/lib
the Web application. Add the JARs to the build path of the Java project.

Add the following JARs to the folder. These JARs will be provided by the tomcat runtime container:lib/
slf4j-api 1.7.13 or higher (see)http://slf4j.org/download.html

Ensure that all JARs of the folder are exported to the build path.lib
Create the folder within , in which you move all source JARs of the multi target archive.sourcejars sapppslibs

As a result, your project should look as follows. Note that the list of JARs is not complete.

Creating Your Extension Projects

In the same Eclipse workspace, create your custom extension as a Java project.
In this example, one project contains one PPS module. However, it is also possible to have a 1:n relationship between projects and PPS modules.
Add the project to the build path of your Java project.sapppslibs
Define your PPS module metadata and spring beans via the corresponding XML files in the folder.META-INF
Create your Java classes for extending the standard functions.
Build the JAR file.

As a result, your Eclipse project could look as follows:

This Java project is used to compile and (unit-)test your extensions.only

http://slf4j.org/download.html

1.

2.
3.

4.

5.

Adding Your Extension to the PPS

Once the JAR with your custom logic has been created, it needs to be placed on the classpath of the SAP standard PPS as follows:

Create a directory that is accessible by the XSA runtime. Restrict the access rights of that directory so that only trusted people are allowed to
access it. If you are unsure how to create this directory, contact your system administrator.
In this procedure, the path to this directory is ./usr/sap/hana/shared/XSA/customjars
Copy the JAR file into this directory and set the access rights accordingly.
Create an (Multi Target Archive Extension) file, for example , with the following content:MTAEXT myPPS.mtaext

_schema-version: "2.0.0"
ID: com.customer.retail.ppservice.XSAC_OPP_PPS
extends: com.sap.retail.ppservice.XSAC_OPP_PPS
modules:
some lines omitted
 - name: ppservice-webapp-central
 parameters:
 memory: 1024M
 properties:
 JBP_CONFIG_RESOURCE_CONFIGURATION: >
 ['tomcat/webapps/ROOT/WEB-INF/classes/ppe-schema-orm.xml':
 {'sap.dataaccess-common.schema':'<DB_SCHEMA>'},
 'tomcat/webapps/ROOT/META-INF/context.xml':
 {'ppeHana-service-name':'ppeHana',
 'custJarBasePath':'/usr/sap/hana/shared/XSA/customjars'}]
 JBP_CONFIG_JAVA_OPTS: >
 java_opts: -Dsap.dataaccess-common.db.client="<DB_CLIENT>"
 -Dsap.dataaccess-common.logSys=<LOGSYS>
 provides:
 - name: java

some lines omitted

(Re-)install the PPS as follows:

xs install XSACOPPPP<version>.ZIP -e myPPS.mtaext -o ALLOW_SC_SAME_VERSION

If the content of the directory changes, restart the PPS:

xs restart ppservice-webapp-central

Only the replacement of parameter is relevant. Choose the other settings according to your specific setup.custJarBasePath

Extending the PPS-Based Price Calculation in SAP ERP and SAP S/4HANA Sales Documents

Depending on the SAP ERP or SAP S/4HANA release, it is also possible to call the PPS from SAP ERP/SAP S/4HANA. In this context, extensions are
possible as well. This chapter describes the offered possibilities.

Extending via BAdIs

The enhancement spot offers several BAdIs to extend the PPS-based price calculation in SAP ERP sales documents. For more OPP_ENHANCE_SD
information about implementing these BAdIs, see the system documentation. In Customizing, you can find these BAdIs under Logistics - General

.> Omnichannel Promotion Pricing (OPP) > Business Add-Ins (BAdIs)

Enriching with Further Article Hierarchy Nodes

By default, the implementation of BAdI adds up to three article hierarchy nodes to the OPP_ENHANCE_BY_ARTHIER OPP_ENHANCE_REQUEST
corresponding article via the following logic:

The maximum depth of the article hierarchy is determined from table . The entry with the highest value of WRF_MATGRP_TREE TREE_LEVEL
defines the article hierarchy depth.
The enrichment is done for the maximum level and the two levels below. For example, the maximum level has value 08, the enrichment searches
for nodes with level 06, 07 and 08 having this article as leaf.
If the article hierarchy is not balanced, it can result in less than 3 article hierarchy nodes. For example, the considered article is assigned to a
hierarchy node on level 06, only this node is considered. Nodes on level 04 or 05 are not taken into account.

If this logic is not sufficent and more than the three lowest levels should be considered, do the following:

Create an append structure to DDIC structure .KOMP
Add the following fields to this append structure:

Field name x (x=4,5,...)NODE
Type WRF_STRUC_NODE2

The system automatically considers further article hierarchy nodes according to the logic described above.

Extending the SAP ERP/ SAP S/4HANA PPS Client

The PPS client in SAP ERP is responsible for the conversion between ABAP data objects (structures, internal tables, data elements) representing the
elements of the PPS client API and their XML representation as supported by the PPS. Morever, it takes care for the HTTP-based data exchange. It is
independent from the integration into SD processing and implemented by class . Technically, the ABAP types processed by the CL_OPP_PPS_CLIENT
SAP ERP PPS client are not simple Data Dictionary types, but proxy data types with a binding between the ABAP type and the corresponding XSD type of
the client API.

Therefore, it is not possible to simply enhance the ABAP part of the client API in order to add further information to an request or response. To support
extensibility, the generated ABAP proxy structures provide predefined extension segments that can be used to transport additional Information to the PPS
and back to the caller. Each of these extension segments has the field name and type which is a standard table of raw strings. The ANY OPP_ANY_TAB
following picture shows the ABAP proxy editor with the top level elements of the data type corresponding to the PPS request ():OPP_MESSAGE2

During runtime, these raw strings may contain XML fragments that are automatically mapped by the PPS into a generic data format so that it can be
processed by server side customer extensions. The structure of each XML fragment can be arbitrarily complex, so that also deep ABAP structures or
tables can be used. The mapping between the ABAP data structures and the XML fragment that is contained in the raw string is offered by ABAP interface I

 with the following 2 methods:F_OPP_PPS_EXTENSION_HELPER

WRAP: This method transforms the provided ABAP data into the XML fragment
UNWRAP: This method transforms the provided raw string containing an XML fragment into the corresponding ABAP data object. The target type
of the ABAP data object must match the structure of the XML fragment.

The following ABAP program shows how to perform the wrapping and unwrapping for the extension segments:

Usage of IF_OPP_SD_EXTENSION_HELPER

&---
*& Report ZZ_DEMO_EXTENSION_HELPER
&---
REPORT ZZ_DEMO_EXTENSION_HELPER.
* Get instance of IF_OPP_PPS_EXTENSION_HELPER
DATA(go_helper) = cl_opp_core_factory=>get_factory()->get_pps_extension_helper().
* The PPS request
DATA gs_request TYPE opp_message2.
* Example ABAP data: An integer giving the final answer
DATA g_src_data TYPE i VALUE 42.
DATA g_tgt_data LIKE g_src_data.
* Wrap ABAP data into XML fragment
DATA(g_wrapped) = go_helper->wrap(g_src_data).
* Append XML fragment to extension segment of ARTS header
APPEND g_wrapped TO gs_request-artsheader-any.
* Do the PPS call etc. For reasons of simplicity we here just extract the request data
* Unwrap XML fragment to ABAP format - note that the data type matches
go_helper->unwrap(EXPORTING i_xml_fragment = gs_request-artsheader-any[1]
 IMPORTING ed_data = g_tgt_data).

IF g_src_data = g_tgt_data.
 WRITE 'It really works!'.
ENDIF.

1.
2.

3.

4.

From a technical perspective, the "identity" ABAP Simple Transformation is used to convert between ABAP and XML representation, hence the
possibilities and restrictions described in the ABAP keyword documentation for format "asXML" apply (see also http://help.sap.com/abapdocu_740/en

). The PPS is a Java-based application that does not know ABAP-specific concepts. This has some implications:/abenabap_xslt_asxml.htm

Reference types should not be wrapped into XML fragments as the unwrapping may not be possible.
Hashed or sorted tables including sorted or hashed table Indexes should not be used because the PPS is not aware of the restrictions for the
structure of the corresponding XML representation.
The ABAP-specific handling of currencies with other than 2 decimal places is not supported. We recommend to use a string representation of
amounts for Transfer within XML ANY elements.
By default Java has no direct counterpart to the ABAP built-in types and decfloat16 . If is used on Java side, decfloat34 java.math.BigDecimal
precision loss can occur while unwrapping.

Support for Mocking of the SAP ERP/ SAP S/4HANA PPS Client

It is possible to perform integration tests of PPS-based price calculation in the pricing of a sales document without having a running PPS. This is done by
replacing the class that is responsible for creating the PPS client.CL_OPP_CORE_FACTORY

This can be done as follows:

Create a subclass of class , for example, .CL_OPP_CORE_FACTORY ZZCL_OPP_MOCK_FACTORY
In this class redefine the method so that it returns a mocked version of the PPS client. This IF_OPP_CORE_FACTORY~GET_PPS_CLIENT
must be a subclass of class . CL_OPP_PPS_CLIENT
In the subclass of redefine the method so that the PPS call is mocked according to your CL_OPP_PPS_CLIENT IF_OPP_PPS_CLIENT~CALL
needs.
Set the SET / GET parameter to the name of the class replacing , for example, OPP_CORE_FACTORY CL_OPP_CORE_FACTORY ZZCL_OP

.P_MOCK_FACTORY

In the initial shipment of the SAP ERP PPS client, Client API version 2.0 is supported. This means, that all elements of version 2.0 have the
corresponding ABAP proxies present. However, from an application side, only version 1.0 requests are supported.

If in transaction the client role is set to 'P' (Productive), tSCC4 he mocking of the PPS client is not possible with this approach.

http://help.sap.com/abapdocu_740/en/abenabap_xslt_asxml.htm
http://help.sap.com/abapdocu_740/en/abenabap_xslt_asxml.htm

www.sap.com/contactsap

© 2015 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any
form or for any purpose without the express permission of SAP SE

or an SAP affiliate company.
SAP and other SAP products and services mentioned herein as well

as their respective logos are trademarks or registered trademarks of
SAP SE (or an SAP affiliate company) in Germany and other

countries. All other product and service names mentioned are the
trademarks of their respective companies. Please see http://www.

sap.com/corporate-en/legal/copyright/index.epx#trademark for
additional trademark information and notices.

Material Number:

	OPP Development and Extension Guide for CARAB 4.0 FP02/FP03

