
PUBLIC
SAP HANA Platform 2.0 SPS 03
Document Version: 1.1 – 2018-10-31

SAP HANA Developer Guide
For SAP HANA Studio

©
 2

01
8

SA
P

SE
 o

r a
n

SA
P
affi

lia
te

 c
om

pa
ny

. A
ll r

ig
ht

s
re

se
rv

ed
.

THE BEST RUN

Content

1 SAP HANA Developer Guide for SAP HANA Studio. 9

2 Introduction to SAP HANA Development. 10
2.1 SAP HANA Architecture. 11

SAP HANA In-Memory Database. 12
SAP HANA Database Architecture. 14
SAP HANA Extended Application Services. 15
SAP HANA-Based Applications. 17

2.2 Developer Information Map for XS Classic. 18
2.3 Developer Scenarios. 19

Developing Native SAP HANA Applications. 21
Developing Non-Native SAP HANA Applications. 25

3 Getting Started. 30
3.1 Prerequisites. 31
3.2 SAP HANA Studio. 31

The SAP HANA Development Perspective. 32
3.3 SAP HANA XS Application Descriptors. 36
3.4 SAP HANA Projects. 36
3.5 Tutorials. .37

Tutorial: My First SAP HANA Application. 38
Tutorial: Use the SAP HANA OData Interface. 54

4 Setting Up Your Application. 59
4.1 Roles and Permissions for XS Development. .60
4.2 Maintaining Delivery Units. 62

Maintain the Delivery-Unit Vendor ID. 64
Create a Delivery Unit. .65

4.3 Using SAP HANA Projects. 67
Maintain a Repository Workspace. 68
Create a Project for SAP HANA XS. .70
Share an SAP HANA XS Project. 73
Import an SAP HANA XS Project. 74

4.4 Maintaining Repository Packages. 75
Define the Repository Package Hierarchy. 76
Assign Repository Package Privileges. .81
Create a Repository Package. 84
Delete a Repository Package. .85

2 P U B L I C
SAP HANA Developer Guide

Content

4.5 Creating the Application Descriptors. 86
Create an Application Descriptor File. 88
Enable Access to SAP HANA XS Application Packages. 90
Create an SAP HANA XS Application Privileges File. 106

4.6 Maintaining Application Security. 110
Set up Application Security. 111
Set up Application Authentication. 113

4.7 Maintaining HTTP Destinations. 118
Tutorial: Create an HTTP Destination. 119
Tutorial: Extend an HTTP Destination. 131
Tutorial: Create an OAuth Configuration Package. .135

4.8 Maintaining Application Artifacts. 149
Design-Time Application Artifacts. 149
Studio-Based SAP HANA Development Tools. 152

5 Setting up the Data Persistence Model in SAP HANA. 157
5.1 Creating the Persistence Model in Core Data Services. .159

CDS Editors. 160
Create a CDS Document. 164
Create an Entity in CDS. .188
Migrate an Entity from hdbtable to CDS (hdbdd). 206
Create a User-Defined Structured Type in CDS. 210
Create an Association in CDS. 224
Create a View in CDS. 239
Modifications to CDS Artifacts. .261
Tutorial: Get Started with CDS. .264
Import Data with CDS Table-Import. 268

5.2 Creating the Persistence Model with HDBTable. 281
Create a Schema. 283
Create a Table. 286
Create a Reusable Table Structure. .295
Create a Sequence. .299
Create an SQL View. 307
Create a Synonym. 313
Import Data with hdbtable Table-Import. 318

6 Setting Up the Analytic Model. 332
6.1 Setting Up the Modeling Environment. 332

Set Modeler Preferences. 332
Set Keyboard Shortcuts. 333

6.2 Creating Views. 334
Attributes and Measures. 334

SAP HANA Developer Guide
Content P U B L I C 3

First Steps to View Creation. 335
Create Attribute Views. 337
Native HANA Models. 342
Create Graphical Calculation Views. 346
Create Script-Based Calculation Views. 358
Activating Objects. 361
Description Mapping. 364
Import BW Objects. 365
Group Related Measures . 367

6.3 Additional Functionality for Information Views. 368
Create Level Hierarchies. 368
Create Parent-Child Hierarchies. 370
Input Parameters. 374
Assign Variables. .375
Using Currency and Unit of Measure Conversions. 375
Manage Information Views with Missing Objects. 375

6.4 Working with Views. 376
Manage Editor Layout. .376
Validate Models. 377
Maintain Search Attributes. 378
Data Preview Editor. 378
Using Functions in Expressions. 379
Resolving Conflicts in Modeler Objects. 380

6.5 Create Decision Tables. 382
Changing the Layout of a Decision Table. 384
Using Parameters in a Decision Table. .386
Using Calculated Attributes in Decision Tables. 387

6.6 Generate Object Documentation. 388

7 Developing Procedures. .389
7.1 SQLScript Security Considerations. 390
7.2 Create and Edit Procedures. 391

Define and Use Table Types in Procedures. 394
Tutorial: Create an SQLScript Procedure that Uses Imperative Logic. 396

7.3 Create Scalar and Table User-Defined Functions. 401
Tutorial: Create a Scalar User-Defined Function. .401
Tutorial: Create a Table User-Defined Function. 406

7.4 Create Procedure Templates. 411
Create Procedure Template Instances. 412
Update Procedure Templates and Instances. 414
Delete Procedure Templates and Instances. 414

7.5 Debugging Procedures. .415

4 P U B L I C
SAP HANA Developer Guide

Content

Setup Debugger Privileges. 415
Debug Design-Time and Catalog Procedures. .416
Debug an External Session. 419

7.6 Developing Procedures in the Modeler Editor. 421
7.7 Transforming Data Using SAP HANA Application Function Modeler. 422

Converting deprecated AFL Models (AFLPMML objects). 425
Setting up the SAP HANA Application Function Modeler. 426
Flowgraphs. 427
Modeling a flowgraph. .430
Tutorial: Creating a Runtime Procedure using Application Function Modeler (AFM). 466
Node palette flowgraphs. .470

8 Defining Web-based Data Access in XS Classic. 475
8.1 Data Access with OData in SAP HANA XS. 475

OData in SAP HANA XS. 476
Define the Data an OData Service Exposes. 477
OData Service Definitions. 477
Create an OData Service Definition. 481
Tutorial: Use the SAP HANA OData Interface. 483
OData Service-Definition Examples. 486
OData Service Definition Language Syntax (XS Advanced). 509
OData Service Definition: SQL-EDM Type Mapping (XS Advanced). .511
OData Security Considerations. 513
OData Batch Requests (XS Advanced). 513

8.2 Data Access with XMLA in SAP HANA XS. .516
XML for Analysis (XMLA). 517
XMLA Service Definition. 518
XMLA Security Considerations. 519
Multidimensional Expressions (MDX). 519
MDX Functions. 520
MDX Extensions. .522
Define the Data an XMLA Service Exposes. 525
Create an XMLA Service Definition. 526
Tutorial: Use the SAP HANA XMLA Interface. 527

8.3 Using the SAP HANA REST API. 529
SAP HANA REST Info API. 530
SAP HANA REST File API. .531
SAP HANA REST Change-Tracking API. 536
SAP HANA REST Metadata API. 537
SAP HANA REST Transfer API. 539
SAP HANA REST Workspace API. .540

SAP HANA Developer Guide
Content P U B L I C 5

9 Writing Server-Side JavaScript Code. 542
9.1 Data Access with JavaScript in SAP HANA XS. 542
9.2 Using Server-Side JavaScript in SAP HANA XS. 543

Tutorial: Write Server-Side JavaScript Application Code. .543
9.3 Using Server-Side JavaScript Libraries. 557

Import Server-Side JavaScript Libraries. 559
Write Server-Side JavaScript Libraries. 560

9.4 Using the Server-Side JavaScript APIs. .561
Tutorial: Use the XSJS Outbound API. 573
Tutorial: Call an XS Procedure with Table-Value Arguments. .577
Tutorial: Query a CDS Entity using XS Data Services. 582
Tutorial: Update a CDS Entity Using XS Data Services. 587

9.5 Creating Custom XS SQL Connections. 590
Create an XS SQL Connection Configuration. 592

9.6 Setting the Connection Language in SAP HANA XS. 598
9.7 Scheduling XS Jobs. 600

Tutorial: Schedule an XS Job. 601
Add or Delete a Job Schedule during Runtime. .610

9.8 Tracing Server-Side JavaScript. 611
Trace Server-Side JavaScript Applications. 612
View XS JavaScript Application Trace Files. 613

9.9 Debugging Server-Side JavaScript. 614
Create a Debug Configuration. 617
Execute XS JavaScript Debugging. 618
Troubleshoot Server-Side JavaScript Debugging. .623

9.10 Testing XS JavaScript Applications. 625
Automated Tests with XSUnit in SAP HANA. 626
Application Development Testing Roles. 627
Test an SAP HANA XS Application with XSUnit. 627
Testing JavaScript with XSUnit. 641

10 Building UIs. 648
10.1 Building User Interfaces with SAPUI5 for SAP HANA. 648
10.2 Consuming Data and Services with SAPUI5 for SAP HANA. 649
10.3 SAPUI5 for SAP HANA Development Tutorials. 650

Tutorial: Create a Hello-World SAP UI5 Application. .651
Tutorial: Consume an XSJS Service from SAPUI5. 655
Tutorial: Consume an OData Service from SAPUI5. .661
Tutorial: Consume an OData Service with the CREATE Option. 668
Tutorial: Create and Translate Text Bundles for SAPUI5 Applications. 675

10.4 Using UI Integration Services. 680
Creating Content for Application Sites. 681

6 P U B L I C
SAP HANA Developer Guide

Content

SAP Fiori Launchpad Sites. 693
Creating a Standard Site. 700
Configuring the SAP HANA Home Page. 701

11 Setting Up Roles and Privileges. 702
11.1 Create a Design-Time Role. 703

Database Roles. 709
Privileges. 720

11.2 Creating Analytic Privileges. 741
Create Classical XML-based Analytic Privileges. 741
Create SQL Analytic Privileges. .744
Analytic Privileges. 746

12 SAP HANA Application Lifecycle Management. 767
12.1 Preparing to Use SAP HANA Application Lifecycle Management. 769

Assign User Roles. 770
Maintain the Delivery-Unit Vendor ID. 774

12.2 Setting Up the Transport. 776
Setting Up and Using Native SAP HANA Transport. .777
Setting Up and Using CTS Transport. 785

12.3 Maintaining Delivery Units. 793
Create a Delivery Unit. .795
Assign Packages to a Delivery Unit. .796
Export a Delivery Unit. .798
Import a Delivery Unit. .799

12.4 Maintaining Products. 801
Create a Product. 802
Assign a Delivery Unit to a Product. 803

12.5 SAP HANA Change Recording. 804
Enable SAP HANA Change Recording. 806
Create Changelists. .807
Assign Objects to Changelists. .809
Approve Contributions to Changelists. 810
Release Changelists. 811
Filter and Search for Changelists. 813

12.6 Assembling Add-On Products and Software Components. 814
12.7 Installing and Updating SAP HANA Products and Software Components in SAP HANA XS Classic

Model. 816
12.8 Using hdbalm. 817

hdbalm Commands, Options, and Variables. 819
Enable SSL for hdbalm. 823
Proxy Support for hdbalm. .824

SAP HANA Developer Guide
Content P U B L I C 7

hdbalm install Command. 825

hdbalm assemble Command. 829

hdbalm import Command. 830

hdbalm transport Command. 831

hdbalm log Command. 832

hdbalm product Command. .832

hdbalm du Command. .834

hdbalm dependencies Command. 836

hdbalm package Command. 837

hdbalm admin Command. 838

12.9 SAP HANA Repository Translation Tool. 839

SAP HANA Repository Translation Tool (RTT) Parameters. 841

Configure the Repository Translation Tool. 843

Create Text-Strings Packages for Translation. 844

Export Text-Strings Files for Translation. 845

Import Translated Text-Strings Files. .845

12.10 Maintaining Translation Text Strings. 846

Create and Edit Text Translations. 847

Export and Import Translated Text. 851

13 SAP HANA Database Client Interfaces. 854
13.1 Setting Session-Specific Client Information. .855

13.2 Connect to SAP HANA via ODBC. 859

Use the User Store (hdbuserstore). 860

Test the ODBC Installation on Microsoft Windows. 862

13.3 Connect to SAP HANA via JDBC. .863

Trace a JDBC Connection. 864

Valid Java-to-SQL Conversions. 868

JDBC Command-Line Connection Options. 870

JDBC Connection Options in Java Code. 871

13.4 Connect to SAP HANA via ODBO. 872

Connecting with Microsoft Excel. 873

Multidimensional Expressions (MDX). 874

MDX Functions. 875

MDX Extensions. .878

14 Migrating XS Classic Applications to XS Advanced Model. .881
14.1 The XS Advanced Application-Migration Process. 882

14.2 The XS Advanced Migration Assistant. .884

14.3 The XS Application Migration Report. 886

14.4 Legacy Object Types not Supported in XS Advanced. .887

8 P U B L I C
SAP HANA Developer Guide

Content

1 SAP HANA Developer Guide for SAP
HANA Studio

This guide explains how to build applications using SAP HANA, including how to model data, how to write
procedures, and how to build application logic in SAP HANA Extended Application Services, classic model.

The SAP HANA Developer Guide for SAP HANA Studio explains the steps required to develop, build, and deploy
applications that run in the SAP HANA XS classic model run-time environment using the tools provided with
SAP HANA Studio. It also describes the technical structure of applications that can be deployed to the XS
classic run-time platform. The information in the guide is organized as follows:

● Introduction and overview
A high-level overview of the basic capabilities and architecture of SAP HANA XS classic model. This section
also includes an information map, which is designed to help you navigate the library of information
currently available for SAP HANA developers.

● Getting started
A collection of tutorials which are designed to demonstrate how to build and deploy a simple SAP HANA-
based application on SAP HANA XS classic model quickly and easily

● The development process
Step-by-step information that shows in detail how to develop the various elements that make up an XS
classic application. The information provided uses tasks and tutorials to explain how to develop the SAP
HANA development objects. Where appropriate, you can also find background information that explains
the context of the task, and reference information that provides the detail you need to adapt the task-
based examples to suit the requirements of your application environment.

● Reference sources
A selection of reference guides that support the XS classic application development process, for example:
information about application life-cycle management including transport packages, and details of the
client interfaces you can use to connect applications to SAP HANA.

SAP HANA Developer Guide
SAP HANA Developer Guide for SAP HANA Studio P U B L I C 9

2 Introduction to SAP HANA Development

The SAP HANA developer guides present a developer’s view of SAP HANA®.

The SAP HANA developer guides explain not only how to use the SAP HANA development tools to create
comprehensive analytical models but also how to build applications with SAP HANA 's programmatic
interfaces and integrated development environment. The information in this guide focuses on the development
of native code that runs inside SAP HANA.

This guide is organized as follows:

● Introduction and overview
○ SAP HANA architecture

Describes the basic capabilities and architecture of SAP HANA
○ SAP HANA developer information map

Information in graphical and textual form that is designed to help you navigate the library of
information currently available for SAP HANA developers and find the information you need quickly
and easily. The information provided enables access from different perspectives, for example: by SAP
HANA guide, by development scenario, or by development task

○ SAP HANA development scenarios
Describes the main developer scenarios for which you can use SAP HANA to develop applications. The
information focuses on native development scenarios, for example, applications based on SAP HANA
XS JavaScript and XS OData services, but also provides a brief overview of the development of non-
native applications (for example, using JDBC, ODBC, or ODBO connections to SAP HANA).

● Getting started
A collection of tutorials which are designed to demonstrate how to build a simple SAP HANA-based
application quickly and easily, including how to use the SAP HANA studio tools and work with the SAP
HANA repository

● The development process
Most of the remaining chapters use tasks and tutorials to explain how to develop the SAP HANA
development objects that you can include in your SAP HANA application. Where appropriate, you can also
find background information which explains the context of the task and reference information that
provides the detail you need to adapt the task-based information to suit the requirements of your
application enviroment.
Some of the tutorials in this guide refer to models that are included in the demonstration content provided
with the SAP HANA Interactive Education (SHINE) delivery unit (DU). The SHINE DU is available for
download in the SAP Software Download Center.

 Note
Access to the SAP Software Download Center is only available to SAP customers and requires logon
credentials.

Audience

This guide is aimed at people performing the following developer roles:

10 P U B L I C
SAP HANA Developer Guide

Introduction to SAP HANA Development

● Database developers
Often a business/data analyst or database expert, the database developer is concerned with the definition
of the data model and schemas that will be used in SAP HANA, the specification and definition of tables,
views, primary keys, indexes, partitions and other aspects of the layout and inter-relationship of the data in
SAP HANA.
The database developer is also concerned with designing and defining authorization and access control,
through the specification of privileges, roles and users.

● Application programmers
The programmer is concerned with building SAP HANA applications, which could take many forms but are
designed based on the model-view-controller architecture. Programmers develop the code for the
following component layers:
○ Views

Running inside a browser or on a mobile device
○ Controller

Typically running in the context of an application server
○ Model

Interacting closely with the data model and performing queries. Using embedded procedures or
libraries, the model can be developed to run within the SAP HANA data engine.

● Client UI developers
The user-interface (UI) client developer designs and creates client applications which bind business logic
(from the application developer) to controls, events, and views in the client application user interface. In
this way, data exposed by the database developer can be viewed in the client application's UI.

Related Information

SAP HANA Architecture [page 11]
Developer Scenarios [page 19]

2.1 SAP HANA Architecture

SAP HANA is an in-memory data platform that can be deployed on premise or on demand. At its core, it is an
innovative in-memory relational database management system.

SAP HANA can make full use of the capabilities of current hardware to increase application performance,
reduce cost of ownership, and enable new scenarios and applications that were not previously possible. With
SAP HANA, you can build applications that integrate the business control logic and the database layer with
unprecedented performance. As a developer, one of the key questions is how you can minimize data
movements. The more you can do directly on the data in memory next to the CPUs, the better the application
will perform. This is the key to development on the SAP HANA data platform.

SAP HANA Developer Guide
Introduction to SAP HANA Development P U B L I C 11

2.1.1 SAP HANA In-Memory Database

SAP HANA runs on multi-core CPUs with fast communication between processor cores, and containing
terabytes of main memory. With SAP HANA, all data is available in main memory, which avoids the
performance penalty of disk I/O. Either disk or solid-state drives are still required for permanent persistency in
the event of a power failure or some other catastrophe. This does not slow down performance, however,
because the required backup operations to disk can take place asynchronously as a background task.

2.1.1.1 Columnar Data Storage
A database table is conceptually a two-dimensional data structure organized in rows and columns. Computer
memory, in contrast, is organized as a linear structure. A table can be represented in row-order or column-
order. A row-oriented organization stores a table as a sequence of records. Conversely, in column storage the
entries of a column are stored in contiguous memory locations. SAP HANA supports both, but is particularly
optimized for column-order storage.

Columnar data storage allows highly efficient compression. If a column is sorted, often there are repeated
adjacent values. SAP HANA employs highly efficient compression methods, such as run-length encoding,
cluster coding and dictionary coding. With dictionary encoding, columns are stored as sequences of bit-coded
integers. That means that a check for equality can be executed on the integers; for example, during scans or
join operations. This is much faster than comparing, for example, string values.

Columnar storage, in many cases, eliminates the need for additional index structures. Storing data in columns
is functionally similar to having a built-in index for each column. The column scanning speed of the in-memory
column store and the compression mechanisms – especially dictionary compression – allow read operations
with very high performance. In many cases, it is not required to have additional indexes. Eliminating additional
indexes reduces complexity and eliminates the effort of defining and maintaining metadata.

2.1.1.2 Parallel Processing
SAP HANA was designed to perform its basic calculations, such as analytic joins, scans and aggregations in
parallel. Often it uses hundreds of cores at the same time, fully utilizing the available computing resources of
distributed systems.

With columnar data, operations on single columns, such as searching or aggregations, can be implemented as
loops over an array stored in contiguous memory locations. Such an operation has high spatial locality and can

12 P U B L I C
SAP HANA Developer Guide

Introduction to SAP HANA Development

efficiently be executed in the CPU cache. With row-oriented storage, the same operation would be much slower
because data of the same column is distributed across memory and the CPU is slowed down by cache misses.

Compressed data can be loaded into the CPU cache faster. This is because the limiting factor is the data
transport between memory and CPU cache, and so the performance gain exceeds the additional computing
time needed for decompression.

Column-based storage also allows execution of operations in parallel using multiple processor cores. In a
column store, data is already vertically partitioned. This means that operations on different columns can easily
be processed in parallel. If multiple columns need to be searched or aggregated, each of these operations can
be assigned to a different processor core. In addition, operations on one column can be parallelized by
partitioning the column into multiple sections that can be processed by different processor cores.

2.1.1.3 Simplifying Applications

Traditional business applications often use materialized aggregates to increase performance. These aggregates
are computed and stored either after each write operation on the aggregated data, or at scheduled times. Read
operations read the materialized aggregates instead of computing them each time they are required.

With a scanning speed of several gigabytes per millisecond, SAP HANA makes it possible to calculate
aggregates on large amounts of data on-the-fly with high performance. This eliminates the need for
materialized aggregates in many cases, simplifying data models, and correspondingly the application logic.
Furthermore, with on-the fly aggregation, the aggregate values are always up-to-date unlike materialized
aggregates that may be updated only at scheduled times.

SAP HANA Developer Guide
Introduction to SAP HANA Development P U B L I C 13

2.1.2 SAP HANA Database Architecture

A running SAP HANA system consists of multiple communicating processes (services). The following shows
the main SAP HANA database services in a classical application context.

SAP HANA Database High-Level Architecture

Such traditional database applications use well-defined interfaces (for example, ODBC and JDBC) to
communicate with the database management system functioning as a data source, usually over a network
connection. Often running in the context of an application server, these traditional applications use Structured
Query Language (SQL) to manage and query the data stored in the database.

The main SAP HANA database management component is known as the index server, which contains the
actual data stores and the engines for processing the data. The index server processes incoming SQL or MDX
statements in the context of authenticated sessions and transactions.

The SAP HANA database has its own scripting language named SQLScript. SQLScript embeds data-intensive
application logic into the database. Classical applications tend to offload only very limited functionality into the
database using SQL. This results in extensive copying of data from and to the database, and in programs that
slowly iterate over huge data loops and are hard to optimize and parallelize. SQLScript is based on side-effect
free functions that operate on tables using SQL queries for set processing, and is therefore parallelizable over
multiple processors.

In addition to SQLScript, SAP HANA supports a framework for the installation of specialized and optimized
functional libraries, which are tightly integrated with different data engines of the index server. Two of these

14 P U B L I C
SAP HANA Developer Guide

Introduction to SAP HANA Development

functional libraries are the SAP HANA Business Function Library (BFL) and the SAP HANA Predictive Analytics
Library (PAL). BFL and PAL functions can be called directly from within SQLScript.

SAP HANA also supports the development of programs written in the R language.

SQL and SQLScript are implemented using a common infrastructure of built-in data engine functions that have
access to various meta definitions, such as definitions of relational tables, columns, views, and indexes, and
definitions of SQLScript procedures. This metadata is stored in one common catalog.

The database persistence layer is responsible for durability and atomicity of transactions. It ensures that the
database can be restored to the most recent committed state after a restart and that transactions are either
completely executed or completely undone.

The index server uses the preprocessor server for analyzing text data and extracting the information on which
the text search capabilities are based. The name server owns the information about the topology of SAP HANA
system. In a distributed system, the name server knows where the components are running and which data is
located on which server.

2.1.3 SAP HANA Extended Application Services

Traditional database applications use interfaces such as ODBC and JDBC with SQL to manage and query their
data. The following illustrates such applications using the common Model-View-Controller (MVC) development
architecture.

SAP HANA greatly extends the traditional database server role. SAP HANA functions as a comprehensive
platform for the development and execution of native data-intensive applications that run efficiently in SAP
HANA, taking advantage of its in-memory architecture and parallel execution capabilities.

By restructuring your application in this way, not only do you gain from the increased performance due to the
integration with the data source, you can effectively eliminate the overhead of the middle-tier between the
user-interface (the view) and the data-intensive control logic, as shown in the following figure.

SAP HANA Developer Guide
Introduction to SAP HANA Development P U B L I C 15

In support of this data-integrated application paradigm, SAP HANA Extended Application Services provides a
comprehensive set of embedded services that provide end-to-end support for Web-based applications. This
includes a lightweight web server, configurable OData support, server-side JS execution and, of course, full
access to SQL and SQLScript.

These SAP HANA Extended Application Services are provided by the SAP HANA XS server, which provides
lightweight application services that are fully integrated into SAP HANA. It allows clients to access the SAP
HANA system via HTTP. Controller applications can run completely natively on SAP HANA, without the need for
an additional external application server.The following shows the SAP HANA XS server as part of the SAP HANA
system.

16 P U B L I C
SAP HANA Developer Guide

Introduction to SAP HANA Development

The application services can be used to expose the database data model, with its tables, views and database
procedures, to clients. This can be done in a declarative way using OData services or by writing native
application-specific code that runs in the SAP HANA context . Also, you can use SAP HANA XS to build
dynamic HTML5 UI applications.

In addition to exposing the data model, SAP HANA XS also hosts system services that are part of the SAP
HANA system. The search service is an example of such a system application. No data is stored in the SAP
HANA XS server itself. To read tables or views, to modify data or to execute SQLScript database procedures
and calculations, it connects to the index server (or servers, in case of a distributed system).

 Note
From SPS 11, SAP HANA includes an additional run-time environment for application development: SAP
HANA extended application services (XS), advanced model. SAP HANA XS advanced model represents an
evolution of the application server architecture within SAP HANA by building upon the strengths (and
expanding the scope) of SAP HANA extended application services (XS), classic model. SAP recommends
that customers and partners who want to develop new applications use SAP HANA XS advanced model. If
you want to migrate existing XS classic applications to run in the new XS advanced run-time environment,
SAP recommends that you first check the features available with the installed version of XS advanced; if the
XS advanced features match the requirements of the XS classic application you want to migrate, then you
can start the migration process.

Related Information

SAPUI5 Demo Kit (version 1.28)
SAP Note 1779803

2.1.4 SAP HANA-Based Applications

The possibility to run application-specific code in SAP HANA raises the question: What kind of logic should run
where? Clearly, data-intensive and model-based calculations must be close to the data and, therefore, need to
be executed in the index server, for instance, using SQLScript or the code of the specialized functional libraries.

The presentation (view) logic runs on the client – for example, as an HTML5 application in a Web browser or on
a mobile device.

Native application-specific code, supported by SAP HANA Extended Application Services, can be used to
provide a thin layer between the clients on one side, and the views, tables and procedures in the index server on
the other side. Typical applications contain, for example, control flow logic based on request parameters,
invoke views and stored procedures in the index server, and transform the results to the response format
expected by the client.

The communication between the SAP HANA XS server and index server is optimized for high performance.
However, performance is not the only reason why the SAP HANA XS server was integrated into SAP HANA. It
also leads to simplified administration and a better development experience.

The SAP HANA XS server completes SAP HANA to make it a comprehensive development platform. With the
SAP HANA XS server, developers can write SAP HANA-based applications that cover all server-side aspects,

SAP HANA Developer Guide
Introduction to SAP HANA Development P U B L I C 17

https://sapui5.hana.ondemand.com/1.28.33/
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1779803

such as tables and database views, database procedures, server-side control logic, integration with external
systems, and provisioning of HTTP-based services. The integration of the SAP HANA XS server into the SAP
HANA system also helps to reduce cost of ownership, as all servers are installed, operated and updated as one
system.

2.2 Developer Information Map for XS Classic

Find the information you need in the library of user and reference documentation currently available for SAP
HANA development projects.

The development environment for SAP HANA supports a wide variety of application-development scenarios.
For example, database developers need to be able to build a persistence model or design an analytic model;
professional developers want to build enterprise-ready applications; business experts with a development
background might like to build a simple server-side, line-of-business application; and application developers
need to be able to design and build a client user interface (UI) that displays the data exposed by the data model
and business logic. It is also essential to set up the development environment correctly and securely and
ensure the efficient management of the various phases of the development lifecycle.

 Tip
For more information about which guides are available in the SAP HANA Platform library, use the link to the
SAP Help Portal in Related Information below. For help navigating the library, see the SAP HANA Developer
Information Map, which is available on the SAP Help Portal.

The following image provides an overview of where to find to essential information sources for anyone planning
to develop applications in SAP HANA Extended Application Services classic model.

 Tip
For more information about where to find the guides and details of the individual development tasks and
scenarios that each guide describes, see Developer Information Map in Related Information below.

18 P U B L I C
SAP HANA Developer Guide

Introduction to SAP HANA Development

Application Development in SAP HANA XS Classic Model

2.3 Developer Scenarios

The possibility to run application specific code in SAP HANA creates several possibilities for developing SAP
HANA based applications, representing various integration scenarios, and corresponding development
processes.

Application developers can choose between the following scenarios when designing and building applications
that access an SAP HANA data model:

● Native Application Development
Native applications are developed and run in SAP HANA, for example, using just SQLScript or the extended
application services provided by the SAP HANA XS platform (or both)

● Non-native Application Development
Non-native applications are developed in a separate, external environment (for example, ABAP or Java)
and connected to SAP HANA by means of an external application server and a client connection: ADBC,
JDBC, ODBC, or ODBO. These more traditional scenarios only use SQL and native SQLScript procedures.

SAP HANA Developer Guide
Introduction to SAP HANA Development P U B L I C 19

Native and Non-Native SAP HANA Application Architecture

The following diagram shows the scope of the languages and the environment you use in the various phases of
the process of developing applications that harness the power of SAP HANA. For example, if you are developing
native SAP HANA applications you can use CDS, HDBtable, or SQLScript to create design-time representations
of objects that make up your data persistence model; you can use server-side JavaScript (XSJS) or OData
services to build the application's business logic; and you can use SAPUI5 to build client user interfaces that
are bound to the XSJS or OData services.

If you are developing non-native SAP HANA applications, you can choose between any of the languages that
can connect by means of the client interfaces that SAP HANA supports, for example, ABAP (via ADBC) or Java
(JDBC).

20 P U B L I C
SAP HANA Developer Guide

Introduction to SAP HANA Development

SAP HANA Applications and Development Languages

2.3.1 Developing Native SAP HANA Applications

In SAP HANA, native applications use the technology and services provided by the integrated SAP HANA XS
platform.

The term “native application” refers to a scenario where applications are developed in the design-time
environment provided by SAP HANA extended application services (SAP HANA XS) and use the integrated
SAP HANA XS platform illustrated in the following graphic.

 Note
A program that consists purely of SQLScript is also considered a native SAP HANA application.

The server-centric approach to native application development envisaged for SAP HANA assumes the following
high-level scenario:

● All application artifacts are stored in the SAP HANA repository
● Server-side procedural logic is defined in server-side (XS) JavaScript or SQLScript
● UI rendering occurs completely in the client (browser, mobile applications)

SAP HANA Developer Guide
Introduction to SAP HANA Development P U B L I C 21

Each of the levels illustrated in the graphic is manifested in a particular technology and dedicated languages:

Native SAP HANA Application Development with SAP HANA XS

● Calculation Logic - data-processing technology:
○ Data:

SQL / SQLScript, Core Data Services (CDS), DDL, HDBtable
○ SQL / SQLScript
○ Calculation Engine Functions (CE_*)

 Note
SAP recommends you use SQL rather than the Calculation Engine functions.

○ Application Function Library (AFL)
● Control-flow logic with SAP HANA XS:

○ OData
Validation models for OData services can be written in XS JavaScript or SQLScript

○ Server-Side JavaScript (XSJS)
HTTP requests are implemented directly in XS JavaScript

○ XMLA
● Client UI/Front-end technology:

○ HTML5 / SAPUI5
○ Client-side JavaScript

22 P U B L I C
SAP HANA Developer Guide

Introduction to SAP HANA Development

The development scenarios for native application development are aimed at the following broadly defined
audiences:

Target Development Audience for Native SAP HANA Applications

Audience Language Tools Development Artifacts

Database developers SQLScript, CDS, hdb*
SAP

● SAP HANA studio
● SAP HANA Web-

based Workbench

Database tables, views, procedures;
user-defined functions (UDF) and trig
gers; analytic objects; data authoriza
tion…

Application developers:

● Professional (XS JS)
● Casual/business

XS JavaScript, OData,
SQLScript, …

● SAP HANA studio
● SAP HANA Web-

based Workbench

Control-flow logic, data services, calcula
tion logic…

UI/client developers SAPUI5, JavaScript, … ● SAP HANA studio
● SAP HANA Web-

based Workbench

UI shell, navigation, themes (look/feel),
controls, events, …

Related Information

Database Development Scenarios [page 23]
Professional Application Development Scenarios [page 24]
UI Client-Application Development Scenarios [page 25]

2.3.1.1 Database Development Scenarios

The focus of the database developer is primarily on the underlying data model which the application services
expose to UI clients.

The database developer defines the data-persistence and analytic models that are used to expose data in
response to client requests via HTTP. The following table lists some of the tasks typically performed by the
database developer and indicates where to find the information that is required to perform the task.

Typical Database-Development Tasks

Task Details Information Source

Create tables, SQL views, sequences… Code, syntax, … SAP HANA SQLScript Reference

SAP HANA SQL and System Views Ref
erence

SAP HANA Developer Guide for SAP
HANA Studio

Packaging, activation, implementation,
…

SAP HANA Developer Guide for SAP
HANA Studio

SAP HANA Developer Guide
Introduction to SAP HANA Development P U B L I C 23

Task Details Information Source

Create attribute, analytic, calculation
views

Code, syntax, … SAP HANA SQLScript Reference

SAP HANA Developer Guide for SAP
HANA Studio

Packaging, activation, implementation,
…

SAP HANA Developer Guide for SAP
HANA Studio

Examples, background SAP HANA Modeling Guide for SAP
HANA Studio

Create/Write SQLScript procedures,
UDFs, triggers…

Code, syntax, … SAP HANA SQLScript Reference

SAP HANA SQL and System Views Ref
erence

SAP HANA Developer Guide for SAP
HANA Studio

Packaging, activation, implementation,
…

SAP HANA Developer Guide for SAP
HANA Studio

Create/Use application functions Code, syntax, … SAP HANA SQLScript Reference

SAP HANA Business Function Library
(BFL) (*)

SAP HANA Predictive Analysis Library
(PAL) (*)

SAP HANA Developer Guide for SAP
HANA Studio

Packaging, activation, implementation,
…

SAP HANA Developer Guide for SAP
HANA Studio

 Caution
(*) For information about the capabilities available for your license and installation scenario, refer to the
Feature Scope Description (FSD) for your specific SAP HANA version on the SAP HANA Platform webpage.

2.3.1.2 Professional Application Development Scenarios

The primary focus of the professional application developer it to create applications.

The professional application developer creates server-side applications that define the business logic required
to serve client requests, for example, for data created and exposed by the database developer. The following
table lists some of the tasks typically performed by the professional application developer and indicates where
to find the information that is required to perform the task.

24 P U B L I C
SAP HANA Developer Guide

Introduction to SAP HANA Development

https://help.sap.com/viewer/product/SAP_HANA_PLATFORM/

Typical Application-Development Tasks

Task Details Information Source

Create an XSJS service:

● Extract data from SAP HANA
● Control application response
● Bind to a UI control/event

Context, examples, libraries, debug
ging, implementation, …

SAP HANA Developer Guide for SAP
HANA Studio (XS classic)

Function code, syntax… SAP HANA XS JavaScript Reference (XS
classic)

SQL code, syntax, … SAP HANA SQLScript Reference

UI controls, events… SAPUI5 Demo Kit (version 1.28)

Create an OData service (for example,
to bind a UI control/event to existing
data tables or views)

Context, service syntax, examples, li
braries, debugging, implementation, …

SAP HANA Developer Guide for SAP
HANA Studio

Query options, syntax… OData Reference

UI controls, events… SAPUI5 Demo Kit (version 1.28)

2.3.1.3 UI Client-Application Development Scenarios

Developers can build client applications to display a SAP HANA data model exposed by SAP HANA XS services.

The user-interface (UI) developer designs and creates client applications which bind business logic to controls,
events, and views in the client application user interface. The UI developer can use SAPUI5 (based on HTML5)
or client-side JavaScript to build the client applications. In a UI client development scenario, a developer
performs (amongst others) the tasks listed in the following table, which also indicates where to find the
information required to perform the task.

Typical UI-Client Development Tasks

Task Details Information Source

Create an SAPUI5 application to display
SAP HANA data exposed by an XSJS/
OData service

Context, service code/syntax, packag
ing, activation …

SAP HANA Developer Guide for SAP
HANA Studio (XS Classic)

UI controls, events… SAPUI5 Demo Kit (version 1.28)

Build the graphical user interface of an
SAPUI5 application using UI services
(widgets)

Context, tools … Developer Guide for SAP HANA Studio
(XS Classic)

UI controls, events… SAPUI5 Demo Kit (version 1.28)

2.3.2 Developing Non-Native SAP HANA Applications

In SAP HANA, non-native applications do use the technology and services provided by the integrated SAP
HANA XS platform; the run in an external application server.

The term “non-native application” refers to a scenario where you develop applications in an environment
outside of SAP HANA, for example, SAP NetWeaver (ABAP or Java). The non-native application logic runs in an
external application server which accesses the SAP HANA data model (for example, tables and analytic views)
by means of a standard client interface such as JDBC, ODBC, or ODBO using SQL and native SQLScript
procedures.

SAP HANA Developer Guide
Introduction to SAP HANA Development P U B L I C 25

https://sapui5.hana.ondemand.com/1.28.33/
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org%2Fdocs%2F
https://sapui5.hana.ondemand.com/1.28.33/
https://sapui5.hana.ondemand.com/1.28.33/
https://sapui5.hana.ondemand.com/1.28.33/

 Note
Technically, it is also possible for non-native front-end applications to connect to the SAP HANA database
directly via SQL or MDX, for example when SAP HANA is used as a data source for Microsoft Excel.
However, it is not recommended to use such an approach for SAP business applications.

The following figure shows how you use the client interfaces to connect your non-native SAP HANA application
to an SAP HANA data model.

Non-native SAP HANA Application Architecture

Related Information

ABAP Client Interface [page 27]
The JDBC Client Interface [page 27]
ODBC Client Interface [page 28]
ODBO Client Interface [page 28]

26 P U B L I C
SAP HANA Developer Guide

Introduction to SAP HANA Development

2.3.2.1 ABAP Client Interface

ABAP database connectivity (ADBC) provides the benefits of a native SQL connection by means of EXEC SQL.
ADBC is basically a series of CL_SQL* classes, which simplify and abstract the EXEC SQL blocks.

You can build a custom ABAP application that runs in an external application environment but connects
directly to an SAP HANA data model using the client ADBC interface. Support for external ABAP applications
includes dedicated Eclipse-based tools, external views (ABAP Dictionary objects that can be accessed like a
normal dictionary view), and ABAP managed database procedures (ABAP dictionary objects that enable you to
map procedure parameters to the ABAP parameters).

 Note
It is possible to make use of native data-persistence objects in your ABAP application, for example, design-
time data-persistence objects specified using the Core Data Services (CDS) syntax.

To build an ABAP application that accesses an SAP HANA data model, you need to perform the following high-
level steps

1. Write an ABAP application in your own development environment, for example using the ABAP tools-
integration in Eclipse.

2. Connect the ABAP development environment to SAP HANA using the ADBC interface; the ABAP
environment can be either:
○ An ABAP application server
○ Your development machine

3. Run the ABAP application to connect to a SAP HANA data model.

2.3.2.2 The JDBC Client Interface

Java Database Connectivity (JDBC) is a Java-based application programming interface (API) which includes a
set of functions that enable Java applications to access a data model in a database. The SAP HANA client
includes a dedicated JDBC interface.

You can build a custom Java application that runs in an external application environment but connects directly
to an SAP HANA data model using the client JDBC interface. To build a Java application that accesses an SAP
HANA data model, you need to perform the following high-level steps:

1. Write a Java application in your own development environment.
2. Connect the Java development environment to SAP HANA using the JDBC client interface; the Java

environment can be either:
○ A Java application server
○ Your development machine

3. Run the Java application to connect to an SAP HANA data model.

Related Information

Connect to SAP HANA via JDBC [page 863]

SAP HANA Developer Guide
Introduction to SAP HANA Development P U B L I C 27

2.3.2.3 ODBC Client Interface

Open Database Connectivity (ODBC) is a standard application programming interface (API) that provides a set
of functions that enable applications to access a data model in a database. The SAP HANA client includes a
dedicated ODBC interface.

You can build a custom .NET application (using C++, C#, Visual Basic and so on) that runs in an external
application environment but connects directly to an SAP HANA data model using the client ODBC interface. To
build an .NET application that accesses an SAP HANA data model, you need to perform the following high-level
steps:

1. Install the client ODBC interface on your development machine.
2. Write a .NET application in your development environment.
3. Connect the .NET application to SAP HANA using the ODBC interface.
4. Run the .NET application to connect to an SAP HANA data model.

 Note
The SAP HANA data provider for Microsoft ADO.NET is installed as part of the SAP HANA client installation.

Related Information

Connect to SAP HANA via ODBC [page 859]

2.3.2.4 ODBO Client Interface

OLE database for OLAP (ODBO) is a standard application programming interface (API) that enables Windows
clients to exchange data with an OLAP server. The SAP HANA client includes an ODBO driver which
applications can use to connect to the database and execute MDX statements

You can build a Windows-based client application that runs in an external application environment but
connects directly to an SAP HANA data model, for example, to run queries with multidimensional expressions
(MDX) using the native SAP HANA MDX interface. To build an MDX application that accesses a SAP HANA data
model, you need to perform the following high-level steps:

1. Install the client ODBO interface on your development machine.
2. Write an application that uses multi-dimensional expressions (MDX) in your own development

environment.
3. Connect the application to SAP HANA using the ODBO interface.
4. Run the Windows-based MDX application to connect to an SAP HANA data model.

Related Information

Connect to SAP HANA via ODBO [page 872]

28 P U B L I C
SAP HANA Developer Guide

Introduction to SAP HANA Development

2.3.2.5 SAP HANA Data Provider for Microsoft ADO.NET

SAP HANA includes a data provider that enables applications using Microsoft .NET to connect to the SAP
HANA database.

You can build a custom .NET application (for example, using C++, C#, or Visual Basic) that runs in an external
application environment but connects directly to an SAP HANA data model using the SAP HANA data provider
for Microsoft ADO.NET. The SAP HANA data provider for Microsoft ADO.NET is installed as part of the SAP
HANA client installation. To build a .NET application that accesses an SAP HANA data model, you need to
perform the following high-level steps:

1. Install the SAP HANA data provider for Microsoft ADO.NET on your development machine.
2. Write a .NET application in your development environment, for example, using Visual Studio.
3. Connect the .NET application to SAP HANA using the client interface included with the SAP HANA data

provider for Microsoft ADO.NET.
4. Run the .NET application to connect to an SAP HANA data model.

You can use the SAP HANA data provider for Microsoft ADO.NET to develop Microsoft .NET applications with
Microsoft Visual Studio by including both a reference to the data provider and a line in your source code
referencing the data-provider classes.

SAP HANA Developer Guide
Introduction to SAP HANA Development P U B L I C 29

3 Getting Started

To understand which tools SAP HANA Extended Application Services (SAP HANA XS) provides to enable you to
start developing native applications, you need to run through the process of building a small application, for
example, in the form of a “Hello World” application.

As part of the getting-started process, you go through the following steps:

● Prerequisites
A short list of the tools and permissions required to start working with the SAP HANA application-
development tools.

● Workspaces and projects SAP HANA projects
If you are using the SAP HANA studio, you must create a shared project, which you use to group all your
application-related artifacts and synchronize any changes with the repository workspace.

 Note
If you are using the SAP HANA Web-based Development Workbench, you do not need to create a
project of a repository workspace.

● Creating application descriptors
Each native SAP HANA application requires descriptor files. The application descriptors are the core files
that you use to describe an application's framework within SAP HANA XS, for example: to mark the root
point from which content can be served, which content is to be exposed, or who has access to the content.

● Tutorials
A selection of “Hello World” tutorials are used to demonstrate the application-development process in SAP
HANA XS and show you how to produce a simple application quickly and easily. Some of the tutorials in
this guide refer to models that are included in the demonstration content provided with the SAP HANA
Interactive Education (SHINE) delivery unit (DU). The SHINE DU is available for download in the SAP
Software Download Center.

 Note
Access to the SAP Software Download Center is only available to SAP customers and requires logon
credentials.

Related Information

Prerequisites [page 31]

30 P U B L I C
SAP HANA Developer Guide

Getting Started

3.1 Prerequisites

To start working with the tools provided to enable application development on SAP HANA Extended Application
Services (SAP HANA XS), it is necessary to ensure that the developers have the required software and access
permissions.

Before you start developing applications using the features and tools provided by the SAP HANA XS, bear in
mind the following prerequisites. Developers who want to build applications to run on SAP HANA XS need the
following tools, accounts, and privileges:

 Note
The following can only be provided by someone who has the required authorizations in SAP HANA, for
example, an SAP HANA administrator.

● Access to a running SAP HANA development system (with SAP HANA XS)
● A valid user account in the SAP HANA database on that system
● Access to SAP HANA developer tools, for example: SAP HANA studio or the SAP HANA Web-based

Development Workbench.

 Note
To provide access to the SAP HANA repository from the SAP HANA studio, the EXECUTE privilege is
required for SYS.REPOSITORY_REST, the database procedure through which the REST API is tunneled.

● Access to the SAP HANA repository
● Access to selected run-time catalog objects
● Some of the tutorials in this guide refer to models that are included in the demonstration content provided

with the SAP HANA Interactive Education (SHINE) delivery unit (DU). The SHINE DU is available for
download in the SAP Software Download Center.

 Note
Access to the SAP Software Download Center is only available to SAP customers and requires logon
credentials.

3.2 SAP HANA Studio

The SAP HANA studio is an Eclipse-based development and administration tool for working with SAP HANA.
You use the SAP HANA studio to develop native applications that can take advantage of the benefits provided
by SAP HANA Extended Application Services (SAP HANA XS).

One of the most important features of the Eclipse-based environment is the perspective. SAP HANA provides a
number of dedicated perspectives that are aimed at the application developer. As an application developer, you
frequently use the following perspectives:

● The SAP HANA Development perspective
Provides views and menu options that enable you to perform all the tasks relating to application
development on SAP HANA XS, for example: to manage application-development projects, display content

SAP HANA Developer Guide
Getting Started P U B L I C 31

of application packages, and browse the SAP HANA repository. You can also define your data-persistence
model here by using design-time artifacts to define tables, views, sequences, and schemas.

● The Debug perspective
Provides views and menu options that help you test your applications, for example: to view the source
code, monitor or modify variables, and set break points.

● The Modeler perspective
Provides views and menu options that enable you to define your analytic model, for example, attribute,
analytic, and calculation views of SAP HANA data.

● The Team Synchronizing perspective
Provides views and menu options that enable you to synchronize artifacts between your local file system
and the SAP HANA Repository.

● The Administration Console perspective
Provides views that enable you to perform administrative tasks on SAP HANA instances.

3.2.1 The SAP HANA Development Perspective

SAP HANA studio's SAP HANA Development Perspective includes a selection of programming tools that
developers can use to build applications in SAP HANA. You can customize the perspective to include your own
favorite tools, too.

The SAP HANA Development perspective is where you will do most of your programming work, for example:

● Creating and sharing projects
● Creating and modifying development objects
● Managing development object versions
● Committing development objects to the SAP HANA repository

 Note
By default, saving a file automatically commits the saved version of the file to the Repository.

● Activating development objects in the SAP HANA repository

The SAP HANA Development perspective contains the following main work areas:

● Explorers/Browsers
Selected views enable you to browse your development artifacts: the objects on your workstation, and the
objects in the repository of the SAP HANA system you are working with.

● Editors
Specialized editors enable you to work with different types of development objects, for example,
application-configuration files, JavaScript source files, SQLScript files.

32 P U B L I C
SAP HANA Developer Guide

Getting Started

3.2.1.1 The Repositories View

You can browse and perform actions on the contents of the SAP HANA Repository on a specific SAP HANA
system.

The Repositories view displays the contents of the repository on a specific SAP HANA system.You can navigate
the package hierarchy and check out project files from the SAP HANA Repository; the checked out files are
downloaded to the workspace on your local file system, where you can work on them and modify them as
required.

SAP HANA Developer Guide
Getting Started P U B L I C 33

The Repositories view is a list of repository workspaces that you have created for development purposed on
various SAP HANA systems. Generally, you create a workspace, check out files from the repository, and then
do most of your development work in the Project Explorer. However, with more recent versions of SAP HANA,
you can use the Repositories view to perform actions directly on repository objects in multiple workspaces, for
example: edit objects, activate objects, and manage object versions - all without the need to set up a project.
The Repositories view also provides direct access to lifecycle-management tools.

3.2.1.2 The Project Explorer View

The Project Explorer view is the most commonly used element of the SAP HANA Development perspective; it
shows you the development files located in the repository workspace you create on your workstation. You use
the Project Explorer view to create and modify development files. Using context-sensitive menus, you can also
commit the development files to the SAP HANA repository and activate them. Bear in mind that saving a file in
shared project commits the saved version of the file to the repository automatically.

34 P U B L I C
SAP HANA Developer Guide

Getting Started

 Tip
Files with names that begin with the period (.), for example, .xsapp, are sometimes not visible in the
Project Explorer. To enable the display of all files in the Project Explorer view, use the Customize View
Available Customization option and clear all check boxes.

3.2.1.3 The Systems View

The Systems view is one of the basic organizational elements included with the Development perspective.

You can use the Systems view to display the contents of the SAP HANA database that is hosting your
development project artifacts. The Systems view of the SAP HANA database shows both activated objects
(objects with a runtime instance) and the design-time objects you create but have not yet activated.

The Systems view is divided into the following main sections:

● Security
Contains the roles and users defined for this system.

● Catalog
Contains the database objects that have been activated, for example, from design-time objects or from
SQL DDL statements. The objects are divided into schemas, which is a way to organize activated database
objects.

● Provisioning
Contains administrator tools for configuring smart data access, data provisioning, and remote data
sources

● Content
Contains design-time database objects, both those that have been activated and those not activated. If you
want to see other development objects, use the Repositories view.

SAP HANA Developer Guide
Getting Started P U B L I C 35

3.3 SAP HANA XS Application Descriptors

Each application that you want to develop and deploy on SAP HANA Extended Application Services (SAP HANA
XS) required so-called “application descriptor” files. The application descriptors describe an application's
framework within SAP HANA XS.

The framework defined by the SAP HANA XS application descriptors includes the root point in the package
hierarchy where content is to be served to client requests. When defining the application framework, you also
have to specify whether the application is permitted to expose data to client requests, what (if any)
authentication method is required to access application content, and (optionally) what if any privileges are
required to perform actions on the packages and package content that are exposed.

● The application descriptor
The core file that you use to describe an application's framework within SAP HANA XS. The package that
contains the application descriptor file becomes the root path of the resources exposed to client requests
by the application you develop.

● The application-access file
The configuration file you use to specify who or what is authorized to access the content exposed by an
SAP HANA XS application package and what content they are allowed to see. For example, you use the
application-access file to specify the following:
○ The application content that can be exposed to client requests
○ The authentication method used to enable access to package content, for example, form-based, basic,

or none at all.

3.4 SAP HANA Projects

In SAP HANA, a project groups together all the artifacts you need for a specific part of the application-
development environment.

Before you can start the application-development workflow, you must create a project, which you use to group
together all your application-related artifacts. However, a project requires a repository workspace, which
enables you to synchronize changes in local files with changes in the SAP HANA repository. You can create the
workspace before or during the project-creation step. As part of the project-creation process, you perform the
following tasks:

1. Add a development system
2. Create a development workspace.

The place where you work on development objects is called a repository workspace. The workspace is the
link between the SAP HANA repository and your local file system. When you check out a package from the
repository, SAP HANA copies the contents of the package hierarchy to your workspace. To ensure that the
changes you make to project-related files are visible to other team members, you must commit the
artifacts back into the repository and activate them.

 Note
By default, saving the file automatically commits the saved version of the file to the repository.

36 P U B L I C
SAP HANA Developer Guide

Getting Started

3. Create a project
You use the project to collect all your application-related artifacts in one convenient place. Shared projects
enable multiple people to work on the same files at the same time.

 Note
Files checked out of the repository are not locked; conflicts resulting from concurrent changes to the
same file must be resolved manually, using the Merge tools provided in the context-sensitive Team
menu.

4. Share a project
Sharing a project establishes a link between project-specific files in your development workspace and the
SAP HANA repository. A shared project ensures that changes you make to project-related files in your
development workspace are synchronized with the SAP HANA repository and, as a result, visible to other
team members. Shared projects are available for import by other members of the application-development
team.

3.5 Tutorials

Tutorials are a good way to understand quickly what is required to write a simple native application for SAP
HANA XS.

In this section you can use the following tutorials to help you understand the basic steps you need to perform
when developing native SAP HANA XS applications:

● Hello OData
A simple application that enables you to test the SAP HANA OData interface by exposing an OData
collection for analysis and display in a client application.

● Hello World in server-side JavaScript (XSJS)
A simple application written in server-side JavaScript which displays the words “Hello World” in a Web
browser along with a string extracted from a table in the SAP HANA database.

 Note
The namespace sap in the SAP HANA repository is restricted. Place the new packages and application
artifacts that you create during the tutorials in your own namespace, for example, com.acme, or use the
system.local area for testing.

Related Information

Tutorial: Use the SAP HANA OData Interface [page 54]
Tutorial: My First SAP HANA Application [page 38]

SAP HANA Developer Guide
Getting Started P U B L I C 37

3.5.1 Tutorial: My First SAP HANA Application

This topic describes the steps required to develop a simple application that runs natively in SAP HANA.

Context

This tutorial shows you how to use the SAP HANA studio to develop a functional SAP HANA application.
Although it is simple, the tutorial demonstrates the development process that you can apply to all types of
application-development scenarios.

The tutorial shows how to create a simple SAP HANA application. The application uses server-side JavaScript
code to retrieve data from SAP HANA by executing SQL statements in the SAP HANA database. The retrieved
data is displayed in a Web browser. During the tutorial, you use tools provided in the SAP HANA studio to
perform the following tasks:

● Connect to an SAP HANA system
Add (and connect to) an SAP HANA system, which hosts the repository where development objects are
stored

● Create a repository workspace
Create a development workspace which enables you to synchronize the development artifacts in your local
file system with the repository hosted on the SAP HANA system you connect to.

● Create and share a project
Add a project which you can use to hold the application-development artifacts in a convenient central
location.
Sharing the project makes the contents of the new project available to other members of the application-
development team by linking the local project to the SAP HANA repository. In this way, you can manage
object versions and synchronize changes to development objects.

● Write server-side JavaScript code
Use JavaScript code to extract data from the SAP HANA database in response to a client request; the code
will include SQLScript to perform the data extraction.

● Display data
Display data extracted from the SAP HANA database in a Web browser.

Related Information

Tutorial: Add an SAP HANA System [page 39]
Tutorial: Add a Repository Workspace [page 42]
Tutorial: Add an Application Project [page 44]
Tutorial: Write Server-Side JavaScript [page 49]
Tutorial: Retrieve Data from SAP HANA [page 53]

38 P U B L I C
SAP HANA Developer Guide

Getting Started

3.5.1.1 Tutorial: Add an SAP HANA System

Application-development artifacts are stored and managed in the SAP HANA repository. To connect to an SAP
HANA repository, you must add the system to SAP HANA studio.

Prerequisites

● Access to a running SAP HANA development system (with SAP HANA XS)
● A valid user account in the SAP HANA database on that system
● Access to SAP HANA studio

 Note
To provide access to the SAP HANA repository from the SAP HANA studio, the EXECUTE privilege is
required for SYS.REPOSITORY_REST, the database procedure through which the REST API is tunneled.

● Access to the SAP HANA Repository

Context

You must add a connection to the SAP HANA system hosting the repository that stores the application-
development artifacts you will be working with.

Procedure

1. Open SAP HANA studio.
2. Open the SAP HANA Development perspective.
3. In the Systems view, click [+] Add System... and choose Add System....

4. Type the details of the SAP HANA system in the following fields:

○ Host Name:
The name of the server hosting the SAP HANA database instance, for example, dev.host.acme.com
If you are adding a tenant database in a multi-database system, you can specify either the fully
qualified domain name (FQDN) of the system hosting the tenant database or the virtual host name for

SAP HANA Developer Guide
Getting Started P U B L I C 39

the tenant database. Every tenant database requires a virtual host name so that the system's internal
SAP Web Dispatcher can forward HTTP requests to the XS server of the correct database.

 Tip
If you do not enter the virtual host name for the tenant database here, you must specify it explicitly
as the XS server host in the system properties. You can do this after you have finished adding the
system. In the Systems view, right-click the system whose properties you want to modify and
choose Properties XS Properties).

○ Instance Number
SAP HANA instance number on that server, for example, 00

○ Description
A display name for the system you are adding. When you start working with a lot of systems, you will
need to label and recognize the systems in the SAP HANA studio. Enter Development System.

5. Select Next.
6. Enter a user name and password for the connection, and select Finish.

40 P U B L I C
SAP HANA Developer Guide

Getting Started

Results

After adding the system, you will see the system in the Systems view.

SAP HANA Developer Guide
Getting Started P U B L I C 41

3.5.1.2 Tutorial: Add a Repository Workspace

The place where you work on development objects is called a repository workspace. The workspace is the link
between the SAP HANA repository and your local file system.

Prerequisites

● Access to a running SAP HANA development system (with SAP HANA XS)
● A valid user account in the SAP HANA database on that system
● Access to SAP HANA studio
● Access to the SAP HANA Repository

Context

After you add the SAP HANA system hosting the repository that stores your application-development files, you
must specify a repository workspace, which is the location in your file system where you save and work on the
development files.

To create a repository workspace, perform the following steps:

Procedure

1. Open SAP HANA studio.
2. In the SAP HANA Development perspective, open the Repositories view.

3. In the Repositories view, choose File New Repository Workspace .
4. You must provide the following information:

○ SAP HANA system
The name of the SAP HANA system hosting the repository that you want to synchronize your
workspace with; choose the same system you just added for this tutorial.

○ Workspace Name
If a default repository workspace exists, uncheck the Default workspaceoption and enter a workspace
name; the workspace name can be anything you like, for example, DevWS.
A folder with the name you type is created below the Workspace Root.

○ Workspace root
The Workspace Root is a folder that contains the workspace you create in this step. The Workspace
Root can be anywhere on your local file system. For this tutorial, create a folder at C:\users\<PATH>
\workspaces and make this the Workspace Root.

42 P U B L I C
SAP HANA Developer Guide

Getting Started

5. Click Finish.

In the Repositories view, you see your workspace, which enables you to browse the repository of the
system tied to this workspace. The repository packages are displayed as folders.

At the same time, a folder will be added to your file system to hold all your development files.

6. Remove a repository workspace.

SAP HANA Developer Guide
Getting Started P U B L I C 43

If it is necessary to remove a workspace, you can choose between multiple deletion options; the option you
choose determines what is removed, from where (local file system or remote repository), and what, if
anything, is retained.
a. Open the SAP HANA Development perspective.
b. Choose the Repositories view and expand the repository node containing the workspace you want to

remove.
c. Right-click the workspace you want to remove.
d. Choose the workspace-deletion mode.

The following modes apply when you delete a workspace in SAP HANA studio:

Workspace Deletion Modes

Workspace Deletion Mode Description

Delete Remove workspace; delete all workspace-related local
files; delete related changes to remote (repository)
data.

Remove from client (keep remote changes) Remove workspace from local client system; delete all
local workspace-related files; retain changes to remote
(repository) data.

Disconnect local from remote (keep changes) Keep the workspace but remove the workspace label
from the list of workspaces displayed in the
Repositories view. The connection to the disconnected
workspace can be reestablished at any time with the
option Import Local Repository Workspaces.

3.5.1.3 Tutorial: Add an Application Project

You use the project to collect all the development artifacts relating to a particular part of an application in one
convenient place.

Prerequisites

● Access to a running SAP HANA development system (with SAP HANA XS)
● A valid user account in the SAP HANA database on that system
● Access to SAP HANA studio
● Access to an SAP HANA Repository workspace

Context

After you set up a development environment for the chosen SAP HANA system, you can add a project to
contain all the development objects you want to create as part of the application-development process.

44 P U B L I C
SAP HANA Developer Guide

Getting Started

There are a variety of project types for different types of development objects. Generally, a project type ensures
that only the necessary libraries are imported to enable you to work with development objects that are specific
to a project type. In this tutorial, you create an XS Project.

Procedure

1. Open SAP HANA studio.

2. From the File menu in SAP HANA studio, choose New Project .

3. In the New Project dialog, under SAP HANA Application Development , select XS Project, and choose
Next.

4. Enter the following details for the new project:

○ Project name
Enter: mycompany.com.testing
Since a project name must be unique within the same Eclipse workspace, a good convention is to use
the fully qualified package name as the project name.

○ Project location
You can keep this as the default SAP HANA studio (Repository) workspace. To save the project in an
alternative location from the recommended default, you must first disable the option Share project in
SAP repository. You can share the new project manually later. Sharing a project enables continuous
synchronization with the SAP HANA repository.

○ Working sets (optional)
A working set is a concept similar to favorites in a Web browser, which contain the objects you work on
most frequently.

SAP HANA Developer Guide
Getting Started P U B L I C 45

5. Choose Finish.

Results

The Project Explorer view in the SAP HANA Development perspective displays the new project. The system
information in brackets [X4D (D007)...] to the right of the project node name in the Project Explorer view
indicates that the project has been shared; shared projects are regularly synchronized with the Repository
hosted on the SAP HANA system you are connected to.

46 P U B L I C
SAP HANA Developer Guide

Getting Started

 Note
If you disabled the option Share project in SAP repository when you created the project, you must share the
new project manually.

Related Information

Tutorial: Share an Application Project [page 47]

3.5.1.4 Tutorial: Share an Application Project

Sharing a project establishes a link between project-specific files in your development workspace and the
repository hosted by the SAP HANA system you are connected to.

Prerequisites

● Access to a running SAP HANA development system (with SAP HANA XS)
● A valid user account in the SAP HANA database on that system
● Access to SAP HANA studio
● Access to an SAP HANA Repository workspace
● An existing SAP HANA project

Context

Sharing a project associates the project with your repository workspace and synchronizes the project with the
repository hosted on the SAP HANA system you are connected to. By default, a project is automatically shared
at the same time as it is created; the option to disable the auto-share operation is available in the project-
creation wizard.

 Note
Manually sharing a project is necessary only if you disabled the option Share project in SAP repository when
you created the project or chose to explicitlyunshare the project after you created it.

SAP HANA Developer Guide
Getting Started P U B L I C 47

If you need to manually share a project, perform the following steps:

Procedure

1. Start SAP HANA studio and open the SAP HANA Development perspective.

2. In the Project Explorer view, right-click the project you want to share, and choose Team Share Project
in the context-sensitive popup menu to display the Share Project dialog.

Since you only have one workspace, the wizard selects it for you automatically. If you have more than one
workspace, you must choose the workspace to host the shared project.

The dialog also shows the Current project location (the current location of your project, in the repository
workspace), and the New project location (where your project will be copied so it can be associated with
the repository workspace).

Also, since Add project folder as subpackage is checked, subpackages will be created based on the name of
your project.

3. Choose Finish.

The shared project is displayed in the Project Explorer view associated with your workspace.

48 P U B L I C
SAP HANA Developer Guide

Getting Started

The .project file is shown with an asterisk , which indicates that the file has changed but has yet to be
committed to the repository.

4. Right-click the .project file, and select Team Commit from the context-sensitive popup menu to
add your project and its files to the repository. The .project file is now displayed with a diamond icon,

, indicating that the latest version of the file on your workstation has been committed to the SAP HANA
repository.

In addition, the Repositories view shows that a new hierarchy of packages has been created based on the
name of your project, mycompany.myorg.testing.

3.5.1.5 Tutorial: Write Server-Side JavaScript

SAP HANA Extended Application Services (SAP HANA XS) supports server-side application programming in
JavaScript. In this step we add some simple JavaScript code that generates a page which displays the words
Hello, world!.

Prerequisites

● Access to a running SAP HANA development system (with SAP HANA XS)
● A valid user account in the SAP HANA database on that system
● Access to SAP HANA studio
● Access to a shared project in the SAP HANA Repository where you can create the artifacts required for this

tutorial.

SAP HANA Developer Guide
Getting Started P U B L I C 49

Context

As part of this server-side JavaScript tutorial, you create the following files:

● MyFirstSourceFile.xsjs
This contains your server-side JavaScript code.

● .xsapp
This marks the root point in the application's package hierarchy from which content can be exposed via
HTTP. You still need to explicitly expose the content and assign access controls.

● .xsaccess
Expose your content, meaning it can be accessed via HTTP, and assign access controls, for example, to
manage who can access content and how.

 Tip
If you are using SAP HANA studio to create artifacts in the SAP HANA Repository, the file-creation wizard
adds the required file extension automatically and enables direct editing of the file in the appropriate editor.

Procedure

1. Open SAP HANA studio.
2. Open the SAP HANA Development perspective.

3. In the Project Explorer view, right-click your XS project, and choose New Other in the context-
sensitive popup menu.

4. In the Select a Wizard dialog, choose SAP HANA Application Development XS JavaScript File .
5. In the New XS JavaScript File dialog, enter MyFirstSourceFile.xsjs in File name text box.

 Tip
If you are using SAP HANA studio to create artifacts in the SAP HANA Repository, the file creation
wizard adds the required file extension automatically and enables direct editing of the file in the
appropriate editor. You can also select a template to use. Templates contain sample source code to
help you.

6. Choose Finish.
7. In the MyFirstSourceFile.xsjs file, enter the following code and save the file:

 Note
By default, saving the file automatically commits the saved version of the file to the repository.

$.response.contentType = "text/html"; $.response.setBody("Hello, World !");

The example code shows how to use the SAP HANA XS JavaScript API's response object to write HTML.
By typing $. you have access to the API's objects.

8. Check that the application descriptor files are present in the root package of your new XS JavaScript
application.

50 P U B L I C
SAP HANA Developer Guide

Getting Started

The application descriptors (.xsapp and .xsaccess) are mandatory and describe the framework in
which an SAP HANA XS application runs. The .xsapp file indicates the root point in the package hierarchy
where content is to be served to client requests; the .xsaccess file defines who has access to the exposed
content and how.

 Note
By default, the project-creation Wizard creates the application descriptors automatically. If they are not
present, you will see a 404 error message in the Web Browser when you call the XS JavaScript service.

If you need to create the application descriptors manually, perform the following steps:

a. Add a blank file called .xsapp (no name, just a file extension) to the root package of your XS
JavaScript application.

To add an .xsapp file, right-click the project to which you want to add the new file, select New
Other SAP HANA Application Development XS Application Descriptor File from the context-
sensitive popup menu, and choose Next.

 Tip
If you are using SAP HANA studio to create artifacts in the SAP HANA Repository, the file-creation
wizard adds the required file extension automatically.

b. Add a file called .xsaccess (no name, just a file extension) to the root package of your XS JavaScript
application, and copy the following code into the new .xsaccess file:

To add a .xsaccess manually, right-click the project to which you want to add the file, select New
Other SAP HANA Application Development XS Application Access File from the context-
sensitive popup menu, and choose Next.

 Tip
If you are using SAP HANA studio to create artifacts in the SAP HANA Repository, the file-creation
wizard adds the required file extension automatically, provides a working template, and, if
appropriate, enables direct editing of the file.

{ "exposed" : true,
 "authentication" :
 [
 { "method" : "Form" }
],
 "prevent_xsrf" : true }

This code exposes the application content via HTTP, specifies form-based logon as the default
authentication method for the corresponding SAP HANA application, and helps protect your
application from cross-site request-forgery (XSRF) attacks.

 Tip
You define the user-authentication method for a SAP HANA application in the application's runtime
configuration, for example, using the SAP HANA XS Administration Tool. For the purposes of this
tutorial, you do not need to change the runtime configuration.

SAP HANA Developer Guide
Getting Started P U B L I C 51

9. Activate the new files in the SAP HANA repository.
Activating a file makes the file available to other project members. Right-click the new files (or the folder/
package containing the files) and select Team Activate from the context-sensitive popup menu.
The activate operation publishes your work and creates the corresponding catalog objects; you can now
test it.

Results

To access your JavaScript application, open a Web browser and enter the following URL, replacing
<myServer> with the name of the server hosting your SAP HANA instance, and where appropriate the path to
the server-side JavaScript source file:

http://<myServer>:8000/mycompany/myorg/testing/MyFirstSourceFile.xsjs

 Note
For standard HTTP access, the port number is 80<SAPHANA_ID>, where <SAPHANA_ID> is two digits
representing your SAP HANA instance number. For example, if your SAP HANA instance is 00, then the
port number to use is 8000.

If everything works as expected, you should see the following result:

52 P U B L I C
SAP HANA Developer Guide

Getting Started

After logging in with your SAP HANA user name and password, the following page should be displayed:

3.5.1.6 Tutorial: Retrieve Data from SAP HANA

The final step of the data display tutorial is to extract data from the database and display it in a Web Browser.

Prerequisites

● Access to a running SAP HANA development system (with SAP HANA XS)
● A valid user account in the SAP HANA database on that system
● Access to SAP HANA studio
● Access to the shared project in the SAP HANA Repository which contains the artifacts used in this tutorial.

Context

To extract data from the database we use our JavaScript code to open a connection to the database and then
prepare and run an SQL statement. The results are added to the response which is displayed in the Web
browser. You use the following SQL statement to extract data from the database:

select * from DUMMY

The SQL statement returns one row with one field called DUMMY, whose value is X.

Procedure

1. Open SAP HANA studio.
2. Open the SAP HANA Development perspective.
3. In the Project Explorer view, located the server-side JavaScript file MyFirstSourceFile.xsjs and open

it in the embedded JavaScript editor.
4. In MyFirstSourceFile.xsjs, replace your existing code with the code in the following example.

$.response.contentType = "text/html"; var output = "Hello, World !";
var conn = $.db.getConnection();

SAP HANA Developer Guide
Getting Started P U B L I C 53

var pstmt = conn.prepareStatement("select * from DUMMY");
var rs = pstmt.executeQuery();
if (!rs.next()) {
 $.response.setBody("Failed to retrieve data");
 $.response.status = $.net.http.INTERNAL_SERVER_ERROR;
} else {
 output = output + "This is the response from my SQL: " + rs.getString(1);
}
rs.close();
pstmt.close();
conn.close(); $.response.setBody(output);

5. Save the file MyFirstSourceFile.xsjs.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the Repository,
To explicitly commit a file to the Repository, right-click the file (or the project containing the file) and
choose Team Commit from the context-sensitive popup menu.

6. Activate the file MyFirstSourceFile.xsjs by right-clicking the file and choosing Team Activate .

Results

In your browser, refresh the page. If everything works as expected, you should see the following page:

3.5.2 Tutorial: Use the SAP HANA OData Interface

The package you put together to test the SAP HANA OData interface includes all the artifacts you need to use
SAP HANA Extended Application Services (SAP HANA XS) to expose an OData collection for analysis and
display by client applications.

Prerequisites

Since the artifacts required to get a simple OData application up and running are stored in the repository, it is
assumed that you have already performed the following tasks:

● Create a development workspace in the SAP HANA repository
● Create a project in the workspace

54 P U B L I C
SAP HANA Developer Guide

Getting Started

● Share the new project

Context

To create a simple OData application, perform the following steps:

 Tip
File extensions are important. If you are using SAP HANA studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the file in the appropriate editor.

Procedure

1. Create a root package for your OData application, for example, helloodata and save and activate it in the
repository.

a. Click the Content directory with the alternate mouse button and choose New Package .
b. Enter the required information for the package in the dialog box and choose OK.

 Note
The namespace sap is restricted. Place the new package in your own namespace, which you can create
alongside the sap namespace.

2. Create a schema, for example, HELLO_ODATA.hdbschema.

The schema is required for the table that contains the data to be exposed by your OData service-definition.
The schema is defined in a flat file with the file extension .hdbschema that you save in the repository and
which you must activate.

 Tip
File extensions are important. If you are using SAP HANA studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the file in the appropriate editor.

Enter the following code in the HELLO_ODATA.hdbschema file:

schema_name="HELLO_ODATA";

3. Create the database table that contains the data to be exposed by your OData service definition, for
example, otable.hdbtable.

In the Project Explorer view, right-click the folder where you want to create the new OData service definition
file and choose New Other SAP HANA Database Development Database Table in the context-
sensitive popup menu.

SAP HANA Developer Guide
Getting Started P U B L I C 55

 Tip
File extensions are important. If you are using SAP HANA studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the file in the appropriate editor.

Enter the following code in the otable.hdbtable file:

 Note
If the editor underlines the keywords nullable and Defaultvalue in red, you can safely ignore this.

table.schemaName = "HELLO_ODATA"; table.tableType = COLUMNSTORE;
table.columns = [
 {name = "Col1"; sqlType = VARCHAR; nullable = false; length = 20; comment
= "dummy comment";},
 {name = "Col2"; sqlType = INTEGER; nullable = false;},
 {name = "Col3"; sqlType = NVARCHAR; nullable = true; length = 20;
defaultValue = "Defaultvalue";},
 {name = "Col4"; sqlType = DECIMAL; nullable = false; precision = 12;
scale = 3;}];
table.primaryKey.pkcolumns = ["Col1", "Col2"];

4. Grant SELECT privileges to the owner of the new schema.
After activation in the repository, the schema object is only visible in the catalog to the _SYS_REPO user. To
enable other users, for example the schema owner, to view the newly created schema in the SAP HANA
studio's Modeler perspective, you must grant the user the required SELECT privilege.
a. In the SAP HANA studio Systems view, right-click the SAP HANA system hosting the repository where

the schema was activated and choose SQL Console in the context-sensitive popup menu.
b. In the SQL Console, execute the statement illustrated in the following example, where <SCHEMANAME>

is the name of the newly activated schema, and <username> is the database user ID of the schema
owner:

call
_SYS_REPO.GRANT_SCHEMA_PRIVILEGE_ON_ACTIVATED_CONTENT('select','<SCHEMANAME
>','<username>');

5. Create an application descriptor for your new OData application in your root OData package helloodata.

The application descriptor (.xsapp) is the core file that you use to define an application's availability within
SAP HANA application. The .xsapp file sets the point in the application-package structure from which
content will be served to the requesting clients.

 Note
The application-descriptor file has no content and no name; it only has the extension .xsapp. File
extensions are important. If you are using SAP HANA studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the file in the appropriate editor.

a. In the Project Explorer view, right-click the folder where you want to create the new application
descriptor and choose New Other SAP HANA Application Development XS Application
Descriptor File in the context-sensitive popup menu.

56 P U B L I C
SAP HANA Developer Guide

Getting Started

b. Save and activate the application-descriptor file in the repository.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the
repository, To explicitly commit a file to the repository, right-click the file (or the project containing
the file) and choose Team Commit from the context-sensitive popup menu.

6. Create an application-access file for your new OData application and place it in your root OData package
helloodata.

The application-access file enables you to specify who or what is authorized to access the content exposed
by the application.

 Note
The application-access file has no name; it only has the extension .xsaccess. File extensions are
important. If you are using SAP HANA studio to create artifacts in the SAP HANA Repository, the file-
creation wizard adds the required file extension automatically and, if appropriate, enables direct editing
of the file in the appropriate editor.

a. In the Project Explorer view, right-click the folder where you want to create the new application
descriptor and choose New Other SAP HANA Application Development XS Application
Access File in the context-sensitive popup menu.

b. Enter the following content in the .xsaccess file for your new OData application:

{ "exposed" : true,
 "prevent_xsrf" : true }

 Note
It is highly recommended to always use the prevent_xsrf keyword to help protect your
application against attacks that use cross-site request forgery.

c. Save and activate the application-access file in the repository.
7. Create an OData service-definition file and place it in your root OData package helloodata.

The Odata service-definition file has the file extension .xsodata, for example, hello.xsodata and for
the purposes of this tutorial should be located in the root package of the OData application:

 Tip
File extensions are important. If you are using SAP HANA studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the file in the appropriate editor.

a. In the Project Explorer view, right-click the folder where you want to create the new application
descriptor and choose New Other SAP HANA Application Development XS OData File in
the context-sensitive popup menu.

b. Enter the following content in the hello.xsodata OData service-definition file:

service { "helloodata::otable";

SAP HANA Developer Guide
Getting Started P U B L I C 57

 }

c. Save and activate the OData service-definition file in the repository.
8. Test the new OData service.

Open a browser and enter the following URL.

 Note
If you are using Internet Explorer, press F12 and set compatibility mode = IE10 and document mode =
Standards.

http://<hana.server.name>:80<HANA_instance_number>/helloodata/hello.xsodata/
otable

 Tip
You can also run the service directly from the Project Explorer view where you activated it; right-click
the object in the Project Explorer view and chose Run As... in the context-sensitive popup menu.

58 P U B L I C
SAP HANA Developer Guide

Getting Started

4 Setting Up Your Application

In SAP HANA Extended Application Services (SAP HANA XS), the design-time artifacts that make up your
application are stored in the repository like files in a file system. You first choose a root folder for your
application-development activities, and within this folder you create additional subfolders to organize the
applications and the application content according to your own requirements.

 Note
For the latest information about the availability of features for SAP HANA Extended Application Services
(SAP HANA XS) and related development tools, see 1779803 .

As part of the application-development process, you typically need to perform the tasks described in the
following list. Each of the tasks in more detail is described in its own section:

Application Setup Steps

Step Action Notes

1 Check roles and permissions Before you start developing applications using the features and tools provided by
the SAP HANA XS, developers who want to build applications to run on SAP
HANA XS need to be granted access to development tools, SAP HANA systems,
database accounts, and so on.

2 Set up delivery units To create and manage delivery units, for example, using the SAP HANA
Application Lifecycle Management, you must set the identity of the vendor with
whom the delivery units are associated. To avoid conflicts with applications from
SAP or other providers, we recommend that you use the DNS name of your com
pany as the name of your root application-development folder, for example,
com.acme.

3 Set up an SAP HANA project In SAP HANA, projects enable you to group together all the artifacts you need for
a specific part of the application-development environment. To create a project,
you must first create a repository workspace, a directory structure to store files
on your PC.

4 Maintain repository packages To perform the high-level tasks that typically occur during the process of main
taining repository packages, you need to be familiar with the concepts of pack
ages and package hierarchies, which you use to manage the artifacts in your ap
plications.

5 Maintain application descriptors The framework defined by the application descriptors includes the root point in
the package hierarchy where content is to be served to client requests; it also
defines if the application is permitted to expose data to client requests and what
kind of access to the data is allowed.

6 Maintain application security As part of the application-development process, you must decide how to grant
access to the applications you develop. For example, you must specify which (if
any) authentication method is used to grant access to content exposed by an ap
plication, and what content is visible.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 59

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1779803

Related Information

Roles and Permissions for XS Development [page 60]
Maintaining Delivery Units [page 62]
Using SAP HANA Projects [page 67]
Maintaining Repository Packages [page 75]
Creating the Application Descriptors [page 86]
Set up Application Security [page 111]

4.1 Roles and Permissions for XS Development

An overview of the authorizations required to develop database artifacts for SAP HANA using the CDS syntax.

To enable application-developers to start building native applications that take advantage of the SAP HANA
Extended Application Services (SAP HANA XS), the SAP HANA administrator must ensure that developers
have access to the tools and objects that they need to perform the tasks required during the application- and
database-development process.

Before you start developing applications using the features and tools provided by the SAP HANA XS, bear in
mind the following prerequisites. Developers who want to build applications to run on SAP HANA XS need the
following tools, accounts, and privileges:

● SAP HANA XS Classic Model [page 60]
● SAP HANA XS Advanced Model [page 61]

 Note
The required privileges can only be granted by someone who has the necessary authorizations in SAP
HANA, for example, an SAP HANA administrator.

SAP HANA XS Classic Model

To develop database artifacts for use by applications running in the SAP HANA XS classic environment, bear in
mind the following prerequisites:

● Access to a running SAP HANA development system (with SAP HANA XS classic)
● A valid user account in the SAP HANA database on that system
● Access to development tools, for example, provided in:

○ SAP HANA studio
○ SAP HANA Web-based Development Workbench

● Access to the SAP HANA repository
● Access to selected run-time catalog objects

60 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

 Note
To provide access to the repository for application developers, you can use a predefined role or create your
own custom role to which you assign the privileges that the application developers need to perform the
everyday tasks associated with the application-development process.

To provide access to the repository from the SAP HANA studio, the EXECUTE privilege is required for
SYS.REPOSITORY_REST, the database procedure through with the REST API is tunneled. To enable the
activation and data preview of information views, the technical user _SYS_REPO also requires SELECT privilege
on all schemas where source tables reside.

In SAP HANA, you can use roles to assign one or more privileges to a user according to the area in which the
user works; the role defines the privileges the user is granted. For example, a role enables you to assign SQL
privileges, analytic privileges, system privileges, package privileges, and so on. To create and maintain artifacts
in the SAP HANA repository, you can assign application-development users the following roles:

● One of the following:
○ MODELING

The predefined MODELING role assigns wide-ranging SQL privileges, for example, on _SYS_BI and
_SYS_BIC. It also assigns the analytic privilege _SYS_BI_CP_ALL, and some system privileges. If these
permissions are more than your development team requires, you can create your own role with a set of
privileges designed to meet the needs of the application-development team.

○ Custom DEVELOPMENT role
A user with the appropriate authorization can create a custom DEVELOPMENT role specially for
application developers. The new role would specify only those privileges an application-developer
needs to perform the everyday tasks associated with application development, for example:
maintaining packages in the repository, executing SQL statements, displaying data previews for views,
and so on.

● PUBLIC
This is a role that is assigned to all users by default.

Before you start using the SAP HANA Web-based Development Workbench, the SAP HANA administrator must
set up a user account for you in the database and assign the required developer roles to the new user account.

 Tip
The role sap.hana.xs.ide.roles::Developer grants the privileges required to use all the tools included in the
SAP HANA Web-based Development Workbench. However, to enable a developer to use the debugging
features of the browser-based IDE, your administrator must also assign the role
sap.hana.xs.debugger::Debugger. In addition, the section debugger with the parameter enabled and the
value true must be added to the file xsengine.inifile, for example, in the SAP HANA studio
Administration perspective.

SAP HANA XS Advanced Model

To develop database artifacts for use by applications running in the SAP HANA XS advanced environment, bear
in mind the following prerequisites:

● Access to a running SAP HANA development system (with SAP HANA XS advanced)

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 61

● A valid user account in the SAP HANA database on that system
● Access to development tools, for example, provided in:

○ SAP Web IDE for SAP HANA
○ SAP HANA Run-time Tools (included in the SAP Web IDE for SAP HANA)

 Note
To provide access to tools and for application developers in XS advanced, you define a custom role to
which you add the privileges required to perform the everyday tasks associated with the application-
and database-development process. The role is then assigned to a role collection which is, in turn,
assigned to the developer.

● Access to the SAP HANA XS advanced design-time workspace and repository
● Access to selected run-time catalog objects
● Access to the XS command-line interface (CLI); the XS CLI client needs to be downloaded and installed

Related Information

Create a Design-Time Role [page 703]
Assign Repository Package Privileges [page 81]

4.2 Maintaining Delivery Units

A delivery unit (DU) is a collection of packages that are to be transported together. You assign all the packages
belonging to your application to the same DU to ensure that they are transported consistently together within
your system landscape. Each DU has a unique identity.

Prerequisites

To maintain delivery units with the SAP HANA Application Lifecycle Management, you must ensure the
following prerequisites are met:

● You have access to an SAP HANA system.
● You have been assigned the privileges granted by a role based on the SAP HANA

sap.hana.xs.lm.roles::Administrator user role template.
● A vendor ID (repository namespace) is already defined.

62 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

Context

The identity of a delivery unit consists of two parts: a vendor name and a delivery-unit name. The combined ID
ensures that delivery units from different vendors are easy to distinguish and follows a pattern that SAP uses
for all kinds of software components.

To create and manage delivery units you first need to maintain the identity of the vendor, with whom the
delivery units are associated, and in whose namespace the packages that make up the delivery unit are stored.
As part of the vendor ID maintenance process, you must perform the following tasks:

Procedure

1. Understand delivery units.
You must be familiar with the conventions that exist for delivery-unit names and understand the phases of
the delivery-unit lifecycle.

2. Maintain details of the vendor ID associated with a delivery unit.
Delivery units are located in the namespace associated with the vendor who creates them and who
manages the delivery-unit's lifecycle.

3. Create a delivery unit.
Create a transportable “container” to hold the repository packages in application.

4. Assign packages to a delivery unit.
Add to a delivery unit the repository packages that make up your application.

5. Export a delivery unit.
You can export the contents of a delivery unit from the SAP HANA Repository to a compressed Zip archive,
which you can download to a client file system.

6. Import a delivery unit.
You can import the contents of a delivery unit into the SAP HANA Repository, for example, from a
compressed Zip archive, which you upload from a client file system.

Related Information

Maintain the Delivery-Unit Vendor ID [page 64]
Create a Delivery Unit [page 65]
Export a Delivery Unit [page 798]
Import a Delivery Unit [page 799]

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 63

4.2.1 Maintain the Delivery-Unit Vendor ID

In SAP HANA, the vendor ID is used primarily to define the identity of the company developing a software
component that it plans to ship for use with SAP HANA, for example, “sap.com”. To create a delivery unit, it is a
prerequisite to maintain a vendor ID in your system.

Prerequisites

To set the vendor ID, you must ensure the following prerequisites are met:

● You have access to an SAP HANA system.
● You have been assigned the privileges granted by a role based on the SAP HANA XS

sap.hana.xs.lm.roles::Administrator user role template.

Context

Before creating your own first delivery unit, you must set the identity of the vendor in the development
system's configuration. To maintain details of the delivery-unit vendor ID, perform the following steps:

Procedure

1. Start the SAP HANA Application Lifecycle Management.
The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm

 Note
To start the SAP HANA Application Lifecycle Management, you must use the logon credentials of an
existing database user, who has the appropriate user role assigned.

2. Choose the SETTINGS tab.
3. Maintain details of the vendor ID.

In the SETTINGS tab, perform the following steps:
a. Choose Change Vendor.
b. In the Set Vendor dialog, enter the name of the new vendor, for example, mycompany.com.
c. Choose OK to save the changes.

The new vendor ID appears in the Vendor box.

 Note
The vendor ID is required to create a delivery unit.

64 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

Related Information

SAP HANA Application Lifecycle Management [page 767]

4.2.2 Create a Delivery Unit

A delivery unit (DU) is a group of transportable packages that contain objects used for content delivery. You
can use the SAP HANA Application Lifecycle Management to create a DU for your application content or your
software component.

Prerequisites

To create a delivery unit with the SAP HANA Application Lifecycle Management, you must ensure the following
prerequisites are met:

● You have access to an SAP HANA system.
● You have the privileges granted by a role based on the SAP HANA

sap.hana.xs.lm.roles::Administrator user role template.
● The vendor ID is defined for the DU; the vendor ID defines the repository namespace in which the new DU

resides.

Context

You use a DU to transport the design-time objects that are stored in the SAP HANA repository between two
systems, for example, from a development system to a consolidation system. To create a new delivery unit
using the SAP HANA application lifecycle management, perform the following steps.

Procedure

1. Open SAP HANA Application Lifecycle Management.
SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the following
URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm

2. Choose the PRODUCTS tab.
3. Choose the Delivery Units tab.
4. Choose Create.

The New Delivery Unit dialog box appears.
5. Enter details for the new DU.

When entering details, note the following points:

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 65

○ Name
The field is mandatory and you must follow strict naming conventions, for example, use capital letters.

○ Vendor
This field is mandatory. However, you cannot enter a vendor here; the box is populated by the value you
enter when defining the vendor in the SETTINGS tab.

○ Version
Version numbers must take the form “#.#.#”, for example, 1.0.5, where:
○ 1 = the DU version number
○ 0 = the support package version (if required)
○ 5 = the patch version (if required)

 Note
The numbers you enter here refer to the application component that you are developing; the
numbers do not refer to the patch or service-pack level deployed on the SAP HANA server.

6. Choose Create.
The new delivery unit is added to the SAP HANA repository in the namespace specified by the vendor ID
and the application path.

7. Check the status bar at the bottom of the browser window for error messages. Choose the message link to
display the message text.

Results

You have created a delivery unit.

Related Information

SAP HANA Application Lifecycle Management [page 767]
SAP HANA Change Recording [page 804]
Enable SAP HANA Change Recording [page 806]

4.2.2.1 SAP HANA Delivery Unit Naming Conventions

The delivery unit (DU) is the vehicle that SAP HANA application lifecycle management uses to ship software
components from SAP (or a partner) to a customer. The DU is also the container you use to transport
application content in your system landscape. In SAP HANA, the name of a DU must adhere to conventions and
guidelines.

If you create a delivery unit, the name of the new delivery unit must adhere to the following conventions

● A delivery-unit name must contain only capital letters (A-Z), digits (0-9), and underscores (_).

66 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

● The name must start with a letter.
● The maximum length of a delivery-unit name must not exceed 30 characters

 Note
The naming conventions for packages in a delivery unit differ from the naming conventions that apply to
the delivery unit itself. For example, the maximum length of a package name is not restricted to 30
characters; however, it must be less than 190 characters (including the namespace hierarchy).

4.3 Using SAP HANA Projects

Projects group together all the artifacts you need for a specific part of the application-development
environment.

Context

Before you can start the application-development workflow, you must create a project, which you use to group
together all your application-related artifacts. However, a project requires a repository workspace, which
enables you to synchronize changes in local files with changes in the repository. You can create the workspace
before or during the project-creation step. As part of the project-creation process, you perform the following
tasks:

Procedure

1. Create a development workspace.
The workspace is the link between the SAP HANA repository and your local filesystem, where you work on
project-related objects.

2. Create a project.
Create a new project for a particular application or package; you can use the project to collect in a
convenient place all your application-related artifacts.

3. Share a project.
Sharing a project enables you to ensure that changes you make to project-related files are visible to other
team members and applications. Shared projects are available for import by other members of the
application-development team.

 Note
Files checked out of the repository are not locked; conflicts resulting from concurrent changes to the
same file must be resolved manually, using the Merge tools provided in the context-sensitive Team
menu.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 67

4. Import a project.
Import a project (and its associated artifacts) that has been shared by another member of the application-
development team.

Related Information

Maintain a Repository Workspace [page 68]
Create a Project for SAP HANA XS [page 70]
Share an SAP HANA XS Project [page 73]
Import an SAP HANA XS Project [page 74]

4.3.1 Maintain a Repository Workspace

A workspace is a local directory that you map to all (or part) of a package hierarchy in the SAP HANA
repository. When you check out a package from the repository, SAP HANA copies the contents of the package
hierarchy to your workspace, where you can work on the files.

Context

Before you can start work on the development of the application, you need to set up a workspace, where you
store checked-out copies of your application’s source-code files. To ensure that only the owner of data can
access the data stored in a workspace, a workspace must be created in the owner's home directory. In addition,
it is recommended that users encrypt the data on their hard drives using an encryption tool.

To create a new workspace in the SAP HANA studio, perform the following steps:

Procedure

1. Open the SAP HANA studio.
2. Open the SAP HANA Development perspective.
3. Choose the Repositories view.
4. Choose Create Workspace…

The Create Workspace… button is located in the top right-hand corner of the Repositories view.
5. Specify the workspace details. In the Create New Repository Workspace dialog, enter the following

information and choose Finish:
a. Specify the SAP HANA system, for which you want to create a new workspace.

68 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

b. Enter a workspace name, for example the name of the SAP HANA system where the repository is
located. To avoid the potential for confusion, it is recommended to associate one workspace with one
repository.

c. Specify where the workspace root directory should be located on your local file system, for example:
C:\users\username\workspaces

The new workspace is displayed in the Repositories view.

 Note
Although the packages and objects in the chosen repository are visible in the Repositories view, you
cannot open or work on the objects here. To work on objects, you must create a project and use the
Project Explorer view.

The Repositories view displays the status of a workspace as follows:

UI Icon Explanation

Yellow database icon An inactive workspace exists in the SAP HANA repository

Yellow database icon
with a blue check
mark

An inactive workspace has been imported to your local file system (and the contents checked
out from the SAP HANA repository)

6. Remove a repository workspace.
If it is necessary to remove a workspace, you can choose between multiple deletion options; the option you
choose determines what is removed, from where (local file system or remote repository), and what, if
anything, is retained.
a. Open the SAP HANA Development perspective.
b. Choose the Repositories view and expand the repository node containing the workspace you want to

remove.
c. Right-click the workspace you want to remove.
d. Choose the workspace-deletion mode.

The following modes apply when you delete a workspace in SAP HANA studio:

Workspace Deletion Modes

Workspace Deletion Mode Description

Delete Remove workspace; delete all workspace-related local
files; delete related changes to remote (repository)
data.

Remove from client (keep remote changes) Remove workspace from local client system; delete all
local workspace-related files; retain changes to remote
(repository) data.

Disconnect local from remote (keep changes) Keep the workspace but remove the workspace label
from the list of workspaces displayed in the
Repositories view. The connection to the disconnected
workspace can be reestablished at any time with the
option Import Local Repository Workspaces.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 69

4.3.1.1 SAP HANA Repository Workspaces

The place where you work on project-related objects is called a repository workspace. A workspace is an
environment that maps a local directory to all (or part) of a package hierarchy in the SAP HANA repository.

In SAP HANA studio, the repository tools enable you to browse the entire hierarchy of design-time objects
stored in the repository. However, when you check a package out of the repository, SAP HANA copies the
contents of the package hierarchy to your workspace, where you can work on the files in your local file system.

 Note
Before you can create a workspace you must maintain connection information in the SAP HANA database
user store.

To start development work with SAP HANA studio, for example, to checkout the contents of a package, you
must create a repository workspace. The workspace contains a system folder with metadata and package
folders for the repository content. The file-system folders and their subfolders reflect the package hierarchy in
the repository; the repository client ensures that changes are synchronized.

In the SAP HANA studio, the Repositories view displays the status of a workspace as follows:

● Yellow database icon
An inactive workspace exists in the SAP HANA repository

● Yellow database icon with a blue check mark
An inactive workspace has been imported to your local file system (and the contents checked out from the
SAP HANA repository)

4.3.2 Create a Project for SAP HANA XS

Before you can start the application-development workflow, you must create a project, which you use to group
all your application-related artifacts.

Context

Projects group together all the artifacts you need for a specific part of your application-development
environment. A basic project contains folders and files. More advanced projects are used for builds, version
management, sharing, and the organization and maintenance of resources.

To create a new project in the SAP HANA studio, perform the following steps:

Procedure

1. Open the SAP HANA studio.
2. Open the SAP HANA Development perspective.

70 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

3. Choose the Project Explorer view.

4. Choose File New Project... or right-click the white space in the Project Explorer view and choose
New > Project… in the popup menu.
The type of project you create determines the details you have to provide in the New Project wizard that
appears. Choose SAP HANA Application Development XS Project .
a. Enter the following details for the new XS project:

○ Shared project
This is the default setting. Sharing a project enables continuous synchronization between your
local-file system workspace and the SAP HANA repository. If you choose not to share the project
at this point, you can share the new project manually later.

○ Project name
Enter a project name that describes what the project is about, for example: XS_JavaScript or
XS_SAPUI5. Since a project name must be unique within the same Eclipse workspace, it is
recommended to use the fully qualified package name as the project name.

○ Project location
You can save the project in the default location, which is the SAP HANA studio (Repository)
workspace. To save the project in an alternative location from the recommended default, first
disable the option Share project in SAP repository.
You can share the new project manually later. Sharing a project enables continuous
synchronization with the SAP HANA repository.

○ Working sets
A working set is a concept similar to favorites in a Web browser, which contain the objects you
work on most frequently.

○ Repository workspace and package
For a shared project, you can set the project location by selecting a repository workspace and
package.

○ Common objects
For a shared project, you can include some commonly used objects in your project. Some of these
will provide you with a basic template to begin with.

○ Access objects
For a shared project, the access objects are checked by default. However, if either an .xsaccess file
or an .xsapp file already exists in the folder you have chosen to create the new project, the
corresponding option is automatically unchecked and greyed out.

b. Click Finish to create the new project.
All the objects included are activated automatically when the project is created. The new project is
displayed in the Project Explorer view.

 Note
○ If there is an error during activation of one of the project objects, none of the objects will be

automatically activated. You can manually correct the error and then manually activate the objects.
○ The contents of the project depend on the type of project you create. For example, a general

project is empty immediately after creation; a JavaScript project contains all the resource files
associated with a JavaScript project, such as libraries and build-environment artifacts.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 71

4.3.2.1 SAP HANA Studio Projects

Before you can start the application-development workflow, you must create a project, which you use to group
all your application-related artifacts.

Projects group together all the artifacts you need for a specific part of the application-development
environment. A basic project contains folders and files. More advanced projects are used for builds, version
management, sharing, and the organization and maintenance of resources.

Projects enable multiple people to work on the same files at the same time. You can use SAP HANA studio to
perform the following project-related actions in the repository:

● Checkout folders and files from the repository
● Commit changes to the repository
● Activate the committed changes
● Revert inactive changes to the previously saved version

 Note
Files checked out of the repository are not locked; conflicts resulting from concurrent changes to the same
file must be resolved manually, using the Merge tools provided in the context-sensitive Team menu.

By committing project-related files to the repository and activating them, you enable team members to see the
latest changes. The commit operation detects all changes in packages that you configure SAP HANA studio
tool to track and writes the detected changes back to the repository. The repository client tools also support
synchronization with changes on the server, including conflict detection and merging of change. All workspace-
related repository actions are available as context-sensitive menu options in SAP HANA studio. For example, if
you right click a repository object at the top of the package hierarchy in the Project Explorer in SAP HANA
studio, you can commit and activate all changed objects within the selected hierarchy.

 Note
If you create a new project using SAP HANA studio, you can assign the new project to an existing
workspace.

You can share and unshare projects. Sharing a project associates it with a particular package in the repository
linked to a particular workspace. The act of sharing the project sets up a link between the workspace and the
repository and enables you to track and synchronize local changes with the versions of the objects stored in the
repository. When a project is shared, it becomes available to other people with authorization to access to the
repository, for example, colleagues in an application-development team. Team members can import a shared
project and see and work on the same files as the creator of the project.

 Note
Always unshare a project before deleting it.

In the SAP HANA studio you can create a project at any package level, which enables a fine level of control of
the artifacts that may (or may not) be exposed by sharing the project.

72 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

4.3.3 Share an SAP HANA XS Project

Before you can start working on files associated with a new project, you must share the project; sharing a
project enables you to track and synchronize local changes with the repository.

Context

When you share a project, you set up a connection to the SAP HANA repository associated with a particular
SAP HANA instance. Sharing the project enables you to ensure that changes you make to project-related files
are visible to other team members and applications. Other developers can import a shared project and work on
the same files.

 Note
Use the Project Explorer view in the SAP HANA studio to check if a project is shared. In addition to the
project name, a shared project displays the SAP HANA system ID of the repository where the shared
artifacts are located, an SAP HANA user name, and the path to the repository package to which the shared
project is assigned, for example. "XSJS_myproject [SID (dbusername, 'sap.hana.xs.app1')].

To share a project in the SAP HANA studio, perform the following steps:

Procedure

1. Open the SAP HANA studio
2. Open the SAP HANA Development perspective.
3. Open the Project Explorer view.
4. Share the project.

Right-click the project you want to share and choose Team Share Project… in the pop-up menu.
5. Select the repository type.

The Share Project dialog displays a list of all available repository types; choose SAP HANA Repository and
choose Next.

6. Select the repository workspace where the project should be located.
7. Specify the package that you want to associate the shared project with.

The Share Project dialog displays the suggested location for the shared project in the New Project location
screen area. The default location is the name of the workspace with the name of the project you want to
share. Choose Browse... to locate the package you want to associate the shared project with. The selected
package is displayed in the Path to package text box.

 Note
The Keep project folder option appends the name of the project you are sharing to the name of the
workspace in which you are sharing the project and creates a new package with the name of the shared
project under the workspace location displayed. Use this option only if you want to create multiple

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 73

projects for a selected package, for example, if you are creating a root project in your root application
package.

8. Click Finish to complete the project-sharing procedure.
9. Add new files as required

At this point you can start adding project-specific files to the shared project. These artifacts can then be
committed to the repository, where they reside as inactive objects until they are activated, for example,
using the Team Activate option in the context-sensitive menus available in the Project Explorer view.

 Note
The Project Explorer view decorates the file icons to indicate the current state of the repository files, for
example: local (not yet committed), committed (inactive), and active (available for use by others).

10. Make the project available for import, for example, so that others can join it and make changes to project
content.
The project-sharing procedure creates some artifacts (for example, the .project file) that must be
committed to the repository and activated so that other team members can import the project more easily
into their workspace. The .project file is used in several dialogs to populate the list of available projects.

 Note
Use the Repositories view to import projects (and checkout project content).

Related Information

Import an SAP HANA XS Project [page 74]

4.3.4 Import an SAP HANA XS Project

Before you can start the application-development workflow, you must either create a new project and share it
(with the repository), or import a shared project from the repository into your workspace. Importing a project
enables you to track and synchronize local changes with the colleagues working on the objects in the imported
project.

Context

To import an existing project from the repository into your workspace, perform the following steps.

74 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

Procedure

1. Open the SAP HANA studio
2. Open the SAP HANA Development perspective.
3. Choose the Repositories view.
4. Right-click the package where the project you want to import is located and choose Checkout and Import

Projects... in the popup menu.
Projects can be assigned to a package at any level of the package hierarchy. If you know where the project
is located, browse to the package first before choosing the Checkout and Import Projects... option. This
reduces the amount of files to checkout and download to your local file system.

 Note
The existence of a .project file in a package identifies the package as being associated with a project.

The SAP HANA studio checks out the content of the selected package and displays any projects it finds in
the Projects screen area.

5. Select the projects to import.
If multiple projects are available for import, select the projects you want to import.

6. Choose Finish to import the selected projects.
You can add the imported project to your Working Sets.

 Note
A working set is a concept similar to favorites in a Web browser, which contain the objects you work on
most frequently.

4.4 Maintaining Repository Packages

All content delivered as part of the application you develop for SAP HANA is stored in packages in the SAP
HANA repository. The packages are arranged in a hierarchy that you define to help make the process of
maintaining the packages transparent and logical.

Context

To perform the high-level tasks that typically occur during the process of maintaining repository packages, you
need to be familiar with the concepts of packages and package hierarchies. Packages enable you to group
together the artifacts you create and maintain for your applications. You must also be aware of the privileges
the application developers require to access (and perform operations on) the packages.

 Note
You can also create and delete packages in the Project Explorer, for example, by creating or deleting folders
in shared projects and committing and activating these changes. However, to maintain advanced package

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 75

properties (for example, privileges, component, the package maintainer, and so on) you must use the
Modeling perspective in the SAP HANA studio.

As part of the process of maintaining your application packages, you typically perform the following tasks:

Procedure

1. Define the package hierarchy
The package hierarchy is essential for ease of maintenance as well as the configuration of access to
packages and the privileges that are required to perform actions on the packages.

2. Define package privileges
You can set package authorizations for a specific user or for a role. Authorizations that are assigned to a
repository package are implicitly assigned to all sub-packages, too.

3. Create a package
Packages are necessary to group logically distinct artifacts together in one object location that is easy to
transport.

Related Information

Creating a Package [page 84]
Defining the Package Hierarchy [page 76]
Defining Package Privileges [page 81]

4.4.1 Define the Repository Package Hierarchy

Packages belonging to an application-development delivery unit (DU) should be organized in a clear
hierarchical structure under a single root package representing the vendor, for example, com.acme.

Context

The package hierarchy for a new project might include sub-packages, for example, to isolate the data model
from the business logic. Although there are no package interfaces to enforce visibility of objects across
packages, this separation of logical layers of development is still a recommended best practice.

 Note
You can only assign one project per package; this is important to remember if you have a mixture of design-
time objects that need to be used in multiple projects, for example: server-side JavaScript (XSJS), SAPUI5,
and a general project (for procedures).

76 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

The following simple example shows a package structure containing tutorials for the use of a new application:

com \
 acme
 \
 hana
 \
 app1
 \
 docs
 \ tutorials

● Package hierarchy
Each vendor uses a dedicated namespace, for example, com.acme.

 Note
Do not use the namespace sap to build your application hierarchy. The namespace sap is reserved for
use by SAP; packages created in the sap namespace are overwritten by system updates.

● Package type
Some packages contain content; other packages contain only other (sub)packages. Packages can also
contain both objects and (sub)packages.

● Package naming conventions
There are recommendations and restrictions regarding package names.

To set up a package hierarchy in the SAP HANA repository, perform the following steps:

Procedure

1. Create a new root package.
Open the SAP HANA Development perspective, choose the Systems view, and perform the following steps:
a. Select the SAP HANA system where you want to create a new package and expand the Content node

to display the namespace hierarchy for package content.

b. Choose New > Package .
2. Maintain the package details.

In the Create Package dialog, perform the following steps:
a. Enter the name of the package (mandatory).

Guidelines and conventions apply to package names.
b. Enter a package description (optional).
c. Specify the delivery unit that the package is assigned to.

You can add additional packages to a delivery unit at a later point in time, too.
d. Specify a language for the package content.
e. Assign responsibility of the package to a specific user (optional).

By default, the responsible user for a new package is the database user connected to the SAP HANA
repository in the current SAP HANA studio session.

f. Maintain translation details.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 77

If you plan to have the content translated, you need to maintain the translation details; this is covered
in another topic.

g. Choose OK to save the changes and create the new package.
3. Create a new subpackage.

In the Systems view of the SAP HANA Development perspective, perform the following steps:
a. Right-click the package to which you want to add a new subpackage.

b. In the pop-up menu, choose New > Package...
4. Maintain the subpackage details.

In the Create Package dialog, perform the following steps:
a. Enter the name of the subpackage (mandatory).

Guidelines and conventions apply to package names.
b. Enter a description for the new subpackage (optional).
c. Specify the delivery unit that the subpackage is assigned to.

You can add additional packages to a delivery unit at a later point in time, too.
d. Specify a language for the subpackage content.
e. Assign responsibility of the subpackage to a specific user (optional).

By default, the responsible user for a new package is the database user connected to the SAP HANA
repository in the current SAP HANA studio session.

f. Maintain translation details.
If you plan to have the content translated, you need to maintain the translation details; this is covered
in another topic.

g. Choose OK to save the changes and create the new subpackage.

Related Information

SAP HANA Delivery Unit Naming Conventions [page 66]

4.4.1.1 Repository Package Hierarchy

A package hierarchy can include sub-packages, for example, to isolate the data model from the business logic.

You can create a package hierarchy, for example, by establishing a parent-child type relationship between
packages. The assignment of packages to delivery units is independent of the package hierarchy; packages in a
parent-child relationship can belong to different delivery units. SAP recommends that you assign to one
specific delivery unit all packages that are part of a particular project or project area.

The package hierarchy for a new project typically includes sub-packages, for example, to isolate the data model
from the business logic. Although there are no package interfaces to enforce visibility of objects across
packages, this separation of logical layers of development is still a recommended best practice.

78 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

 Note
You can only assign one project per package; this is important to remember if you have a mixture of design-
time objects that need to be used in multiple projects, for example: server-side JavaScript (XSJS), SAPUI5,
and a general project (for procedures).

The following simple example shows a package structure containing tutorials for the use of a new application:

sap \
 hana
 \
 app1
 \
 code
 demos
 docs
 \
 tutorials
 manuals help

All content delivered by SAP should be in a sub-package of "sap". Partners and customers should choose their
own root package to reflect their own name (for example, the domain name associated with the company) and
must not create packages or objects under the "sap" root structural package. This rule ensures that customer-
or partner-created content will not be overwritten by an SAP update or patch.

 Note
SAP reserves the right to deliver without notification changes in packages and models below the "sap" root
structural package.

There are no system mechanisms for enforcing the package hierarchy. The "sap" root structural package is not
automatically protected. However, by default you cannot change the content of packages that did not originate
in the system. In addition, an authorization concept exists, which enables you to control who can change what
inside packages.

4.4.1.2 SAP HANA Repository Packages and Namespaces

In SAP HANA, a package typically consists of a collection of repository objects, which can be transported
between systems. Multiple packages can be combined in a delivery unit (DU).

An SAP HANA package specifies a namespace in which the repository objects exist. Every repository object is
assigned to a package, and each package must be assigned to a specific delivery unit. In the repository, each
object is uniquely identified by a combination of the following information:

● Package name
● Object name
● Object type

 Note
Multiple objects of the same type can have the same object name if they belong to different packages.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 79

Before you start the package development process, consider the following important points:

● Package hierarchy
Each vendor uses a dedicated namespace, and the package hierarchy you create enables you to store the
various elements of an application in a logical order that is easy to navigate.

● Package type
Packages can be structural or non-structural; some packages contain content; other packages contain
only other (sub)packages.

● Package naming conventions
There are recommendations and restrictions regarding package names, for example, the name's maximum
length and which characters must not be used.

Package Naming Conventions

The following rules apply to package names:

● Permitted characters
Lower/upper case letters (aA-zZ), digits (0-9), hyphens (-), underscores (_), and dots (.) are permitted in
package names. Dots in a package name define a logical hierarchy. For example, "a.b.c" specifies a package
"a" that contains sub-package "b", which in turn contains sub-package "c".

● Forbidden characters
A package name must not start with either a dot (.) or a hyphen (-) and cannot contain two or more
consecutive dots (..).

● Package name length
The name of the complete package namespace hierarchy (for example, “aa.bb.cc.zz” including dots) must
not be more than 190 characters long. In addition, on object activation, the maximum permitted length of a
generated catalog name (which includes the package path, the separating dots, and the object base name)
is restricted to 127 characters.
○ hdbtable hdbview, hdbsequence, hdbstructure, hdbprocedure objects

sap.test.hana.db::myObject

○ CDS objects

sap.test.hana.db::myContext.myEntity

80 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

4.4.2 Assign Repository Package Privileges

In the SAP HANA repository, you can set package authorizations for a specific user or for a role.

Prerequisites

The following prerequisites are assumed for assigning package privileges:

● Administrator access to the SAP HANA repository
● Permission to modify user privileges (for example, to grant privileges to other SAP HANA users)

Context

Authorizations that are assigned to a repository package are implicitly assigned to all sub-packages, too. You
can also specify if the assigned user authorizations can be passed on to other users. To set user (or role)
authorizations for repository packages, perform the following steps:

Procedure

1. Open the Systems view in the SAP HANA studio's SAP HANA Development perspective.

2. In the Systems view, expand the Security Roles/Users node for the system hosting the repository
that contains the packages you want to grant access to.
You can also define roles via source files; roles defined in this way can be assigned to a delivery unit and
transported to other systems.

3. Double click the user (or role) to whom you want to assign authorizations.
4. Open the Package Privileges tab page.
5. Choose [+] to add one or more packages. Press and hold the Ctrl key to select multiple packages.

6. In the Select Repository Package dialog, use all or part of the package name to locate the repository
package that you want to authorize access to.

7. Select one or more repository packages that you want to authorize access to; the selected packages
appear in the Package Privileges tab.

8. Select the packages to which you want authorize access and, in the Privileges for tab, check the required
privileges, for example:
○ REPO.READ

Read access to the selected package and design-time objects (both native and imported)
○ REPO.EDIT_NATIVE_OBJECTS

Authorization to modify design-time objects in packages originating in the system the user is working
in

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 81

Related Information

Package Privilege Options [page 82]
Package Privileges [page 736]

4.4.2.1 Package Privilege Options

Package privileges authorize actions on individual packages in the SAP HANA repository. In the context of
repository package authorizations, there is a distinction between native packages and imported packages.

 Note
To be able perform operations in all packages in the SAP HANA repository, a user must have privileges on
the root package .REPO_PACKAGE_ROOT.

Privileges for Native Repository Packages

A native repository package is created in the current SAP HANA system and expected to be edited in the
current system. To perform application-development tasks on native packages in the SAP HANA repository,
developers typically need the privileges listed in the following table:

Package Privilege Description

REPO.READ Read access to the selected package and design-time ob
jects (both native and imported)

REPO.EDIT_NATIVE_OBJECTS Authorization to modify design-time objects in packages
originating in the system the user is working in

REPO.ACTIVATE_NATIVE_OBJECTS Authorization to activate/reactivate design-time objects in
packages originating in the system the user is working in

REPO.MAINTAIN_NATIVE_PACKAGES Authorization to update or delete native packages, or create
sub-packages of packages originating in the system in which
the user is working

82 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

Privileges for Imported Repository Packages

An imported repository package is created in a remote SAP HANA system and imported into the current
system. To perform application-development tasks on imported packages in the SAP HANA repository,
developers need the privileges listed in the following table:

 Note
It is not recommended to work on imported packages. Imported packages should only be modified in
exceptional cases, for example, to carry out emergency repairs.

Package Privilege Description

REPO.READ Read access to the selected package and design-time ob
jects (both native and imported)

REPO.EDIT_IMPORTED_OBJECTS Authorization to modify design-time objects in packages
originating in a system other than the one in which the user
is currently working

REPO.ACTIVATE_IMPORTED_OBJECTS Authorization to activate (or reactivate) design-time objects
in packages originating in a system other than the one in
which the user is currently working

REPO.MAINTAIN_IMPORTED_PACKAGES Authorization to update or delete packages, or create sub-
packages of packages, which originated in a system other
than the one in which the user is currently working

Related Information

Package Privileges [page 736]

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 83

4.4.3 Create a Repository Package

In SAP HANA, a package contains a selection of repository objects. You assemble a collection of packages into
a delivery unit, which you can use to transport the repository objects between SAP HANA systems.

Context

You can use repository packages to manage the various elements of your application development project in
the SAP HANA repository. To create a package, perform the following steps:

Procedure

1. In the SAP HANA studio, start the SAP HANA Development perspective.
2. In the Systems view, select the SAP HANA system where you want to create a new package and expand the

Content node to display the namespace hierarchy for package content.

3. Right-click the package where you want to add a new package and choose New Package... in the
context-sensitive popup menu.
SAP HANA studio displays the New Package dialog.

4. Maintain the package details.
In the New Package dialog, enter information in the following fields:
a. Enter a name for the new package.

The package Name is mandatory. Add the new name to the end of the full package path, for example,
acme.com.package1.

b. Fill in the other optional information as required:
Use the Delivery Unit drop-down list to assign the new package to a delivery unit.
Choose Translation if you intend to have the package content localized. You must maintain the
translation details.

5. Create the new package.
In the New Package dialog, click OK to create a new package in the specified location.

6. Activate the new package.
In the Systems view, right-click the new package and choose Activate from the context-sensitive popup
menu.

84 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

4.4.3.1 Repository Package Types

SAP HANA enables the use of various types of package, which are intended for use in particular scenarios.

SAP HANA Application Services provide or allow the following package types:

● Structural
Package only contains sub-packages; it cannot contain repository objects.

● Non-Structural
Package contains both repository objects and subpackages.

The following packages are delivered by default with the repository:

● sap
Transportable package reserved for content delivered by SAP. Partners and customers must not use the
sap package; they must create and use their own root package to avoid conflicts with software delivered by
SAP, for example when SAP updates or overwrites the sap package structure during an update or patch
process.

● system-local
Non-transportable, structural packages (and subpackages). Content in this package (and any
subpackages) is considered system local and cannot be transported. This is similar to the concept of the
$tmp development class in SAP NetWeaver ABAP.

● system-local.generated
Non-transportable, structural packages for generated content, that is; content not created by manual user
interaction

● system-local.private
Non-transportable, structural package reserved for objects that belong to individual users, for example,
system-local.private.<user_name> . To avoid compatibility issues with future functionality, do not
use the system-local.private package or any of its sub-packages.

4.4.4 Delete a Repository Package

In SAP HANA development, repository packages are used to manage various elements of your application
development project. Sometimes you need to delete a package that contains repository objects from other
developers.

Prerequisites

To perform this task, your user must be assigned the REPO.WORK_IN_FOREIGN_WORKSPACE system privilege.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 85

Context

You use repository packages to manage the various elements of your application development project in the
SAP HANA repository. To delete a package, perform the following steps:

Procedure

1. In the SAP HANA studio, start the SAP HANA Development perspective.
2. Open the Repositories view and locate the package that you want to delete.
3. Delete the package.

1. Click the alternate mouse button on the package that you want to delete and choose Delete.
2. When prompted, choose OK.

A message box appears indicating that you are deleting a package with active and inactive objects.
3. Choose OK to delete the package.

Choose Cancel to stop the deletion of the package and objects.

Related Information

System Privileges (Reference) [page 723]

4.5 Creating the Application Descriptors

The application descriptors describe the framework in which an SAP HANA XS application runs. The
framework defined by the application descriptors includes the root point in the package hierarchy where
content is to be served to client requests, and who has access to the content.

Prerequisites

● You must be familiar with the concept of the application descriptor file (.xsapp), the application-access
file (.xsaccess), and if required, the application-privileges file (.xsprivileges).

86 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

Context

When you develop and deploy applications in the context of SAP HANA Extended Application Services (SAP
HANA XS), you must define the application descriptors. Maintaining the application descriptors involves the
following tasks:

Procedure

1. Create an application-descriptor file.
The package that contains the application descriptor file becomes the root path of the resources exposed
to client requests by the application you develop.

2. Create an application-access file.
The application-access file enables you to specify who or what is authorized to access the content exposed
by a SAP HANA XS application package and what content they are allowed to see. You can use keywords in
the application-access file to set authentication rules, define package-privilege levels (for example,
EXECUTE or ADMIN, specify the connection security level (for example, SSL/HTTPS), and allow (or
prevent) the creation of entity tags (Etags). You can also define rewrite rules for URLs exposed by an
application, for example, to hide internal details of URL paths from external users, clients, and search
engines.

3. Create an application-privileges file. (Optional)
The application-privileges file enables you to define the authorization privileges required for access to an
SAP HANA XS application, for example, to start the application (EXECUTE) or to perform administrative
actions on an application (ADMIN). The privileges defined here are activated for a particular application in
the application-access file. These privileges can be checked by an application at runtime. Privileges defined
apply to the package where the privileges file is located as well as any packages further down the package
hierarchy unless an additional privileges file is present, for example, in a subpackage.

Related Information

Create an application descriptor [page 88]
Create an application-access file [page 90]
Create an application-privileges file [page 106]

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 87

4.5.1 Create an Application Descriptor File

Each application that you want to develop and deploy on SAP HANA Extended Application Services (SAP HANA
XS) must have an application-descriptor file. The application descriptor is the core file that you use to describe
an application's framework within SAP HANA XS.

Prerequisites

● A repository workspace with a shared project
● A root package for your application, for example, MyAppPackage

 Note
The namespace sap is restricted. Place the new package in your own namespace, for example,
com.acme, which you can create alongside the sap namespace.

Context

The application descriptor is the core file that you use to indicate an application's availability within SAP HANA
XS. The application descriptor marks the point in the package hierarchy at which an application's content is
available to clients. The application-descriptor file has no contents and no name; it only has the file
extension .xsapp. The package that contains the application-descriptor file becomes the root path of the
resources exposed by the application you develop.

 Note
For backward compatibility, content is allowed in the.xsapp file but ignored.

To create an application descriptor for your new application, perform the following steps.

Procedure

1. In the SAP HANA studio, open the SAP HANA Development perspective.
2. In the Project Explorer view, right-click the folder where you want to create the new (.xsapp) file.

3. In the context-sensitive popup menu, choose New Other... .

4. In the Select a Wizard dialog, choose SAP HANA Application Development XS Application Descriptor
File

5. Enter or select the parent folder. Note that the default file name for the XS application descriptor is .xsapp
and cannot be changed.

6. Select a template to use. Templates contain sample source code to help you get started.

88 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

7. Choose Finish.
If you are using the SAP HANA Studio to create artifacts in the SAP HANA Repository, the file creation
wizard adds the required file extension .xsapp automatically.

 Tip
Files with names that begin with the period (.), for example, .xsapp, are sometimes not visible in the
Project Explorer. To enable the display of all files in the Project Explorer view, use the Customize View

Available Customization option and clear all check boxes.

8. Save and activate your changes and additions.
a. In the SAP HANA Development perspective, open the Project Explorer view and right-click the new

(.xsapp) package.

b. In the context-sensitive popup menu, choose Team Activate .

4.5.1.1 The SAP HANA XS Application Descriptor

Each application that you want to develop and deploy on SAP HANA Extended Application Services (SAP HANA
XS) must have an application descriptor file. The application descriptor is the core file that you use to describe
an application's framework within SAP HANA XS.

The package that contains the application descriptor file becomes the root path of the resources exposed to
client requests by the application you develop.

 Note
The application-descriptor file has no name and no content; it only has the file extension “xsapp”, for
example, .xsapp. For backward compatibility, content is allowed in the .xsapp file but ignored.

The application root is determined by the package containing the .xsapp file. For example, if the package
sap.test contains the file .xsapp, the application will be available under the URL http://<host>:<port>/
sap.test/. Application content is available to requests from users.

 Caution
Make sure that the folder containing the .xsapp application descriptor file also contains an .xsaccess
file, which controls access to the application.

The contents of the package where the .xsapp file resides (and any subfolders) are exposed to user requests
and, as a result, potentially reachable by attackers. You can protect this content with the appropriate
authentication settings in the corresponding application-access (.xsaccess) file, which resides in the same
package. Bear in mind that by exposing Web content, you run the risk of leaking information; the leaked
information can be used in the following ways:

● Directly
Data files such as .csv files used for the initial database load can contain confidential information.

● Indirectly

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 89

File descriptors can give details about the internal coding of the application, and files that contain the
names of developers are useful; they can be used by an attacker in combination with social-engineering
techniques.

To help protect your application from security-related issues, place the application descriptor (.xsapp) as
deep as possible in the package hierarchy. In addition, include only the index page in this package; all other
application data should be placed in sub-folders that are protected with individual application-access files.

 Tip
Keep the application package hierarchy clean. Do not place in the same package as the .xsapp file (or sub-
package) any unnecessary content, for example, files which are not required for the application to work.

Related Information

The Application-Access File [page 93]

4.5.2 Enable Access to SAP HANA XS Application Packages

The application-access file enables you to specify who or what is authorized to access the content exposed by
the application package and what content they are allowed to see.

Prerequisites

● A repository workspace with a shared project
● A root package for your application, for example, MyAppPackage

 Note
The namespace sap is restricted. Place the new package in your own namespace, for example,
com.acme, which you can create alongside the sap namespace.

● An application descriptor file (.xsapp) for the selected application

Context

The application-access file is a JSON-compliant file with the file suffix .xsaccess. You can use a set of
keywords in the application-access file .xsaccess to specify if authentication is required to enable access to
package content, which data is exposed, and if rewrite rules are in place to hide target and source URLs, for
example, from users and search engines. You can also specify what, if any, level of authorization is required for
the package and whether SSL is mandatory for client connections.

90 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

 Note
The application-access file does not have a name before the dot (.); it only has the suffix .xsaccess.

To create the application access file, perform the following steps:

Procedure

1. Create a file called .xsaccess and place it in the root package of the application to which you want to
enable access.
A basic .xsaccess file must, at the very least, contain a set of curly brackets, for example, {}. Note that
the .xsaccess file uses keyword-value pairs to set access rules; if a mandatory keyword-value pair is not
set, then the default value is assumed.
a. In the SAP HANA studio, open the SAP HANA Development perspective.
b. In the Project Explorer view, right-click the folder where you want to create the new (.xsaccess) file.

c. In the context-sensitive popup menu, choose New Other... .

d. In the Select a Wizard dialog, choose SAP HANA Application Development XS Application Access
File

e. Tip
If you are using the SAP HANA Studio to create artifacts in the SAP HANA Repository, the file
creation wizard adds the required file extension .xsaccess automatically and enables direct
editing of the file.

Enter or select the parent folder where the .xsaccess file is to be located.

 Note
The default name for the core application-access file is .xsaccess and cannot be changed.

f. Select a template to use. Templates contain sample source code to help you.
g. Choose Finish.

2. Enable application access to data.
You use the expose keyword to enable or disable access to content at a package or subpackage level.

{ "exposed" : true,
 "prevent_xsrf" : true }

 Note
It is highly recommended to always use the prevent_xsrf keyword to help protect your application
against attacks that use cross-site request forgery vector.

3. Define the application authentication method.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 91

To ensure that form-based logon works when you enable it using the SAP HANA XS Administration Tool, the
authentication keyword is required in the .xsaccess file, too, and must be set to the value "form", as
illustrated in the following example.

{ "authentication" : { "method" : "Form"} }

 Note
Use the SAP HANA XS Administration Tool to configure applications to use additional authentication
methods, for example, basic, logon tickets, or Single Sign On (SSO) providers such as SAML2 and
X509. You must also enable the Form-based authentication checkbox, if you want your application (or
applications) to use form-based logon as the authentication method. Any other keywords in the
authentication section of the .xsaccess file are ignored.

4. Specify the application privileges if required. (Optional)
Use the authorization keyword in the .xsaccess file to specify which authorization level is required by a
user for access to a particular application package. The authorization keyword requires a corresponding
entry in the .xsprivileges file, for example, execute for basic privileges or admin for administrative
privileges on the specified package.

{ "authorization":
 ["sap.xse.test::Execute",
 "sap.xse.test::Admin"
] }

5. Save the .xsaccess file in the package with which you want to associate the rules you have defined.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository, To
explicitly commit a file to the repository, right-click the file (or the project containing the file) and
choose Team Commit from the context-sensitive popup menu.

6. Activate the .xsaccess file to the repository.

In the Project Explorer view, right click the object you want to activate and choose Team > Activate in
the context-sensitive popup menu.

Related Information

Create an Application Descriptor File [page 88]
Application-Access File Keyword Options [page 94]

92 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

4.5.2.1 The Application-Access File

SAP HANA XS enables you to define access to each individual application package that you want to develop
and deploy.

The application-access file enables you to specify who or what is authorized to access the content exposed by
a SAP HANA XS application package and what content they are allowed to see. For example, you use the
application-access file to specify if authentication is to be used to check access to package content and if
rewrite rules are in place that hide or expose target and source URLs.

The application-access file does not have a name; it only has the file extension .xsaccess. The content of
the .xsaccess file is formatted according to JSON rules, and the settings specified in an .xsaccess file apply
not only to the package the .xsaccess file belongs to but also any subpackages lower in the package
hierarchy. Multiple .xsaccess files are allowed, but only at different levels in the package hierarchy. You
cannot place two .xsaccess files in the same package.

 Note
The settings specified in an .xsaccess file in a subpackage take precedence over any settings specified in
a .xsaccess file higher up the package hierarchy; the subpackage settings are also inherited by any
packages further down the package hierarchy. Any settings not modified by the .xsaccess in the
subpackage remain unchanged, that is: as defined in the parent package or, where applicable, the default
settings.

Using multiple .xsaccess files enables you to specify different application-access rules for individual
subpackages in the package hierarchy. Following the inheritance rule, any applications below the application
package containing the modified access settings inherit the new, modified settings.

The following example shows the composition and structure of the SAP HANA XS application access
(.xsaccess) file, which comprises a list of key-value pairs that specify how the application service responds to
client requests. For example, in this file, "exposed" : true indicates that data is available to client requests;
"force_ssl" : true specifies that standard HTTP requests are not allowed by the Web browser.

 Note
Some elements can also be specified in the application's runtime configuration, for example, using the SAP
HANA XS Administration Tool. For example, you can configure applications to refuse insecure HTTP
connections, allow the use of e-tags, or enable additional authentication methods such as Single Sign On
(SSO) providers SAML2 and X509.

 Example
The Application-Access (.xsaccess) File

 { "exposed" : true, // Expose data via http
 "authentication" :
 {
 "method": "Form"
 },
 "authorization": // Privileges for application access
 [
 "sap.xse.test::Execute",
 "sap.xse.test::Admin"
],

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 93

 "rewrite_rules" : // URL rewriting rules
 [{
 "source": "/entries/(\\d+)/(\\d+)/(\\d+)/",
 "target": "/logic/entries.xsjs?year=$1&month=$2&day=$3"
 }],
 "mime_mapping" : // Map file-suffix to MIME type
 [{
 "extension":"jpg", "mimetype":"image/jpeg"
 }],
 "force_ssl" : true, // Accept only HTTPS requests
 "enable_etags" : true, // Allow generation of etags
 "prevent_xsrf" : true, // Prevent cross-site request forgery
 "anonymous_connection" : "sap.hana.sqlcon::AnonConn", //.xssqlcc object "default_connection" : "sap.hana.sqlcon::sqlcc", //.xssqlcc object "cors" : // Permit cross-origin browser requests
 {
 "enabled" : false
 },
 "default_file" : "homepage.html", // Override default access setting
 "cache_control" : "no-cache, no-store", // Manage static Web-content cache
 "headers": // Enable X-Frame-Options HTTP header field
 {
 "enabled": true,
 "customHeaders":
 [{
 "name":"X-Frame-Options","value":"SAMEORIGIN"
 }]
 } }

Related Information

Application-Access File Keyword Options [page 94]
Set up Application Security [page 111]

4.5.2.2 Application-Access File Keyword Options

The application-access (.xsaccess) file enables you to specify whether or not to expose package content,
which authentication method is used to grant access, and what content is visible.

 Example
The Application Access (.xsaccess) File

 Note
This example of the .xsaccess file is not a working model; it is used to illustrate the syntax for all
possible options.

 { "exposed" : false, "authentication" : {
 "method": "Form"

94 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

 }, "authorization": [
 "sap.xse.test::Execute",
 "sap.xse.test::Admin"
], "anonymous_connection" : "sap.hana.sqlcon::AnonConn", "default_connection" : "sap.hana.sqlcon::sqlcc", "cache_control" : "no-store", "cors" : {
 "enabled" : false
 }, "default_file" : "index_1.html", "enable_etags" : false, "force_ssl" : true, "mime_mapping" : [
 {
 "extension":"jpg", "mimetype":"image/jpeg"
 }
], "prevent_xsrf" : true, "rewrite_rules" : [{
 "source" : "...",
 "target" : "..."
 }] "headers": {
 "enabled": true, "customHeaders": [{"name":"X-Frame-Options","value":"<VALUE>"}] }
}

exposed

 { "exposed" : false,
}

The exposed keyword enables you define if content in a package (and its subpackages) is to be made available
by HTTP to client requests. Values are Boolean true or false. If no value is set for exposed, the default setting
(false) applies.

 Tip
Only expose content that is absolutely necessary to enable the application to run.

Consider whether it is necessary to expose data via HTTP/S. Not exposing data via HTTP enables you to keep
your files accessible to other programs but prevent direct access to the data via URL. Since the application's
index.html page must normally remain reachable, consider storing the index.html file separately with a
dedicated .xsaccess file that enables access (“exposed”: true). You can keep all other content hidden, for
example, in separate package to which access is denied (“exposed”: false).

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 95

Packages without a dedicated .xsaccess file inherit the application-access settings defined in the parent
folder. If an .xsaccess file exists but the exposed keyword is not defined, the default setting false applies.

anonymous_connection

 { "anonymous_connection" : "sap.hana.sqlcon::AnonConn", }

The anonymous_connection keyword enables you to define the name of the .xssqlcc file that will be used
for SQL access when no user credentials are provided. SAP HANA XS enables you to define the configuration
for individual SQL connections. Each connection configuration has a unique name, for example, Registration,
AnonConn, or AdminConn, which is generated from the name of the corresponding connection-configuration
file (Registration.xssqlcc, AnonConn.xssqlcc, or AdminConn.xssqlcc) on activation in the repository.
If no value is set, the default setting is “null”.

 Tip
It is not recommended to enable anonymous access.

If it is necessary to provide anonymous access to an application, design your application in such a way that all
files requiring anonymous access are placed together in the same package, which you can then protect with
the permissions defined in a dedicated .xsaccess file. Remember that the behavior of the anonymous
connection depends on the details specified in the corresponding SQL configuration file (.xssqlcc).

default_connection

 { "default_connection" : "sap.hana.sqlcon::sqlcc", }

If the default_connection is set in the .xsaccess file, the specified SQL connection configuration (for
example, defined in sqlcc) is used for all SQL executions in this package, whether or not the requesting user is
authenticated in SAP HANA or not. The difference between the default_connection and the
anonymous_connection is that the anonymous SQL connection configuration is only used if the requesting
user is not authenticated. Like any other property of the xsaccess file, the default_connection is inherited
down the package hierarchy, for example, from package to subpackage. The default_connection can also
be overwritten, for example, by locating an xsaccess file with a different default_connection in one or
more subpackages.

 Tip
If the requesting user is authenticated, the user name will be available in the connection as the
APPLICATIONUSER session variable.

96 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

The credentials to use for an SQL execution are determined according to the following order of priority:

1. The SQL connection configuration (SQLCC) specified in $.db.getConnection(sqlcc); this applies only
in XS JavaScript (not OData, for example)

2. The value specified in default_connection (if set)
3. An authenticated user
4. The valued specified in anonymous_connection (if set)

The default_connection is intended for use with anonymous parts of the application that require the same
privileges for all users. If the anonymous part of an application is designed to behave according to the privileges
granted to authenticated users, the anonymous_connection should be used. This is particularly important if
analytic privileges are involved, for example, to restrict the amount of returned rows (not overall access to the
table). In most cases, the default_connection should be used.

authentication

{ "authentication" :
 {
 "method": "Form"
 },
}

The authentication keyword is required in the .xsaccess file and must be set to the value "form", for
example "method" : "Form", to ensure that form-based logon works when you enable it using the SAP
HANA XS Administration Tool.

 Note
Use the SAP HANA XS Administration Tool to configure applications to use additional authentication
methods, for example, basic, logon tickets, or Single Sign On (SSO) providers such as SAML2 and X509.
You must also enable the Form-based authentication checkbox, if you want your application (or
applications) to use form-based logon as the authentication method. Any other keywords in the
authentication section of the .xsaccess file are ignored.

● Form-based authentication
Redirect the logon request to a form to fill in, for example, a Web page.
To ensure that, during the authentication process, the password is transmitted in encrypted form, it is
strongly recommended to enable SSL/HTTPS for all application connections to the XS engine, for
example, using the force_ssl keyword. If you set the force_ssl option, you must ensure that the SAP Web
Dispatcher is configured to accept and manage HTTPS requests.
Form-based authentication requires the libxsauthenticator library, which must not only be available
but also be specified in the list of trusted applications in the xsengine application container. The application
list is displayed in the SAP HANA studio's Administration Console perspective in the following location:

Administration Configuration tab xsengine.ini application_container application_list . If it is not
displayed, ask the SAP HANA administrator to add it.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 97

 Note
If you need to troubleshoot problems with form-based logon, you can configure the generation of
useful trace information in the XSENGINE section of the database trace component using the following
entry: xsa:sap.hana.xs.formlogin.

authorization

{ "authorization":
 [
 "sap.xse.test::Execute",
 "sap.xse.test::Admin"
], }

The authorization keyword in the .xsaccess file enables you to specify which authorization level is
required for access to a particular application package, for example, execute or admin on the package
sap.xse.text.

 Note
The authorization levels you can choose from are defined in the .xsprivileges file for the package, for
example, "execute" for basic privileges, or "admin" for administrative privileges on the specified package. If
you do not define any authorization requirements, any user can launch the application.

If you use the authorization keyword in the .xsaccess file, for example, to require “execute” privileges for
a specific application package, you must create a .xsprivileges file for the same application package (or a
parent package higher up the hierarchy, in which you define the “execute” privilege level declared in
the .xsaccess file.

Authorization settings are inherited down the package hierarchy from a package to a subpackage. However,
you can specify different authorization levels for different subpackages; this new setting is then inherited by
any subpackages further down the hierarchy. To disable authorization for a subpackage (for example, to
prevent inheritance of authorizations from the parent package), you can create a (sub)package-
specific .xsaccess file with the authorization keyword explicitly set to null, as illustrated in the following
example.

{ "authorization": null }

Bear in mind that the “authorization”:null setting applies not only to the package in which
the .xsaccess with the null setting is located but also to any subpackages further down the package
hierarchy. You can re-enable authorization in subpackage levels by creating new a .xsaccess file.

98 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

cache_control

 { "cache_control":"no-store",
}

The cache_control keyword enables you to override the cache-control header for Web content served by the
SAP HANA XS Web server. So-called cache-control directives (for example, public, private, no-store)
enable you to control the behavior of the Web browser and proxy caches, for example, whether or not to store a
page, how to store it, or where. For more information about the values you can use to set cache_control, see
the HTTP standard for cache-control directives. If no value for code_controlis set in the .xsaccess file, the
default setting is “null”.

 Tip
For security reason, it is recommended to set the cache_control keyword to “no-cache, no-store”.
However, if nothing is cached or stored, there is an obvious impact on application performance.

If application performance allows, the no-cache, no-store setting is advisable for the following reasons:

● From a client perspective:
If an application is handling sensitive data, it is bad practice to cache the data in the local browser since
this could lead to unintended disclosure of information.

● From a server perspective:
Allowing an application to cache data can open up the application to attack. For example, if attackers build
a malicious page and host it on a proxy server between your server and the requesting client, it would be
possible to steal data from the client or prevent access to the application altogether. Since the risk of such
an attack is small, you might want to consider allowing caching, as long as it does not adversely affect
performance.

cors

 { "cors" :
 {
 "enabled" : false
 }, }

The cors keyword enables you to provide support for cross-origin requests, for example, by allowing the
modification of the request header. Cross-origin resource sharing (CORS) permits Web pages from other
domains to make HTTP requests to your application domain, where normally such requests would
automatically be refused by the Web browser's security policy.

If CORS support is disabled ("enabled" : false), the following settings apply on the Web server:

● The server does not respond to any CORS preflight requests
● The server does not add CORS response headers to any CORS requests
● The server refuses to execute the resource specified in the request

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 99

To enable support for CORS, set the cors keyword to {“enabled”:true}, which results in the following
default corsconfiguration:

{"cors":{"enabled":true,"allowMethods":
[“GET”,”POST”,”HEAD”,”OPTIONS”],"allowOrigin": [“*”], “maxAge”:”3600”}}

The following table describes the options that are supported with the cors keyword:

{"cors":{"enabled":true, "allowMethods":<ALLOWED_METHODS>,
"allowOrigin":<ALLOWED_ORIGIN>, “maxAge”:<MAX_AGE>, “allowHeaders”:<ALLOWED_HEADERS>,
“exposeHeaders”:<EXPOSED_HEADERS>}}

Default Settings for CORS Options

CORS Option Description

ALLOWED_METHODS A single permitted method or a comma-separated list of methods that are allowed by the
server, for example, “GET”, “POST”. If allowMethods is defined but no method is
specified, the default “GET”, “POST”, “HEAD”, “OPTIONS” (all) applies. Note
that matching is case-sensitive.

ALLOWED_ORIGIN A single host name or a comma-separated list of host names that are allowed by the
server, for example: www.sap.com or *.sap.com. If allowOrigin is defined but
no host is specified, the default “*” (all) applies. Note that matching is case-sensitive.

ALLOW_HEADERS A single header or a comma-separated list of request headers that are allowed by the
server. If allowHeaders is defined but no header is specified as allowed, no default
value is supplied.

MAX_AGE A single value specifying how long a preflight request should be cached for. If maxAge is
defined but no value is specified, the default time of “3600” (seconds) applies.

EXPOSE_HEADERS A single header or a comma-separated list of response headers that are allowed to be
exposed. If exposeHeaders is defined but no response header is specified for expo
sure, no default value is supplied.

Alternatively, you can isolate the part of the application where CORS must be allowed, for example, in a specific
subpackage. By adding a dedicated .xsaccess file to this CORS-related subpackage, you can set the cors
option in the dedicated .xsaccess file to true.

default_file

 { "default_file" : "new_index.html",
}

The default_file keyword enables you to override the default setting for application access (index.html) when
the package is accessed without providing a file in the URI. If you use the default_file but do not specify a value,
the default setting “index.html” is assumed.

 Tip
It is good practice to specify a default file name manually. Changing the default from index.html to
something else can help make your application less vulnerable to automated hacker tools.

100 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

rewrite_rules

{ "rewrite_rules" :
 [{
 "source": "...",
 "target": "..."
 }],
}

The rewrite_rules keyword enables you hide the details of internal URL paths from external users, clients,
and search engines. Any rules specified affect the local application where the .xsaccess file resides (and any
subpackage, assuming the subpackages do not have their own .xsaccess files); it is not possible to define
global rewrite rules. URL rewrite rules are specified as a source-target pair where the source is written in the
JavaScript regex syntax and the target is a simple string where references to found groups can be inserted
using $groupnumber.

 Tip
It is not recommended to rely on rewrite rules to make an application secure.

In the following example, the rule illustrated hides the filename parameter and, as a result, makes it harder to
guess that the parameter provided after /go/ will be used as a filename value. Note that it is still necessary to
validate the received input

{ "rewrite_rules" :
 [{
 "source": "/go/(\\d+)/",
 "target": "/logic/users.xsjs?filename=$1"
 }],
}

mime_mapping

{ "mime_mapping" :
 [
 {
 "extension":"jpg", "mimetype":"image/jpeg"
 }
], }

The mime_mapping keyword enables you to define how to map certain file suffixes to required MIME types. For
example, you can map files with the .jpg file extension to the MIME type image/jpeg.

This list you define with the mime_mapping keyword supersedes any default mapping defined by the server;
the Web browser uses the information to decide how to process the related file types.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 101

 Caution
Make sure you do not instruct the browser to execute files that are not meant to be executed, for example,
by mapping .jpg image files with the MIME type application/javascript.

The default MIME mappings remain valid for any values you do not define with the mime_mapping keyword.
Consider restricting any explicit mappings to file types where the default behavior does not work as expected
or where no default value exists, for example, for file types specific to your application.

force_ssl

 { "force_ssl" : false, }

The force_ssl keyword enables you to refuse Web browser requests that do not use secure HTTP (SSL/
HTTPS) for client connections. If no value is set for force_ssl, the default setting (false) applies and non-
secured connections (HTTP) are allowed.

 Tip
To ensure that, during the authentication process, passwords are transmitted in encrypted form, it is
strongly recommended to enable SSL/HTTPS for all application connections to the XS engine. If you set
the force_ssl option, you must ensure that the SAP Web Dispatcher is configured to accept and manage
HTTPS requests. For more information, see the SAP HANA XS section of the SAP HANA Administration
Guide.

Enabling theforce_ssl option ensures that your application is reachable only by means of an HTTPS
connection. If your application must support standard HTTP (without SSL), make sure that no sensitive data is
being sent either to or from the application. Disabling the force_ssl option allows attackers to read whatever
is sent over the network. Although it is possible to use message-based encryption for sensitive data while
allowing HTTP, it is much better to work with HTTPS.

 Caution
If a runtime configuration exists for your application, the force_ssl setting in the runtime configuration
supersedes the force_ssl in the .xsaccess.

enable_etags

 { "enable_etags" : true, }

You can allow or prevent the generation of entity tags (etags) for static Web content using the enable_etags
keyword. If no value is set, the default setting (true) applies, in which case etags are generated. Etags are used

102 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

to improve caching performance, for example, so that the same data is not resent from the server if no change
has occurred since the last time a request for the same data was made.

If etags are enabled, the browser sends with each HTTP request the etag retrieved from its cached page. If the
etag from the cached page matches the etag from the server, the server answers with the status code 304 (not
modified) and does send the full requested page. Although enabling etags has the positive side-effect of
helping to prevent cache poisoning attacks, there is no direct security risk associated with disabling etags from
the developer's perspective.

prevent_xsrf

 { "prevent_xsrf" : true, }

You can use the prevent_xsrf keyword in the .xsaccess file to protect applications from cross-site request-
forgery (XSRF) attacks. XSRF attacks attempt to trick a user into clicking a specific hyperlink, which shows a
(usually well-known) Web site and performs some actions on the user’s behalf, for example, in a hidden iframe.
If the targeted end user is logged in and browsing using an administrator account, the XSRF attack can
compromise the entire Web application. There is no good reason why you would explicitly set this keyword to
false.

 Note
It is recommended to enable the prevent_xsrf feature for all applications that are not read-only.

The prevent_xsrf keyword prevents the XSRF attacks by ensuring that checks are performed to establish
that a valid security token is available for a given Browser session. The existence of a valid security token
determines if an application responds to the client's request to display content; if no valid security token is
available, a 403 Forbidden message is displayed. A security token is considered to be valid if it matches the
token that SAP HANA XS generates in the back end for the corresponding session.

 Note
The default setting is false, which means there is no automatic prevention of XSRF attacks. If no value is
assigned to the prevent_xsrf keyword, the default setting (false) applies.

Setting the prevent_xsrf keyword to true ensures XSRF protection only on the server side. On the client
side, to include the XSRF token in the HTTP headers, you must first fetch the token as part of a GET request, as
illustrated in the following example:

xmlHttp.setRequestHeader("X-CSRF-Token", "Fetch");

You can use the fetched XSRF token in subsequent POST requests, as illustrated in the following code example:

xmlHttp.setRequestHeader("X-CSRF-Token", xsrf_token);

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 103

headers

{ "headers":
 {
 "enabled": true, "customHeaders": [{"name":"X-Frame-Options","value":"<VALUE>"}] }
}

Enable support for the X-Frame-Options HTTP header field, which allows the server to instruct the client
browser whether or not to display transmitted content in frames that are part of other Web pages. You can also
enable this setting in the application's corresponding runtime configuration file, for example, using the XS
Administration Tool.

 Caution
Runtime settings override any settings specified in the design-time configuration.

<VALUE> can be one of the following:

● DENY
● SAMEORIGIN
● ALLOW-FROM <URL>

You can only specify one URL with the ALLOW-FROM option, for example: "value":"ALLOW-FROM
http://www.site.com".

 Note
To allow an application to use custom headers, you must enable the headers section.

Related Information

Server-Side JavaScript Security Considerations [page 546]
The SQL Connection Configuration File [page 596]

4.5.2.3 Application-Access URL Rewrite Rules

Rewriting URLs enables you to hide internal URL path details from external users, clients, and search engines.
You define URL rewrite rules in the application-access file (.xsaccess) for each application or for an
application hierarchy (an application package and its subpackages).

The rewrite rules you define in the .xsaccess file apply only to the local application to which the .xsaccess
file belongs; it is not possible to define global rules to rewrite URLs. Rules are specified as a source-target pair
where the source is written in the JavaScript regex syntax, and the target is a simple string where references
to found groups can be inserted using $groupnumber.

104 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

The following examples show how to use a simple set of rewrite rules to hide internal URLs from requesting
clients and users.

The first example illustrates the package structure that exists in the repository for a given application; the
structure includes the base package apptest, the subpackages subpackage1 and subpackage2, and several
other subpackages:

sap---apptest |---logic
 | |---users.xsjs
 | |---posts.xsjs
 |---posts
 | |---2011...
 |---subpackage1
 | |---image.jpg
 |---subpackage2
 | |---subsubpackage
 | | |---secret.txt
 | |---script.xsjs
 |---subpackage3
 | |---internal.file
 |---users
 | |---123...
 |---.xsapp
 |---.xsaccess
 |---index.html

The application-access file for the package apptest (and its subpackages) includes the following rules for
rewriting URLs used in client requests:

{ "rewrite_rules": [
 {
 "source": "/users/(\\d+)/",
 "target": "/logic/users.xsjs?id=$1"
 },
 {
 "source": "/posts/(\\d+)/(\\d+)/(\\d+)/",
 "target": "/logic/posts.xsjs?year=$1&month=$2&day=$3"
 }
]
}

Assuming we have the package structure and URL rewrite rules illustrated in the previous examples, the
following valid URLs would be exposed; bold URLs require authentication:

/sap/apptest/ /sap/apptest/index.html
/sap/apptest/logic/users.xsjs
/sap/apptest/logic/posts.xsjs

The rewriting of the following URLs would be allowed:

/sap/apptest/users/123/ ==> /sap/appTest/logic/users.xsjs?id=123 /sap/apptest/posts/2011/10/12/ ==> /sap/appTest/logic/posts.xsjs?
year=2011&month=10&day=12

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 105

4.5.3 Create an SAP HANA XS Application Privileges File

The application-privileges (.xsprivileges) file enables you to define the authorization levels required for
access to an application, for example, to start the application or perform administrative actions on an
application. You can assign the application privileges to the individual users who require them.

Prerequisites

● A repository workspace with a shared project
● A root package for your application, for example, MyAppPackage

 Note
The namespace sap is restricted. Place the new package in your own namespace, for example,
com.acme, which you can create alongside the sap namespace.

● An application descriptor file (.xsapp) for the selected application
● An application access file (.xsaccess) for the selected application

Context

The .xsprivileges file must reside in the same application package that you want to define the access
privileges for.

 Note
If you use the .xsprivileges file to define application-specific privileges, you must also add a
corresponding entry to the same application's .xsaccess file, for example, using the authorization
keyword.

Procedure

1. Create the application-privileges (.xsprivileges) file and place it in the application package whose
access privileges you want to define.

The application-privileges file does not have a name; it only has the file extension .xsprivileges. The
contents of the .xsprivileges file must be formatted according to JavaScript Object Notation (JSON)
rules.

 Note
Multiple .xsprivileges files are allowed, but only at different levels in the package hierarchy; you
cannot place two .xsprivileges files in the same application package. The privileges defined in

106 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

a .xsprivileges file are bound to the package to which the file belongs and can only be applied to
this package and its subpackages.

a. In the SAP HANA studio and open the SAP HANA Development perspective.
b. In the Project Explorer view, right-click the folder where you want to create the new (.xsprivileges)

file.

c. In the context-sensitive popup menu, choose New Other... .

d. In the Select a Wizard dialog, choose SAP HANA Application Development XS Application
Privileges File

e. Enter or select the parent folder, where the application-privileges file is to be located.
f. Enter a name for the application-privileges file.

 Tip
If you are using the SAP HANA Studio to create artifacts in the SAP HANA Repository, the file
creation wizard adds the required file extension .xsprivileges automatically and enables direct
editing of the file.

g. Select a template to use. Templates contain sample source code to help you.
h. Choose Finish.
i. Activate the new (.xsprivileges) file.

2. Define the required application privileges.

In the .xsprivileges file, you define a privilege for an application package by specifying an entry name
with an optional description. This entry name is then automatically prefixed with the package name in
which the .xsprivileges file is located to form a unique privilege name. For example,
com.acme.myapp::Execute would enable execute privileges on the package com.acme.myapp. The
privilege name is unique to the package to which it belongs and, as a result, can be used in
multiple .xsprivileges files in different packages.

 Note
The .xsprivileges file lists the authorization levels defined for an application package. A
corresponding entry is required in the same application's access file .xsaccess file to define which
authorization level is assigned to which application package.

{ "privileges" :
 [
 { "name" : "Execute", "description" : "Basic execution
privilege" },
 { "name" : "Admin", "description" : "Administration
privilege" }
]
}

3. Specify which privileges are required for access to the application or application package.

If you use the .xsprivileges file to define application-specific privileges, you must also add a
corresponding entry to the same application's .xsaccess file, for example, using the authorization
keyword.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 107

 Note
The .xsprivileges file lists the authorization levels that are available for access to an application
package; the .xsaccess file defines which authorization level is assigned to which application
package.

a. Locate and open the XS application access file (.xsaccess) for the application for which you want to
define application privileges.

b. Specify the privileges required for access to the application or application package.
Use the authorization keyword in the .xsaccess file to specify which authorization level is required by
a user for access to a particular application package.

 Note
If you enable the authorization keyword in the .xsaccess file, you must add a corresponding entry
to the .xsprivileges file, too.

{ "exposed" : true,
 "authentication" :
 [
 { "method" : "Form" }
], "authorization":
 [
 "com.acme.myApp::Execute",
 "com.acme.myApp::Admin"
] }

4. Save and activate your changes and additions.
The activation of the application privileges creates the corresponding objects, which you can use to assign
the specified privileges to an author.

5. Assign the application privilege to the users who require it.
After activation of the .xsprivileges object, the only user who by default has the application privileges
specified in the .xsprivileges file is the _SYS_REPO user. To grant the specified privilege to (or revoke
them from) other users, use the GRANT_APPLICATION_PRIVILEGE or REVOKE_APPLICATION_PRIVILEGE
procedure in the _SYS_REPO schema.

To grant the execute application privilege to a user, run the following command in the SAP HANA studio's
SQL Console:

call
"_SYS_REPO"."GRANT_APPLICATION_PRIVILEGE"('"com.acme.myApp::Execute"','<UserNa
me>')

To revoke the execute application privilege to a user, run the following command in the SAP HANA
studio's SQL Console:

call
"_SYS_REPO"."REVOKE_APPLICATION_PRIVILEGE"('"com.acme.myApp::Execute"','<UserN
ame>')

108 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

Related Information

Create an Application Descriptor File [page 88]
Enable Access to SAP HANA XS Application Packages [page 90]

4.5.3.1 The Application-Privileges File

In SAP HANA Extended Application Services (SAP HANA XS), the application-privileges (.xsprivileges) file
can be used to create or define the authorization privileges required for access to an SAP HANA XS application,
for example, to start the application or to perform administrative actions on an application. These privileges
can be checked by an application at runtime.

The application-privileges file has only the file extension .xsprivileges; it does not have a name and is
formatted according to JSON rules. Multiple .xsprivileges files are allowed, but only at different levels in
the package hierarchy; you cannot place two .xsprivileges files in the same application package. The
package privileges defined in a .xsprivileges file are bound to the package to which the .xsprivileges
file belongs and can only be used in this package and its subpackages.

Inside the .xsprivileges file, a privilege is defined by specifying an entry name with an optional description.
This entry name is then automatically prefixed with the package name to form the unique privilege name, for
example, sap.hana::Execute.

As an application privilege is created during activation of an .xsprivileges file, the only user who has the
privilege by default is the _SYS_REPO user. To grant or revoke the privilege to (or from) other users you can use
the GRANT_APPLICATION_PRIVILEGE or REVOKE_APPLICATION_PRIVILEGE procedure in the _SYS_REPO
schema.

 Note
The .xsprivileges file lists the authorization levels that are available for access to an application
package; the .xsaccess file defines which authorization level is assigned to which application package.

In the following above, if the application-privileges file is located in the application package sap.hana.xse,
then the following privileges are created:

● sap.hana.xse::Execute
● sap.hana.xse::Admin

The privileges defined apply to the package where the .xsprivileges file is located as well as any packages
further down the package hierarchy unless an additional .xsprivileges file is present, for example, in a
subpackage. The privileges do not apply to packages that are not in the specified package path, for example,
sap.hana.app1.

 Example
The SAP HANA XS Application-Privileges File

The following example shows the composition and structure of a basic SAP HANA XS application-privileges
file.

{

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 109

 "privileges" :
 [
 { "name" : "Execute", "description" : "Basic execution
privilege" },
 { "name" : "Admin", "description" : "Administration
privilege" }
]
}

If the .xsprivileges file shown in the example above is located in the package sap.hana.xse, you can
assign the Execute privilege for the package to a particular user by calling the
GRANT_APPLICATION_PRIVILEGE procedure, as illustrated in the following code:

call "_SYS_REPO"."GRANT_APPLICATION_PRIVILEGE"('"sap.hana.xse::Execute"',
'<user>')

4.6 Maintaining Application Security

As part of the application-development process, you must decide how to provide access to the applications you
develop. Application access includes security-related matters such as authentication methods and
communication protocols

In addition to the features and functions you can enable with keywords in the .xsaccess file, SAP HANA
Extended Application Services (SAP HANA XS) provides a dedicated SAP HANA XS administration tool that is
designed to help you configure and maintain the authentication mechanism used to control access to the
applications you develop. The SAP HANA XS Administration Tool enables you to configure the following runtime
elements for an application:

● Security
Choose the security level you want to set to provide access to the application. For example, you can expose
the application with/without requiring authentication (public/private) and force the application to accept
only requests that use SSL/HTTPS.

● Authentication
Select an authentication type to use when checking user credentials before authorizing access to an
application, for example: form-based authentication (with user name and password), SAML (SSO with
Security Assertion Markup Language), SAP logon tickets...

Related Information

Set up Application Security [page 111]
Application Security [page 112]
Application Authentication [page 116]

110 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

4.6.1 Set up Application Security

To restrict access to the applications you develop, you must configure the application to work with particular
authentication methods and communication protocols.

Prerequisites

To perform the steps in this task, you must ensure the following prerequisites are met:

● You have access to an SAP HANA system
● You have the privileges granted in the following SAP HANA XS user roles:

○ sap.hana.xs.admin.roles::RuntimeConfAdministrator

Context

You must specify whether or not to expose application content, which authentication method is used to grant
access to the exposed content, and what content is visible.

Procedure

1. Start the SAP HANA XS Administration Tool.
The tool is available on the SAP HANA XS Web server at the following URL: http://<WebServerHost>:
80<SAPHANAinstance>/sap/hana/xs/admin/.

 Note
In the default configuration, the URL redirects the request to a logon screen, which requires the
credentials of an authenticated SAP HANA database user to complete the logon process. To ensure
access to all necessary features, the user who logs on should have the SAP HANA XS role
sap.hana.xs.admin.roles::RuntimeConfAdministrator.

2. Select the security options your applications use.
You can setup the following application-related security options:

 Note
Security settings are automatically inherited by applications further down the application hierarchy.
However, you can override the inherited security settings at any application level by modifying the
settings for a particular application. Applications below the application with the modified security
settings inherit the new, modified settings.

a. Use the Public (no authentication required) option to specify if applications require user authentication
to start.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 111

○ Disabled
This is the default setting. In disabled mode, Form-based authentication and Basic authentication
options are enabled automatically in the Authentication screen area.

○ Enabled
If you enable the Public option , no authentication is required to start an application; the
Authentication screen area is hidden, and you cannot select any authentication-method options.

b. Use the Force SSL option to specify if client requests must use secure HTTP (HTTPS).
○ Disabled

This is the default setting. With Force SSL disabled, the application returns a response to all
requests (both HTTP and HTTPS).

○ Enabled
If you enable the Force SSL option , requests from browsers using standard HTTP are refused.

 Note
Enabling the Force SSL option only ensures that the selected application refuses any request
that does not use HTTPS; it does not set up the Secure Sockets Layer (SSL) protocol for you.
The SAP HANA administrator must configure the SAP Web Dispatcher to accept (and forward)
HTTPS requests in addition.

Related Information

SAP HANA XS Application Security [page 112]
Set up Application Authentication [page 113]
SAP HANA XS Application Authentication [page 116]
The Application-Access File [page 93]

4.6.1.1 SAP HANA XS Application Security

You can set some basic security options to increase the security of the applications you develop for SAP HANA.

SAP HANA Extended Application Services (SAP HANA XS) provides a dedicated tool, the SAP HANA XS
Administration Tool, that is designed to help you configure and maintain some of the basic aspects of runtime
security relating to the applications you develop. For example, you can use the SAP HANA XS Administration
Tool to specify if the applications you develop are publicly available for anyone to start, or if the applications can
only be started by an authenticated user.

You can use the SAP HANA XS Administration Tool to set the following security-related options for the
application you develop for SAP HANA XS:

● Public (no authentication required)
Use the Public option to specify if applications require user authentication to start. By default, the Public
option in the application Security screen area is disabled and the Form-based authentication and Basic
authentication options are enabled automatically in the Authentication screen area. However, you can
disable both form-based and basic authentication and enable other, additional authentication methods
(for example, SAP logon tickets or X509 authentication).

112 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

 Note
If you enable the Public option in the application Security screen area, no authentication is required to
start an application; the Authentication screen area is hidden, and you cannot select any
authentication-method options.

● Force SSL
The force SSL option enables you to refuse Web browser requests that do not use secure HTTP (SSL/
HTTPS) for client connections. If no value is set for force_ssl, the default setting (false) applies and non-
secured connections (HTTP) are allowed.

Related Information

SAP HANA XS Application Authentication [page 116]
The Application-Access File [page 93]

4.6.2 Set up Application Authentication

To restrict access to the applications you develop, you must configure the application to work with particular
authentication methods and communication protocols.

Prerequisites

To perform the steps in this task, you must ensure the following prerequisites are met:

● You have access to an SAP HANA system
● You have the privileges granted in the following SAP HANA XS user roles:

○ sap.hana.xs.admin.roles::RuntimeConfAdministrator

Context

Before you define which authentication methods an application uses to grant access to the application content,
you must use the application security tools to define whether or not to expose application content and, if so,
which content to expose. SAP HANA XS enables you to define multiple authentication methods to verify the
credentials of users who request access to the exposed content; multiple authentication methods are
considered according to a specific order of priority. For example, if the first authentication method fails, SAP

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 113

HANA tries to authenticate the user with the next authentication method specified. To configure the
authentication method an application uses to verify user credentials, perform the following steps:

Procedure

1. Start the SAP HANA XS Administration Tool.
The tool is available on the SAP HANA XS Web server at the following URL: http://<WebServerHost>:
80<SAPHANAinstance>/sap/hana/xs/admin/.

 Note
In the default configuration, the URL redirects the request to a logon screen, which requires the
credentials of an authenticated SAP HANA database user to complete the logon process. To ensure
access to all necessary features, the user who logs on should have the SAP HANA XS role
sap.hana.xs.admin.roles::RuntimeConfAdministrator.

2. Select the security options your applications use.
If you have already set the application security level, you can safely skip this step. You can setup the
following application-related security options:

 Note
Security settings are automatically inherited by applications further down the application hierarchy.
However, you can override the inherited security settings at any application level by modifying the
settings for a particular application. Applications below the application with the modified security
settings inherit the new, modified settings.

a. Use the Public (no authentication required) option to specify if applications require user authentication
to start.
○ Disabled

This is the default setting. In disabled mode, Form-based authentication and Basic authentication
options are enabled automatically in the Authentication screen area.

○ Enabled
If you enable the Public option , no authentication is required to start an application; the
Authentication screen area is hidden, and you cannot select any authentication-method options.

b. Use the Force SSL option to specify if client requests must use secure HTTP (HTTPS).
○ Disabled

This is the default setting. With Force SSL disabled, the application returns a response to all
requests (both HTTP and HTTPS).

○ Enabled
If you enable the Force SSL option , requests from browsers using standard HTTP are refused.

 Note
Enabling the Force SSL option only ensures that the selected application refuses any request
that does not use HTTPS; it does not set up the Secure Sockets Layer (SSL) protocol for you.
The SAP HANA administrator must configure the SAP Web Dispatcher to accept (and forward)
HTTPS requests in addition.

114 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

3. Select the authentication method your applications must use.
Authentication settings are automatically inherited by applications further down the application hierarchy.
However, you can override the inherited authentication settings at any application level by modifying the
settings for a particular application. Applications below the application with the modified authentication
settings inherit the new, modified settings.

 Note
Enabling an application-security option (for example, SAML2 or X509) only ensures that the selected
application uses the enabled authentication method when required; it does not perform any setup
operation for the authentication method itself. The SAP HANA administrator must maintain the
selected authentication infrastructure (SAML2, X509, or SAP logon tickets) in an additional step.

You can choose any selection of the following application-related authentication methods; if you enable
multiple authentication methods for your application, a priority applies depending on whether the
application logon is interactive or non-interactive:

a. Enable the SAML2 option.
The SAP HANA administrator must already have configured the authentication infrastructure, for
example, to enable the creation of SAML2 assertions to permit SSO in Web browsers.

b. Enable the X509 Authentication option
The SAP HANA administrator must already have configured the appropriate authentication
infrastructure, for example, to enable users to be authenticated by client certificates signed by a
trusted Certification Authority (CA).

c. Enable the SAP logon ticket option
The SAP HANA administrator must already have configured the appropriate authentication
infrastructure, for example, to enable users to be be authenticated by a logon ticket that is issued when
the same user logs on to an SAP system that is configured to create logon tickets (for example, the
SAP Web Application Server or Portal).

d. Enable the Form-based authentication option
If the Public security option is disabled, the Form-based authentication option is enabled by default.

e. Enable the Basic authentication option
If the Public security option is disabled, the Basic authentication option is enabled by default.

Related Information

Set up Application Authentication [page 111]
SAP HANA XS Application Security [page 112]
SAP HANA XS Application Authentication [page 116]
The Application-Access File [page 93]

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 115

4.6.2.1 SAP HANA XS Application Authentication

The authentication method determines whether or not authentication is required to access an application, and
if required, which authentication methods must be used.

SAP HANA Extended Application Services (SAP HANA XS) provides a dedicated tool, the SAP HANA XS
Administration Tool, that is designed to help you configure and maintain the authentication mechanism used to
control runtime access to the applications you develop. The authentication method you select for access to
your application depends on which authentication methods are supported by SAP HANA and whether or not
your system administrator has configured the authentication method in the system backend.

You can use the SAP HANA XS Administration Tool to configure applications running in SAP HANA XS to use the
following authentication mechanisms:

● SAML2
Choose this option if you have configured SAML2 assertions to enable SSO in Web browsers. SAML2 is
version 2 of the Security Assertion Markup Language (SAML), which enables Web-based authentication
including single sign-on across domains.

 Note
The user who connects to the database using an external authentication provider must also have a
database user known to the database. SAP HANA maps the external identity to the identity of the
internal database user.

● SPNego
Choose this option if you want to SAP HANA XS applications to use Simple and Protected GSSAPI
Negotiation Mechanism (SPNego) for authentication by means of Kerberos for Web-based (HTTP) access.

● X509 Authentication
X.509 client certificates For secure HTTP (HTTPS) access to SAP HANA XS applications, users can be
authenticated by client certificates signed by a trusted Certification Authority (CA), which can be stored in
the SAP HANA XS trust store.

● SAP logon ticket
For HTTPS access to SAP HANA XS applications, a user can be authenticated by a logon ticket that is
issued when the same user logs on to an SAP system that is configured to create logon tickets (for
example, the SAP Web Application Server or Portal).
To configure the trust relationship between the issuer of the SAP logon ticket and SAP HANA, you must
specify the path to the SAP logon ticket trust store, which contains the trust chain for the ticket issuer. You
can use the SapLogonTicketTrustStore keyword in the xsengine.ini file. Default values are: $SECUDIR/
saplogon.pse or $HOME/.ssl/saplogon.pem.

 Note
SAP HANA XS does not issue SAP logon tickets; it only accepts them. Since the tickets usually reside in
a cookie, the issuer and SAP HANA XS need to be in the same domain to make sure that your browser
sends the SAP logon ticket cookie with each call to SAP HANA XS.

● Form-based authentication
This option is used if interactive logon is desired. With form-based authentication, the logon request is
redirected to a form to fill in, for example, displayed in Web page. The Form-based authentication option is
enabled by default if the Public option is disabled in the application Security screen area.

116 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

 Note
You must also enable the Form-based authentication in the .xsaccess file, if you want your application
(or applications) to use form-based logon as the authentication method. Note that any other keywords
in the authentication section of the .xsaccess file are ignored.

Form-based authentication requires the libxsauthenticator library, which must not only be available
but also be specified in the list of trusted applications in the xsengine application container. The application
list is displayed in the SAP HANA studio's Administration Console perspective in the following location:

Administration Configuration tab xsengine.ini application_container application_list . If it is not
displayed, ask the SAP HANA administrator to add it.

 Tip
If you need to troubleshoot problems with form-based authentication, you can configure the
generation of useful trace information in the XSENGINE section of the database trace component using
the following entry: xsa:sap.hana.xs.formlogon.

● Basic authentication
Logon with a recognized database user name and password. This option is used if non-interactive logon is
desired. The Basic authentication option is enabled by default if the Public option is disabled in the
application Security screen area.

The authentication configuration enables you to define the authentication methods to use for Browser requests
either at the application level or for single packages in an application.

 Note
The authentication mechanism set at the root of the application/package hierarchy is inherited by
applications further down the application hierarchy.

By default, the Public option in the application Security screen area is disabled and the Form-based
authentication and Basic authentication options are enabled automatically in the Authentication screen area.
However, you can disable both form-based and basic authentication and enable other, additional
authentication methods (for example, SAP logon tickets or X509 authentication). If multiple authentication
methods are enabled, SAP HANA XS enforces the following order of priority:

● For non-interactive logon:
1. X509 authentication
2. SPNego
3. SAP logon ticket
4. Basic authentication

● For interactive logon:
1. SAML
2. Form-based authentication

If you enable the Public option in the application Security screen area, no authentication is required to start an
application; the Authentication screen area is hidden, and you cannot select any authentication-method
options.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 117

Related Information

The Application-Access File [page 93]
Application-Access File Keyword Options [page 94]

4.7 Maintaining HTTP Destinations

An HTTP destination defines connection details for services running on specific hosts whose details you want
to define and distribute. The definition can be referenced by an application.

Context

If you want to configure an SAP HANA XS application to access data on a specific server that offers a specific
service, for example, a service that is only available outside your network, it is recommended to configure the
HTTP connection parameters in an HTTP destination file that you store locally as a design-time artifact. You
can use an HTTP destination to call an external resource directly from a server-side JavaScript application. You
can also use an HTTP destination when configuring a transport route, for example, to automate the process of
exporting a delivery unit from one system and importing it into another. To create an HTTP destination
configuration for an SAP HANA XS application, you must perform the following high-level steps.

Procedure

1. Create a package for the SAP HANA XS application that will use the HTTP destination you define.
2. Define the details of the HTTP destination.

You define the details of an HTTP destination in a configuration file and using a specific syntax. The
configuration file containing the details of the HTTP destination must have the file extension .xshttpdest
and be located in the same package as the application that uses it or one of the application's subpackages.

3. Define any extensions to the HTTP destination configuration.
You can extend a configured HTTP destination, for example, by providing additional details concerning
proxy servers and logon details. The details concerning the extensions to the HTTP destination must be
specified in a separate configuration file. Like the original HTTP destination that the extension modifies,
the configuration-file extension must have the file extension .xshttpdest and be located in the same
package as the HTTP destination configuration file it extends and the application that uses it.

4. Check the HTTP destination configuration using the SAP HANA XS Administration Tool.
The SAP HANA XS Administration Tool is available on the SAP HANA XS Web server at the following URL:
http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/admin/cockpit.

 Note
Access to details of HTTP destinations in the SAP HANA XS Administration Tool requires the
credentials of an authenticated database user and one of the following SAP HANA roles:

118 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

○ HTTPDestViewer
○ HTTPDestAdministrator

Related Information

Create an HTTP Destination Configuration [page 119]
Extend an HTTP Destination Configuration [page 131]
HTTP Destination Configuration Syntax [page 123]

4.7.1 Tutorial: Create an HTTP Destination

Create an HTTP destination defining connection details for services running on specific hosts. The definition
can be referenced by an application.

Prerequisites

Since the artifacts required to create a simple HTTP destination are stored in the repository, it is assumed that
you have already performed the following tasks:

● Create a development workspace in the SAP HANA repository
● Create a project in the workspace
● Share the new project
● Assigned your user the following SAP HANA roles:

○ HTTPDestAdministrator
○ RuntimeConfAdministrator

Context

An HTTP destination defines connection details for services running on specific hosts whose details you want
to define and distribute. The definition can be referenced by an application. You can also provide more (or
modified) connection details in additional files called “extensions”; values specified in extensions overwrite
values specified in the original HTTP destination configuration.

 Note
HTTP destinations configurations are defined in a text file; you can use the editing tools provided with SAP
HANA studio or your favorite text editor.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 119

Procedure

1. Create a package for the SAP HANA XS application that will use the HTTP destination you define in this
tutorial.
For example, create a package called testApp. Make sure you can write to the schema where you create
the new application.
a. Start the SAP HANA studio and open the SAP HANA Development perspective.
b. In the Systems view, right-click the node in the package hierarchy where you want to create the new

package and, in the pop-up menu that displays, choose Packages...
c. In the New Package dialog that displays, enter the details of the new package (testApp) that you want

to add and click OK.
2. Define the details of the HTTP destination.

You define the details of an HTTP destination in a configuration file that requires a specific syntax. The
configuration file containing the details of the HTTP destination must have the file
extension .xshttpdest. If you are using SAP HANA Studio to create artifacts in the SAP HANA
Repository, the file creation wizard adds the required file extension automatically and enables direct
editing of the file.

 Caution
You must place the HTTP destination configuration and the XSJS application that uses it in the same
application package. An application cannot reference an HTTP destination configuration that is located
in another application package.

a. Create a plain-text file called yahoo.xshttpdest and open it in a text editor.
b. Enter the following code in the new file yahoo.xshttpdest.

host = "download.finance.yahoo.com"; port = 80;
description = "my stock-price checker";
useSSL = false;
pathPrefix = "/d/quotes.csv?f=a";
authType = none;
useProxy = false;
proxyHost = "";
proxyPort = 0; timeout = 0;

c. Save and activate the file.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the
repository, To explicitly commit a file to the repository, right-click the file (or the project containing
the file) and choose Team Commit from the context-sensitive popup menu.

3. View the activated HTTP destination.
You can use the SAP HANA XS Administration Tool to check the contents of an HTTP destination
configuration.

 Note
To make changes to the HTTP Destination configuration, you must use a text editor, save the changes
and reactivate the file.

120 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

a. Start the SAP HANA XS Administration Tool.
The SAP HANA XS Administration Tool is available on the SAP HANA XS Web server at the following
URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/admin/cockpit.

 Tip
Access to details of HTTP destinations in the SAP HANA XS Administration Tool requires the
credentials of an authenticated database user and the permissions granted by the following SAP
HANA roles:
○ RuntimeConfAdministrator
○ HTTPDestAdministrator

b. In the XS Artifact Administration tab, expand the nodes in the Application Objects tree to locate the
application testApp.

c. Choose yahoo.xshttpdest to display details of the HTTP destination.

If you are using the Web-based XS Administration Tool, you can only make limited changes to the
displayed HTTP destination configuration, as follows:

○ Save
Commit to the repository any modifications made to the HTTP destination configuration in the
current session.

○ Edit
Display details of the corresponding extension to the selected HTTP destination configuration. If
no extension exists, the Edit option is not available.

○ Extend
Enables you to create an extension to the selected XS HTTP destination and associate the
extension with another (new or existing) package.

 Note
This option is only available if the selected HTTP destination is provided as part of an delivery
unit, for example, as a destination template.

Related Information

Tutorial: Extend an HTTP Destination [page 131]
The HTTP Destination Configuration [page 121]
HTTP Destination Configuration Syntax [page 123]

4.7.1.1 The HTTP Destination Configuration

An HTTP destination defines connection details for services running on specific hosts whose details you want
to define and distribute. The definition can be referenced by an application.

You use the HTTP destination file to define not only the details of the host you want an application to reach by
means of HTTP but also any further details that are necessary to establish the connection, for example, any

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 121

proxy settings. If necessary, the proxy settings can also be defined in a separate, so-called "extension file". Both
the configuration file you use to define an HTTP destination and the file used to specify any extensions to the
HTTP destination are text files that must have the suffix .xshttpdest, for example,
myHTTPdestination.xshttpdest or myHTTPdestExtension.xshttpdest.

 Note
For security reasons, the HTTP destination configuration and the XSJS application that uses it must be in
the same application package or one of the application's subpackages. An application cannot reference an
HTTP destination configuration that is located in a different application package structure.

You configure an HTTP destination in a text file that contains the details of the connection to the HTTP
destination, using a mandatory syntax comprising a list of keyword=value pairs, for example, host =
"download.finance.yahoo.com";. After creating and saving the HTTP destination, you must activate it in
the SAP HANA repository.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository, To
explicitly commit a file to the repository, right-click the file (or the project containing the file) and choose

Team Commit from the context-sensitive popup menu.

The following configuration file for the HTTP destination yahoo.xshttpdest illustrates how to define an
HTTP destination that can be used to access a financial service running on an external host.

host = "download.finance.yahoo.com"; port = 80;
description = "my stock-price checker";
useSSL = false;
pathPrefix = "/d/quotes.csv?f=a";
authType = none;
proxyType = none;
proxyHost = "";
proxyPort = 0; timeout = 0;

After activating the configuration in the SAP HANA repository, you can view the details of the new HTTP
destination using the SAP HANA XS Administration Tool.

 Note
Access to details of HTTP destinations in the SAP HANA XS Administration Tool requires the credentials of
an authenticated database user and one of the following SAP HANA roles:

● HTTPDestViewer
● HTTPDestAdministrator

If you are using the Web-based XS Administration Tool, you can only make limited changes to the displayed
HTTP destination configuration, as follows:

● Save:
Commit to the repository any modifications made to the HTTP destination configuration in the current
session.

● Edit:
Display details of the corresponding extension to the selected HTTP destination configuration. If no
extension exists, the Edit option is not available.

122 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

● Extend:
Enables you to create an extension to the selected XS HTTP destination and associate the extension with
another (new or existing) package.

 Note
This option is only available if the selected HTTP destination is provided as part of an delivery unit, for
example, as a destination template.

Related Information

HTTP Destination Configuration Syntax [page 123]
Tutorial: Create an HTTP Destination [page 119]

4.7.1.2 HTTP Destination Configuration Syntax

An HTTP destination defines connection details for services running on specific hosts whose details you want
to define and distribute. Syntax rules apply to the contents of the HTTP destination configuration are checked
when you activate the configuration in the repository.

 Example
The .xshttpdest Configuration File

The following example shows all possible keyword combinations in the SAP HANA XS application-access
(.xshttpdest) file.

 Note
In the form shown below, the .xshttpdest file is not a working model; it is used to illustrate the syntax
for all possible options.

host = "download.finance.yahoo.com"; port = 80; //All of the following keywords are optional description = ""; useSSL = false; sslAuth = client; sslHostCheck = true; pathPrefix = "/d/quotes.csv?f=a"; authType = none; samlProvider = ""; samlACS = "header"; samlAttributes = ""; samlNameId = ["email"]; proxyType = none; proxyHost = ""; //in-line comments are allowed proxyPort = 0; timeout = 0; remoteSID = "Q7E"; remoteClient = "007"; oAuthAppConfigPackage = "sap.hana.test";

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 123

 oAuthAppConfig = "abapTest";

When you are defining the HTTP destination, bear in mind the following important syntax rules:

● A semi-colon (;) is required at the end of each line in the HTTP destination configuration, including the last
line in the file.

● String values must be wrapped in quotes (""), for example:
host = "download.finance.yahoo.com";

 Note
The host and port keywords are mandatory; all other keywords are optional.

host

host = "download.finance.yahoo.com";

The host keyword is mandatory: it enables you to specify the hostname of the HTTP destination providing the
service or data you want your SAP HANA XS application to access.

port

port = 80;

The port keyword is mandatory; it enables you to specify the port number to use for connections to the HTTP
destination hosting the service or data you want your SAP HANA XS application to access.

description

description = "my short description of the HTTP connection";

The optional keyword description enables you to provide a short description of the HTTP destination you want
to configure. If you do not want to provide a description, include the description but leave the entry between the
quotes empty, for example, “”.

useSSL

useSSL = [true | false];

124 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

The optional keyword useSSL is of type Boolean and enables you to specify if the outbound connections
between SAP HANA XS and the HTTP destination is secured with the Secure Sockets Layer (SSL) protocol
(HTTPS).

 Note
Setting this option does not configure SSL; if you want to use SSL to secure connections to the configured
destination, you must ensure that SAP HANA is already set up to enable secure outbound connections
using SSL.

If useSSL = true, you can set the authentication type with the keyword sslAuth. You can also use the
sslHostCheck to enable a check which ensures that the certificate used for authentication is valid (matches
the host).

sslAuth

sslAuth = [client | anonymous];

If useSSL = true, you can use the keyword sslAuth to set the authentication type. The following values are
permitted:

● client
(Default setting). You must create a TRUST store entry in the SAP HANA XS Admin Tool's Trust manager (or
use an existing one that is known to the HTTP destination configuration) and maintain the trust
relationship with the SSL server, for example, by adding a certificate to the trust store that is used for the
authentication process.

● anonymous
A built-in key is used for SSL encryption; no TRUST store is needed.. No authentication via SSL is possible.

sslHostCheck

sslHostCheck = [true | false];

If useSSL = true, you can use the keyword sslHostCheck to enable a check which ensures that the
certificate used for authentication is valid (matches the host). The following values are permitted:

● true
(Default setting). The SSL certificate subject must match the host name. For example, if SSL server
certificate CN=server1.acme.com, then the host parameter must be server1.acme.com. If there is no
match, SSL terminates.

● false
No host check is performed. Note that if the SSL server certificate is CN=server1.acme.com, and you use
“localhost” as a connection parameter (because this certificate is installed on its own server), then this
works with sslHostCheck deactivated (sslHostCheck=false).

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 125

pathPrefix

pathPrefix = "";

The optional keyword pathPrefix enables you to specify a text element to add to the start of the URL used for
connections to the service specified in the HTTP destination configuration. For example, pathPrefix = "/d/
quotes.csv?f=a" inserts the specified path into the URL called by the connection.

authType

authType = [none | basic | AssertionTicket | SamlAssertion |
SamlAssertionPropagation];

The optional keyword authType enables you to specify the authentication method that must be used for
connection requests for the service located at the HTTP destination specified in the configuration, for example,
“basic”, which requires users to provide a user name and password as authentication credentials. Permitted
values for the authType are “none”, “basic”, and “AssertionTicket”. If no authentication type is specified, the
default setting “none” applies.

The AssertionTicket option is for use with XSJS applications that want to enable access to HTTP services
running on remote SAP servers using single sign-on (SSO) with SAP assertion tickets. If the AssertionTicket
option is enabled, a user with administration privileges in SAP HANA must use the parameter
saplogontickettruststore to specify the location of the trust store containing the assertion tickets.

 Tip

The saplogontickettruststore parameter can be set in [indexserver | xsengine].ini authentication
saplogontickettruststore .

If authType = AssertionTicket is set you also need to set values for the keywords remoteSID and
remoteclient.

For authType = SamlAssertion;, you must also set the subproperties samlProvider, samlACS,
samlAttributes, and samlNameId.

samlProvider

samlProvider = "";

If you set authType = SamlAssertion, you must also set the subproperty samlProvider, which enables
you to specify the entityID of the remote SAML party.

126 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

samlACS

samlACS = "header";

If you set authType = SamlAssertion, you must also set the subproperty samlACS, which enables you to
specify the way in which SAML assertions or responses are sent. The following values are supported:

● "" (empty string)
A SAML response (including the SAML assertion) is sent to the HTTP destination end point as a POST
parameter.

● /saml/acs/sso
If you provide a URL path, the SAML response (including the SAML Assertion) is sent to the specified
endpoint in an additional Web connection to establish the authentication context (session).When the
outbound communication is being established, there are two connections: first to the specified end point
(for example, /saml/asc/sso) and then to the destination service end point.

● header
The SAML response (including the SAML assertion) is sent in the HTTP header authorization with the
following syntax: Authorization: SAML2.0 <base-64-saml-response>.

● parameter:assertion
The SAML Assertion is sent as a POST parameter. This flavor is needed for JAM integrations.

samlAttributes

samlAttributes = "name1=<property>&name2=<property>";

If you set authType = SamlAssertion, you must also set the subproperty samlAttributes, which enables
you to specify additional attributes for the SAML Assertion.

samlNameId

samlNameId = ["email", "unspecified"];

If you set authType = SamlAssertion, you must also set the subproperty samlNameId, which enables you
to define a list of name-ID mappings. The following values are supported:

● email
● unspecified

For example, if you have an e-mail maintained in SAP HANA User Self Services (USS), the SAML assertion
contains your e-mail address; if you do not have a e-mail address maintained in SAP HANA USS, the mapping
is “unspecified”.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 127

proxyType

proxytype = none;

The optional keyword proxyType enables you to specify if a proxy server must be used to resolve the host name
specified in the HTTP destination configuration file, and if so, which type of proxy. The following values are
allowed:

● none
● http
● socks

 Caution
proxyType replaces and extends the functionality previously provided with the keyword useProxy. For
backward compatibility, the useProxy is still allowed but should not be used any more.

To define the proxy host and the port to connect on, use the keywords proxyHost and proxyPort
respectively.

If you want to include the proxy-related information in a separate configuration (a so-called extension to the
original HTTP destination configuration), you must set proxyType = none in the original HTTP destination
configuration. In the HTTP destination extension that references and modifies the original HTTP destination,
you can change the proxy setting to proxyType = http. You must then provide the corresponding host name
of the proxy server and a port number to use for connections.

proxyHost

proxyHost = "";

If you use the keyword useProxy = true to specify that a proxy server must be used to resolve the target
host name specified in the HTTP destination configuration, you must use the proxyHost and proxyPort
keywords to specify the fully qualified name of the host providing the proxy service (and the port number to use
for connections). The name of the proxy host must be wrapped in quotes, as illustrated in the following
example,

proxyHost = "myproxy.hostname.com"

proxyPort

proxyPort = 8080;

If you use the keyword useProxy = true to indicate that a proxy server must be used to resolve the host
name specified in the HTTP destination configuration, you must also use the proxyPort keyword (in
combination with proxyHost =) to specify the port on which the proxy server accepts connections.

128 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

timeout

timeout = -1;

The optional keyword timeout enables you to specify for how long (in milliseconds) an application tries to
connect to the remote host specified in the HTTP destination configuration, for example, timeout = 5000;
(5 seconds). By default, the timeout interval is set to -1, which means that there is no limit to the time required
to connect to the server specified in the HTTP destination configuration. In the default setting, the application
keeps trying to connect to the destination server either until the server responds, however long this takes, or
the underlying request-session timeout (300 seconds) is reached. The default setting (-1) is intended to help in
situations where the destination server is slow to respond, for example, due to high load.

remoteSID

remoteSID = "Q7E";

The optional keyword remoteSID enables you to specify the SID of a remote ABAP system. You use this
keyword in combination with the remoteClient keyword, for example, to enable an application to log on to an
ABAP system that is configured to provide SAP assertion tickets. If the XSJS application service requires
access to remote services, you can create an HTTP destination that defines the logon details required by the
remote ABAP system and specifies SSO with SAP assertion tickets as the logon authentication method.

 Note
In the XS Administration Tool, the value specified in an HTTP destination configuration file with the
remoteSID keyword is displayed in the SAP SID field in the AUTHENTICATION section of the application's
runtime configuration. The SAP SID option is only available if you select SAP Assertion Ticket as the
authentication type in the application's runtime configuration.

remoteClient

remoteClient = "007";

The optional keyword remoteClient enables you to specify the client number to use when logging on to a
remote ABAP system. You use this keyword in combination with the remoteSID keyword, for example, to
enable an application to logon to an ABAP system that is configured to provide SAP assertion tickets. If the
XSJS application service requires access to remote services, you can create an HTTP destination that defines
the logon details required by the remote ABAP system and specifies SSO with SAP assertion tickets as the
logon authentication method.

 Note
In the XS Administration Tool, the value specified in an HTTP destination configuration file with the
remoteClient keyword is displayed in the SAP Client field in the AUTHENTICATION section of the

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 129

application's runtime configuration. The SAP Client option is only available if you select SAP Assertion
Ticket as the authentication type in the application's runtime configuration.

oAuthAppConfigPackage

oAuthAppConfigPackage = "sap.hana.test";

Use the optional keyword oAuthAppConfigPackage enables you to specify the location of the package that
contains the oAuth application configuration to be used by an HTTP destination configuration.

oAuthAppConfig

oAuthAppConfig = "abapTest";

Use the optional keyword oAuthAppConfig enables you to specify the name of the oAuth application
configuration to be used by an HTTP destination configuration. The OAuth application configuration is a file
describing the application-specific OAuth parameters that are used to enable access to a resource running on a
remote HTTP destination. The OAuth application configuration is defined in a design-time artifact with the
mandatory file suffix .xsoauthappconfig; the configuration file must be specified using the JSON format.

modifies

modifies pkg.path.testApp:yahoo.xshttpdest;

The keyword modifies can only be used in an HTTP extension file and enables you to reference an existing
HTTP destination (or extension) whose settings you want to further extend or modify. The settings in an HTTP
destination extension overwrite any identical settings in the original HTTP destination configuration. The HTTP
destination configuration referenced by the modifies keyword must already exist.

 Note
The HTTP destination extension does not have to be tied to a particular XSJS application; it can be located
in any application package or subpackage. For this reason, you must include the full package path to the
HTTP destination extension when using the modifies keyword.

Related Information

The HTTP Destination Configuration [page 121]
The HTTP Destination Extension [page 134]

130 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

4.7.2 Tutorial: Extend an HTTP Destination

Extend an HTTP destination defining connection details for services running on specific hosts, for example, by
providing additional details. The definition and the extension details can be referenced by an application.

Prerequisites

Since the artifacts required to create an HTTP destination extension are stored in the repository, it is assumed
that you have already performed the following tasks:

● Create a development workspace in the SAP HANA repository
● Create a project in the workspace
● Share the new project
● Assigned your user the following SAP HANA roles:

○ HTTPDestAdministrator
○ RuntimeConfAdministrator

 Note
This tutorial shows you how to modify an HTTP destination by providing details of a proxy server that must
be used to resolve host names specified in the connection details; you must supply the name of a working
proxy server that is available in your environment.

Context

An HTTP destination defines connection details for services running on specific hosts whose details you want
to define and distribute. The definition can be referenced by an application. You can also provide more (or
modified) connection details in additional files called “extensions”; values specified in extensions overwrite
values specified in the original HTTP destination configuration.

 Note
HTTP destinations configurations and any extensions are defined in a plain-text file; you can use the editing
tools provided with SAP HANA studio or your favorite text editor to add entries to the configuration file.

Procedure

1. Create a package for the SAP HANA XS application that will use the HTTP destination (and extension) you
define in this tutorial.
For example, create a package called testApp. Make sure you can write to the schema where you create
the new application.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 131

a. Start the SAP HANA studio and open the SAP HANA Development perspective.
b. In the Systems view, right-click the node in the package hierarchy where you want to create the new

package and, in the pop-up menu that displays, choose Packages...
c. In the New Package dialog that displays, enter the details of the new package (testApp) that you want

to add and click OK.
2. Define the details of the new HTTP destination.

You define the details of an HTTP destination in a configuration file that requires a specific syntax. The
configuration file containing the details of the HTTP destination must have the file
extension .xshttpdest.

 Caution
You must place the HTTP destination configuration in the application package that uses it. An
application cannot reference an HTTP destination configuration that is located in another application
package.

a. Create a plain-text file called yahoo.xshttpdest and open it in a text editor.
b. Enter the following code in the new file yahoo.xshttpdest.

host = "download.finance.yahoo.com"; port = 80;
description = "my stock-price checker";
useSSL = false;
pathPrefix = "/d/quotes.csv?f=a";
authType = none;
proxyType = none;
proxyHost = "";
proxyPort = 0; timeout = 0;

c. Save and activate the file.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the
repository, To explicitly commit a file to the repository, right-click the file (or the project containing
the file) and choose Team Commit from the context-sensitive popup menu.

3. View the activated HTTP destination.
You can use the SAP HANA XS Administration Tool to check the contents of an HTTP destination
configuration.

 Note
To make changes to the HTTP Destination configuration, you must use a text editor, save the changes
and reactivate the file.

a. Open a Web browser.
b. Start the SAP HANA XS Administration Tool.

The SAP HANA XS Administration Tool tool is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/admin/.

132 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

 Note
Access to details of HTTP destinations in the SAP HANA XS Administration Tool requires the
credentials of an authenticated database user and the permissions granted by the following SAP
HANA roles:
○ RuntimeConfAdministrator
○ HTTPDestAdministrator

c. In the XS Artifact Administration tab, expand the nodes in the Application Objects tree to locate the
application testApp.

d. Choose yahoo.xshttpdest to display details of the HTTP destination .

4. Define the details of the extension to the HTTP destination you created in the previous steps.
Like the HTTP destination itself, you define an extension to an HTTP destination in a configuration file that
requires a specific syntax. The configuration file containing the details of the HTTP destination must have
the file suffix .xshttpdest.

 Caution
You must place the HTTP destination configuration (and any extensions to the configuration) in the
application package that uses them. An application cannot reference an HTTP destination
configuration (or an extension) that is located in another application package.

a. Create a plain-text file called yahooProxy.xshttpdest and open it in a text editor.
b. Enter the following code in the new file yahooProxy.xshttpdest.

modifies testApp:yahoo.xshttpdest; proxyType = http;
proxyHost = "proxy.mycompany.com"; proxyPort = 8080;

 Note
Replace the value in proxyHost with the name of the host providing the proxy service.

c. Save and activate the file.
5. View and check the details of the activated HTTP destination extension yahooProxy.xshttpdest.

You can use the SAP HANA XS Administration Tool to check the contents of an HTTP destination
configuration or an extension to the configuration.

 Note
To make changes to the HTTP Destination configuration (or any extension), you must use a text editor,
save the changes and reactivate the file.

a. Open a Web browser.
b. Start the SAP HANA XS Administration Tool.

The SAP HANA XS Administration Tool tool is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/admin/cockpit.

 Note
In the default configuration, the URL redirects the request to a logon screen, which requires the
credentials of an authenticated SAP HANA database user to complete the logon process.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 133

c. In the XS Artifact Administration tab, expand the nodes in the Application Objects tree to locate the
application testApp.

d. Choose yahooProxy.xshttpdest to display details of the HTTP destination extension.

Related Information

Tutorial: Create an HTTP Destination [page 119]
The HTTP Destination Configuration [page 121]
HTTP Destination Configuration Syntax [page 123]

4.7.2.1 The HTTP Destination Extension
An HTTP destination defines connection details for services running on specific hosts whose details you want
to define and distribute. An extension to an HTTP destination provides additional information or modifies
values set in the original configuration.

You can use one or more extension to an HTTP destination configuration; the extensions include additions to
the original settings or modifications to the values set in the original configuration. For example, you could
include basic configuration settings in an HTTP destination and provide details of any required proxy settings in
a separate, so-called “extension”.

You define an extension to an HTTP destination configuration in a text file that contains the details of the
modifications you want to apply to the connection details for the original HTTP destination. The HTTP
destination extension uses a mandatory syntax comprising a list of keyword=value pairs, for example, host =
"download.finance.myhoo.com";. The same syntax rules apply for the basic HTTP destination
configuration and any extensions. Both files must also have the file suffix .xshttpdest, for example,
myHTTPdestination.xshttpdest or myHTTPextension.xshttpdest.After creating and saving the HTTP
destination extension, you must activate it in the SAP HANA repository.

 Note
The HTTP destination extension does not have to be tied to a particular XSJS application; it can be located
in any application package or subpackage. For this reason, you must include the full package path to the
HTTP destination extension.

The following configuration file for the HTTP destination yahooProxy.xshttpdest illustrates how to modify
the proxy settings specified in the HTTP destination yahoo.xshttpdest, located in the application package
pkg.path.testApp.

modifies pkg.path.testApp:yahoo.xshttpdest; proxyType = http;
proxyHost = "proxy.host.name.com"; proxyPort = 8080;

 Note
For backward compatibility, the keyword userProxy still works; however, it has been replaced with the
keyword proxyType, which takes the values: [none | http | socks].

134 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

After activation, you can view the details of the new HTTP destination extension using the SAP HANA XS
Administration tool.

 Note
Access to details of HTTP destinations in the SAP HANA XS Administration Tool requires the credentials of
an authenticated database user and one of the following SAP HANA roles:

● HTTPDestViewer
● HTTPDestAdministrator

4.7.3 Tutorial: Create an OAuth Configuration Package

Create the files required to enable a service that uses OAuth to authorize access to a resource running on a
remote HTTP destination.

Prerequisites

Since the artifacts required to create an XS OAuth configuration package are stored in the SAP HANA
repository, it is assumed that you have the following:

● A development workspace in the SAP HANA repository
● A shared project in the workspace
● Access to SAP HANA development tools, for example:

○ SAP HANA studio
○ SAP HANA Web-based Workbench

● An HTTP destination configuration (.xshttpdest)
● Your SAP HANA database user has the permissions granted by the following roles:

○ RuntimeConfAdministrator
○ HTTPDestAdministrator
○ oAuthAdmin

Context

An OAuth configuration package is a collection of configuration files that define the details of how an
application uses OAuth to enable logon to a resource running on a remote HTTP destination.

An HTTP destination defines connection details for services running on specific hosts whose details you want
to define and distribute. Additional syntax rules apply to the contents of the HTTP destination configuration are
checked when you activate the configuration in the repository.

An OAuth configuration requires the following dependent configuration files:

● OAuth application configuration (<filename>.xsoauthappconfig)

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 135

Describes the configuration of the OAuth application parameters including the name and package location
of the associated client configuration and any mandatory or optional scopes.

● OAuth client configuration (<filename>.xsoauthclientconfig)
Describes the configuration of the OAuth client including: the client ID, the client authentication type, and
the name and package location of the associated client flavor.

● OAuth client flavor configuration (<filename>.xsoauthclientflavor)
Describes the OAuth client flavor setup used by the XS OAuth client configuration, including: the protocol
steps and the parameters to be set. Note that, normally, you do not need to change the OAuth client flavor
configuration.

 Tip
You connect the OAuth configuration to the HTTP destination configuration in the HTTP destination's
runtime configuration. Access to the runtime configuration tools requires the permissions included in an
administrator role.

Procedure

1. Create an OAuth application configuration.

You need to create the base configuration for your OAuth application in a design-time file with the
mandatory file-extension .xsoauthappconfig. The application configuration is stored in the SAP HANA
repository and must be activated to create the corresponding catalog objects.

a. Create the design-time file that contains your OAuth application configuration, for example,
oauthDriveApp.xsoauthappconfig

b. Define the details of the new OAuth application configuration, as follows:

{ "clientConfig" :
"sap.hana.xs.oAuth.lib.providerconfig.providermodel:abap_ac",
 "mandatoryScopes" : ["OAUTH2_TEST_SCOPE1", "OAUTH2_TEST_SCOPE2"],
 "description" : "ABAP Testapplication for OAuth" }

 Note
In this example, the OAuth client configuration is located in the package
sap.hana.xs.oAuth.lib.providerconfig.providermodel; you can change the path to suit
your own requirements.

2. Create an OAuth client configuration (optional).

You create the client configuration for your OAuth application in a design-time file with the mandatory file-
extension .xsoauthclientconfig. You can either use an existing client configuration from the package
sap.hana.xs.oAuth.lib.providerconfig.providermodel or create your own client configuration.
The application configuration is stored in the SAP HANA repository and must be activated to create the
corresponding catalog objects.

a. Create the design-time file that contains your OAuth client configuration, for example,
ABAPv1.xsoauthclientconfig

136 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

b. Define the details of the new OAuth client configuration, as follows:

{ "clientFlavor" :
"sap.hana.xs.oAuth.lib.providerconfig.providermodel:abap_ac", "clientID" : "<OAuth ClientId registered at ABAP>", "clientAuthType" : "basic",
 "authorizationEndpointURL" : "/sap/bc/sec/oauth2/authorize",
 "tokenEndpointURL" : "/sap/bc/sec/oauth2/token",
 "revocationEndpointURL" : "/sap/bc/sec/oauth2/revoke", "redirectURL" : "<External_XS_HOST>:<PORT>/sap/hana/xs/
oAuth/lib/runtime/tokenRequest.xsjs", "flow" : "authCode",
 "scopeReq" : "maxScopes",
 "description" : "OAuth Client for SAP Application Server
ABAP - Authorization Code Flow" }

3. Create the OAuth client flavor (optional).
The OAuth client flavor file is a design-time artifact that provides details of the OAuth protocol for a client
application which uses the services provided by a corresponding OAuth application. The OAuth client flavor
steps are defined in a design-time artifact with the mandatory file suffix .xsoauthclientflavor; the
configuration file must be specified using the JSON format.

 Tip
You do not have to create the OAuth client flavor from scratch; SAP HANA provides some example
OAuth client flavors which you can use. The example OAuth client flavors are located in the following
package: sap.hana.xs.oAuth.lib.providerconfig.providermodel.

The following example shows the required format and syntax for the contents of
the .xsoauthclientflavor artifact.

 Note
The example below is not complete; it is intended for illustration purposes only.

{ "parameters":[{ "flavorStep":"1Aut", "paramLocation":"uri", "paramName":"client_id",
"paramValue":"client_id", "valueType":"eval",
"paramMandatory":"true" },
{ "flavorStep":"2Gra", "paramLocation":"head", "paramName":"Authorization",
"paramValue":"Basic Authentication", "valueType":"sec",
"paramMandatory":"true" },
{ "flavorStep":"3Prc", "paramLocation":"head", "paramName":"Bearer",
"paramValue":"access_token", "valueType":"sec",
"paramMandatory":"true" },
{ "flavorStep":"4Ref", "paramLocation":"head", "paramName":"Authorization",
"paramValue":"Basic Authentication", "valueType":"sec",
"paramMandatory":"true" },
{ "flavorStep":"5Rev", "paramLocation":"para", "paramName":"token",
"paramValue":"access_token", "valueType":"sec",
"paramMandatory":"true" },] }

4. Activate all the XS OAuth configuration files.
Activating the configuration files creates the corresponding catalog objects.

5. Add the OAuth configuration to the runtime configuration of the HTTP destination configuration that
requires it.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 137

The SAP HANA XS Administration Tool is available on the SAP HANA XS Web server at the following URL:
http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/admin/cockpit.

 Note
Access to details of HTTP destinations in the SAP HANA XS Administration Tool requires the
credentials of an authenticated database user and one of the following SAP HANA roles:
○ RuntimeConfAdministrator
○ HTTPDestAdministrator
○ oAuthAdmin

a. Start the XS Artifact Administration tool.
b. In the Application Objects list, locate and choose the HTTP destination configuration that you want to

modify.
c. Choose the OAuth Details tab.

d. Choose Edit Browse OAuth App Configs
e. Select an OAuth application configuration from the list displayed.

The name of the application configuration you choose and the absolute path to the package where it is
located are displayed in the appropriate fields, for example.
○ OAuth App Config Package: sap.hana.test
○ OAuth App Config Name: abapTest

 Note
The values displayed here must also be present in the HTTP destination configuration to which the
OAuth configuration applies.

For example, the HTTP destination corresponding to the OAuth configuration you are setting up in this
task must also contain entries that describe the name and package location of the OAuth application
configuration to use.

oAuthAppConfigPackage = "sap.hana.test"; oAuthAppConfig = "abapTest";
f. Navigate to the OAuth client configuration and set the client secret.
g. Choose Save to update the run-time configuration for the HTTP destination.

Related Information

Tutorial: Create an HTTP Destination [page 119]
OAuth Application Configuration Syntax [page 139]
OAuth Client Configuration Syntax [page 140]
OAuth Client Flavor Syntax [page 145]

138 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

4.7.3.1 OAuth Application Configuration Syntax

The format and syntax required in a design-time artifact describing an OAuth application configuration.

The OAuth application configuration is a file describing the application-specific OAuth parameters that are
used to enable access to a resource running on a remote HTTP destination. The OAuth application
configuration is defined in a design-time artifact with the mandatory file suffix .xsoauthappconfig; the
configuration file must be specified using the JSON format.

 Note
The following code example is not a working example; it is provided for illustration purposes, only.

{ "clientConfig":"sap.hana.xs.oAuth.lib.providerconfig.providermodel:abap_ac", "description":"ABAP test application for OAuth", "mandatoryScopes":["OAUTH2_TEST_SCOPE1", "OAUTH2_TEST_SCOPE2"], "optionalScopes":["OAUTH2_TEST_SCOPE3", "OAUTH2_TEST_SCOPE4"], "modifies":"sap.hana.test:abapTest" }

An OAuth configuration requires the following dependent configuration files:

● OAuth application configuration (.xsoauthappconfig)
● OAuth client configuration (.xsoauthclientconfig)
● OAuth client flavor configuration (.xsoauthclientflavor)

clientConfig

Use the clientConfig keyword to specify the fully qualified name of the associated xsoauthclientconfig
artifact, using the format <path.to.package>:<XSOauthClientConfigObjectName>.

"clientConfig":"sap.hana.xs.oAuth.lib.providerconfig.providermodel:abap_ac",

 Note
It is mandatory to specify the name and location of the package containing the associated OAuth client
configuration.

description

Use the description keyword to provide an optional short description of the contents of the OAuth
application configuration.

"description":"ABAP test application for OAuth",

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 139

mandatoryScopes

Use the mandatoryScopes keyword to specify one or more (in an array) of strings describing the mandatory
permissions requested by the client.

"mandatoryScopes":["OAUTH2_TEST_SCOPE1", "OAUTH2_TEST_SCOPE2"],

optionalScopes

Use the optionalScopes keyword to specify one or more (in an array) of strings describing the optional
permissions to be used by the client.

"optionalScopes":["OAUTH2_TEST_SCOPE3", "OAUTH2_TEST_SCOPE4"],

modifies

Use the modifies keyword to indicate that the current XS OAuth application configuration (for example,
abapTest2.xsoauthappconfig is based on (and extends) another SAP HANA XS OAuth application
configuration (for example, abapTest.xsoauthappconfig). You must specify the fully qualified name of the
associated SAP HANA XS OAuth application configuration artifact (xsoauthappconfig), using the format
<path.to.package>:<ObjectName>.

"modifies":"sap.hana.test:abapTest.xsoauthappconfig",

Related Information

OAuth Client Configuration Syntax [page 140]
OAuth Client Flavor Syntax [page 145]
Tutorial: Create an OAuth Configuration Package [page 135]

4.7.3.2 OAuth Client Configuration Syntax

The format and syntax required in a design-time artifact describing the OAuth client configuration.

The OAuth client configuration is a file describing details of the client parameters for an application which uses
the services provided by a corresponding OAuth application that enables access to a resource running on a
remote HTTP destination. The OAuth client configuration is defined in a design-time artifact with the
mandatory file suffix .xsoauthclientconfig; the configuration file must be specified using the JSON
format. The following code example shows the contents of a typical OAuth client configuration.

140 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

 Note
The following code example is not a working example; it is provided for illustration purposes, only.

{ "clientFlavor":"sap.hana.xs.oAuth.lib.providerconfig.providermodel:abap_ac", "clientID":"<The OAuth ClientId you registered at ABAP>", "clientAuthType":"basic", "authorizationEndpointURL":"/sap/bc/sec/oauth2/authorize", "tokenEndpointURL":"/sap/bc/sec/oauth2/token", "revocationEndpointURL":"/sap/bc/sec/oauth2/revoke", "flow":"authCode", "description":"OAuth Client for ABAP server", "samlIssuer":"" , "redirectURL":"<HOST>:<PORT>/sap/hana/xs/oAuth/lib/runtime/tokenRequest.xsjs", "scopeReq":"maxScopes", "shared":"true", "modifies":"sap.hana.xs.oAuth.lib.providerconfig.providermodel:abap_ac" }

In this example, the OAuth client configuration is located in the package com.acme.oAuth.lib; change the
path specified in clientFlavor to suit your own requirements. You will also have to change the value
specified for clientID and redirectURL.

 Tip
SAP HANA provides some example OAuth client configurations which you can use; you can find them in the
following package: sap.hana.xs.oAuth.lib.providerconfig.providermodel

clientFlavor

Use the clientFlavor keyword to specify the fully qualified name of the associated XS OAuth client flavor
configuration artifact, for example, ABAPv1.xsoauthclientfavor; you must use the format
<path.to.package>:<ObjectName> (no file extension is required).

"clientFlavor":"sap.hana.xs.oAuth.lib.providerconfig.providermodel:abap_ac",

 Note
It is mandatory to specify the name and location of the package containing the associated OAuth client
flavor configuration.

clientID

Use the clientID keyword to define a string that specifies the customer's ID, which is used to identify the
client with the server. The clientID must be changed to suit your requirements. Typically, the client ID is
obtained by registering with a specific service provider.

"clientID" : "<The OAuth ClientId you registered at ABAP>",

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 141

 Note
It is mandatory to define the clientID.

clientAuthType

Use the clientAuthType keyword to define a number that specifies the client authentication type, for
example, “cert” or “basic”.

"clientAuthType" : "basic",

 Note
It is mandatory to define the clientAuthType.

The following values are permitted:

● basic (user and password)
● cert (authentication by client certificate)

authorizationEndpointURL

Use the authorizationEndpointURL keyword to specify a string that defines the authorization endpoint.
The authorization endpoint is the endpoint on the authorization server where the resource owner logs on and
grants authorization to the client application.

"authorizationEndpointURL" : "/sap/bc/sec/oauth2/authorize",

 Note
It is mandatory to define the authorizationEndpointURL.

tokenEndpointURL

Use the tokenEndpointURL keyword to to specify a string that defines the token endpoint. The token
endpoint is the endpoint on the authorization server where the client application exchanges the authorization
code, the client ID, and the client secret for an access token.

"tokenEndpointURL" : "/sap/bc/sec/oauth2/token",

 Note
It is mandatory to define the tokenEndpointURL.

142 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

revocationEndpointURL

Use the revocationEndpointURL keyword to to specify a string that defines the token endpoint. The token
endpoint is the endpoint on the authorization server where the client application exchanges the authorization
code, the client ID, and the client secret for an access token.

"revocationEndpointURL" : "/sap/bc/sec/oauth2/revoke",

 Note
It is mandatory to define a value for the revocationEndpointURL.

flow

Use the flow keyword to specify a number that defines the authorization flow used during the authentication
exchange, for example, saml2Bearer or authCode.

"flow" :"saml2Bearer",

 Note
It is mandatory to define a value for flow.

The following values are permitted:

● saml2Bearer
● authCode

description

Use the optional description keyword to provide a short description of the OAuth client configuration.

"description": "OAuth Client for SAP App Server ABAP - Authorization Code Flow"

samlIssuer

Use the optional samlIssuer keyword to specify a string that defines the SAML issuer ID. The SAML issuer ID
describes the issuer of the SAML token. The SAML bearer extension enables the validation of SAML tokens as
part of granting the OAuth access token.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 143

 Note
You set this parameter only if the parameter flow is set to saml2Bearer, for example,
"flow" :"saml2Bearer".

"samlIssuer" : "" ,

redirectURL

Use the redirectURL keyword to specify a string that defines the redirection endpoint. The redirection
endpoint is the endpoint in the client application where the resource owner is redirected to, after having
granted authorization at the authorization endpoint. The redirectURL must be changed to suit your
requirements.

"redirectURL" : "<HOST>:<PORT>/sap/hana/xs/oAuth/lib/runtime/tokenRequest.xsjs",

 Note
If "flow" : "authCode", it is mandatory to define a value for the redirectURL.

scopeReq

Use the scopeReq keyword to specify whether the maximum available scope from all applications using this
client configuration is always requested or the scope set is specified iteratively.

"scopeReq" : "maxScopes",

The following values are permitted:

● maxScopes
● iterativeScopes

 Note
Currently only maxScopes is implemented.

shared

Use the shared keyword to specify a number that defines whether the if the XS OAuth client configuration can
be shared between applications.

"shared" : "false",

144 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

The following values are permitted:

● true (shared)
● false (not shared)

 Note
Currently only true is implemented.

modifies

Use the modifies keyword to indicate that the current XS OAuth client configuration, for example,
abap_ac1.xsoauthclientconfig, is based on (and extends) another SAP HANA XS OAuth client
configuration (for example, abap_ac.xsoauthclientconfig). You must specify the fully qualified name of
the associated OAuth client configuration artifact (<fileName>.xsoauthclientconfig), using the format
<path.to.package>:<ArtifactName>.xsoauthclientconfig.

"modifies":"sap.hana.xs.oAuth.lib.providerconfig.providermodel:abap_ac.xsoauthcli
entconfig",

Related Information

OAuth Client Flavor Syntax [page 145]
OAuth Application Configuration Syntax [page 139]
Tutorial: Create an OAuth Configuration Package [page 135]

4.7.3.3 OAuth Client Flavor Syntax

The format and syntax required in a design-time artifact that describes the OAuth client flavors.

The OAuth client flavor file provides details of the OAuth protocol for a client application that uses the services
provided by a corresponding OAuth application. The OAuth client flavor steps are defined in a design-time
artifact with the mandatory file suffix .xsoauthclientflavor; the configuration file must be specified using
the JSON format.

 Note
The following example of an OAuth client flavor configuration is incomplete; it is intended for illustration
purposes only.

{ "parameters":[{ "flavorStep":"1Aut", "paramLocation":"uri", "paramName":"client_id",
"paramValue":"client_id", "valueType":"eval",
"paramMandatory":"true" },

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 145

{ "flavorStep":"1Aut", "paramLocation":"uri", "paramName":"redirect_uri",
"paramValue":"redirect_uri", "valueType":"eval",
"paramMandatory":"true" },
{ "flavorStep":"1Aut", "paramLocation":"uri", "paramName":"scope",
"paramValue":"scope", "valueType":"eval",
"paramMandatory":"true" },
{ "flavorStep":"1Aut", "paramLocation":"uri", "paramName":"response_type",
"paramValue":"code", "valueType":"litr",
"paramMandatory":"true" },
{ "flavorStep":"1Aut", "paramLocation":"uri", "paramName":"state",
"paramValue":"state", "valueType":"eval",
"paramMandatory":"true" },
{ "flavorStep":"2Gra", "paramLocation":"head", "paramName":"Authorization",
"paramValue":"Basic Authentication", "valueType":"sec",
"paramMandatory":"true" },
{ "flavorStep":"2Gra", "paramLocation":"head", "paramName":"Content-Type",
"paramValue":"application/x-www-form-urlencoded", "valueType":"litr",
"paramMandatory":"true" },
{ "flavorStep":"2Gra", "paramLocation":"para", "paramName":"code",
"paramValue":"code", "valueType":"eval",
"paramMandatory":"true" },
{ "flavorStep":"2Gra", "paramLocation":"para", "paramName":"grant_type",
"paramValue":"authorization_code", "valueType":"litr",
"paramMandatory":"true" },
{ "flavorStep":"2Gra", "paramLocation":"para", "paramName":"client_id",
"paramValue":"client_id", "valueType":"eval",
"paramMandatory":"true" },
{ "flavorStep":"2Gra", "paramLocation":"para", "paramName":"redirect_uri",
"paramValue":"redirect_uri", "valueType":"eval",
"paramMandatory":"true" },
{ "flavorStep":"3Prc", "paramLocation":"head", "paramName":"Bearer ",
"paramValue":"access_token", "valueType":"sec",
"paramMandatory":"true" },
{ "flavorStep":"4Ref", "paramLocation":"head", "paramName":"Authorization",
"paramValue":"Basic Authentication", "valueType":"sec",
"paramMandatory":"true" },
{ "flavorStep":"4Ref", "paramLocation":"head", "paramName":"Content-Type",
"paramValue":"application/x-www-form-urlencoded", "valueType":"litr",
"paramMandatory":"true" },
{ "flavorStep":"4Ref", "paramLocation":"para", "paramName":"grant_type",
"paramValue":"refresh_token", "valueType":"litr",
"paramMandatory":"true" },
{ "flavorStep":"4Ref", "paramLocation":"para", "paramName":"refresh_token",
"paramValue":"refresh_token", "valueType":"sec",
"paramMandatory":"true" },
{ "flavorStep":"5Rev", "paramLocation":"para", "paramName":"token",
"paramValue":"access_token", "valueType":"sec",
"paramMandatory":"true" },] }

It is not necessary to create your own OAuth client flavor from scratch; SAP HANA provides some OAuth client
flavors for a selection of OAuth server scenarios, which you can use without modification.

 Tip
The example OAuth client flavors are located in the package
sap.hana.xs.oAuth.lib.providerconfig.providermodel.

However, you do need to modify the OAuth client flavor artifact for the following scenarios:

● Modifications are required (or have already been made) to the API of an available OAuth server.
● A connection is required to a new OAuth server not covered by the scenarios included in the SAP HANA

configuration templates.

146 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

parameters

Use the parameters keyword to define a list of parameter-values pairs, for example,
"paramLocation":"uri" that support the specification defined in the OAuth client configuration file
<filename>.oxauthclientconfig.

flavorStep

Use the flavorStep keyword to specify a step in the procedure used by the client flavor, as illustrated in the
following example

"flavorStep":"saml",

The following values are permitted:

● IAut
● 2Gra
● 3Prc
● 4Ref
● 5Rev
● saml

paramLocation

Use the paramLocation keyword to specify the location of the parameter defined, as shown in the following
example:

"paramLocation":"uri",

The following values are permitted:

● uri
Universal resource indicator

● head
In the request header

● para
In the request body

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 147

paramName

Use the paramName keyword to specify the name of the parameter defined in “paramLocation”, as shown in
the following example:

"paramName":"token",

The parameter name depends on the local setup of your client configuration.

paramValue

Use the paramValue keyword to specify a value for the parameter name specified in “paramName”.

"paramValue":"access_token",

The parameter name depends on the local setup of your client configuration.

valueType

Use the valueType keyword to specify the type of value expected by the parameter defined in “paramValue”.

"valueType":"sec",

The following values are permitted:

● litr
Literal value

● eval
The value is evaluated by the OAuth client runtime

● sec
The value is evaluated by the OAuth client runtime in a secure way

paramMandatory

Use the paramMandatory keyword to specify if a parameter is required or not.

"paramMandatory":"true",

The following values are permitted:

● true
Required

● false
Not Required

148 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

Related Information

OAuth Client Configuration Syntax [page 140]
OAuth Application Configuration Syntax [page 139]
Tutorial: Create an OAuth Configuration Package [page 135]

4.8 Maintaining Application Artifacts

The design-time building blocks of an SAP HANA applications are called development objects (or artifacts),
and many have a mandatory file extension, for example, .hdbtable (design-time table definition), .hdbview
(design-time SQL-view definition), or .hdbrole (design-time role definition).

Some of the development objects you encounter when creating an application, such as projects and packages,
are designed to help you structure your application. Other objects such as schemas, table definitions, or
analytical and attribute views, help you organize your data. Design-time definitions of procedures and server-
side JavaScript code are the core objects of an SAP HANA application; these, too, have mandatory file
extensions, for example, .hdbprocedure or .xsjs. Other types of development objects help you control the
access to runtime objects.

When you activate an application artifact, the file extension (for example, .hdbdd, .xsjs, or
hdbprocedure, ...) is used to determine which runtime plug-in to call during the activation process. The plug-
in reads the repository artifact selected for activation (for example, a table definition, a complete CDS
document, or server-side JavaScript code), interprets the object description in the file, and creates the
appropriate runtime object in the designated catalog schema.

The file extensions associated with application artifacts are used in other contexts, too. For example, in SAP
HANA studio, a context-sensitive menu is displayed when you click an artifact with the alternate mouse button;
the options displayed in the menu is determined, amongst other things, according to the file extension.

Related Information

Design-Time Application Artifacts [page 149]
Studio-Based SAP HANA Development Tools [page 152]

4.8.1 Design-Time Application Artifacts

The design-time building blocks of your SAP HANA applications have a mandatory file extension, for
example, .hdbtable (design-time table definition) or .hdbview (design-time SQL-view definition).

In SAP HANA, application artifacts have a mandatory file extension, which is used to determine the Repository
tools required to parse the contents of the design-time artifact on activation. The following tables list the most
commonly used building blocks of an SAP HANA application; the information provided shows any mandatory

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 149

file extension and, if appropriate, indicates where to find more information concerning the context in which the
object can be used.

Design-time Application Building Blocks

File Extension Object Description

.aflpmml Procedure A file used by the application function modeler to store details of
a procedure defined using application functions in the Predictive
Analysis Library * (PAL) or Business Function Library * (BFL). Us
ing the AFM also generates a .diagram and a .aflmodel file.

.analyticview Analytic view A file containing a design-time definition of an analytic view; the
view can be referenced in an OData service definition.

.attributeview Attribute view A file containing a design-time definition of an attribute view; the
view can be referenced in an OData service definition.

.calculationview Calculation view A file containing a design-time definition of an calculation view;
the view can be referenced in an OData service definition.

.hdbdd CDS document A file containing a design-time definition of a CDS-compliant
data-persistence object (for example, an entity or a data type)
using the Data Definition Language (DDL).

.hdbprocedure Procedure Replaces .procedure. A design-time definition of a database
function for performing complex and data-intensive business
logic that cannot be performed with standard SQL.

.hdbrole Role A file containing a design-time definition of an SAP HANA user
role.

.hdbscalarfunction Scalar user-defined func
tion

A file containing a design-time definition of a a scalar user-de
fined function (UDF), which is a custom function that can be
called in the SELECT and WHERE clauses of an SQL statement.

.hdbschema Schema A design-time definition of a database schema, which organizes
database objects into groups.

.hdbsequence Sequence A design-time definition of a database sequence, which is set of
unique numbers, for example, for use as primary keys for a spe
cific table.

.hdbstructure Table type A design-time definition of a database table type using
the .hdbtable syntax. Used for defining reusable table types,
for example, for parameters in procedures.

.hdbsynonym Database synonym A design-time definition of a database synonym using
the .hdbsynonym syntax.

.hdbtable Table A design-time definition of a database table using
the .hdbtable syntax.

.hdbtablefunction Table user-defined func
tion

A file containing a design-time definition of a table user-defined
function (UDF), which is a custom function that can be called in
the FROM–clause of an SQL statement.

.hdbtextbundle Resource Bundle A file for defining translatable UI texts for an application. Used in
SAP UI5 applications.

.hdbti Table Import definition A table-import configuration that specifies which .csv file is im
ported into which table in the SAP HANA system.

150 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

File Extension Object Description

.hdbview SQL View A design-time definition of a database view, which is a virtual ta
ble based on an SQL query.

.procedure Procedure A design-time definition of a database function for performing
complex and data-intensive business logic that cannot be per
formed with standard SQL.

.proceduretemplate Procedure template A design-time artifact containing a base script with predefined
placeholders for objects such as tables, views and columns.

.project Project An Eclipse project for developing your application or part of an
application. The .project file is a design-time artifact that is
stored in the SAP HANA repository.

.searchruleset Search Rule Set * A file that defines a set of rules for use with fuzzy searches. The
rules help decide what is a valid match in a search.

.xsaccess Application Access File An application-specific configuration file that defines permis
sions for a native SAP HANA application, for example, to manage
access to the application and running objects in the package.

.xsapp Application Descriptor An application-specific file in a repository package that defines
the root folder of a native SAP HANA application. All files in that
package (and any subpackages) are available to be called via
URL.

.xsappsite Application Site A file that defines an application site

.xshttpdest HTTP destination config-
uration

A file that defines details for connections to a remote destination
by HTTP (or HTTPS)

.xsjob Scheduled XS job A JSON-compliant file used to define recurring tasks that run in
the background (independent of any HTTP request/response
process); a scheduled job can either execute a JavaScript func
tion or call a SQLScript procedure.

.xsjs Server-Side JavaScript
Code

A file containing JavaScript code that can run in SAP HANA Ex
tended Application Services and be accessed via URL

.xsjslib Server-Side JavaScript
Library

A file containing JavaScript code that can run in SAP HANA Ex
tended Application Services but cannot be accessed via URL.
The code can be imported into an .xsjs code file.

.xsoauthappconfig OAuth application con
figuration file

A file describing high-level details of an application that enables
logon to a service running on a remote HTTP destination using
OAuth

.xsoauthclientconfi
g

OAuth client configura-
tion file

A file containing detailed information about a client application
that uses OAuth as the authentication mechanism for logon to a
remote HTTP destination

.xsoauthclientflavo
r

OAuth client flavor file The corresponding OAuth flavors file for the OAuth client configu-
ration

.xsodata OData Descriptor A design-time object that defines an OData service that exposes
SAP HANA data from a specified end point.

.xsprivileges Application Privilege A file that defines a privilege that can be assigned to an SAP
HANA Extended Application Services application, for example,
the right to start or administer the application.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 151

File Extension Object Description

.xssecurestore Application secure store The design-time file that creates an application-specific secure
store; the store is used by the application to store data safely and
securely in name-value form.

.xssqlcc SQL Connection Config-
uration

A file that enables execution of SQL statements from inside
server-side JavaScript code with credentials that are different to
those of the requesting user

.xswidget Widget A file that defines a standalone SAP HANA application for the
purpose of integration into an application site

.xsxmla XMLA Descriptor A design time object that defines an XMLA service that exposes
SAP HANA data

 Caution
(*) For information about the capabilities available for your license and installation scenario, refer to the
Feature Scope Description (FSD) for your specific SAP HANA version on the SAP HANA Platform webpage.

Additional Application Building Blocks

Object Description File Extension

Package A container in the repository for development objects. Packages are represented by
folders.

Attribute, Analytic and
Calculation View

A view created with modeling tools and designed to model a busi
ness use case.

Created with the Systems
view.

Decision Table A table used to model business rules, for example, to manage
data validation and quality.

Analytic Privilege A set of rules that allows users to seeing a subset of data in a ta
ble or view.

4.8.2 Studio-Based SAP HANA Development Tools

The SAP HANA Development perspective in SAP HANA studio provides context-sensitive access to a variety of
useful developer tools.

In SAP HANA studio's SAP HANA Development perspective, the view you are using determines what tools are
available and the action that can be performed on the displayed objects. For example, in the Project Explorer
view, the application developer can use the alternate mouse button to display a context-sensitive menu that
provides access to Repository activation features, debugging configuration tools, and so on.

Project Explorer View

The following table lists a selection of the most frequently used tools and features that are available in the
context-sensitive menu for artifacts in the Project Explorer view of the SAP HANA Development perspective.

152 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

https://help.sap.com/viewer/product/SAP_HANA_PLATFORM/

SAP HANA XS Development Options

Menu Group Menu Option Description

Team Commit Copy the most recent version of the design-time artifact from the
local file system to the Repository. Note that every local saved
change is immediately committed to the user’s corresponding in
active workspace in the SAP HANA Repository.

Activate Use the corresponding design-time definition in the Repository to
generate a catalog object for the currently selected inactive arti
fact.

Activate All... Generate a catalog object based on the corresponding design-time
definition in the Repository for all currently inactive artifacts in a
particular workspace; you can choose to include/exclude individual
artifacts from the displayed list. Inactive artifacts are local copies
of Repository artifacts saved in your workspace.

Check Simulate an activate operation (including a syntax check)

Regenerate Force generation of a run-time catalog object without starting the
corresponding design-time activation process

Remove from Client Undo a check-out operation without the risk of deleting content in
the SAP HANA Repository

Show in Display details of the selected repository artifact in the
Repositories, Synchronize, or History view.

Synchronize Synchronize changes made to local file version with the version of
the file in the repository

Debug as... Name/ID Debug the code in the selected design-time artifact using an exist
ing debug configuration.

Debug configuration... Debug the code in the selected design-time artifact using an new
debug configuration that you define now, for example: XS Java
Script, SAP HANA stored procedure...

Run as... HTML/XS Service/... Test the selected Repository artifact in a Web browser directly
from the Project Explorer view using the services provided by the
currently connected SAP HANA server; the artifact's file extension
is used to determine how to display the content.

Run configuration... Run the selected Repository artifact in a Web browser using a new
runtime configuration, for example, for SAP HANA XS JavaScript
artifacts, on a specific SAP HANA instance, and with defined user
logon credentials.

Refresh Refresh Triggers a recursive checkout of Repository content, synchronizes
differences between the Repository workspace and the local file
system by fetching changes from the server

The following table lists additional tools and features that are available in the context-sensitive menu for
artifacts in the Repositories view of the SAP HANA Development perspective.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 153

Additional SAP HANA XS Development Options

Tool Description

Inactive testing Test repository objects that have not yet been activated, for example: XSJS, XSOData,
XSJSlib,

 Note
The SAP HANA server must be running in developer_mode, and you must set a cli
ent-side cookie named sapXsDevWorkspace to the name of your Repository work
space.

Compare with active version Display the differences between two versions of the same repository artifact or two differ-
ent artifacts. You can select and compare multiple artifacts (CTRL and click the alternate
mouse button). You can also compare an individual repository artifact with the version of
the artifact that is currently active in the repository or a version from the artifact's revision-
history list .

Get Where-Used List Look for any references to the currently selected artifact and display the results in the
Search view. The search includes both inactive artifacts (in your Repository workspace)
and activated artifacts in the Repository. The Get Where-Used List option is available in
both the Project Explorer and the Repositories view.

Share Project Connect the local (client) project folders with SAP HANA repository and synchronizes the
contents between client and server. This option is only available with an unshared project
artifact.

Unshare Project Cancel any synchronization between the local file system and the SAP HANA repository;
the Unshare action does not delete any files, unless you specifically enable the delete op
tion. The Unshare option is only available with an already shared project artifact.

Move Moves selected SAP HANA artifacts or an entire package within or across projects in the
same Repository workspace. All SAP HANA artifacts referencing the moved artifacts are
updated too. You must manually activate all the moved and referencing artifacts. You can
move the following SAP HANA artifacts:

● Attribute View
● Analytical View
● Calculation View
● Analytic Privilege

Paste Special Clones one or more packages and all their artifacts and copies them to a target package.
While copying, this feature detects if the target contains any other artifacts from a previous
Paste Special operation. If any other cloned artifacts exist, you can update references to
the existing cloned artifacts. You must manually activate the cloned artifacts. You can paste
the following artifacts:

● Attribute View
● Analytical View
● Calculation View
● Analytic Privilege

Repositories View

The following table lists the most frequently used tools and features that are available in the context-sensitive
menu for artifacts in the Repositories view of the SAP HANA Development perspective.

154 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

 Note
The items displayed in the Team popup menu are context-sensitive; the options available in the menu
depend on the type of repository object selected.

Tool/Feature Description

Add package This option is only available when you select another package.

Activate Generate a catalog object based on the corresponding design-time definition in the Reposi
tory for the selected artifact

Activate All... Generate a catalog object based on the corresponding design-time definition in the Reposi
tory for all currently inactive artifacts; you can choose to include/exclude individual artifacts
from the displayed list. Inactive artifacts are local copies of Repository artifacts saved in
your workspace.

Check Simulate an activate operation (including a syntax check)

Check out Copy package content from the Repository to the local workspace folder. Synchronize the
repository with the local workspace (refresh)

Create Repository Work
space

Start the repository workspace wizard.

Delivery Unit management (Package only): Start the lifecycle-management tools and display details of the correspond
ing delivery unit (DU) if available.

Edit package (Package only): Display and edit details of the selected package, for example: the delivery
unit the package is assigned to, the package type, and the person responsible for the pack
age's creation and maintenance.

Get Where-Used List Display any references to the currently selected artifact in the Search view. The search in
cludes both inactive artifacts (in your Repository workspace) and activated artifacts in the
SAP HANA Repository. The Get Where-Used List option is available in both the Project
Explorer and the Repositories view.

Open Open the selected file in the appropriate editor.

Product management (Package only): Start the lifecycle-management tools and display details of the correspond
ing product, if available.

Remove from client Remove the selected file(s) from the local file system; the repository version remains un
touched.

Refresh Synchronize the contents of the selected repository package with the local workspace (F5)

Reset to Replace the selected file with the base version or the currently active version

 Caution
When you choose base version, you restore the original version of the object you are
currently editing. When you choose active version, the version that you are currently ed
iting becomes the new active version.

Show in history view Display the complete list of revisions available for the selected item; the details displayed
include the version number, the date created, and the file owner. Right-click an entry in the
history list to display further menu options, for example, to compare two versions of the file.

SAP HANA Developer Guide
Setting Up Your Application P U B L I C 155

Tool/Feature Description

Moves Moves selected SAP HANA artifacts or an entire package within or across projects in the
same Repository workspace. All SAP HANA artifacts referencing the moved artifacts are up
dated too. You must manually activate all the moved and referencing artifacts. You can move
the following SAP HANA artifacts:

● Attribute View
● Analytical View
● Calculation View
● Analytic Privilege

Paste Special Clones one or more packages and all their artifacts and copies them to a target package.
While copying, this feature detects if the target contains any other artifacts from a previous
Paste Special operation. If any other cloned artifacts exist, you can update references to the
existing cloned artifacts. You must manually activate the cloned artifacts. You can paste the
following artifacts:

● Attribute View
● Analytical View
● Calculation View
● Analytic Privilege

156 P U B L I C
SAP HANA Developer Guide

Setting Up Your Application

5 Setting up the Data Persistence Model in
SAP HANA

The persistence model defines the schema, tables, sequences, and views that specify what data to make
accessible for consumption by XS applications and how.

In SAP HANA Extended Application Services (SAP HANA XS), the persistence model is mapped to the
consumption model that is exposed to client applications and users so that data can be analyzed and displayed
in the appropriate form in the client application interface. The way you design and develop the database
objects required for your data model depends on whether you are developing applications that run in the SAP
HANA XS classic or XS advanced run-time environment.

● SAP HANA XS Classic Model [page 157]
● SAP HANA XS Advanced Model [page 158]

SAP HANA XS Classic Model

SAP HANA XS classic model enables you to create database schema, tables, views, and sequences as design-
time files in the SAP HANA repository. Repository files can be read by applications that you develop. When
implementing the data persistence model in XS classic, you can use either the Core Data Services (CDS)
syntax or HDBtable syntax (or both). “HDBtable syntax” is a collective term; it includes the different
configuration schema for each of the various design-time data artifacts, for example: schema (.hdbschema),
sequence (.hdbsequence), table (.hdbtable), and view (.hdbview).

All repository files including your view definition can be transported (along with tables, schema, and
sequences) to other SAP HANA systems, for example, in a delivery unit. A delivery unit is the medium SAP
HANA provides to enable you to assemble all your application-related repository artifacts together into an
archive that can be easily exported to other systems.

 Note
You can also set up data-provisioning rules and save them as design-time objects so that they can be
included in the delivery unit that you transport between systems.

The rules you define for a data-provisioning scenario enable you to import data from comma-separated values
(CSV) files directly into SAP HANA tables using the SAP HANA XS table-import feature. The complete data-
import configuration can be included in a delivery unit and transported between SAP HANA systems for reuse.

As part of the process of setting up the basic persistence model for SAP HANA XS, you create the following
artifacts in the XS classic repository:

XS Classic Data Persistence Artifacts by Language Syntax and File Suffix

XS Classic Artifact Type CDS HDBTable

Schema .hdbschema * .hdbschema

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 157

XS Classic Artifact Type CDS HDBTable

Synonym .hdbsynonym* .hdbsynonym

Table .hdbdd .hdbtable

Table Type .hdbdd .hdbstructure

View .hdbdd .hdbview

Association .hdbdd -

Sequence .hdbsequence* .hdbsequence

Structured Types .hdbdd -

Data import .hdbti .hdbti

 Note
(*) To create a schema, a synonym, or a sequence, you must use the appropriate HDBTable syntax, for
example, .hdbschema, .hdbsynonym, or .hdbsequence. In a CDS document, you can include references
to both CDS and HDBTable artifacts.

On activation of a repository artifact, the file suffix (for example, .hdbdd or .hdb[table|view]) is used to
determine which run-time plug-in to call during the activation process. When you activate a design-time artifact
in the SAP HANA Repository, the plug-in corresponding to the artifact's file suffix reads the contents of
repository artifact selected for activation (for example, a table, a view, or a complete CDS document that
contains multiple artifact definitions), interprets the artifact definitions in the file, and creates the appropriate
corresponding run-time objects in the catalog.

SAP HANA XS Advanced Model

For the XS advanced run time, you develop multi-target applications (MTA), which contain modules, for
example: a database module, a module for your business logic (Node.js), and a UI module for your client
interface (HTML5). The modules enable you to group together in logical subpackages the artifacts that you
need for the various elements of your multi-target application. You can deploy the whole package or the
individual subpackages.

As part of the process of defining the database persistence model for your XS advanced application, you use
the database module to store database design-time artifacts such as tables and views, which you define using
Core Data Services (CDS). However, you can also create procedures and functions, for example, using
SQLScript, which can be used to insert data into (and remove data from) tables or views.

 Note
In general, CDS works in XS advanced (HDI) in the same way that it does in the SAP HANA XS classic
Repository. For XS advanced, however, there are some incompatible changes and additions, for example, in
the definition and use of name spaces, the use of annotations, the definition of entities (tables) and
structure types. For more information, see CDS Documents in XS Advanced in the list of Related Links
below.

158 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

In XS advanced, application development takes place in the context of a project. The project brings together
individual applications in a so-called Multi-Target Application (MTA), which includes a module in which you
define and store the database objects required by your data model.

1. Define the data model.
Set up the folder structure for the design-time representations of your database objects; this could include
CDS documents that define tables, data types, views, and so on. But it could also include other database
artifacts, too, for example: your stored procedures, synonyms, sequences, scalar (or table) functions, and
any other artifacts your application requires.

 Tip
You can also define the analytic model, for example, the calculation views and analytic privileges that
are to be used to analyze the underlying data model and specify who (or what) is allowed access.

2. Set up the SAP HANA HDI deployment infrastructure.
This includes the following components:
○ The HDI configuration

Map the design-time database artifact type (determined by the file extension, for
example, .hdbprocedure, or .hdbcds in XS advanced) to the corresponding HDI build plug-in in the
HDI configuration file (.hdiconfig).

○ Run-time name space configuration (optional)
Define rules that determine how the run-time name space of the deployed database object is formed.
For example, you can specify a base prefix for the run-time name space and, if desired, specify if the
name of the folder containing the design-time artifact is reflected in the run-time name space that the
deployed object uses.
Alternatively, you can specify the use of freestyle names, for example, names that do not adhere to any
name-space rules.

3. Deploy the data model.
Use the design-time representations of your database artifacts to generate the corresponding active
objects in the database catalog.

4. Consume the data model.
Reference the deployed database objects from your application, for example, using OData services bound
to UI elements.

Related Information

Creating the Persistence Model in Core Data Services [page 159]

5.1 Creating the Persistence Model in Core Data Services

Core data services (CDS) is an infrastructure that can be used to define and consume semantically rich data
models in SAP HANA.

The model described in CDS enables you to use the Data Definition Language to define the artifacts that make
up the data-persistence model. You can save the data-persistence object definition as a CDS artifact, that is; a

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 159

design-time object that you manage in the SAP HANA repository and activate when necessary. Using a data
definition language (DDL), a query language (QL), and an expression language (EL), CDS enables write
operations, transaction semantics, and more.

You can use the CDS specification to create a CDS document which defines the following artifacts and
elements:

● Entities (tables)
● Views
● User-defined data types (including structured types)
● Contexts
● Associations
● Annotations

 Note
To create a schema, a synonym, or a sequence, you must use the appropriate .hdbtable artifact, for
example, .hdbschema, .hdbsynonym, or .hdbsequence. You can reference these artifacts in a CDS
document.

CDS artifacts are design-time definitions that are used to generate the corresponding run-time objects, when
the CDS document that contains the artifact definitions is activated in the SAP HANA repository. In CDS, the
objects can be referenced using the name of the design-time artifact in the repository; in SQL, only the name of
the catalog object can be used. The CDS document containing the design-time definitions that you create
using the CDS-compliant syntax must have the file extension .hdbdd, for example, MyCDSTable.hdbdd.

Related Information

Create a CDS Document [page 164]
Create an Entity in CDS [page 188]
Create a User-defined Structured Type in CDS [page 210]
Create an Association in CDS [page 224]
Create a View in CDS [page 239]
CDS Annotations [page 177]

5.1.1 CDS Editors

The SAP Web IDE for SAP HANA provides editing tools specially designed to help you create and modify CDS
documents.

SAP Web IDE for SAP HANA includes dedicated editors that you can use to define data-persistence objects in
CDS documents using the DDL-compliant Core Data Services syntax. SAP HANA XS advanced model
recognizes the .hdbcds file extension required for CDS object definitions and, at deployment time, calls the
appropriate plug-in to parse the content defined in the CDS document and create the corresponding run-time
object in the catalog. If you right-click a file with the .hdbcds extension in the Project Explorer view of your

160 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

application project, SAP Web IDE for SAP HANA provides the following choice of editors in the context-sensitive
menu.

● CDS Text Editor [page 161]
View and edit DDL source code in a CDS document as text with the syntax elements highlighted for easier
visual scanning.
Right-click a CDS document: Open With Text Editor

● CDS Graphical Editor [page 162]
View a graphical representation of the contents of a CDS source file, with the option to edit the source code
as text with the syntax elements highlighted for easier visual scanning.
Right-click a CDS document: Open With Graphical Editor

CDS Text Editor

SAP Web IDE for SAP HANA includes a dedicated editor that you can use to define data-persistence objects
using the CDS syntax. SAP HANA recognizes the .hdbcds file extension required for CDS object definitions
and calls the appropriate repository plug-in. If you double-click a file with the .hdbcds extension in the Project
Explorer view, SAP Web IDE for SAP HANA automatically displays the selected file in the CDS text editor.

The CDS editor provides the following features:

● Syntax highlights
The CDS DDL editor supports syntax highlighting, for example, for keywords and any assigned values. To
customize the colors and fonts used in the CDS text editor, choose Tools Preferences Code Editor
Editor Appearance and select a theme and font size.

 Note
The CDS DDL editor automatically inserts the keyword namespace into any new DDL source file that
you create using the New CDS Artifact dialog.

The following values are assumed:

○ namespace = <ProjectName>.<ApplDBModuleName>
○ context = <NewCDSFileName>

● Keyword completion
The editor displays a list of DDL suggestions that could be used to complete the keyword you start to enter.
To change the settings, choose Tools Code Completion in the toolbar menu.

● Code validity
The CDS text editor provides syntax validation, which checks for parser errors as you type. Semantic errors
are only shown when you build the XS advanced application module to which the CDS artifacts belong; the
errors are shown in the console tab.

● Comments
Text that appears after a double forward slash (//) or between a forward slash and an asterisk (/*...*/)
is interpreted as a comment and highlighted in the CDS editor (for example, //this is a comment).

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 161

CDS Graphical Editor

The CDS graphical editor provides graphical modeling tools that help you to design and create database
models using standard CDS artifacts with minimal or no coding at all. You can use the CDS graphical editor to
create CDS artifacts such as entities, contexts, associations, structured types, and so on.

The built-in tools provided with the CDS Graphical Editor enable you to perform the following operations:

● Create CDS files (with the extension .hdbcds) using a file-creation wizard.
● Create standard CDS artifacts, for example: entities, contexts, associations (to internal and external

entities), structured types, scalar types, ...
● Define technical configuration properties for entities, for example: indexes, partitions, and table groupings.
● Generate the relevant CDS source code in the text editor for the corresponding database model.
● Open in the CDS graphical editor data models that were created using the CDS text editor.

 Tip
The built-in tools included with the CDS Graphical Editor are context-sensitive; right-click an element
displayed in the CDS Graphical editor to display the tool options that are available.

5.1.1.1 CDS Text Editor

The CDS text editor displays the source code of your CDS documents in a dedicated text-based editor.

SAP HANA studio includes a dedicated editor that you can use to define data-persistence objects using the
CDS syntax. SAP HANA studio recognizes the .hdbdd file extension required for CDS object definitions and
calls the appropriate repository plugin. If you double-click a file with the .hdbdd extension in the Project
Explorer view, SAP HANA studio automatically displays the selected file in the CDS editor.

The CDS editor provides the following features:

● Syntax highlights
The CDS DDL editor supports syntax highlighting, for example, for keywords and any assigned values
(@Schema: 'MySchema'). You can customize the colors and fonts used in the Eclipse Preferences
(Window Preferences General Appearance Colors and Fonts CDS DDL).

 Note
The CDS DDL editor automatically inserts the mandatory keyword namespace into any new DDL
source file that you create using the New DDL Source File dialog. The following values are assumed:
○ namespace = <repository package name>

● Keyword completion
The editor displays a list of DDL suggestions that could be used to complete the keyword you start to enter.
You can insert any of the suggestions using the SPACE + TAB keys.

● Code validity
You can check the validity of the syntax in your DDL source file before activating the changes in the SAP
HANA repository. Right-click the file containing the syntax to check and use the Team Check option
in the context menu.

162 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 Note
Activating a file automatically commits the file first.

● Comments
Text that appears after a double forward slash (//) or between a forward slash and an asterisk (/*...*/)
is interpreted as a comment and highlighted in the CDS editor (for example, //this is a comment).

 Tip
The Project Explorer view associates the .hdbdd file extension with the DDL icon. You can use this icon to
determine which files contain CDS-compliant DDL code.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 163

5.1.2 Create a CDS Document

A CDS document is a design-time source file that contains definitions of the objects you want to create in the
SAP HANA catalog.

Prerequisites

To complete this task successfully, note the following prerequisites:

● You must have access to an SAP HANA system.
● You must have already created a development workspace and a project.
● You must have shared a project for the CDS artifacts so that the newly created files can be committed to

(and synchronized with) the repository.
● You must have created a schema for the CDS catalog objects created when the CDS document is activated

in the repository, for example, MYSCHEMA
● The owner of the schema must have SELECT privileges in the schema to be able to see the generated

catalog objects.

Context

CDS documents are design-time source files that contain DDL code that describes a persistence model
according to rules defined in Core Data Services. CDS documents have the file suffix .hdbdd. Activating the
CDS document creates the corresponding catalog objects in the specified schema. To create a CDS document
in the repository, perform the following steps:

Procedure

1. Start the SAP HANA studio.
2. Open the SAP HANA Development perspective.
3. Open the Project Explorer view.
4. Create the CDS document.

Browse to the folder in your project workspace where you want to create the new CDS document and
perform the following steps:

a. Right-click the folder where you want to save the CDS document and choose New Other...
Database Development DDL Source File in the context-sensitive popup menu.

b. Enter the name of the CDS document in the File Name box, for example, MyModel.

 Tip
File extensions are important. If you are using SAP HANA studio to create artifacts in the SAP
HANA Repository, the file-creation wizard adds the required file extension automatically (for

164 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

example, MyModel.hdbdd) and, if appropriate, enables direct editing of the new file in the
corresponding editor.

c. Choose Finish to save the changes and commit the new CDS document to the repository.
The file-creation wizard creates a basic CDS document with the following elements:
○ Namespace

The name of the repository package in which you created the new CDS document, for example,
acme.com.hana.cds.data

○ Top-level element
The name of the top-level element in a CDS document must match the name of the CDS
document itself; this is the name you enter when using the file-creation wizard to create the new
CDS document, for example, MyModel, MyContext, or MyEntity. In this example, the top-level
element is a context.

namespace acme.com.hana.cds.data; context MyModel {
 };

5. Define the details of the CDS artifacts.

Open the CDS document you created in the previous step, for example, MyModel.hdbdd, and add the
CDS-definition code to the file. The CDS code describes the CDS artifacts you want to add, for example:
entity definitions, type definitions, view definitions and so on:

 Note
The following code examples are provided for illustration purposes only.

a. Add a schema name.
The @Schema annotation defines the name of the schema to use to store the artifacts that are
generated when the CDS document is activated. The schema name must be inserted before the top-
level element in the CDS document; in this example, the context MyModel.

 Note
If the schema you specify does not exist, you cannot activate the new CDS document.

namespace acme.com.hana.cds.data; @Schema: 'SAP_HANA_CDS'
context MyModel {
 };

b. Add structured types, if required.
Use the type keyword to define a type artifact in a CDS document. In this example, you add the user-
defined types and structured types to the top-level entry in the CDS document, the context MyModel.

namespace acme.com.hana.cds.data; @Schema: 'SAP_HANA_CDS'
context MyModel {
 type BusinessKey : String(10);
 type SString : String(40); type <[...]> <[...]> };

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 165

c. Add a new context, if required.
Contexts enable you to group together related artifacts. A CDS document can only contain one top-
level context, for example, MyModel {};. Any new context must be nested within the top-level entry
in the CDS document, as illustrated in the following example.

namespace acme.com.hana.cds.data; @Schema: 'SAP_HANA_CDS'
context MyModel {
 type BusinessKey : String(10);
 type SString : String(40); type <[...]> context MasterData { <[...]> };
 context Sales { <[...]> };
 context Purchases { <[...]> }; };

d. Add new entities.
You can add the entities either to the top-level entry in the CDS document; in this example, the context
MyModel or to any other context, for example, MasterData, Sales, or Purchases. In this example,
the new entities are column-based tables in the MasterData context.

namespace acme.com.hana.cds.data; @Schema: 'SAP_HANA_CDS'
context MyModel {
 type BusinessKey : String(10);
 type SString : String(40); type <[...]> context MasterData {
 @Catalog.tableType : #COLUMN
 Entity Addresses {
 key AddressId: BusinessKey;
 City: SString;
 PostalCode: BusinessKey; <[...]> };
 @Catalog.tableType : #COLUMN
 Entity BusinessPartner {
 key PartnerId: BusinessKey;
 PartnerRole: String(3); <[...]> };
 };
 context Sales { <[...]> };
 context Purchases { <[...]> }; };

6. Save the CDS document.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository.
You do not need to explicitly commit it again.

166 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

7. Activate the changes in the repository.
a. Locate and right-click the new CDS document in the Project Explorer view.

b. In the context-sensitive pop-up menu, choose Team Activate .

 Note
If you cannot activate the new CDS document, check that the specified schema already exists and
that there are no illegal characters in the name space, for example, the hyphen (-).

8. Ensure access to the schema where the new CDS catalog objects are created.
After activation in the repository, a schema object is only visible in the catalog to the _SYS_REPO user. To
enable other users, for example the schema owner, to view the newly created schema and the objects it
contains, you must grant the user the required SELECT privilege for the schema object.

 Note
If you already have the appropriate SELECT privilege for the schema, you do not need to perform this
step.

a. In the SAP HANA studio Systems view, right-click the SAP HANA system hosting the repository where
the schema was activated and choose SQL Console in the context-sensitive popup menu.

b. In the SQL console, execute the statement illustrated in the following example, where <SCHEMANAME>
is the name of the newly activated schema, and <username> is the database user ID of the schema
owner:

call
_SYS_REPO.GRANT_SCHEMA_PRIVILEGE_ON_ACTIVATED_CONTENT('select','<SCHEMANAME
>','<username>');

9. Check that a catalog objects has been successfully created for each of the artifacts defined in the CDS
document.
When a CDS document is activated, the activation process generates a corresponding catalog object
where appropriate for the artifacts defined in the document; the location in the catalog is determined by
the type of object generated.

 Note
Non-generated catalog objects include: scalar types, structured types, and annotations.

a. In the SAP HANA Development perspective, open the Systems view.
b. Navigate to the catalog location where new object has been created, for example:

Catalog Object Location

Entities <SID> Catalog <MYSCHEMA> Tables

Types <SID> Catalog <MYSCHEMA> Procedures Table Types

c. Open a data preview for the new object.
Right-click the new object and choose Open Data Preview in the pop-up menu.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 167

Related Information

CDS Namespaces [page 173]
CDS Naming Conventions [page 172]
CDS Contexts [page 174]
CDS Annotations [page 177]
CDS Comment Types [page 186]

5.1.2.1 CDS Documents

CDS documents are design-time source files that contain DDL code that describes a persistence model
according to rules defined in Core Data Services.

CDS documents have the file suffix .hdbdd. Each CDS document must contain the following basic elements:

● A name space declaration
The name space you define must be the first declaration in the CDS document and match the absolute
package path to the location of the CDS document in the repository. It is possible to enclose parts of the
name space in quotes (“”), for example, to solve the problem of illegal characters in name spaces.

 Note
If you use the file-creation wizard to create a new CDS document, the name space is inserted
automatically; the inserted name space reflects the repository location you select to create the new
CDS document.

● A schema definition
The schema you specify is used to store the catalog objects that are defined in the CDS document, for
example: entities, structured types, and views. The objects are generated in the catalog when the CDS
document is activated in the SAP HANA repository.

● CDS artifact definitions
The objects that make up your persistence model, for example: contexts, entities, structured types, and
views

Each CDS document must contain one top-level artifact, for example: a context, a type, an entity, or a view. The
name of the top-level artifact in the CDS document must match the file name of the CDS document, without
the suffix. For example, if the top-level artifact is a context named MyModel, the name of the CDS document
must be MyModel.hdbdd.

 Note
On activation of a repository file in, the file suffix, for example, .hdbdd, is used to determine which runtime
plug-in to call during the activation process. The plug-in reads the repository file selected for activation, in
this case a CDS-compliant document, parses the object descriptions in the file, and creates the appropriate
runtime objects in the catalog.

If you want to define multiple CDS artifacts within a single CDS document (for example, multiple types,
structured types, and entities), the top-level artifact must be a context. A CDS document can contain multiple
contexts and any number and type of artifacts. A context can also contain nested sub-contexts, each of which
can also contain any number and type of artifacts.

168 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

When a CDS document is activated, the activation process generates a corresponding catalog object for each
of the artifacts defined in the document; the location in the catalog is determined by the type of object
generated. The following table shows the catalog location for objects generated by the activation of common
CDS artifacts.

Catalog Location for CDS-generated Artifacts

CDS Artifact Catalog Location

Entity <SID> Catalog <MYSCHEMA> Tables

View <SID> Catalog <MYSCHEMA> Views

Structured type <SID> Catalog <MYSCHEMA> Procedures Table Types

The following example shows the basic structure of a single CDS document that resides in the package
acme.com.hana.cds.data in the SAP HANA repository. the CDS document defines the following CDS
artifacts:

● Types:
○ BusinessKey and SString

● Entities:
○ Addresses, BusinessPartners, Header, and Item

● Contexts:
○ MyModel, which contains the nested contexts: MasterData, Sales, and Purchases

● External references
The using keyword enables you to refer to artifacts defined in separate CDS documents, for example,
MyModelB.hdbdd. You can also assign an alias to the reference, for example, AS <alias>.

● Annotations
Built-in annotations, for example, @Catalog, @Schema, and @nokey, are important elements of the CDS
syntax used to define CDS-compliant catalog objects. You can define your own custom annotations, too.

 Note
The following code snippet is incomplete [...]; it is intended for illustration purposes only.

 Sample Code

namespace acme.com.hana.cds.data; using acme.com.hana.cds.data::MyModelB.MyContextB1 as ic;
@Schema: 'SAP_HANA_CDS'
context MyModel {
 type BusinessKey : String(10);
 type SString : String(40); type <[...]> context MasterData {
 @Catalog.tableType : #COLUMN
 Entity Addresses {
 key AddressId: BusinessKey;
 City: SString;
 PostalCode: BusinessKey; <[...]> };
 @Catalog.tableType : #COLUMN
 Entity BusinessPartner {
 key PartnerId: BusinessKey;
 PartnerRole: String(3);

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 169

 <[...]> };
 };
 context Sales {
 @Catalog.tableType : #COLUMN
 Entity Header {
 key SalesOrderId: BusinessKey; <[...]> };
 @Catalog.tableType : #COLUMN
 @MyAnnotation : 'foo'
 Entity Item {
 key SalesOrderId: BusinessKey;
 key SalesOrderItem: BusinessKey; <[...]> };
 };
 context Purchases { <[...]> }; };

Related Information

Create a CDS Document [page 164]
CDS Namespaces [page 173]
CDS Annotations [page 177]
External Artifacts in CDS [page 170]

5.1.2.2 External Artifacts in CDS

You can define an artifact in one CDS document by referring to an artifact that is defined in another CDS
document.

The CDS syntax enables you to define a CDS artifact in one document by basing it on an “external” artifact - an
artifact that is defined in a separate CDS document. Each external artifact must be explicitly declared in the
source CDS document with the using keyword, which specifies the location of the external artifact, its name,
and where appropriate its CDS context.

 Tip
The using declarations must be located in the header of the CDS document between the namespace
declaration and the beginning of the top-level artifact, for example, the context.

The external artifact can be either a single object (for example, a type, an entity, or a view) or a context. You can
also include an optional alias in the using declaration, for example, ContextA.ContextA1 as ic. The alias
(ic) can then be used in subsequent type definitions in the source CDS document.

//Filename = Pack1/Distributed/ContextB.hdbdd namespace Pack1.Distributed;
using Pack1.Distributed::ContextA.T1;

170 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

using Pack1.Distributed::ContextA.ContextAI as ic;
using Pack1.Distributed::ContextA.ContextAI.T3 as ict3;
using Pack1.Distributed::ContextA.ContextAI.T3.a as a; // error, is not an
artifact
context ContextB {
 type T10 {
 a : T1; // Integer
 b : ic.T2; // String(20)
 c : ic.T3; // structured
 d : type of ic.T3.b; // String(88)
 e : ict3; // structured
 x : Pack1.Distributed::ContextA.T1; // error, direct reference not allowed
 };
 context ContextBI {
 type T1 : String(7); // hides the T1 coming from the first using declaration
 type T2 : T1; // String(7)
 }; };

The CDS document ContextB.hdbdd shown above uses external artifacts (data types T1 and T3) that are
defined in the “target” CDS document ContextA.hdbdd shown below. Two using declarations are present in
the CDS document ContextB.hdbdd; one with no alias and one with an explicitly specified alias (ic). The first
using declaration introduces the scalar type Pack1.Distributed::ContextA.T1. The second using
declaration introduces the context Pack1.Distributed::ContextA.ContextAI and makes it accessible by
means of the explicitly specified alias ic.

 Note
If no explicit alias is specified, the last part of the fully qualified name is assumed as the alias, for example
T1.

The using keyword is the only way to refer to an externally defined artifact in CDS. In the example above, the
type x would cause an activation error; you cannot refer to an externally defined CDS artifact directly by using
its fully qualified name in an artifact definition.

//Filename = Pack1/Distributed/ContextA.hdbdd namespace Pack1.Distributed;
context ContextA {
 type T1 : Integer;
 context ContextAI {
 type T2 : String(20);
 type T3 {
 a : Integer;
 b : String(88);
 };
 };
};

 Note
Whether you use a single or multiple CDS documents to define your data-persistence model, each CDS
document must contain only one top-level artifact, and the name of the top-level artifact must correspond
to the name of the CDS document. For example, if the top-level artifact in a CDS document is ContextA,
then the CDS document itself must be named ContextA.hdbdd.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 171

5.1.2.3 CDS Naming Conventions

Rules and restrictions apply to the names of CDS documents and the package in which the CDS document
resides.

The rules that apply for naming CDS documents are the same as the rules for naming the packages in which
the CDS document is located. When specifying the name of a package or a CDS document (or referencing the
name of an existing CDS object, for example, within a CDS document), bear in mind the following rules:

● CDS source-file name
From SAP HANA 2.0 SPS 01, it is possible to define multiple top-level artifacts (for example, contexts,
entities, etc.) in a single CDS document. For this reason, you can choose any name for the CDS source file;
there is no longer any requirement that the name of the CDS source file must be the same as the name of a
top-level artifact.

● File suffix
The file suffix differs according to SAP HANA XS version:
○ XS classic

.hdbdd, for example, MyModel.hdbdd.
○ XS advanced

.hdbcds, for example, MyModel.hdbcds.
● Permitted characters

CDS object and package names can include the following characters:
○ Lower or upper case letters (aA-zZ) and the underscore character (_)
○ Digits (0-9)

● Forbidden characters
The following restrictions apply to the characters you can use (and their position) in the name of a CDS
document or a package:
○ You cannot use either the hyphen (-) or the dot (.) in the name of a CDS document.
○ You cannot use a digit (0-9) as the first character of the name of either a CDS document or a package,

for example, 2CDSobjectname.hdbdd (XS classic) or acme.com.1package.hdbcds (XS advanced).
○ The CDS parser does not recognize either CDS document names or package names that consist

exclusively of digits, for example, 1234.hdbdd (XS classic) or acme.com.999.hdbcds (XS
advanced).

 Caution
Although it is possible to use quotation marks (“”) to wrap a name that includes forbidden characters, as a
general rule, it is recommended to follow the naming conventions for CDS documents specified here in
order to avoid problems during activation in the repository.

Related Information

Create a CDS Document [page 164]
CDS Documents [page 168]
CDS Namespaces [page 173]

172 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

5.1.2.4 CDS Namespaces

The namespace is the path to the package in the SAP HANA Repository that contains CDS artifacts such as
entities, contexts, and views.

In a CDS document, the first statement must declare the namespace that contains the CDS elements which
the document defines, for example: a context, a type, an entity, or a view. The namespace must match the
package name where the CDS elements specified in the CDS document are located. If the package path
specified in a namespace declaration does not already exist in the SAP HANA Repository, the activation
process for the elements specified in the CDS document fails.

It is possible to enclose in quotation marks (“”) individual parts of the namespace identifier, for example,
"Pack1".pack2. Quotes enable the use of characters that are not allowed in regular CDS identifiers; in CDS, a
quoted identifier can include all characters except the dot (.) and the double colon (::). If you need to use a
reserved keyword as an identifier, you must enclose it in quotes, for example, “Entity”. However, it is
recommended to avoid the use of reserved keywords as identifiers.

 Note
You can also use quotation marks (“”) to wrap the names of CDS artifacts (entities, views) and elements
(columns...).

The following code snippet applies to artifacts created in the Repository package /Pack1/pack2/ and shows
some examples of valid namespace declarations, including namespaces that use quotation marks (“”).

 Note
A CDS document cannot contain more than one namespace declaration.

namespace Pack1.pack2; namespace "Pack1".pack2;
namespace Pack1."pack2";
namespace "Pack1"."pack2";

The following code snippet applies to artifacts created in the Repository package /Pack1/pack2/ and shows
some examples of invalid namespace declarations.

namespace pack1.pack2; // wrong spelling namespace "Pack1.pack2"; // incorrect use of quotes
namespace Pack1.pack2.MyDataModel; // CDS file name not allowed in namespace namespace Jack.Jill; // package does not exist

The examples of namespace declarations in the code snippet above are invalid for the following reasons:

● pack1.pack2;
pack1 is spelled incorrectly; the namespace element requires a capital P to match the corresponding
location in the Repository, for example, Pack1.

● "Pack1.pack2";
You cannot quote the entire namespace path; only individual elements of the namespace path can be
quoted, for example, "Pack1".pack2; or Pack1."pack2";.

● Pack1.pack2.MyDataModel;
The namespace declaration must not include the names of elements specified in the CDS document itself,
for example, MyDataModel.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 173

● Jack.Jill;
The package path Jack.Jill; does not exist in the Repository.

Related Information

Create a CDS Document [page 164]
CDS Documents [page 168]

5.1.2.5 CDS Contexts

You can define multiple CDS-compliant entities (tables) in a single file by assigning them to a context.

The following example illustrates how to assign two simple entities to a context using the CDS-
compliant .hdbdd syntax; you store the context-definition file with a specific name and the file
extension .hdbdd, for example, MyContext.hdbdd.

 Note
If you are using a CDS document to define a CDS context, the name of the CDS document must match the
name of the context defined in the CDS document, for example, with the “context” keyword.

In the example below, you must save the context definition “Books” in the CDS document Books.hdbdd. In
addition, the name space declared in a CDS document must match the repository package in which the object
the document defines is located.

The following code example illustrates how to use the CDS syntax to define multiple design-time entities in a
context named Books.

namespace com.acme.myapp1; @Schema : 'MYSCHEMA'
context Books {
 @Catalog.tableType: #COLUMN
 @Catalog.index : [{ name : 'MYINDEX1', unique : true, order : #DESC,
elementNames : ['ISBN'] }]
 entity Book {
 key AuthorID : String(10);
 key BookTitle : String(100);
 ISBN : Integer not null;
 Publisher : String(100);
 };
 @Catalog.tableType: #COLUMN
 @Catalog.index : [{ name: 'MYINDEX2', unique: true, order: #DESC,
elementNames: ['AuthorNationality'] }]
 entity Author {
 key AuthorName : String(100);
 AuthorNationality : String(20);
 AuthorBirthday : String(100);
 AuthorAddress : String(100);
 }; };

Activation of the file Books.hdbdd containing the context and entity definitions creates the catalog objects
“Book” and “Author”.

174 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 Note
The namespace specified at the start of the file, for example, com.acme.myapp1 corresponds to the
location of the entity definition file (Books.hdbdd) in the application-package hierarchy .

Nested Contexts

The following code example shows you how to define a nested context called InnerCtx in the parent context
MyContext. The example also shows the syntax required when making a reference to a user-defined data type
in the nested context, for example, (field6 : type of InnerCtx.CtxType.b;).

The type of keyword is only required if referencing an element in an entity or in a structured type; types in
another context can be referenced directly, without the type of keyword. The nesting depth for CDS contexts
is restricted by the limits imposed on the length of the database identifier for the name of the corresponding
SAP HANA database artifact (for example, table, view, or type); this is currently limited to 126 characters
(including delimiters).

 Note
The context itself does not have a corresponding artifact in the SAP HANA catalog; the context only
influences the names of SAP HANA catalog artifacts that are generated from the artifacts defined in a given
CDS context, for example, a table or a structured type.

namespace com.acme.myapp1; @Schema: 'MySchema'
context MyContext {
// Nested contexts
 context InnerCtx {

 Entity MyEntity {
 …
 };
 Type CtxType {
 a : Integer;
 b : String(59);
 };
 };
 type MyType1 {
 field1 : Integer;
 field2 : String(40);
 field3 : Decimal(22,11);
 field4 : Binary(11);
 };

 type MyType2 {
 field1 : String(50);
 field2 : MyType1;
 };

 type MyType3 {
 field1 : UTCTimestamp;
 field2 : MyType2;
 };

 @Catalog.index : [{ name : 'IndexA', order : #ASC, unique: true,
 elementNames : ['field1'] }]

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 175

 entity MyEntity1 {
 key id : Integer;
 field1 : MyType3 not null;
 field2 : String(24);
 field3 : LocalDate;
 field4 : type of field3;
 field5 : type of MyType1.field2;
 field6 : type of InnerCtx.CtxType.b; // refers to nested context
 field7 : InnerCtx.CtxType; // more context references
 };
};

Name Resolution Rules

The sequence of definitions inside a block of CDS code (for example, entity or context) does not matter for
the scope rules; a binding of an artifact type and name is valid within the confines of the smallest block of code
containing the definition, except in inner code blocks where a binding for the same identifier remains valid. This
rules means that the definition of nameX in an inner block of code hides any definitions of nameX in outer code
blocks.

 Note
An identifier may be used before its definition without the need for forward declarations.

context OuterCtx {
 type MyType1 : Integer;
 type MyType2 : LocalDate;
 context InnerCtx
 {
 type Use1 : MyType1; // is a String(20)
 type Use2 : MyType2; // is a LocalDate
 type MyType1 : String(20);
 };
 type invalidUse : Use1; // invalid: Use1 is not
 // visible outside of InnerCtx
 type validUse : InnerCtx.Use1; // ok
};

No two artifacts (including namespaces) can be defined whose absolute names are the same or are different
only in case (for example, MyArtifact and myartifact), even if their artifact type is different (entity and
view). When searching for artifacts, CDS makes no assumptions which artifact kinds can be expected at certain
source positions; it simply searches for the artifact with the given name and performs a final check of the
artifact type.

The following example demonstrates how name resolution works with multiple nested contexts, Inside context
NameB, the local definition of NameA shadows the definition of the context NameA in the surrounding scope. This
means that the definition of the identifier NameA is resolved to Integer, which does not have a sub-
component T1. The result is an error, and the compiler does not continue the search for a “better” definition of
NameA in the scope of an outer (parent) context.

context OuterCtx {
 context NameA
 {
 type T1 : Integer;

176 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 type T2 : String(20);
 };
 context NameB
 {
 type NameA : Integer;
 type Use : NameA.T1; // invalid: NameA is an Integer
 type Use2 : OuterCtx.NameA.T2; // ok
 }; };

Related Information

CDS User-Defined Data Types [page 213]
Create a CDS Document [page 164]

5.1.2.6 CDS Annotations

CDS supports built-in annotations, for example, @Catalog, @Schema, and @nokey, which are important
elements of the CDS documents used to define CDS-compliant catalog objects. However, you can define your
own custom annotations, too.

 Example

namespace mycompany.myapp1; @Schema : 'MYSCHEMA' context Books { @Catalog.tableType: #COLUMN @Catalog.index: [{ name : 'MYINDEX1', unique : true, order : #DESC,
elementNames : ['ISBN'] }] entity BOOK {
 key Author : String(100);
 key BookTitle : String(100);
 ISBN : Integer not null;
 Publisher : String(100);
 }; @Catalog.tableType : #COLUMN @nokey entity MyKeylessEntity
 {
 element1 : Integer;
 element2 : UTCTimestamp; @SearchIndex.text: { enabled: true } element3 : String(7);
 }; @GenerateTableType : false Type MyType1 {
 field1 : Integer;
 field2 : Integer;
 field3 : Integer;
 };
};

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 177

Overview

The following list indicates the annotations you can use in a CDS document:

● @Catalog
● @nokey
● @Schema
● @GenerateTableType
● @SearchIndex
● @WithStructuredPrivilegeCheck

@Catalog

The @Catalog annotation supports the following parameters, each of which is described in detail in a dedicated
section below:

● @Catalog.index
Specify the type and scope of index to be created for the CDS entity, for example: name, order, unique/
non-unique

● @Catalog.tableType
Specify the table type for the CDS entity, for example, column, row, global temporary.

You use the @Catalog.index annotation to define an index for a CDS entity. The @Catalog.index annotation used
in the following code example ensures that an index called Index1 is created for the entity MyEntity1 along
with the index fields fint and futcshrt. The order for the index is ascending (#ASC) and the index is unique.

namespace com.acme.myapp1; @Catalog.tableType : #COLUMN
@Schema: 'MYSCHEMA'
@Catalog.index:[{ name:'Index1', unique:true, order:#ASC, elementNames:['fint',
'futcshrt'] }]
entity MyEntity1 {
 key fint:Integer;
 fstr :String(5000);
 fstr15 :String(51);
 fbin :Binary(4000);
 fbin15 :Binary(51);
 fint32 :Integer64;
 fdec53 :Decimal(5,3);
 fdecf :DecimalFloat;
 fbinf :BinaryFloat;
 futcshrt:UTCDateTime not null;
 flstr :LargeString;
 flbin :LargeBinary;
};

You can define the following values for the @Catalog.index annotation:

● elementNames : ['<name1>', '<name2>']
The names of the fields to use in the index; the elements are specified for the entity definition, for example,
elementNames:['fint', 'futcshrt']

● name : '<IndexName>'
The names of the index to be generated for the specified entity, for example, name:'myIndex'

178 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

● order
Create a table index sorted in ascending or descending order. The order keywords #ASC and #DESC can be
only used in the BTREE index (for the maintenance of sorted data) and can be specified only once for each
index.
○ order : #ASC

Creates an index for the CDS entity and sorts the index fields in ascending logical order, for example: 1,
2, 3...

○ order : #DESC
Creates a index for the CDS entity and sorts the index fields in descending logical order, for example:
3, 2, 1...

● unique
Creates a unique index for the CDS entity. In a unique index, two rows of data in a table cannot have
identical key values.
○ unique : true

Creates a unique index for the CDS entity. The uniqueness is checked and, if necessary, enforced each
time a key is added to (or changed in) the index.

○ unique : false
Creates a non-unique index for the CDS entity. A non-unique index is intended primarily to improve
query performance, for example, by maintaining a sorted order of values for data that is queried
frequently.

You use the @Catalog.tableType annotation to define the type of CDS entity you want to create. The
@Catalog.tableType annotation determines the storage engine in which the underlying table is created.

namespace com.acme.myapp1; @Schema: 'MYSCHEMA'
context MyContext1 {
 @Catalog.tableType : #COLUMN
 entity MyEntity1 {
 key ID : Integer;
 name : String(30);
 };
 @Catalog.tableType : #ROW
 entity MyEntity2 {
 key ID : Integer;
 name : String(30);
 };
 @Catalog.tableType : #GLOBAL_TEMPORARY
 entity MyEntity3 {
 ID : Integer;
 name : String(30);
 };
};

You can define the following values for the @Catalog.tableType annotation:

● #COLUMN
Create a column-based table. If the majority of table access is through a large number of tuples, with only a
few selected attributes, use COLUMN-based storage for your table type.

● #ROW
Create a row-based table. If the majority of table access involves selecting a few records, with all attributes
selected, use ROW-based storage for your table type.

● #GLOBAL_TEMPORARY
Set the scope of the created table. Data in a global temporary table is session-specific; only the owner
session of the global temporary table is allowed to insert/read/truncate the data. A global temporary table

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 179

exists for the duration of the session, and data from the global temporary table is automatically dropped
when the session is terminated. A global temporary table can be dropped only when the table does not
have any records in it.

 Note
The SAP HANA database uses a combination of table types to enable storage and interpretation in both
ROW and COLUMN forms. If no table type is specified in the CDS entity definition, the default value
#COLUMN is applied to the table created on activation of the design-time entity definition.

@nokey

An entity usually has one or more key elements, which are flagged in the CDS entity definition with the key
keyword. The key elements become the primary key of the generated SAP HANA table and are automatically
flagged as “not null”. Structured elements can be part of the key, too. In this case, all table fields resulting from
the flattening of this structured field are part of the primary key.

 Note

However, you can also define an entity that has no key elements. If you want to define an entity without a key,
use the @nokey annotation. In the following code example, the @nokey annotation ensures that the entity
MyKeylessEntity defined in the CDS document creates a column-based table where no key element is
defined.

namespace com.acme.myapp1; @Schema: 'MYSCHEMA'
@Catalog.tableType : #COLUMN
@nokey
entity MyKeylessEntity
{
 element1 : Integer;
 element2 : UTCTimestamp;
 element3 : String(7); };

@Schema

The @Schema annotation is only allowed as a top-level definition in a CDS document. In the following code
example @Schema ensures that the schema MYSCHEMA is used to contain the entity MyEntity1, a column-
based table.

namespace com.acme.myapp1; @Schema: 'MYSCHEMA'
@Catalog.tableType : #COLUMN
entity MyEntity1 {
 key ID : Integer;
 name : String(30); };

180 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 Note
If the schema specified with the @Schema annotation does not already exist, an activation error is
displayed and the entity-creation process fails.

The schema name must adhere to the SAP HANA rules for database identifiers. In addition, a schema name
must not start with the letters SAP*; the SAP* namespace is reserved for schemas used by SAP products and
applications.

@GenerateTableType

For each structured type defined in a CDS document, an SAP HANA table type is generated, whose name is
built by concatenating the elements of the CDS document containing the structured-type definition and
separating the elements by a dot delimiter (.). The new SAP HANA table types are generated in the schema
that is specified in the schema annotation of the respective top-level artifact in the CDS document containing
the structured types.

 Note
Table types are only generated for direct structure definitions; no table types are generated for derived
types that are based on structured types.

If you want to use the structured types inside a CDS document without generating table types in the catalog,
use the annotation @GenerateTableType : false.

@SearchIndex

The annotation @SearchIndex enables you to define which of the columns should be indexed for search
capabilities, for example, {enabled : true}. To extend the index search definition, you can use the
properties text or fuzzy to specify if the index should support text-based or fuzzy search, as illustrated in the
following example:

entity MyEntity100 {
 element1 : Integer;
 @SearchIndex.text: { enabled: true }
 element2 : LargeString;
 @SearchIndex.fuzzy: { enabled: true }
 element3 : String(7); };

 Tip
For more information about setting up search features and using the search capability, see the SAP HANA
Search Developer Guide .

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 181

@WithStructuredPrivilegeCheck

The annotation @WithStructuredPrivilegeCheck enables you to control access to data (for example, in a
view) by means of privileges defined with the Data Control Language (DCL), as illustrated in the following
example:

@WithStructuredPrivilegeCheck view MyView as select from Foo {
 <select_list>
} <where_groupBy_Having_OrderBy>;

Related Information

Create a CDS Document [page 164]
User-Defined CDS Annotations [page 182]
CDS Structured Type Definition [page 216]

5.1.2.6.1 User-Defined CDS Annotations

In CDS, you can define your own custom annotations.

The built-in core annotations that SAP HANA provides, for example, @Schema, @Catalog, or @nokey, are
located in the namespace sap.cds; the same namespace is used to store all the primitive types, for example,
sap.cds::integer and sap.cds::SMALLINT.

However, the CDS syntax also enables you to define your own annotations, which you can use in addition to the
existing “core” annotations. The rules for defining a custom annotation in CDS are very similar way the rules
that govern the definition of a user-defined type. In CDS, an annotation can be defined either inside a CDS
context or as the single, top-level artifact in a CDS document. The custom annotation you define can then be
assigned to other artifacts in a CDS document, in the same way as the core annotations, as illustrated in the
following example:

@Catalog.tableType : #ROW @MyAnnotation : 'foo'
entity MyEntity {
 key Author : String(100);
 key BookTitle : String(100);
 ISBN : Integer not null;
 Publisher : String(100); }

CDS supports the following types of user-defined annotations:

● Scalar annotations
● Structured annotations
● Annotation arrays

182 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

Scalar Annotations

The following example shows how to define a scalar annotation.

annotation MyAnnotation_1 : Integer; annotation MyAnnotation_2 : String(20);

In annotation definitions, you can use both the enumeration type and the Boolean type, as illustrated in the
following example.

type Color : String(10) enum { red = 'rot'; green = 'grün'; blue = 'blau'; }; annotation MyAnnotation_3 : Color; annotation MyAnnotation_4 : Boolean;

Structured Annotations

The following example shows how to define a structured annotation.

annotation MyAnnotation_5 { a : Integer;
 b : String(20);
 c : Color;
 d : Boolean; };

The following example shows how to nest annotations in an anonymous annotation structure.

annotation MyAnnotation_7 { a : Integer;
 b : String(20);
 c : Color;
 d : Boolean;
 s {
 a1 : Integer;
 b1 : String(20);
 c1 : Color;
 d1 : Boolean;
 }; };

Array Annotations

The following example shows how to define an array-like annotation.

annotation MyAnnotation_8 : array of Integer; annotation MyAnnotation_9 : array of String(12);
annotation MyAnnotation_10 : array of { a: Integer; b: String(10); };

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 183

5.1.2.6.2 CDS Annotation Usage Examples

Reference examples of the use of user-defined CDS annotations.

When you have defined an annotation, the user-defined annotation can be used to annotate other definitions. It
is possible to use the following types of user-defined annotations in a CDS document:

User-defined CDS Annotations

CDS Annotation Type Description

Scalar annotations [page 184] For use with simple integer or string annotations and enumeration or
Boolean types

Structured annotations [page 185] For use where you need to create a simple annotation structure or nest
an annotation in an anonymous annotation structure

Annotation arrays [page 185] For use where you need to assign the same annotation several times to
the same object.

Scalar Annotations

The following examples show how to use a scalar annotation:

@MyAnnotation_1 : 18 type MyType1 : Integer;
@MyAnnotation_2 : 'sun'
@MyAnnotation_1 : 77
type MyType2 : Integer;
@MyAnnotation_2 : 'sun'
@MyAnnotation_2 : 'moon' // error: assigning the same annotation twice is not
allowed. type MyType3 : Integer;

 Note
It is not allowed to assign an annotation to the same object more than once. If several values of the same
type are to be annotated to a single object, use an array-like annotation.

For annotations that have enumeration type, the enum values can be addressed either by means of their fully
qualified name, or by means of the shortcut notation (using the hash (#) sign. It is not allowed to use a literal
value, even if it matches a literal of the enum definition.

@MyAnnotation_3 : #red type MyType4 : Integer;
@MyAnnotation_3 : Color.red
type MyType5 : Integer;
@MyAnnotation_3 : 'rot' // error: no literals allowed, use enum symbols type MyType6 : Integer;

For Boolean annotations, only the values “true” or “false” are allowed, and a shortcut notation is available
for the value “true”, as illustrated in the following examples:

@MyAnnotation_4 : true type MyType7 : Integer; @MyAnnotation_4 // same as explicitly assigning the value “true”

184 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 type MyType8 : Integer;
@MyAnnotation_4 : false type MyType9 : Integer;

Structured Annotations

Structured annotations can be assigned either as a complete unit or, alternatively, one element at a time. The
following example show how to assign a whole structured annotation:

@MyAnnotation_5 : { a : 12, b : 'Jupiter', c : #blue, d : false } type MyType10 : Integer;
@MyAnnotation_5 : { c : #green } // not all elements need to be filled type MyType11 : Integer;

The following example shows how to assign the same structured annotation element by element.

 Note
It is not necessary to assign a value for each element.

@MyAnnotation_5.a : 12 @MyAnnotation_5.b : 'Jupiter'
@MyAnnotation_5.c : #blue
@MyAnnotation_5.d : false
type MyType12 : Integer;
@MyAnnotation_5.c : #green
type MyType13 : Integer;
@MyAnnotation_5.c : #blue
@MyAnnotation_5.d // shortcut notation for Boolean (true) type MyType14 : Integer;

It is not permitted to assign the same annotation element more than once; assigning the same annotation
element more than once in a structured annotation causes an activation error.

@MyAnnotation_5 : { c : #green, c : #green } // error, assign an element once
only type MyType15 : Integer;
@MyAnnotation_5.c : #green
@MyAnnotation_5.c : #blue // error, assign an element once only type MyType16 : Integer;

Array-like Annotations

Although it is not allowed to assign the same annotation several times to the same object, you can achieve the
same effect with an array-like annotation, as illustrated in the following example:

@MyAnnotation_8 : [1,3,5,7] type MyType30 : Integer;
@MyAnnotation_9 : ['Earth', 'Moon']
type MyType31 : Integer;
@MyAnnotation_10 : [{ a: 52, b: 'Mercury'}, { a: 53, b: 'Venus'}] type MyType32 : Integer;

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 185

Related Information

CDS Annotations [page 177]
CDS Documents [page 168]
Create a CDS Document [page 164]

5.1.2.7 CDS Comment Types

The Core Data Services (CDS) syntax enables you to insert comments into object definitions.

 Example
Comment Formats in CDS Object Definitions

namespace com.acme.myapp1;
 /** * multi-line comment, * for doxygen-style,
 * comments and annotations
 */
 type Type1 { element Fstr: String(5000); // end-of-line comment Flstr: LargeString; /*inline comment*/ Fbin: Binary(4000); element Flbin: LargeBinary;
 Fint: Integer;
 element Fint64: Integer64; Ffixdec: Decimal(34, 34 /* another inline comment */); element Fdec: DecimalFloat;
 Fflt: BinaryFloat; //complete line comment element Flocdat: LocalDate; LocalDate
temporarily switched off //complete line comment Floctim: LocalTime; element Futcdatim: UTCDateTime;
 Futctstmp: UTCTimestamp; };

Overview

You can use the forward slash (/) and the asterisk (*) characters to add comments and general information to
CDS object-definition files. The following types of comment are allowed:

● In-line comment
● End-of-line comment
● Complete-line comment
● Multi-line comment

186 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

In-line Comments

The in-line comment enables you to insert a comment into the middle of a line of code in a CDS document. To
indicate the start of the in-line comment, insert a forward-slash (/) followed by an asterisk (*) before the
comment text. To signal the end of the in-line comment, insert an asterisk followed by a forward-slash
character (*/) after the comment text, as illustrated by the following example:.

element Flocdat: /*comment text*/ LocalDate;

End-of-Line Comment

The end-of-line comment enables you to insert a comment at the end of a line of code in a CDS document. To
indicate the start of the end-of-line comment, insert two forward slashes (//) before the comment text, as
illustrated by the following example:.

element Flocdat: LocalDate; // Comment text

Complete-Line Comment

The complete-line comment enables you to tell the parser to ignore the contents of an entire line of CDS code.
The comment out a complete line, insert two backslashes (//) at the start of the line, as illustrated in the
following example:

// element Flocdat: LocalDate; Additional comment text

Multi-Line Comments

The multi-line comment enables you to insert comment text that extends over multiple lines of a CDS
document. To indicate the start of the multi-line comment, insert a forward-slash (/) followed by an asterisk (*)
at the start of the group of lines you want to use for an extended comment (for example, /*). To signal the end
of the multi-line comment, insert an asterisk followed by a forward-slash character (*/). Each line between the
start and end of the multi-line comment must start with an asterisk (*), as illustrated in the following example:

/* * multiline,
* doxygen-style
* comments and annotations */

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 187

Related Information

Create a CDS Document [page 164]

5.1.3 Create an Entity in CDS

The entity is the core artifact for persistence-model definition using the CDS syntax. You create a database
entity as a design-time file in the SAP HANA repository.

Prerequisites

To complete this task successfully, note the following prerequisites:

● You must have access to an SAP HANA system.
● You must have already created a development workspace and a project.
● You must have shared the project so that the newly created files can be committed to (and synchronized

with) the repository.
● You must have created a schema for the CDS catalog objects, for example, MYSCHEMA
● The owner of the schema must have SELECT privileges in the schema to be able to see the generated

catalog objects.

Context

In the SAP HANA database, as in other relational databases, a CDS entity is a table with a set of data elements
that are organized using columns and rows. SAP HANA Extended Application Services (SAP HANA XS) enables
you to use the CDS syntax to create a database entity as a design-time file in the repository. Activating the CDS
entity creates the corresponding table in the specified schema. To create a CDS entity-definition file in the
repository, perform the following steps:

Procedure

1. Start the SAP HANA studio.
2. Open the SAP HANA Development perspective.
3. Open the Project Explorer view.
4. Create the CDS entity-definition file.

Browse to the folder in your project workspace where you want to create the new CDS entity-definition file
and perform the following steps:

a. Right-click the folder where you want to save the entity-definition file and choose New Other...
Database Development DDL Source File in the context-sensitive popup menu.

188 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

b. Enter the name of the entity-definition file in the File Name box, for example, MyEntity.

 Tip
File extensions are important. If you are using SAP HANA studio to create artifacts in the SAP
HANA Repository, the file-creation wizard adds the required file extension automatically (for
example, MyEntity.hdbdd) and, if appropriate, enables direct editing of the new file in the
corresponding editor.

c. Choose Finish to save the changes and commit the new entity-definition file in the repository.
5. Define the structure of the CDS entity.

If the new entity-definition file is not automatically displayed by the file-creation wizard, in the Project
Explorer view double-click the entity-definition file you created in the previous step, for example,
MyEntity.hdbdd, and add the catalog- and entity-definition code to the file:

 Note
The following code example is provided for illustration purposes only. If the schema you specify does
not exist, you cannot activate the new CDS entity.

namespace acme.com.apps.myapp1; @Schema : 'MYSCHEMA'
@Catalog.tableType : #COLUMN
@Catalog.index : [{ name : 'MYINDEX1', unique : true, order :#DESC,
elementNames : ['ISBN'] }]
entity MyEntity {
 key Author : String(100);
 key BookTitle : String(100);
 ISBN : Integer not null;
 Publisher : String(100); };

6. Save the CDS entity-definition file.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository.
You do not need to explicitly commit it again.

7. Activate the changes in the repository.
a. Locate and right-click the new CDS entity-definition file in the Project Explorer view.

b. In the context-sensitive pop-up menu, choose Team Activate .

 Note
If you cannot activate the new CDS artifact, check that the specified schema already exists and
that there are no illegal characters in the name space, for example, the hyphen (-).

8. Ensure access to the schema where the new CDS catalog objects are created.
After activation in the repository, a schema object is only visible in the catalog to the _SYS_REPO user. To
enable other users, for example the schema owner, to view the newly created schema and the objects it
contains, you must grant the user the required SELECT privilege for the appropriate schema object.

 Note
If you already have the appropriate SELECT privilege, you do not need to perform this step.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 189

a. In the SAP HANA studio Systems view, right-click the SAP HANA system hosting the repository where
the schema was activated and choose SQL Console in the context-sensitive popup menu.

b. In the SQL console, execute the statement illustrated in the following example, where <SCHEMANAME>
is the name of the newly activated schema, and <username> is the database user ID of the schema
owner:

call
_SYS_REPO.GRANT_SCHEMA_PRIVILEGE_ON_ACTIVATED_CONTENT('select','<SCHEMANAME
>','<username>');

9. Check that the new entity has been successfully created.
CDS entities are created in the Tables folder in the catalog.

a. In the SAP HANA Development perspective, open the Systems view.
b. Navigate to the catalog location where you created the new entity.

<SID> Catalog <MYSCHEMA> Tables
c. Open a data preview for the new entity MyEntity.

Right-click the new entity <package.path>::MyEntity and choose Open Data Preview in the pop-up
menu.

 Tip
Alternatively, to open the table-definition view of the SAP HANA catalog tools, press F3 when the
CDS entity is in focus in the CDS editor.

Related Information

CDS Entities [page 190]
Entity Element Modifiers [page 192]
CDS Entity Syntax Options [page 197]

5.1.3.1 CDS Entities

In the SAP HANA database, as in other relational databases, a CDS entity is a table with a set of data elements
that are organized using columns and rows.

A CDS entity has a specified number of columns, defined at the time of entity creation, but can have any
number of rows. Database entities also typically have meta-data associated with them; the meta-data might
include constraints on the entity or on the values within particular columns. SAP HANA Extended Application
Services (SAP HANA XS) enables you to create a database entity as a design-time file in the repository. All
repository files including your entity definition can be transported to other SAP HANA systems, for example, in
a delivery unit. You can define the entity using CDS-compliant DDL.

 Note
A delivery unit is the medium SAP HANA provides to enable you to assemble all your application-related
repository artifacts together into an archive that can be easily exported to other systems.

190 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

The following code illustrates an example of a single design-time entity definition using CDS-compliant DDL. In
the example below, you must save the entity definition “MyTable” in the CDS document MyTable.hdbdd. In
addition, the name space declared in a CDS document must match the repository package in which the object
the document defines is located.

namespace com.acme.myapp1; @Schema : 'MYSCHEMA' @Catalog.tableType : #COLUMN @Catalog.index : [{ name : 'MYINDEX1', unique : true, order :#DESC,
elementNames : ['ISBN'] }]
entity MyTable {
 key Author : String(100);
 key BookTitle : String(100);
 ISBN : Integer not null;
 Publisher : String(100); };

If you want to create a CDS-compliant database entity definition as a repository file, you must create the entity
as a flat file and save the file containing the DDL entity dimensions with the suffix .hdbdd, for example,
MyTable.hdbdd. The new file is located in the package hierarchy you establish in the SAP HANA repository.
The file location corresponds to the namespace specified at the start of the file, for example,
com.acme.myapp1 or sap.hana.xs.app2. You can activate the repository files at any point in time to create
the corresponding runtime object for the defined table.

 Note
On activation of a repository file, the file suffix, for example, .hdbdd, is used to determine which runtime
plug-in to call during the activation process. The plug-in reads the repository file selected for activation, in
this case a CDS-compliant entity, parses the object descriptions in the file, and creates the appropriate
runtime objects.

When a CDS document is activated, the activation process generates a corresponding catalog object for each
of the artifacts defined in the document; the location in the catalog is determined by the type of object
generated. For example, the corresponding database table for a CDS entity definition is generated in the
following catalog location:

<SID> Catalog <MYSCHEMA> Tables

Entity Element Definition

You can expand the definition of an entity element beyond the element's name and type by using element
modifiers. For example, you can specify if an entity element is the primary key or part of the primary key. The
following entity element modifiers are available:

● key
Defines if the specified element is the primary key or part of the primary key for the specified entity.

 Note
Structured elements can be part of the key, too. In this case, all table fields resulting from the flattening
of this structured field are part of the primary key.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 191

● null
Defines if an entity element can (null) or cannot (not null) have the value NULL. If neither null nor
not null is specified for the element, the default value null applies (except for the key element).

● default <literal_value>
Defines the default value for an entity element in the event that no value is provided during an INSERT
operation. The syntax for the literals is defined in the primitive data-type specification.

entity MyEntity { key MyKey : Integer;
 key MyKey2 : Integer null; // illegal combination
 key MyKey3 : Integer default 2;
 elem2 : String(20) default 'John Doe';
 elem3 : String(20) default 'John Doe' null;
 elem4 : String default 'Jane Doe' not null; };

Spatial Data

CDS entities support the use of spatial data types such as hana.ST_POINT or hana.ST_GEOMETRY to store
geo-spatial coordinates. Spatial data is data that describes the position, shape, and orientation of objects in a
defined space; the data is represented as two-dimensional geometries in the form of points, line strings, and
polygons.

Related Information

CDS Primitive Data Types [page 221]
Entity Element Modifiers [page 192]
CDS Entity Syntax Options [page 197]

5.1.3.2 Entity Element Modifiers

Element modifiers enable you to expand the definition of an entity element beyond the element's name and
type. For example, you can specify if an entity element is the primary key or part of the primary key.

 Example

entity MyEntity { key MyKey : Integer; elem2 : String(20) default 'John Doe'; elem3 : String(20) default 'John Doe' null; elem4 : String default 'Jane Doe' not null; };
entity MyEntity1 {
 key id : Integer;
 a : integer;
 b : integer; c : integer generated always as a+b;

192 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

};
entity MyEntity2 { autoId : Integer generated [always|by default] as identity (start with
10 increment by 2); name : String(100); };

key

key MyKey : Integer; key MyKey2 : Integer null; // illegal combination
key MyKey3 : Integer default 2;

You can expand the definition of an entity element beyond the element's name and type by using element
modifiers. For example, you can specify if an entity element is the primary key or part of the primary key. The
following entity element modifiers are available:

● key
Defines if the element is the primary key or part of the primary key for the specified entity. You cannot use
the key modifier in the following cases:
○ In combination with a null modifier. The key element is non null by default because NULL cannot

be used in the key element.

 Note
Structured elements can be part of the key, too. In this case, all table fields resulting from the flattening
of this structured field are part of the primary key.

null

elem3 : String(20) default 'John Doe' null; elem4 : String default 'Jane Doe' not null;

null defines if the entity element can (null) or cannot (not null) have the value NULL. If neither null nor
not null is specified for the element, the default value null applies (except for the key element), which
means the element can have the value NULL. If you use the null modifier, note the following points:

 Caution
The keywords nullable and not nullable are no longer valid; they have been replaced for SPS07 with
the keywords null and not null, respectively. The keywords null and not null must appear at the
end of the entity element definition, for example, field2 : Integer null;.

● The not null modifier can only be added if the following is true:
○ A default it also defined
○ no null data is already in the table

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 193

● Unless the table is empty, bear in mind that when adding a new not null element to an existing entity,
you must declare a default value because there might already be existing rows that do not accept NULL as
a value for the new element.

● null elements with default values are permitted
● You cannot combine the element key with the element modifier null.
● The elements used for a unique index must have the not null property.

entity WithNullAndNotNull {
 key id : Integer;
 field1 : Integer;
 field2 : Integer null; // same as field1, null is default
 field3 : Integer not null;
};

default

default <literal_value>

For each scalar element of an entity, a default value can be specified. The default element identifier defines
the default value for the element in the event that no value is provided during an INSERT operation.

 Note
The syntax for the literals is defined in the primitive data-type specification.

entity WithDefaults {
 key id : Integer;
 field1 : Integer default -42;
 field2 : Integer64 default 9223372036854775807;
 field3 : Decimal(5, 3) default 12.345;
 field4 : BinaryFloat default 123.456e-1;
 field5 : LocalDate default date'2013-04-29';
 field6 : LocalTime default time'17:04:03';
 field7 : UTCDateTime default timestamp'2013-05-01 01:02:03';
 field8 : UTCTimestamp default timestamp'2013-05-01 01:02:03';
 field9 : Binary(32) default x'0102030405060708090a0b0c0d0e0[...]';
 field10 : String(10) default 'foo';
};

generated always as <expression>

entity MyEntity1 { key id : Integer;
 a : integer;
 b : integer;
 c : integer generated always as a+b; };

194 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

The SAP HANA SQL clause generated always as <expression> is available for use in CDS entity
definitions; it specifies the expression to use to generate the column value at run time. An element that is
defined with generated always as <expression> corresponds to a field in the database table that is
present in the persistence and has a value that is computed as specified in the expression, for example, “a+b”.

 Restriction
For use in XS advanced only; it is not possible to use generated calculated elements in XS classic. Please
also note that the generated always as <expression> clause is only for use with column-based
tables.

“Generated” fields and “calculated” field differ in the following way. Generated fields are physically present in
the database table; values are computed on INSERT and need not be computed on SELECT. Calculated fields
are not actually stored in the database table; they are computed when the element is “selected”. Since the
value of the generated field is computed on INSERT, the expression used to generate the value must not
contain any non-deterministic functions, for example: current_timestamp, current_user,
current_schema, and so on.

generated [always | by default] as identity

entity MyEntity2 { autoId : Integer generated always as identity (start with 10 increment by
2);
 name : String(100); };

The SAP HANA SQL clause generated as identity is available for use in CDS entity definitions; it enables
you to specify an identity column. An element that is defined with generated as identity corresponds to
a field in the database table that is present in the persistence and has a value that is computed as specified in
the sequence options defined in the identity expression, for example, (start with 10 increment by
2).

In the example illustrated here, the name of the generated column is autoID, the first value in the column is
“10”; the identity expression (start with 10 increment by 2) ensures that subsequent values in
the column are incremented by 2, for example: 12, 14, and so on.

 Restriction
For use in XS advanced only; it is not possible to define an element with IDENTITY in XS classic. Please also
note that the generated always as identity clause is only for use with column-based tables.

You can use either always or by default in the clause generated as identity, as illustrated in the
examples in this section. If always is specified, then values are always generated; if by default is specified,
then values are generated by default.

entity MyEntity2 { autoId : Integer generated by default as identity (start with 10 increment
by 2);
 name : String(100); };

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 195

 Restriction
CDS does not support the use of reset queries, for example, RESET BY <subquery>.

Column Migration Behavior

The following table shows the migration strategy that is used for modifications to any given column; the
information shows which actions are performed and what strategy is used to preserve content. During the
migration, a comparison is performed on the column type, the generation kind, and the expression, if available.
From an end-user perspective, the result of a column modification is either a preserved or new value. The aim
of any modification to an entity (table) is to cause as little loss as possible.

● Change to the column type
In case of a column type change, the content is converted into the new type. HANA conversion rules apply.

● Change to the expression clause
The expression is re-evaluated in the following way:
○ “early”

As part of the column change
○ “late”

As part of a query
● Change to a calculated column

A calculated column is transformed into a plain column; the new column is initialized with NULL.

Technically, columns are either dropped and added or a completely new “shadow” table is created into which
the existing content is copied. The shadow table will then replace the original table.

Before column/ Af
ter row Plain As <expr>

generated always as
<expr>

generated always as
identity <expr>

generated by de
fault as identity
<expr>

Plain Migrate

Keep content

Drop/add

Evaluate on
select

Drop/add

Evaluate on add

Migrate

Keep content

Migrate

Keep content

generated by default
as identity <expr>

Migrate

Keep content

Drop/add

Evaluate on
select

Drop/add

Evaluate on add

Migrate

Keep content

Migrate

Keep content

generated always as
identity <expr>

Migrate

Keep content

Drop/add

Evaluate on
select

Drop/add

Evaluate on add

Migrate

Keep content

Migrate

Keep content

generated always as
<expr>

Drop/add

NULL

Drop/add

Evaluate on
select

Drop/add

Evaluate on add

Drop/add

Keep content

Migrate

Keep content

196 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

Before column/ Af
ter row Plain As <expr>

generated always as
<expr>

generated always as
identity <expr>

generated by de
fault as identity
<expr>

as <expr> Drop/add

NULL

Drop/add

Evaluate on
select

Drop/add

Evaluate on add

Drop/add

Keep content

Migrate

Keep content

Related Information

Create an Entity in CDS [page 188]
CDS Entity Syntax Options [page 197]
SAP HANA SQL and System Views Reference (CREATE TABLE)

5.1.3.3 CDS Entity Syntax Options

The entity is the core design-time artifact for persistence model definition using the CDS syntax.

 Example

 Note
This example is not a working example; it is intended for illustration purposes only.

namespace Pack1."pack-age2"; @Schema: 'MySchema'
context MyContext {
 entity MyEntity1
 { key id : Integer; name : String(80);
 };
 @Catalog: { tableType : #COLUMN, index : [{ name:'Index1', order:#DESC, unique:true, elementNames:['x', 'y'] }, { name:'Index2', order:#DESC, unique:false, elementNames:['x', 'a'] }]
 }
 entity MyEntity2 {
 key id : Integer;
 x : Integer;
 y : Integer;
 a : Integer; field7 : Decimal(20,10) = power(ln(x)*sin(y), a); };
 entity MyEntity {
 key id : Integer;
 a : Integer;
 b : Integer;
 c : Integer;

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 197

https://help.sap.com/saphelp_hanaplatform/helpdata/en/20/d58a5f75191014b2fe92141b7df228/content.htm

 s {
 m : Integer;
 n : Integer;
 }; } technical configuration { row store; index MyIndex1 on (a, b) asc; unique index MyIndex2 on (c, s) desc; };
 context MySpatialContext {
 entity Address {
 key id : Integer;
 street_number : Integer;
 street_name : String(100);
 zip : String(10);
 city : String(100); loc : hana.ST_POINT(4326); };
 }
 context MySeriesContext {
 entity MySeriesEntity {
 key setId : Integer;
 t : UTCTimestamp;
 value : Decimal(10,4); series (series key (setId) period for series (t) equidistant increment by interval 0.1 second equidistant piecewise //increment or piecewise; not both)
 };
 }
}

 Note
For series data, you can use either equidistant or equidistant piecewise, but not both at the
same time. The example above is for illustration purposes only.

Overview

Entity definitions resemble the definition of structured types, but with the following additional features:

● Key definition [page 199]
● Index definition [page 199]
● Table type specification [page 200]
● Calculated Fields [page 201]
● Technical Configuration [page 202]
● Spatial data * [page 204]
● Series Data * [page 204]

On activation in the SAP HANA repository, each entity definition in CDS generates a database table. The name
of the generated table is built according to the same rules as for table types, for example,
Pack1.Pack2::MyModel.MyContext.MyTable.

198 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 Note
The CDS name is restricted by the limits imposed on the length of the database identifier for the name of
the corresponding SAP HANA database artifact (for example, table, view, or type); this is currently limited
to 126 characters (including delimiters).

Key Definition

type MyStruc2 {
 field1 : Integer;
 field2 : String(20);
};
entity MyEntity2
{
 key id : Integer;
 name : String(80);
 key str : MyStruc2; };

Usually an entity must have a key; you use the keyword key to mark the respective elements. The key elements
become the primary key of the generated SAP HANA table and are automatically flagged as not null. Key
elements are also used for managed associations. Structured elements can be part of the key, too. In this case,
all table fields resulting from the flattening of this structured element are part of the primary key.

 Note
To define an entity without a key, use the @nokey annotation.

Index Definition

@Catalog: { tableType : #COLUMN,
 index : [
 { name:'Index1', order:#DESC, unique:true, elementNames:['field1',
'field2'] },
 { name:'Index2', order:#ASC, unique:false, elementNames:['field1',
'field7'] }
]
 }

You use the @Catalog.index or @Catalog: { index: [...]} annotation to define an index for a CDS
entity. You can define the following values for the @Catalog.index annotation:

● name : '<IndexName>'
The name of the index to be generated for the specified entity, for example, name:'myIndex'

● order
Create a table index sorted in ascending or descending order. The order keywords #ASC and #DESC can be
only used in the BTREE index (for the maintenance of sorted data) and can be specified only once for each
index.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 199

○ order : #ASC
Creates an index for the CDS entity and sorts the index fields in ascending logical order, for example: 1,
2, 3...

○ order : #DESC
Creates a index for the CDS entity and sorts the index fields in descending logical order, for example:
3, 2, 1...

● unique
Creates a unique index for the CDS entity. In a unique index, two rows of data in a table cannot have
identical key values.
○ unique : true

Creates a unique index for the CDS entity. The uniqueness is checked and, if necessary, enforced each
time a key is added to (or changed in) the index and, in addition, each time a row is added to the table.

○ unique : false
Creates a non-unique index for the CDS entity. A non-unique index is intended primarily to improve
query performance, for example, by maintaining a sorted order of values for data that is queried
frequently.

● elementNames : ['<name1>', '<name2>']
The names of the fields to use in the index; the elements are specified for the entity definition, for example,
elementNames:['field1', 'field2']

Table-Type Definition

namespace com.acme.myapp1; @Schema: 'MYSCHEMA'
context MyContext1 {
 @Catalog.tableType : #COLUMN
 entity MyEntity1 {
 key ID : Integer;
 name : String(30);
 };
 @Catalog.tableType : #ROW
 entity MyEntity2 {
 key ID : Integer;
 name : String(30);
 };
 @Catalog.tableType : #GLOBAL_TEMPORARY
 entity MyEntity3 {
 ID : Integer;
 name : String(30);
 };
 @Catalog.tableType : #GLOBAL_TEMPORARY_COLUMN
 entity MyTempEntity {
 a : Integer;
 b : String(20);
 };
};

You use the @Catalog.tableType or @Catalog: { tableType: #<TYPE> } annotation to define the type
of CDS entity you want to create, for example: column- or row-based or global temporary. The

200 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

@Catalog.tableType annotation determines the storage engine in which the underlying table is created. The
following table lists and explains the permitted values for the @Catalog.tableType annotation:

Table-Type Syntax Options

Table-Type Option Description

#COLUMN @Catalog:Create a column-based table. If the majority of table access is through a
large number of tuples, with only a few selected attributes, use COLUMN-based
storage for your table type.

#ROW Create a row-based table. If the majority of table access involves selecting a few re
cords, with all attributes selected, use ROW-based storage for your table type.

#GLOBAL_TEMPORARY Set the scope of the created table. Data in a global temporary table is session-spe
cific; only the owner session of the global temporary table is allowed to insert/read/
truncate the data. A global temporary table exists for the duration of the session,
and data from the global temporary table is automatically dropped when the ses
sion is terminated. Note that a temporary table cannot be changed when the table
is in use by an open session, and a global temporary table can only be dropped if
the table does not have any records.

#GLOBAL_TEMPORARY_COLUMN Set the scope of the table column. Global temporary column tables cannot have ei
ther a key or an index.

 Note
The SAP HANA database uses a combination of table types to enable storage and interpretation in both
ROW and COLUMN forms. If no table type is specified in the CDS entity definition, the default value
#COLUMN is applied to the table created on activation of the design-time entity definition.

Calculated Fields

The definition of an entity can contain calculated fields, as illustrated in type “z” the following example:

 Sample Code

entity MyCalcField { a : Integer;
 b : Integer;
 c : Integer = a + b;
 s : String(10);
 t : String(10) = upper(s);
 x : Decimal(20,10);
 y : Decimal(20,10);
 z : Decimal(20,10) = power(ln(x)*sin(y), a);
};

The calculation expression can contain arbitrary expressions and SQL functions. The following restrictions
apply to the expression you include in a calculated field:

● The definition of a calculated field must not contain other calculated fields, associations, aggregations, or
subqueries.

● A calculated field cannot be key.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 201

● No index can be defined on a calculated field.
● A calculated field cannot be used as foreign key for a managed association.

In a query, calculated fields can be used like ordinary elements.

 Note
In SAP HANA tables, you can define columns with the additional configuration “GENERATED ALWAYS AS”.
These columns are physically present in the table, and all the values are stored. Although these columns
behave for the most part like ordinary columns, their value is computed upon insertion rather than
specified in the INSERT statement. This is in contrast to calculated field, for which no values are actually
stored; the values are computed upon SELECT.

technical configuration

The definition of an entity can contain a section called technical configuration, which you use to define
the elements listed in the following table:

● Storage type
● Indexes
● Full text indexes

 Note
The syntax in the technical configuration section is as close as possible to the corresponding clauses in the
SAP HANA SQL Create Table statement. Each clause in the technical configuration must end with a
semicolon.

Storage type
In the technical configuration for an entity, you can use the store keyword to specify the storage type (“row”
or “column”) for the generated table, as illustrated in the following example. If no store type is specified, a
“column” store table is generated by default.

 Sample Code

entity MyEntity { key id : Integer;
 a : Integer;
 b : Integer;
 t : String(100);
 s {
 u : String(100);
 };
} technical configuration {
 row store;
};

 Restriction
It is not possible to use both the @Catalog.tableType annotation and the technical configuration (for
example, row store) at the same time to define the storage type for an entity.

202 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

Indexes
In the technical configuration for an entity, you can use the index and unique index keywords to specify the
index type for the generated table. For example: “asc” (ascending) or “desc” (descending) describes the index
order, and unique specifies that the index is unique, where no two rows of data in the indexed entity can have
identical key values.

 Sample Code

entity MyEntity { key id : Integer;
 a : Integer;
 b : Integer;
 t : String(100);
 s {
 u : String(100);
 };
} technical configuration {
 index MyIndex1 on (a, b) asc;
 unique index MyIndex2 on (c, s) desc; };

 Restriction
It is not possible to use both the @Catalog.index annotation and the technical configuration (for
example, index) at the same time to define the index type for an entity.

Full text indexes
In the technical configuration for an entity, you can use the fulltext index keyword to specify the full-text
index type for the generated table, as illustrated in the following example.

 Sample Code

entity MyEntity { key id : Integer;
 a : Integer;
 b : Integer;
 t : String(100);
 s {
 u : String(100);
 };
} technical configuration {
 row store;
 index MyIndex1 on (a, b) asc;
 unique index MyIndex2 on (a, b) asc;
 fulltext index MYFTI1 on (t)
 LANGUAGE COLUMN t
 LANGUAGE DETECTION ('de', 'en')
 MIME TYPE COLUMN s.u
 FUZZY SEARCH INDEX off
 PHRASE INDEX RATIO 0.721
 SEARCH ONLY off
 FAST PREPROCESS off
 TEXT ANALYSIS off;
 fuzzy search index on (s.u);
};

The <fulltext_parameter_list> is identical to the standard SAP HANA SQL syntax for CREATE
FULLTEXT INDEX. A fuzzy search index in the technical configuration section of an entity definition

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 203

corresponds to the @SearchIndex annotation in XS classic and the statement "FUZZY SEARCH INDEX ON"
for a table column in SAP HANA SQL. It is not possible to specify both a full-text index and a fuzzy search index
for the same element.

 Restriction
It is not possible to use both the @SearchIndex annotation and the technical configuration (for example,
fulltext index) at the same time. In addition, the full-text parameters CONFIGURATION and TEXT
MINING CONFIGURATION are not supported.

Spatial Types *

The following example shows how to use the spatial type ST_POINT in a CDS entity definition. In the example
entity Person, each person has a home address and a business address, each of which is accessible via the
corresponding associations. In the Address entity, the geo-spatial coordinates for each person are stored in
element loc using the spatial type ST_POINT (*).

 Sample Code

context SpatialData { entity Person {
 key id : Integer;
 name : String(100);
 homeAddress : Association[1] to Address;
 officeAddress : Association[1] to Address;
 };
 entity Address {
 key id : Integer;
 street_number : Integer;
 street_name : String(100);
 zip : String(10);
 city : String(100);
 loc : hana.ST_POINT(4326);
 };
 view CommuteDistance as select from Person {
 name,
 homeAddress.loc.ST_Distance(officeAddress.loc) as distance
 }; };

Series Data *

CDS enables you to create a table to store series data by defining an entity that includes a series () clause
as an table option and then defining the appropriate parameters and options.

 Note
The period for series must be unique and should not be affected by any shift in timestamps.

204 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 Sample Code

context SeriesData { entity MySeriesEntity1 {
 key setId : Integer;
 t : UTCTimestamp;
 value : Decimal(10,4);
 series (
 series key (setId)
 period for series (t)
 equidistant increment by interval 0.1 second
);
 };
 entity MySeriesEntity2 {
 key setId : Integer;
 t : UTCTimestamp;
 value : Decimal(10,4);
 series (
 series key (setId)
 period for series (t)
 equidistant piecewise
);
 }; };

CDS also supports the creation of a series table called equidistant piecewise using Formula-Encoded
Timestamps (FET). This enables support for data that is not loaded in an order that ensures good
compression. There is no a-priori restriction on the timestamps that are stored, but the data is expected to be
well approximated as piecewise linear with some jitter. The timestamps do not have a single slope/offset
throughout the table; rather, they can change within and among series in the table.

 Restriction
The equidistant piecewise specification can only be used in CDS; it cannot be used to create a table
with the SQL command CREATE TABLE.

When a series table is defined as equidistant piecewise, the following restrictions apply:

1. The period includes one column (instant); there is no support for interval periods.
2. There is no support for missing elements. These could logically be defined if the period includes an

interval start and end. Missing elements then occur when we have adjacent rows where the end of the
interval does not equal the start of the interval.

3. The type of the period column must map to the one of the following types: DATE, SECONDDATE, or
TIMESTAMP.

 Caution
(*) For information about the capabilities available for your license and installation scenario, refer to the
Feature Scope Description (FSD) for your specific SAP HANA version on the SAP HANA Platform webpage.

Related Information

Create an Entity in CDS [page 188]

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 205

https://help.sap.com/viewer/product/SAP_HANA_PLATFORM/

CDS Annotations [page 177]
CDS Primitive Data Types [page 221]

5.1.4 Migrate an Entity from hdbtable to CDS (hdbdd)

Migrate a design-time representation of a table from the .hdbtable syntax to the CDS-compliant .hdbdd
syntax while retaining the underlying catalog table and its content.

Prerequisites

To complete this task successfully, note the following prerequisites:

● You must have access to an SAP HANA system.
● You must have already created a development workspace and a project.
● You must have shared the project so that the newly created files can be committed to (and synchronized

with) the repository.
● You must have created a schema for the CDS catalog objects, for example, MYSCHEMA
● The owner of the schema must have SELECT privileges in the schema to be able to see the generated

catalog objects.
● You must have a design-time definition of the hdbtable entity you want to migrate to CDS.

Context

In this procedure you replace a design-time representation of a database table that was defined using the
hdbtable syntax with a CDS document that describes the same table (entity) with the CDS-compliant hdbdd
syntax. To migrate an hdbtable artifact to CDS, you must delete the inactive version of the hdbtable object
and create a new hdbdd artifact with the same name and structure.

You must define the target CDS entity manually. The name of the entity and the names of the elements can be
reused from the hdbtable definition. The same applies for the element modifiers, for example, NULL/NOT
NULL, and the default values.

 Note
In CDS, there is no way to reproduce the column-comments defined in an hdbtable artifact. You can use
source code comments, for example, '/* */' or '//', however, the comments do not appear in the
catalog table after activation of the new CDS artifact.

206 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

Procedure

1. Use CDS syntax to create a duplicate of the table you originally defined using the hdbtable syntax.

 Note
The new CDS document must have the same name as the original hdbtable artifact, for example,
Employee.hdbdd and Employee.hdbtable.

The following code shows a simple table Employee.hdbtable that is defined using the hdbtable syntax.
This is the “source” table for the migration. When you have recreated this table in CDS using the .hdbdd
syntax, you can delete the artifact Employee.hdbtable.

table.schemaName = "MYSCHEMA"; table.tableType = COLUMNSTORE;
table.columns = [
 {name = "firstname"; sqlType = NVARCHAR; nullable = false; length = 20;},
 {name = "lastname"; sqlType = NVARCHAR; nullable = true; length = 20;
defaultValue = "doe";},
 {name = "age"; sqlType = INTEGER; nullable = false;},
 {name = "salary"; sqlType = DECIMAL; nullable = false; precision = 7;
scale = 2;}
];

The following code shows the same simple table recreated with the CDS-compliant hdbdd syntax. The new
design-time artifact is called Employee.hdbdd and is the “target” for the migration operation. Note that
all column names remain the same.

namespace sample.cds.tutorial; @Schema:'MYSCHEMA'
@Catalog.tableType:#COLUMN
@nokey
entity Employee {
 firstname : String(20) not null;
 lastname : String(20) default 'doe';
 age : Integer not null;
 salary : Decimal(7,2) not null;
};

2. Activate the source (hdbtable) and target (CDS) artifacts of the migration operation.

To replace the old hdbtable artifact with the new hdbdd (CDS) artifact, you must activate both artifacts
(the deleted hdbtable artifact and the new new CDS document) together in a single activation operation,
for example, by performing the activation operation on the folder that contains the two objects. If you do
not activate both artifacts together in one single activation operation, data stored in the table will be lost
since the table is deleted and recreated during the migration process.

 Tip

In SAP HANA studio, choose the Team Activate all... option to list all inactive objects and select
the objects you want to activate. In the SAP HANA Web-based Workbench, the default setting is
Activate on save, however you can change this behavior to Save only.

3. Check that the table is in the catalog in the specified schema.
To ensure that the new CDS-defined table is identical to the old (HDBtable-defined) table, check the
contents of the table in the catalog.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 207

Related Information

Migration Guidelines: hdbtable to CDS Entity [page 208]
SAP HANA to CDS Data-Type Mapping [page 209]

5.1.4.1 Migration Guidelines: hdbtable to CDS Entity

Replace an existing hdbtable definition with the equivalent CDS document.

It is possible to migrate your SAP HANA hdbtable definition to a Core Data Services (CDS) entity that has
equally named but differently typed elements. When recreating the new CDS document, you cannot choose an
arbitrary data type; you must follow the guidelines for valid data-type mappings in the SAP HANA SQL data-
type conversion documentation. Since the SAP HANA SQL documentation does not cover CDS data types you
must map the target type names to CDS types manually.

 Note
Remember that most of the data-type conversions depend on the data that is present in the catalog table
on the target system.

If you are planning to migrate SAP HANA (hdbtable) tables to CDS entities, bear in mind the following
important points:

● CDS document structure
The new entity (that replaces the old hdbtable definition) must be defined at the top-level of the new CDS
document; it cannot be defined deeper in the CDS document, for example, nested inside a CDS context. If
the table (entity) is not defined as the top-level element in the CDS document, the resulting catalog name
of the entity (on activation) will not match the name of the runtime table that should be taken over by the
new CDS object. Instead, the name of the new table would also include the name of the CDS context in
which it was defined, which could lead to unintended consequences after the migration.
If the top-level element of the target CDS entity is not an entity (for example, a context or a type), the
activation of the CDS document creates the specified artifact (a context or a type) and does not take over
the catalog table defined by the source (hdbtable) definition.

● Structural compatibility
The new CDS document (defined in the hdbdd artifact) must be structurally compatible with the table
definition in the old hdbtable artifact (that is, with the runtime table).
○ Data types

All elements of the new CDS entity that have equally named counterparts in the old hdbtable
definition must be convertible with respect to their data type. The implicit conversion rules described
in the SAP HANA SQL documentation apply.

○ Elements/Columns
Elements/columns that exist in the runtime table but are not defined in the CDS entity will be dropped.
Elements/columns that do not exist in the runtime table but are defined in the CDS entity are added to
the runtime table.

208 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

Related Information

SAP HANA to CDS Data-Type Mapping [page 209]
SAP HANA SQL Data Type Conversion

5.1.4.2 SAP HANA to CDS Data-Type Mapping

Mapping table for SAP HANA (hdbtable) and Core Data Services (CDS) types.

Although CDS defines its own system of data types, the list of types is roughly equivalent to the data types
available in SAP HANA (hdbtable); the difference between CDS data types and SAP HANA data types is
mostly in the type names. The following table lists the SAP HANA (hdbtable) data types and indicates what
the equivalent type is in CDS.

Mapping SAP HANA and CDS Types

SAP HANA Type (hdbtable) CDS Type (hdbdd)

NVARCHAR String

SHORTTEXT String

NCLOB LargeString

TEXT LargeString

VARBINARY Binary

BLOB LargeBinary

INTEGER Integer

INT Integer

BIGINT Integer64

DECIMAL(p,s) Decimal(p,s)

DECIMAL DecimalFloat

DOUBLE BinaryFloat

DAYDATE LocalDate

DATE LocalDate

SECONDTIME LocalTime

TIME LocalTime

SECONDDATE UTCDateTime

LONGDATE UTCTimestamp

TIMESTAMP UTCTimestamp

ALPHANUM hana.ALPHANUM

SMALLINT hana.SMALLINT

TINYINT hana.TINYINT

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 209

http://help.sap.com/saphelp_hanaplatform/helpdata/en/20/a1569875191014b507cf392724b7eb/content.htm#loio20a1569875191014b507cf392724b7eb___csql_data_types_1sql_data_types_introduction_conversion

SAP HANA Type (hdbtable) CDS Type (hdbdd)

SMALLDECIMAL hana.SMALLDECIMAL

REAL hana.REAL

VARCHAR hana.VARCHAR

CLOB hana.CLOB

BINARY hana.BINARY

ST_POINT hana.ST_POINT

ST_GEOMETRY hana.ST_GEOMETRY

Related Information

Migrate an Entity from hdbtable to CDS (hdbdd) [page 206]
CDS Entity Syntax Options [page 197]
SAP HANA SQL Data Type Conversion

5.1.5 Create a User-Defined Structured Type in CDS

A structured type is a data type comprising a list of attributes, each of which has its own data type. You create a
user-defined structured type as a design-time file in the SAP HANA repository.

Prerequisites

To complete this task successfully, note the following prerequisites:

● You must have access to an SAP HANA system.
● You must have already created a development workspace and a project.
● You must have shared the project so that the newly created files can be committed to (and synchronized

with) the repository.
● You must have created a schema for the CDS catalog objects, for example, MYSCHEMA
● The owner of the schema must have SELECT privileges in the schema to be able to see the generated

catalog objects.

Context

SAP HANA Extended Application Services (SAP HANA XS) enables you to use the CDS syntax to create a user-
defined structured type as a design-time file in the repository. Repository files are transportable. Activating the

210 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

http://help.sap.com/saphelp_hanaplatform/helpdata/en/20/a1569875191014b507cf392724b7eb/content.htm#loio20a1569875191014b507cf392724b7eb___csql_data_types_1sql_data_types_introduction_conversion

CDS document creates the corresponding types in the specified schema. To create a CDS document that
defines one or more structured types and save the document in the repository, perform the following steps:

Procedure

1. Start the SAP HANA studio.
2. Open the SAP HANA Development perspective.
3. Open the Project Explorer view.
4. Create the CDS definition file for the user-defined structured type.

Browse to the folder in your project workspace where you want to create the CDS definition file for the new
user-defined structured type and perform the following steps:
a. Right-click the folder where you want to save the definition file for the user-defined structured type and

choose New Other... Database Development DDL Source File in the context-sensitive popup
menu.

b. Enter the name of the user-defined structured type in the File Name box, for example,
MyStructuredType.

 Tip
File extensions are important. If you are using SAP HANA studio to create artifacts in the SAP
HANA Repository, the file-creation wizard adds the required file extension automatically (for
example, MyCDSFile.hdbdd) and, if appropriate, enables direct editing of the new file in the
corresponding editor.

c. Choose Finish to save the changes and commit the new the user-defined structured type in the
repository.

5. Define the user-defined structured type in CDS.

If the new user-defined structured type is not automatically displayed by the file-creation wizard, in the
Project Explorer view double-click the user-defined structured type you created in the previous step, for
example, MyStructuredType.hdbdd, and add the definition code for the user-defined structured type to
the file:

 Note
The following code example is provided for illustration purposes only. If the schema you specify does
not exist, you cannot activate the new CDS document and the structured types are not created.

namespace Package1.Package2; @Schema: 'MYSCHEMA'
type MyStructuredType
{
 aNumber : Integer;
 someText : String(80);
 otherText : String(80); };

6. Save the definition file for the CDS user-defined structured type.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 211

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository.
You do not need to explicitly commit the file again.

7. Activate the changes in the repository.
a. Locate and right-click the new CDS definition file in the Project Explorer view.

b. In the context-sensitive pop-up menu, choose Team Activate .
If you cannot activate the new CDS artifact, check that the specified schema already exists and that
there are no illegal characters in the name space, for example, the hyphen (-).

On activation, the data types appear in the Systems view of the SAP HANA Development perspective under
<SID> Catalog SchemaName Procedures Table Types .

8. Ensure access to the schema where the new CDS catalog objects are created.
After activation in the repository, a schema object is only visible in the catalog to the _SYS_REPO user. To
enable other users, for example the schema owner, to view the newly created schema and the objects it
contains, you must grant the user the required SELECT privilege for the schema object.

 Note
If you already have the appropriate SELECT privilege, you do not need to perform this step.

a. In the SAP HANA studio Systems view, right-click the SAP HANA system hosting the repository where
the schema was activated and choose SQL Console in the context-sensitive popup menu.

b. In the SQL console, execute the statement illustrated in the following example, where <SCHEMANAME>
is the name of the newly activated schema, and <username> is the database user ID of the schema
owner:

call
_SYS_REPO.GRANT_SCHEMA_PRIVILEGE_ON_ACTIVATED_CONTENT('select','<SCHEMANAME
>','<username>');

Related Information

CDS User-Defined Data Types [page 213]
CDS Structured Type Definition [page 216]
CDS Structured Types [page 219]

212 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

5.1.5.1 CDS User-Defined Data Types

User-defined data types reference existing structured types (for example, user-defined) or the individual types
(for example, field, type, or context) used in another data-type definition.

You can use the type keyword to define a new data type in CDS-compliant DDL syntax. You can define the data
type in the following ways:

● Using allowed structured types (for example, user-defined)
● Referencing another data type

In the following example, the element definition field2 : MyType1; specifies a new element field2 that is
based on the specification in the user-defined data type MyType1.

 Note
If you are using a CDS document to define a single CDS-compliant user-defined data type, the name of the
CDS document must match the name of the top-level data type defined in the CDS document, for example,
with the type keyword.

In the following example, you must save the data-type definition “MyType1” in the CDS document
MyType1.hdbdd. In addition, the name space declared in a CDS document must match the repository
package in which the object the document defines is located.

namespace com.acme.myapp1; @Schema: 'MYSCHEMA' // user-defined structured data types
type MyType1 {
 field1 : Integer;
 field2 : String(40);
 field3 : Decimal(22,11);
 field4 : Binary(11);
 };

In the following example, you must save the data-type definition “MyType2” in the CDS document
MyType2.hdbdd; the document contains a using directive pointing to the data-type “MyType1” defined in CDS
document MyType1.hdbdd.

namespace com.acme.myapp1; using com.acme.myapp1::MyType1;
@Schema: 'MYSCHEMA' // user-defined structured data types
type MyType2 {
 field1 : String(50);
 field2 : MyType1; };

In the following example, you must save the data-type definition “MyType3” in the CDS document
MyType3.hdbdd; the document contains a using directive pointing to the data-type “MyType2” defined in CDS
document MyType2.hdbdd.

namespace com.acme.myapp1; using com.acme.myapp1::MyType2;
@Schema: 'MYSCHEMA' // user-defined structured data types
type MyType3 {
 field1 : UTCTimestamp;
 field2 : MyType2; };

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 213

The following code example shows how to use the type of keyword to define an element using the definition
specified in another user-defined data-type field. For example, field4 : type of field3; indicates that,
like field3, field4 is a LocalDate data type.

namespace com.acme.myapp1; using com.acme.myapp1::MyType1;
@Schema: 'MYSCHEMA' // Simple user-defined data types
entity MyEntity1 {
 key id : Integer;
 field1 : MyType3;
 field2 : String(24);
 field3 : LocalDate;
 field4 : type of field3;
 field5 : type of MyType1.field2;
 field6 : type of InnerCtx.CtxType.b; // context reference
};

You can use the type of keyword in the following ways:

● Define a new element (field4) using the definition specified in another user-defined element field3:
field4 : type of field3;

● Define a new element field5 using the definition specified in a field (field2) that belongs to another
user-defined data type (MyType1):
field5 : type of MyType1.field2;

● Define a new element (field6) using an existing field (b) that belongs to a data type (CtxType) in another
context (InnerCtx):
field6 : type of InnerCtx.CtxType.b;

The following code example shows you how to define nested contexts (MyContext.InnerCtx) and refer to
data types defined by a user in the specified context.

namespace com.acme.myapp1; @Schema: 'MYSCHEMA'
context MyContext {
// Nested contexts
 context InnerCtx {

 Entity MyEntity {
 …
 };
 Type CtxType {
 a : Integer;
 b : String(59);
 };
 };
 type MyType1 {
 field1 : Integer;
 field2 : String(40);
 field3 : Decimal(22,11);
 field4 : Binary(11);
 };
 type MyType2 {
 field1 : String(50);
 field2 : MyType1;
 };
 type MyType3 {
 field1 : UTCTimestamp;
 field2 : MyType2;
 };

 @Catalog.index : [{ name : 'IndexA', order : #ASC, unique: true,
 elementNames : ['field1'] }]

214 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 entity MyEntity1 {
 key id : Integer;
 field1 : MyType3 not null;
 field2 : String(24);
 field3 : LocalDate;
 field4 : type of field3;
 field5 : type of MyType1.field2;
 field6 : type of InnerCtx.CtxType.b; // refers to nested context
 field7 : InnerCtx.CtxType; // more context references
 };
};

Restrictions

CDS name resolution does not distinguish between CDS elements and CDS types. If you define a CDS
element based on a CDS data type that has the same name as the new CDS element, CDS displays an error
message and the activation of the CDS document fails.

 Caution
In an CDS document, you cannot define a CDS element using a CDS type of the same name; you must
specify the context where the target type is defined, for example, MyContext.doobidoo.

The following example defines an association between a CDS element and a CDS data type both of which are
named doobidoo. The result is an error when resolving the names in the CDS document; CDS expects a type
named doobidoo but finds an CDS entity element with the same name that is not a type.

context MyContext2 { type doobidoo : Integer;
 entity MyEntity {
 key id : Integer;
 doobidoo : doobidoo; // error: type expected; doobidoo is not a type
 };
};

The following example works, since the explicit reference to the context where the type definition is located
(MyContext.doobidoo) enables CDS to resolve the definition target.

context MyContext { type doobidoo : Integer;
 entity MyEntity {
 key id : Integer;
 doobidoo : MyContext.doobidoo; // OK
 };
};

 Note
To prevent name clashes between artifacts that are types and those that have a type assigned to them,
make sure you keep to strict naming conventions. For example, use an uppercase first letter for MyEntity,
MyView and MyType; use a lowercase first letter for elements myElement.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 215

Related Information

Create a User-Defined Structured Type in CDS [page 210]
CDS Structured Type Definition [page 216]
CDS Primitive Data Types [page 221]

5.1.5.2 CDS Structured Type Definition

A structured type is a data type comprising a list of attributes, each of which has its own data type. The
attributes of the structured type can be defined manually in the structured type itself and reused either by
another structured type or an entity.

SAP HANA Extended Application Services (SAP HANA XS) enables you to create a database structured type as
a design-time file in the repository. All repository files including your structured-type definition can be
transported to other SAP HANA systems, for example, in a delivery unit. You can define the structured type
using CDS-compliant DDL.

 Note
A delivery unit is the medium SAP HANA provides to enable you to assemble all your application-related
repository artifacts together into an archive that can be easily exported to other systems.

When a CDS document is activated, the activation process generates a corresponding catalog object for each
of the artifacts defined in the document; the location in the catalog is determined by the type of object
generated. For example, the corresponding table type for a CDS type definition is generated in the following
catalog location:

<SID> Catalog <MYSCHEMA> Procedures Table Types

Structured User-Defined Types

In a structured user-defined type, you can define original types (aNumber in the following example) or
reference existing types defined elsewhere in the same type definition or another, separate type definition
(MyString80). If you define multiple types in a single CDS document, for example, in a parent context, each
structure-type definition must be separated by a semi-colon (;).

The type MyString80 is defined in the following CDS document:

namespace Package1.Package2; @Schema: 'MySchema' type MyString80: String(80);

A using directive is required to resolve the reference to the data type specified in otherText :
MyString80;, as illustrated in the following example:

namespace Package1.Package2; using Package1.Package2::MyString80; //contains definition of MyString80
@Schema: 'MySchema'

216 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

type MyStruct
{
 aNumber : Integer;
 someText : String(80);
 otherText : MyString80; // defined in a separate type };

 Note
If you are using a CDS document to specify a single CDS-compliant data type, the name of the CDS
document (MyStruct.hdbdd) must match the name of the top-level data type defined in the CDS
document, for example, with the type keyword.

Nested Structured Types

Since user-defined types can make use of other user-defined types, you can build nested structured types, as
illustrated in the following example:

namespace Package1.Package2; using Package1.Package2::MyString80;
using Package1.Package2::MyStruct;
@Schema: 'MYSCHEMA'
context NestedStructs {
 type MyNestedStruct
 {
 name : MyString80;
 nested : MyStruct; // defined in a separate type
 };
 type MyDeepNestedStruct
 {
 text : LargeString;
 nested : MyNestedStruct;
 };
 type MyOtherInt : type of MyStruct.aNumber; // => Integer
 type MyOtherStruct : type of MyDeepNestedStruct.nested.nested; // => MyStruct
};

You can also define a type based on an existing type that is already defined in another user-defined structured
type, for example, by using the type of keyword, as illustrated in the following example:

 type MyOtherInt : type of MyStruct.aNumber; // => Integer
type MyOtherStruct : type of MyDeepNestedStruct.nested.nested; // => MyStruct

Generated Table Types

For each structured type, a SAP HANA table type is generated, whose name is built by concatenating the
following elements of the CDS document containing the structured-type definition and separating the
elements by a dot delimiter (.):

● the name space (for example, Pack1.Pack2)
● the names of all artifacts that enclose the type (for example, MyModel)

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 217

● the name of the type itself (for example, MyNestedStruct)

create type "Pack1.Pack2::MyModel.MyNestedStruct" as table (name nvarchar(80),
 nested.aNumber integer,
 nested.someText nvarchar(80),
 nested.otherText nvarchar(80));

The new SAP HANA table types are generated in the schema that is specified in the schema annotation of the
respective top-level artifact in the CDS document containing the structured types.

 Note
To view the newly created objects, you must have the required SELECT privilege for the schema object in
which the objects are generated.

The columns of the table type are built by flattening the elements of the type. Elements with structured types
are mapped to one column per nested element, with the column names built by concatenating the element
names and separating the names by dots ".".

 Tip
If you want to use the structured types inside a CDS document without generating table types in the
catalog, use the annotation @GenerateTableType : false.

Table types are only generated for direct structure definitions; in the following example, this would include:
MyStruct, MyNestedStruct, and MyDeepNestedStruct. No table types are generated for derived types
that are based on structured types; in the following example, the derived types include: MyS, MyOtherInt,
MyOtherStruct.

 Example

namespace Pack1."pack-age2"; @Schema: 'MySchema'
context MyModel
{
 type MyInteger : Integer;
 type MyString80 : String(80);
 type MyDecimal : Decimal(10,2);
 type MyStruct
 {
 aNumber : Integer;
 someText : String(80);
 otherText : MyString80; // defined in example above
 };
 type MyS : MyStruct;
 type MyOtherInt : type of MyStruct.aNumber;
 type MyOtherStruct : type of MyDeepNestedStruct.nested.nested;
 type MyNestedStruct
 {
 name : MyString80;
 nested : MyS;
 };
 type MyDeepNestedStruct
 {
 text : LargeString;
 nested : MyNestedStruct;
 }; };

218 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

Related Information

Create a User-Defined Structured Type in CDS [page 210]
CDS User-Defined Data Types [page 213]
CDS Structured Types [page 219]
CDS Primitive Data Types [page 221]

5.1.5.3 CDS Structured Types

A structured type is a data type comprising a list of attributes, each of which has its own data type. The
attributes of the structured type can be defined manually in the structured type itself and reused either by
another structured type or an entity.

 Example

namespace examples; @Schema: 'MYSCHEMA'
context StructuredTypes { type MyOtherInt : type of MyStruct.aNumber; // => Integer type MyOtherStruct : type of MyDeepNestedStruct.nested.nested; // =>
MyStruct @GenerateTableType: false type EmptyStruct { }; type MyStruct
 {
 aNumber : Integer;
 aText : String(80);
 anotherText : MyString80; // defined in a separate type
 };
 entity E {
 a : Integer;
 s : EmptyStruct;
 };
 type MyString80 : String(80);
 type MyS : MyStruct;
 type MyNestedStruct
 {
 name : MyString80;
 nested : MyS;
 };
 type MyDeepNestedStruct
 {
 text : LargeString;
 nested : MyNestedStruct;
 };
};

type

In a structured user-defined type, you can define original types (aNumber in the following example) or
reference existing types defined elsewhere in the same type definition or another, separate type definition, for

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 219

example, MyString80 in the following code snippet. If you define multiple types in a single CDS document,
each structure definition must be separated by a semi-colon (;).

type MyStruct {
 aNumber : Integer;
 aText : String(80);
 anotherText : MyString80; // defined in a separate type };

You can define structured types that do not contain any elements, for example, using the keywords type
EmptyStruct { };. In the example, below the generated table for entity “E” contains only one column: “a”.

 Tip
It is not possible to generate an SAP HANA table type for an empty structured type. This means you must
disable the generation of the table type in the Repository, for example, with the @GenerateTableType
annotation.

@GenerateTableType : false type EmptyStruct { };
entity E {
 a : Integer;
 s : EmptyStruct; };

type of

You can define a type based on an existing type that is already defined in another user-defined structured type,
for example, by using the type of keyword, as illustrated in the following example:

Context StructuredTypes {
type MyOtherInt : type of MyStruct.aNumber; // => Integer
type MyOtherStruct : type of MyDeepNestedStruct.nested.nested; // => MyStruct };

Related Information

Create a User-Defined Structured Type in CDS [page 210]
CDS Primitive Data Types [page 221]
CDS User-Defined Data Types [page 213]
CDS Structured Type Definition [page 216]

220 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

5.1.5.4 CDS Primitive Data Types

In the Data Definition Language (DDL), primitive (or core) data types are the basic building blocks that you use
to define entities or structure types with DDL.

When you are specifying a design-time table (entity) or a view definition using the CDS syntax, you use data
types such as String, Binary, or Integer to specify the type of content in the entity columns. CDS supports the
use of the following primitive data types:

● DDL data types [page 221]
● Native SAP HANA data types [page 223]

The following table lists all currently supported simple DDL primitive data types. Additional information
provided in this table includes the SQL syntax required as well as the equivalent SQL and EDM names for the
listed types.

Supported SAP HANA DDL Primitive Types

Name Description SQL Literal Syntax SQL Name EDM Name

String (n) Variable-length Unicode string with a
specified maximum length of
n=1-1333 characters (5000 for SAP
HANA specific objects). Default =
maximum length. String length (n) is
mandatory.

'text with “quote”' NVARCHAR String

LargeString Variable length string of up to 2 GB
(no comparison)

'text with “quote”' NCLOB String

Binary(n) Variable length byte string with user-
defined length limit of up to 4000
bytes. Binary length (n) is mandatory.

x'01Cafe', X'01Cafe' VARBINARY Binary

LargeBinary Variable length byte string of up to 2
GB (no comparison)

x'01Cafe', X'01Cafe' BLOB Binary

Integer Respective container's standard
signed integer. Signed 32 bit integers
in 2's complement, -2**31 .. 2**31-1.
Default=NULL

13, -1234567 INTEGER Int64

Integer64 Signed 64-bit integer with a value
range of -2^63 to 2^63-1. De
fault=NULL.

13, -1234567 BIGINT Int64

Decimal(p, s) Decimal number with fixed precision
(p) in range of 1 to 34 and fixed scale
(s) in range of 0 to p. Values for preci
sion and scale are mandatory.

12.345, -9.876 DECIMAL(p, s) Decimal

DecimalFloat Decimal floating-point number (IEEE
754-2008) with 34 mantissa digits;
range is roughly ±1e-6143 through
±9.99e+6144

12.345, -9.876 DECIMAL Decimal

BinaryFloat Binary floating-point number (IEEE
754), 8 bytes (roughly 16 decimal dig
its precision); range is roughly
±2.2207e-308 through ±1.7977e+308

1.2, -3.4, 5.6e+7 DOUBLE Double

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 221

Name Description SQL Literal Syntax SQL Name EDM Name

LocalDate Local date with values ranging from
0001-01-01 through 9999-12-31

date'1234-12-31' DATE DateTimeOffset

Combines date
and time; with
time zone must
be converted to
offset

LocalTime Time values (with seconds precision)
and values ranging from 00:00:00
through 24:00:00

time'23:59:59', time'12:15' TIME Time

For duration/
period of time
(==xsd:dura
tion). Use Date
TimeOffset if
there is a date,
too.

UTCDateTime UTC date and time (with seconds pre
cision) and values ranging from
0001-01-01 00:00:00 through
9999-12-31 23:59:59

timestamp'2011-12-31
23:59:59'

SECONDDATE DateTimeOffset

Values ending
with “Z” for
UTC. Values be
fore
1753-01-01T00:
00:00 are not
supported;
transmitted as
NULL.

UTCTimestamp UTC date and time (with a precision of
0.1 microseconds) and values ranging
from 0001-01-01 00:00:00 through
9999-12-31 23:59:59.9999999, and a
special initial value

timestamp'2011-12-31
23:59:59.7654321'

TIMESTAMP DateTimeOffset

With Precision =
“7”

Boolean Represents the concept of binary-val
ued logic

true, false, unknown (null) BOOLEAN Boolean

The following table lists all the native SAP HANA primitive data types that CDS supports. The information
provided in this table also includes the SQL syntax required (where appropriate) as well as the equivalent SQL
and EDM names for the listed types.

 Note
* In CDS, the name of SAP HANA data types are prefixed with the word “hana”, for example,
hana.ALPHANUM, or hana.SMALLINT, or hana.TINYINT.

222 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

Supported Native SAP HANA Data Types

Data Type * Description SQL Literal Syntax SQL Name EDM Name

ALPHANUM Variable-length char
acter string with spe
cial comparison

- ALPHANUMERIC -

SMALLINT Signed 16-bit integer -32768, 32767 SMALLINT Int16

TINYINT Unsigned 8-bit integer 0, 255 TINYINT Byte

REAL 32-bit binary floating-
point number

- REAL Single

SMALLDECIMAL 64-bit decimal float-
ing-point number

- SMALLDECIMAL Decimal

VARCHAR Variable-length ASCII
character string with
user-definable length
limit n

- VARCHAR String

CLOB Large variable-length
ASCII character string,
no comparison

- CLOB String

BINARY Byte string of fixed
length n

- BINARY Blob

ST_POINT 0-dimensional geome
try representing a sin
gle location

- - -

ST_GEOMETRY Maximal supertype of
the geometry type hi
erarchy; includes
ST_POINT

- - -

The following example shows the native SAP HANA data types that CDS supports; the code example also
illustrates the mandatory syntax.

 Note
Support for the geo-spatial types ST_POINT and ST_GEOMETRY is limited: these types can only be used for
the definition of elements in types and entities. It is not possible to define a CDS view that selects an
element based on a geo-spatial type from a CDS entity.

@nokey entity SomeTypes {
 a : hana.ALPHANUM(10);
 b : hana.SMALLINT;
 c : hana.TINYINT;
 d : hana.SMALLDECIMAL;
 e : hana.REAL;
 h : hana.VARCHAR(10);
 i : hana.CLOB;
 j : hana.BINARY(10);
 k : hana.ST_POINT;
 l : hana.ST_GEOMETRY;
};

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 223

Related Information

Create a User-Defined Structures Type in CDS [page 210]

5.1.6 Create an Association in CDS

Associations define relationships between entities. You create associations in a CDS entity definition, which is a
design-time file in the SAP HANA repository.

Prerequisites

To complete this task successfully, note the following prerequisites:

● You must have access to an SAP HANA system.
● You must have already created a development workspace and a project.
● You must have shared the project so that the newly created files can be committed to (and synchronized

with) the repository.
● You must have created a schema for the CDS catalog objects, for example, MYSCHEMA
● The owner of the schema must have SELECT privileges in the schema to be able to see the generated

catalog objects.

Context

SAP HANA Extended Application Services (SAP HANA XS) enables you to use the CDS syntax to create
associations between entities. The associations are defined as part of the entity definition, which are design-
time files in the repository. Repository files are transportable. Activating the CDS entity creates the
corresponding catalog objects in the specified schema. To create an association between CDS entities,
perform the following steps:

Procedure

1. Start the SAP HANA studio.
2. Open the SAP HANA Development perspective.
3. Open the Project Explorer view.
4. Create the CDS entity-definition file which will contain the associations you define.

Browse to the folder in your project workspace where you want to create the new CDS entity-definition file
and perform the following steps:

a. Right-click the folder where you want to save the entity-definition file and choose New Other...
Database Development DDL Source File in the context-sensitive popup menu.

224 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

b. Enter the name of the CDS document in the File Name box, for example, MyModel1.

 Tip
File extensions are important. If you are using SAP HANA studio to create artifacts in the SAP
HANA Repository, the file-creation wizard adds the required file extension automatically (for
example, MyEntity1.hdbdd) and, if appropriate, enables direct editing of the new file in the
corresponding editor.

c. Choose Finish to save the changes and commit the new CDS file in the repository.
5. Define the underlying CDS entities and structured types.

If the new CDS file is not automatically displayed by the file-creation wizard, in the Project Explorer view
double-click the CDS file you created in the previous step, for example, MyModel1.hdbdd, and add the
code for the entity definitions and structured types to the file:

 Note
The following code example is provided for illustration purposes only. If the schema you specify does
not exist, you cannot activate the new CDS entity.

context MyEntity1 { type StreetAddress {
 name : String(80);
 number : Integer;
 };
 type CountryAddress {
 name : String(80);
 code : String(3);
 };
 entity Address {
 key id : Integer;
 street : StreetAddress;
 zipCode : Integer;
 city : String(80);
 country : CountryAddress;
 type : String(10); // home, office
 };
 };

6. Define a one-to-one association between CDS entities.

In the same entity-definition file you edited in the previous step, for example, MyEntity.hdbdd, add the
code for the one-to-one association between the entity Person and the entity Address:

 Note
This example does not specify cardinality or foreign keys, so the cardinality is set to the default 0..1, and
the target entity's primary key (the element id) is used as foreign key.

entity Person {
 key id : Integer;
 address1 : Association to Address;
 addressId : Integer; };

7. Define an unmanaged association with cardinality one-to-many between CDS entities.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 225

In the same entity-definition file you edited in the previous step, for example, MyEntity.hdbdd, add the
code for the one-to-many association between the entity Address and the entity Person. The code should
look something like the following example:

entity Address { key id : Integer;
 street : StreetAddress;
 zipCode : Integer;
 city : String(80);
 country : CountryAddress;
 type : String(10); // home, office inhabitants : Association[*] to Person on inhabitants.addressId = id; };

8. Save the CDS entity-definition file containing the new associations.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository, To
explicitly commit a file to the repository, right-click the file (or the project containing the file) and
choose Team Commit from the context-sensitive popup menu.

9. Activate the changes in the repository.
a. Locate and right-click the new CDS entity-definition file in the Project Explorer view.

b. In the context-sensitive pop-up menu, choose Team Activate .

 Note
If you cannot activate the new CDS artifact, check that the specified schema already exists and
that there are no illegal characters in the name space, for example, the hyphen (-).

Related Information

CDS Associations [page 226]
CDS Association Syntax Options [page 232]

5.1.6.1 CDS Associations

Associations define relationships between entities.

Associations are specified by adding an element to a source entity with an association type that points to a
target entity, complemented by optional information defining cardinality and which keys to use.

 Note
CDS supports both managed and unmanaged associations.

226 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

SAP HANA Extended Application Services (SAP HANA XS) enables you to use associations in CDS entities or
CDS views. The syntax for simple associations in a CDS document is illustrated in the following example:

namespace samples; @Schema: 'MYSCHEMA' // XS classic *only*
context SimpleAssociations {
 type StreetAddress {
 name : String(80);
 number : Integer;
 };
 type CountryAddress {
 name : String(80);
 code : String(3);
 };
 entity Address {
 key id : Integer;
 street : StreetAddress;
 zipCode : Integer;
 city : String(80);
 country : CountryAddress;
 type : String(10); // home, office
 };
 entity Person
 {
 key id : Integer;
 // address1,2,3 are to-one associations
 address1 : Association to Address;
 address2 : Association to Address { id };
 address3 : Association[1] to Address { zipCode, street, country };
 // address4,5,6 are to-many associations
 address4 : Association[0..*] to Address { zipCode };
 address5 : Association[*] to Address { street.name };
 address6 : Association[*] to Address { street.name AS streetName,
 country.name AS countryName };
 }; };

Cardinality in Associations

When using an association to define a relationship between entities in a CDS document, you use the
cardinality to specify the type of relation, for example, one-to-one (to-one) or one-to-many (to-n); the
relationship is with respect to both the source and the target of the association.

The target cardinality is stated in the form of [min .. max], where max=* denotes infinity. If no cardinality
is specified, the default cardinality setting [0..1] is assumed. It is possible to specify the maximum
cardinality of the source of the association in the form [maxs, min .. max], too, where maxs = * denotes
infinity.

 Tip
The information concerning the maximum cardinality is only used as a hint for optimizing the execution of
the resulting JOIN.

The following examples illustrate how to express cardinality in an association definition:

namespace samples; @Schema: 'MYSCHEMA' // XS classic *only*
context AssociationCardinality {

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 227

 entity Associations {
 // To-one associations
 assoc1 : Association[0..1] to target; // has no or one target instance
 assoc2 : Association to target; // as assoc1, uses the default
[0..1]
 assoc3 : Association[1] to target; // as assoc1; the default for
min is 0
 assoc4 : Association[1..1] to target; // association has one target
instance
 // To-many associations
 assoc5 : Association[0..*] to target{id1};
 assoc6 : Association[] to target{id1}; // as assoc4, [] is short
for [0..*]
 assoc7 : Association[2..7] to target{id1}; // any numbers are
possible; user provides
 assoc8 : Association[1, 0..*] to target{id1}; // additional info. about
source cardinality
 };
 // Required to make the example above work
 entity target {
 key id1 : Integer;
 key id2 : Integer;
 }; };

Target Entities in Associations

You use the to keyword in a CDS view definition to specify the target entity in an association, for example, the
name of an entity defined in a CDS document. A qualified entity name is expected that refers to an existing
entity. A target entity specification is mandatory; a default value is not assumed if no target entity is specified
in an association relationship.

The entity Address specified as the target entity of an association could be expressed in any of the ways
illustrated the following examples:

address1 : Association to Address; address2 : Association to Address { id };
address3 : Association[1] to Address { zipCode, street, country };

Filter Conditions and Prefix Notation

When following an association (for example, in a view), it is now possible to apply a filter condition; the filter is
merged into the ON-condition of the resulting JOIN. The following example shows how to get a list of customers
and then filter the list according to the sales orders that are currently “open” for each customer. In the
example, the infix filter is inserted after the association orders to get only those orders that satisfy the
condition [status='open'].

 Sample Code

view C1 as select from Customer { name,
 orders[status='open'].id as orderId };

228 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

The association orders is defined in the entity definition illustrated in the following code example:

 Sample Code

entity Customer { key id : Integer;
 orders : Association[*] to SalesOrder on orders.cust_id = id;
 name : String(80);
};
entity SalesOrder {
 key id : Integer;
 cust_id : Integer;
 customer: Association[1] to Customer on customer.id = cust_id;
 items : Association[*] to Item on items.order_id = id;
 status: String(20);
 date : LocalDate;
};
entity Item {
 key id : Integer;
 order_id : Integer;
 salesOrder : Association[1] to SalesOrder on salesOrder.id = order_id;
 descr : String(100);
 price : Decimal(8,2); };

 Tip
For more information about filter conditions and prefixes in CDS views, see CDS Views and CDS View
Syntax Options.

Foreign Keys in Associations

For managed associations, the relationship between source and target entity is defined by specifying a set of
elements of the target entity that are used as a foreign key. If no foreign keys are specified explicitly, the
elements of the target entity’s designated primary key are used. Elements of the target entity that reside inside
substructures can be addressed via the respective path. If the chosen elements do not form a unique key of the
target entity, the association has cardinality to-many. The following examples show how to express foreign keys
in an association.

namespace samples; using samples::SimpleAssociations.StreetAddress;
using samples::SimpleAssociations.CountryAddress;
using samples::SimpleAssociations.Address;
@Schema: 'MYSCHEMA' // XS classic *only*
context ForeignKeys {
 entity Person
 {
 key id : Integer;
 // address1,2,3 are to-one associations
 address1 : Association to Address;
 address2 : Association to Address { id };
 address3 : Association[1] to Address { zipCode, street, country };
 // address4,5,6 are to-many associations
 address4 : Association[0..*] to Address { zipCode };
 address5 : Association[*] to Address { street.name };
 address6 : Association[*] to Address { street.name AS streetName,
 country.name AS countryName };

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 229

 };
 entity Header {
 key id : Integer;
 toItems : Association[*] to Item on toItems.head.id = id;
 };
 entity Item {
 key id : Integer;
 head : Association[1] to Header { id };
 // <...>
 }; };

● address1
No foreign keys are specified: the target entity's primary key (the element id) is used as foreign key.

● address2
Explicitly specifies the foreign key (the element id); this definition is similar to address1.

● address3
The foreign key elements to be used for the association are explicitly specified, namely: zipcode and the
structured elements street and country.

● address4
Uses only zipcode as the foreign key. Since zipcode is not a unique key for entity Address, this
association has cardinality “to-many”.

● address5
Uses the subelement name of the structured element street as a foreign key. This is not a unique key and,
as a result, address4 has cardinality “to-many”.

● address6
Uses the subelement name of both the structured elements street and country as foreign key fields.
The names of the foreign key fields must be unique, so an alias is required here. The foreign key is not
unique, so address6 is a “to-many” association.

You can use foreign keys of managed associations in the definition of other associations. In the following
example, the appearance of association head in the ON condition is allowed; the compiler recognizes that the
field head.id is actually part of the entity Item and, as a result, can be obtained without following the
association head.

 Sample Code

entity Header { key id : Integer;
 toItems : Association[*] to Item on toItems.head.id = id;
};

entity Item {
 key id : Integer;
 head : Association[1] to Header { id };
 ... };

230 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

Restrictions

CDS name resolution does not distinguish between CDS associations and CDS entities. If you define a
CDS association with a CDS entity that has the same name as the new CDS association, CDS displays an error
message and the activation of the CDS document fails.

 Caution
In an CDS document, to define an association with a CDS entity of the same name, you must specify the
context where the target entity is defined, for example, Mycontext.Address3.

The following code shows some examples of associations with a CDS entity that has the same (or a similar)
name. Case sensitivity ("a", "A") is important; in CDS documents, address is not the same as Address. In the
case of Address2, where the association name and the entity name are identical, the result is an error; when
resolving the element names, CDS expects an entity named Address2 but finds a CDS association with the
same name instead. MyContext.Address3 is allowed, since the target entity can be resolved due to the
absolute path to its location in the CDS document.

context MyContext { entity Address {…}
 entity Address1 {…}
 entity Address2 {…}
 entity Address3 {…}
 entity Person
 {
 key id : Integer;
 address : Association to Address; // OK: "address" ≠ "Address”
 address1 : Association to Address1; // OK: "address1" ≠ "Address1”
 Address2 : Association to Address2; // Error: association name =
entity name
 Address3 : Association to MyContext.Address3; //OK: full path to Address3

 };
};

 Example
Complex (One-to-Many) Association

The following example shows a more complex association (to-many) between the entity “Header” and the
entity “Item”.

namespace samples; @Schema: 'MYSCHEMA' // XS classic *only*
context ComplexAssociation {
 Entity Header {
 key PurchaseOrderId: BusinessKey;
 Items: Association [0..*] to Item on
Items.PurchaseOrderId=PurchaseOrderId;
 "History": HistoryT;
 NoteId: BusinessKey null;
 PartnerId: BusinessKey;
 Currency: CurrencyT;
 GrossAmount: AmountT;
 NetAmount: AmountT;
 TaxAmount: AmountT;
 LifecycleStatus: StatusT;
 ApprovalStatus: StatusT;
 ConfirmStatus: StatusT;
 OrderingStatus: StatusT;

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 231

 InvoicingStatus: StatusT;
 } technical configuration {
 column store;
 };
 Entity Item {
 key PurchaseOrderId: BusinessKey;
 key PurchaseOrderItem: BusinessKey;
 ToHeader: Association [1] to Header on
ToHeader.PurchaseOrderId=PurchaseOrderId;
 ProductId: BusinessKey;
 NoteId: BusinessKey null;
 Currency: CurrencyT;
 GrossAmount: AmountT;
 NetAmount: AmountT;
 TaxAmount: AmountT;
 Quantity: QuantityT;
 QuantityUnit: UnitT;
 DeliveryDate: SDate;
 } technical configuration {
 column store;
 };
 define view POView as SELECT from Header {
 Items.PurchaseOrderId as poId,
 Items.PurchaseOrderItem as poItem,
 PartnerId,
 Items.ProductId
 };
 // Missing types from the example above
 type BusinessKey: String(50);
 type HistoryT: LargeString;
 type CurrencyT: String(3);
 type AmountT: Decimal(15, 2);
 type StatusT: String(1);
 type QuantityT: Integer;
 type UnitT: String(5);
 type SDate: LocalDate; };

Related Information

Create an Association in CDS [page 224]

5.1.6.2 CDS Association Syntax Options

Associations define relationships between entities.

 Example
Managed Associations

Association [<cardinality>] to <targetEntity> [<forwardLink>]

232 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 Example
Unmanaged Associations

Association [<cardinality>] to <targetEntity> <unmanagedJoin>

Overview

Associations are specified by adding an element to a source entity with an association type that points to a
target entity, complemented by optional information defining cardinality and which keys to use.

 Note
CDS supports both managed and unmanaged associations.

SAP HANA Extended Application Services (SAP HANA XS) enables you to use associations in the definition of a
CDS entity or a CDS view. When defining an association, bear in mind the following points:

● <Cardinality> [page 233]
The relationship between the source and target in the association, for example, one-to-one, one-to-many,
many-to-one

● <targetEntity> [page 235]
The target entity for the association

● <forwardLink> [page 235]
The foreign keys to use in a managed association, for example, element names in the target entity

● <unmanagedJoin> [page 237]
Unmanaged associations only; the ON condition specifies the elements of the source and target elements
and entities to use in the association

Association Cardinality

When using an association to define a relationship between entities in a CDS view; you use the cardinality to
specify the type of relation, for example:

● one-to-one (to-one)
● one-to-many (to-n)

The relationship is with respect to both the source and the target of the association. The following code
example illustrates the syntax required to define the cardinality of an association in a CDS view:

[[(maxs | *) ,] // source cardinality [min ..] (max | *) // target cardinality
]

In the most simple form, only the target cardinality is stated using the syntax [min .. max], where max=*
denotes infinity. Note that [] is short for [0..*]. If no cardinality is specified, the default cardinality setting
[0..1] is assumed. It is possible to specify the maximum cardinality of the source of the association in the
form [maxs, min .. max], where maxs = * denotes infinity.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 233

The following examples illustrate how to express cardinality in an association definition:

namespace samples; @Schema: 'MYSCHEMA' // XS classic *only*
context AssociationCardinality {
 entity Associations {
 // To-one associations
 assoc1 : Association[0..1] to target;
 assoc2 : Association to target;
 assoc3 : Association[1] to target;
 assoc4 : Association[1..1] to target; // association has one target
instance
 // To-many associations
 assoc5 : Association[0..*] to target{id1};
 assoc6 : Association[] to target{id1}; // as assoc4, [] is short
for [0..*]
 assoc7 : Association[2..7] to target{id1}; // any numbers are
possible; user provides
 assoc8 : Association[1, 0..*] to target{id1}; // additional info. about
source cardinality
 };
 // Required to make the example above work
 entity target {
 key id1 : Integer;
 key id2 : Integer;
 }; };

The following table describes the various cardinality expressions illustrated in the example above:

Association Cardinality Syntax Examples

Association Cardinality Explanation

assoc1 [0..1] The association has no or one target instance

assoc2 Like assoc1, this association has no or one target instance and uses the de
fault [0..1]

assoc3 [1] Like assoc1, this association has no or one target instance; the default for
min is 0

assoc4 [1..1] The association has one target instance

assoc5 [0..*] The association has no, one, or multiple target instances

assoc6 [] Like assoc4, [] is short for [0..*] (the association has no, one, or multiple tar
get instances)

assoc7 [2..7] Any numbers are possible; the user provides

assoc8 [1, 0..*] The association has no, one, or multiple target instances and includes addi
tional information about the source cardinality

When an infix filter effectively reduces the cardinality of a “to-N” association to “to-1”, this can be expressed
explicitly in the filter, for example:

assoc[1: <cond>]

Specifying the cardinality in the filter in this way enables you to use the association in the WHERE clause, where
“to-N” associations are not normally allowed.

234 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 Sample Code

namespace samples; @Schema: 'MYSCHEMA' // XS classic *only*
context CardinalityByInfixFilter {
 entity Person {
 key id : Integer;
 name : String(100);
 address : Association[*] to Address on address.personId = id;
 };
 entity Address {
 key id : Integer;
 personId : Integer;
 type : String(20); // home, business, vacation, ...
 street : String(100);
 city : String(100);
 };
 view V as select from Person {
 name
 } where address[1: type='home'].city = 'Accra';
};

Association Target

You use the to keyword in a CDS view definition to specify the target entity in an association, for example, the
name of an entity defined in a CDS document. A qualified entity name is expected that refers to an existing
entity. A target entity specification is mandatory; a default value is not assumed if no target entity is specified
in an association relationship.

Association[<cardinality>] to <targetEntity> [<forwardLink>]

The target entity Address specified as the target entity of an association could be expressed as illustrated the
following examples:

address1 : Association to Address; address2 : Association to Address { id };
address3 : Association[1] to Address { zipCode, street, country };

Association Keys

In the relational model, associations are mapped to foreign-key relationships. For managed associations, the
relation between source and target entity is defined by specifying a set of elements of the target entity that are
used as a foreign key, as expressed in the forwardLink element of the following code example:

Association[<cardinality>] to <targetEntity> [<forwardLink>]

The forwardLink element of the association could be expressed as follows:

<forwardLink> = { <foreignKeys> } <foreignKeys> = <targetKeyElement> [AS <alias>] [, <foreignKeys>] <targetKeyElement> = <elementName> (. <elementName>)*

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 235

If no foreign keys are specified explicitly, the elements of the target entity’s designated primary key are used.
Elements of the target entity that reside inside substructures can be addressed by means of the respective
path. If the chosen elements do not form a unique key of the target entity, the association has cardinality to-
many. The following examples show how to express foreign keys in an association.

entity Person {
 key id : Integer;
 // address1,2,3 are to-one associations
 address1 : Association to Address;
 address2 : Association to Address { id };
 address3 : Association[1] to Address { zipCode, street, country };
 // address4,5,6 are to-many associations
 address4 : Association[0..*] to Address { zipCode };
 address5 : Association[*] to Address { street.name };
 address6 : Association[*] to Address { street.name AS streetName,
 country.name AS countryName };
};

Association Syntax Options

Association Keys Explanation

address1 No foreign keys are specified: the target entity's primary key (the element id) is
used as foreign key.

address2 { id } Explicitly specifies the foreign key (the element id); this definition is identical to
address1.

address3 { zipCode,
street,
country }

The foreign key elements to be used for the association are explicitly specified,
namely: zipcode and the structured elements street and country.

address4 { zipCode } Uses only zipcode as the foreign key. Since zipcode is not a unique key for
entity Address, this association has cardinality “to-many”.

address5 { street.name
}

Uses the sub-element name of the structured element street as a foreign key.
This is not a unique key and, as a result, address4 has cardinality “to-many”.

address6 { street.name
AS
streetName,
country.name
AS
countryName }

Uses the sub-element name of both the structured elements street and
country as foreign key fields. The names of the foreign key fields must be
unique, so an alias is required here. The foreign key is not unique, so address6
is a “to-many” association.

You can now use foreign keys of managed associations in the definition of other associations. In the following
example, the compiler recognizes that the field toCountry.cid is part of the foreign key of the association
toLocation and, as a result, physically present in the entity Company.

 Sample Code

namespace samples; @Schema: 'MYSCHEMA' // XS classic *only*
context AssociationKeys {
 entity Country {
 key c_id : String(3);
 // <...>
 };
 entity Region {

236 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 key r_id : Integer;
 key toCountry : Association[1] to Country { c_id };
 // <...>
 };
 entity Company {
 key id : Integer;
 toLocation : Association[1] to Region { r_id, toCountry.c_id };
 // <...>
 }; };

Unmanaged Associations

Unmanaged associations are based on existing elements of the source and target entity; no fields are
generated. In the ON condition, only elements of the source or the target entity can be used; it is not possible to
use other associations. The ON condition may contain any kind of expression - all expressions supported in
views can also be used in the ON condition of an unmanaged association.

 Note
The names in the ON condition are resolved in the scope of the source entity; elements of the target entity
are accessed through the association itself .

In the following example, the association inhabitants relates the element id of the source entity Room with
the element officeId in the target entity Employee. The target element officeId is accessed through the
name of the association itself.

namespace samples; @Schema: 'MYSCHEMA' // XS classic *only*
context UnmanagedAssociations {
 entity Employee {
 key id : Integer;
 officeId : Integer;
 // <...>
 };
 entity Room {
 key id : Integer;
 inhabitants : Association[*] to Employee on inhabitants.officeId = id;
 // <...>
 };
 entity Thing {
 key id : Integer;
 parentId : Integer;
 parent : Association[1] to Thing on parent.id = parentId;
 children : Association[*] to Thing on children.parentId = id;
 // <...>
 }; };

The following example defines two related unmanaged associations:

● parent
The unmanaged association parent uses a cardinality of [1] to create a relation between the element
parentId and the target element id. The target element id is accessed through the name of the
association itself.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 237

● children
The unmanaged association children creates a relation between the element id and the target element
parentId. The target element parentId is accessed through the name of the association itself.

entity Thing { key id : Integer;
 parentId : Integer;
 parent : Association[1] to Thing on parent.id = parentId;
 children : Association[*] to Thing on children.parentId = id;
 ...
};

Constants in Associations

The usage of constants is no longer restricted to annotation assignments and default values for entity
elements. With SPS 11, you can use constants in the “ON”-condition of unmanaged associations, as illustrated
in the following example:

 Sample Code

context MyContext { const MyIntConst : Integer = 7;
 const MyStringConst : String(10) = 'bright';
 const MyDecConst : Decimal(4,2) = 3.14;
 const MyDateTimeConst : UTCDateTime = '2015-09-30 14:33';
 entity MyEntity {
 key id : Integer;
 a : Integer;
 b : String(100);
 c : Decimal(20,10);
 d : UTCDateTime;
 your : Association[1] to YourEntity on your.a - a < MyIntConst;
 };
 entity YourEntity {
 key id : Integer;
 a : Integer;
 };
 entity HerEntity {
 key id : Integer;
 t : String(20);
 };
 view MyView as select from MyEntity
 inner join HerEntity on locate (b, :MyStringConst) > 0
 {
 a + :MyIntConst as x,
 b || ' is ' || :MyStringConst as y,
 c * sin(:MyDecConst) as z
 } where d < :MyContext.MyDateTimeConst;
};

Related Information

CDS Associations [page 226]

238 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

5.1.7 Create a View in CDS

A view is a virtual table based on the dynamic results returned in response to an SQL statement. SAP HANA
Extended Application Services (SAP HANA XS) enables you to use CDS syntax to create a database view as a
design-time file in the repository.

Prerequisites

To complete this task successfully, note the following prerequisites:

● You must have access to an SAP HANA system.
● You must have already created a development workspace and a project.
● You must have shared the project so that the newly created files can be committed to (and synchronized

with) the repository.
● You must have created a schema for the CDS catalog objects, for example, MYSCHEMA
● The owner of the schema must have SELECT privileges in the schema to be able to see the generated

catalog objects.

Context

SAP HANA Extended Application Services (SAP HANA XS) enables you to use the CDS syntax to create a
database view as a design-time file in the repository. Repository files are transportable. Activating the CDS view
definition creates the corresponding catalog object in the specified schema. To create a CDS view-definition file
in the repository, perform the following steps:

 Note
The following code examples are provided for illustration purposes only.

Procedure

1. Start the SAP HANA studio.
2. Open the SAP HANA Development perspective.
3. Open the Project Explorer view.
4. Create the CDS-definition file which will contain the view you define in the following steps.

Browse to the folder in your project workspace where you want to create the new CDS-definition file and
perform the following steps:

a. Right-click the folder where you want to save the view-definition file and choose New Other...
Database Development DDL Source File in the context-sensitive pop-up menu.

b. Enter the name of the view-definition file in the File Name box, for example, MyModel2.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 239

 Tip
File extensions are important. If you are using SAP HANA studio to create artifacts in the SAP
HANA Repository, the file-creation wizard adds the required file extension automatically (for
example, MyModel2.hdbdd) and, if appropriate, enables direct editing of the new file in the
corresponding editor.

c. Choose Finish to save the changes and commit the new CDS definition file in the repository.
5. Define the underlying CDS entities and structured types.

If the new entity-definition file is not automatically displayed by the file-creation wizard, in the Project
Explorer view double-click the entity-definition file you created in the previous step, for example,
MyModel2.hdbdd, and add the code for the entity definitions and structured types to the file.

namespace com.acme.myapp1; @Schema : 'MYSCHEMA'
context MyModel2 {
 type StreetAddress {
 name : String(80);
 number : Integer;
 };
 type CountryAddress {
 name : String(80);
 code : String(3);
 };
 @Catalog.tableType : #COLUMN
 entity Address {
 key id : Integer;
 street : StreetAddress;
 zipCode : Integer;
 city : String(80);
 country : CountryAddress;
 type : String(10); // home, office
 }; };

6. Define a view as a projection of a CDS entity.

In the same entity-definition file you edited in the previous step, for example, MyModel2.hdbdd, add the
code for the view AddressView below the entity Address in the CDS document.

 Note
In CDS, a view is an entity without an its own persistence; it is defined as a projection of other entities.

view AddressView as select from Address {
 id,
 street.name,
 street.number };

7. Save the CDS-definition file containing the new view.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository;
you do not need to explicitly commit the file again.

8. Activate the changes in the repository.

240 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

a. Locate and right-click the new CDS-definition file in the Project Explorer view.

b. In the context-sensitive pop-up menu, choose Team Activate .

 Note
If you cannot activate the new CDS artifact, check that the specified schema already exists and
that there are no illegal characters in the name space, for example, the hyphen (-).

9. Ensure access to the schema where the new CDS catalog objects are created.
After activation in the repository, a schema object is only visible in the catalog to the _SYS_REPO user. To
enable other users, for example the schema owner, to view the newly created schema and the objects it
contains, you must grant the user the required SELECT privilege.

 Note
If you already have the appropriate SELECT privilege, you do not need to perform this step.

a. In the SAP HANA studio Systems view, right-click the SAP HANA system hosting the repository where
the schema was activated and choose SQL Console in the context-sensitive popup menu.

b. In the SQL console, execute the statement illustrated in the following example, where <SCHEMANAME>
is the name of the newly activated schema, and <username> is the database user ID of the schema
owner:

call
_SYS_REPO.GRANT_SCHEMA_PRIVILEGE_ON_ACTIVATED_CONTENT('select','<SCHEMANAME
>','<username>');

10. Check that the new view has been successfully created.
Views are created in the Views folder in the catalog.

a. In the SAP HANA Development perspective, open the Systems view.
b. Navigate to the catalog location where you created the new view.

<SID> Catalog <MYSCHEMA> Views
c. Open a data preview for the new view AddressView.

Right-click the new view <package.path>::MyModel2.AddressView and choose Open Data
Preview in the pop-up menu.

Related Information

CDS Views [page 242]
CDS View Syntax Options [page 244]
Spatial Types and Functions [page 260]

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 241

5.1.7.1 CDS Views

A view is an entity that is not persistent; it is defined as the projection of other entities. SAP HANA Extended
Application Services (SAP HANA XS) enables you to create a CDS view as a design-time file in the repository.

SAP HANA Extended Application Services (SAP HANA XS) enables you to define a view in a CDS document,
which you store as design-time file in the repository. Repository files can be read by applications that you
develop. In addition, all repository files including your view definition can be transported to other SAP HANA
systems, for example, in a delivery unit.

If your application refers to the design-time version of a view from the repository rather than the runtime
version in the catalog, for example, by using the explicit path to the repository file (with suffix), any changes to
the repository version of the file are visible as soon as they are committed to the repository. There is no need to
wait for the repository to activate a runtime version of the view.

To define a transportable view using the CDS-compliant view specifications, use something like the code
illustrated in the following example:

context Views { VIEW AddressView AS SELECT FROM Address {
 id,
 street.name,
 street.number
 };
<...> }

When a CDS document is activated, the activation process generates a corresponding catalog object for each
of the artifacts defined in the document; the location in the catalog is determined by the type of object
generated. For example, in SAP HANA XS classic the corresponding catalog object for a CDS view definition is
generated in the following location:

<SID> Catalog <MYSCHEMA> Views

Views defined in a CDS document can make use of the following SQL features:

● CDS Type definition
● Expressions and functions (for example, “a + b as theSum”)
● Aggregates, “GROUP BY”, and “HAVING” clauses
● Associations (including filters and prefixes)
● ORDER BY, CASE, UNION, JOIN, and TOP
● With Parameters
● Select Distinct
● Spatial Data (for example, “ST_Distance”)

 Tip
For more information about the syntax required when using these SQL features in a CDS view, see CDS
View Syntax Options in Related Information.

242 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

Type Definition

In a CDS view definition, you can explicitly specify the type of a select item, as illustrated in the following
example:

 Sample Code
 type MyInteger : Integer;
entity E {
 a : MyInteger;
 b : MyInteger;
};
view V as select from E {
 a,
 a+b as s1,
 a+b as s2 : MyInteger };

In the example of different type definitions, the following is true:

● a,
Has type “MyInteger”

● a+b as s1,
Has type “Integer” and any information about the user-defined type is lost

● a+b as s2 : MyInteger
Has type “MyInteger”, which is explicitly specified

 Note
If necessary, a CAST function is added to the generated view in SAP HANA; this ensures that the select
item's type in the SAP HANA view is the SAP HANA “type” corresponding to the explicitly specified CDS
type.

Related Information

CDS View Syntax Options [page 244]
CDS Associations [page 226]

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 243

5.1.7.2 CDS View Syntax Options

SAP HANA XS includes a dedicated, CDS-compliant syntax, which you must adhere to when using a CDS
document to define a view as a design-time artifact.

 Example

 Note
The following example is intended for illustration purposes only and might contain syntactical errors.
For further details about the keywords illustrated, click the links provided.

context views { const x : Integer = 4; const y : Integer = 5; const Z : Integer = 6; VIEW MyView1 AS SELECT FROM Employee { a + b AS theSum };
VIEW MyView2 AS SELECT FROM Employee
{ officeId.building,
 officeId.floor,
 officeId.roomNumber,
 office.capacity, count(id) AS seatsTaken, count(id)/office.capacity as occupancyRate } WHERE officeId.building = 1 GROUP BY officeId.building, officeId.floor,
 officeId.roomNumber,
 office.capacity,
 office.type HAVING office.type = 'office' AND count(id)/office.capacity < 0.5; VIEW MyView3 AS SELECT FROM Employee
{ orgUnit,
 salary } ORDER BY salary DESC; VIEW MyView4 AS SELECT FROM Employee { CASE WHEN a < 10 then 'small'
 WHEN 10 <= a AND a < 100 THEN 'medium'
 ELSE 'large'
 END AS size
};
VIEW MyView5 AS
 SELECT FROM E1 { a, b, c} UNION SELECT FROM E2 { z, x, y};
VIEW MyView6 AS SELECT FROM Customer {
 name, orders[status='open'].{ id as orderId, date as orderDate,
 items[price>200].{ descr,
 price } }
};
VIEW MyView7 as
 select from E { a, b, c} order by a limit 10 offset 30; VIEW V_join as select from E join (F as X full outer join G on X.id = G.id)
on E.id = c { a, b, c
}; VIEW V_top as select from E TOP 10 { a, b, c};

244 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 VIEW V_dist as select from E distinct { a }; VIEW V_param with parameters PAR1: Integer, PAR2: MyUserDefinedType, PAR3:
type of E.elt as select from MyEntity {
 id,
 elt };
VIEW V_type as select from E {
 a,
 a+b as s1, a+b as s2 : MyInteger }; view VE as select from E mixin { f : Association[1] to VF on f.vy = $projection.vb; } into {
 a as va,
 b as vb,
 f as vf
 };
VIEW SpatialView1 as select from Person {
 name,
 homeAddress.street_name || ', ' || homeAddress.city as home,
 officeAddress.street_name || ', ' || officeAddress.city as office, round(homeAddress.loc.ST_Distance(officeAddress.loc, 'meter')/1000, 1)
as distanceHomeToWork, round(homeAddress.loc.ST_Distance(NEW ST_POINT(8.644072, 49.292910),
'meter')/1000, 1) as distFromSAP03
}; }

Expressions and Functions

In a CDS view definition you can use any of the functions and expressions listed in the following example:

View MyView9 AS SELECT FROM SampleEntity {
 a + b AS theSum,
 a - b AS theDifference,
 a * b AS theProduct,
 a / b AS theQuotient,
 -a AS theUnaryMinus,
 c || d AS theConcatenation
};

 Note
When expressions are used in a view element, an alias must be specified, for example, AS theSum.

Aggregates

In a CDS view definition, you can use the following aggregates:

● AVG
● COUNT
● MIN

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 245

● MAX
● SUM
● STDDEV
● VAR

The following example shows how to use aggregates and expressions to collect information about headcount
and salary per organizational unit for all employees hired from 2011 to now.

VIEW MyView10 AS SELECT FROM Employee {
 orgUnit,
 count(id) AS headCount,
 sum(salary) AS totalSalary,
 max(salary) AS maxSalary
}
 WHERE joinDate > date'2011-01-01'
 GROUP BY orgUnit;

 Note
Expressions are not allowed in the GROUP BY clause.

Constants in Views

With SPS 11, you can use constants in the views, as illustrated in “MyView” at the end of the following example:

 Sample Code

context MyContext { const MyIntConst : Integer = 7;
 const MyStringConst : String(10) = 'bright';
 const MyDecConst : Decimal(4,2) = 3.14;
 const MyDateTimeConst : UTCDateTime = '2015-09-30 14:33';
 entity MyEntity {
 key id : Integer;
 a : Integer;
 b : String(100);
 c : Decimal(20,10);
 d : UTCDateTime;
 your : Association[1] to YourEntity on your.a - a < MyIntConst;
 };
 entity YourEntity {
 key id : Integer;
 a : Integer;
 };
 entity HerEntity {
 key id : Integer;
 t : String(20);
 };
 view MyView as select from MyEntity
 inner join HerEntity on locate (b, :MyStringConst) > 0
 {
 a + :MyIntConst as x,
 b || ' is ' || :MyStringConst as y,
 c * sin(:MyDecConst) as z
 } where d < :MyContext.MyDateTimeConst;
};

246 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

When constants are used in a view definition, their name must be prefixed with the scope operator “:”. Usually
names that appear in a query are resolved as alias or element names. The scope operator instructs the
compiler to resolve the name outside of the query.

 Sample Code

context NameResolution { const a : Integer = 4;
 const b : Integer = 5;
 const c : Integer = 6;
 entity E {
 key id : Integer;
 a : Integer;
 c : Integer;
 };
 view V as select from E {
 a as a1,
 b,
 :a as a2,
 E.a as a3,
 :E,
 :E.a as a4,
 :c
 };
}

The following table explains how the constants used in view “V” are resolved.

Constant Declaration and Result

Constant Expression Result Comments

a as a1, Success “a” is resolved in the space of alias and element names, for example, ele
ment “a” of entity “E”.

b, Error There is no alias and no element with name “b” in entity “E”

:a as a2, Success Scope operator “:” instructs the compiler to search for element “a” outside
of the query (finds the constant “a”).

E.a as a3, Success “E” is resolved in the space of alias and element names, so this matches
element “a” of entity “Entity” .

:E, Success Error: no access to “E” via “:”

:E.a as a4, Error Error; no access to “E” (or any of its elements) via “:”

:c Error Error: there is no alias for “c”.

SELECT

In the following example of an association in a SELECT list, a view compiles a list of all employees; the list
includes the employee's name, the capacity of the employee's office, and the color of the carpet in the office.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 247

The association follows the to-one association office from entity Employee to entity Room to collect the
relevant information about the office.

VIEW MyView11 AS SELECT FROM Employee {
 name.last,
 office.capacity,
 office.carpetColor
};

Subqueries
You can define subqueries in a CDS view, as illustrated in the following example:

 Restriction
For use in XS advanced only; subqueries are not supported in XS classic

 Code Syntax

select from (select from F {a as x, b as y}) as Q { x+y as xy,
 (select from E {a} where b=Q.y) as a } where x < all (select from E{b})

 Note
In a correlated subquery, elements of outer queries must always be addressed by means of a table alias.

WHERE

The following example shows how the syntax required in the WHERE clause used in a CDS view definition. In this
example, the WHERE clause is used in an association to restrict the result set according to information located
in the association's target. Further filtering of the result set can be defined with the AND modifier.

VIEW EmployeesInRoom_ABC_3_4 AS SELECT FROM Employee {
 name.last
} WHERE officeId.building = 'ABC'
 AND officeId.floor = 3
 AND officeId.number = 4;

FROM

The following example shows the syntax required when using the FROM clause in a CDS view definition. This
example shows an association that lists the license plates of all company cars.

VIEW CompanyCarLicensePlates AS SELECT FROM Employee.companyCar {
 licensePlate

248 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 };

In the FROM clause, you can use the following elements:

● an entity or a view defined in the same CDS source file
● a native SAP HANA table or view that is available in the schema specified in the schema annotation

(@Schema in the corresponding CDS document)

If a CDS view references a native SAP HANA table, the table and column names must be specified using their
effective SAP HANA names.

create table foo (bar : Integer,
 "gloo" : Integer
)

This means that if a table (foo) or its columns (bar and “gloo” were created without using quotation marks
(""), the corresponding uppercase names for the table or columns must be used in the CDS document, as
illustrated in the following example.

VIEW MyViewOnNative as SELECT FROM FOO {
 BAR,
 gloo
};

GROUP BY

The following example shows the syntax required when using the GROUP BY clause in a CDS view definition.
This example shows an association in a view that compiles a list of all offices that are less than 50% occupied.

VIEW V11 AS SELECT FROM Employee {
 officeId.building,
 officeId.floor,
 officeId.roomNumber,
 office.capacity,
 count(id) as seatsTaken,
 count(id)/office.capacity as occupancyRate
} GROUP BY officeId.building,
 officeId.floor,
 officeId.roomNumber,
 office.capacity,
 office.type
 HAVING office.type = 'office' AND count(id)/capacity < 0.5;

HAVING

The following example shows the syntax required when using the HAVING clause in a CDS view definition. This
example shows a view with an association that compiles a list of all offices that are less than 50% occupied.

VIEW V11 AS SELECT FROM Employee

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 249

{
 officeId.building,
 officeId.floor,
 officeId.roomNumber,
 office.capacity,
 count(id) as seatsTaken,
 count(id)/office.capacity as occupancyRate
} GROUP BY officeId.building,
 officeId.floor,
 officeId.roomNumber,
 office.capacity,
 office.type
 HAVING office.type = 'office' AND count(id)/capacity < 0.5;

ORDER BY

The ORDER BY operator enables you to list results according to an expression or position, for example salary.

VIEW MyView3 AS SELECT FROM Employee {
 orgUnit,
 salary
} ORDER BY salary DESC;

In the same way as with plain SQL, the ASC and DESC operators enable you to sort the list order as follows.

● ASC
Display the result set in ascending order

● DESC
Display the result set in descending order

LIMIT/OFFSET

You can use the SQL clauses LIMIT and OFFSET in a CDS query. The LIMIT <INTEGER> [OFFSET
<INTEGER>] operator enables you to restrict the number of output records to display to a specified “limit”; the
OFFSET <INTEGER> specifies the number of records to skip before displaying the records according to the
defined LIMIT.

VIEW MyViewV AS SELECT FROM E { a, b, c}
 order by a limit 10 offset 30;

CASE

In the same way as in plain SQL, you can use the case expression in a CDS view definition to introduce IF-
THEN-ELSE conditions without the need to use procedures.

entity MyEntity12 {

250 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

key id : Integer;
 a : Integer;
 color : String(1);
};

VIEW MyView12 AS SELECT FROM MyEntity12 {
 id,
 CASE color // defined in MyEntity12
 WHEN 'R' THEN 'red'
 WHEN 'G' THEN 'green'
 WHEN 'B' THEN 'blue'
 ELSE 'black'
 END AS color,
 CASE
 WHEN a < 10 then 'small'
 WHEN 10 <= a AND a < 100 THEN 'medium'
 ELSE 'large'
 END AS size };

In the first example of usage of the CASE operator, CASE color shows a “switched” CASE (one table column
and multiple values). The second example of CASE usage shows a “conditional” CASE with multiple arbitrary
conditions, possibly referring to different table columns.

UNION

Enables multiple select statements to be combined but return only one result set. UNION works in the same
way as the SAP HANA SQL command of the same name; it selects all unique records from all select statements
by removing duplicates found from different select statements.The signature of the result view is equal to the
signature of the first SELECT in the union.

 Note
View MyView5 has elements a, b, and c.

entity E1 { key a : Integer;
 b : String(20);
 c : LocalDate;
};
entity E2 {
 key x : String(20);
 y : LocalDate;
 z : Integer;
};
VIEW MyView5 AS
 SELECT FROM E1 { a, b, c}
 UNION SELECT FROM E2 { z, x, y};

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 251

JOIN

You can include a JOIN clause in a CDS view definition; the following JOIN types are supported:

● [INNER] JOIN
● LEFT [OUTER] JOIN
● RIGHT [OUTER] JOIN
● FULL [OUTER] JOIN
● CROSS JOIN

The following example shows a simple join.

 Sample Code

entity E { key id : Integer;
 a : Integer;
};
entity F {
 key id : Integer;
 b : Integer;
};
entity G {
 key id : Integer;
 c : Integer;
};
view V_join as select from E join (F as X full outer join G on X.id = G.id)
on E.id = c {
 a, b, c };

TOP

You can use the SQL clause TOP in a CDS query, as illustrated in the following example:

 Sample Code

view V_top as select from E TOP 10 { a, b, c};

 Restriction
It is not permitted to use TOP in combination with the LIMIT clause in a CDS query.

252 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

SELECT DISTINCT

CDS now supports the SELECT DISTINCT semantic, which enables you to specify that only one copy of each
set of duplicate records selected should be returned. The position of the DISTINCT keyword is important; it
must appear directly in front of the curly brace, as illustrated in the following example:

 Sample Code

entity E { key id : Integer;
 a : Integer;
};
entity F {
 key id : Integer;
 b : Integer;
};
entity G {
 key id : Integer;
 c : Integer;
}; view V_dist as select from E distinct { a };

With Parameters

You can define parameters for use in a CDS view; this allows you to pass additional values to modify the results
of the query at run time. Parameters must be defined in the view definition before the query block, as
illustrated in the following example:

 Restriction
For use in XS advanced only; views with parameters are not supported in XS classic.

 Sample Code
Parameters in a CDS View

context MyContext {
 entity MyEntity1 {
 id: Integer;
 elt: String(100); };
 entity MyEntity2 {
 id: Integer;
 elt: String(100); };
 type MyUserDefinedType: type of E.elt;
 view MyParamView with parameters PAR1: Integer,
 PAR2: MyUserDefinedType,
 PAR3: type of E.elt
 as select from MyEntity {
 id, elt };

 Note
Keywords are case insensitive.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 253

Parameters in View Queries
Parameters can be used in a query at any position where an expression is allowed. A parameter is referred to
inside a query by prefixing the parameter name either with the colon Scope operator ':' or the string
“$parameters” .

 Tip
If no matching parameter can be found, the scope operator “escapes” from the query and attempts to
resolve the identifier outside the query.

 Sample Code
Using Parameters in a View Query

view ExampleView with parameters PAR1: Integer, PAR2: UserDefinedType,
 PAR3: type of E.elt
 as select from SomeEntity
 left outer join SomeOtherEntity
 on SomeEntity.id < SomeOtherEntity.id + :PAR1
 {
 id + :PAR1 as idWithOffset,
 elt,
 :PAR1,
 $parameters.PAR3 } where elt != $parameters.PAR2;

Invoking a View with Parameters
Parameters are passed to views as a comma-separated list in parentheses. Optional filter expressions must
then follow the parameter list.

 Restriction
It is not allowed to use a query as value expression. Nor is it allowed to provide a parameter list in the ON
condition of an association definition to a parameterized view. This is because the association definition
establishes the relationship between the two entities but makes no assumptions about the run-time
conditions. For the same reason, it is not allowed to specify filter conditions in those ON conditions.

The following example shows two entities SourceEntity and TargetEntity and a parameterized view
TargetWindowView, which selects from TargetEntity. An association is established between
SourceEntity and TargetEntity.

 Sample Code

entity SourceEntity { id: Integer;
 someElementOfSourceEntity: String(100);
 toTargetViaParamView: association to TargetWindowView on
 toTargetViaParamView.targetId = id;
 };
entity TargetEntity {
 targetId: Integer;
 someElementOfTargetEntity: String(100);
 };

view TargetWindowView with parameters LOWER_LIMIT: Integer
 as select from TargetEntity {

254 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 targetId,
 someElementOfTargetEntity
 } where targetId > :LOWER_LIMIT and targetId <= :LOWER_LIMIT + 10;

It is now possible to query SourceEntity in a view; it is also possible to follow the association to
TargetWindowView, for example, by providing the required parameters, as illustrated in the following
example:

 Sample Code
Query a Parameterized CDS View (with Association)

view SourceConsumption with parameters CUSTOMER_ID: Integer as select from SourceEntity {
 someElementOfSourceEntity,
 toTargetViaParamView(LOWER_LIMIT:
$parameters.CUSTOMER_ID).someElementOfTargetEntity };

It is also possible to follow the association in the FROM clause; this provides access only to the elements of the
target artifact:

 Sample Code
Follow an Association in the FROM Clause

view ConsumptionView with parameters CUSTOMER_ID: Integer as select from SourceEntity.toTargetViaParamView(LOWER_LIMIT: :CUSTOMER_ID)
 {
 id,
 someElementOfTargetEntity };

You can select directly from the view with parameters, adding a free JOIN expression, as illustrated in the
following example:

 Sample Code
Select from a Parameterized View with JOIN Expression

view ConsumptionView with parameters CUSTOMER_ID: Integer as select from TargetWindowView(LOWER_LIMIT: :CUSTOMER_ID) as TWV_ALIAS
 RIGHT OUTER JOIN ... ON TWV_ALIAS.targetId
{
 ... };

Annotations in Parameter Definitions
Parameter definitions can be annotated in the same way as any other artifact in CDS; the annotations must be
prepended to the parameter name. Multiple annotations are separated either by whitespace or new-line
characters.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 255

 Tip
To improve readability and comprehension, it is recommended to include only one annotation assignment
per line.

In the following example, the view TargetWindowView selects from the entity TargetEntity; the annotation
@positiveValuesOnly is not checked; and the targetId is required for the ON condition in the entity
SourceEntity.

 Sample Code
Annotation Assignments to Parameter Definitions in CDS Views

annotation remark: String(100);
view TargetWindowView with parameters @remark: 'This is an arbitrary annotation' @positiveValuesOnly: true LOWER_LIMIT: Integer
as select from TargetEntity
{
 targetId,
 } where targetId > :LOWER_LIMIT and targetId <= :LOWER_LIMIT + 10;

Associations, Filters, and Prefixes

You can define an association as a view element, for example, by defining an ad-hoc association in the mixin
clause and then adding the association to the SELECT list, as illustrated in the following example:

 Restriction
XS classic does not support the use of ad-hoc associations in a view's SELECT list.

 Sample Code
Associations as View Elements

 entity E {
 a : Integer;
 b : Integer;
 };
entity F {
 x : Integer;
 y : Integer;
 }; view VE as select from E mixin { f : Association[1] to VF on f.vy = $projection.vb;
 } into {
 a as va,
 b as vb,
 f as vf
 };
view VF as select from F {
 x as vx,
 y as vy

256 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 };

In the ON condition of this type of association in a view, it is necessary to use the pseudo-identifier
$projection to specify that the following element name must be resolved in the select list of the view
(“VE”) rather than in the entity (“E”) in the FROM clause

Filter Conditions
It is possible to apply a filter condition when resolving associations between entities; the filter is merged into
the ON-condition of the resulting JOIN. The following example shows how to get a list of customers and then
filter the list according to the sales orders that are currently “open” for each customer. In the example, the filter
is inserted after the association orders; this ensures that the list displayed by the view only contains those
orders that satisfy the condition [status='open'].

 Sample Code

view C1 as select from Customer { name,
 orders[status='open'].id as orderId };

The following example shows how to use the prefix notation to ensure that the compiler understands that there
is only one association (orders) to resolve but with multiple elements (id and date):

 Sample Code

view C1 as select from Customer { name,
 orders[status='open'].{ id as orderId,
 date as orderDate
 } };

 Tip
Filter conditions and prefixes can be nested.

The following example shows how to use the associations orders and items in a view that displays a list of
customers with open sales orders for items with a price greater than 200.

 Sample Code

view C2 as select from Customer { name,
 orders[status='open'].{ id as orderId,
 date as orderDate,
 items[price>200].{ descr,
 price
 }
 } };

Prefix Notation
The prefix notation can also be used without filters. The following example shows how to get a list of all
customers with details of their sales orders. In this example, all uses of the association orders are combined

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 257

so that there is only one JOIN to the table SalesOrder. Similarly, both uses of the association items are
combined, and there is only one JOIN to the table Item.

 Sample Code

view C3 as select from Customer { name,
 orders.id as orderId,
 orders.date as orderDate,
 orders.items.descr as itemDescr,
 orders.items.price as itemPrice };

The example above can be expressed more elegantly by combining the associations orders and items using
the following prefix notation:

 Sample Code

view C1 as select from Customer { name,
 orders.{ id as orderId,
 date as orderDate,
 items. { descr as itemDescr,
 price as itemPrice
 }
 } };

Type Definition

In a CDS view definition, you can explicitly specify the type of a select item, as illustrated in the following
example:

 Restriction
For use in XS advanced only; assigning an explicit CDS type to an item in a SELECT list is not supported in
XS classic.

 Sample Code
 type MyInteger : Integer;
entity E {
 a : MyInteger;
 b : MyInteger;
};
view V as select from E {
 a,
 a+b as s1,
 a+b as s2 : MyInteger };

258 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

In the example of different type definitions, the following is true:

● a,
Has type “MyInteger”

● a+b as s1,
Has type “Integer” and any information about the user-defined type is lost

● a+b as s2 : MyInteger
Has type “MyInteger”, which is explicitly specified

 Note
If necessary, a CAST function is added to the generated view in SAP HANA; this ensures that the select
item's type in the SAP HANA view is the SAP HANA “type” corresponding to the explicitly specified CDS
type.

Spatial Functions

The following view (SpatialView1) displays a list of all persons selected from the entity Person and uses the
spatial function ST_Distance (*) to include information such as the distance between each person's home
and business address (distanceHomeToWork), and the distance between their home address and the
building SAP03 (distFromSAP03). The value for both distances is measured in kilometers, which is rounded
up and displayed to one decimal point.

 Sample Code

view SpatialView1 as select from Person { name,
 homeAddress.street_name || ', ' || homeAddress.city as home,
 officeAddress.street_name || ', ' || officeAddress.city as office,
 round(homeAddress.loc.ST_Distance(officeAddress.loc, 'meter')/1000, 1)
as distanceHomeToWork,
 round(homeAddress.loc.ST_Distance(NEW ST_POINT(8.644072, 49.292910),
'meter')/1000, 1) as distFromSAP03 };

 Caution
(*) For information about the capabilities available for your license and installation scenario, refer to the
Feature Scope Description (FSD) for your specific SAP HANA version on the SAP HANA Platform webpage.

Related Information

Create a View in CDS [page 239]
Spatial Types and Functions [page 260]

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 259

https://help.sap.com/viewer/product/SAP_HANA_PLATFORM/

5.1.7.3 Spatial Types and Functions

CDS supports the use of Geographic Information Systems (GIS) functions and element types in CDS-
compliant entities and views.

Spatial data is data that describes the position, shape, and orientation of objects in a defined space; the data is
represented as two-dimensional geometries in the form of points, line strings, and polygons. The following
examples shows how to use the spatial function ST_Distance in a CDS view. The underlying spatial data used
in the view is defined in a CDS entity using the type ST_POINT.

The following example, the CDS entity Address is used to store geo-spatial coordinates in element loc of type
ST_POINT:

 Sample Code

namespace samples; @Schema: 'MYSCHEMA'
context Spatial {
 entity Person {
 key id : Integer;
 name : String(100);
 homeAddress : Association[1] to Address;
 officeAddress : Association[1] to Address;
 };
 entity Address {
 key id : Integer;
 street_number : Integer;
 street_name : String(100);
 zip : String(10);
 city : String(100);
 loc : hana.ST_POINT(4326);
 };
 view GeoView1 as select from Person {
 name,
 homeAddress.street_name || ', ' || homeAddress.city as home,
 officeAddress.street_name || ', ' || officeAddress.city as office,
 round(homeAddress.loc.ST_Distance(officeAddress.loc, 'meter')/1000,
1) as distanceHomeToWork,
 round(homeAddress.loc.ST_Distance(NEW ST_POINT(8.644072, 49.292910),
'meter')/1000, 1) as distFromSAP03
 }; };

The view GeoView1 is used to display a list of all persons using the spatial function ST_Distance to include
information such as the distance between each person's home and business address
(distanceHomeToWork), and the distance between their home address and the building SAP03
(distFromSAP03). The value for both distances is measured in kilometers.

 Caution
(*) For information about the capabilities available for your license and installation scenario, refer to the
Feature Scope Description (FSD) for your specific SAP HANA version on the SAP HANA Platform webpage.

260 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

https://help.sap.com/viewer/product/SAP_HANA_PLATFORM/

Related Information

Create a View in CDS [page 239]
CDS View Syntax Options [page 244]
CDS Entity Syntax Options [page 197]
CDS Primitive Data Types [page 221]

5.1.8 Modifications to CDS Artifacts

Changes to the definition of a CDS artifact result in changes to the corresponding catalog object. The resultant
changes to the catalog object are made according to strict rules.

Reactivating a CDS document which contains changes to the original artifacts results in changes to the
corresponding objects in the catalog. Before making change to the design-time definition of a CDS artifact, it is
very important to understand what the consequences of the planned changes will be in the generated catalog
objects.

● Removing an artifact from a CDS document [page 261]
● Changing the definition of an artifact in a CDS document [page 261]
● Modifying a catalog object generated by CDS [page 264]
● Transporting a DU that contains modified CDS documents [page 264]

Removing an Artifact from a CDS Document

If a CDS design-time artifact (for example, a table or a view) defined in an old version of a CDS document is no
longer present in the new version, the corresponding runtime object is dropped from the catalog.

 Note
Renaming a CDS artifact results in the deletion of the artifact with the old name (with all the corresponding
consequences) and the creation of a new CDS artifact with the new name.

Changing the Definition of an Artifact in a CDS Document

If a CDS design-time artifact is present in both the old and the new version of a CDS document, a check is
performed to establish what, if any, changes have occurred. This applies to changes made either directly to a
CDS artifact or indirectly, for example, as a result of a change to a dependent artifact. If changes have been
made to the CDS document, changes are implemented in the corresponding catalog objects according to the
following rules:

● Views
Views in the SAP HANA catalog are dropped and recreated according to the new design-time specification
for the artifact in the CDS document.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 261

● Element types
Changing the type of an element according to the implicit conversion rules described in the SAP HANA
SQL documentation (SAP HANA SQL Data Type Conversion). Note: For some type conversions the
activation will succeed only if the data in the corresponding DB table is valid for the target type (for
example the conversion of String to Integer will succeed only if the corresponding DB table column
contains only numbers that match the Integer type)

● Element modifier: Null/NOT NULL
Adding, removing or changing element modifiers “Null” and “not null” to make an element nullable ot
not nullable respectively can lead to problems when activating the resulting artifact; the activation will
succeed only if the data in the database table corresponding to the CDS entity matches the new modifier.
For example, you cannot make an element not nullable, if in the corresponding column in the database
table some null values exist for which there is no default value defined.

● Element modifier: Default Value
If the default value modifier is removed, this has no effect on the existing data in the corresponding
database table, and no default value will be used for any subsequently inserted record. If the default value
is modified or newly added, the change will be applicable to all subsequent inserts in the corresponding
database table. In addition, if the element is not nullable (irrespective of whether it was defined previously
as such or within the same activation), the existing null values in the corresponding table will be replaced
with the new default value.

● Element modifier: Primary Key
You can add an element to (or remove it from) the primary key by adding or removing the “key” modifier.

 Note
Adding the “key” modifier to an element will also make the column in the corresponding table not
nullable. If column in the corresponding database table contains null values and there is no default
value defined for the element, the activation of the modified CDS document will fail.

● Column or row store (@Catalog.tableType)
It is possible to change the Catalog.tableType annotation that defines the table type, for example, to
transform a table from the column store (#COLUMN) to row store (#ROW), and vice versa.

● Index types (@Catalog.index)
Is is possible to change the “Catalog.index” annotation, as long as the modified index is valid for the
corresponding CDS entity.

For changes to individual elements of a CDS entity, for example, column definitions, the same logic applies as
for complete artifacts in a CDS document.

● Since the elements of a CDS entity are identified by their name, changing the order of the elements in the
entity definition will have no effect; the order of the columns in the generated catalog table object remains
unchanged.

● Renaming an element in a CDS entity definition is not recognized; the rename operation results in the
deletion of the renamed element and the creation of a new one.

● If a new element is added to a CDS entity definition, the order of the columns in the table generated in the
catalog after the change cannot be guaranteed.

 Note
If an existing CDS entity definition is changed, the order of the columns in the generated database tables
may be different from the order of the corresponding elements in the CDS entity definition.

262 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

In the following example of a simple CDS document, the context OuterCtx contains a CDS entity Entity1 and
the nested context InnerCtx, which contains the CDS entity definition Entity2.

namespace pack; @Schema: 'MYSCHEMA'
context OuterCtx
{
 entity Entity1
 {
 key a : Integer;
 b : String(20);
 };
 context InnerCtx
 {
 entity Entity2
 {
 key x : Integer;
 y : String(10);
 z : LocalDate;
 };
 }; };

To understand the effect of the changes made to this simple CDS document in the following example, it is
necessary to see the changes not only from the perspective of the developer who makes the changes but also
the compiler which needs to interpret them.

From the developer's perspective, the CDS entity Entity1 has been moved from context OuterCtx to
InnerCtx. From the compiler's perspective, however, the entity pack::OuterCtx.Entity1 has disappeared
and, as a result, will be deleted (and the corresponding generated table with all its content dropped), and a new
entity named pack::OuterCtx.InnerCtx.Entity1 has been defined.

namespace pack; @Schema: 'MYSCHEMA'
context OuterCtx
{
 context InnerCtx
 {
 entity Entity1
 {
 key a : Integer;
 b : String(20);
 };
 entity Entity2
 {
 key x : Integer;
 q : String(10);
 z : LocalDate;
 };
 }; };

Similarly, renaming the element y: String; to q: String; in Entity2 results in the deletion of column y
and the creation of a new column q in the generated catalog object. As a consequence, the content of column y
is lost.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 263

Modifying a Catalog Object Generated from CDS

CDS does not support modifications to catalog objects generated from CDS documents. You must never
modify an SAP HANA catalog object (in particular a table) that has been generated from a CDS document. The
next time you activate the CDS document that contains the original CDS object definition and the
corresponding catalog objects are generated, all modifications made to the catalog object are lost or activation
might even fail due to inconsistencies.

Transporting a DU that Contains Modified CDS Documents

If the definition of a CDS entity has already been transported to another system, do not enforce activation of
any illegal changes to this entity, for example, by means of an intermediate deletion.

Restrictions apply to changes that can be made to a CDS entity if the entity has been activated and a
corresponding catalog object exists. If changes to a CDS entity on the source system produce an error during
activation of the CDS document, for example, because you changed an element type in a CDS entity from
Binary to LocalDate, you could theoretically delete the original CDS entity and then create a new CDS entity
with the same name as the original entity but with the changed data type. However, if this change is
transported to another system, where the old version of the entity already exists, the import will fail, because
the information that the entity has been deleted and recreated is not available either on the target system or in
the delivery unit.

Related Information

SAP HANA to CDS Data-Type Mapping [page 209]
SAP HANA SQL Data Type Conversion

5.1.9 Tutorial: Get Started with CDS

You can use the Data Definition Language (DDL) to define a table, which is also referred to as an “entity” in SAP
HANA Core Data Services (CDS). The finished artifact is saved in the repository with the extension
(suffix) .hdbdd, for example, MyTable.hdbdd.

Prerequisites

This task describes how to create a file containing a CDS entity (table definition) using DDL. Before you start
this task, note the following prerequisites:

● You must have access to an SAP HANA system.
● You must have already created a development workspace and a project.

264 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

http://help.sap.com/saphelp_hanaplatform/helpdata/en/20/a1569875191014b507cf392724b7eb/content.htm#loio20a1569875191014b507cf392724b7eb___csql_data_types_1sql_data_types_introduction_conversion

● You must have shared the project so that the newly created files can be committed to (and synchronized
with) the repository.

● You must have created a schema definition MYSCHEMA.hdbschema.

Context

The SAP HANA studio provides a dedicated DDL editor to help you define data-related artifacts, for example,
entities, or views. To create a simple database table with the name "MyTable", perform the following steps:

 Tip
File extensions are important. If you are using SAP HANA Studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the new file in the corresponding editor.

Procedure

1. Start the SAP HANA studio.
2. Open the SAP HANA Development perspective.
3. Open the Project Explorer view.
4. Create the CDS document that defines the entity you want to create.

Browse to the folder in your project workspace where you want to create the new CDS document (for
example, in a project you have already created and shared) and perform the following tasks:

a. Right-click the folder where you want to create the CDS document and choose New DDL Source
File in the context-sensitive popup menu.

 Note
This menu option is only available from shared projects; projects that are linked to the SAP HANA
repository.

b. Enter the name of the entity in the File Name box, for example, MyFirstCDSSourceFile.

 Note
The file extension .hdbdd is added automatically to the new DDL file name. The repository uses
the file extension to make assumptions about the contents of repository artifacts, for example,
that .hdbdd files contain DDL statements.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 265

c. Choose Finish to save the new empty CDS document.

 Note
If you are using a CDS document to define a single CDS-compliant entity, the name of the CDS
document must match the name of the entity defined in the CDS document, for example, with the
entity keyword. In the example in this tutorial, you would save the entity definition “BOOK” in the
CDS document BOOK.hdbdd.

5. Define the table entity.
To edit the CDS document, in the Project Explorer view double-click the file you created in the previous
step, for example, BOOK.hdbdd, and add the entity-definition code:

 Note
The CDS DDL editor automatically inserts the mandatory keywords namespace and context into any
new DDL source file that you create using the New DDL Source File dialog. The following values are
assumed:
○ namespace = <Current Project Name>
○ context = <New DDL File Name>

The name space declared in a CDS document must match the repository package in which the object
the document defines is located.

266 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

In this example, the CDS document BOOK.hdbdd that defines the CDS entity “BOOK” must reside in the
package mycompany.myapp1.

namespace mycompany.myapp1; @Schema : 'MYSCHEMA'
@Catalog.tableType: #COLUMN
@Catalog.index: [{ name : 'MYINDEX1', unique : true, order : #DESC,
elementNames : ['ISBN'] }]
entity BOOK {
 key Author : String(100);
 key BookTitle : String(100);
 ISBN : Integer not null;
 Publisher : String(100); };

6. Save the CDS document BOOK.hdbdd.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository, To
explicitly commit a file to the repository, right-click the file (or the project containing the file) and
choose Team Commit from the context-sensitive popup menu.

7. Activate the new CDS document in the repository.
a. In the Project Explorer view, locate the newly created artifact BOOK.hdbdd.

b. Right-click BOOK.hdbdd and choose Team > Activate in the context-sensitive popup menu.
The CDS/DDL editor checks the syntax of the source file code, highlights the lines where an error
occurs, and provides details of the error in the Problems view.

The activation creates the following table in the schema MYSCHEMA, both of which are visible using the
SAP HANA studio:

"MYSCHEMA"."mycompany.myapp1::BOOK"

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 267

The following public synonym is also created, which can be referenced using the standard SQL query
notation:

"mycompany.myapp1::BOOK"
8. Add an entry to the BOOK entity using SQL.

INSERT INTO "mycompany.myapp1::BOOK" VALUES ('Shakespeare', 'Hamlet',
'1234567', 'Books Incorporated');

9. Save and activate the modifications to the entity.
10. Check the new entry by running a simply SQL query.

SELECT COUNT(*) FROM "mycompany.myapp1::BOOK" WHERE Author = 'Shakespeare'

Related Information

Create a Schema [page 283]

5.1.10 Import Data with CDS Table-Import

The table-import function is a data-provisioning tool that enables you to import data from comma-separated
values (CSV) files into SAP HANA tables.

Prerequisites

Before you start this task, make sure that the following prerequisites are met:

● An SAP HANA database instance is available.
● The SAP HANA database client is installed and configured.
● You have a database user account set up with the roles containing sufficient privileges to perform actions

in the repository, for example, add packages, add objects, and so on.
● The SAP HANA studio is installed and connected to the SAP HANA repository.
● You have a development environment including a repository workspace, a package structure for your

application, and a shared project to enable you to synchronize changes to the project files in the local file
system with the repository.

 Note
The names used in the following task are for illustration purposes only; where necessary, replace the names
of schema, tables, files, and so on shown in the following examples with your own names.

268 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

Context

In this tutorial, you import data from a CSV file into a table generated from a design-time definition that uses
the .hdbdd syntax, which complies with the Core Data Services (CDS) specifications.

 Tip
File extensions are important. If you are using SAP HANA Studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the new file in the corresponding editor.

Procedure

1. Create a root package for your table-import application.
In SAP HANA studio, open the SAP HANA Development perspective and perform the following steps:
a. In the package hierarchy displayed in the Systems view, right-click the package where you want to

create the new package for your table-import configuration and choose New > Package... .
b. Enter a name for your package, for example TiTest. You must create the new TiTest package in your

own namespace, for example mycompany.tests.TiTest

 Note
Naming conventions exist for package names, for example, a package name must not start with
either a dot (.) or a hyphen (-) and cannot contain two or more consecutive dots (..). In addition,
the name must not exceed 190 characters.

a. Choose OK to create the new package.
2. Create a set of table-import files.

For the purposes of this tutorial, the following files must all be created in the same package, for example, a
package called TiTest. However, the table-import feature also allows you to use files distributed in
different packages

 Tip
File extensions are important. If you are using SAP HANA Studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the new file in the corresponding editor.

○ The table-import configuration file, for example, TiConfiguration.hdbti
Specifies the source file containing the data values to import and the target table in SAP HANA into
which the data must be inserted

○ A CSV file, for example, myTiData.csv
Contains the data to be imported into the SAP HANA table during the table-import operation; values in
the .csv file can be separated either by a comma (,) or a semi-colon (;).

○ A target table.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 269

The target table can be either a runtime table in the catalog or a table definition, for example, a table
defined using the .hdbtable syntax (TiTable.hdbtable) or the CDS-compliant .hdbdd syntax
(TiTable.hdbdd).

 Note
In this tutorial, the target table for the table-import operation is TiTable.hdbdd, a design-time
table defined using the CDS-compliant .hdbdd syntax.

○ The schema named AMT
Specifies the name of the schema in which the target import table resides

When all the necessary files are available, you can import data from a source file, such as a CSV file, into
the desired target table.

3. If it does not already exist, create a schema named AMT in the catalog; the AMT schema is where the target
table for the table-import operation resides.

4. Create or open the table-definition file for the target import table (inhabitants.hdbdd) and enter the
following lines of text; this example uses the .hdbdd syntax.

 Note
In the CDS-compliant .hdbdd syntax, the namespace keyword denotes the path to the package
containing the table-definition file.

namespace mycompany.tests.TiTest;
@Schema : 'AMT'
@Catalog.tableType : #COLUMN
entity inhabitants {
 key ID : Integer;
 surname : String(30);
 name : String(30);
 city : String(30);
};

5. Open the CSV file containing the data to import, for example, inhabitants.csv in a text editor and enter
the values shown in the following example.

0,Annan,Kwesi,Accra 1,Essuman,Wiredu,Tema
2,Tetteh,Kwame,Kumasi
3,Nterful,Akye,Tarkwa
4,Acheampong,Kojo,Tamale
5,Assamoah,Adjoa,Takoradi
6,Mensah,Afua,Cape Coast

 Note
You can import data from multiple .csv files in a single, table-import operation. However, each .csv
file must be specified in a separate code block ({table= ...}) in the table-import configuration file.

6. Create or open the table-import configuration file (inhabitants.hdbti) and enter the following lines of
text.

import = [{
 table = "mycompany.tests.TiTest::inhabitants";
 schema = "AMT";

270 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 file = "mycompany.tests.TiTest:inhabitants.csv";
 header = false;
 }
];

7. Deploy the table import.
a. Select the package that you created in the first step, for example, mycompany.tests.TiTest.
b. Click the alternate mouse button and choose Commit.
c. Click the alternate mouse button and choose Activate.

This activates all the repository objects. The data specified in the CSV file inhabitants.csv is imported
into the SAP HANA table inhabitants using the data-import configuration defined in the
inhabitants.hdbti table-import configuration file.

8. Check the contents of the runtime table inhabitants in the catalog.

To ensure that the import operation completed as expected, use the SAP HANA studio to view the contents
of the runtime table inhabitants in the catalog. You need to confirm that the correct data was imported
into the correct columns.
a. In the SAP HANA Development perspective, open the Systems view.
b. Navigate to the catalog location where the inhabitants object resides, for example:

<SID> Catalog AMT Tables
c. Open a data preview for the updated object.

Right-click the updated object and choose Open Data Preview in the context-sensitive menu.

5.1.10.1 Data Provisioning Using Table Import

You can import data from comma-separated values (CSV) into the SAP HANA tables using the SAP HANA
Extended Application Services (SAP HANA XS) table-import feature.

In SAP HANA XS, you create a table-import scenario by setting up an table-import configuration file and one or
more comma-separated value (CSV) files containing the content you want to import into the specified SAP
HANA table. The import-configuration file links the import operation to one or more target tables. The table
definition (for example, in the form of a .hdbdd or .hdbtable file) can either be created separately or be
included in the table-import scenario itself.

To use the SAP HANA XS table-import feature to import data into an SAP HANA table, you need to understand
the following table-import concepts:

● Table-import configuration
You define the table-import model in a configuration file that specifies the data fields to import and the
target tables for each data field.

 Note
The table-import file must have the .hdbti extension, for example, myTableImport.hdbti.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 271

CSV Data File Constraints

The following constraints apply to the CSV file used as a source for the table-import feature in SAP HANA XS:

● The number of table columns must match the number of CSV columns.
● There must not be any incompatibilities between the data types of the table columns and the data types of

the CSV columns.
● Overlapping data in data files is not supported.
● The target table of the import must not be modified (or appended to) outside of the data-import operation.

If the table is used for storage of application data, this data may be lost during any operation to re-import
or update the data.

Related Information

Table-Import Configuration [page 272]
Table-Import Configuration-File Syntax [page 274]

5.1.10.2 Table-Import Configuration

You can define the elements of a table-import operation in a design-time file; the configuration includes
information about source data and the target table in SAP HANA.

SAP HANA Extended Application Services (SAP HANA XS) enables you to perform data-provisioning
operations that you define in a design-time configuration file. The configuration file is transportable, which
means you can transfer the data-provisioning between SAP HANA systems quickly and easily.

The table-import configuration enables you to specify how data from a comma-separated-value (.csv) file is
imported into a target table in SAP HANA. The configuration specifies the source file containing the data values
to import and the target table in SAP HANA into which the data must be inserted. As further options, you can
specify which field delimiter to use when interpreting data in the source .csv file and if keys must be used to
determine which columns in the target table to insert the imported data into.

 Note
If you use multiple table import configurations to import data into a single target table, the keys keyword is
mandatory. This is to avoid problems relating to the overwriting or accidental deletion of existing data.

The following example of a table-import configuration shows how to define a simple import operation which
inserts data from the source files myData.csv and myData2.csv into the table myTable in the schema
mySchema.

import = [{
 table = "myTable";
 schema = "mySchema";
 file = "sap.ti2.demo:myData.csv";
 header = false;
 delimField = ";";

272 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 keys = ["GROUP_TYPE" : "BW_CUBE"];
 },
 {
 table = "sap.ti2.demo::myTable";
 file = "sap.ti2.demo:myData2.csv";
 header = false;
 delimField = ";";
 keys = ["GROUP_TYPE" : "BW_CUBE"];
 }
];

In the table import configuration, you can specify the target table using either of the following methods:

● Public synonym (“sap.ti2.demo::myTable”)
If you use the public synonym to reference a target table for the import operation, you must use either the
hdbtable or cdstable keyword, for example, hdbtable = "sap.ti2.demo::myTable";

● Schema-qualified catalog name (“mySchema”.“MyTable”
If you use the schema-qualified catalog name to reference a target table for the import operation, you must
use the table keyword in combination with the schema keyword, for example, table = "myTable";
schema = "mySchema";

 Note
Both the schema and the target table specified in the table-import operation must already exist. If either
the specified table or the schema does not exist, SAP HANA XS displays an error message during the
activation of the configuration file, for example: Table import target table cannot be found. or
Schema could not be resolved.

You can also use one table-import configuration file to import data from multiple .csv source files. However,
you must specify each import operation in a new code block introduced by the [hdb | cds]table keyword, as
illustrated in the example above.

By default, the table-import operation assumes that data values in the .csv source file are separated by a
comma (,). However, the table-import operation can also interpret files containing data values separated by a
semi-colon (;).

● Comma (,) separated values

,,,BW_CUBE,,40000000,2,40000000,all

● Semi-colon (;) separated values

;;;BW_CUBE;;40000000;3;40000000;all

 Note
If the activated .hdbti configuration used to import data is subsequently deleted, only the data that was
imported by the deleted .hdbti configuration is dropped from the target table. All other data including any
data imported by other .hdbti configurations remains in the table. If the target CDS entity has no key
(annotated with @nokey) all data that is not part of the CSV file is dropped from the table during each
table-import activation.

You can use the optional keyword keys to specify the key range taken from the source .csv file for import into
the target table. If keys are specified for an import in a table import configuration, multiple imports into same
target table are checked for potential data collisions.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 273

 Note
The configuration-file syntax does not support wildcards in the key definition; the full value of a selectable
column value has to be specified.

Security Considerations

In SAP HANA XS, design-time artifacts such as tables (.hdbtable or .hdbdd) and table-import
configurations (.hdbti) are not normally exposed to clients via HTTP. However, design-time artifacts
containing comma-separated values (.csv) could be considered as potential artifacts to expose to users
through HTTP. For this reason, it is essential to protect these exposed .csv artifacts by setting the appropriate
application privileges; the application privileges prevents data leakage, for example, by denying access to data
by users, who are not normally allowed to see all the records in such tables.

 Tip
Place all the .csv files used to import content to into tables together in a single package and set the
appropriate (restrictive) application-access permissions for that package, for example, with a
dedicated .xsaccess file.

Related Information

Table-Import Configuration-File Syntax [page 274]

5.1.10.3 Table-Import Configuration-File Syntax

The design-time configuration file used to define a table-import operation requires the use of a specific syntax.
The syntax comprises a series of keyword=value pairs.

If you use the table-import configuration syntax to define the details of the table-import operation, you can use
the keywords illustrated in the following code example. The resulting design-time file must have the .hdbti file
extension, for example, myTableImportCfg.hdbti.

import = [{ table = "myTable"; schema = "mySchema"; file = "sap.ti2.demo:myData.csv"; header = false; useHeaderNames = false; delimField = ";"; delimEnclosing=“\““; distinguishEmptyFromNull = true; keys = ["GROUP_TYPE" : "BW_CUBE", "GROUP_TYPE" : "BW_DSO", "GROUP_TYPE" :
"BW_PSA"]; }

274 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

];

table

In the table-import configuration, the table, cdstable, and hdbtable keywords enable you to specify the
name of the target table into which the table-import operation must insert data. The target table you specify in
the table-import configuration can be a runtime table in the catalog or a design-time table definition, for
example, a table defined using either the .hdbtable or the .hdbdd (Core Data Services) syntax.

 Note
The target table specified in the table-import configuration must already exist. If the specified table does
not exist, SAP HANA XS displays an error message during the activation of the configuration file, for
example: Table import target table cannot be found.

Use the table keyword in the table-import configuration to specify the name of the target table using the
qualified name for a catalog table.

table = "target_table"; schema = "mySchema";

 Note
You must also specify the name of the schema in which the target catalog table resides, for example, using
the schema keyword.

The hdbtable keyword in the table-import configuration enables you to specify the name of a target table using
the public synonym for a design-time table defined with the .hdbtable syntax.

hdbtable = "sap.ti2.demo::target_table";

The cdstable keyword in the table-import configuration enables you to specify the name of a target table using
the public synonym for a design-time table defined with the CDS-compliant .hdbdd syntax.

cdstable = "sap.ti2.demo::target_table";

 Caution
There is no explicit check if the addressed table is created using the .hdbtable or CDS-compliant .hdbdd
syntax.

If the table specified with the cdstable or hdbtable keyword is not defined with the corresponding syntax,
SAP HANA displays an error when you try to activate the artifact, for example,Invalid combination of
table declarations found, you may only use [cdstable | hdbtable | table] .

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 275

schema

The following code example shows the syntax required to specify a schema in a table-import configuration.

schema = "TI2_TESTS";

 Note
The schema specified in the table-import configuration file must already exist.

If the schema specified in a table-import configuration file does not exist, SAP HANA XS displays an error
message during the activation of the configuration file, for example:

● Schema could not be resolved.
● If you import into a catalog table, please provide schema.

The schema is only required if you use a table's schema-qualified catalog name to reference the target table for
an import operation, for example, table = "myTable"; schema = "mySchema";. The schema is not
required if you use a public synonym to reference a table in a table-import configuration, for example,
hdbtable = "sap.ti2.demo::target_table";.

file

Use the file keyword in the table-import configuration to specify the source file containing the data that the
table-import operation imports into the target table. The source file must be a .csv file with the data values
separated either by a comma (,) or a semi-colon (;). The file definition must also include the full package path
in the SAP HANA repository.

file = "sap.ti2.demo:myData.csv";

header

Use the header keyword in the table-import configuration to indicate if the data contained in the
specified .csv file includes a header line. The header keyword is optional, and the possible values are true or
false.

header = false;

useHeaderNames

Use the useHeaderNames keyword in the table-import configuration to indicate if the data contained in the
first line of the specified .csv file must be interpreted. The useHeaderNames keyword is optional; it is used in

276 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

combination with theheader keyword. The useHeaderNames keyword is boolean: possible values are true or
false.

 Note
The useHeaderNames keyword only works if header is also set to “true”.

useHeaderNames = false;

The table-import process considers the order of the columns; if the column order specified in the .csv, file
does not match the order used for the columns in the target table, an error occurs on activation.

delimField

Use the delimField keyword in the table-import configuration to specify which character is used to separate
the values in the data to be imported. Currently, the table-import operation supports either the comma (,) or
the semi-colon (;). The following example shows how to specify that values in the .csv source file are
separated by a semi-colon (;).

delimField = ";";

 Note
By default, the table-import operation assumes that data values in the .csv source file are separated by a
comma (,). If no delimiter field is specified in the .hdbti table-import configuration file, the default setting
is assumed.

delimEnclosing

Use the delimEnclosing keyword in the table-import configuration to specify a single character that
indicates both the start and end of a set of characters to be interpreted as a single value in the .csv file, for
example “This is all one, single value”. This feature enables you to include in data values in a .CSV file even the
character defined as the field delimiter (in delimField), for example, a comma (,) or a semi-colon (;).

 Tip
If the value used to separate the data fields in your .csv file (for example, the comma (,)) is also used
inside the data values themselves ("This, is, a, value"), you must declare and use a delimiter
enclosing character and use it to enclose all data values to be imported.

The following example shows how to use the delimEnclosing keyword to specify the quote (") as the
delimiting character that indicates both the start and the end of a value in the .csv file. Everything enclosed
between the delimEnclosing characters (in this example, “”) is interpreted by the import process as one,
single value.

delimEnclosing=“\““;

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 277

 Note
Since the hdbti syntax requires us to use the quotes (“”) to specify the delimiting character, and the
delimiting character in this example is, itself, also a quote ("), we need to use the backslash character (\) to
escape the second quote (").

In the following example of values in a .csv file, we assume that delimEnclosing“\““, and
delimField=",". This means that imported values in the .csv file are enclosed in the quote character
("value”) and multiple values are separated by the comma ("value1”,"value 2”). Any commas inside the
quotes are interpreted as a comma and not as a field delimiter.

"Value 1, has a comma","Value 2 has, two, commas","Value3"

You can use other characters as the enclosing delimiter, too, for example, the hash (#). In the following
example, we assume that delimEnclosing="#" and delimField=";". Any semi-colons included inside the
hash characters are interpreted as a semi-colon and not as a field delimiter.

#Value 1; has a semi-colon#;#Value 2 has; two; semi-colons#;#Value3#

distinguishEmptyFromNull

Use the distinguishEmptyFromNull keyword in combination with delimEnclosing to ensure that the
table-import process correctly interprets any empty value in the .CSV file, which is enclosed with the value
defined in the delimEnclosing keyword, for example, as an empty space. This ensures that an empty space
is imported “as is” into the target table. If the empty space in incorrectly interpreted, it is imported as NULL.

distinguishEmptyFromNull = true;

 Note
The default setting for distinguishEmptyFromNull is false.

If distinguishEmptyFromNull=false is used in combination with delimEnclosing, then an empty value
in the .CSV (with or without quotes “”) is interpreted as NULL.

"Value1",,"",Value2

The table-import process would add the values shown in the example .csv above into the target table as
follows:

Value1 | NULL | NULL | Value2

278 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

keys

Use the keys keyword in the table-import configuration to specify the key range to be considered when
importing the data from the .csv source file into the target table.

keys = ["GROUP_TYPE" : "BW_CUBE", "GROUP_TYPE" : "BW_DSO", "GROUP_TYPE" :
"BW_PSA"];

In the example above, all the lines in the .csv source file where the GROUP_TYPE column value matches one of
the given values (BW_CUBE, BW_DSO, or BW_PSA) are imported into the target table specified in the table-import
configuration.

;;;BW_CUBE;;40000000;3;40000000;slave ;;;BW_DSO;;40000000;3;40000000;slave
;;;BW_PSA;;2000000000;1;2000000000;slave

In the following example, the GROUP_TYPE column is specified as empty(“”).

keys = ["GROUP_TYPE" : ""];

All the lines in the .csv source file where the GROUP_TYPE column is empty are imported into the target table
specified in the table-import configuration.

;;;;;40000000;2;40000000;all

5.1.10.4 Table-Import Configuration Error Messages

During the course of the activation of the table-import configuration and the table-import operation itself, SAP
HANA checks for errors and displays the following information in a brief message.

Table-Import Error Messages

Message Number Message Text Message Reason

40200 Invalid combination of table
declarations found, you may only
use [cdstable | hdbtable | table]

The table keyword is specified in a table-import
configuration that references a table defined
using the .hdbtable (or .hdbdd) syntax.

The hdbtable keyword is specified in a table-im
port configuration that references a table de
fined using another table-definition syntax, for
example, the .hdbdd syntax.

The cdstable keyword is specified in a table-im
port configuration that references a table de
fined using another table-definition syntax, for
example, the .hdbtable syntax.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 279

Message Number Message Text Message Reason

40201 If you import into a catalog table,
please provide schema

You specified a target table with the table key
word but did not specify a schema with the
schema keyword.

40202 Schema could not be resolved The schema specified with the schema key
word does not exist or could not be found
(wrong name).

The public synonym for an .hdbtable
or .hdbdd (CDS) table definition cannot be
resolved to a catalog table.

40203 Schema resolution error The schema specified with the schema key
word does not exist or could not be found
(wrong name).

The database could not complete the schema-
resolution process for some reason - perhaps
unrelated to the table-import configuration
(.hdbti), for example, an inconsistent data
base status.

40204 Table import target table cannot be
found

The table specified with the table keyword does
not exist or could not be found (wrong name or
wrong schema name).

40210 Table import syntax error The table-import configuration file (.hdbti)
contains one or more syntax errors.

40211 Table import constraint checks
failed

The same key is specified in multiple table-im
port configurations (.hdbti files), which
leads to overlaps in the range of data to import.

If keys are specified for an import in a table-im
port configuration, multiple imports into the
same target table are checked for potential
data collisions.

40212 Importing data into table failed Either duplicate keys were written (due to du
plicates in the .CSV source file) or

An (unexpected) error occurred on the SQL
level.

280 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

Message Number Message Text Message Reason

40213 CSV table column count mismatch Either the number of columns in the .CSV re
cord is higher than the number of columns in
the table, or

The number of columns in the .CSV record is
higher than the number of columns in its
header.

40214 Column type mismatch The .CSV file does not match the target table
for either of the following reasons:

1. Data are missing for some not-null col
umns

2. Some columns specified in the .CSV re
cord do not exist in the table.

40216 Key does not match to table header For some key columns of the table, no data are
provided.

5.2 Creating the Persistence Model with HDBTable

HDBTable is a language syntax that can be used to define a design-time representation of the artifacts that
comprise the persistent data models in SAP HANA.

In SAP HANA Extended Application Services (SAP HANA XS), the persistence model defines the schema,
tables, and views that specify what data to make accessible and how. The persistence model is mapped to the
consumption model that is exposed to client applications and users, so that data can be analyzed and
displayed.

SAP HANA XS enables you to create database schema, tables, views, and sequences as design-time files in the
repository. Repository files can be read by applications that you develop.

 Note
All repository files including your view definition can be transported (along with tables, schema, and
sequences) to other SAP HANA systems, for example, in a delivery unit. A delivery unit is the medium SAP
HANA provides to enable you to assemble all your application-related repository artifacts together into an
archive that can be easily exported to other systems.

You can also set up data-provisioning rules and save them as design-time objects so that they can be included
in the delivery unit that you transport between systems.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 281

As part of the process of setting up the basic persistence model for SAP HANA XS, you perform the following
tasks:

Task Description

Create a schema Define a design-time schema and maintain the schema definition in the repository; the transportable
schema has the file extension .hdbschema, for example, MYSCHEMA.hdbschema.

Create a synonym Define a design-time synonym and maintain the synonym definition in the repository; the transporta
ble synonym has the file extension .hdbsynonym, for example, MySynonym.hdbsynonym.

Create a table Define a design-time table and maintain the table definition in the repository; the transportable table
has the file extension .hdbtable, for example, MYTABLE.hdbtable

Create a reusable
table structure

Define the structure of a database table in a design-time file in the repository; you can reuse the ta
ble-structure definition to specify the table type when creating a new table.

Create a view Define a design-time view and maintain the view definition in the repository; the transportable view
has the file extension .hdbview, for example, MYVIEW.hdbview

Create a sequence Define a design-time sequence and maintain the sequence definition in the repository; the transport
able sequence has the file extension .hdbsequence, for example, MYSEQUENCE.hdbsequence

Import table con
tent

Define data-provisioning rules that enable you to import data from comma-separated values (CSV)
files into SAP HANA tables using the SAP HANA XS table-import feature; the complete configuration
can be included in a delivery unit and transported between SAP HANA systems.

 Note
On activation of a repository file, the file suffix, for example, .hdbview, .hdbschema, or .hdbtable, is
used to determine which runtime plug-in to call during the activation process. The plug-in reads the
repository file selected for activation, for example, a table, sees the object descriptions in the file, and
creates the appropriate runtime object.

Related Information

Create a Schema [page 283]
Create a Table [page 286]
Create an SQL View [page 307]
Create a Synonym [page 313]

282 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

5.2.1 Create a Schema

A schema defines the container that holds database objects such as tables, views, and stored procedures.

Prerequisites

To complete this task successfully, note the following prerequisites:

● You must have access to an SAP HANA system.
● You must have already created a development workspace and a project.
● You must have shared the project so that the newly created files can be committed to (and synchronized

with) the repository.

Context

This task describes how to create a file containing a schema definition using the hdbschema syntax. Schema
definition files are stored in the SAP HANA repository.

 Note
A schema generated from an .hdbschema artifact can also be used in the context of Core Data Services
(CDS).

To create a schema definition file in the repository, perform the following steps:

Procedure

1. Start the SAP HANA studio.
2. Open the SAP HANA Development perspective.
3. Open the Project Explorer view.
4. Create the schema definition file.

Browse to the folder in your project workspace where you want to create the new schema-definition file
and perform the following tasks:
a. Right-click the folder where you want to save the schema-definition file and choose New>Schema in

the context-sensitive popup menu.
b. Enter or select the parent folder.
c. Enter the name of the schema in the File Name field.

 Tip
File extensions are important. If you are using SAP HANA Studio to create artifacts in the SAP
HANA Repository, the file-creation wizard adds the required file extension automatically and, if
appropriate, enables direct editing of the new file in the corresponding editor.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 283

d. Select a template to use. Templates contain sample source code to help you.
e. Choose Finish to save the new schema in the repository.

5. Define the schema name.
To edit the schema file, in the Project Explorer view double-click the schema file you created in the previous
step, for example, MYSCHEMA.hdbschema, and add the schema-definition code to the file:

 Note
The following code example is provided for illustration purposes only.

schema_name=”MYSCHEMA”;

6. Save the schema file.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository, To
explicitly commit a file to the repository, right-click the file (or the project containing the file) and
choose Team Commit from the context-sensitive popup menu.

7. Activate the schema.
a. Locate and right-click the new schema file in the Project Explorer view.

b. In the context-sensitive pop-up menu, choose Team Activate .
8. Grant SELECT privileges to the owner of the new schema.

After activation in the repository, the schema object is only visible in the catalog to the _SYS_REPO user. To
enable other users, for example the schema owner, to view the newly created schema in the SAP HANA
studio's Modeler perspective, you must grant the user the required SELECT privilege.
a. In the SAP HANA studio Systems view, right-click the SAP HANA system hosting the repository where

the schema was activated and choose SQL Console in the context-sensitive popup menu.
b. In the SQL console, execute the statement illustrated in the following example, where <SCHEMANAME>

is the name of the newly activated schema, and <username> is the database user ID of the schema
owner:

call
_SYS_REPO.GRANT_SCHEMA_PRIVILEGE_ON_ACTIVATED_CONTENT('select','<SCHEMANAME
>','<username>');

Related Information

Schema [page 284]

5.2.1.1 Schema

Relational databases contain a catalog that describes the various elements in the system. The catalog divides
the database into sub-databases known as schema. A database schema enables you to logically group

284 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

together objects such as tables, views, and stored procedures. Without a defined schema, you cannot write to
the catalog.

SAP HANA Extended Application Services (SAP HANA XS) enables you to create a database schema as a
transportable design-time file in the repository. Repository files can be read by applications that you develop.

If your application refers to the repository (design-time) version of a schema rather than the runtime version in
the catalog, for example, by using the explicit path to the repository file (with suffix), any changes to the
repository version of the file are visible as soon as they are committed to the repository. There is no need to
wait for the repository to activate a runtime version of the schema.

If you want to define a transportable schema using the design-time hdbschema specifications, use the
configuration schema illustrated in the following example:

string schema_name

The following example shows the contents of a valid transportable schema-definition file for a schema called
MYSCHEMA:

schema_name=”MYSCHEMA”;

The schema is stored in the repository with the schema name MYSCHEMA as the file name and the
suffix .hdbschema, for example, MYSCHEMA.hdbschema.

 Note
A schema generated from an .hdbschema artifact can also be used in the context of Core Data Services
(CDS).

Schema Activation

If you want to create a schema definition as a design-time object, you must create the schema as a flat file. You
save the file containing the schema definition with the suffix .hdbschema in the appropriate package for your
application in the SAP HANA repository. You can activate the design-time objects at any point in time.

 Note
On activation of a repository file, the file suffix, for example, .hdbschema, is used to determine which
runtime plugin to call during the activation process. The plug-in reads the repository file selected for
activation, parses the object descriptions in the file, and creates the appropriate runtime objects.

If you activate a schema-definition object in SAP HANA, the activation process checks if a schema with the
same name already exists in the SAP HANA repository. If a schema with the specified name does not exist, the
repository creates a schema with the specified name and makes _SYS_REPO the owner of the new schema.

 Note
The schema cannot be dropped even if the deletion of a schema object is activated.

If you define a schema in SAP HANA XS, note the following important points regarding the schema name:

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 285

● Name mapping
The schema name must be identical to the name of the corresponding repository object.

● Naming conventions
The schema name must adhere to the SAP HANA rules for database identifiers. In addition, a schema
name must not start with the letters SAP*; the SAP* namespace is reserved for schemas used by SAP
products and applications.

● Name usage
The Data Definition Language (DDL) rendered by the repository contains the schema name as a delimited
identifier.

Related Information

Create a Schema [page 283]

5.2.2 Create a Table

SAP HANA Extended Application Services (SAP HANA XS) enables you to create a database table as a design-
time file in the repository.

Prerequisites

To complete this task successfully, note the following prerequisites:

● You must have access to an SAP HANA system.
● You must have already created a development workspace and a project.
● You must have shared the project so that the newly created files can be committed to (and synchronized

with) the repository.
● You must have created a schema definition MYSCHEMA.hdbschema

286 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

Context

This task describes how to create a file containing a table definition using the hdbtable syntax. Table
definition files are stored in the SAP HANA repository. To create a table file in the repository, perform the
following steps:

Procedure

1. Start the SAP HANA studio.
2. Open the SAP HANA Development perspective.
3. Open the Project Explorer view.
4. Create the table definition file.

Browse to the folder in your project workspace where you want to create the new table file and perform the
following steps:
a. Right-click the folder where you want to save the table file and choose New >Database Table in the

context-sensitive popup menu.
b. Enter or select the parent folder.
c. Enter the name of the table in the File Name box.

 Tip
File extensions are important. If you are using SAP HANA Studio to create artifacts in the SAP
HANA Repository, the file-creation wizard adds the required file extension automatically and, if
appropriate, enables direct editing of the new file in the corresponding editor.

d. Select a template to use. Templates contain sample source code to help you.
e. Choose Finish to save the new table definition file.

5. Define the table.
To edit the table definition, in the Project Explorer view double-click the table-definition file you created in
the previous step, for example, MYTABLE.hdbtable, and add the table-definition code to the file:

 Note
The following code example is provided for illustration purposes only.

table.schemaName = "MYSCHEMA"; table.tableType = COLUMNSTORE;
table.columns = [
 {name = "Col1"; sqlType = VARCHAR; nullable = false; length = 20; comment
= "dummy comment";},
 {name = "Col2"; sqlType = INTEGER; nullable = false;},
 {name = "Col3"; sqlType = NVARCHAR; nullable = true; length = 20;
defaultValue = "Defaultvalue";},
 {name = "Col4"; sqlType = DECIMAL; nullable = false; precision = 2; scale
= 3;}];
table.indexes = [
 {name = "MYINDEX1"; unique = true; indexColumns = ["Col2"];},
 {name = "MYINDEX2"; unique = true; indexColumns = ["Col1", "Col4"];}];
table.primaryKey.pkcolumns = ["Col1", "Col2"];

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 287

6. Save the table-definition file.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository, To
explicitly commit a file to the repository, right-click the file (or the project containing the file) and
choose Team Commit from the context-sensitive popup menu.

7. Activate the changes in the repository.
a. Locate and right-click the new table file in the Project Explorer view.

b. In the context-sensitive pop-up menu, choose Team Activate .

Related Information

Tables [page 288]
Table Configuration Syntax [page 290]
Create a Schema [page 283]

5.2.2.1 Tables

In the SAP HANA database, as in other relational databases, a table is a set of data elements that are organized
using columns and rows. A database table has a specified number of columns, defined at the time of table
creation, but can have any number of rows. Database tables also typically have meta-data associated with
them; the meta-data might include constraints on the table or on the values within particular columns.

SAP HANA Extended Application Services (SAP HANA XS) enables you to create a database table as a design-
time file in the repository. All repository files including your table definition can be transported to other SAP
HANA systems, for example, in a delivery unit.

 Note
A delivery unit is the medium SAP HANA provides to enable you to assemble all your application-related
repository artifacts together into an archive that can be easily exported to other systems.

If your application is configured to use the design-time version of a database table in the repository rather than
the runtime version in the catalog, any changes to the repository version of the table are visible as soon as they
are committed to the repository. There is no need to wait for the repository to activate a runtime version of the
table.

If you want to define a transportable table using the design-time .hdbtable specifications, use the
configuration schema illustrated in the following example:

struct TableDefinition { string SchemaName;
 optional bool temporary;
 optional TableType tableType;
 optional bool public;
 optional TableLoggingType loggingType;

288 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 list<ColumnDefinition> columns; optional list<IndexDefinition> indexes; optional PrimaryKeyDefinition primaryKey;
 optional string description };

The following code illustrates a simple example of a design-time table definition:

table.schemaName = "MYSCHEMA"; table.tableType = COLUMNSTORE;
table.columns = [
 {name = "Col1"; sqlType = VARCHAR; nullable = false; length = 20; comment =
"dummy comment";},
 {name = "Col2"; sqlType = INTEGER; nullable = false;},
 {name = "Col3"; sqlType = NVARCHAR; nullable = true; length = 20;
defaultValue = "Defaultvalue";},
 {name = "Col4"; sqlType = DECIMAL; nullable = false; precision = 2; scale =
3;}];
table.indexes = [
 {name = "MYINDEX1"; unique = true; order = DSC; indexColumns = ["Col2"];},
 {name = "MYINDEX2"; unique = true; order = DSC; indexColumns = ["Col1",
"Col4"];}];
table.primaryKey.pkcolumns = ["Col1", "Col2"];

If you want to create a database table as a repository file, you must create the table as a flat file and save the
file containing the table dimensions with the suffix .hdbtable, for example, MYTABLE.hdbtable. The new file
is located in the package hierarchy you establish in the SAP HANA repository. You can activate the repository
files at any point in time.

 Note
On activation of a repository file, the file suffix, for example, .hdbtable, is used to determine which
runtime plug-in to call during the activation process. The plug-in reads the repository file selected for
activation, in this case a table, parses the object descriptions in the file, and creates the appropriate
runtime objects.

Security Considerations

It is important to bear in mind that an incorrectly defined table can lead to security-related problems. If the
content of the table you create is used to determine the behavior of the application, for example, whether data
is displayed depends on the content of a certain cell, any modification of the table content could help an
attacker to obtain elevated privileges. Although you can use authorization settings to restrict the disclosure of
information, data-modification issues need to be handled as follows:

● Make sure you specify the field type and define a maximum length for the field
● Avoid using generic types such as VARCHAR or BLOB.
● Keep the field length as short as possible; it is much more difficult to inject shell-code into a string that is 5

characters long than one that an can contain up to 255 characters.

Related Information

Table Configuration Syntax [page 290]

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 289

Create a Table [page 286]

5.2.2.2 Table Configuration Syntax

SAP HANA Extended Application Services (SAP HANA XS) enables you to use the hdbtable syntax to create a
database table as a design-time file in the repository. The design-time artifact that contains the table definition
must adhere to the .hdbtable syntax specified below.

Table Definition

The following code illustrates a simple example of a design-time table definition using the .hdbtable syntax.

 Note
Keywords are case-sensitive, for example, tableType and loggingType, and the schema referenced in the
table definition, for example, MYSCHEMA, must already exist.

table.schemaName = "MYSCHEMA"; table.temporary = true; table.tableType = COLUMNSTORE; table.loggingType = NOLOGGING; table.columns = [{name = "Col1"; sqlType = VARCHAR; nullable = false; length = 20; comment =
"dummy comment";}, {name = "Col2"; sqlType = INTEGER; nullable = false;}, {name = "Col3"; sqlType = NVARCHAR; nullable = true; length = 20;
defaultValue = "Defaultvalue";},
 {name = "Col4"; sqlType = DECIMAL; nullable = false; precision = 2; scale =
3;}]; table.indexes = [{name = "MYINDEX1"; unique = true; order = DSC; indexColumns = ["Col2"];}, {name = "MYINDEX2"; unique = true; order = DSC; indexType = B_TREE;
indexColumns = ["Col1", "Col4"];}]; table.primaryKey.pkcolumns = ["Col1", "Col2"];

Table-Definition Configuration Schema

The following example shows the configuration schema for tables defined using the .hdbtable syntax. Each
of the entries in the table-definition configuration schema is explained in more detail in a dedicated section
below:

struct TableDefinition { string SchemaName;
 optional bool temporary;
 optional TableType tableType;
 optional bool public;
 optional TableLoggingType loggingType; list<ColumnDefinition> columns; optional list<IndexDefinition> indexes;

290 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 optional PrimaryKeyDefinition primaryKey;
 optional string description };

Schema Name

To use the .hdbtable syntax to specify the name of the schema that contains the table you are defining, use
the schemaName keyword. In the table definition, the schemaName keyword must adhere to the syntax shown
in the following example.

table.schemaName = "MYSCHEMA";

Temporary

To use the .hdbtable syntax to specify that the table you define is temporary, use the boolean temporary
keyword. Since data in a temporary table is session-specific, only the owner session of the temporary table is
allowed to INSERT/READ/TRUNCATE the data. Temporary tables exist for the duration of the session, and data
from the local temporary table is automatically dropped when the session is terminated. In the table definition,
the temporary keyword must adhere to the syntax shown in the following example.

table.temporary = true;

Table Type

To specify the table type using the .hdbtable syntax, use the tableType keyword. In the table definition, the
TableType keyword must adhere to the syntax shown in the following example.

table.tableType = [COLUMNSTORE | ROWSTORE];

The following configuration schema illustrates the parameters you can specify with the tableType keyword:

● COLUMNSTORE
Column-oriented storage, where entries of a column are stored in contiguous memory locations. SAP
HANA is particularly optimized for column-order storage.

● ROWSTORE
Row-oriented storage, where data is stored in a table as a sequence of records

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 291

Table Logging Type

To enable logging in a table definition using the .hdbtable syntax, use the tableLoggingType keyword. In the
table definition, the tableLoggingType keyword must adhere to the syntax shown in the following example.

table.tableLoggingType = [LOGGING | NOLOGGING];

Table Column Definition

To define the column structure and type in a table definition using the .hdbtable syntax, use the columns
keyword. In the table definition, the columns keyword must adhere to the syntax shown in the following
example.

table.columns = [{name = "Col1"; sqlType = VARCHAR; nullable = false; length = 20; comment =
"dummy comment";},
 {name = "Col2"; sqlType = INTEGER; nullable = false;},
 {name = "Col3"; sqlType = NVARCHAR; nullable = true; length = 20;
defaultValue = "Defaultvalue";}, {name = "Col4"; sqlType = DECIMAL; nullable = false; precision = 2; scale =
3;}];

The following configuration schema illustrates the parameters you can specify with the columns keyword:

struct ColumnDefinition { string name;
 SqlDataType sqlType;
 optional bool nullable;
 optional bool unique;
 optional int32 length;
 optional int32 scale;
 optional int32 precision;
 optional string defaultValue;
 optional string comment; };

SQL Data Type

To define the SQL data type for a column in a table using the .hdbtable syntax, use the sqlType keyword. In
the table definition, the sqlType keyword must adhere to the syntax shown in the following example.

table.columns = [{name = "Col1"; sqlType = VARCHAR; nullable = false; length = 20; comment =
"dummy comment";},
 ...];

The following configuration schema illustrates the data types you can specify with the sqlType keyword:

enum SqlDataType { DATE; TIME; TIMESTAMP; SECONDDATE; INTEGER; TINYINT;

292 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 SMALLINT; BIGINT; REAL; DOUBLE; FLOAT; SMALLDECIMAL;
 DECIMAL; VARCHAR; NVARCHAR; CLOB; NCLOB;
 ALPHANUM; TEXT; SHORTTEXT; BLOB; VARBINARY; };

Primary Key Definition

To define the primary key for the specified table using the .hdbtable syntax, use the primaryKey and
pkcolumns keywords. In the table definition, the primaryKey and pkcolumns keywords must adhere to the
syntax shown in the following example.

table.primaryKey.pkcolumns = ["Col1", "Col2"];

The following configuration schema illustrates the parameters you can specify with the primaryKey keyword:

struct PrimaryKeyDefinition { list<string> pkcolumns; optional IndexType indexType; };

Table Index Definition

To define the index for the specified table using the .hdbtable syntax, use the indexes keyword. In the table
definition, the indexes keyword must adhere to the syntax shown in the following example.

table.indexes = [{name = "MYINDEX1"; unique = true; order = DSC; indexColumns = ["Col2"];}, {name = "MYINDEX2"; unique = true; order = DSC; indexColumns = ["Col1",
"Col4"];}];

You can also use the optional parameter indexType to define the type of index, for example, B_TREE or
CPB_TREE, as described in Table Index Type [page 293].

Table Index Type

To define the index type for the specified table using the .hdbtable syntax, use the indexType keyword. In the
table definition, the indexType keyword must adhere to the syntax shown in the following example.

indexType = [B_TREE | CPB_TREE];

B_TREE specifies an index tree of type B+, which maintains sorted data that performs the insertion, deletion,
and search of records. CPB_TREE stands for “Compressed Prefix B_TREE” and specifies an index tree of type
CPB+, which is based on pkB-tree. CPB_TREE is a very small index that uses a “partial key”, that is; a key that
is only part of a full key in index nodes.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 293

 Note
If neither the B_TREE nor the CPB_TREE type is specified in the table-definition file, SAP HANA chooses the
appropriate index type based on the column data type, as follows:

● CPB_TREE
Character string types, binary string types, decimal types, when the constraint is a composite key or a
non-unique constraint

● B_TREE
All column data types other than those specified for CPB_TREE

Table Index Order

To define the order of the table index using the .hdbtable syntax, use the order keyword. Insert the order with
the desired value (for example, ascending or descending) in the index type definition; the order keyword must
adhere to the syntax shown in the following example.

order = [ASC | DSC];

You can choose to filter the contents of the table index either in ascending (ASC) or descending (DSC) order.

Complete Table-Definition Configuration Schema

The following example shows the complete configuration schema for tables defined using the .hdbtable
syntax.

enum TableType { COLUMNSTORE; ROWSTORE;
};
enum TableLoggingType {
 LOGGING; NOLOGGING;
};
enum IndexType {
 B_TREE; CPB_TREE;
};
enum Order {
 ASC; DSC;
};
enum SqlDataType {
 DATE; TIME; TIMESTAMP; SECONDDATE;
 INTEGER; TINYINT; SMALLINT; BIGINT;
 REAL; DOUBLE; FLOAT; SMALLDECIMAL; DECIMAL;
 VARCHAR; NVARCHAR; CLOB; NCLOB;
 ALPHANUM; TEXT; SHORTTEXT; BLOB; VARBINARY;
};
struct PrimaryKeyDefinition { list<string> pkcolumns; optional IndexType indexType;
};
struct IndexDefinition {
 string name;
 bool unique;
 optional Order order;

294 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 optional IndexType indexType; list<string> indexColumns; };
struct ColumnDefinition {
 string name;
 SqlDataType sqlType;
 optional bool nullable;
 optional bool unique;
 optional int32 length;
 optional int32 scale;
 optional int32 precision;
 optional string defaultValue;
 optional string comment;
};
struct TableDefinition {
 string schemaName;
 optional bool temporary;
 optional TableType tableType;
 optional bool public;
 optional TableLoggingType loggingType; list<ColumnDefinition> columns; optional list<IndexDefinition> indexes; optional PrimaryKeyDefinition primaryKey;
 optional string description;
};
TableDefinition table;

Related Information

Tables [page 288]
Create a Table [page 286]

5.2.3 Create a Reusable Table Structure

SAP HANA Extended Application Services (SAP HANA XS) enables you to define the structure of a database
table in a design-time file in the repository. You can reuse the table-structure definition to specify the table type
when creating a new table.

Prerequisites

To complete this task successfully, note the following prerequisites:

● You must have access to an SAP HANA system.
● You must have already created a development workspace and a project.
● You must have shared the project so that the newly created files can be committed to (and synchronized

with) the repository.
● You must have created a schema definition MYSCHEMA.hdbschema

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 295

Context

This task describes how to create a file containing a table-structure definition using the hdbstructure syntax.
Table-structure definition files are stored in the SAP HANA repository with the .hdbstructure file extension,
for example, TableStructure.hdbstructure. The primary use case for a design-time representation of a
table structure is creating reusable type definitions for procedure interfaces. To create a table-structure file in
the repository, perform the following steps:

Procedure

1. Start the SAP HANA studio.
2. Open the SAP HANA Development perspective.
3. Open the Project Explorer view.
4. Create a folder (package) to hold the table-structure definition files.

Browse to the folder (package) in your project workspace where you want to create the new folder
(package), and perform the following steps:
a. In the Project Explorer view, right-click the folder where you want to create a new folder called

Structures, and choose New Folder in the context-sensitive popup menu.
b. Enter a name for the new folder in the Folder Name box, for example, Structures.
c. Choose Finish to create the new Structures folder.

5. Create the table-structure definition file.
Browse to the Structures folder (package) in your project workspace and perform the following steps:

a. In the Project Explorer view, right-click the Structures folder you created in the previous step and
choose New File in the context-sensitive popup menu.

b. Enter a name for the new table-structure in the File Name box and add the .hdbstructure file
extension, for example, TableStructure.hdbstructure.

 Tip
File extensions are important. If you are using SAP HANA Studio to create artifacts in the SAP
HANA Repository, the file-creation wizard adds the required file extension automatically and, if
appropriate, enables direct editing of the new file in the corresponding editor.

c. Choose Finish to save the new table-structure definition file.
6. Define the table structure.

To edit the table-structure definition file, in the Project Explorer view double-click the table file you created
in the previous step, for example, TableStructure.hdbstructure, and add the table-structure code to
the file:

 Note
The following code example is provided for illustration purposes only.

table.schemaName = "MYSCHEMA"; table.columns = [

296 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 {name = "Col1"; sqlType = VARCHAR; nullable = false; length = 20; comment
= "dummy comment";},
 {name = "Col2"; sqlType = INTEGER; nullable = false;},
 {name = "Col3"; sqlType = NVARCHAR; nullable = true; length = 20;
defaultValue = "Defaultvalue";},
 {name = "Col4"; sqlType = DECIMAL; nullable = false; precision = 12;
scale = 3;}];
table.primaryKey.pkcolumns = ["Col1", "Col2"];

7. Save the table-structure definition file.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository, To
explicitly commit a file to the repository, right-click the file (or the project containing the file) and
choose Team Commit from the context-sensitive popup menu.

8. Activate the changes in the repository.
You can activate the changes to the folder structure and the folder contents in one step.
a. In the Project Explorer view, locate and right-click the new folder (Structures) that contains the new

table-structure definition file TableStructure.hdbstructure.

b. In the context-sensitive pop-up menu, choose Team Activate .
Activating a table-definition called TableStructure.hdbstructure in the package Structures creates
a new table type in SAP HANA, in the same way as the following SQL statement:

CREATE TABLE "MySchema"."MyTypeTable" like
"MySchema"."Structures::TableStructure"

9. Check that the new table-type object Structures::TableStructure is added to the catalog.

You can find the new table type in the Systems view under Catalog MYSCHEMA Procedures Table
Types .

a. In the SAP HANA Development perspective, open the Systems view.

b. Select the SAP HANA System where the new is located and navigate to the following node: Catalog
MYSCHEMA Procedures Table Types

c. Right-click the new table-structure object and choose Open Definition to display the specifications for
the reusable table-structure in the details panel.

d. Check that the entry in the Type box is Table Type.

Related Information

Reusable Table Structures [page 298]
Create a Table [page 286]

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 297

5.2.3.1 Reusable Table Structures

A table-structure definition is a template that you can reuse as a basis for creating new tables of the same type
and structure. You can reference the table structure in an SQL statement (CREATE TABLE [...] like
[...]) or an SQLScript procedure.

SAP HANA Extended Application Services (SAP HANA XS) enables you to create a database table structure (or
type) as a design-time file in the repository. All repository files including your table-structure definition can be
transported to other SAP HANA systems, for example, in a delivery unit. The primary use case for a design-
time representation of a table structure is creating reusable table-type definitions for procedure interfaces.
However, you an also use table-type definitions in table user-defined fuctions (UDF).

If you want to define a design-time representation of a table structure with the .hdbstructure specifications,
use the configuration schema illustrated in the following example:

struct TableDefinition { string SchemaName;
 optional bool public; list<ColumnDefinition> columns; optional PrimaryKeyDefinition primaryKey; };

 Note
The .hdbstructure syntax is a subset of the syntax used in .hdbtable. In a table structure definition,
you cannot specify the table type (for example, COLUMN/ROW), define the index, or enable logging.

The following code illustrates a simple example of a design-time table-structure definition:

table.schemaName = "MYSCHEMA"; table.columns = [
 {name = "Col1"; sqlType = VARCHAR; nullable = false; length = 20; comment =
"dummy comment";},
 {name = "Col2"; sqlType = INTEGER; nullable = false;},
 {name = "Col3"; sqlType = NVARCHAR; nullable = true; length = 20;
defaultValue = "Defaultvalue";},
 {name = "Col4"; sqlType = DECIMAL; nullable = false; precision = 2; scale =
3;}];
table.primaryKey.pkcolumns = ["Col1", "Col2"];

If you want to create a database table structure as a repository file, you must create the table structure as a flat
file and save the file containing the structure definition with the .hdbstructure file extension, for example,
TableStructure.hdbstructure. The new file is located in the package hierarchy you establish in the SAP
HANA repository. You can activate the repository files at any point in time.

 Note
On activation of a repository file, the file suffix is used to determine which runtime plug-in to call during the
activation process. The plug-in reads the repository file selected for activation, in this case a table structure
element with the file extension .hdbstructure, parses the object descriptions in the file, and creates the
appropriate runtime objects.

298 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

You can use the SQL command CREATE TABLE to create a new table based on the table structure, for example,
with the like operator, as illustrated in the following example:

CREATE TABLE "MySchema"."MyTypeTable" like
"MySchema"."Structures::TableStructure"

Related Information

Create a Table Structure [page 295]
Table Configuration Syntax [page 290]

5.2.4 Create a Sequence

A database sequence generates a serial list of unique numbers that you can use while transforming and moving
data to between systems.

Prerequisites

To complete this task successfully, note the following prerequisites:

● You must have access to an SAP HANA system.
● You must have already created a development workspace and a project.
● You must have shared the project so that the newly created files can be committed to (and synchronized

with) the repository.
● You must have created a schema definition, for example, MYSCHEMA.hdbschema

Context

SAP HANA Extended Application Services (SAP HANA XS) enables you to create a database sequence as a
design-time file in the repository. This task describes how to create a file containing a sequence definition using
the hdbsequence syntax.

 Note
A schema generated from an .hdbsequence artifact can also be used in the context of Core Data Services
(CDS).

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 299

To create a sequence-definition file in the repository, perform the following steps:

Procedure

1. Start the SAP HANA studio.
2. Open the SAP HANA Development perspective.
3. Open the Project Explorer view.
4. Create the sequence definition file.

Browse to the folder in your project workspace where you want to create the new sequence definition file
and perform the following tasks:
a. Right-click the folder where you want to save the sequence definition file and choose New> Sequence

Definition in the context-sensitive popup menu.
b. Enter or select the parent folder.
c. Enter the name of the sequence in the File Name box.

In SAP HANA, sequence-definition files require the file extension .hdbsequence, for example,
MySequence.hdbsequence.

 Tip
File extensions are important. If you are using SAP HANA Studio to create artifacts in the SAP
HANA Repository, the file-creation wizard adds the required file extension automatically and, if
appropriate, enables direct editing of the new file in the corresponding editor.

d. Select a template to use. Templates contain sample source code to help you.
e. Choose Finish to save the new sequence in the repository.

5. Define the sequence properties.
To edit the sequence file, in the Project Explorer view double-click the sequence file you created in the
previous step, for example, MYSEQUENCE.hdbsequence, and add the sequence code to the file:

schema= "MYSCHEMA"; start_with= 10;
maxvalue= 30;
nomaxvalue=false;
minvalue= 1;
nominvalue=true;
cycles= false;
reset_by= "SELECT T1.\"Column2\" FROM \"MYSCHEMA\".
\"com.acme.test.tables::MY_TABLE1\" AS T1 LEFT JOIN \"MYSCHEMA\".
\"com.acme.test.tables::MY_TABLE2\" AS T2 ON T1.\"Column1\" = T2.\"Column1\"";
depends_on=["com.acme.test.tables::MY_TABLE1",
"com.acme.test.tables::MY_TABLE2"];

6. Save the sequence-definition file.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository, To
explicitly commit a file to the repository, right-click the file (or the project containing the file) and
choose Team Commit from the context-sensitive popup menu.

300 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

7. Activate the changes in the repository.
a. Locate and right-click the new sequence file in the Project Explorer view.

b. In the context-sensitive pop-up menu, choose Team Activate .

Related Information

Sequences [page 301]
Sequence Configuration Syntax [page 303]

5.2.4.1 Sequences

A sequence is a database object that generates an automatically incremented list of numeric values according
to the rules defined in the sequence specification. The sequence of numeric values is generated in an
ascending or descending order at a defined increment interval, and the numbers generated by a sequence can
be used by applications, for example, to identify the rows and columns of a table.

Sequences are not associated with tables; they are used by applications, which can use CURRVAL in a SQL
statement to get the current value generated by a sequence and NEXTVAL to generate the next value in the
defined sequence. Sequences provide an easy way to generate the unique values that applications use, for
example, to identify a table row or a field. In the sequence specification, you can set options that control the
start and end point of the sequence, the size of the increment size, or the minimum and maximum allowed
value. You can also specify if the sequence should recycle when it reaches the maximum value specified. The
relationship between sequences and tables is controlled by the application. Applications can reference a
sequence object and coordinate the values across multiple rows and tables.

SAP HANA Extended Application Services (SAP HANA XS) enables you to create a database sequence as a
transportable design-time file in the repository. Repository files can be read by applications that you develop.

You can use database sequences to perform the following operations:

● Generate unique, primary key values, for example, to identify the rows and columns of a table
● Coordinate keys across multiple rows or tables

The following example shows the contents of a valid sequence-definition file for a sequence called
MYSEQUENCE. Note that, in this example, no increment value is defined, so the default value of 1 (ascend by 1)
is assumed. To set a descending sequence of 1, set the increment_by value to -1.

schema= "TEST_DUMMY"; start_with= 10;
maxvalue= 30;
nomaxvalue=false;
minvalue= 1;
nominvalue=true;
cycles= false;
reset_by= "SELECT T1.\"Column2\" FROM \"MYSCHEMA\".
\"com.acme.test.tables::MY_TABLE1\" AS T1 LEFT JOIN \"MYSCHEMA\".
\"com.acme.test.tables::MY_TABLE2\" AS T2 ON T1.\"Column1\" = T2.\"Column1\"";
depends_on=["com.acme.test.tables::MY_TABLE1",
"com.acme.test.tables::MY_TABLE2"];

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 301

The sequence definition is stored in the repository with the suffix hdbsequence, for example,
MYSEQUENCE.hdbsequence.

 Note
A schema generated from an .hdbsequence artifact can also be used in the context of Core Data Services
(CDS).

If you activate a sequence-definition object in SAP HANA XS, the activation process checks if a sequence with
the same name already exists in the SAP HANA repository. If a sequence with the specified name does not
exist, the repository creates a sequence with the specified name and makes _SYS_REPO the owner of the new
sequence.

In a sequence defined using the .hdbsequence syntax, the reset_by keyword enables you to reset the
sequence using a query on any view, table or even table function. However, any dependency must be declared
explicitly, for example, with the depends_on keyword. The target table or view specified in the depends_on
keyword must be mentioned in the SELECT query that defines the reset condition. If the table or view specified
in the dependency does not exist, the activation of the object in the repository fails.

 Note
On initial activation of the sequence definition, no check is performed to establish the existence of the
target view (or table) in the dependency; such a check is only made on reactivation of the sequence
definition.

Security Considerations

It is important to bear in mind that an incorrectly defined sequences can lead to security-related problems. For
example, if the sequencing process becomes corrupted, it can result in data overwrite. This can happen if the
index has a maximum value which rolls-over, or if a defined reset condition is triggered unexpectedly. A roll-
over can be achieved by an attacker forcing data to be inserted by flooding the system with requests.
Overwriting log tables is a known practice for deleting traces. To prevent unexpected data overwrite, use the
following settings:

● cycles= false
● Avoid using the reset_by feature

Related Information

Create a Sequence [page 299]
Sequence Configuration Syntax [page 303]

302 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

5.2.4.2 Sequence Configuration Syntax

SAP HANA Extended Application Services (SAP HANA XS) enables you to use the hdbsequence syntax to
create a database sequence as a design-time file in the repository. The design-time artifact that contains the
sequence definition must adhere to the .hdbsequence syntax specified below.

Sequence Definition

The following code illustrates a simple example of a design-time sequence definition using the .hdbsequence
syntax.

 Note
Keywords are case-sensitive, for example, maxvalue and start_with, and the schema referenced in the table
definition, for example, MYSCHEMA, must already exist.

schema= "MYSCHEMA"; start_with= 10; maxvalue= 30; nomaxvalue= false; minvalue= 1; nominvalue= true; cycles= false; reset_by= "SELECT T1.\"Column2\" FROM \"MYSCHEMA\".
\"com.acme.test.tables::MY_TABLE1\" AS T1 LEFT JOIN \"MYSCHEMA\".
\"com.acme.test.tables::MY_TABLE2\" AS T2 ON T1.\"Column1\" = T2.\"Column1\""; depends_on= ["com.acme.test.tables::MY_TABLE1",
"com.acme.test.tables::MY_TABLE2"];

Sequence-Definition Configuration Schema

The following example shows the configuration schema for sequences defined using the .hdbsequence
syntax. Each of the entries in the sequence-definition configuration schema is explained in more detail in a
dedicated section below:

string schema; int32 increment_by(default=1);
int32 start_with(default=-1);
optional int32 maxvalue;
bool nomaxvalue(default=false);
optional int32 minvalue;
bool nominvalue(default=false);
optional bool cycles;
optional string reset_by;
bool public(default=false);
optional string depends_on_table;
optional string depends_on_view; optional list<string> depends_on;

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 303

Schema Name

To use the .hdbsequence syntax to specify the name of the schema that contains the sequence you are
defining, use the schema keyword. In the sequence definition, the schema keyword must adhere to the syntax
shown in the following example.

schema= "MYSCHEMA";

Increment Value

To use the .hdbsequence syntax to specify that the sequence increments by a defined value, use the
increment_by keyword. increment_by specifies the amount by which the next sequence value is
incremented from the last value assigned. The default increment is 1. In the sequence definition, the
increment_by keyword must adhere to the syntax shown in the following example.

increment_by= 2;

To generate a descending sequence, specify a negative value.

 Note
An error is returned if the increment_by value is 0.

Start Value

To use the .hdbsequence syntax to specify that the sequence starts with a specific value, use the
start_with keyword. If you do not specify a value for the start_with keyword, the value defined in
minvalue is used for ascending sequences, and value defined in maxvalue is used for descending sequences.
In the sequence definition, the start_with keyword must adhere to the syntax shown in the following
example.

start_with= 10;

Maximum Value

To use the .hdbsequence syntax to specify that the sequence stops at a specific maximum value, for
example, 30, use the optional keyword maxvalue. In the sequence definition, the maxvalue keyword must
adhere to the syntax shown in the following example.

maxvalue= 30;

304 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 Note
The maximum value (maxvalue) a sequence can generate must be between -4611686018427387903 and
4611686018427387902.

No Maximum Value

To use the .hdbsequence syntax to specify that the sequence does not stop at any specific maximum value,
use the boolean keyword nomaxvalue. When the nomaxvalue keyword is used, the maximum value for an
ascending sequence is 4611686018427387903 and the maximum value for a descending sequence is -1. In the
sequence definition, the nomaxvalue keyword must adhere to the syntax shown in the following example.

nomaxvalue= true;

 Note
Note that the default setting for nomaxvalue is false.

Minimum Value

To use the .hdbsequence syntax to specify that the sequence stops at a specific minimum value, for example,
1, use the minvalue keyword. In the sequence definition, the minvalue keyword must adhere to the syntax
shown in the following example.

minvalue= 1;

 Note
The minimum value (minvalue) a sequence can generate must be between -4611686018427387903 and
4611686018427387902.

No Minimum Value

To use the .hdbsequence syntax to specify that the sequence does not stop at any specific minimum value,
use the boolean keyword nominvalue. When the nominvalue keyword is used, the minimum value for an
ascending sequence is 1 and the minimum value for a descending sequence is -4611686018427387903. In the
sequence definition, the nominvalue keyword must adhere to the syntax shown in the following example.

nominvalue= true;

 Note
Note that the default setting nominvalue is false.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 305

Cycles

In a sequence defined using the .hdbsequence syntax, the optional boolean keyword cycles enables you to
specify whether the sequence number will be restarted after it reaches its maximum or minimum value. For
example, the sequence restarts with minvalue after having reached maxvalue (where increment_by is
greater than zero (0)) or restarts with maxvalue after having reached minvalue (where increment_by is
less than zero (0)). In the .hdbsequence definition, the cycles keyword must adhere to the syntax shown in
the following example.

cycles= false;

Reset by Query

In a sequence defined using the .hdbsequence syntax, the reset_by keyword enables you to reset the
sequence using a query on any view, table or even table function. However, any dependency must be declared
explicitly, for example, with the depends_on_view or depends_on_table keyword. If the table or view
specified in the dependency does not exist, the activation of the sequence object in the repository fails.

In the .hdbsequence definition, the reset_by keyword must adhere to the syntax shown in the following
example.

reset_by= "SELECT \"Col2\" FROM \"MYSCHEMA\".\"acme.com.test.tables::MY_TABLE\"
WHERE \"Col2\"='12'";

During a restart of the database, the system automatically executes the reset_by statement and the
sequence value is restarted with the value determined from the reset_by subquery

 Note
If reset_by is not specified, the sequence value is stored persistently in the database. During the restart of
the database, the next value of the sequence is generated from the saved sequence value.

Depends on

In a sequence defined using the .hdbsequence syntax, the optional keyword depends_on enables you to
define a dependency to one or more specific tables or views, for example when using the reset_by option to
specify the query to use when resetting the sequence. In the .hdbsequence definition, the depends_on
keyword must adhere to the syntax shown in the following example.

depends_on=
["<repository.package.path>::<MY_TABLE_NAME1>","<repository.package.path>::<MY_VI
EW_NAME1>"];

 Note
The depends_on keyword replaces and extends the keywords depends_on_table and
depends_on_view.

306 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

For example, to specify multiple tables and views with the depends_on keyword, use a comma-separated list
enclosed in square brackets [].

depends_on= ["com.acme.test.tables::MY_TABLE1",
"com.acme.test.tables::MY_TABLE2", "com.acme.test.views::MY_VIEW1"];

The target table or view specified in the depends_on keyword must be mentioned in the SELECT query that
defines the reset condition. On initial activation of the sequence definition, no check is performed to establish
the existence of the target table or view specified in the dependency; such a check is only made during
reactivation of the sequence definition. If one or more of the target tables or views specified in the dependency
does not exist, the re-activation of the sequence object in the repository fails.

Related Information

Create a Sequence [page 299]
Sequences [page 301]

5.2.5 Create an SQL View

A view is a virtual table based on the dynamic results returned in response to an SQL statement. SAP HANA
Extended Application Services (SAP HANA XS) enables you to create a database view as a design-time file in
the repository.

Prerequisites

To complete this task successfully, note the following prerequisites:

● You must have access to an SAP HANA system.
● You must have already created a development workspace and a project.
● You must have shared the project so that the newly created files can be committed to (and synchronized

with) the repository.
● You must have created a schema definition, for example, MYSCHEMA.hdbschema

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 307

Context

This task describes how to create a file containing an SQL view definition using the hdbview syntax. SQL view-
definition files are stored in the SAP HANA repository. To create an SQL view-definition file in the repository,
perform the following steps:

Procedure

1. Start the SAP HANA studio.
2. Open the SAP HANA Development perspective.
3. Open the Project Explorer view.
4. Create the view definition file.

Browse to the folder in your project workspace where you want to create the new view-definition file and
perform the following tasks:
a. Right-click the folder where you want to save the view-definition file and choose New in the context-

sensitive popup menu.
b. Enter the name of the view-definition file in the File Name box, for example, MYVIEW.hdbview.

 Tip
File extensions are important. If you are using SAP HANA Studio to create artifacts in the SAP
HANA Repository, the file-creation wizard adds the required file extension automatically and, if
appropriate, enables direct editing of the new file in the corresponding editor.

c. Select a template to use. Templates contain sample source code to help you.
d. Choose Finish to save the new view-definition file in the repository.

5. Define the view.

If the new view-definition file is not automatically displayed by the file-creation wizard, in the Project
Explorer view double-click the view-definition file you created in the previous step, for example,
MYVIEW.hdbview, and add the view definition code to the file replacing object names and paths to suit
your requirements.:

 Note
The following code example is provided for illustration purposes only.

schema="MYSCHEMA"; query="SELECT T1.\"Column2\" FROM \"MYSCHEMA\".
\"acme.com.test.views::MY_VIEW1\" AS T1 LEFT JOIN \"MYSCHEMA\".
\"acme.com.test.views::MY_VIEW2\" AS T2 ON T1.\"Column1\" = T2.\"Column1\"";
depends_on=["acme.com.test.views::MY_VIEW1", "acme.com.test.views::MY_VIEW2"];

6. Save the SQL view-definition file.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository, To
explicitly commit a file to the repository, right-click the file (or the project containing the file) and
choose Team Commit from the context-sensitive popup menu.

308 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

7. Activate the changes in the repository.
a. Locate and right-click the new view-definition file in the Project Explorer view.

b. In the context-sensitive pop-up menu, choose Team Activate .

Related Information

SQL Views [page 309]
SQL View Configuration Syntax [page 311]

5.2.5.1 SQL Views

In SQL, a view is a virtual table based on the dynamic results returned in response to an SQL statement. Every
time a user queries an SQL view, the database uses the view's SQL statement to recreate the data specified in
the SQL view. The data displayed in an SQL view can be extracted from one or more database tables.

An SQL view contains rows and columns, just like a real database table; the fields in an SQL view are fields from
one or more real tables in the database. You can add SQL functions, for example, WHERE or JOIN statements,
to a view and present the resulting data as if it were coming from one, single table.

SAP HANA Extended Application Services (SAP HANA XS) enables you to create a database view as a design-
time file in the repository. Repository files can be read by applications that you develop. In addition, all
repository files including your view definition can be transported to other SAP HANA systems, for example, in a
delivery unit.

If your application refers to the design-time version of a view from the repository rather than the runtime
version in the catalog, for example, by using the explicit path to the repository file (with suffix), any changes to
the repository version of the file are visible as soon as they are committed to the repository. There is no need to
wait for the repository to activate a runtime version of the view.

The following example shows the contents of a valid transportable view-definition file for a view called MYVIEW:

schema="MYSCHEMA"; query="SELECT T1.\"Column2\" FROM \"MYSCHEMA\".\"acme.com.test.views::MY_VIEW1\"
AS T1 LEFT JOIN \"MYSCHEMA\".\"acme.com.test.views::MY_VIEW2\" AS T2 ON
T1.\"Column1\" = T2.\"Column1\"";
depends_on=["acme.com.test.views::MY_VIEW1", "acme.com.test.views::MY_VIEW2"];

If you want to create a view definition as a design-time object, you must create the view as a flat file and save
the file containing the view definition with the suffix .hdbview, for example, MYVIEW.hdbview in the
appropriate package in the package hierarchy established for your application in the SAP HANA repository. You
can activate the design-time object at any point in time.

 Tip
On activation of a repository file, the file suffix (for example, .hdbview) is used to determine which runtime
plugin to call during the activation process. The plug-in reads the repository file selected for activation,
parses the object descriptions in the file, and creates the appropriate runtime objects.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 309

In an SQL view defined using the .hdbview syntax, any dependency to another table or view must be declared
explicitly, for example, with the depends_on keyword. The target view or table specified in the depends_on
keyword must also be mentioned in the SELECT query that defines the SQL view. If one of more of the tables or
views specified in the dependency does not exist, the activation of the object in the repository fails.

 Note
On initial activation of the SQL view, no check is performed to establish the existence of the target view (or
table) in the depends_on dependency; such a check is only made on reactivation of the SQL view.

Column Names in a View

If you want to assign names to the columns in a view, use the SQL query in the .hdbview file. In this example of
design-time view definition, the following names are specified for columns defined in the view:

● idea_id
● identity_id
● role_id

schema = "MYSCHEMA"; query = "SELECT role_join.idea_id AS idea_id, ident.member_id AS identity_id,
role_join.role_id AS role_id FROM \"acme.com.odin.db.iam::t_identity_group_member_transitive\" AS
ident
 INNER JOIN \"acme.com.odin.db.idea::t_idea_identity_role\" AS
role_join
 ON role_join.identity_id = ident.group_id UNION DISTINCT SELECT idea_id, identity_id, role_id FROM \"acme.com.odin.db.idea::t_idea_identity_role\"
 WITH read only";

Related Information

Create an SQL View [page 307]

310 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

5.2.5.2 SQL View Configuration Syntax

SAP HANA Extended Application Services (SAP HANA XS) enables you to use the hdbview syntax to create an
SQL view as a design-time file in the repository. The design-time artifact that contains the SQL view definition
must adhere to the .hdbview syntax specified below.

SQL View Definition

The following code illustrates a simple example of a design-time definition of an SQL view using the .hdbview
syntax.

 Note
Keywords are case-sensitive, for example, schema and query, and the schema referenced in the table
definition, for example, MYSCHEMA, must already exist.

schema="MYSCHEMA"; public=false query="SELECT T1.\"Column2\" FROM \"MYSCHEMA\".
\"acme.com.test.tables::MY_TABLE1\" AS T1 LEFT JOIN \"MYSCHEMA\".
\"acme.com.test.views::MY_VIEW1\" AS T2 ON T1.\"Column1\" = T2.\"Column1\""; depends_on= "acme.com.test.tables::MY_TABLE1","acme.com.test.views::MY_VIEW1";

SQL View Configuration Schema

The following example shows the configuration schema for an SQL view that you define using the .hdbview
syntax. Each of the entries in the view-definition configuration schema is explained in more detail in a
dedicated section below:

string schema; string query;
bool public(default=true); optional list<string> depends_on_table; optional list<string> depends_on_view;

Schema Name

To use the .hdbview syntax to specify the name of the schema that contains the SQL view you are defining,
use the schema keyword. In the SQL view definition, the schema keyword must adhere to the syntax shown in
the following example.

schema= "MYSCHEMA";

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 311

query

To use the .hdbview syntax to specify the query that creates the SQL view you are defining, use the query
keyword. In the SQL view definition, the query keyword must adhere to the syntax shown in the following
example.

query="SELECT * FROM \"<MY_SCHEMA_NAME>\".
\"<repository.package.path>::<MY_TABLE_NAME>\"";

For example:

query="SELECT * FROM \"MY_SCHEMA\".\"com.test.tables::02_HDB_DEPARTMENT_VIEW\"";

public

To use the .hdbview syntax to specify whether or not the SQL view you are defining is publicly available, use
the boolean keyword public. In the SQL view definition, the public keyword must adhere to the syntax
shown in the following example.

public=[false|true];

For example:

public=false

 Note
The default value for the public keyword is true.

Depends on

In an SQL view defined using the .hdbview syntax, the optional keyword depends_on enables you to define a
dependency to one or more tables or views. In the .hdbview definition, the depends_on keyword must adhere
to the syntax shown in the following example.

depends_on=
["<repository.package.path>::<MY_TABLE_NAME1>","<repository.package.path>::<MY_VI
EW_NAME1>"];

 Note
The depends_on keyword replaces and extends the keywords depends_on_table and
depends_on_view.

312 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

For example, to specify multiple tables and views with the depends_on keyword, use a comma-separated list
enclosed in square brackets [].

depends_on= ["acme.com.test.tables::MY_TABLE1","acme.com.test.views::MY_VIEW1"];

The target table or view specified in the depends_on keyword must be mentioned in the SELECT query that
defines the SQL view. On initial activation of the SQL view, no check is performed to establish the existence of
the target tables or views specified in the dependency; such a check is only made during reactivation of the
SQL view. If one or more of the target tables or views specified in the dependency does not exist, the re-
activation of the SQL view object in the repository fails.

Related Information

Create an SQL View [page 307]

5.2.6 Create a Synonym

Extended Application Services (SAP HANA XS) enables you to create a local database synonym as a design-
time file in the repository.

Prerequisites

To complete this task successfully, note the following prerequisites:

● You must have access to an SAP HANA system.
● You must have already created a development workspace and a project.
● (SAP HANA studio only) You must have shared the project so that the newly created files can be

committed to (and synchronized with) the repository.

Context

In SAP HANA, a design-time synonym artifact has the suffix .hdbsynonym and defines the target object by
specifying an authoring schema and an object name; its activation evaluates a system's schema mapping to
determine the physical schema in which the target table is expected, and creates a local synonym that points
to this object.

 Restriction
A design-time synonym cannot refer to another synonym, and you cannot define multiple synonyms in a
single design-time synonym artifact. In addition, the target object specified in a design-time synonym must
only exist in the catalog; it is not possible to use .hdbsynonym to define a synonym for a catalog object
that originates from a design-time artifact.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 313

Procedure

1. Start the SAP HANA studio.
a. Open the SAP HANA Development perspective.
b. Open the Project Explorer view.

2. Create the synonym definition file.
Browse to the folder in your project workspace where you want to create the new synonym-definition file
and perform the following steps:

To generate a synonym called "acme.com.app1::MySynonym1", you must create a design-time
synonym artifact called MySynonym1.hdbsynonym in the repository package acme.com.app1; the first
line of the design-time synonym artifact must be specified as illustrated in the following example.

 Sample Code

{ "acme.com.app1::MySynonym1" : {...}}

a. Right-click the folder where you want to create the synonym-definition file and choose New
General File in the context-sensitive popup menu.

b. Enter the name of the new synonym-definition file in the File Name box and add the appropriate
extension, for example, MySynonym1.hdbsynonym.

c. Choose Finish to save the new synonym definition file.
3. Define the synonym.

To edit the synonym definition, in the Project Explorer view double-click the synonym-definition file you
created in the previous step, for example, MySynonym.hdbsynonym, and add the synonym-definition code
to the new file, as illustrated in the following example.

 Note
The following code example is provided for illustration purposes only.

 Sample Code

{ "acme.com.app1::MySynonym1" : { "target" : {
 "schema": "DEFAULT_SCHEMA",
 "object": "MY_ERP_TABLE_1"
 },
 "schema": "SCHEMA_2"
 } }

4. Save and activate the changes in the repository.
a. Locate and right-click the new synonym-definition file in the Project Explorer view.

b. In the context-sensitive pop-up menu, choose Team Activate .

314 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

Related Information

Synonyms [page 315]
Synonym Configuration Syntax [page 316]
Schema [page 284]

5.2.6.1 Synonyms

SAP HANA Extended Application Services (SAP HANA XS) enables you to create a design-time representation
of a local database synonym. The synonym enables you to refer to a table (for example, from a view) that only
exists as a catalog object.

In SAP HANA XS, a design-time representation of a local synonym has the suffix.hdbsynonym that you can
store in the SAP HANA repository. The syntax of the design-time synonym artifact requires you to define the
target object by specifying an authoring schema and an object name. You also need to specify the schema in
which to create the new synonym. On activation of a design-time synonym artifact, SAP HANA XS evaluates a
system's schema mapping to determine the physical schema in which the target table is expected, and creates
a local synonym in the specified schema which points to this object. You can use this type of synonym if you
need to define a CDS view that refers to a table which only exists in the catalog; that is, the catalog table has no
design-time representation.

 Restriction
A synonym cannot refer to another synonym, and you cannot define multiple synonyms in a single design-
time synonym artifact. In addition, the target object specified in a design-time synonym must only exist in
the catalog; it is not possible to define a define-time synonym for a catalog object that originates from a
design-time artifact.

In the following example of a design-time synonym artifact, the table MY_ERP_TABLE_1 resides in the schema
DEFAULT_SCHEMA. The activation of the design-time synonym artifact illustrated in the example would
generate a local synonym ("acme.com.app1::MySynonym1") in the schema SCHEMA_2. Assuming that a
schema-mapping table exists that maps DEFAULT_SCHEMA to the schema SAP_SCHEMA, the newly
generated synonym "SCHEMA_2"."acme.com.app1::MySynonym1" points to the run-time object
"SAP_SCHEMA"."MY_ERP_TABLE_1".

 Sample Code
MySynonym1.hdbsynonym

{ "acme.com.app1::MySynonym1" : { "target" : {
 "schema": "DEFAULT_SCHEMA",
 "object": "MY_ERP_TABLE_1"
 },
 "schema": "SCHEMA_2"
 }
}

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 315

 Tip
To generate a synonym called "acme.com.app1::MySynonym1", a design-time artifact called
MySynonym1.hdbsynonym must exist in the repository package acme.com.app1; the first line of the
design-time synonym artifact must be specified as illustrated in the example above.

Related Information

Schema [page 284]
Create a Synonym [page 313]

5.2.6.2 Synonym Configuration Syntax

A specific syntax is required to create a design-time representation of a local database synonym in SAP HANA
Extended Application Services.

Synonym Definition

SAP HANA Extended Application Services (SAP HANA XS) enables you to use the hdbsynonym syntax to
create a database synonym as a design-time file in the repository. On activation, a local synonym is generated
in the catalog in the specified schema. The design-time artifact that contains the synonym definition must
adhere to the .hdbsynonym syntax specified below.

 Note
The activation of the design-time synonym artifact illustrated in the following example generates a local
synonym ("acme.com.app1::MySynonym1") in the schema SCHEMA_2.

 Sample Code
MySynonym1.hdbsynonym

{ "acme.com.app1::MySynonym1" : { "target" : { "schema": "DEFAULT_SCHEMA", "object": "MY_ERP_TABLE_1" }, "schema [page 317]": "SCHEMA_2" } }

316 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

Synonym Location

In the first line of the synonym-definition file, you must specify the absolute repository path to the package
containing the synonym artifact (and the name of the synonym artifact) itself using the syntax illustrated in the
following example.

 Code Syntax

{ "<full.path.to.package>::<MySynonym1>" : {...}}

For example, to generate a synonym called "acme.com.app1::MySynonym1", you must create a design-time
artifact called MySynonym1.hdbsynonym in the repository package acme.com.app1; the first line of the
design-time synonym artifact must be specified as illustrated in the following example.

 Sample Code

{ "acme.com.app1::MySynonym1" : {...}}

target

To specify the name and location of the object for which you are defining a synonym, use the target keyword
together with the keywords schema and object. In the synonym definition, the target keyword must adhere
to the syntax shown in the following example.

 Code Syntax

"target" : { "schema": "<Name_of_schema_containing_<"object">", "object": "<Name_of_target_object>" },

In the context of the target keyword, the following additional keywords are required:

● schema defines the name of the schema where the target object (defined in object) is located.
● object specifies the name of the catalog object to which the synonym applies.

 Restriction
The target object specified in a design-time synonym must only exist in the catalog; it is not possible to
define a design-time synonym for a catalog object that originates from a design-time artifact.

schema

To specify the catalog location of the generated synonym, use the schema keyword. In the synonym definition,
the schema keyword must adhere to the syntax shown in the following example.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 317

 Code Syntax

"schema": "<Schema_location_of_generated_synonym>"

Related Information

Synonyms [page 315]
Create a Synonym [page 313]

5.2.7 Import Data with hdbtable Table-Import

The table-import function is a data-provisioning tool that enables you to import data from comma-separated
values (CSV) files into SAP HANA database tables.

Prerequisites

Before you start this task, make sure that the following prerequisites are met:

● An SAP HANA database instance is available.
● The SAP HANA database client is installed and configured.
● You have a database user account set up with the roles containing sufficient privileges to perform actions

in the repository, for example, add packages, add objects, and so on.
● The SAP HANA studio is installed and connected to the SAP HANA repository.
● You have a development environment including a repository workspace, a package structure for your

application, and a shared project to enable you to synchronize changes to the project files in the local file
system with the repository.

Context

In this tutorial, you import data from a CSV file into a table generated from a design-time definition that uses
the .hdbtable syntax. The names used in the following task are for illustration purposes only; where
necessary, replace the names of schema, tables, files, and so on shown in the following examples with your own
names.

 Tip
File extensions are important. If you are using SAP HANA Studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the new file in the corresponding editor.

318 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

Procedure

1. Create a root package for your table-import application.
In SAP HANA studio, open the SAP HANA Development perspective and perform the following steps:
a. In the package hierarchy displayed in the Systems view, right-click the package where you want to

create the new package for your table-import configuration and choose New > Package... .
b. Enter a name for your package, for example TiTest. You must create the new TiTest package in your

own namespace, for example mycompany.tests.TiTest

 Note
Naming conventions exist for package names, for example, a package name must not start with
either a dot (.) or a hyphen (-) and cannot contain two or more consecutive dots (..). In addition,
the name must not exceed 190 characters.

a. Choose OK to create the new package.
2. Create a set of table-import files.

The following files are required for a table import scenario.

 Note
For the purposes of this tutorial, the following files must all be created in the same package, for
example, a package called TiTest. However, the table-import feature also allows you to use files
distributed in different packages.

○ The table-import configuration file, for example, TiConfiguration.hdbti
Specifies the source file containing the data values to import and the target table in SAP HANA into
which the data must be inserted

○ A CSV file, for example, myTiData.csv
Contains the data to be imported into the SAP HANA table during the table-import operation; values in
the .csv file can be separated either by a comma (,) or a semi-colon (;).

○ A target table.
The target table can be either a runtime table in the catalog or a table definition, for example, a table
defined using the .hdbtable syntax (TiTable.hdbtable) or the CDS-compliant .hdbdd syntax
(TiTable.hdbdd.

 Note
In this tutorial, the target table for the table-import operation is TiTable.hdbtable, a design-
time table defined using the .hdbtable syntax.

○ The schema definition, for example, TISCHEMA.hdbschema
Specifies the name of the schema in which the target import table is created

When all the necessary files are available, you can import data from a source file, such as a CSV file, into
the desired target table.

3. Using any code editor, create or open the schema definition (AMT.hdbschema) file and enter the name of
the schema you want to use to contain the target table.

schema_name="AMT";

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 319

4. Create or open the table definition file for the target import table (inhabitants.hdbtable) and enter the
following lines of text; this example uses the .hdbtable syntax.

table.schemaName = "AMT"; table.tableType = COLUMNSTORE;
table.columns =
 [
 {name = "ID"; sqlType = VARCHAR; nullable = false; length = 20; comment =
"";},
 {name = "surname"; sqlType = VARCHAR; nullable = true; length = 30;
comment = "";},
 {name = "name"; sqlType = VARCHAR; nullable = true; length = 30; comment =
"";},
 {name = "city"; sqlType = VARCHAR; nullable = true; length = 30; comment =
"";}
];
table.primaryKey.pkcolumns = ["ID"];

5. Open the CSV file containing the data to import, for example, inhabitants.csv in a text editor and enter
the values shown in the following example.

0,Annan,Kwesi,Accra 1,Essuman,Wiredu,Tema
2,Tetteh,Kwame,Kumasi
3,Nterful,Akye,Tarkwa
4,Acheampong,Kojo,Tamale
5,Assamoah,Adjoa,Takoradi
6,Mensah,Afua,Cape Coast

 Note
You can import data from multiple .csv files in a single, table-import operation. However, each .csv
file must be specified in a separate code block ({table= ...}) in the table-import configuration file.

.
6. Create a table import configuration file.

To create a table import configuration file, perform the following steps:

 Note
You can also open and use an existing table-import configuration file (for example,
inhabitants.hdbti).

a. Right-click the folder where you want to save the table file and choose New >Table Import
Configuration in the context-sensitive popup menu.

b. Enter or select the parent folder, where the table-import configuration file will reside.
c. Using the wizard, enter the name of the table-import configuration in the File Name field, for example,

MyTableConfiguration.

This creates the file MyTableConfiguration.hdbti.

 Tip
File extensions are important. If you are using SAP HANA Studio to create artifacts in the SAP
HANA Repository, the file-creation wizard adds the required file extension automatically and, if
appropriate, enables direct editing of the new file in the corresponding editor.

d. Edit the details of the new table-import configuration in the new (or existing) table-import
configuration file.

320 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

Enter the following lines of text in the table-import configuration file.

import = [{
 table = "mycompany.tests.TiTest::inhabitants";
 schema = "AMT";
 file = "mycompany.tests.TiTest:inhabitants.csv";
 header = false;
 }
];

e. Choose Finish to save the table-import configuration.
7. Deploy the table import.

a. Select the package that you created in the first step, for example, mycompany.tests.TiTest.
b. Click the alternate mouse button and choose Commit.
c. Click the alternate mouse button and choose Activate.

This activates all the repository objects. The result is that the data specified in the CSV file
inhabitants.csv is imported into the SAP HANA table inhabitants using the data-import
configuration defined in the inhabitants.hdbti table-import configuration file.

8. Check the contents of the runtime table inhabitants in the catalog.

To ensure that the import operation completed as expected, use the SAP HANA studio to view the contents
of the runtime table inhabitants in the catalog. You need to confirm that the correct data was imported
into the correct columns.
a. In the SAP HANA Development perspective, open the Systems view.
b. Navigate to the catalog location where the inhabitants object resides, for example:

<SID> Catalog AMT Tables
c. Open a data preview for the updated object.

Right-click the updated object and choose Open Data Preview in the context-sensitive menu.

5.2.7.1 Data Provisioning Using Table Import

You can import data from comma-separated values (CSV) into the SAP HANA tables using the SAP HANA
Extended Application Services (SAP HANA XS) table-import feature.

In SAP HANA XS, you create a table-import scenario by setting up an table-import configuration file and one or
more comma-separated value (CSV) files containing the content you want to import into the specified SAP
HANA table. The import-configuration file links the import operation to one or more target tables. The table
definition (for example, in the form of a .hdbdd or .hdbtable file) can either be created separately or be
included in the table-import scenario itself.

To use the SAP HANA XS table-import feature to import data into an SAP HANA table, you need to understand
the following table-import concepts:

● Table-import configuration
You define the table-import model in a configuration file that specifies the data fields to import and the
target tables for each data field.

 Note
The table-import file must have the .hdbti extension, for example, myTableImport.hdbti.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 321

CSV Data File Constraints

The following constraints apply to the CSV file used as a source for the table-import feature in SAP HANA XS:

● The number of table columns must match the number of CSV columns.
● There must not be any incompatibilities between the data types of the table columns and the data types of

the CSV columns.
● Overlapping data in data files is not supported.
● The target table of the import must not be modified (or appended to) outside of the data-import operation.

If the table is used for storage of application data, this data may be lost during any operation to re-import
or update the data.

Related Information

Table-Import Configuration [page 272]
Table-Import Configuration-File Syntax [page 274]

5.2.7.2 Table-Import Configuration

You can define the elements of a table-import operation in a design-time file; the configuration includes
information about source data and the target table in SAP HANA.

SAP HANA Extended Application Services (SAP HANA XS) enables you to perform data-provisioning
operations that you define in a design-time configuration file. The configuration file is transportable, which
means you can transfer the data-provisioning between SAP HANA systems quickly and easily.

The table-import configuration enables you to specify how data from a comma-separated-value (.csv) file is
imported into a target table in SAP HANA. The configuration specifies the source file containing the data values
to import and the target table in SAP HANA into which the data must be inserted. As further options, you can
specify which field delimiter to use when interpreting data in the source .csv file and if keys must be used to
determine which columns in the target table to insert the imported data into.

 Note
If you use multiple table import configurations to import data into a single target table, the keys keyword is
mandatory. This is to avoid problems relating to the overwriting or accidental deletion of existing data.

The following example of a table-import configuration shows how to define a simple import operation which
inserts data from the source files myData.csv and myData2.csv into the table myTable in the schema
mySchema.

import = [{
 table = "myTable";
 schema = "mySchema";
 file = "sap.ti2.demo:myData.csv";
 header = false;
 delimField = ";";

322 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

 keys = ["GROUP_TYPE" : "BW_CUBE"];
 },
 {
 table = "sap.ti2.demo::myTable";
 file = "sap.ti2.demo:myData2.csv";
 header = false;
 delimField = ";";
 keys = ["GROUP_TYPE" : "BW_CUBE"];
 }
];

In the table import configuration, you can specify the target table using either of the following methods:

● Public synonym (“sap.ti2.demo::myTable”)
If you use the public synonym to reference a target table for the import operation, you must use either the
hdbtable or cdstable keyword, for example, hdbtable = "sap.ti2.demo::myTable";

● Schema-qualified catalog name (“mySchema”.“MyTable”
If you use the schema-qualified catalog name to reference a target table for the import operation, you must
use the table keyword in combination with the schema keyword, for example, table = "myTable";
schema = "mySchema";

 Note
Both the schema and the target table specified in the table-import operation must already exist. If either
the specified table or the schema does not exist, SAP HANA XS displays an error message during the
activation of the configuration file, for example: Table import target table cannot be found. or
Schema could not be resolved.

You can also use one table-import configuration file to import data from multiple .csv source files. However,
you must specify each import operation in a new code block introduced by the [hdb | cds]table keyword, as
illustrated in the example above.

By default, the table-import operation assumes that data values in the .csv source file are separated by a
comma (,). However, the table-import operation can also interpret files containing data values separated by a
semi-colon (;).

● Comma (,) separated values

,,,BW_CUBE,,40000000,2,40000000,all

● Semi-colon (;) separated values

;;;BW_CUBE;;40000000;3;40000000;all

 Note
If the activated .hdbti configuration used to import data is subsequently deleted, only the data that was
imported by the deleted .hdbti configuration is dropped from the target table. All other data including any
data imported by other .hdbti configurations remains in the table. If the target CDS entity has no key
(annotated with @nokey) all data that is not part of the CSV file is dropped from the table during each
table-import activation.

You can use the optional keyword keys to specify the key range taken from the source .csv file for import into
the target table. If keys are specified for an import in a table import configuration, multiple imports into same
target table are checked for potential data collisions.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 323

 Note
The configuration-file syntax does not support wildcards in the key definition; the full value of a selectable
column value has to be specified.

Security Considerations

In SAP HANA XS, design-time artifacts such as tables (.hdbtable or .hdbdd) and table-import
configurations (.hdbti) are not normally exposed to clients via HTTP. However, design-time artifacts
containing comma-separated values (.csv) could be considered as potential artifacts to expose to users
through HTTP. For this reason, it is essential to protect these exposed .csv artifacts by setting the appropriate
application privileges; the application privileges prevents data leakage, for example, by denying access to data
by users, who are not normally allowed to see all the records in such tables.

 Tip
Place all the .csv files used to import content to into tables together in a single package and set the
appropriate (restrictive) application-access permissions for that package, for example, with a
dedicated .xsaccess file.

Related Information

Table-Import Configuration-File Syntax [page 274]

5.2.7.3 Table-Import Configuration-File Syntax

The design-time configuration file used to define a table-import operation requires the use of a specific syntax.
The syntax comprises a series of keyword=value pairs.

If you use the table-import configuration syntax to define the details of the table-import operation, you can use
the keywords illustrated in the following code example. The resulting design-time file must have the .hdbti file
extension, for example, myTableImportCfg.hdbti.

import = [{ table = "myTable"; schema = "mySchema"; file = "sap.ti2.demo:myData.csv"; header = false; useHeaderNames = false; delimField = ";"; delimEnclosing=“\““; distinguishEmptyFromNull = true; keys = ["GROUP_TYPE" : "BW_CUBE", "GROUP_TYPE" : "BW_DSO", "GROUP_TYPE" :
"BW_PSA"]; }

324 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

];

table

In the table-import configuration, the table, cdstable, and hdbtable keywords enable you to specify the
name of the target table into which the table-import operation must insert data. The target table you specify in
the table-import configuration can be a runtime table in the catalog or a design-time table definition, for
example, a table defined using either the .hdbtable or the .hdbdd (Core Data Services) syntax.

 Note
The target table specified in the table-import configuration must already exist. If the specified table does
not exist, SAP HANA XS displays an error message during the activation of the configuration file, for
example: Table import target table cannot be found.

Use the table keyword in the table-import configuration to specify the name of the target table using the
qualified name for a catalog table.

table = "target_table"; schema = "mySchema";

 Note
You must also specify the name of the schema in which the target catalog table resides, for example, using
the schema keyword.

The hdbtable keyword in the table-import configuration enables you to specify the name of a target table using
the public synonym for a design-time table defined with the .hdbtable syntax.

hdbtable = "sap.ti2.demo::target_table";

The cdstable keyword in the table-import configuration enables you to specify the name of a target table using
the public synonym for a design-time table defined with the CDS-compliant .hdbdd syntax.

cdstable = "sap.ti2.demo::target_table";

 Caution
There is no explicit check if the addressed table is created using the .hdbtable or CDS-compliant .hdbdd
syntax.

If the table specified with the cdstable or hdbtable keyword is not defined with the corresponding syntax,
SAP HANA displays an error when you try to activate the artifact, for example,Invalid combination of
table declarations found, you may only use [cdstable | hdbtable | table] .

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 325

schema

The following code example shows the syntax required to specify a schema in a table-import configuration.

schema = "TI2_TESTS";

 Note
The schema specified in the table-import configuration file must already exist.

If the schema specified in a table-import configuration file does not exist, SAP HANA XS displays an error
message during the activation of the configuration file, for example:

● Schema could not be resolved.
● If you import into a catalog table, please provide schema.

The schema is only required if you use a table's schema-qualified catalog name to reference the target table for
an import operation, for example, table = "myTable"; schema = "mySchema";. The schema is not
required if you use a public synonym to reference a table in a table-import configuration, for example,
hdbtable = "sap.ti2.demo::target_table";.

file

Use the file keyword in the table-import configuration to specify the source file containing the data that the
table-import operation imports into the target table. The source file must be a .csv file with the data values
separated either by a comma (,) or a semi-colon (;). The file definition must also include the full package path
in the SAP HANA repository.

file = "sap.ti2.demo:myData.csv";

header

Use the header keyword in the table-import configuration to indicate if the data contained in the
specified .csv file includes a header line. The header keyword is optional, and the possible values are true or
false.

header = false;

useHeaderNames

Use the useHeaderNames keyword in the table-import configuration to indicate if the data contained in the
first line of the specified .csv file must be interpreted. The useHeaderNames keyword is optional; it is used in

326 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

combination with theheader keyword. The useHeaderNames keyword is boolean: possible values are true or
false.

 Note
The useHeaderNames keyword only works if header is also set to “true”.

useHeaderNames = false;

The table-import process considers the order of the columns; if the column order specified in the .csv, file
does not match the order used for the columns in the target table, an error occurs on activation.

delimField

Use the delimField keyword in the table-import configuration to specify which character is used to separate
the values in the data to be imported. Currently, the table-import operation supports either the comma (,) or
the semi-colon (;). The following example shows how to specify that values in the .csv source file are
separated by a semi-colon (;).

delimField = ";";

 Note
By default, the table-import operation assumes that data values in the .csv source file are separated by a
comma (,). If no delimiter field is specified in the .hdbti table-import configuration file, the default setting
is assumed.

delimEnclosing

Use the delimEnclosing keyword in the table-import configuration to specify a single character that
indicates both the start and end of a set of characters to be interpreted as a single value in the .csv file, for
example “This is all one, single value”. This feature enables you to include in data values in a .CSV file even the
character defined as the field delimiter (in delimField), for example, a comma (,) or a semi-colon (;).

 Tip
If the value used to separate the data fields in your .csv file (for example, the comma (,)) is also used
inside the data values themselves ("This, is, a, value"), you must declare and use a delimiter
enclosing character and use it to enclose all data values to be imported.

The following example shows how to use the delimEnclosing keyword to specify the quote (") as the
delimiting character that indicates both the start and the end of a value in the .csv file. Everything enclosed
between the delimEnclosing characters (in this example, “”) is interpreted by the import process as one,
single value.

delimEnclosing=“\““;

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 327

 Note
Since the hdbti syntax requires us to use the quotes (“”) to specify the delimiting character, and the
delimiting character in this example is, itself, also a quote ("), we need to use the backslash character (\) to
escape the second quote (").

In the following example of values in a .csv file, we assume that delimEnclosing“\““, and
delimField=",". This means that imported values in the .csv file are enclosed in the quote character
("value”) and multiple values are separated by the comma ("value1”,"value 2”). Any commas inside the
quotes are interpreted as a comma and not as a field delimiter.

"Value 1, has a comma","Value 2 has, two, commas","Value3"

You can use other characters as the enclosing delimiter, too, for example, the hash (#). In the following
example, we assume that delimEnclosing="#" and delimField=";". Any semi-colons included inside the
hash characters are interpreted as a semi-colon and not as a field delimiter.

#Value 1; has a semi-colon#;#Value 2 has; two; semi-colons#;#Value3#

distinguishEmptyFromNull

Use the distinguishEmptyFromNull keyword in combination with delimEnclosing to ensure that the
table-import process correctly interprets any empty value in the .CSV file, which is enclosed with the value
defined in the delimEnclosing keyword, for example, as an empty space. This ensures that an empty space
is imported “as is” into the target table. If the empty space in incorrectly interpreted, it is imported as NULL.

distinguishEmptyFromNull = true;

 Note
The default setting for distinguishEmptyFromNull is false.

If distinguishEmptyFromNull=false is used in combination with delimEnclosing, then an empty value
in the .CSV (with or without quotes “”) is interpreted as NULL.

"Value1",,"",Value2

The table-import process would add the values shown in the example .csv above into the target table as
follows:

Value1 | NULL | NULL | Value2

328 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

keys

Use the keys keyword in the table-import configuration to specify the key range to be considered when
importing the data from the .csv source file into the target table.

keys = ["GROUP_TYPE" : "BW_CUBE", "GROUP_TYPE" : "BW_DSO", "GROUP_TYPE" :
"BW_PSA"];

In the example above, all the lines in the .csv source file where the GROUP_TYPE column value matches one of
the given values (BW_CUBE, BW_DSO, or BW_PSA) are imported into the target table specified in the table-import
configuration.

;;;BW_CUBE;;40000000;3;40000000;slave ;;;BW_DSO;;40000000;3;40000000;slave
;;;BW_PSA;;2000000000;1;2000000000;slave

In the following example, the GROUP_TYPE column is specified as empty(“”).

keys = ["GROUP_TYPE" : ""];

All the lines in the .csv source file where the GROUP_TYPE column is empty are imported into the target table
specified in the table-import configuration.

;;;;;40000000;2;40000000;all

5.2.7.4 Table-Import Configuration Error Messages

During the course of the activation of the table-import configuration and the table-import operation itself, SAP
HANA checks for errors and displays the following information in a brief message.

Table-Import Error Messages

Message Number Message Text Message Reason

40200 Invalid combination of table
declarations found, you may only
use [cdstable | hdbtable | table]

The table keyword is specified in a table-import
configuration that references a table defined
using the .hdbtable (or .hdbdd) syntax.

The hdbtable keyword is specified in a table-im
port configuration that references a table de
fined using another table-definition syntax, for
example, the .hdbdd syntax.

The cdstable keyword is specified in a table-im
port configuration that references a table de
fined using another table-definition syntax, for
example, the .hdbtable syntax.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 329

Message Number Message Text Message Reason

40201 If you import into a catalog table,
please provide schema

You specified a target table with the table key
word but did not specify a schema with the
schema keyword.

40202 Schema could not be resolved The schema specified with the schema key
word does not exist or could not be found
(wrong name).

The public synonym for an .hdbtable
or .hdbdd (CDS) table definition cannot be
resolved to a catalog table.

40203 Schema resolution error The schema specified with the schema key
word does not exist or could not be found
(wrong name).

The database could not complete the schema-
resolution process for some reason - perhaps
unrelated to the table-import configuration
(.hdbti), for example, an inconsistent data
base status.

40204 Table import target table cannot be
found

The table specified with the table keyword does
not exist or could not be found (wrong name or
wrong schema name).

40210 Table import syntax error The table-import configuration file (.hdbti)
contains one or more syntax errors.

40211 Table import constraint checks
failed

The same key is specified in multiple table-im
port configurations (.hdbti files), which
leads to overlaps in the range of data to import.

If keys are specified for an import in a table-im
port configuration, multiple imports into the
same target table are checked for potential
data collisions.

40212 Importing data into table failed Either duplicate keys were written (due to du
plicates in the .CSV source file) or

An (unexpected) error occurred on the SQL
level.

330 P U B L I C
SAP HANA Developer Guide

Setting up the Data Persistence Model in SAP HANA

Message Number Message Text Message Reason

40213 CSV table column count mismatch Either the number of columns in the .CSV re
cord is higher than the number of columns in
the table, or

The number of columns in the .CSV record is
higher than the number of columns in its
header.

40214 Column type mismatch The .CSV file does not match the target table
for either of the following reasons:

1. Data are missing for some not-null col
umns

2. Some columns specified in the .CSV re
cord do not exist in the table.

40216 Key does not match to table header For some key columns of the table, no data are
provided.

SAP HANA Developer Guide
Setting up the Data Persistence Model in SAP HANA P U B L I C 331

6 Setting Up the Analytic Model

Modeling refers to an activity of refining or slicing data in database tables by creating views to depict a business
scenario. The views can be used for reporting and decision-making.

The modeling process involves the simulation of entities, such as CUSTOMER, PRODUCT, and SALES, and
relationships between them. These related entities can be used in analytics applications such as SAP
BusinessObjects Explorer and Microsoft Office. In SAP HANA, these views are known as information views.

Information views use various combinations of content data (that is, non-metadata) to model a business use
case. Content data can be classified as follows:

● Attribute: Descriptive data, such as customer ID, city, and country.
● Measure: Quantifiable data, such as revenue, quantity sold and counters.

You can model entities in SAP HANA using the Modeler perspective, which includes graphical data modeling
tools that allow you to create and edit data models (content models) and stored procedures. With these tools,
you can also create analytic privileges that govern the access to the models, and decision tables to model
related business rules in a tabular format for decision automation.

You can create the following types of information views:

● Attribute Views
● Analytic Views
● Calculation Views

6.1 Setting Up the Modeling Environment

6.1.1 Set Modeler Preferences

Launch the modeler preferences screen to view and manage the default settings that the system must use
each time you logon to the SAP HANA Modeler perspective.

Procedure

1. Choose Window Preferences SAP HANA Modeler .
2. Choose the type of preference you want to specify.
3. Choose Apply and OK.

 Note
Choose Restore Defaults to restore your earlier preferences.

332 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

6.1.2 Set Keyboard Shortcuts

You can enable keyboard shortcuts for modeling actions such as, activate and validate.

The supported commands with the default keyboard shortcuts are as follows:

Command Binding When Category

Activate Ctrl+Shift+A Navigator Modeler Keys

Activate Ctrl+Shift+A In Windows Modeler Keys

Add Table/Model Ctrl+Shift+= In Windows Modeler Keys

Auto Arrange Ctrl+L In Windows Modeler Keys

Data Preview Ctrl+Shift+P Navigator Modeler Keys

Data Preview Ctrl+Shift+P In Windows Modeler Keys

Display XML Alt+D In Windows Modeler Keys

Find Ctrl+F Navigator Modeler Navigator

Fit to Window Ctrl+0 In Windows Modeler Keys

Move Element in Output
Pane (Direction: Down)

Ctrl+] In Windows Modeler Keys

Move Element in Output
Pane (Direction: Up)

Ctrl+[In Windows Modeler Keys

Open Ctrl+O Navigator Modeler Keys

Show View (View: History) Alt+Shift+Q, R In Windows Views

Show View (View: Job Log) Alt+Shift+Q, G In Windows Views

Show View (View: Where-
Used List)

Alt+Shift+Q, U In Windows Views

Validate Ctrl+Shift+V In Windows Modeler Keys

Validate Ctrl+Shift+V Navigator Modeler Keys

Zoom (Type: In) Ctrl+= In Windows Modeler Keys

Zoom (Type: Out) Ctrl+- In Windows Modeler Keys

Zoom (Type: Reset) Alt+Shift+0 In Windows Modeler Keys

 Note
By default all the modeler key board shortcuts are available in the default scheme. You cannot add new
commands, but you can customize the commands as follows:

● Copy Command - to provide a different keyboard shortcut for an existing command.
● Unbind Command - to clear the key bindings with the command and provide a new keyboard shortcut

for an existing command.
● Restore Command - to restore the default key bindings provided by the Modeler for an existing

command.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 333

6.2 Creating Views

6.2.1 Attributes and Measures

Attributes and measures form content data that you use for data modeling. The attributes represent the
descriptive data, such as region and product. The measures represent quantifiable data, such as revenue and
quantity sold.

Attributes

Attributes are the non-measurable analytical elements.

Attributes Description Example

Simple Attributes Individual non-measurable analytical ele
ments that are derived from the data
sources.

For example, PRODUCT_ID and PRODUCT_NAME
are attributes of product data source.

Calculated Attributes Derived from one or more existing attrib
utes or constants.

For example, deriving the full name of a customer
(first name and last name), assigning a constant
value to an attribute that can be used for arithmetic
calculations.

Local Attributes Local attributes that you use in an ana
lytic view allow you to customize the be
havior of an attribute for only that view.

For example, if an analytic view or a calculation view
includes an attribute view as an underlying data
source, then the analytic view inherits the behavior
of the attributes from the attribute view.

 Note
Local attributes convey the table fields available in the default node of analytic views.

Measures

Measures are measurable analytical elements. That are derived from analytic and calculation views.

Measures Description Example

Simple Measures A simple measure is a measurable analyti
cal element that is derived from the data
foundation.

For example, PROFIT.

Calculated Measures Calculated measures are defined based on
a combination of data from other data
sources, arithmetic operators, constants,
and functions.

For example, you can use calculated measures to
calculate the net profit from revenue and opera
tional cost.

334 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

Measures Description Example

Restricted Measures Restricted measures or restricted col
umns are used to filter attribute values
based on the user-defined rules.

For example, you can choose to restrict the value
for the REVENUE column only for REGION = APJ,
and YEAR = 2012.

Counters Counters add a new measure to the calcu
lation view definition to count the distinct
occurrences of an attribute.

For example, to count how many times product
appears and use this value for reporting purposes.

6.2.2 First Steps to View Creation

You create views to model various slices of the data stored in an SAP HANA database. In SAP HANA
terminology they are known as Information Views.

Context

Information views use various combinations of content data (that is, non-metadata) to model a business use
case.

Content data can be classified as follows:

Attribute - Represents the descriptive data like customer ID, city, country, and so on.

Measure - Represents the quantifiable data such as revenue, quantity sold, counters, and so on.

Information views are often used for analytical use cases such as operational data mart scenarios or
multidimensional reporting on revenue, profitability, and so on. There are three types of information views:
attribute view, analytic view, and calculation view. All three types of information views are non-materialized
views. This creates agility through the rapid deployment of changes.

Before you start modeling your data as information views, you perform the following subtasks:

Procedure

1. Create a development workspace.
The workspace is the link between the SAP HANA repository and your local file system, where you work on
project-related objects.

2. Create a project.
Create a new project for a particular application or package; you can use the project to collect in a
convenient place all your application-related artifacts. For information views, create a General project.

3. Share a project.
Sharing a project enables you to ensure that changes you make to project-related files are visible to other
team members and applications. Shared projects are available for import by other members of the
application-development team.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 335

4. Select a project and in the context menu, choose New Other... .
5. In the pop-up wizard, select SAP HANA Modeler.

a. Select the required view Attribute View, Analytic View, Calculation View or Analytic Privilege as
required.

b. Choose Next.
1. In the New Information View dialog, enter a name and description.

 Note
If the project is shared, the Package field specifies the package that is associated with the
project.

2. In case of an attribute view, select the required option in the Subtype as follows:

Scenario Substeps

Create a view with table at
tributes.

In the Sub Type drop-down list, choose Standard.

Create a view with time char
acteristics.

1. In the Sub Type drop-down list, choose Time.
2. Select the required calendar type as follows:

1. If the calendar type is Fiscal, select a variant schema, and a fiscal
variant.

2. If the calendar type is Gregorian, select the granularity for the data.
3. To use the system-generated time attribute view, select Auto Create.

 Note
The system creates a time attribute view based on the default time
tables, and defines the appropriate columns/attributes based on the
granularity. It also creates the required filters.

The tables used for time attribute creation with calendar type Gregor
ian are, M_TIME_DIMENSION, M_TIME_DIMENSION_ YEAR,
M_TIME_DIMENSION_ MONTH, M_TIME_DIMENSION_WEEK and for
calendar type Fiscal is M_FISCAL_CALENDAR. If you want to do a
data preview for the created attribute view, you need to generate time
data into the mentioned tables from the Quick Launch tab page.

Derive a view from an exist
ing view – in this case, you
cannot modify the derived
view that acts as a reference
to the base attribute view.

1. In the Sub Type drop-down, choose Derived.
2. Select the required attribute view.

 Note
If the project is not shared, the auto-creation of time attribute view and creation of derived
attribute vuew is not possible.

3. In case of a calculation view, perform the following:
1. Select the required Subtype as described below:

336 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

○ Graphical - to use to the graphical modeling features for creation of calculation view
○ SQL Script - to write SQL statements for calculation view script

2. If the subtype is SQL Script, set the Parameter case sensitive to true or false as you want the
calculation view output parameter naming convention.

3. If the subtype is Graphical, select Enable Multidimensional Reporting option if you want to
make the view available for reporting purposes.

 Note
If you do not enable multidimensional reporting, you can create a calculation view without
any measure. In this case it works like a attribute view and is not available for reporting.
Also, when this property is disabled, the input to the Semantics node is via projection view.
If the property is enabled, the input to the Semantics node is via aggregation view. You can
also change the value of this property in the Properties panel.

4. Choose Finish.

 Tip
For more information about projects, repository workspaces, and sharing of projects, see Using
SAP HANA Projects [page 67].

The view editor opens. Based on the view the Scenario panel of the editor consist of the following nodes:
○ In case of an attribute view - two nodes, Data Foundation and Semantics. The Data Foundation node

represents the tables used for defining the output structure of the view. The Semantics node
represents the output structure of the view, that is, the dimension. In the Details panel you define the
relationship between data sources and output elements.

○ In case of an analytic view - three nodes
○ Data Foundation - represents the tables used for defining the fact table of the view.
○ Logical Join - represents the relationship between the selected table fields (fact table) and

attribute views that is, used to create the star schema.
○ Semantics - represents the output structure of the view.

○ In case of a graphical calculation view - Semantics node with a default Aggregation or Projection node,
based on the selection of Enable Multi Dimensional Reporting checkbox.

○ In case of a Script based calculation view - Semantics node with the default SQL Script node.

6.2.3 Create Attribute Views

You can create a view that is used to model descriptive attribute data by using attributes, that is data that does
not contain measures. Attribute views are used to define joins between tables and to select a subset or select
all the columns and rows of the table.

Prerequisites

You have imported SAP system tables T009 and T009B tables of type Time to create time attribute views.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 337

Procedure

1. Launch SAP HANA studio.
2. In SAP HANA System view, expand the content node.
3. In the navigation pane, select a package where you want to create the new calculation view.

4. In the context menu of the package, select New Attribute View
5. Provide name and description.
6. In the Subtype dropdown list, select the type of the attribute view.
7. Choose Finish.
8. Add data sources.

a. Select the data foundation node.
b. In the context menu, choose Add Objects.
c. In Find Data Sources dialog box, enter the name of the data source and select it from the list.

 Note
You cannot add column views to the Data Foundation.

d. Choose OK.

 Note
You can add the same table again in Data Foundation using table aliases in the editor.

9. Define output columns.
a. Select the data foundation node.
a. In the Details pane, select the columns that you want to add to the output of the data foundation node.
b. In the context menu, choose Add To Output.

 Note
If you want to add all columns from the data source to the output, in the context menu of the data
source, choose Add All To Output.

10. Hide attributes in reporting tools.

If you want to hide the attributes from the client tools or reporting tools when you execute the attribute
view, then

a. Select the Semantics node.
b. Choose the Columns tab.
c. Select an attribute.
d. Select the Hidden checkbox.

11. Define key attributes.

Define at least one attribute as a key attribute. If there are more than one key attribute, all the key
attributes must point to the same table, also referred to as the central table, in the data foundation.

a. Select the Semantics node.
b. Choose the Columns tab.

338 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

c. Select an attribute.
d. Select the Key checkbox.
e. In the Attributes tab page of the Column pane, select the required attribute and select the Type as Key

Attribute.

 Note
For auto generated time attribute views, the attributes, and key attributes are automatically
assigned.

12. Activate the attribute view.
○ If you are in the SAP HANA Modeler perspective:

○ Save and Activate - to activate the current view and redeploy the affected objects if an active
version of the affected object exists. Otherwise only current view gets activated.

○ Save and Activate All - to activate the current view along with the required and affected objects.

 Note
You can also activate the current view by selecting the view in the SAP HANA Systems view and
choosing Activate in the context menu. The activation triggers validation check for both the client
side and the server side rules. If the object does not meet any validation check, the object
activation fails.

○ If you are in the SAP HANA Development perspective:
1. In the Project Explorer view, select the required object.

2. In the context menu, select Team Activate .

 Note
The activation triggers the validation check only for the server side rules. Hence, if there are
any errors on the client side, they are skipped and the object activation goes through if no error
found at the server side.

13. Assign Changes
a. In the Select Change dialog box, either create a new ID or select an existing change ID that you want to

use to assign your changes.
b. Choose Finish.

For more information on assigning changes, see chapter SAP HANA Change Recording of the SAP
HANA Developer Guide.

14. Choose Finish.

Results

 Restriction
The behavior of attribute views with the new editor is as follows:

● Consider that you have added an object to the editor and the object was modified after it was added. In
such cases, close and open the editor. The helps reflect the latest changes of the modified object in the
editor. For more information, see SAP Note 1783668 .

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 339

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1783668

Next Steps

After creating an attribute view, you can perform certain additional tasks to obtain the desired output. The
following table lists the additional tasks that you can perform to enrich the attribute view.

Requirement Task to Perform

If you want to filter the output of data foundation node. Filter Output of Data Foundation
Node.

Working With Attributes

Requirement Task to perform

If you want to create new output columns and calculate its values at runtime using an
expression.

Create Calculated Columns

If you want to assign semantic types to provide more meaning to attributes in the at
tribute views.

Assign Semantics

If you want to create level hierarchies to organize data in reporting tools. Create Level Hierarchies

If you want to create parent-child hierarchies to organize data in reporting tools. Create Parent-Child Hierarchies

Working With Attribute View Properties

Requirement Task to perform

If you want to filter the view data either using a fixed client value or using a session
client set for the user.

Filter Data for Specific Clients

If you want to execute time travel queries on attribute views. Enable Information Views for Time
Travel Queries

If you want to invalidate or remove data from the cache after specific time intervals. Invalidate Cached Content

If you want to maintain object label texts in different languages. Maintain Modeler Objects in Multiple
Languages

If you do not recommend using an attribute view. Deprecate Information Views

Related Information

Create Calculated Columns [page 351]
Create Level Hierarchies [page 368]
Create Parent-Child Hierarchies [page 370]

6.2.3.1 Attribute Views

Attribute views are used to model an entity based on the relationships between attribute data contained in
multiple source tables.

340 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

For example, customer ID is the attribute data that describes measures (that is, who purchased a product).
However, customer ID has much more depth to it when joined with other attribute data that further describes
the customer (customer address, customer relationship, customer status, customer hierarchy, and so on).

You create an attribute view to locate the attribute data and to define the relationships between the various
tables to model how customer attribute data, for example, will be used to address business needs.

You can model the following elements within an attribute view:

● Columns
● Calculated Columns

 Note
In the Semantics node, you can classify the columns as attributes and build calculated columns of
attribute type.

● Hierarchies

 Note
For more information about the attributes and hierarchies mentioned above, see sections Attributes
and Measures, and Hierarchies.

You can choose to further fine-tune the behavior of the attributes of an attribute view by setting the properties
as follows:

● Filters to restrict values that are selected when using the attribute view.
● Attributes can be defined as Hidden so that they can be used in processes but are not visible to end users.
● Attributes can be marked as key attribute which will be used to identify a central table.
● The Drill Down Enabled property can be used to indicate if an attribute is available for further drill down

when consumed.

Attribute views can later be joined to tables that contain measures within the definition of an analytic view or a
calculation view to create virtual star schema on the SAP HANA data.

6.2.3.2 Generate Time Data

Generate time data into default time-related tables present in the _SYS_BI schema and use these tables in
information views to add a time dimension.

Context

For modeling business scenarios that require time dimension, you generate time data in default time related
tables available in the _SYS_BI schema. You can select the calendar type and granularity and generate the time
data for a specific time span.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 341

Procedure

1. Launch SAP HANA studio.
2. In the Quick View pane, choose Generate Time Data.
3. Select a system where you want to perform this operation.
4. Choose Next.
5. In the Calendar Type dropdown list, select a calendar type.
6. In the From Year and To Year textboxes, enter the time range for which you want to generate time data into

time-related tables.
7. If you have selected the Gregorian calendar type, in the Granularity dropdown list select the required

granularity.

 Note
For the granularity level Week, specify the first day of the week.

8. If you have selected the Fiscal calendar type,
a. In Variant Schema dropdown list, select a variant schema that contains tables having variant data.

 Note
Tables T009 and T009B contain variant data.

b. Select the required variant.

The variant specifies the number of periods along with the start and end dates.
9. Choose Finish.

 Note
For the Gregorian calendar type, modeler generates time dimension data into
M_TIME_DIMENSION_YEAR, M_TIME_DIMENSION_MONTH, M_TIME_DIMENSION_WEEK,
M_TIME_DIMENSION tables and for the Fiscal calendar type, the modeler populates the generated
time dimension data into the M_FISCAL_CALENDAR table. These tables are present in _SYS_BI
schema.

6.2.4 Native HANA Models

Creating native HANA models can be one way to improve performance compared to development options
outside of the database, or in some cases also compared to pure SQL development.

Native HANA models can be developed in the new XS Advanced (XSA) development environment using SAP
Web IDE for SAP HANA. These models supersede older artifacts like Analytic and Attribute Views; these views
should now be replaced by graphical Calculation Views which can be used to model complex OLAP business
logic. Native HANA modeling provides various options to tune performance by, for example, helping to achieve
complete unfolding of the query by the calculation engine or modeling join cardinalities between two tables
(that is, the number of matching entries (1...n) between the tables) and optimizing join columns.

342 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

For more information about modeling graphical calculation views refer to the SAP HANA Modeling Guide for
SAP HANA XS Advanced.

A number of blogs are available about the details of modeling:

● https://blogs.sap.com/2017/09/01/overview-of-migration-of-sap-hana-graphical-view-models-into-the-
new-xsa-development-environment/ Overview: Migration of Models into the XSA Development
Environment

● https://blogs.sap.com/2017/10/27/join-cardinality-setting-in-calculation-views/ Join cardinality setting
in Calculation Views

● https://blogs.sap.com/2018/08/10/optimize-join-columns-flag/ Optimize Join Columns Flag

The following SAP Notes provide further background information:

● https://launchpad.support.sap.com/#/notes/2441054 2441054 - High query compilation times and
absence of plan cache entries for queries against calculation views.

● https://launchpad.support.sap.com/#/notes/2465027 2465027 - Deprecation of SAP HANA extended
application services, classic model and SAP HANA Repository.

6.2.4.1 Analytic Views

Analytic views are used to model data that includes measures.

For example, an operational data mart representing sales order history would include measures for quantity,
price, and so on.

The data foundation of an analytic view can contain multiple tables. However, measures that are selected for
inclusion in an analytic view must originate from only one of these tables (for business requirements that
include measure sourced from multiple source tables, see calculation view).

Analytic views can be simply a combination of tables that contain both attribute data and measure data. For
example, a report requiring the following:

<Customer_ID Order_Number Product_ID Quantity_Ordered Quantity_Shipped>

Optionally, attribute views can also be included in the analytic view definition. In this way, you can achieve
additional depth of attribute data. The analytic view inherits the definitions of any attribute views that are
included in the definition. For example:

<Customer_ID/Customer_Name Order_Number Product_ID/Product_Name/Product_Hierarchy
Quantity_Ordered Quantity_Shipped>

You can model the following elements within an analytic view:

● Columns
● Calculated Columns
● Restricted Columns

 Remember
In the Semantics node, you can classify columns and calculated columns as type attributes and
measures. The attributes you define in an analytic view are Local to that view. However, attributes
coming from attribute views in an analytic view are Shared attributes. For more information about the
attributes and measures mentioned above, see section Attributes and Measures.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 343

http://help.sap.com/disclaimer?site=https%3A%2F%2Fblogs.sap.com%2F2017%2F09%2F01%2Foverview-of-migration-of-sap-hana-graphical-view-models-into-the-new-xsa-development-environment%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fblogs.sap.com%2F2017%2F09%2F01%2Foverview-of-migration-of-sap-hana-graphical-view-models-into-the-new-xsa-development-environment%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fblogs.sap.com%2F2017%2F10%2F27%2Fjoin-cardinality-setting-in-calculation-views%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Fblogs.sap.com%2F2018%2F08%2F10%2Foptimize-join-columns-flag%2F
http://help.sap.com/disclaimer?site=https%3A%2F%2Flaunchpad.support.sap.com%2F%23%2Fnotes%2F2441054
http://help.sap.com/disclaimer?site=https%3A%2F%2Flaunchpad.support.sap.com%2F%23%2Fnotes%2F2465027

● Variables
● Input parameters

 Note
For more information about the variables and input parameters mentioned above, see sections
Assigning Variables and Creating Input Parameters.

You can choose to further fine-tune the behavior of the attributes and measures of an analytic view by setting
the properties as follows:

● Filters to restrict values that are selected when using the analytic view.
● Attributes can be defined as Hidden so that they are able to be used in processes but are not viewable to

end users.
● The Drill Down Enabled property can be used to indicate if an attribute is available for further drill down

when consumed.
● Aggregation type on measures
● Currency and Unit of Measure parameters (you can set the Measure Type property of a measure, and also in

Calculated Column creation dialog, associate a measure with currency and unit of measure)

 Tip
If there is a name conflict that is, more than one element having the same name among the local and
shared attributes, calculated columns, restricted columns, and measures of an analytic view, the activation
of the view does not go through. You can resolve such conflict using the aliases. Aliases must also have
unique names. You can assign an alias to the required element in the Column view of the Semantics node by
editing its name inline. Hereinafter, the element is referred by its alias.

If two or more shared columns have a name conflict, during save the aliases for the conflicting name
columns are proposed. You can choose to overwrite the proposed names.

In case of old models, if you find any error while opening the object due to aliasing that was caused due to
swapping of column names with the alias names, use the Quick Fix. To use the Quick Fix, select the error
message that is, the problem in the Problems view, and choose Quick Fix in the context menu. This resolves
the swapping issue by assigning right names to the column and alias.

You can choose to hide the attributes and measures that are not required for client consumption by assigning
value true to the property Hidden in the Properties pane, or selecting the Hidden checkbox in the Column view.
The attributes or measures marked as hidden are not available for input parameters, variables, consumers or
higher level views that are build on top of the analytic view. For old models (before SPS06), if the hidden
attribute is already used, you can either unhide the element or remove the references.

For an analytic view, you can set the property MultiDimensional Reporting to true or false. If the
MultiDimensional Reporting property of the analytic view is set to false, the view will not be available for
multidimensional reporting purposes. If the value is set to true, an additional column Aggregation is available to
specify the aggregation type for measures.

You can enable relational optimization for your analytic view such as, Optimize stacked SQL for example,
convert

SELECT a, SUM(X) FROM (SELECT * FROM AV) GROUP BY A

to

344 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

SELECT A, SUM(X) FROM AV GROUP BY A

by setting the property Allow Relational Optimization.

Setting this property would be effective only for analytic views having complex calculations such that
deployment of analytic view generates catalog calculation view on top of the generated catalog OLAP view.

 Caution
In this case, if this flag is set counters and SELECT COUNT may deliver wrong results

6.2.4.2 Create Temporal Joins

Temporal joins allow you to join the master data with the transaction data (fact table) based on the temporal
column values from the transaction data and the time validity from the master data.

Procedure

1. Open the analytic view or calculation view with star join node in the view editor.
2. Select the Star Join node.

The star join node must contain the master data as a data source. The input to the star join node (the data
foundation node) provides the central fact table.

3. Create a join

Create a join by selecting a column from one data source (master table), holding the mouse button down
and dragging to a column in the other data source (fact table).

4. Select the join.
5. In the context menu, choose Edit.
6. Define join properties.

In the Properties section, define the join properties.

 Note
For temporal joins in analytic views, you can use Inner or Referential join types only and for temporal
joins in calculation views, you can use Inner join type only.

7. Define temporal column and temporal conditions

In the Temporal Properties section, provide values to create temporal join.

a. In the Temporal Column dropdown list, select a time column in the analytic view.
b. In the From Column and To Column dropdown list specify the start and end time values from the

attribute view to fetch the records.
c. In the Temporal Condition dropdown list, select a condition.

8. Choose OK.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 345

6.2.5 Create Graphical Calculation Views

Create graphical calculation views using a graphical editor to depict a complex business scenario. You can also
create graphical calculation views to include layers of calculation logic and with measures from multiple data
sources.

Context

Graphical calculation views can bring together normalized data that are generally dispersed. You can combine
multiple transaction tables and analytic views, while creating a graphical calculation view.

 Note
If you want to execute calculation views in SQL engine, see SAP NOTE 1857202

Procedure

1. Launch SAP HANA studio.
2. In SAP HANA System view, expand the content node.
3. In the navigation pane, select a package where you want to create the new calculation view.

4. In the context menu of the package, select New Calculation View .
5. Provide name and description.
6. Select calculation view type.

In the Type dropdown list, select Graphical.
7. Select a Data Category type.
8. Choose Finish.

Modeler launches a new graphical calculation view editor with the semantics node and default aggregation
or projection node depending on the data category of the calculation view.

9. Continue modeling the graphical calculation view by dragging and dropping the necessary view nodes from
the tool palette.

10. Add data sources.

If you want to add data sources to your view node, then

a. Select a view node.
b. In the context menu, choose Add Objects.
c. In the Find dialog box, enter the name of the data source and select it from the list.

You can add one or more data sources depending on the selected view node.
d. Choose OK.

11. Define output columns.
a. Select a view node.

346 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1857202

b. In the Details pane, select the columns that you want to add to the output of the node.
c. In the context menu, choose Add To Output.
d. If you want to add all columns from the data source to the output, in the context menu of the data

source, choose Add All To Output.

 Note
Using keep flag column property. The keep flag property helps retrieve columns from the view node
to the result set even if you do not request it in your query. In other words, if you want to include
those columns into the SQL group by clause even if you do not select them in the query, then:

1. Select the view node.
2. In the Output pane, select an output column.
3. In the Properties pane, set the value of Keep Flag property to True.

12. Define attributes and measures.

If you are creating a calculation view with data category as cube, then to successfully activate the
information view, specify at least one column as a measure.

a. Select the Semantics node.
b. Choose the Columns tab.
c. In the Local section, select an output column.
d. In the Type dropdown list, select Measure or Attribute.

If the value is set to Cube, an additional Aggregation column is available to specify the aggregation type
for measures.

 Note
If the default node of the calculation view is aggregation, you can always aggregate the measures
even if no aggregation function is specified in the SQL.

1. Select the default aggregation node.

2. In the Properties tab, set the value of the property Always Aggregate Results to True

e. If you want to hide the measure of attribute in the reporting tool, select the Hidden checkbox.
f. If you want to force the query to retrieve selected attribute columns from the database even when not

requested in the query, set the Keep Flag property to True for those attributes.

This means that you are including those columns into the group by clause even if you do not select
them in the query. To set the Keep Flag property of attributes to True, select an attribute in the Output
pane, and in the Properties pane set the Keep Flag property to True.

 Note
If you are using any attribute view as a data source to model the calculation view, the Shared
section displays attributes from the attribute views that are used in the calculation view.

13. Activate the calculation view.
○ If you are in the SAP HANA Modeler perspective,

○ Save and Activate - to activate the current view and redeploy the affected objects if an active
version of the affected object exists. Otherwise, only the current view is activated.

○ Save and Activate All - to activate the current view along with the required and affected objects.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 347

 Note
You can also activate the current view by selecting the view in the SAP HANA Systems view and
choosing Activate in the context menu. The activation triggers validation check for both the client
side and the server side rules. If the object does not meet any validation check, the object
activation fails.

○ If you are in the SAP HANA Development perspective,
1. In the Project Explorer view, select the required object.

2. In the context menu, select Team Activate .

 Note
The activation only triggers the validation check for the server side rules. If there are any errors
on the client side, they are skipped, and the object activation goes through if no error is found
on the server side.

 Note
1. For an active calculation view, you can preview output data of an intermediate node. This helps to

debug each level of a complex calculation scenario (having join, union, aggregation, projection,
and output nodes). Choose the Data Preview option from the context menu of a node.
When you preview the data of an intermediate now, SAP HANA studio activates the intermediate
calculation model with the current user instead of the user _SYS_REPO. The data you preview for a
node is for the active version of the calculation view. If no active version for the object exists then
activate the object first.

14. Assign Changes
a. In the Select Change dialog box, either create a new ID or select an existing change ID that you want to

use to assign your changes.
b. Choose Finish.

For more information on assigning changes, see chapter SAP HANA Change Recording of the SAP
HANA Developer Guide.

15. Choose Finish.

Next Steps

After creating a graphical calculation view, you can perform certain additional tasks to obtain the desired
output. The following table lists the additional tasks that you can perform to enrich the calculation view.

Working With View Nodes

Requirement Task to Perform

If you want to query data from two data sources and combine records from both the
data sources based on a join condition or to obtain language-specific data.

Create Joins

If you want to query data from database tables that contains spatial data. Create Spatial Joins

348 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

Requirement Task to Perform

If you want to validate joins and identify whether you have maintained the referential
integrity.

Validate Joins

If you want to combine the results of two more data sources. Create Unions

If you want to partition the data for a set of partition columns, and perform an order
by SQL operation on the partitioned data.

Create Rank Nodes

If you want to filter the output of projection or aggregation view nodes. Filter Output of Aggregation or Pro
jection View Nodes.

Working With Attributes and Measures

Requirement Task to perform

If you want to count the number of distinct values for a set of attribute columns. Create Counters

If you want to create new output columns and calculate its values at runtime using an
expression.

Create Calculated Columns

If you want to restrict measure values based on attribute restrictions. Create Restricted Columns

If you want to assign semantic types to provide more meaning to attributes and
measures in calculation views.

Assign Semantics

If you want to parameterize calculation views and execute them based on the values
users provide at query runtime.

Create Input Parameters

If you want to, for example, filter the results based on the values that users provide to
attributes at runtime.

Assign Variables

If you want associate measures with currency codes and perform currency conver
sions.

Associate Measures with Currency

If you want associate measures with unit of measures and perform unit conversions. Associate Measures with Unit of
Measure

If you want to create level hierarchies to organize data in reporting tools. Create Level Hierarchies

If you want to create parent-child hierarchies to organize data in reporting tools. Create Parent-Child Hierarchies

If you want to group related measures together in a folder. Group Related Measures.

Working With Calculation View Properties

Requirement Task to perform

If you want to filter the view data either using a fixed client value or using a session
client set for the user.

Filter Data for Specific Clients

If you want to execute time travel queries on calculation views. Enable Information Views for Time
Travel Queries

If you want to invalidate or remove data from the cache after specific time intervals. Invalidate Cached Content

If you want to maintain object label texts in different languages. Maintain Modeler Objects in Multiple
Languages

If you do not recommend using a calculation view. Deprecate Information Views

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 349

Related Information

Additional Functionality for Information Views [page 368]

6.2.5.1 Calculation Views

A calculation view is used to define more advanced slices on the data in SAP HANA database. Calculation views
can be simple and mirror the functionality found in both attribute views and analytic views. However, they are
typically used when the business use case requires advanced logic that is not covered in the previous types of
information views.

For example, calculation views can have layers of calculation logic, can include measures sourced from multiple
source tables, can include advanced SQL logic, and so on. The data foundation of the calculation view can
include any combination of tables, column views, attribute views and analytic views. You can create joins,
unions, projections, and aggregation levels on the sources.

You can model the following elements within a calculation view:

● Attributes
● Measures
● Calculated measures
● Counters
● Hierarchies (created outside of the attribute view)

 Note
For more information about the attributes, measures, counters, and hierarchies mentioned above, see
sections Attributes and Measures, and Hierarchies.

● Variables
● Input parameters

 Note
For more information about the variables and input parameters mentioned above, see sections Assign
Variables and Input Parameters.

Calculation views can include measures and be used for multi-dimensional reporting or can contain no
measures and used for list-type of reporting. Calculation views can either be created using a graphical editor or
using a SQL Console . These various options provide maximum flexibility for the most complex and
comprehensive business requirements.

Related Information

Input Parameters [page 374]
Assign Variables [page 375]

350 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

6.2.5.2 Create Calculated Columns

Create new output columns and calculate its values at runtime based on the result of an expression. You can
use other column values, functions, input parameters, or constants in the expression.

Context

For example, you can create a calculated column DISCOUNT using the expression if("PRODUCT" =
'NOTEBOOK', "DISCOUNT" * 0.10, "DISCOUNT"). In this sample expression, you use the function if(), the
column PRODUCT and operator * to obtain values for the calculated column DISCOUNT.

Procedure

1. Open the required graphical calculation view in the view editor.
2. Select the view node in which you want to create the calculated column.

3. In the Output pane, choose the icon dropdown.
4. Choose the New Calculated Column menu option.
5. In the Calculated Column, enter a name and description for the new calculated column.
6. In the Data Type dropdown list, select the data type of the calculated column.
7. Enter length and scale based on the data type you select.

Modeler ignores the length for VARCHAR data type. If you want to, for example, truncate length, you must
use the relevant string functions in calculated column expression.

8. Select a column type.

You can create calculated attributes or calculated measures using attributes or measures respectively.

a. In the Column Type dropdown list, select a value.

 Note
If you want to create a calculated measure and enable client side aggregation for the calculated
measure, select the Enable client side aggregation checkbox.

This allows you to propose the aggregation that client needs to perform on calculated measures.

9. If you want to hide the calculated column in reporting tools, select the Hidden checkbox.
10. Choose OK.
11. Provide an expression.

You can create an expression using the SQL language or the column engine language.

a. In the Language dropdown list, select the expression language.
a. In the Expression Editor, enter a valid expression.

Modeler computes this expression at runtime to obtain values of calculated columns.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 351

For example, the expression in column engine language, if("PRODUCT" = 'NOTEBOOK', "DISCOUNT" *
0.10, "DISCOUNT") which is equivalent to, if attribute PRODUCT equals the string ‘NOTEBOOK’ then
DISCOUNT equals to DISCOUNT multiplied by 0.10 should be returned. Else use the original value of
the attribute DISCOUNT.

 Note
You can also create an expression by dragging and dropping the expression elements, operators,
and functions from the menus to the expression editor. For expression in SQL language, modeler
supports only a limited list of SQL functions.

b. Choose Validate Syntax to validate your expression.
12. Assign semantics to the calculated column.

a. Choose the Semantics tab.
b. In the Semantic Type dropdown list, select a semantic value.

Related Information

Using Functions in Expressions [page 379]

6.2.5.3 Map Input Parameters

You can map the input parameters in the underlying data sources (attribute views, analytic views and
calculation views) of the calculation view to the calculation view parameters. You can also map many data
source parameters to one calculation view input parameter and perform a one-to-one mapping of the data
source parameters to the calculation view parameters.

Context

 Note
You can map attribute view input parameters to calculation view input parameters with the same name
only. The calculation view input parameter provides runtime value selection to filter attribute data based on
the filter defined in the attribute view. For example, you can define an attribute view GEO with filter set on
Country column such that, the filter value is an input parameter having syntax $$IP$$. When you use this
attribute view in a calculation view, you need to define a same name input parameter IP and map it with the
attribute view parameter. When you perform data preview on the calculation view, the runtime help for the
calculation view input parameter is shown. The value selected for calculation view parameter serves as
input for the attribute view parameter to filter the data.

352 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

Procedure

1. To invoke the dialog from the default aggregation or projection node:
a. Select the default aggregation or projection node.
b. Right-click Input Parameter in the Output view.
c. In the context menu, choose Manage Mappings.

2. To invoke the dialog from the Semantics node:
a. Select the Semantics node.

b. In the Variables/Input Parameters view, choose .
c. Choose Data sources or Views for value help

 Note
The system displays the option Views for value help only if your calculation view consists of external
views as value help references in variables and input parameters. If you choose Views for value help,
you can map the parameters/ variable of external views for value help with the parameters/ variables
of a calculation view of any name.

3. In the Map Input Parameters dialog, map the data source input parameters (or parameters of external
views for value help) with the calculation view parameters.

 Note
You can choose the Auto Map by Name option to automatically create the input parameters
corresponding to the source and perform a 1:1 mapping. You can also select a source input parameter
and use the following context menu options:
○ Copy and Map 1:1 - to create the same input parameter for the calculation view as for the source,

and create a 1:1 mapping between them.
○ Map By Name - to map the source input parameter with the calculation view input parameter

having the same name.
○ Remove Mapping - to delete the mapping between the source and calculation view input

parameter.

4. Select Create Constant to create a constant at the target calculation view.

 Note
You can change the constant name by double clicking it.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 353

6.2.5.4 Create Unions

Use union nodes in graphical calculation views to combine the results of two or more data sources.

Context

A union node combines multiple data sources, which can have multiple columns. You can manage the output of
a union node by mapping the source columns to the output columns or by creating a target output column with
constant values.

For a source column that does not have a mapping with any of the output columns, you can create a target
output column and map it to the unmapped source columns. You can also create a target column with constant
values.

Procedure

1. Open the required graphical calculation view in the view editor.
2. From the tools palette, drag and drop a union node to the editor.
3. Add data sources.

a. Select the union node.
b. In the context menu, choose Add Objects.
c. In Find Data Sources dialog box, enter the name of the data source and select it from the list.
d. Choose OK.

4. Define output columns.
a. In the Details pane, select the columns you want to add to the output of the union node.
b. In the context menu, choose Add To Output.

 Note
If you want to add all columns from the data source to the output, in the context menu of the data
source, choose Add All To Output.

5. Assign constant value.
This helps to denote the underlying data of the source columns with constant values in the output.

If you want to assign a constant value to any of the target columns, then

a. In the Target section, select an output column.
b. In the context menu, choose Manage Mappings.
c. In the Manage Mappings dialog box, set the Source Column value as blank.
d. In the Constant Value field, enter a constant value.
e. Choose OK.

6. Create a constant output column.

If you want to create a new output column and assign a constant value to it, then

354 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

a. In the Target section, choose .
b. In the Create Target dialog box, provide name and data type for the new output column.
c. Choose OK.

 Note
By default, the value of the constant output column in null.

Related Information

Constant Column [page 355]

6.2.5.5 Constant Column

In a union view, a Constant Column is created if there are any target or output attributes for which there are no
mappings to the source attributes. The default value for the constant column is NULL.

 Note
The target attribute is mapped to all the sources.

For example, you have two tables with similar structures, Actual Sales and Planned Sales, corresponding to the
sales of products. You want to see the combined data in a single view, but differentiate between the data from
the two tables for comparison. To do so, you can create a union view between the two tables and have a
constant column indicating constant values like A & P, as shown below:

Actual Sales

Sales Product

5000 A1

2000 B1

Planned Sales

Sales Product

3000 A1

6000 B1

The result of this query can be as follows:

Actual Planned Indicator Sales Product

A 5000 A1

P 3000 A1

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 355

Actual Planned Indicator Sales Product

A 2000 B1

P 6000 B1

6.2.5.6 Dynamic Joins

After creating a join between two data sources, you can define the join property as dynamic. Dynamic joins
helps improve the join execution process by reducing the number of records processed by the join view node at
runtime.

Dynamic joins are special type of joins. In this join type, two or more fields from two data sources are joined
using a join condition that changes dynamically based on the fields requested by the client. For example –
Table1 and Table2 are joined on Field1 and Field2. But, if only one, Field1 or Field2 is requested by a client, the
tables (Table1 and Table2) are joined based only on the requested field (Field1 or Field2).

 Note
You can set the Dynamic Join property only if the two data sources are joined on multiple columns.

Dynamic join behavior is different from the classical join behavior. In the classical join, the join condition is
static. This means that, the join condition does not change irrespective of the client query. The difference in
behavior can result in different query result sets. Use dynamic joins with caution.

Prerequisite

At least one of the fields involved in the join condition is part of the client query. If you define a join as dynamic,
the engine dynamically defines the join fields based on the fields requested by the client query. But, if the field
is not part of the client query, it results in query runtime error.

Static Join Versus Dynamic Joins

● In static joins, the join condition isn't changed, irrespective of the client query.
● In a dynamic join, if the client query to the join doesn't request a join column, a query runtime error occurs.

This behavior of dynamic join is different from the static joins.
● Dynamic join enforces aggregation before executing the join, but for static joins the aggregation happens

after the join. This means that, for dynamic joins, if a join column is not requested by the client query, its
value is first aggregated, and later the join condition is executed based on columns requested in the client
query.

356 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

6.2.5.7 Filter Output of Aggregation or Projection View
Nodes

Apply filters on columns in the projection or the aggregation view nodes (except the default aggregation or
projection node) to filter the output of these nodes.

Context

You apply filters, for example, to retrieve the sales of a product where (revenue >= 100 AND region = India) OR
(revenue >=50 AND region = Germany). You can also define filters using nested or complex expressions.

Filters on columns are equivalent to the HAVING clause of SQL. At runtime, the modeler executes the filters
after performing all the operations that you have defined in the aggregation or projection. You can also use
input parameters to provide values to filters at runtime.

Procedure

1. Applying filters on columns of calculation views.

If you want to define filters on columns of projection or aggregation view nodes in calculation views:

a. Open the calculation view in the view editor.
b. Select a projection or aggregation view node.
c. In the Details pane, select a column.
d. In the context menu, choose Apply Filter.
e. In the Apply Filter dialog box, select an operator.
f. In the Value field, select a fixed value or an input parameter from the value help.

 Note
In the selected view node, if you are using other information views as data sources (and not tables),
then you can use only input parameters to apply filters on columns.

g. Choose OK.
2. Choose OK.
3. If you want to apply filters on columns or at the node level using expressions.

You can create expression in SQL language or the column engine language to apply filters. For example,
match("ABC",'*abc*') is an expression in the column engine language.

a. Select the aggregation or projection node.
b. In the Output pane, expand Filters.
c. In the context menu of Expression, choose Open.
d. Enter the expression by selecting the required elements, operators, input parameters, calculated

columns, and functions.
e. Choose OK.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 357

 Note
For expression in SQL language, modeler supports only a limited list of SQL functions.

6.2.6 Create Script-Based Calculation Views

Create script-based calculation views to depict complex calculation scenarios by writing SQL script
statements. It is a viable alternative to depict complex business scenarios, which you cannot achieve by
creating other information views (Attribute, Analytical, and Graphical Calculation views).

Context

For example, if you want to create information views that require certain SQL functions (i.e. window), or
predictive functions (i.e. R-Lang), then you use script-based calculation views. Sufficient knowledge of SQL
scripting including the behavior and optimization characteristics of the different data models is a prerequisite
for creating script-based calculation views.

Procedure

1. Launch SAP HANA studio.
2. In SAP HANA System view, expand the content node.
3. In the navigation pane, select a package where you want to create the new calculation view.

4. In the context menu of the package, select New Calculation View .
5. Provide name and description.
6. Select calculation view type.

In the Type dropdown list, select SQL Script.
7. Set Parameter Case Sensitive to True or False based on how you require the naming convention for the

output parameters of the calculation view.
8. Choose Finish.
9. Select default schema

a. Select the Semantics node.
b. Choose the View Properties tab.
c. In the Default Schema dropdown list, select the default schema.

 Note
If you do not select a default schema while scripting, then provide fully qualified names of the
objects used.

10. Choose SQL Script node in the Semantics node.

358 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

 Note
The IN function does not work in SQL script to filter a dynamic list of values. Use APPLY_FILTER
functions instead.

11. Define the output structure.
a. In the Output pane, choose Create Target.
b. Add the required output parameters and specify its length and type.

12. If you want to add multiple columns that are part of existing information views or catalog tables or table
functions to the output structure of script-based calculation views, then:

a. In the Output pane, choose New Add Columns From .
b. Enter the name of the object that contains the columns you want to add to the output.
c. Select one or more objects from the dropdown list.
d. Choose Next.
e. In the Source pane, choose the columns that you want to add to the output.
f. If you want to add selective columns to the output, then select those columns and choose Add.
g. If you want to add all columns of an object to the output, then select the object and choose Add.

 Note
For all duplicate column names in the Target pane, the modeler displays an error. You cannot add
two columns with the same name to your output. If you want to retain both the columns, then
change the name of columns in the Target pane before you add them to the output.

h. If you want to override the existing output structure, select Replace existing output columns in the
Output.

i. Choose Finish.

 Note
The defined order and data types of columns and parameters must match with the order and data
types of the columns and parameters in the select query, which is assigned to the output function
var_out.

13. Write the SQL Script statements to fill the output columns.

You can drag information views from the navigator pane to the SQL editor to obtain an equivalent SQL
statement that represents the deployed schema name for the information view.

 Note
For information on providing input parameters in script-based calculation views, see SAP Note 2035113

14. Activate the script-based calculation view.

○ If you are in the SAP HANA Modeler perspective:
○ Save and Activate - to activate the current view and redeploy the affected objects if an active

version of the affected object exists. Otherwise, only the current view is activated.
○ Save and Activate All - to activate the current view along with the required and affected objects.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 359

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2035113
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2035113

 Note
You can also activate the current view by selecting the view in the SAP HANA Systems view and
choosing Activate in the context menu. The activation triggers validation check for both the client
side and the server side rules. If the object does not meet any validation check, the object
activation fails.

○ If you are in the SAP HANA Development perspective:
1. In the Project Explorer view, select the required object.

2. In the context menu, select Team Activate .

 Note
The activation only triggers the validation check for the server side rules. If there are any errors
on the client side, they are skipped, and the object activation goes through if no error is found
on the server side.

For more information about the details of the functions available on content assist (pressing Ctrl +
Space in the SQL Console while writing procedures) in the SAP HANA SQLScript Reference.

15. Assign Changes
a. In the Select Change dialog box, either create a new ID or select an existing change ID that you want to

use to assign your changes.
b. Choose Finish.

For more information on assigning changes, see SAP HANA Change Recording of the SAP HANA
Developer Guide.

16. Choose Finish.

Next Steps

After creating a script-based calculation view, you can perform certain additional tasks to obtain the desired
output. The following table lists the additional tasks that you can perform to enrich the calculation view.

Working With Attributes and Measures

Requirement Task to perform

If you want to assign semantic types to provide more meaning to attributes and
measures in calculation views.

Assign Semantics

If you want to parameterize calculation views and execute them based on the values
users provide at query runtime.

Create Input Parameters

If you want to, for example, filter the results based on the values that users provide to
attributes at runtime.

Assign Variables

If you want associate measures with currency codes and perform currency conver
sions.

Associate Measures with Currency

If you want associate measures with unit of measures and perform unit conversions. Associate Measures with Unit of
Measure

If you want to create level hierarchies to organize data in reporting tools. Create Level Hierarchies

360 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

Requirement Task to perform

If you want to create parent-child hierarchies to organize data in reporting tools. Create Parent-Child Hierarchies

If you want to group related measures together in a folder. Group Related Measures.

Working With Calculation View Properties

Requirement Task to perform

If you want to filter the view data either using a fixed client value or using a session
client set for the user.

Filter Data for Specific Clients

If you want to execute time travel queries on script-based calculation views. Enable Information Views for Time
Travel Queries

If you want to invalidate or remove data from the cache after specific time intervals. Invalidate Cached Content

If you want to maintain object label texts in different languages. Maintain Modeler Objects in Multiple
Languages

If you do not recommend using a script-based calculation view. Deprecate Information Views

6.2.7 Activating Objects

You activate objects available in your workspace to expose the objects for reporting and analysis.

Based on your requirements, you can do the following:

● Activate - Deploys the inactive objects.
● Redeploy - Deploys the active objects in one of the following scenarios:

○ If your runtime object gets corrupted or deleted, and you want to create it again.
○ In case of runtime problems during object activation, and the object status is still active.

The following activation modes are supported:

● Activate and ignore the inconsistencies in affected objects - To activate the selected objects even if it results
in inconsistent affected objects. For example, if you choose to activate an object A that is used by B and C,
and it causes inconsistencies in B and C but you can choose to go ahead with the activation of A. This is the
default activation mode.

● Stop activation in case of inconsistencies in affected objects - To activate the selected objects only if there
are no inconsistent affected objects.

 Note
If even one of the selected objects fails (either during validation or during activation), the complete
activation job fails and none of the selected objects is activated.

Depending on where you invoke the activation, redeployment or cascade activation, the behavior is as follows:

Context Activate Redeploy

Quick Launch tab page A dialog box appears with a
preselected list of all your inactive
objects.

A dialog box appears with a list of
active objects in your workspace.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 361

Context Activate Redeploy

Package context menu A dialog box appears with a
preselected list of all your inactive
objects.

A dialog box appears with a list of
active objects in your workspace.

Content context menu A dialog box appears with a
preselected list of all your inactive
objects.

Not applicable

Editor ● If you select Save and Activate,
current object is activated and the
affected objects are redeployed if
an active version for the affected
objects exist.

● If you select Save and Activate All,
a dialog box appears with a
preselected list of the selected
object along with all the required
and affected objects.

Not applicable

Object context menu A dialog box appears with a
preselected list of the selected object
along with all the required objects.

A redeployment job is submitted for
the selected object.

 Note
● If an object is the only inactive object in the workspace, the activation dialog box is skipped and the

activation job is submitted.
● If an object is inactive and you want to revert back to the active version, from the editor or object

context menu, choose Revert To Active.
● In the Activate dialog, you can select the Bypass validation checkbox in order to skip validation before

activation to improve the activation time. For example, if you have imported a number of objects and
want to activate them without spending time on validation.

 Note
During delivery unit import, full server side activation is enabled, activation of objects after import is done.
In this case all the imported objects are activated (moved to active table), even if there are errors in
activated or affected objects. But the objects for which activation results in error are considered as broken
or inconsistent objects which means that the current runtime representation of these objects is not in sync
with the active design time version. The broken objects are shown in the Navigator view with an ‘x’ along
side.

 Note
The behavior of the activation job is as follows:

● The status (completed, completed with warnings, and completed with errors) of the activation job
indicates whether the activation of the objects is successful or failed.

● In case of failure that is when the status is completed with errors, the process is rolled back. This
means, even if there are individual objects successfully activated, since the activation job is rolled
back, none of the objects are activated.

362 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

● When you open the job log, the summary list shows only those objects that are submitted for
activation. It does not list all the affected objects. They are listed only in detail section.

Activation behavior in the view editor

The following table describes the availability and behavior of take over and activate options for an object from
the view editor in the SAP HANA Modeler perspective.

Sce
nario Object in Team Provider

in SAP HANA
Systems view

SAP HANA Sys
tems view Description

User:
U1,Work
space: WS1

User:
U2,Work
space: WS2

User: U, Work
space: “”

(default/other
workspace)

Take
Over

Acti
vate

1 OBJ1 Inactive Inactive Inactive Not Ap
plicable

Allowed If an object has multiple inactive ver
sions, and the object version in Mod
eler is also inactive, for example,
through delivery unit import or an
other workspace in Project Explorer,
user can activate his own inactive ob
ject. After activation, the object is the
scenario 2 as in the next row.

 Note
If the logged-in user and the user
to whom the object belongs are
different, the activation is not al
lowed. For example, if the object is
inactive in SYSTEM user’s work
space and MB user opens the ob
ject, the object opens in read-only
mode, and the activation is not al
lowed.

2 OBJ1 Inactive Inactive Active Not Al
lowed

Not Al
lowed

If an object has multiple inactive ver
sions in the Project Explorer and the
object version in Modeler is active, nei
ther activation nor take over option is
enabled.

3 OBJ1 Inactive Active Active Al
lowed

Not Al
lowed

If an object has single inactive version
in the Project Explorer, and the object
version in Modeler is active, only take
over option is enabled.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 363

Sce
nario Object in Team Provider

in SAP HANA
Systems view

SAP HANA Sys
tems view Description

4 OBJ1 Inactive Active Inactive Not Ap
plicable

Allowed If an object has inactive versions in the
Project Explorer and Modeler, only ac
tivation option is enabled.

5 OBJ1 Active Inactive Active Al
lowed

Not Al
lowed

If an object has multiple active ver
sions such as, one in the Project Ex
plorer and one in the Modeler, only
take over option is enabled.

6 OBJ1 Active Active Inactive Not Ap
plicable

Allowed If an object has single inactive version,
and the object version in Modeler is in
active, only activation option is ena
bled.

7 OBJ1 Active Inactive Inactive Not Al
lowed

Allowed If an object has single active version,
and the object version in Modeler is in
active, only activation option is ena
bled.

8 OBJ1 Active Active Active Not Ap
plicable

(Rede
ploy)

If an object has multiple active ver
sions, and the object version in Mod
eler is active, only take over activation
(redeploy) option is enabled.

6.2.8 Description Mapping

Description mapping helps you to associate an attribute with another attribute, which describes it in detail. For
example, when reporting via a Label Column, you can associate Region_ID with Region_Text.

For an attribute you can now maintain description mapping by selecting another attribute from the same
model as Label Column in the Semantics node. The result is attribute description displaying as the label column
in the data preview. The related columns appear side by side during data preview.

You can rename a label column attribute as <attribute>.description but not as <label column attribute.
description>. For example, if product_text is the Label Column for product then, you can rename product_text
to product.description but not as product_text.description.

 Note
● On renaming a column as <attribute.description>, it is marked as Hidden and cannot be used in other

places such as calculated columns, input parameters and so on.
● If you have created an object using the old editor (which supported the old style of description

mapping) and try to open it using the new editor you will see a new column <attribute>.description (as
an attribute) which is hidden and disabled. You can rename it maintain its properties and use it like
other attributes.

364 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

6.2.9 Import BW Objects

You can import SAP Business Warehouse (SAP BW) models that are SAP HANA-optimized InfoCubes,
Standard DataStore Objects, Query Snapshot InfoProviders, and InfoObjects of type Characteristics to the SAP
HANA modeling environment.

Prerequisites

● You have implemented SAP Notes 1703061 , 1759172 , 1752384 , 1733519 , 1769374 , 1790333
, 1870119 , 1994754 , and 1994755 .

● You have installed SAP HANA 1.0 SPS 05 Revision 50 or above.
● You have added BW schema in the SQL privileges for the Modeler user to import BW models.
● _SYS_REPO user has SELECT with GRANT privileges on the schema that contains the BW tables.

Context

Import SAP BW objects to expose it as SAP HANA models to the reporting tools.

 Note
● You can only import those Standard DataStore objects that have SID Generation set to During

Activation.
● For an InfoObject, you can import Characteristics having key figures as attributes.

Procedure

1. Open the SAP HANA Modeler perspective.

2. In the main menu, choose File Import .
3. Expand the SAP HANA Content node.
4. Choose SAP BW Models, and choose Next.
5. Establish connection with your SAP BW system (underlying BW Application Server). In the Provide Source

System Detailspage, enter the SAP BW system credentials and choose Next.

 Note
To add new connection details, select New Connection option from the Connection dropdown list. The
connection details are saved and are available as dropdown options on subsequent logons.

6. Optional Step: Provide SAProuter String

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 365

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1703061
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1759172
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1752384
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1733519
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1769374
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1790333
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1790333
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1870119
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1994754
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1994755

You can use SAProuter string to connect to the SAP BW System over the internet. You can obtain the
SAProuter string information of your SAP BW system from your SAP Logon. In your SAP Logon screen,
choose your SAP BW system Edit Connection

7. Optional Step: Activate Secure Network Connections (SNC)

Select Activate Secure Network Connections and provide the SNC Name of your communication partner.
You can use SNC to encrypt the data communication paths that exist between an SAP HANA Studio and
your SAP BW system. You can obtain the SNC name of your SAP BW system from SAP Logon. In your SAP
Logon screen, choose your SAP BW system Edit Network

8. Select the target system (an SAP BW on SAP HANA) to, which you want to import the models, and choose
Next.

9. Select the BW InfoProviders that you want to import and expose as SAP HANA information models.

 Remember
In order to import the QuerySnapshot InfoProvider, make sure that the BW Query is unlocked in
transaction RSDDB, and an index is created via the same transaction before it can be used as
InfoProviders.

10. Select the target package where you want to place the generated models, and analytic privileges.

 Note
Your package selection is saved during the subsequent import. Hence, the next time you visit the same
wizard you get to view the package that was selected previous time. You can though change the
package where you want to import objects.

11. If you want to import the selected models along with the display attributes for IMO Cube and Standard
DSO, select Include display attributes.
For InfoObjects all the attributes are added to the output and joined to their text tables if exists.

12. If you want to replace previously imported models in the target system with a new version, select Overwrite
existing objects.

13. If you do not want to import the analysis authorizations associated with the selected InfoProviders,
deselect Generate InfoProvider based analytic privileges.

14. If you want to import the role based analysis authorizations as analytic privileges, select Generate Role
based analytic privileges, and choose Next.
If you have selected both the InfoProviders and InfoObjects, only authorizations set on InfoProviders can
be imported after selecting the checkbox.

15. Select the roles to import the related analysis authorizations.
16. Choose Finish.

 Note
While importing your SAP BW models, the SAP HANA system imports the column labels of these
models in the language that you specify in its properties. However, in your SAP BW system, for any of
the columns, if you do not maintain column labels in the language that you specify in your SAP HANA
system properties, then those column labels appears as blank after import. If you want to check the
default language for your SAP HANA system, then:
1. In the Systems View, select the SAP HANA system in which you are importing the models.
2. In the context menu, choose Properties.

366 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

3. In the Additional Properties tab, the dropdown list Locale specifies the language of objects, which
you create in SAP HANA repository.

Results

The generated information models and analytic privileges are placed in the package selected above. In order to
view the data of generated models, you need to assign the associated analytic privileges that are generated as
part of the model import to the user. If these privileges are not assigned, user is not authorized to view the data.

Related Information

Secure Network Communications (SNC)

6.2.10 Group Related Measures

If your analytic view and calculation view has multiple measures and you want to organize them, for, example,
segregate the planned measures with the actual measures, you can group the related measures in folders.
These folders are called the display folders.

You can organize display folders in a hierarchical manner that is, by creating one display folder under the other.

To create display folders, select the Display Folder toolbar option in the Column panel of the Semantics node. In
the Display Folder dialog create a new folder using the context menu option or using the toolbar option. Drag
the required measures to the relevant folder. Note that one measure can be part of multiple display folders.
Alternatively, you can associate a measure with a new or existing display folder by entering the value in the
Display Folder property of the measure. If you enter a new value for this property a new display folder with the
specified name is created.

Each measure is associated with the Display Folder property. The value for this property contains the fully
qualified name of the display folder in which it appears. The fully qualified name of a display folder consists of
the names of the display folders that represent the path to a given object. If the property contains the name of
more than one display folder, indicating a hierarchy, each name is separated by a backslash character (\). If
this property contains an empty string (""), the object is not associated with a display folder. The same
measure can be part of multiple display folders. In such cases each folders should be separated by a semi colon
(;). For example, if for the measure “Invoiced_amount” the value for Display Folder property is Reported
\Amount, it means, Reported\Amount is a hierarchical display folder of “Invoiced_amount”.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 367

http://help.sap.com/saphelp_nw74/helpdata/en/e6/56f466e99a11d1a5b00000e835363f/content.htm?frameset=/en/e6/56f466e99a11d1a5b00000e835363f/frameset.htm

6.3 Additional Functionality for Information Views

After modeling information views or at design time you can perform certain additional functions, which helps
improve the efficiency of modeling information views.

This section describes the different additional functions that SAP HANA modeler offers and how you can use
these functions to efficiently model views.

6.3.1 Create Level Hierarchies

In level hierarchies each level represents a position in the hierarchy. For example, a time dimension can have a
hierarchy that represents data at the month, quarter, and year levels.

Context

Level hierarchies consist of one or more levels of aggregation. Attributes roll up to the next higher level in a
many-to-one relationship and members at this higher level roll up into the next higher level, and so on, until
they reach the highest level. A hierarchy typically comprises of several levels, and you can include a single level
in more than one hierarchy. A level hierarchy is rigid in nature, and you can access the root and child node in a
defined order only.

Procedure

1. Launch SAP HANA studio.
2. Open the required attribute view or graphical calculation view in the view editor.
3. Select the Semantics node.
4. Choose the Hierarchies tab.

5. Choose the icon (Create).
6. Provide a name and description to the new hierarchy.
7. In Hierarchy Type dropdown list, select Level Hierarchy.
8. Define node style

The node style determines the node ID for the level hierarchy.

a. In the Node section, choose Add.
b. In the Node Style dropdown list, select a value.

9. Create levels.
a. In the Nodes tab, choose Add to create a level.
b. In the Element dropdown list, select a column value for each level.

368 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

c. In Level Type dropdown list, select a required level type.

The level type specifies the semantics for the level attributes. For example, level type TIMEMONTHS
indicates that the attributes are months such as, "January", February, and similarly level type
REGULAR indicates that the level does not require any special formatting.

d. In the Order By dropdown list, select a column value that modeler must use to order the hierarchy
members.

 Note
MDX client tools use attribute values to sort hierarchy members.

a. In the Sort Direction dropdown list, select a value that modeler must use to sort and display the
hierarchy members.

10. Define level hierarchy properties.

In the Advanced tab, you can define certain additional properties for your hierarchy.

a. If you want to include the values of intermediate nodes of the hierarchy to the total value of the
hierarchy’s root node, in the Aggregate All Nodes dropdown list select True. If you set the Aggregate All
Nodes value to False, modeler does not roll-up the values of intermediate nodes to the root node.

 Note
The value of Aggregate All Nodes property is interpreted only by the SAP HANA MDX engine. In the
BW OLAP engine, the modeler always counts the node values. Whether you want to select this
property depends on the business requirement. If you are sure that there is no data posted on
aggregate nodes, set the option to false. The engine then executes the hierarchy faster.

b. In the Default Member textbox, enter a value for the default member.

This value helps modeler identify the default member of the hierarchy. If you do not provide any value,
all members of hierarchy are default members.

c. In the Orphan Nodes dropdown list, select a value.

This value helps modeler know how to handle orphan nodes in the hierarchy.

 Note
If you select Stepparent option to handle orphan nodes, in the Stepparent text field, enter a value
(node ID) for the step parent node. The step parent node must already exist in the hierarchy at the
root level and you must enter the node ID according to the node style that you select for the
hierarchy. For example if you select node style Level Name, the stepparent node ID can be [Level2].
[B2]. The modeler assigns all orphan nodes under this node.

d. In the Root Node Visibility dropdown list, select a value.

The value helps modeler know if it needs to add an additional root node to the hierarchy.
e. If you want the level hierarchy to support multiple parents for its elements, select the Multiple Parent

checkbox.
11. Create a Not Assigned Member, if required.

In attribute view or calculation views of type dimensions, you can create a new Not Assigned Member that
captures all values in fact table, which do not have corresponding values in the master table. In level
hierarchies, the not assigned member appears at each level of the hierarchy.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 369

a. Select the Not Assigned Member tab.
b. If you want to capture values in the fact tables that do not have corresponding values in the master

table, then in the Not Assigned Members dropdown list, select Enable .

By default, modeler does not provide a hierarchy member to capture such values. This means that, Not
Assigned Members is disabled. You can either enable or choose Auto Assign to handle not assigned
members.

 Note
Selecting, Auto Assign to handle not assigned members impacts the performance of your
calculation views. Select Auto Assign with caution.

c. Provide a name and label to the hierarchy member.

This label value appears in reporting tools to capture not assigned members.
d. If you want to drilldown this member in reporting tool, select the Enable Drilldown checkbox.
e. If you want to use null convert values to process NULL values in the fact table, which do not have any

corresponding records in the master table, select the Null Value Processing checkbox.

By default, modeler uses the string _#_ as the null convert value. You can change this value in the
Name field under the Null Value Member Properties section.

f. Provide a label for the null value member.

This value appears in the reporting tools to capture null values.

6.3.2 Create Parent-Child Hierarchies

In parent-child hierarchies, you use a parent attribute that determines the relationship among the view
attributes. Parent-child hierarchies have elements of the same type and do not contain named levels.

Context

Parent-child hierarchies are value-based hierarchies, and you create a parent-child hierarchy from a single
parent attribute. You can also define multiple parent-child pairs to support the compound node IDs. For
example, you can create a compound parent-child hierarchy that uniquely identifies cost centers with the
following two parent-child pairs:

● CostCenter and ParentCostCenter and
● ControllingArea and ParentControllingArea,

A parent-child hierarchy is always based on two table columns and these columns define the hierarchical
relationships amongst its elements. Others examples of parent-child hierarchies are bill of materials hierarchy
(parent and child) or employee master (employee and manager) hierarchy.

370 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

Procedure

1. Launch SAP HANA studio.
2. Open the required attribute view or graphical calculation view in the view editor.
3. Select the Semantics node.
4. Choose the Hierarchies tab.

5. Choose the icon (Create).
6. Provide a name and description to the new hierarchy.
7. In Hierarchy Type dropdown list, select Parent-Child Hierarchy.
8. Create parent-child elements

a. In the Node section, choose Add.
b. In the Child column dropdown list, select a column value as the child attribute.
c. In the Parent column dropdown list, select a column value as a parent attribute for the child column

that you have selected.
d. If you want to place orphan nodes in the hierarchy under a step parent node, then in the Stepparent

column dropdown list, enter a value (node ID) for the step parent node.
e. If you want to place the parent-child hierarchies under a root node, in the Root Node value help, select

a value.
9. If you want to add additional attributes to execute the hierarchy, then

a. In Additional Attributes section, choose Add.
b. In the Attributes dropdown list, select an attribute value.

10. Define parent-child hierarchy properties.

In the Advanced tab, you can define certain additional properties for your hierarchy.

a. If you want to include the values of intermediate nodes of the hierarchy to the total value of the
hierarchy’s root node, in the Aggregate All Nodes dropdown list select True. If you set the Aggregate All
Nodes value to False, modeler does not roll-up the values of intermediate nodes to the root node.

 Note
The value of Aggregate All Nodes property is interpreted only by the SAP HANA MDX engine. In the
BW OLAP engine, the modeler always counts the node values. Whether you want to select this
property depends on the business requirement. If you are sure that there is no data posted on
aggregate nodes, set the option to false. The engine then executes the hierarchy faster.

b. In the Default Member textbox, enter a value for the default member.

This value helps modeler identify the default member of the hierarchy. If you do not provide any value,
all members of hierarchy are default members.

c. In the Orphan Nodes dropdown list, select a value.

This value helps modeler know how to handle orphan nodes in the hierarchy.

 Note
If you select Stepparent option to handle orphan nodes, then in the Node tab, enter a value (node
ID) for the stepparent. The stepparent node must already exist in the hierarchy at the root level.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 371

d. In the Root Node Visibility dropdown list, select a value.

The value helps modeler know if it needs to add an additional root node to the hierarchy.
e. Handling cycles in hierarchy

A parent-child hierarchy is said to contain cycles if the parent-child relationships in the hierarchy have
a circular reference. You can use any of the following options to define the behavior of such hierarchies
at load time.

Options Description

Break up at load time The nodes are traversed until a cycle is encountered. The cycles are broken-up at
load time.

Traverse completely, then
breakup

The nodes in the parent-child hierarchy are traversed once completely and then
the cycles broken up.

Error Displays error when a cycle is encountered.

f. If you want the parent-child hierarchy to support multiple parents for its elements, select the Multiple
Parent checkbox.

11. Order and sort hierarchy elements.

If you want to order and sort elements of a parent child hierarchy based on a column value,

a. In the Order By section, choose Add.
b. In the Order By Column dropdown list, select a column value that modeler must use to order the

hierarchy members.
c. In Sort Direction dropdown list, select a value that modeler must use to sort and display the hierarchy

members.

 Note
MDX client tools use attribute values to sort hierarchy members.

12. Enable hierarchy for time dependency

If elements in your hierarchy are changing elements (time dependent elements), you can enable the
parent-child hierarchy as a time dependent hierarchy. In other words, if you are creating hierarchies that
are relevant for specific time period, then enable time dependency for such hierarchies. This helps you
display different versions on the hierarchy at runtime.

 Note
Not all reporting tools support time dependent hierarchies. For example, time dependent hierarchies
does not work with BI clients such as MDX or Design Studio.

a. In the Time Dependency tab, select the Enable Time Dependency checkbox.
b. In the Valid From Column dropdown list, select a column value.
c. In the Valid To Column dropdown list, select a column value.

SAP HANA modeler uses Valid From Column and Valid To Column values as the validity time for the
time dependent hierarchies.

372 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

13. If you want to use an input parameter to specify the validity of the time dependent hierarchy at runtime,
a. In the Validity Period section, select Interval.
b. In the From Date Parameter dropdown list, select an input parameter that you want to use to provide

the valid from date at runtime.
c. In the To Date Parameter dropdown list, select an input parameter that you want to use to provide the

valid to date at runtime.
14. If you want to use an input parameter to specify the key date at runtime,

a. In the Validity Period section, select Key Date.
b. In the Key Date Parameter dropdown list, select an input parameter value that you want to use to

provide key date value at runtime.
15. Create a Not Assigned Member, if required.

In attribute views or calculation views of type dimensions, you can create a new Not Assigned Member that
captures all values in fact table, which do not have corresponding values in the master table.

a. Select the Not Assigned Member tab.
b. If you want to capture values in the fact tables that do not have corresponding values in the master

table, then in the Not Assigned Members dropdown list, select Enable .

By default, modeler does not provide a hierarchy member to capture such values. This means that, Not
Assigned Members is disabled. You can either enable or choose Auto Assign to handle not assigned
members.

 Note
Selecting, Auto Assign to handle not assigned members impacts the performance of your
calculation views. Select Auto Assign with caution.

c. Provide a name and label to the hierarchy member.

This label value appears in reporting tools to capture not assigned members.
d. If you want to drilldown this member in reporting tool, select the Enable Drilldown checkbox.
e. If you want to use null convert values to process NULL values in the fact table, which do not have any

corresponding records in the master table, select the Null Value Processing checkbox.

By default, modeler uses the string _#_ as the null convert value. You can change this value in the
Name field under the Null Value Member Properties section.

f. Provide a label for the null value member.

This value appears in the reporting tools to capture null values.

Related Information

Create Parent-Child Hierarchies [page 370]

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 373

6.3.3 Input Parameters

Use input parameters to parameterize the view and to obtain the desired output when you run the view.

This means that the engine uses the parameter value that users provide at runtime, for example, to evaluate
the expression defined for a calculated measure. The parameter value is passed to the engine through the
PLACEHOLDER clause of the SQL statement. A parameter can only have a single value, for example, for
currency conversion. However, when working with the in() function in filter expressions of calculation views,
you can pass several values as an IN List. When defining the expression, quote the expression as described
here:

For numerical type parameters

The filter expression of a calculation view CV1 is defined as follows:

in("attr", $$param$$)

Then pass several values as:

select ... from CV1('PLACEHOLDER' = ('$$var$$' = 'VAL1, VAL2, VAL3')

For string type parameters

The filter expression of a calculation view CV1 is defined as:

in("attr", $$param$$)

Then pass several values (with double quotes) as:

select ... from CV1('PLACEHOLDER' = ('$$var$$' = '''VAL1'',''VAL2'',''VAL3''')

The table here summarizes with some examples the input parameter expressions at design time and the query
at runtime.

Input Parameter
Data Type Multiple Values Expression In Query

Integer False in("ID",$$IP_1$$) (placeholder."$$IP_1$$"=>1)

Varchar False in ("elem_2",'$$IP_1$
$')

(placeholder."$$IP_1$
$"=>'test')

Varchar False "elem_2" = '$$IP_1$$' (placeholder."$$IP_1$
$"=>'test')

Integer True in("elem_3",$$IP_1$$) (placeholder."$$IP_1$
$"=>'2,3')

Varchar True ("elem_2",$$IP_1$$) (placeholder."$$IP_1$
$"=>'''test''')

Or

(placeholder."$$IP_1$
$"=>'''test'',''test2''')

374 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

You use input parameters as placeholders, for example, during currency conversion, unit of measure
conversion, or in calculated column expressions. When used in formulas, the calculation of the formula is
based on the input that you provide at runtime during data preview.

The expected behavior of the input parameter when a value at runtime is not provided is as follows:

Default Value Expected Behavior

Yes Calculates the formula based on the default value

No Results in error

The table implies that it is mandatory to provide a value for the input parameter at runtime, or assign a default
value while creating the view, to avoid errors.

6.3.4 Assign Variables

You can assign variables to a filter at design time for obtaining data based on the values you provide for the
variable. At runtime, you can provide different values to the variable to view the corresponding set of attribute
data.

6.3.5 Using Currency and Unit of Measure Conversions

If measures in your calculation views or analytic views represent currency or unit values, associate them with
currency codes or unit of measures. This helps you display the measure values along with currency codes or
unit of measures at data preview or in reporting tools.

Associating measures with currency code or unit of measure is also necessary for currency conversion or unit
conversions respectively.

Modeler performs currency conversions based on the source currency value, target currency value, exchange
rate, and date of conversion. Similarly, it performs unit conversions based on the source unit and target unit.

Use input parameters in currency conversion and unit conversion to provide the target currency value, the
exchange rate, the date of conversion or the target unit value at runtime.

Currency conversion or unit conversion are not supported for script-based graphical calculation views.

6.3.6 Manage Information Views with Missing Objects

If objects within an information view are missing, for example, if the objects or its references are deleted, then
the information view is referred to as broken models. By using proxies, SAP HANA modeler helps you work with
broken models and fix inconsistencies.

When you open broken models, the system displays red decorators for all missing objects, which are essential
to activate the information view.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 375

 Example
If you have defined an attribute view ATV1 on table T1 (C1, C2, C3) such that Attributes A1, A2, A3 is defined
on columns C1, C2, C3 respectively. Now, if you remove column C2 and C3 from the table T1, then the
attribute A3 becomes inconsistent. In such cases, the system injects proxies for C3, and when you open the
attribute view in the editor, the system displays a red decorator for C2, C3, and an error marker for A3 to

indicate that it is inconsistent.

 Note
If the connection to SAP HANA system is not available, and if you try to open a view, then the system uses
proxies for all required objects and opens the view in read-only mode. But, since the model is not broken,
the red decorators and the error markers are not shown..

You can resolve inconsistencies in analytic views or attribute views or calculation views by performing one of
the following:

● Deleting the missing objects, which the information view requires. This clears all references of missing
object.

● Adjusting the mappings of inconsistent objects.
● Deleting inconsistent objects.

 Note
The system logs inconsistencies within information view in the Problems view of SAP HANA Development
perspective.

6.4 Working with Views

6.4.1 Manage Editor Layout

You use this procedure to adjust the data foundation and logical view layout comprising user interface controls
like, tables and attribute views in a more readable manner. This functionality is supported for attribute views
and analytic views.

The options available are as follows:

Option Purpose Substeps

Auto Arrange Use this option to arrange the user
interface elements automatically. In the editor tool bar, choose (Auto

Layout).

376 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

Option Purpose Substeps

Show outline Use this option to view an outline of the
elements arranged so that, you do not
have to navigate in the editor using
horizontal and vertical scrollbars.

In the editor tool bar, choose .

Highlight related tables in Data
Foundation

Use this option if you want to view only
those tables that are related to a table
selected in the editor.

1. In the editor, right-click the
selected table.

2. From the context menu, choose
Highlight related tables.

Display Use this option if you have a table with
a large number of columns in the
editor, and you want to view them in a
way that meet your needs: for example,
only the table name, or only joined
columns, or the expanded form with all
the columns.

1. In the editor, right-click the
relevant table.

2. From the context menu, choose
Display.

3. If you want to view only the table
name, choose Collapsed.

4. If you want to view all the columns
of the table, choose Expanded.

5. If you want to view only the joined
columns of the table, choose Joins
only.

Show Complete Name Use this option to view the complete
name of a truncated column.

1. In the Scenario pane, choose a
view node.

2. In the Details pane, choose the
required input.

3. In the context menu, choose Show
Complete Name.

Show Description Use this option to view the column
description.

1. In the Scenario pane, choose a
view node.

2. In the Details pane, choose the
required input.

3. In the context menu, choose Show
Description.

6.4.2 Validate Models

You can check if there are any errors in an information object and if the object is based on the rules that you
specified as part of preferences.

For example, the "Check join: SQL" rule checks that the join is correctly formed.

Procedure

1. On the Quick View page, choose Validate.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 377

2. Select a system where you want to perform this operation.
3. From the Available list, select the required models that system must validate, and choose Add.
4. Choose Validate.

6.4.3 Maintain Search Attributes

You use this procedure to enable an attribute search for an attribute used in a view. Various properties related
to attribute search are as follows:

● Freestyle Search: Set to True if you want to enable the freestyle search for an attribute. You can exclude
attributes from freestyle search by setting the property to False.

● Weights for Ranking: To influence the relevancy of items in the search results list, you can vary the
weighting of the attribute. You can assign a higher or lower weighting (range 0.0 to 1.0). The higher the
weighting of the attribute, the more influence it has in the calculation of the relevance of an item. Items
with a higher relevance are located higher up the search results list. Default value: 0.5.

 Note
To use this setting the property Freestyle Search must be set to True.

● Fuzzy Search: This parameter enables the fault-tolerant search. Default: False.
● Fuzziness Threshold: If you have to set the parameter Fuzzy Search to True you can fine-tune the threshold

for the fault-tolerant search between 0 and 1. Default: 0.8

 Note
We recommend using the default values for Weights for Ranking and Fuzziness Threshold to start with.
Later on, you can fine-tune the search settings based on your experiences with the search. You can also
fine-tune the search using feedback collected from your users.

6.4.4 Data Preview Editor

Use data preview editor to preview raw data output or to view all attributes and measures in graphical formal.

In data preview editor, includes the following tab pages:

● Raw Data
● Distinct Values
● Analysis

Tab Page Information Displayed User Options

Raw Data All attributes along with data
in a table format.

● Filter data. For example, define filters on columns and
filter the data based on company names.

● • Export data to different file formats to analyze them in
other reporting tools.

378 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

Tab Page Information Displayed User Options

Distinct values All attributes along with data
in a graphical format.

Basic data profiling

Analysis All attributes and measures
in a graphical format.

● Perform advance analysis using labels and value axis. For
example, analyze sales based on country by adding
Country to the labels axis and Sales to the value axis.

● Use different charts to support analysis. You can view the
data in the Chart, Table, Grid, and HTML formats and save
the analysis as favorites.

● Filter data. For example, define filters and filter the data
based on company names.

 Note
If you refresh data in the Analysis tab page, modeler clears the data in the Raw Data tab page. Refresh the
Raw Data tab to fetch the latest results.

6.4.5 Using Functions in Expressions

This section describes the functions, which you can use in expressions of column engine language. You create
expressions, for example, while creating expressions for calculated attributes or calculated measures.

You can create expressions, for example in calculated columns using the column engine (CS) language or the
SQL language.

 Note
Related SAP Notes. The SAP Note 2252224 describes the differences between the CS and SQL string
expression with respect to Unicode or multibyte encoding. The SAP Note 1857202 describes the SQL
execution of calculation views.

Related Information

Using Functions in Expressions [page 379]

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 379

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/
 2252224
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/
 1857202

6.4.6 Resolving Conflicts in Modeler Objects

You can resolve the conflicts between three different versions of a model by merging them with the help of 3-
way merge feature. You can also compare two files for finding their differences with this feature.The common
scenarios and the available options for the use of this feature are:

S.No. Requirement Option

1. To compare two models in the Project
Explorer to view their differences.

Compare With > Each Other

2. To compare the inactive version of a
model with the active version.

Compare With > Active Version

3. To resolve conflicts between the model
versions encountered during activation
in the following scenarios:

● You modify a model in two SAP
HANA studio instances and you
commit and activate the model
(one or several times) in the first
instance. In the second instance
when you try to activate the model
you get an error message.

● You modify a model in one of the
SAP HANA studio instance, and
commit and activate the model. If
you modify the model in the other
SAP HANA studio instance without
updating it, you get an error while
activating the model.

● In a SAP HANA studio instance if
you have an inactive model in the
Project Explorer and an inactive
version in the Modeler perspective.
If you activate the model in the
Modeler perspective, you get an er
ror while activating the model from
Project Explorer.

Team > Merge Tool

Or

Team > Resolve With

380 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 381

The merge editor components are depicted below:

1. Overview of the differences detected between the given two (or three) models.
2. First version of the compared models.
3. Second version of the compared models.
4. This button will only be visible in the case of three-way comparisons (for example, comparing with a

remote repository). It will make a third version of the compared model (the common ancestor of the two
others) visible in the interface.

5. This button will allow you to group differences together in the structural view. For example, grouping all
"Additions" or "Deletions" together.

6. This button will allow you to filter some differences out of the view according to a set predicate. For
example, filtering out all "Additions" or "Moves".

7. Allows you to merge all non-conflicting differences (left to right, or right to left) at once.
8. Allows you to merge the single, currently selected difference in a given direction (left to right, or right to

left).
9. Allows you to navigate through the detected differences.

6.5 Create Decision Tables
You use this procedure to create a decision table to model related business rules in a tabular format for
decision automation. You can use decision tables to manage business rules, data validation, and data quality
rules.

You use this procedure to create a decision table to model related business rules in a tabular format for
decision automation. You can use decision tables to manage business rules, data validation, and data quality

382 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

rules, without needing any knowledge of technical languages such as SQL Script or MDX. A data architect or a
developer creates the decision table and activates it. The active version of the decision table can be used in
applications.

Prerequisites

This task describes how to create a decision table. Before you start this task, note the following prerequisites:

● You must have access to an SAP HANA system.
● To activate and validate the decision table, the _SYS_REPO user requires the SELECT, EXECUTE, and

UPDATE privileges on your schema.
● If you are using the SAP HANA Development perspective, you must ensure the following prerequisites are

also met:
○ You must have already created a development workspace.
○ You must have checked out a package.
○ You must have created and shared a project so that the newly created files can be committed to (and

synchronized with) the repository.

 Note
For more information about projects, repository workspaces, and sharing of projects, see Using
SAP HANA Projects in the SAP HANA Developer Guide for SAP HANA Studio.

Create a Decision Table

You can create a decision table by using one of the following options:

● If you are in the SAP HANA Modeler perspective, perform the following steps:

1. In the SAP HANA Modeler perspective, expand <System Name> Content <Package Name> .

2. In the context menu of the package, choose New Decision Table .
3. In the New Decision Table dialog box, enter a name and description for the decision table.
4. To create a decision table from scratch or from an existing decision table, perform the following

substeps:

Scenario Substeps

Create a decision table from scratch 1. Choose Create New.
2. Choose Finish.

Create a decision table from an existing decision table 1. Choose Copy From.
2. Browse the required decision table.
3. Choose Finish.

● If you are in the SAP HANA Development perspective, perform the following steps:
1. Go to the Project Explorer view in the SAP HANA Development perspective, and select the project.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 383

2. In the context menu of the selected project, choose New Other...

 Note

You can also create a decision table from the File menu. Choose New Other...

3. In the popup wizard, open SAP HANA and expand Database Development Modeler .
1. Select Decision Table.

 Note
You can also search for the decision table directly by using the search box in the wizard.

2. Choose Next.
1. In the New Decision Table dialog, choose Browse to choose the project under which you want

to create your decision table. Enter a name and description.

 Note
If the project is shared, the Package field specifies the package that is associated with the
project.

2. Choose Finish.

The decision table editor opens. It consists of three panes: Scenario, Details, and Output.

● The Scenario pane of the editor consists of the Decision Table and Data Foundation nodes. Selecting any of
these nodes shows the specific node information in the Details pane.

● The Details pane of the Data Foundation node displays the tables or information models used for defining
the decision table. The Details pane of the Decision Table node displays the modeled rules in tabular
format.

● The Output pane displays the vocabulary, conditions, and actions, and allows you to perform edit
operations. Expand the vocabulary node to display the parameters, attributes, and calculated attributes
sub-nodes. In the Output pane, you can also view properties of the selected objects within the editor.

Related Information

SAP HANA Developer Guide for SAP HANA Studio [page 9]

6.5.1 Changing the Layout of a Decision Table

You use this procedure to change the decision table layout by arranging the condition and action columns. By
default, all the conditions appear as vertical columns in the decision table. You can choose to mark a condition
as a horizontal condition, and view the corresponding values in a row. The evaluation order of the conditions is
such that the horizontal condition is evaluated first, and then the vertical ones.

384 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

 Note
You can only change the layout of a decision table if it has more than one condition. You can mark only one
condition as a horizontal condition.

Procedure

Mark as Horizontal Condition

1. Select the Decision Table node.
2. In the context menu of the Details pane, choose Change Layout.
3. If you want to view a condition as a horizontal condition, in the Change Decision Table Layout dialog, select

the Table Has Horizontal Condition (HC) checkbox.

 Note
The first condition in the list of conditions is marked as horizontal by default.

4. Choose OK.
5. Save the changes.

 Note
You can also set a condition as horizontal from the context menu of the condition in the Output pane.
You can also arrange the conditions and actions in the desired sequence in the Output pane by using
the navigation buttons in the toolbar.

Rearranging Conditions and Actions

1. Select the Decision Table node.
2. In the context menu of the Details pane, choose Change Layout.
3. In the Conditions and Actions section, choose the options on the right-hand side of the dialog box to

arrange the conditions and actions in the desired sequence.
The following options are available for arranging the conditions in a sequence:
○ Move Condition to Top
○ Move Condition Up
○ Move Condition Down
○ Move Condition to Bottom

 Note
You can also arrange the sequence by using the navigation buttons at the top of the Output pane.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 385

6.5.2 Using Parameters in a Decision Table

You use this procedure to create a parameter that can be used to simulate a business scenario. You can use
parameters as conditions and actions in the decision table at design time. Parameters used as conditions
determine the set of physical table rows to be updated based on the parameter value that you provide at
runtime during the procedure call. Parameters used as actions simulate the physical table without updating it.

The following parameter types are supported:

Type Description

Static List Use this if the value of a parameter comes from a user-
defined list of values.

Empty Use this if the value of a parameter could be any of the
selected data types.

 Example
Consider a sales order physical table with column headers as follows:

ID Name Supplier Model Price Quantity

If you want to evaluate Discount based on the Quantity and Order Amount, you can create two parameters:
Order Amount and Discount. Use Quantity and Order Amount as the condition, and Discount as the action.
The sample decision table could look like this:

Quantity Order Amount Discount

>5 50000 10

>=10 100000 15

Procedure

1. Create a Parameter

1. In the Output panel, select the Parameters node.
2. From the context menu, choose New and do the following:

1. Enter a name and description.
2. Select the required data type from the dropdown list.
3. Enter the length and scale as required.
4. Choose the required Type from the dropdown list.

 Note
If you have selected Static List for Type, choose Add in the List of Values section to add values. You
can also provide an alias for the enumeration value.

5. Choose OK.

386 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

2. Use Parameter as Condition or Action

1. In the Output panel, select the Parameters node.
2. From the context menu of the parameter, choose Add as Conditions/ Add as Actions.

6.5.3 Using Calculated Attributes in Decision Tables

Context

You use this procedure to create calculated attributes that can be used as conditions in a decision table.

You can create a calculated attribute to perform a calculation using the existing attributes, parameters, and
SQL functions.

Procedure

1. In the Output panel, select the Calculated Attributes node.
2. From the context menu, choose New and do the following:

a. Enter a name and description.
b. Select the required data type, length, and scale.
c. In the expression editor, enter the expression. For example, you can write a formula such as (“NAME” =

“FIRST_NAME” + “LAST_NAME”). This expression is an example of the string concatenation function,
which is used to derive the name of a person by using the first name and last name values from the
table fields.

 Note
You can also create the expression by dragging and dropping the expression elements from the
options at the bottom of the editor. Only arithmetic operators and SQL functions are supported for
expression creation.

3. Choose OK.
4. Add the required calculated attribute as a condition.

SAP HANA Developer Guide
Setting Up the Analytic Model P U B L I C 387

6.6 Generate Object Documentation

Use this procedure to capture the details of an information model or a package in a single document. This helps
you view the necessary details from the document, instead of referring to multiple tables. The following table
specifies the details that you can view from the document.

Type Description

Attribute View General object properties, attributes, calculated attributes
(that is, calculated columns of type attribute), data
foundation joins, cross references, and where-used

Analytic View General object properties, private attributes, calculated
attributes (that is, calculated columns of type attribute),
attribute views, measures, calculated measures (that is,
calculated columns of type measure), restricted measures
(that is, restricted columns), variables, input parameters,
data foundation joins, logical view joins, cross references,
and where-used

Calculation View General object properties, attributes, calculated attributes,
measures, calculated measures, counters, variables, input
parameters, calculation view SQL script, cross references,
and where-used

Package Sub-packages, general package properties, and list of
content objects

Procedure

1. From the Quick View pane, choose Auto Documentation.
2. Select a system where you want to perform this operation.
3. In the Select Content Type field, select one of the following options as required:

Option Description

Model Details To generate documentation for models such as attribute,
analytic, and calculation views.

Model List To generate documentation for packages.

4. Add the required objects to the Target list.
5. Browse the location where you want to save the file.
6. Choose Finish.

388 P U B L I C
SAP HANA Developer Guide

Setting Up the Analytic Model

7 Developing Procedures

SQL in SAP HANA includes extensions for creating procedures, which enables you to embed data-intensive
application logic into the database, where it can be optimized for performance (since there are no large data
transfers to the application and features such as parallel execution is possible). Procedures are used when
other modeling objects, such as views, are not sufficient; procedures are also often used to support the
database services of applications that need to write data into the database.

Reasons to use procedures instead of standard SQL, include:

● SQL is not designed for complex calculations, such as for financials.
● SQL does not provide for imperative logic.
● Complex SQL statements can be hard to understand and maintain.
● SQL queries return one result set. Procedures can return multiple result sets.
● Procedures can have local variables, eliminating the need to explicitly create temporary tables for

intermediate results.

Procedures can be written in the following languages:

● SQLScript: The language that SAP HANA provides for writing procedures.
● R: An open-source programming language for statistical computing and graphics, which can be installed

and integrated with SAP HANA.

There are additional libraries of procedures, called Business Function Library and Predictive Analysis Library,
that can be called via SQL or from within another procedure.

HANA Database Explorer

HANA Database Explorer provides a comprehensive set of development tools that allow you to evaluate, revise,
and optimize stored procedures. You can browse through the objects in the schema to locate the procedures,
from there, a number of options are available from the context menu. Features include a code editor for running
and testing procedures as well as debugging and SQLScript analysis tools. Refer to the documentation
sections on Database Explorer in the SAP HANA Administration Guide for more details.

SQL Extensions for Procedures

SQL includes the following statements for enabling procedures:

● CREATE TYPE: Creates a table types, which are used to define parameters for a procedure that represent
tabular results. For example:

CREATE TYPE tt_publishers AS TABLE (publisher INTEGER,
 name VARCHAR(50),
 price DECIMAL,

SAP HANA Developer Guide
Developing Procedures P U B L I C 389

 cnt INTEGER);

● CREATE PROCEDURE: Creates a procedure. The LANGUAGE clause specifies the language you are using to
code the procedure. For example:

CREATE PROCEDURE ProcWithResultView(IN id INT, OUT o1 CUSTOMER) LANGUAGE SQLSCRIPT READS SQL DATA WITH RESULT VIEW ProcView AS
 BEGIN
 o1 = SELECT * FROM CUSTOMER WHERE CUST_ID = :id; END;

● CALL: Calls a procedure. For example:

CALL getOutput (1000, 'EUR', NULL, NULL);

Related Information

Create and Edit Procedures [page 391]

7.1 SQLScript Security Considerations

You can develop secure procedures using SQLScript in SAP HANA by observing the following
recommendations.

Using SQLScript, you can read and modify information in the database. In some cases, depending on the
commands and parameters you choose, you can create a situation in which data leakage or data tampering
can occur. To prevent this, SAP recommends using the following practices in all procedures.

● Mark each parameter using the keywords IN or OUT. Avoid using the INOUT keyword.
● Use the INVOKER keyword when you want the user to have the assigned privileges to start a procedure.

The default keyword, DEFINER, allows only the owner of the procedure to start it.
● Mark read-only procedures using READS SQL DATA whenever it is possible. This ensures that the data and

the structure of the database are not altered.

 Tip
Another advantage to using READS SQL DATA is that it optimizes performance.

● Ensure that the types of parameters and variables are as specific as possible. Avoid using VARCHAR, for
example. By reducing the length of variables you can reduce the risk of injection attacks.

● Perform validation on input parameters within the procedure.

Dynamic SQL

In SQLScript you can create dynamic SQL using one of the following commands: EXEC and EXECUTE
IMMEDIATE. Although these commands allow the use of variables in SQLScript where they might not be

390 P U B L I C
SAP HANA Developer Guide

Developing Procedures

supported. In these situations you risk injection attacks unless you perform input validation within the
procedure. In some cases injection attacks can occur by way of data from another database table.

To avoid potential vulnerability from injection attacks, consider using the following methods instead of dynamic
SQL:

● Use static SQL statements. For example, use the static statement, SELECT instead of EXECUTE
IMMEDIATE and passing the values in the WHERE clause.

● Use server-side JavaScript to write this procedure instead of using SQLScript.
● Perform validation on input parameters within the procedure using either SQLScript or server-side

JavaScript.
● Use APPLY_FILTER if you need a dynamic WHERE condition
● Use the SQL Injection Prevention Function

Escape Code

You might need to use some SQL statements that are not supported in SQLScript, for example, the GRANT
statement. In other cases you might want to use the Data Definition Language (DDL) in which some <name>
elements, but not <value> elements, come from user input or another data source. The CREATE TABLE
statement is an example of where this situation can occur. In these cases you can use dynamic SQL to create
an escape from the procedure in the code.

To avoid potential vulnerability from injection attacks, consider using the following methods instead of escape
code:

● Use server-side JavaScript to write this procedure instead of using SQLScript.
● Perform validation on input parameters within the procedure using either SQLScript or server-side

JavaScript.

 Tip
For more information about security in SAP HANA, see the SAP HANA Security Guide.

7.2 Create and Edit Procedures

The SAP HANA SQLScript editor allows you to create, edit, and activate procedures.

Prerequisites

● You have created a development workspace. For more information, see Create a Repository Workspace.
● You have checked out a package.

SAP HANA Developer Guide
Developing Procedures P U B L I C 391

 Note
After checking out a package that contains active procedures, you can modify and debug the
procedures.

● You have created and shared a project. For more information, see Using SAP HANA Projects.

 Note
You can also share your project after you create your procedure.

● To enable semantic code completion, you must have the following user role permissions:
○ sap.hana.xs.dt.base::restapi
○ sap.hana.xs.ide.roles::Developer

Procedure

1. Open the New Stored Procedure wizard.
a. Go to the Project Explorer view in the SAP HANA Development perspective, right-click on the file name,

choose New Other SAP HANA Database Development Stored Procedure . Click Next. The
New Stored Procedure wizard appears.

b. Enter or select the parent folder, enter the file name, select Text (.hdbprocedure) for the file format,

select the target schema, and click Finish. The icon shows that your procedure is created locally.

 Note
The XML (.procedure) file format is compatible with the Modeler Procedure editor, but may not
support new SQLScript features. You should also use this format if you want to create a procedure
template instance.

The editor opens containing a default template for the procedure. The design-time procedure name is
generated in a shared project containing the full path. In an unshared project, the full function name
must be added manually. In the Properties view, you see the properties of your procedure, such as
Access Mode, Name, and Language.

2. Confirm the project is shared.

If you have not yet shared your project, right-click the project name, choose Team Share Project . The

Share Project wizard appears. Click Finish. The icon shows that your procedure is not committed and
not activated.

3. Write a new procedure or make changes to an existing one.
Begin writing your code inside your new procedure and save it locally. The syntax is checked
simultaneously and is highlighted. Auto-completion of the syntax appears as you type or by using the
Semantic Code Completion feature.

 Note
You can only write one stored procedure per file. The file name and the procedure name must be the
same. Only SQLScript language is supported for Text (.hdbprocedure) procedures.

392 P U B L I C
SAP HANA Developer Guide

Developing Procedures

To enable Semantic Code Completion:

a. Position the cursor where you want to insert an object.
b. Press CTRL + Space Bar .

A suggested list of valid objects appear.

 Note
Text based searches display the object names that begin with and contain the entered text.
Searches are asynchronous, the suggested list is updated in parallel to the user's refined textual
input.

c. Use the arrow keys to scroll through the list, click Enter to select the object, or Esc to close the code
completion window without selecting an object.

4. Confirm the procedure is Committed.

Confirm the procedure is synchronized to the repository as a design time object and the icon shows
that your procedure is committed. If not, click Save, right-click and select Team Commit .

5. Activate the procedure.
When you have finished writing your procedure and you are ready to activate it, right-click the procedure,

choose Team Activate . Your procedure is created in the catalog as a runtime object and the icon
shows that your procedure is activated. This allows you and other users to call the procedure and debug it.

If an error is detected during activation, an error message appears in the Problems view.

 Tip
You can also activate your procedure at the project and folder levels.

Related Information

Maintain a Repository Workspace [page 68]
Using SAP HANA Projects [page 67]
SAP HANA Repository Packages and Namespaces [page 79]
The SAP HANA Development Perspective [page 32]
SQLScript Security Considerations [page 390]
SAP HANA SQL and System Views Reference

SAP HANA Developer Guide
Developing Procedures P U B L I C 393

http://help.sap.com/saphelp_hanaplatform/helpdata/en/2e/1ef8b4f4554739959886e55d4c127b/frameset.htm

7.2.1 Define and Use Table Types in Procedures

You can use a table type to define parameters for a procedure; the table type represents tabular results.

Prerequisites

● Access to the SAP HANA repository

Context

If you define a procedure that uses data provided by input and output parameters, you can use table types to
store the parameterized data. These parameters have a type and are either based on a global table (for
example, a catalog table), a global table type, or a local (inline) table type. This task shows you two ways to use
the .hdbprocedure syntax to define a text-based design-time procedure artifact; the parameterized data for
your procedure can be stored in either of the following ways:

● Global
In an externally defined (and globally available) table type, for example, using the Core Data Service (CDS)
syntax

● Local:
In a table type that is defined inline, for example, in the procedure itself

Procedure

1. Create a procedure that uses data provided by a local (inline) table type.
To define a text-based design-time procedure, use the .hdbprocedure syntax. The procedure in this
example stores data in a local table type defined inline, that is; in the procedure itself.

 Note
If you plan to define a global table type (for example, using CDS) you can skip this step.

a. Create a design-time artifact called get_product_sale_price.hdbprocedure and save it in the
repository.

b. Add the following code to the new repository artifact get_product_sale_price.hdbprocedure.

 Tip
The table used to store the parameterized data is defined inline, in the procedure's OUT parameter.

 PROCEDURE
SAP_HANA_EPM_NEXT."sap.hana.democontent.epmNext.procedures::get_product_sal
e_price" (
 IN im_productid NVARCHAR(10),

394 P U B L I C
SAP HANA Developer Guide

Developing Procedures

 OUT ex_product_sale_price table (
 "PRODUCTID" nvarchar(10),
 "CATEGORY" nvarchar(40),
 "PRICE" decimal(15,2),
 "SALEPRICE" decimal(15,2)))
 LANGUAGE SQLSCRIPT
 SQL SECURITY INVOKER
 DEFAULT SCHEMA SAP_HANA_EPM_NEXT
 READS SQL DATA AS BEGIN

c. Save and activate the new (hdb)procedure artifact.
2. Define a global table type using Core Data Services (CDS).

If you want to define a global table type to store data for your use by your procedure, you can use the CDS
syntax to define the global table type, as illustrated in the following example:

 Note
This is only required if you want to use a global table type. If you plan to define a table type inline, you
can skip this step.

a. Create a design-time artifact called GlobalTypes.hdbdd and save it in the repository.
b. Add the following code to the new repository artifact GlobalTypes.hdbdd.

namespace sap.hana.democontent.epmNext.data; @Schema: 'SAP_HANA_EPM_NEXT'
context GlobalTypes {
 type tt_product_sale_price {
 PRODUCTID: String(10);
 CATEGORY: String(40);
 PRICE: Decimal(15,2);
 SALEPRICE: Decimal(15,2);
 };
};

c. Save and activate the new CDS table type.
This generates a table type called GlobalTypes.tt_product_sale_price in the package
sap.hana.democontent.epmNext.data. You use this path to reference the table type in your
procedure.

3. Create the procedure that uses data provided by a global table type.
To define a text-based design-time procedure, use the .hdbprocedure syntax. The procedure in this
example stores data in a table with the structure defined in the CDS global data type
tt_product_sale_price.

 Note
This is only required if you want to use a global table type. If you plan to define a table type inline, you
can skip this step.

a. Create a design-time artifact called get_product_sale_price.hdbprocedure and save it in the
repository.

b. Add the following code to the new repository artifact get_product_sale_price.hdbprocedure.

SAP HANA Developer Guide
Developing Procedures P U B L I C 395

 Tip
The OUT parameter refers to the CDS type tt_product_sale_price defined in the CDS
document GlobalTypes.hdbdd.

PROCEDURE
SAP_HANA_EPM_NEXT."sap.hana.democontent.epmNext.procedures::get_product_sal
e_price" (IN im_productid NVARCHAR(10),
 OUT ex_product_sale_price SAP_HANA_EPM_NEXT."
sap.hana.democontent.epmNext.data::GlobalTypes.tt_product_sale_price")
 LANGUAGE SQLSCRIPT
 SQL SECURITY INVOKER
 DEFAULT SCHEMA SAP_HANA_EPM_NEXT
 READS SQL DATA AS BEGIN

c. Save and activate the new (hdb)procedure artifact.

7.2.2 Tutorial: Create an SQLScript Procedure that Uses
Imperative Logic

SQLScript procedures can make use of standard SQL statements to build a query that requests data and
returns a specified result set.

Prerequisites

To complete this exercise successfully, bear in mind the following prerequisites:

● You have the user credentials required to log on to SAP HANA
● You have installed the SAP HANA studio
● You have a shared SAP HANA project available (preferably of type XS Project).
● The shared project contains a folder called Procedures.
● You have installed the SAP HANA Interactive Education (SHINE) HCODEMOCONTENT delivery unit (DU); this

DU contains the tables and views that you want to consume with the procedure you build in this tutorial.
● You have generated data to populate the tables and views provided by the SHINE delivery unit and used in

this tutorial. You can generate the data with tools included in the SHINE delivery unit.

 Note
You might have to adjust the paths in the code examples provided to suit the package hierarchy in your SAP
HANA repository, for example, to point to the underlying content (demonstration tables and services)
referenced in the tutorial.

396 P U B L I C
SAP HANA Developer Guide

Developing Procedures

Context

The stored procedure you create in this tutorial uses standard SQL statements (for example, SELECT
statements) and some imperative logic constructs to determine the sale price of a product based on the
product category.

Procedure

1. Open the SAP HANA studio.
Switch to the SAP HANA Development perspective, open the Project Explorer view, and navigate to the
shared project in which you want to create the new stored procedure.

2. Create the file that will contain the stored procedure.
If not already available, create a new folder (package) called procedures in the selected project.

a. Start the Create New Procedure wizard.

In the Project Explorer view, right-click the procedures folder and choose New Other... from the
context-sensitive pop-up menu. In the Select a wizard dialog, choose SAP HANA Database
Development Stored Procedure .

SAP HANA Developer Guide
Developing Procedures P U B L I C 397

b. Type the name of the new stored procedure.
Type get_product_sales_price in the File name box and choose Text (.hdbprocedure) in the File
format drop-down menu.

 Tip
The file-creation wizard adds the suffix (.hdbprocedure) automatically.

398 P U B L I C
SAP HANA Developer Guide

Developing Procedures

c. Choose Finish to create the stored procedure and open it in the SAP HANA studio's embedded
SQLScript Editor.

3. Define the new stored procedure.
This procedure uses standard SQL statements and some imperative logic constructs to determine the sale
price of a product based on the product category.
a. In the SQLScript Editor, define details of the stored procedure.

Use the following code to define the stored procedure.

PROCEDURE SAP_HANA_DEMO.get_product_sales_price (IN productid NVARCHAR(10),
 OUT product_sale_price
SAP_HANA_DEMO."sap.hana.democontent.epm.data::EPM.Procedures.tt_product_sal
e_price")
 LANGUAGE SQLSCRIPT
 SQL SECURITY INVOKER
 READS SQL DATA AS
BEGIN
/*****************************

SAP HANA Developer Guide
Developing Procedures P U B L I C 399

 Write your procedure logic
*****************************/
declare lv_category nvarchar(40) := null;
declare lv_discount decimal(15,2) := 0;
lt_product = select PRODUCTID, CATEGORY, PRICE
 from "sap.hana.democontent.epm.data::EPM.MasterData.Products"
 where PRODUCTID = :productid;
select CATEGORY into lv_category from :lt_product;
if :lv_category = 'Notebooks' then
 lv_discount := .20;
elseif :lv_category = 'Handhelds' then
 lv_discount := .25;
elseif :lv_category = 'Flat screens' then
 lv_discount := .30;
elseif :lv_category like '%printers%' then
 lv_discount := .30;
else
 lv_discount := 0.00; -- No discount
end if;
product_sale_price =
 select PRODUCTID, CATEGORY, PRICE,
 PRICE - cast((PRICE * :lv_discount) as decimal(15,2))
 as "SALEPRICE" from :lt_product;
END;

b. Save the changes you have made to the new stored procedure.
c. Activate the new stored procedure in the SAP HANA Repository.

In the Project Explorer view, right-click the new get_product_sales_price procedure and choose Team
Activate... from the context-sensitive menu.

4. Test the new stored procedure using SAP HANA studio's embedded SQL console.
a. Start the SQL Console.

In the Project Explorer view, right-click the SAP HANA System Library node and choose SQL
Console from the context-sensitive menu.

b. Call the new stored procedure.
Enter the following SQL statement (adjusting the path sap.hana... to the new procedure if
necessary) and choose Execute.

call
SAP_HANA_DEMO."sap.hana.democontent.epm.Procedures::get_product_sales_price
" (productid => 'HT-1000', product_sale_price => ?);

400 P U B L I C
SAP HANA Developer Guide

Developing Procedures

7.3 Create Scalar and Table User-Defined Functions

You can create, edit, and activate design-time scalar and table user-defined functions (UDF). These functions
are added to a SELECT statement in the body of a stored procedure.

Procedure

1. Open a New Scalar Function or New Table Function wizard.
Go to the Project Explorer view in the SAP HANA Development perspective, right-click on the file name,
choose New Other SAP HANA Database Development Scalar Function or Table Function. The
New Scalar Function or New Table Function wizard appears.

2. Define the function parameters.
Enter or select the parent folder, enter the file name, and choose Finish.
The editor opens containing a default template for the function. In a shared project, the design-time
function name is generated containing the full path. In an unshared project, the full function name must be
added manually.

3. Commit and activate your function.

Related Information

Create and Edit Procedures [page 391]

7.3.1 Tutorial: Create a Scalar User-Defined Function

In SQL, a user-defined function (UDF) enables you to build complex logic into a single database object. A scalar
UDF is a custom function that can be called in the SELECT and WHERE clauses of an SQL statement.

Prerequisites

To complete this exercise successfully, you must bear in mind the following prerequisites:

● You have the user credentials required to log on to SAP HANA
● You have installed the SAP HANA studio
● You have a shared SAP HANA project available (preferably of type XS Project)
● The shared project contains a folder called functions
● You have installed the SAP HANA Interactive Eduction (SHINE) HCODEMOCONTENT delivery unit (DU); this

DU contains the demonstration content (tables and views) that you want to consume with the procedure
you build in this tutorial.

SAP HANA Developer Guide
Developing Procedures P U B L I C 401

● You have generated data to populate the tables and views provided by the SHINE delivery unit and used in
this tutorial. You can generate the data with tools included in the SHINE delivery unit.

 Note
You might have to adjust the paths in the code examples provided to suit the/package hierarchy in your
SAP HANA repository, for example, to point to the underlying content (demonstration tables and services)
referenced in the tutorial.

Context

A scalar user-defined function has a list of input parameters and returns the scalar values specified in the
RETURNS <return parameter list> option defined in the SQL function, for example, decimal(15,2).
The scalar UDF named apply_discount that you create in this tutorial performs the following actions:

● Applies a discount to the stored product price
● Calculates the sale price of a product including the suggested discount

To create the scalar UDF apply_discount, perform the following steps:

Procedure

1. Open the SAP HANA studio.
Start the SAP HANA Development perspective, open the Project Explorer view, and navigate to the shared
project in which you want to create the new scalar UDF.

2. Create the file that will contain the scalar UDF.
If not already available, create a new folder (package) called functions in the selected project.

a. Start the Create New UDF wizard.

In the Project Explorer view, choose New Other... SAP HANA Database Development Scalar
Function and choose Next.

402 P U B L I C
SAP HANA Developer Guide

Developing Procedures

b. Type the name of the new scalar UDF.
Type apply_discount in the File name box.

 Tip
The file-creation wizard adds the suffix (.hdbscalarfunction) automatically.

SAP HANA Developer Guide
Developing Procedures P U B L I C 403

c. Choose Finish to create the scalar UDF and open it in SAP HANA studio's embedded SQL editor.
3. Create the user-defined function.

The user-defined function (UDF) you create in this step applies a discount to the stored product price and
calculates the sale price of a product including the suggested discount.
a. In the SQL Editor, type the code that defines the new user-defined function.

You can use the following code example, but make sure the paths point to the correct locations in your
environment, for example, the schema name, the package location for the new UDF, and the location of
the demo tables referenced in the code.

FUNCTION
"SAP_HANA_DEMO"."sap.hana.democontent.epm.functions::apply_discount"
(im_price decimal(15,2), im_discount decimal(15,2))
 RETURNS result decimal(15,2)
 LANGUAGE SQLSCRIPT
 SQL SECURITY INVOKER AS

404 P U B L I C
SAP HANA Developer Guide

Developing Procedures

BEGIN
result := :im_price - (:im_price * :im_discount);
END;

b. Save the changes you have made to the new scalar UDF.
c. Activate the new scalar UDF in the SAP HANA Repository.

In the Project Explorer view, right-click the new apply_discount.hdbscalarfunction UDF artifact
and choose Team Activate.. in the context-sensitive menu.

d. Check the catalog to ensure the new UDF was successfully created in the correct location.

4. Use the new UDF in an SQL select statement.

You can use the following example statement, but make sure you modify the paths to point to the correct
locations in your environment, for example, the schema name, the package location for the new UDF, and
the location of the demo tables referenced in the code.

select PRODUCTID, CATEGORY, PRICE, "SAP_HANA_DEMO"."sap.hana.democontent.epm.functions::apply_discount"(PRICE,
0.33)
 as "SalePrice" from
 "sap.hana.democontent.epm.data::EPM.MasterData.Products";

5. Check the results in the Results tab of the SQL Console.

SAP HANA Developer Guide
Developing Procedures P U B L I C 405

7.3.2 Tutorial: Create a Table User-Defined Function

In SQL, a user-defined function (UDF) enables you to build complex logic into a single database object that you
can call from a SELECT statement. You can use a table user-defined function (UDF) to create a parameterized,
fixed view of the data in the underlying tables.

Prerequisites

To complete this exercise successfully, bear in mind the following prerequisites:

● You have the user credentials required to log on to SAP HANA
● You have installed the SAP HANA studio
● You have a shared SAP HANA project available (preferably of type XS Project)
● The shared project contains a folder called functions
● You have installed the SHINE (democontent) delivery unit (DU); this DU contains the tables and views that

you want to consume with the procedure you build in this tutorial.
● You have generated data to populate the tables and views provided by the SHINE delivery unit and used in

this tutorial. You can generate the data with tools included in the SHINE delivery unit.

 Note
You might have to adjust the paths in the code examples provided to suit the package hierarchy in your SAP
HANA repository, for example, to point to the underlying content (demonstration tables and services)
referenced in the tutorial.

406 P U B L I C
SAP HANA Developer Guide

Developing Procedures

Context

A table UDF has a list of input parameters and must return a table of the type specified in RETURNS <return-
type>. The table UDF named get_employees_by_name_filter that you create in this tutorial performs the
following actions:

● Executes a SELECT(INNER JOIN) statement against the employee and address tables
● Filters the results by performing a fuzzy search on the last name

To create a table user-defined function called get_employees_by_name_filter, perform the following
steps:

Procedure

1. Open the SAP HANA studio.
Start the SAP HANA Development perspective, open the Project Explorer view, and navigate to the shared
project in which you want to create the new table UDF.

2. Create the file that will contain the table UDF.
If not already available, create a new folder (package) called functions in the selected project.

a. Start the Create New UDF wizard.

In the Project Explorer view, choose New Other... SAP HANA Database Development Table
Function and choose Next.

SAP HANA Developer Guide
Developing Procedures P U B L I C 407

b. Type the name of the new table UDF.
Type get_employees_by_name_filter in the File name box.

 Tip
If the file-creation wizard does not automatically add the suffix (.hdbtablefunction), select the
parent folder where you want to create the new function.

408 P U B L I C
SAP HANA Developer Guide

Developing Procedures

c. Choose Finish to create the table UDF and open it in SAP HANA studio's embedded SQL editor.
3. Define details of the user-defined function.

The user-defined function you create in this step first executes a SELECT(INNER JOIN) statement
against the employee and address tables and then filters the results by performing a fuzzy search on the
last name.
a. In the SQL Editor, type the code that defines the new user-defined function.

You can use the following code example, but make sure the paths point to the correct locations in your
environment, for example, the schema name, the package location for the new UDF, and the location of
the demo tables referenced in the code.

FUNCTION
"SAP_HANA_DEMO"."sap.hana.democontent.epm.functions::get_employees_by_name_
filter" (lastNameFilter nvarchar(40))
 RETURNS table (EMPLOYEEID NVARCHAR(10),
 "Name.FIRST" NVARCHAR(40),
 "Name.LAST" NVARCHAR(40),
 EMAILADDRESS NVARCHAR(255),
 ADDRESSID NVARCHAR(10), CITY NVARCHAR(40),
 POSTALCODE NVARCHAR(10), STREET NVARCHAR(60))
LANGUAGE SQLSCRIPT

SAP HANA Developer Guide
Developing Procedures P U B L I C 409

SQL SECURITY INVOKER AS

BEGIN
RETURN
 select a.EMPLOYEEID, a."Name.FIRST",
 a."Name.LAST", a.EMAILADDRESS,
 a.ADDRESSID, b.CITY, b.POSTALCODE, b.STREET
 from "sap.hana.democontent.epm.data::EPM.MasterData.Employees"
 as a
 inner join
 "sap.hana.democontent.epm.data::EPM.MasterData.Addresses"
 as b
 on a.ADDRESSID = b.ADDRESSID
 where contains("Name.LAST", :lastNameFilter, FUZZY(0.9));
END;

b. Save the changes you have made to the new table UDF.
c. Activate the new table UDF in the SAP HANA Repository.

In the Project Explorer view, right-click the new get_employees_by_name_filter UDF artifact and choose
Team Activate.. in the context-sensitive menu.

d. Check the catalog to ensure the new UDF was successfully created in the correct location.

4. Use the new UDF in an SQL select statement.

You can use the following example statement, but make sure you modify the paths to point to the correct
locations in your environment, for example, the schema name, the package location for the new UDF, and
the location of the demo tables referenced in the code.

select * from
"SAP_HANA_DEMO"."sap.hana.democontent.epm.functions::get_employees_by_name_fil
ter"('*ll*')

5. Check the results in the Results tab of the SQL Console.

410 P U B L I C
SAP HANA Developer Guide

Developing Procedures

7.4 Create Procedure Templates

A procedure template is an artifact containing a base script with predefined placeholders for objects such as
tables, views and columns. The procedure template enables you to create procedures that contain the same
script, but with different values.

Prerequisites

● You have created a development workspace. For more information, see Create a Repository Workspace.
● You have checked out a package. For more information, see SAP HANA Repositories View.

 Note
After checking out a package that contains active procedures, you can modify and debug the
procedures.

● You have created and shared a project. For more information, see Using SAP HANA Projects.

 Note
You can also share your project after you create your procedure template.

Procedure

1. Open the New File wizard.
After you have created your workspace and your project, go to the Project Explorer view in the SAP HANA
Development perspective, right-click on the file name, choose New File . The New File wizard
appears.

2. Enter or select the parent folder and enter the file name using the following naming convention
<filename>.proceduretemplate.

3. Choose Finish.
The Template Script editor opens.

SAP HANA Developer Guide
Developing Procedures P U B L I C 411

4. Define the template parameters.

Click the icon from the toolbar in the Template Parameters table to add a parameter to the table. You
can rename the parameter and give it a meaningful name. Add the parameters to the table and to the
script where they are used as a placeholder for the following objects:
○ Schema name
○ Table name and table column name
○ View name and view column name
○ Procedure name

The parameters can only be used in the procedure body, between the BEGIN and END, and not as part of
the procedure header. The parameters must follow the SQL identifier semantics. Each parameter should
be wrapped using the less than (<) and greater than (>) symbols. For example:

SELECT <My_Column> FROM <My_Table>;

 Caution
You cannot add a parameter as a placeholder for other objects or syntactic statements.

5. Commit and activate your procedure template.

 Caution
To avoid errors during activation, you must make sure your procedure template is consistent. For
example:
○ A parameter that is a placeholder for a table must be in a valid position that is syntactically correct.
○ A parameter name must be identical in the Template Parameters table and the Template Script.

Related Information

Maintain a Repository Workspace [page 68]
The Repositories View [page 33]
Using SAP HANA Projects [page 67]
Create and Edit Procedures [page 391]

7.4.1 Create Procedure Template Instances

A procedure template instance is an artifact that is created from a procedure template. It contains the same
procedure script and uses specific values for the predefined placeholders in the script. Procedure template
instances are coupled with the procedure template, which means any changes that are made to the template
are also applied to the template instances. During activation, a template instance is generated as a procedure
in the catalog.

412 P U B L I C
SAP HANA Developer Guide

Developing Procedures

Prerequisites

You have created a procedure template or checked out an existing one. For more information, see Create
Procedure Templates.

Procedure

1. Open a New Procedure wizard.
a. Go to the Project Explorer view in the SAP HANA Development perspective, right-click the file name,

choose New Other . The New wizard appears.

 Note
The latest version of the procedure template must be checked out to your local workstation before
you can select it.

b. Expand the Database Development folder and select Stored Procedure. The New Procedure wizard
appears.

2. Define the new procedure attributes.
Enter or select the parent folder, enter the file name, select XML (.procedure) - Deprecated for the file
format. Choose Advanced, select the Create from procedure template checkbox , and choose Browse.
Select the relevant template, choose OK, and choose Finish.

3. In the Procedure Template Instance editor, add a value in the Value column for each parameter, and choose
Save.

 Note
The value is the string that replaces the parameter in the template script.

4. Commit and activate your procedure template instance.

 Note
During activation:
○ The procedure is created in the catalog using the values specified in the instance with the active

template in the repository.
○ A reference between the instance and its template is created to link them together.

Related Information

Create Procedure Templates [page 411]
Create and Edit Procedures [page 391]
Update Procedure Templates and Instances [page 414]
Delete Procedure Templates and Instances [page 414]

SAP HANA Developer Guide
Developing Procedures P U B L I C 413

7.4.2 Update Procedure Templates and Instances

The procedure template script and its parameters can be modified, which also modifies the template instances
that refer to it. Only the template parameter values can be changed in the procedure template instances.

Procedure

1. To update a procedure template and its instances, double-click the relevant file in the Project Explorer view.
The file appears in the Template Script editor.

2. You can change the list of template parameters or the template script. Choose Save.

 Note

If you change the list of template parameters, you should also update the instances by choosing the
Refresh button to update the list of parameters and enter the values.

3. Commit and activate your procedure template and its instances.

 Note
During activation, the corresponding instances are reactivated and the changes are applied
accordingly.

Related Information

Create and Edit Procedures [page 391]

7.4.3 Delete Procedure Templates and Instances

A procedure template can be deleted if there are no instances linked to it. If there are instances linked to the
procedure template, they must be deleted before you can delete the procedure template.

Procedure

1. To delete a procedure template or a procedure instance, right-click the relevant file in the Project Explorer
view, choose Delete, and choose OK.

2. Commit and activate the package.

414 P U B L I C
SAP HANA Developer Guide

Developing Procedures

 Note
If an error occurs during activation because there are instances linked to the procedure template that
you are trying to delete, then right-click the project name and choose Team Resolve .

Related Information

Create and Edit Procedures [page 391]

7.5 Debugging Procedures

The SAP HANA SQLScript debugger allows you to debug and analyze procedures. In a debug session, your
procedures are executed in serial mode, not in parallel (not optimized). The stored procedure call stack
appears in the debug view allowing you to view the nested calls. This allows you to test the correctness of the
procedure logic and is not intended for evaluating the performance.

The following debug session types are available:

● Design-Time - Enables you to debug a design-time procedure artifact (.procedure/.hdbprocedure)
● Catalog - Enables you to debug a runtime procedure object
● External - Enables you to debug procedures that are executed by an external session
● Unified - Enables you to debug targets of both XS JavaScript and SQLScript in the debug view

Related Information

Debug Design-Time and Catalog Procedures [page 416]
Debug an External Session [page 419]
The Debug Perspective [page 620]

7.5.1 Setup Debugger Privileges

Grant debugger privileges to your user.

Procedure

1. Go to the Systems view in the SAP HANA Development perspective and open Security Users .

SAP HANA Developer Guide
Developing Procedures P U B L I C 415

 Note
You can also grant authorization from the SQL Console.

2. Double-click your user ID. Your system privileges information appears.

3. Choose the Object Privileges tab to grant debug privileges to a schema or to procedures. Choose the
Add button, select the relevant schema or procedure, and choose OK. Select the schema or procedure in
the table and select DEBUG.

 Note
If you want to allow other users to debug your schema or procedures, select Yes under Grantable to
others.

4. Choose the Deploy button (F8).

7.5.2 Debug Design-Time and Catalog Procedures

You can debug and analyze active SQLScript procedures that are in a local shared project (.hdbprocedure
or .procedure).

Procedure

1. Open a procedure.

○ For catalog procedures go to the Project Explorer view in the SAP HANA Development perspective or to
the Systems view, choose Catalog, select the schema, and double-click the procedure to open it in the
SAP HANA Stored Procedure viewer.

○ For design-time procedures open the Debug perspective in the SAP HANA studio and select the
procedure you want to debug by choosing the relevant tab in the Editor view.

2. Add breakpoints.
To add breakpoints double-click the left vertical ruler to add breakpoints to your procedure. You can see a
list of all of the breakpoints in the Breakpoints view.

416 P U B L I C
SAP HANA Developer Guide

Developing Procedures

From the Breakpoints view, you can:

○ Deselect specific breakpoints or skip all of them.
○ Delete a specific breakpoint or delete all of them.
○ Double-click a breakpoint to see which line it belongs to in the Editor view.
○ See the status of the breakpoint:

○ Pending
○ Valid

○ Invalid
3. Start a debug session.

To start a new debug session, you must first create a debug configuration. Choose and Debug
Configurations.... The Debug Configurations wizard appears.

 Note

You can also go to the Project Explorer view, right-click your procedure, choose Debug As SAP
HANA Stored Procedure .

4. In the General tab, do the following:
a. Select the Procedure to Debug radio button and choose Local projects from the drop-down menu.
b. Choose Browse...and select a procedure from a schema in the relevant system to debug. Choose OK.

5. In the Input Parameters tab, a list of the parameters and types is displayed for your procedure. You must
add values for each parameter in the Value column.

SAP HANA Developer Guide
Developing Procedures P U B L I C 417

 Note
For scalar types, insert a value. For table types, enter the name of a catalog table
(schema.tablename) that contains the relevant input. For example, SYS.USERS.

 Note
To debug a procedure that does not require you to define values for input parameters, double-click
SQLScript Procedure, enter a name, choose Apply, and choose Debug.

6. If you want to control the way your procedures are compiled in debug mode, go to the Advanced tab, and
select one of the following radio buttons:
○ All procedures in the call stack to compile all of the nested procedures that are referenced from the

procedure stack in debug mode
○ Procedures with breakpoints to compile procedures with breakpoints in debug mode

 Caution
Selecting Procedures with breakpoints will make the compilation and the procedure execution faster.
However, it may prevent you from breaking in a procedure that was compiled in an optimized way.

7. Choose Apply and Debug.
8. To start your debug session, choose Debug.

The debug session begins and the status of the session appears in the Debug view. The debugger will stop
at the first breakpoint and the session will be suspended until you resume it. After the server validates your
breakpoints, the status and position of them may change. The position of the breakpoints is the next valid
line where the debugger can stop. If your breakpoint is successfully set, the valid status appears next to
it in the Breakpoints view.

 Caution
Selecting Procedures with breakpoints makes the compilation and the procedure execution faster.
However, it may prevent you from breaking in a procedure that was compiled in an optimized way.

 Note
You must set breakpoints in the lines you want to break at and resume the session again.

You can evaluate your local scalar and table variables in the Variable view. The view shows the values of the
scalar variables and the number of rows in each table.

9. View the content of the listed tables in the Variable view.
Right-click the table name and choose Open Data Preview. The results will appear in the Preview view. This
view will automatically close when you resume your debug session.

Results

The debug session is terminated when the procedure run has finished.

418 P U B L I C
SAP HANA Developer Guide

Developing Procedures

7.5.3 Debug an External Session

You can debug and analyze procedures that are executed by an external application.

Prerequisites

● You know the connection ID, the HANA user, or the HANA user and the application user that your external
application uses to connect to the SAP HANA database and to call procedures.

● You have activated your stored procedures.
● You have granted debugger privileges to your user:

1. Go to the Systems view in the SAP HANA Development perspective and open Security Users .
2. Double-click your user ID. Your system privileges' information will appear.
3. Choose the Object Privileges tab to grant debug privileges to a schema or to procedures. Choose the

Add button, select the relevant schema or procedure, and choose OK. Select the schema or
procedure in the table and select DEBUG.

 Note
If you want to allow other users to debug your schema or procedures, select Yes under Grantable to
others.

4. Choose the Privileges on Users tab to allow other users to debug procedures in your connection.

Choose the Add button, select the relevant user, and select ATTACH DEBUGGER.

5. Choose the Deploy button (F8).

 Caution
Granting debugger privileges to your user enables you to connect to other user's sessions, and
therefore debug procedures that you are not allowed to run and view data that you are not allowed to
examine.

Procedure

1. Start a debug session.

To start a new debug session, you must first create a debug configuration. Choose and Debug
Configurations.... The Debug Configurations wizard appears.

2. In the General tab, select the Debug an external session radio button, and choose SAP HANA System.
a. Select the Set filter attributes radio button if you know the connection attributes that your external

application uses to connect to the SAP HANA database. Enter HANA User, which is the SAP HANA
database user, and optionally enter Application User if your external application sets this attribute for
the connection.

SAP HANA Developer Guide
Developing Procedures P U B L I C 419

 Note
It is not mandatory for the connection to be established before you start the debug session.

b. Select the Select a connection after initiating the debugger radio button if you know the connection ID
that your external application uses to connect to the SAP HANA database. This option enables you to
choose a specific connection after the debugger session has started.

If you want to save the debug configuration you created and debug your procedure later, choose Apply
and Close. To start your debug session, choose Debug and trigger the call to the SAP HANA procedure
from your external application.. The Select Connection wizard appears. Choose a connection ID and
choose OK.

 Note
It is mandatory for the connection to be established before you start the debug session.

Results

The debug session will begin and you will see the status of the session in the Debug view. The debugger will wait
until your procedure is executed on the connection ID that your external application uses. Once your procedure
is executed, the debugger will stop at the first breakpoint, and the session will be suspended until you resume
it. You will also see the your procedure name in the third and fourth level of the Debug view.

After the server has validated your breakpoints, the status and position of them may change. The position of
the breakpoints will be the next valid line where the debugger can stop. If your breakpoint is successfully set,
the valid status appears next to it in the Breakpoints view.

 Caution
If more than one user tries to debug a procedure in the same connection that was either selected or
identified by a user name, only the first user that chooses Debug will be able to stop at a breakpoint and
debug the procedure.

 Note
You must set breakpoints in the lines you want to break at and resume the session again.

You can evaluate your local scalar and table variables in the Variable view. The view shows the values of the
scalar variables and the number of rows in each table.

420 P U B L I C
SAP HANA Developer Guide

Developing Procedures

7.6 Developing Procedures in the Modeler Editor

Context

To create procedures, use the SQLScript Editor, as described in Create and Edit Procedures [page 391].

If you need to create procedures with local table types, that is, table types created only for the procedure,
perform the steps described in this section.

Procedure

1. On the Quick Launch tab page, choose Procedure.

If the Quick Launch page is not open, go to Help Quick Launch .
2. Enter a name and description for the procedure.
3. For unqualified access in SQL, select the required schema from the Default Schema dropdown list.

 Note
○ If you do not select a default schema, while scripting you need to provide fully qualified names of

the catalog objects that include the schema.
○ If you specify a default schema, and write SQL such as select * from myTable, the specified

default schema is used at runtime to refer to the table.

4. Select the package in which you want to save the procedure.
5. Select the required option from the Run With dropdown list to select which privileges are to be considered

while executing the procedure.

 Note
There are two types of rights, as follows:

Definer's right: If you want the system to use the rights of the definer while executing the procedure for
any user.

Invoker's right: If you want the system to use the rights of the current user while executing the
procedure.

6. Select the required access mode as follows:

Access Mode Purpose

Read Only Use this mode to create procedures for fetching table
data.

SAP HANA Developer Guide
Developing Procedures P U B L I C 421

Access Mode Purpose

Read Write Use this mode to create procedures for fetching and
updating table data.

7. Select the language in which you are writing the procedure.

 Note
You can choose to create procedures in Read Write mode and make use of L- Lang and R-lang
languages only if you have done the repository configuration for the field sqlscript_mode . Two values
for sqlscript_mode field exist, DEFAULT, and UNSECURE. By default DEFAULT is assigned which means
Read Only mode with non-modifiable access mode and SQLScript as language. To change the
configuration, go to administration console -> Configuration tab -> indexserver.ini -> repository ->
sqlscript_mode, and assign the required value.

8. Choose Finish.
9. In the function editor pane, write a script for the function using the following data types:

○ Table or scalar data types for input parameters.
○ Table data types for output parameters.

 Note
You can only write one function in the function body. However, you can refer to other functions.

10. Choose File Save .
11. Activate the procedure using one of the following options in the toolbar:

○ Save and Activate: Activate the current procedure and redeploy the affected objects if an active version
of the affected object exists. Otherwise only the current procedure gets activated.

○ Save and Activate All: Activate the current procedure along with the required and affected objects.

 Note
You can also activate the current procedure by selecting the procedure in the Navigator view and
choosing Activate in the context menu. For more information about activation, see Activating Objects
[page 361].

7.7 Transforming Data Using SAP HANA Application
Function Modeler

Overview of SAP HANA application function modeler.

A flowgraph is a development object. It is stored in a project and has extension .hdbflowgraph. By default,
the activation of a flowgraph generates a procedure in the catalog.

422 P U B L I C
SAP HANA Developer Guide

Developing Procedures

 Note
If the optional additional cost SAP HANA smart data integration and SAP HANA smart data quality
component is available, a flowgraph can be configured to generate a task plan run-time object instead of a
procedure.

 Note
Columns that you do not map as inputs to a flowgraph will not be sent over the network to be processed by
SAP HANA. Excluding columns as inputs can improve performance, for example if they contain large object
types. You can also choose to enhance security by excluding columns that, for example, include sensitive
data such as passwords.

A flowgraph models a data flow that can contain:

● tables, views, and procedures from the catalog
● relational operators such as projection, filter, union, and join
● functions from Application Function Libraries (AFL) installed on your system
● attribute view and calculation view development objects

In addition, the application function modeler provides support for some optional, additional cost components
of the SAP HANA Platform such as:

● the Business Function Library
● the Predictive Analysis Library
● R Scripts
● Data Provisioning operators
● the generation of task plans

The application function modeler is part of the SAP HANA Development perspective and utilizes the following
components.

SAP HANA Developer Guide
Developing Procedures P U B L I C 423

Components used by the SAP HANA application function modeler

Area Description

1 Project Explorer view The Project Explorer is used as a source of objects that can be added to the
Editing Area.

2 Editing Area In the Editing Area, the flowgraph is modeled. Elements are added to the flow-
graph by dragging objects from the Project Explorer or node templates from the
Node Palette to the Editing Area. There, they can be selected and edited via the
context button pad and the context menu. The Editing Area supports standard
editing operations like copy, paste, and delete, as well as moving elements by
drag and drop. The properties of selected flowgraph elements can be edited in
the Properties view.

3 Node Palette The Node Palette lists the node templates available to the application function
modeler. These node templates can be added to the flowgraph by dragging them
to the Editing Area. In case an optional, additional cost component of the SAP
HANA Platform is detected by the application function modeler, an additional
compartment with node templates for its functions is automatically added to the
Node Palette.

4 Properties view The Properties view shows the property details of the selected flowgraph ele
ment.

424 P U B L I C
SAP HANA Developer Guide

Developing Procedures

 Tip

You can open the SAP HANA Development perspective by choosing Window Open Perspective SAP
HANA Development , the Properties view by choosing Window Show View Properties , and the
Project Explorer views by choosing Window Show View Project Explorer .

Related Information

The SAP HANA Development Perspective [page 32]
The Project Explorer View [page 34]
SAP HANA Projects [page 36]
Attribute Views [page 340]
Calculation Views [page 350]

7.7.1 Converting deprecated AFL Models (AFLPMML objects)

Convert a deprecated AFL Model development object that was created by a previous version of the SAP HANA
application function modeler into a flowgraph.

Context

AFL Models are development objects with the extension .aflpmml that were created with a previous version of
the SAP HANA application function modeler. They are deprecated in SAP HANA SPS09.

Compared to the complex data flows with various operators modeled by a flowgraph, an AFL Model object is
restricted to model a single function from the Application Function Library together with the data sources and
data sinks that are connected to this function.

An AFL Model can still be activated. However, since AFL Models are deprecated, it can no longer be directly
edited with the application function modeler. Instead, the AFL Model first has to be converted to a flowgraph.
Then this flowgraph can be edited with the application function modeler. For backward compatibility, the edited
flowgraph can be re-converted to an AFL Model. This requires all changes to the flowgraph to be compatible
with the restrictions of AFL Models.

 Note
From SAP HANA 2.0 SPS03, the deprecated .aflpmml file can no longer be activated. Before an upgrade
to SPS03, any old .aflpmml objects must be either converted to or re-created in the
format .hdbflowgraph.

SAP HANA Developer Guide
Developing Procedures P U B L I C 425

Procedure

1. In the Project Explorer view right-click on the AFL Model that you want to convert to a flowgraph, and then
choose Convert to Flowgraph in the context-sensitive menu.
The application function modeler creates a new flowgraph with the same prefix and the .hdbflowgraph
extension. A dialog appears that lets you delete the AFL Model and its corresponding generated procedure.
Afterward, you can edit the new flowgraph with the application function modeler.

 Note
If you choose not to delete the converted application function modeler Model and try to activate a
flowgraph, you get an error stating that there already exists an active catalog object with the same
name (the new object tries to generate the same runtime object). You need to either delete or rename
one of the two objects and activate the modification as well.

 Note
A flowgraph cannot be activated on a SAP HANA SPS08 system.

2. (Optional) Convert a flowgraph to a AFL Model. In the Project Explorer view right-click on the flowgraph that
you want to convert to an AFL Model, and then choose Convert to AFLPMML in the context-sensitive menu.
The application function modeler creates a new AFL Model with the same prefix and the .aflpmml
extension.

 Note
AFL Model objects are deprecated. This conversion is available for backward compatibility. Most
features of a flowgraph are not supported by the AFLPMML format.

7.7.2 Setting up the SAP HANA Application Function Modeler

Configure your system to use the SAP HANA Application Function Modeler.

Before modeling flowgraphs with the SAP HANA Application Function Modeler (AFM), make sure that the
following system requirements are satisfied and that the following database access rights are granted to the
respective database users.

System Requirements

The AFM has the following system requirements.

● You have installed the current version of SAP HANA.
● You have installed the Application Function Libraries (AFLs) that you want to use. For more information,

see the section Installing or Updating SAP HANA Components in the SAP HANA Server Installation and
Update Guide.

● You have enabled the Script Server in your SAP HANA instance. See SAP Note 1650957 for more
information.

426 P U B L I C
SAP HANA Developer Guide

Developing Procedures

Privileges for the database user _SYS_REPO

The database user _SYS_REPO has to be granted the following object privileges:

● SELECT object privileges for objects that are used as data sources,
● INSERT object privileges for objects that are used as data sinks,
● INSERT and DELETE object privileges for objects that are used as data sinks with truncation.

 Note
Granting access rights to the user _SYS_REPO may constitute a security risk. Make sure that you
understand the privileges you grant to database users. Also see the SAP HANA Security Guide.

Privileges for the database user of the AFM

You have to be granted the MODELING role.

You have to be granted the EXECUTE privilege for the object SYS.REPOSITORY_REST.

You have to be granted the following package privileges:

● repo.read package privileges on your repository package
● repo.activate_native_objects package privileges on your repository package
● repo.edit_native_objects package privileges on your repository package
● repo.maintain_native_packages package privileges on your repository package

In addition, you have to be granted the following object privileges to the target schema of the flowgraph
activation (default: _SYS_BIC):

● CREATE ANY
● ALTER
● DROP
● EXECUTE
● SELECT
● INSERT
● UPDATE

 Note
Granting access rights to the user _SYS_REPO may constitute a security risk. Make sure that you
understand the privileges you grant to database users. Also see the SAP HANA Security Guide.

7.7.3 Flowgraphs

This is an overview of all flowgraph elements.

A flowgraph consists of several flowgraph elements that are depicted in the Editing Area. Every flowgraph
element has a collection of properties that are displayed in the Properties view.

SAP HANA Developer Guide
Developing Procedures P U B L I C 427

Flowgraph Elements

Element Description

1 Flowgraph container The flowgraph container represents the operator defined by the flowgraph. Every
flowgraph has exactly one flowgraph container. This flowgraph container has a
name which has to differ from all other elements of the flowgraph. The flowgraph
container can have several anchors. They represent the inputs and outputs of the
operator defined by the flowgraph. The central free area of the flowgraph con
tainer is its canvas. All nodes of the flowgraph are contained in this canvas. The
validation decorator in the right bottom corner of the flowgraph container indi
cates whether the flowgraph is configured correctly.

2 Node Nodes are the functional elements in a flowgraph. There are several different
types of nodes which represent data sources, data sinks, and operators. A node
has a name which has to be unique in the flowgraph. Like the flowgraph con
tainer, a node can have several anchors. They represent the inputs and outputs
of the node. The validation decorator in the right bottom corner of a node indi
cates whether the node is configured correctly.

3 Anchor An anchor represents an input or an output of the flowgraph container or of a
node. Every anchor has a kind and a signature which define the input or output it
represents. For input anchors, the supported kinds are Table, Column, and Sca
lar. For output anchors, the only supported kind is Table. Anchors of the Column
kind are considered to be tables with a single column. Anchors of the Scalar kind
are considered to be tables with a single column and a single row. This way, every
anchor defines the table type of the input or output it represents.

428 P U B L I C
SAP HANA Developer Guide

Developing Procedures

Element Description

4 Fixed content anchor A fixed content anchor is an input anchor for which the fixed content flag is set in
the properties. It is displayed in white color (in contrast to the light-blue colored
standard anchors). A fixed content anchor cannot be the target of a connection.
Instead, there is a table embedded in the flowgraph that is associated to the fixed
content anchor. The table is displayed in the Fixed Content tab of the Properties
view of the anchor.

5 Anchor region The flowgraph container and some nodes (for example, the Join node and the
Union node) can have a variable number of input and output anchors. This is rep
resented by an anchor region for the corresponding set of anchors. Anchors can
be added to or removed from the anchor region. They can also be reordered in
the anchor region.

6 Connection Connections represent the directed flow of data from a source to a target. The
source and the target of a connection are anchors. The connection defines a ta
ble mapping between the table types defined by its source and target. The
source of a connection is either an input anchor of the flowgraph container or an
output anchor of a node. The target of a connection is either an output anchor of
the flowgraph container or an input anchor of a node. An anchor can be the
source of several connections. It can be the target of only one connection. A fixed
content anchor cannot be the target of a connection.

Validation

There is a validation decorator in the right bottom corner of the flowgraph container and of each node. This
decorator indicates if the complete flowgraph or the respective node is configured correctly. The details of a
validation error are displayed by mouse-over on the validation decorator and in the Problems view.

 Tip

You can open the Problems view by choosing Window Show View Problems in the main menu of
the HANA Studio.

 Caution
A flowgraph with validation errors will fail to activate.

Annotations

Annotations are nested key-value pairs that can be added to the flowgraph container and to nodes. The AFM
uses annotations to store certain properties of the flowgraph such as custom palette information. An AFM user
can store arbitrary meta data in the annotations. When the flowgraph is activated, all annotations are exposed
in a table with the name extension .META in the flowgraph target schema. This way, they can be consumed at
runtime.

There are two main reasons for the user of the AFM to create annotations. The first reason is to add comments
and documentation to the flowgraph. The second reason is to pass meta data about the flowgraph and its

SAP HANA Developer Guide
Developing Procedures P U B L I C 429

nodes to an application consuming the runtime procedure generated by the activation. In this case the
application has to be specifically designed to process the meta data. Although this is a rather specific and
uncommon use-case, it is a very versatile approach that utilizes flowgraphs to configure the analytic
functionality of an application.

Related Information

Using the Mapping Editor [page 463]
Using the Annotation Editor [page 465]
Customizing the Node Palette [page 471]

7.7.4 Modeling a flowgraph

Model a flowgraph starting with its creation and concluding with the execution of the generated procedure.

Context

The SAP HANA Application Modeler (AFM) supports standard graphical editing operations like move, copy,
paste, and delete on the elements of a flowgraph. Detailed properties of these elements are edited in the
Properties view. After editing and saving a flowgraph, it can be activated by the AFM and the generated
procedure can then be executed via the AFM.

If the flowgraph container has input anchors, the procedure has corresponding free inputs. It then cannot be
executed directly. In this case, data sources have to be bound to the free inputs in order to execute the runtime
object. The AFM provides a wizard for this.

Procedure

1. Create a new flowgraph or open an existing flowgraph in the Project Explorer view.
The flowgraph is opened in the Editing Area of the AFM.

2. Edit the flowgraph container.
3. Add and edit nodes.
4. Add and edit anchors.
5. Add and edit connections.

The validation decorators in the bottom right corners of the flowgraph container and the nodes indicate
whether the flowgraph is valid.

 Note
A flowgraph must be valid to be activated.

430 P U B L I C
SAP HANA Developer Guide

Developing Procedures

6. Save the flowgraph. Select File Save in the HANA Studio main menu.

7. Activate the flowgraph. In the Project Explorer view, right-click the flowgraph object and choose Team
Activate... from the context-sensitive menu.
A new procedure is generated in the target schema which is specified in the properties of the flowgraph
container.

 Note
The generated procedure has inputs that correspond to the input anchors of the flowgraph container.
To activate this procedure, these inputs have to be specified.

8. Select the black downward triangle next to the Execute button in the top right corner of the AFM.
A context menu appears. It shows the options Execute in SQL Editor and Open in SQL Editor as well as the
option Execute and Explore for every output of the flowgraph. In addition, the context menu shows the
option Edit Input Bindings.

9. (Optional) If the flowgraph has input anchors, choose the option Edit Input Bindings.
A wizard appears that allows you to bind all inputs of the flowgraph to data sources in the catalog.

10. Choose one of the options Execute in SQL Editor, Open in SQL Editor, or Execute and Explore for one of the
outputs of the flowgraph.
The behavior of the AFM depends on the execution mode.

Execution mode Behavior

Open in SQL Editor Opens a SQL console containing the SQL code to execute the runtime
object.

Execute in SQL Editor Opens a SQL console containing the SQL code to execute the runtime
object and runs this SQL code.

Execute and Explore Executes the runtime object and opens the Data Explorer view for the
chosen output of the flowgraph.

11. Close the flowgraph. Select File Close in the HANA Studio main menu.

7.7.4.1 Creating a flowgraph

Create a flowgraph development object with the New Flowgraph Model Wizard.

Prerequisites

You have created and shared a project.

SAP HANA Developer Guide
Developing Procedures P U B L I C 431

Procedure

1. In the Project Explorer view of the SAP HANA Development perspective, open an existing project.

2. If the project is not shared, right-click on the project and choose Team Share Project in the
context-sensitive menu. In the Share Project wizard, choose SAP HANA Repository on the first page and an
existing workspace on the second page.

3. In the Project Explorer view, right-click on the project and choose New Other in the context-sensitive
menu.
The New wizard appears.

4. Choose SAP HANA Database Development Flowgraph Model , and then click Next.
The New Flowgraph Model wizard appears.

5. In the text field File Name enter the base name of the new flowgraph.

 Note
The system automatically adds the file extension .hdbflowgraph.

 Note
The remaining steps explain advanced configuration options. In the standard use-case select Finish at
this point to skip these steps.

6. (Optional) Choose the activation mode of the flowgraph in the Usage area.
This choice determines which runtime object is generated on activation of the flowgraph.

 Note
The checkbox Flowgraph for Activation as Task Plan is only relevant when the flowgraph uses the
additional cost SAP HANA smart data integration and SAP HANA smart data quality optional
component.

7. (Optional) Select the Advanced button.
The New Flowgraph Model wizard expands and reveals the advanced options. This adds the option
Operator Palette Template to the Usage area. It also shows the Predefined Content and Node Palette areas.

8. (Optional) Select the option Operator Palette Template in the Usage area.
If you choose this option the New Flowgraph Model wizard creates a node template flowgraph. A node
template flowgraph has the file extension .hdbflowgraphtemplate and models a custom palette. It does
not create any runtime object on activation.

9. (Optional) Select the checkbox Use Flowgraph Template in the Predefined Content area and specify a
flowgraph in the text field below.
Instead of creating an empty flowgraph, the new flowgraph will be a copy of the specified flowgraph.

10. (Optional) Select a checkbox in the Node Palette area. If you select Custom, specify a node palette
flowgraph in the text field below.
This specifies the node palette of the new flowgraph.
○ AFM: the default AFM node palette,
○ Empty: a custom node palette that contains only the compartments specified in Additional

compartments for Node Palette,
○ Custom: a custom Node Palette based on the selected node template flowgraph.

432 P U B L I C
SAP HANA Developer Guide

Developing Procedures

 Note
Node palette flowgraphs are nested structures that represent the hierarchy of a node palette. The
nesting depth of the node palette flowgraph that represents a node palette is at least two and at most
three.

11. (Optional) Select a list of node palette flowgraphs as additional node palette compartments of the new
flowgraph.
The selected node palette flowgraphs are added to the end of the node palette of the new flowgraph.

 Note
If a node palette flowgraph represents a node palette compartment, then its nesting depth is at most
two.

12. Select Finish.
The new flowgraph appears in the Project Explorer view and has the extension .hdbflowgraph
(or .hdbflowgraphtemplate if you created a node palette flowgraph). The AFM is opened for editing the
new flowgraph.

Related Information

Node palette flowgraphs [page 470]

SAP HANA Developer Guide
Developing Procedures P U B L I C 433

7.7.4.2 Editing the flowgraph container

Edit the properties of the flowgraph in the Properties view of the flowgraph container.

Context

Tabs in the Properties view of the flowgraph container.

Tab name Description Optional

General This tab contains the following entries:

● Name: name of the flowgraph container,
● Display Name; not used,
● Description: not used,
● Target Schema: schema in which the runtime object is generated

during activation (default: _SYS_BIC),
● Generator: the type of runtime object to be generated during acti

vation. The option Task is only relevant if the flowgraph uses the
additional cost SAP HANA smart data integration and SAP HANA
smart data quality optional component,

● Realtime Behavior: This option is only relevant when the flow-
graph uses the additional cost SAP HANA smart data integration
and SAP HANA smart data quality optional component and the
chosen Generator option is Task

No

Variables This tab is relevant only when the flowgraph uses the SAP HANA
smart data integration and SAP HANA smart data quality optional
component. For more information see the "Adding a Variable to the
Container Node" topic in the Modeling Guide for SAP HANA smart
data integration and SAP HANA smart data quality .

Yes

Mappings The Mapping Editor in this tab is used to remove or re-order input and
output anchors and their attributes.

Yes

INPUT (I) / OUTPUT (O) These tabs correspond to the input and output anchors of the flow-
graph container. They have the same names as the respective an
chors and the same contents as the All tabs in the Properties views of
the anchors.

Yes

Annotations This tab contains the annotations of the flowgraph container. No

All This tab is a summary of all tabs in this view except for the input and
output anchor tabs.

No

Procedure

1. Select the flowgraph container and open the Properties view.
2. In the General tab, specify the name of the flowgraph container, as well as the target schema, and the

generator of the flowgraph.

434 P U B L I C
SAP HANA Developer Guide

Developing Procedures

 Note
The name of the flowgraph container is initially auto-generated from the name of the flowgraph object
in the Project Explorer view. This name has to be changed if it does not adhere to the naming rules for
the flowgraph elements. Names of flowgraph elements may contain only upper-case letters,
underscores, and digits and must be unique in the flowgraph.

 Note
You need to be granted the CREATE ANY, ALTER, DROP, EXECUTE, SELECT, INSERT, and UPDATE
privileges to the target schema of the flowgraph.

3. In the Mappings tab, use the Mapping Editor to remove or reorder input and output anchors and their
attributes.

4. In the Annotations tab, use the Annotations Editor to edit the annotations of the flowgraph container.

Results

The settings made on the flowgraph container determine the type of runtime object generated during
activation and the number and signatures of its inputs and outputs.

Related Information

Flowgraphs [page 427]
Using the Mapping Editor [page 463]
Using the Annotation Editor [page 465]
Customizing the Node Palette [page 471]

7.7.4.3 Adding an object from the Project Explorer

Drag and drop an object from the Project Explorer view to the Editing Area.

Prerequisites

You have opened a flowgraph in a project that has been shared with a HANA system.

SAP HANA Developer Guide
Developing Procedures P U B L I C 435

Context

Nodes are the functional elements in a flowgraph. There are several types of nodes which represent data
sources, data sinks, and operators in the flowgraph.

The following database objects are represented by nodes in a flowgraph.

● Development objects in the project:
○ Flowgraphs with no inputs and one output as Data Source nodes
○ Attribute Views as Data Source nodes
○ Calculation Views as Data Source nodes

 Note
Flowgraphs that represent procedures with inputs or with more than one output cannot be directly
inserted in other flowgraphs. However, it is possible to add the procedure generated by activating one
flowgraph to another flowgraph. This is done via drag and drop from the catalog (see below) or by
adding a Procedure node from the Node Palette.

● Runtime objects in the catalog:
○ Tables as Data Source nodes, and as Data Sink nodes
○ Views as Data Source nodes
○ Procedures without scalar parameters and INOUT parameters as Procedure nodes
○ Table Types and Tables as anchors

 Tip
You can also drag a Table Type or a Table to an anchor region to create a new anchor.

Procedure

● In the Project Explorer, select an object and drag it to the canvas of the flowgraph container.

If the dragged object is a table, a pop-up dialog lets you choose if this table is used as a data source or a
data sink in the flowgraph.

A new node is added to the flowgraph. The type of the node matches the selected object in the Project
Explorer. The flowgraph container is re-sized so that the new node is contained in the canvas of the
flowgraph container.

 Note
You need to be granted SELECT access rights on the schema that contains the object.

 Note
In order to activate the flowgraph, database user _SYS_REPO needs to be granted SELECT object
privileges for objects that are used as data sources and INSERT object privileges for objects that are
used as data sinks.

436 P U B L I C
SAP HANA Developer Guide

Developing Procedures

 Caution
The validation of the SAP HANA Application Function Modeler does not recognize when the signature
of an input or output of a table or view has changed. In this case the signature of the respective input or
output of the added node is inconsistent with that of the object. Consequently, the flowgraph activation
fails.

● In the Project Explorer, select a table type or a table and drag it to an anchor region.

A new anchor with the same signature as the table type or the table is added to the anchor region at the
position where the object was dropped.

 Note
You need to be granted SELECT access rights on the object.

 Note
Dragging a table to the anchor region only transfers the signature of the table to the anchor. No
reference to the table or its content is stored in the flowgraph. Accordingly, no additional object
privileges have to be granted to the database user _SYS_REPO.

Related Information

Setting up the SAP HANA Application Function Modeler [page 426]
Attribute Views [page 340]
Calculation Views [page 350]

7.7.4.4 Adding a node from the Node Palette

Drag a node template from the Node Palette to the canvas of the flowgraph container in the Editing Area.

Prerequisites

You have opened a flowgraph in a project that has been shared with a HANA system.

 Note
The Node Palette is generated according to the functionality provided by the system. If you work in a project
that is not shared with a system or the system is offline, the content of the Node Palette is restricted to a
few basic relational operators. For example, the Data Source node and Data Sink node will be missing the
General tab.

SAP HANA Developer Guide
Developing Procedures P U B L I C 437

Context

Nodes are the functional elements in a flowgraph. There are several different types of nodes which represent
data sources, data sinks, and operators in the flowgraph.

Procedure

In the Node Palette, select the entry you want to add and drag it to the canvas area of the flowgraph container.

Results

A new node is added to the flowgraph. The type of the node matches the selected node template in the Node
Palette. The flowgraph container is resized such that the new node is contained in its canvas.

Related Information

Setting up the SAP HANA Application Function Modeler [page 426]

7.7.4.5 Editing a node

Edit the properties of a node.

Context

The nodes in a flowgraph usually need to be configured. Relational nodes need configurations such as join
conditions, filter predicates, and attribute sets for projection. Edit the configuration of a node by selecting the
node and navigating to its Properties view. The selection of tabs and the configuration options in the Properties
view depend on the type of node.

438 P U B L I C
SAP HANA Developer Guide

Developing Procedures

Tabs in the Properties view of a node

Tab name Description Optional

General This tab always contains the following elements:

● Name: name of the node (editable),
● Display Name; name of the node template entry

(read-only),
● Description: description of the node template entry

(read-only).

In addition, this tab contains most configuration options
that are specific to the particular node type.

No

Script This tab is only relevant if an optional additional cost
component offers Script node functionality (for example,
R Integration).

Yes

Mappings If the node defines a mapping of its inputs to its outputs
or contains an anchor region, this mapping is displayed
and can be edited in the Mapping Editor.

Yes

INPUT (I) / OUTPUT (O) These tabs correspond to the input and output anchors
of the node. They have the same names as the respec
tive anchors and the same contents as the All tabs in the
Properties views of the anchors.

Yes

Annotations This tab contains the annotations of the node. No

All This tab is a summary of all tabs in this view except for
the input and output anchor tabs.

No

Procedure

1. Select a node or add a new node.
2. Select the name of the node.

The name field becomes active for editing.

 Note
The name of a node may contain only upper-case letters, underscores, and digits. It must be unique
within the flowgraph.

3. In the Annotations tab of the Properties view, use the Annotations Editor to edit the annotations of the
node.

4. Edit the remaining properties of the node in the Properties view. In particular, specify the type-specific
properties of the node in the General tab.

Related Information

Using the Mapping Editor [page 463]
Using the Annotation Editor [page 465]

SAP HANA Developer Guide
Developing Procedures P U B L I C 439

7.7.4.5.1 Data Source [Application Function Modeler]

Edit nodes that represent data sources.

Prerequisites

You added a Data Source node to the flowgraph.

Procedure

1. Drag the Data Source node onto the canvas.

You can click the magnifying glass icon to preview the existing data in the table or view.
2. In the Select an Object dialog, type the name of the object to add, or browse the object tree to select one or

more objects, and click OK.
3. In the General tab of the Properties view, use the drop-down menus Authoring Schema and Catalog Object

to specify the data source.

 Note
The check-box Realtime Behavior is only relevant if the flowgraph uses the additional cost SAP HANA
smart data integration and SAP HANA smart data quality optional component and if a task plan is
generated.

 Tip
You can configure the authoring schema by choosing Schema Mapping in the Quick view of the SAP
HANA Modeler perspective.

Results

The signature of the output anchor is set automatically.

 Note
To activate the flowgraph, the database user _SYS_REPO needs SELECT object privileges for the chosen
data source.

440 P U B L I C
SAP HANA Developer Guide

Developing Procedures

Next Steps

If a catalog object specified in a Data Source node changes, you can reconcile the differences between the
structure of the catalog object and the structure in the node.

In the flowgraph editor, click the diff button to compare the catalog object with the structure in the Data Source
node. Click Reconcile to update the node with the structure from the catalog object.

 Note
Reconciling the Data Source node updates the flowgraph, but you must still save the flowgraph to make the
changes permanent.

Related Information

Setting up the SAP HANA Application Function Modeler [page 426]

7.7.4.5.1.1 Data Source Options [Application Function
Modeler]

Description of the options in the Data Source node.

Option Description

Name The name for the node.

Display Name
 Note
AFM only.

The name shown in the Palette pane.

 Note
This option can only be changed when creating a template. It cannot be
changed when using the node outside of a template.

Description
 Note
AFM only.

(Optional.) Provides a comment about the source. For example, "West Region Sales
Q1."

Type Lists whether the data source is a view or table.

Authoring Schema Lists the system or folder where the view or table is located.

SAP HANA Developer Guide
Developing Procedures P U B L I C 441

Option Description

Catalog Object Lists the repository where the table or view is located

Realtime Behavior Select to run in batch or real-time mode.

Partition Type
 Note
Web-based Development Workbench only.

Choose one of the following:

None: does not partition the table

Range: divides the table data into sets based on a range of data in a row.

List: divides the table into sets based on a list of values in a row.

Attribute
 Note
Web-based Development Workbench only.

The column name used for the partition.

Partition name
 Note
Web-based Development Workbench only.

The name for the partition such as "region".

Value
 Note
Web-based Development Workbench only.

The range or list.

7.7.4.5.2 Data Sink [Application Function Modeler]

Edit nodes that represent data sinks.

Procedure

1. Drag the Data Sink node onto the canvas.
2. In the Select an Object dialog, type the name of the object to add, or browse the object tree to select one or

more objects, and click OK.
3. (Optional) You can click the magnifying glass icon to preview the existing data (if any) in the table. The data

will change after the flowgraph runs.
4. In the General tab of the Properties view use the drop-down menus Authoring Schema and Catalog Object

to specify the data sink.

442 P U B L I C
SAP HANA Developer Guide

Developing Procedures

 Tip
You can configure the authoring schema by choosing Schema Mapping in the Quick view of the SAP
HANA Modeler perspective.

5. Select Truncate Table to clear the table before inserting data. Otherwise, all inserted data is appended to
the table.

6. Optionally, if the node is a Data Sink (Template Table) node, specify in the same tab in the drop-down menu
Data Layout whether a table with row or column layout is created.

7. To optionally create a separate target table that tracks the history of changes, set the History Table Settings
options.

Results

The signature of the input anchor is set automatically.

 Note
To activate the flowgraph, the database user _SYS_REPO needs INSERT and in case of truncation also
DELETE object privileges for the chosen data sink.

Related Information

Setting up the SAP HANA Application Function Modeler [page 426]

7.7.4.5.2.1 Data Sink Options [Application Function Modeler]

Description of options for the Data Sink node.

Option Description

Enter table or view name
 Note
AFM only.

Enter the name of the table or view.

Matching items
 Note
AFM only.

Shows matching tables or views are as you begin typing in the previ
ous option.

SAP HANA Developer Guide
Developing Procedures P U B L I C 443

Option Description

Name The name for the output target.

Display Name
 Note
AFM only.

The name shown in the Palette pane.

 Note
This option can only be changed when creating a template. It
cannot be changed when using the node outside of a template.

Description
 Note
AFM only.

(Optional.) Provides a comment about the target. For example, "West
Region Sales Q1."

Type Lists whether it is a view or table.

Authoring Schema Lists the system or folder where the view or table is located.

Catalog Object Lists the table or view.

Truncate Behavior Limits the amount of data written to the Data Sink.

In the SAP HANA Web-based Development Workbench, for the
Truncate option, select it to clear the table before inserting data. Oth
erwise, all inserted data is appended to the table.

Writer Type Choose from the following options:

insert: adds new records to a table.

upsert: if a record doesn't currently exist, it is inserted into a table. If
the record exists, then it is updated.

update: includes additional or more current information in an existing
record.

Key Generation Attribute Generates new keys for target data starting from a value based on ex
isting keys in the column you specify.

Sequence Schema When generating keys, select the schema where the externally cre
ated sequence file is located.

Sequence Name When generating keys, select the externally created sequence to gen
erate the new key values.

Change time column name Select the target column that will be set to the time that the row was
committed. The data type must be TIMESTAMP.

Change type column name Select the target column that will be set to the row change type. The
data type is VARCHAR(1).

444 P U B L I C
SAP HANA Developer Guide

Developing Procedures

7.7.4.5.3 Aggregation

An Aggregation node represents a relational group-by and aggregation operation.

Prerequisites

You have added an Aggregation node to the flowgraph.

 Note
The Aggregation node is available for realtime processing.

Procedure

1. Select the Aggregation node.
2. Map the input columns and output columns by dragging them to the output pane. You can add, delete,

rename, and reorder the output columns, as needed. To multi-select and delete multiple columns use
CTRL/Shift keys, and then click Delete.

3. In the Aggregations tab, specify the columns that you want to have the aggregate or group-by actions taken
upon. Drag the input fields and then select the action from the drop-down list.

4. (Optional) Select the Having tab to run a filter on an aggregation function. Enter the expression. To view the
options in the expression editor, click Load Elements & Functions. You can drag and drop the input and
output columns from the Elements pane, then drag an aggregation function from the Functions pane. Click
or type the appropriate operators. For example, if you want to find the transactions that are over $75,000
based on the average sales in the 1st quarter, your expression might look like this:
AVG("Aggregation1_Input"."SALES") > 75000.

Option Description

Avg Calculates the average of a given set of column values.

Count Returns the number of values in a table column.

Group-by Use for specifying a list of columns for which you want to combine output. For
example, you might want to group sales orders by date to find the total sales or
dered on a particular date.

Max Returns the maximum value from a list.

Min Returns the minimum value from a list.

Sum Calculates the sum of a given set of values.

5. (Optional) Select the Filter Node tab to compare the column name against a constant value. Click Load
Elements & Functions to populate the Expression Editor. Enter the expression by dragging the column
names, the function, and entering the operators from the pane at the bottom of the node. For example, if
you want to the number of sales that are greater than 10000, your expression might look like this:
"Aggregation1_input"."SALES" > 10000. See the "SQL Functions" topic in the SAP HANA SQL and
System Views Reference for more information about each function.

SAP HANA Developer Guide
Developing Procedures P U B L I C 445

6. Click Save to return to the Flowgraph Editor.

Related Information

Using the Mapping Editor [page 463]

7.7.4.5.3.1 Aggregation Options

Description of options for the Aggregation node.

Option Description

Name The name of the node.

Display Name
 Note
AFM only.

The name shown in the Palette pane.

 Note
This option can only be changed when creating a template. It cannot
be changed when using the node outside of a template.

Description
 Note
AFM only.

(Optional.) Provides a comment about the operation. For example, "Cal
culate total sales in May."

Column/Attribute The input column name that you want to use in an Aggregation opera
tion.

Aggregation/Action Choose one of the following:

Avg: calculates the average of a given set of column values.

Count: returns the number of values in a table column.

Group-by: use for specifying a list of columns for which you want to com
bine output. For example, you might want to group sales orders by date
to find the total sales ordered on a particular date.

Max: returns the maximum value from a list.

Min: returns the minimum value from a list.

Sum: calculates the sum of a given set of values.

446 P U B L I C
SAP HANA Developer Guide

Developing Procedures

7.7.4.5.4 Filter [Application Function Modeler]

A Filter node represents a relational selection combined with a projection operation. It also allows calculated
attributes to be added to the output.

Prerequisites

You have added a Filter node to the flowgraph.

 Note
The Filter node is available for real-time processing.

Context

Web-based Development Workbench

1. Drag the Filter node onto the canvas, and connect the source data or the previous node to the Filter node.
2. Double-click the Filter node.
3. (Optional) Enter a name for this Filter node in the Node Name option.
4. (Optional) Select Distinct to output only unique records.
5. (Optional) To copy any columns that are not already mapped to the output target, drag them from the

Input pane to the Output pane. You may also remove any output columns by clicking the pencil icon or the
trash icon, respectively. You can multi-select the columns that you do not want output by using the CTRL or
Shift key, and then Delete.

6. (Optional) Click Load Elements & Functions to populate the Expression Editor. Drag input columns into the
Mapping tab to define the output mapping and perform some sort of calculation. Choose the functions and
the operators. For example, you might want to calculate the workdays in a quarter, so you would use the
Workdays_Between function in an expression like this: WORKDAYS_BETWEEN
(<factory_calendar_id>, <start_date>, <end_date> [, <source_schema>]). Click Validate
Syntax to ensure that the expression is valid.

7. Click the Filter node tab and then click Load Elements & Functions to populate the Expression Editor. You
can use the Expression Editor or type an expression to filter the data from the input to the output. Drag the
input columns, select a function and the operators. For example, if you want to move all the records that
are in Canada, your filter might look like this: "Filter1_input"."COUNTRY" = "Canada". See the "SQL
Functions" topic in the SAP HANA SQL and System Views Reference for more information about each
function.

8. Click Save to return to the flowgraph.

Application Function Modeler

1. Select the Filter node.
2. Select the General tab of the Properties view.
3. Select the Value Help and use the Expression Editor to configure the Filter Expression.

SAP HANA Developer Guide
Developing Procedures P U B L I C 447

4. Add additional attributes for calculated outputs in the Output tab.
5. Select the Mappings tab. In the Mapping Editor, define the output mapping of the node. In addition you can

define the calculated attributes by first selecting the attribute in the Target list and then selecting Edit
Expression.
The Expression Editor opens to edit the expression that calculates the attribute.

 Note
You need to manually set the type of the calculated attribute.

6.

 Example
Let's say that you have a single input source, and connected it to a Match node. You selected Most Recent
as your survivor rule, so that the output from Match has a Group_Master column. Those duplicate records
with the most recent Last_Updated date are marked with a value of "M". After connecting the Match node
to the Filter node, you can use the following expression to output only the master and unique records:

 Sample Code

("Filter1_Input"."GROUP_ID" is null) OR ("Filter1_Input"."GROUP_ID" is not
null and "Filter1_Input"."GROUP_MASTER" = 'M')

Prior to the Filter node, some example data might look like the following.

Data input to the Filter node

GROUP_ID
RE
VIEW_GROUP

CON
FLICT_GROUP

LAST_UP
DATED ADDRESS ADDRESS2

GROUP_MAS
TER

<null> <null> <null> <null> 1411 Broadway New York
10018

<null>

<null> <null> <null> <null> 3 Fleetwood Dr Newberg NY
12550

<null>

<null> <null> <null> <null> 300 Cliffside
Dr

Atlanta GA
30350

<null>

1 N C 01/01/16 332 Front St La Crosse WI
54601

M

1 N C 03/10/11 332 Front St La Crosse WI
54601

<null>

1 N C 07/04/15 332 Front St La Crosse WI
54601

<null>

<null> <null> <null> <null> 3738 North
Fraser Way

Burnaby BC
V3N 1E4

<null>

After the Filter node, you can see that two duplicate entries were removed, and only the master record and
the other four unique records are output.

448 P U B L I C
SAP HANA Developer Guide

Developing Procedures

Data output from the Filter node

GROUP_ID
RE
VIEW_GROUP

CON
FLICT_GROUP

LAST_UP
DATED ADDRESS LASTLINE

GROUP_MAS
TER

<null> <null> <null> <null> 1411 broadway new york
10018

<null>

<null> <null> <null> <null> 3 Fleetwood Dr Newberg NY
12550

<null>

<null> <null> <null> <null> 300 the
cliffsup

atlanta 30350 <null>

1 N C 01/01/16 332 Front st La Crosse
54601

M

<null> <null> <null> <null> 3738 NORTH
FRASER WAY
TH 6203

BURNABY BC <null>

Related Information

Using the Mapping Editor [page 463]
Using the Expression Editor [page 464]

7.7.4.5.4.1 Filter Options [Application Function Modeler]

Description of options for the Filter node.

Option Description

Name The name for the node.

Display Name
 Note
AFM only.

The name shown in the Palette pane.

 Note
This option can only be changed when creating a template. It cannot be changed
when using the node outside of a template.

SAP HANA Developer Guide
Developing Procedures P U B L I C 449

Option Description

Description
 Note
AFM only.

(Optional.) Provides a comment about the node. For example, "Only European Data."

Distinct
 Note
Web-based Development Workbench only.

(Optional). Select to output only unique records. The records must match exactly. If
you know that you have duplicates, but have a ROW_ID column, or another column
that has a unique identifier for each record, then you will want to suppress that col
umn in the Filter node. The Distinct option is not available for CLOB, NCLOB, BLOB,
TEXT datatypes

Filter Node Enter an expression so that only the valid records are output based on the expres
sion criteria. You can enter some SQL statements to set the value of the target col
umn. Any of the SAP HANA SQL functions can be used. See the SAP Hana SQL and
System Views Reference.

 Note
In AFM, you can use the Expression Editor to assist in creating the expression.

7.7.4.5.5 Join [Application Function Modeler]

A Join node represents a relational multi-way join operation.

Prerequisites

You have added a Join node to the flowgraph.

 Note
The Join node is not available for real-time processing.

Context

The Join node can perform multiple step joins on two or more inputs.

450 P U B L I C
SAP HANA Developer Guide

Developing Procedures

Procedure

1. Select the Join node.
2. (Optional) Add additional input anchors.
3. (Optional) Remove any output columns by clicking the pencil icon or the trash icon, respectively. You can

multi-select the columns that you do not want output by using the CTRL or Shift key, and then Delete. The
Mapping column shows how the column has been mapped with the input source.

4. In the Properties view, select the General tab to configure the type of the join (inner join, left outer join, or
right outer join).

5. In the table defined in the General tab, use the Table Editor to define the Left join partner, the Join Type, the
Right join partner and the Join Condition of each join step. In this, only the first entry in the join condition
consists of a Left join partner and a Right join partner. Every subsequent join condition has the previous join
tree as Left join partner.
The Expression Editor opens and lets you specify the Join Condition.

6. In the Mappings tab, use the Mapping Editor to edit the output attributes of the join.

Related Information

Using the Table Editor [page 462]
Using the Mapping Editor [page 463]
Using the Expression Editor [page 464]
Adding an anchor [page 458]

7.7.4.5.5.1 Join Options [Application Function Modeler]

Description of options for the Join node.

Option Description

Name The name for the node.

Display Name
 Note
AFM only.

The name shown in the Palette pane.

 Note
This option can only be changed when creating a template. It cannot be
changed when using the node outside of a template.

SAP HANA Developer Guide
Developing Procedures P U B L I C 451

Option Description

Description
 Note
AFM only.

(Optional.) Provides a comment about the node. For example, "Employee_v8 and
Employee_v12."

Left The left source of a join.

Join Type Choose from one of these options:

Inner: use when each record in the two tables has matching records.

Left_Outer: output all records in the left table, even when the join condition does
not match any records in the right table.

Right_Outer: output all records in the right table, even when the join condition
does not match any records in the left table.

Right The right source of a join.

Join Condition The expression that specifies the criteria of the join condition.

 Note
In AFM, you can use the Expression Editor to assist in creating the expres
sion.

Add A join condition is created.

Remove The highlighted join condition is deleted.

7.7.4.5.6 Sort [Application Function Modeler]

A Sort node represents a relational sort operation.

Prerequisites

You have added a Sort node to the flowgraph.

Context

The Sort node performs a sort by one or more attributes of the input.

 Note
The Sort node is available for real-time processing.

452 P U B L I C
SAP HANA Developer Guide

Developing Procedures

Procedure

1. Select the Sort node.
2. In the Properties View, select the General tab to configure the sort order.
3. In the General tab, use the Table Editor to define the Attributes and the Sort Order by which the input is

sorted. It is possible to specify several Attributes with descending priority.

Related Information

Using the Table Editor [page 462]

7.7.4.5.6.1 Sort Options [Application Function Modeler]

Description of options for the Sort node.

Option Description

Name The name for the node.

Display Name
 Note
AFM only.

The name shown in the Palette pane.

 Note
This option can only be changed when creating a template. It can
not be changed when using the node outside of a template.

Description
 Note
AFM only.

(Optional.) Provides a comment about the node. For example, "Sort as
cending sales order."

Column/Attribute The column used for sorting.

Sort Type/Sort Order How to sort the data.

Ascending: When sorting numerical data, put the smallest number first.
When sorting alphabetically, start with the first letter.

Descending: When sorting numerical data, put the largest number first.
When sorting alphabetically, start with the last letter.

Add A row is configured to be used for sorting.

SAP HANA Developer Guide
Developing Procedures P U B L I C 453

Option Description

Remove The highlighted entry is deleted, so that it will not be used in sorting.

Up The entry is moved up so that it is sorted before any entries below it.

Down The entry is moved down so that it is sorted after any entries above it.

7.7.4.5.7 Union [Application Function Modeler]

A Union node represents a relational union operation.

Prerequisites

You have created a Union node in the flowgraph.

Context

The union operator forms the union from two or more inputs with the same signature. This operator can either
select all values including duplicates (UNION ALL) or only distinct values (UNION).

 Note
The Union node is available for real-time processing.

Procedure

1. Select the Union node.
2. (Optional) Add additional input anchors.
3. In the General tab of the Properties view define whether the operator is a UNION ALL or a UNION operator

by selecting or unselecting the checkbox Create Union All.

Related Information

Adding an anchor [page 458]

454 P U B L I C
SAP HANA Developer Guide

Developing Procedures

7.7.4.5.7.1 Union Options [Application Function Modeler]

Description of options for the Union node.

Option Description

Name The name for the node.

Display Name
 Note
AFM only.

The name shown in the Palette pane.

 Note
This option can only be changed when creating a template. It cannot be
changed when using the node outside of a template.

Description
 Note
AFM only.

(Optional.) Provides a comment about the node. For example, "Combine
HR2015 and HR2010."

Create Union All The option to merge all of the input data (including duplicate entries) into
one output, when selected.

7.7.4.5.8 Procedure [Application Function Modeler]

Use procedures from the catalog in the flowgraph.

Context

 Note
The Procedure node is not available for real-time processing.

Procedure

1. Drag the Procedure node onto the canvas.
2. In the Select an Object dialog, type the name of the object to add, or browse the object tree to select one or

more objects, and click OK.

SAP HANA Developer Guide
Developing Procedures P U B L I C 455

3. Select the Procedure node.
4. The following step applies only if you added the Procedure node from the Node Palette.

○ In SAP HANA studio, in the General tab of the Properties view, select the drop-down menus for the
Schema and the Procedure that is represented by the node.

○ In SAP HANA Web-based Development Workbench, open the node and select aSchema Name and the
Procedure Namefor the node.

5. To activate the flowgraph, the database user _SYS_REPO needs EXECUTE object privileges for all
procedures represented by Procedure nodes.

7.7.4.5.8.1 Procedure options [Application Function Modeler]

Description of options for the Procedure node.

Option Description

Name The name for the node.

Display Name
 Note
AFM only.

The name shown in the Palette pane.

 Note
This option can only be changed when creating a template. It cannot be
changed when using the node outside of a template.

Description
 Note
AFM only.

(Optional.) Provides a comment about the node. For example, "Run schedule."

Schema The location and definition of the procedure.

Procedure The stored procedure that you want to run in the flowgraph.

7.7.4.5.9 AFL Function [Application Function Modeler]

Access functions of the Application Function Library.

Prerequisites

You have added an AFL Function node to the flowgraph.

456 P U B L I C
SAP HANA Developer Guide

Developing Procedures

Context

Use this node to model functions of the Application Function Library (AFL) that are registered with the system.
AFL functions are grouped by function areas.

 Note
You can retrieve the list of all AFL areas and functions registered in a HANA system by viewing the content
of the views “SYS”.”AFL_AREAS” and “SYS”.”AFL_FUNCTIONS”.

Many AFL areas are optional components for HANA. For some of these optional components the SAP HANA
Application Function Modeler (AFM) provides preconfigured node templates. In this case, the AFM
automatically displays a separate compartment for this area in the Node Palette.

 Note
You can refresh the Node Palette by choosing Refresh in its context-sensitive menu.

 Note
The AFL Function node is not available for real-time processing.

Procedure

1. Select the AFL Function node.
2. In the General tab in the Properties view, select the drop-down menus for Area and the Function.

The AFM changes the inputs and outputs of the node according to the existing meta-data for the function
on the server.

 Note
For some AFL areas there exists a preconfigured Node Palette compartment. You cannot change the
Area or the Function of a node added from one of these compartments.

3. If applicable, change the Category of the function.
4. Specify the inputs and the outputs of the function by editing the signature and the fixed content of its

anchors.

 Note
For some AFL areas there exists a preconfigured node template for this function. In this case, the fixed
content of the inputs that define parameters is preconfigured.

Related Information

Using the Table Editor [page 462]

SAP HANA Developer Guide
Developing Procedures P U B L I C 457

7.7.4.6 Adding an anchor

Add an anchor to an anchor region of the flowgraph container or a node.

Context

The flowgraph container and some nodes (for example, the Join node and the Union node) can have a variable
number of input or output anchors. In the flowgraph, this is represented by the existence of an anchor region
for the corresponding set of anchors. New anchors can be added to the anchor region.

Procedure

1. Right-click on the anchor region at the position you want to add the new anchor.
2. In the context-sensitive menu, choose Add Input or Add Output (depending on whether you selected an

anchor region for inputs or outputs).

Results

A new anchor with an empty signature is added to the anchor region at the mouse pointer position where the
context menu is opened.

 Note
Instead of adding an anchor via the context-sensitive menu, you can also copy an existing anchor to an
anchor region. This has the advantage that the new anchor has a fully defined signature.

 Note
Alternatively, you can add a new anchor while creating a connection. In this case the new anchor inherits
the signature from the source anchor of the connection.

 Note
A third option to add an anchor with a predefined signature is by dragging a table or a table type from the
catalog to the anchor region.

 Note
You can also delete an anchor that you added to an anchor region. Some anchor regions have a minimum
number of anchors (for example, the anchor regions for the inputs of the Join node and the Union node
each have to contain at least two anchors). In this case, if the anchor region contains the minimum number
of anchors, then no anchor in the anchor can be deleted.

458 P U B L I C
SAP HANA Developer Guide

Developing Procedures

Related Information

Adding an object from the Project Explorer [page 435]
Editing the flowgraph container [page 434]
Join [Application Function Modeler] [page 450]
Union [Application Function Modeler] [page 454]

7.7.4.7 Editing an anchor

Change and define input and output table types.

Context

Anchors define inputs and outputs to the flowgraph container and to nodes.

Tabs in the Properties view of an anchor.

Tab name Description Optional

General This tab contains the following entries:

● Name: name of the anchor
● Kind: kind of the anchor (Table, Column, Scalar).

No

Signature In this tab, you can use the Table Editor to change the sig
nature of the anchor. Anchors of the kind Scalar or Col
umn are considered to be tables with one column.

No

Fixed Content This tab exists only for input anchors. While the check
box Fixed Content is selected, the anchor cannot be the
target of a connection. Instead, a table providing the in
put is stored in the flowgraph with the anchor. The table
can be edited using the Table Editor in this tab.

Yes

All This tab is a summary the other tabs. No

 Note
Most anchors have a fixed kind that cannot be changed. Currently, the anchor kinds "Column" and "Scalar"
are only supported for input anchors of AFL Function nodes.

 Note
Many anchors either have a fixed signature or obtain their signature via an automatic table mapping.

SAP HANA Developer Guide
Developing Procedures P U B L I C 459

Procedure

1. Select the anchor.
2. Select the name of the anchor and edit it in the direct editing area.

The name field becomes active for editing.

 Note
The name of an anchor must consist of upper-case letters, underscores, and digits. It must be unique
in the flowgraph.

3. Use the Table Editor to edit the signature of the anchor in the Signature tab of the Properties view.
4. Select the Fixed Content tab in the Properties view.
5. If you want to embed the content of the anchor with the flowgraph, select the checkbox Fixed Content.

If the checkbox Fixed Content is selected, the embedded table is shown in the Fixed Content tab. Use the
Table Editor to edit the table.

 Note
For some areas of the Application Function Library the SAP HANA application function modeler
provides template AFL Function nodes in separate compartments of the Node Palette. These template
nodes are preconfigured with fixed signature tables if the respective input is a design-time parameter
of the node.

Related Information

Flowgraphs [page 427]
Using the Table Editor [page 462]
Using the Mapping Editor [page 463]

7.7.4.8 Creating a connection

Create a new connection between two nodes or a node and the flowgraph container.

Context

A connection represents the directed flow of data from a source to a target. The source and the target of a
connection are anchors. The connection defines a table mapping between these table types defined by its
source and target. The source of a connection is either an input anchor of the flowgraph container or an output
anchor of a node. The target of a connection is either an output anchor of the flowgraph container or an input
anchor of a node. An anchor can be the source of several connections. It can only be the target of one
connection. A fixed content anchor cannot be the target of any connection.

460 P U B L I C
SAP HANA Developer Guide

Developing Procedures

Procedure

1. Select without releasing the Connect button in the context button pad of the source anchor of the
connection.

2. Drag a connection to the target anchor.

 Note
Depending on the node of the target anchor, the Create Input Table Mapping wizard may open. This
wizard helps you to choose the right mapping for the connection. You can still change this mapping in
the Mapping Editor after completing the wizard. To open the wizard again, you have to remove the
connection and create it again.

Results

A new connection between the source anchor and the target anchor is created. If possible, the signature of the
source anchor is copied to the target anchor and propagated forward through the flowgraph.

 Note
You can also add a new anchor to an anchor region and create a connection to this anchor in a single action.
Instead of dragging the connection to an anchor, drag it to a free position in an anchor region. A new target
anchor with the same signature as the source anchor is added before the connection is created.

Related Information

Adding an anchor [page 458]

7.7.4.9 Editing a connection

Edit the mapping represented by a connection.

Prerequisites

You have created a connection.

SAP HANA Developer Guide
Developing Procedures P U B L I C 461

Context

A connection represents a mapping between the table types defined by the source anchor and the target
anchor. The SAP HANA application function modeler tries to auto-generate a suitable mapping depending on
the types of nodes connected by the mapping. The mapping can also be configured manually using the
Mapping Editor.

Tabs in the Properties view of a connection.

Tab name Description Optional

Mappings This tab displays the mapping represented by the con
nection in the Mapping Editor.

No

Procedure

Select the connection and use the Mapping Editor in the Mappings tab of the Properties view to edit the
mapping defined by the connection.

Related Information

Flowgraphs [page 427]
Using the Mapping Editor [page 463]
Editing an anchor [page 459]

7.7.4.10 Using the Table Editor

Edit embedded tabled like anchor signatures and fixed content tables.

Context

Embedded tables appear in various flowgraph elements. For example, anchors have signature tables and may
have fixed content tables. Specialized nodes may have tables in the General tab of the Properties view. The SAP
HANA Application Function Modeler provides a Table Editor to edit these tables.

Procedure

● Add, remove, and re-order rows of the embedded table by selecting the respective operations on the right
side of the Table Editor.

462 P U B L I C
SAP HANA Developer Guide

Developing Procedures

● Edit an entry in the table by double-clicking the respective cell.

Related Information

Flowgraphs [page 427]
Editing an anchor [page 459]

7.7.4.11 Using the Mapping Editor

Edit the mappings between table types in the Mappings tab of the Properties view of a flowgraph element.

Prerequisites

You have selected the Mappings tab of the Properties view of a flowgraph element.

Context

A mapping is a projection between table types. The Mapping Editor allows you to edit mappings between a
number of source and target table types. The left side of the editor shows the source table types, the right side
shows the target table types. A binding of two attributes is indicated by a line between them.

 Note
The mapping editor is used to define the mappings of connections and possible projections within nodes
(for example, the Filter node, the Join Node, and the Union Node). It is also used to edit this inputs and
outputs of the flowgraph container and of nodes which do not define a projection. In this case, no lines are
drawn between the attributes.

 Note
Not all flowgraph elements allow free editing of all their mappings and table types. In this case the
functionality of the Mapping Editor is restricted to the permitted editing operations.

Procedure

● (Optional) To remove a table type, select it and press the minus sign on the right side of the Mapping Editor.
● To re-order the source or target table types, click on a table type and use the up/down arrows on the right

side of the Mapping Editor.

SAP HANA Developer Guide
Developing Procedures P U B L I C 463

● (Optional) To remove an attribute, select it and press the minus sign on the right side of the Mapping Editor.
● (Optional) To re-order the source or target attributes, click on an attribute and use the up/down arrows on

the right side of the Mapping Editor.
● (Optional) To add an attribute from the source type to the target type, drag the source attribute and drop it

on the root of the target tree.
The attribute is appended at the end of the target attribute list. If the Mapping Editor defines a mapping, it
is connected by a line with the source attribute indicating an attribute binding.

● (Optional, only available if the Mapping Editor defines a mapping) To re-assign a source attribute to a target
attribute that is already assigned, drag the source attribute to the target attribute.
The old binding is replaced by the new one.

Related Information

Flowgraphs [page 427]
Editing the flowgraph container [page 434]
Editing a node [page 438]
Editing a connection [page 461]

7.7.4.12 Using the Expression Editor

Compose expressions for filters, join conditions, and calculated attributes.

Context

The Expression Editor allows you to compose SQL expressions based on table type attributes and functions. It
consists of an Function Palette on the top, an Attribute Palette on the left and a Text Field on the right.

 Note
The expression validation is disabled in the SAP HANA Application Function Modeler.

Procedure

● Type the expression in the Text Field.

 Note
Press CTRL + Space bar for auto-completion.

● Select operators and functions in the Function Palette to add them to the Text Field.

464 P U B L I C
SAP HANA Developer Guide

Developing Procedures

● Drag attributes from the Attribute Palette to the Text Field.

Related Information

Aggregation [page 445]
Filter [Application Function Modeler] [page 447]
Join [Application Function Modeler] [page 450]

7.7.4.13 Using the Annotation Editor

Add arbitrary annotations to the flowgraph container or a node.

Context

The flowgraph container and all nodes have an Annotation tab in their Properties view. Annotations are nested
key-value pairs. The SAP HANA Application Function Modeler (AFM) provides an Annotation Editor to edit
existing annotations like the sap.afm.palette annotation or to add your own annotations.

 Note
When the flowgraph is activated, all annotations are exposed in a table with the name extension .META in
the flowgraph target schema. This way, they can be consumed at runtime.

 Note
For some nodes, the annotations sap.afm.displayName and sap.afm.description are visible in the
Annotation Editor. These annotations are for internal use of the AFM and not supposed to be modified.

Procedure

● Add, remove, and re-order annotations by selecting the respective operations on the right side of the
Annotation Editor.

● Edit the Key and the Value of an annotation by double-clicking the respective cell.
● Add nested annotations by first selecting an annotation row and then the Add Child operation on the right

side of the Annotation Editor.
A nested annotation appears below the selected annotation.

● Collapse and expand nested annotations by selecting the triangle to the left of an annotation key.

SAP HANA Developer Guide
Developing Procedures P U B L I C 465

Related Information

Flowgraphs [page 427]
Customizing the Node Palette [page 471]

7.7.5 Tutorial: Creating a Runtime Procedure using
Application Function Modeler (AFM)

At the end of this tutorial, you will have created and tested a runtime procedure with the AFM

Prerequisites

● You have access to a running SAP HANA development system.
● You have a valid user account in the SAP HANA database on that system.
● Your user has been granted the MODELING role.
● Your user has been granted the EXECUTE privilege for the object SYS.REPOSITORY_REST.
● Your user has been granted the following repository package privileges:

○ repo.read
○ repo.activate_native_objects
○ repo.edit_native_objects
○ repo.maintain_native_packages

● The system user _SYS_REPO has SELECT and ALTER privileges on the schema of your user.
● You have access to SAP HANA Studio and opened the SAP HANA Development perspective.
● You have created a system in the System view in the and logged on to this system with your user.
● You have created a repository workspace for the system.
● You have created a project in the Project Explorer view and shared it with the system via the workspace.

 Tip

To share a project, right-click on the project and choose Team Share Project in the context-
sensitive menu. In the Share Project wizard, choose SAP HANA Repository on the first page and choose
your repository workspace on the second page.

Context

This tutorial leads you through the most common steps of using the SAP HANA Application Function Modeler
(AFM). At the end of this tutorial, you will have created and tested a runtime procedure with the AFM.

466 P U B L I C
SAP HANA Developer Guide

Developing Procedures

Procedure

1. Open the SQL console of the system and create the table type WEATHER and the two tables NORTH and
SOUTH in your user's schema by executing the following script.

CREATE TYPE "WEATHER" AS TABLE ("REGION" VARCHAR(50), "SEASON" VARCHAR(50),
"TEMPERATURE" INTEGER); CREATE COLUMN TABLE "NORTH" LIKE "WEATHER";
INSERT INTO "NORTH" VALUES ('North', 'Spring', 10);
INSERT INTO "NORTH" VALUES ('North', 'Summer', 23);
INSERT INTO "NORTH" VALUES ('North', 'Autumn', 12);
INSERT INTO "NORTH" VALUES ('North', 'Winter', 2);
CREATE COLUMN TABLE "SOUTH" LIKE "WEATHER";
INSERT INTO "SOUTH" VALUES ('South', 'Spring', 18);
INSERT INTO "SOUTH" VALUES ('South', 'Summer', 34);
INSERT INTO "SOUTH" VALUES ('South', 'Autumn', 23);
INSERT INTO "SOUTH" VALUES ('South', 'Winter', 12);

After refreshing the catalog, the table type WEATHER with the three attributes REGION, SEASON, and
TEMPERATURE appears in the directory Procedures Table Types of your user's schema. The two
tables NORTH and SOUTH with the same signature appear in the directory Tables your user's schema.

NORTH

REGION SEASON TEMPERATURE

North Spring 10

North Summer 23

North Autumn 12

North Winter 2

SOUTH

REGION SEASON TEMPERATURE

South Spring 18

South Summer 34

South Autumn 23

South Winter 12

2. In the Project Explorer view, right-click on the existing project and choose New Other in the context-
sensitive menu.
The New wizard appears.

3. Choose SAP HANA Database Development Flowgraph Model , and then click Next.
The New Flowgraph Model wizard appears.

4. In the text field File Name enter avg_temp as name of the new flowgraph and select Finish.
The system automatically adds the file extension .hdbflowgraph. The AFM opens and in the Editing Area
the empty flowgraph container is displayed.

5. Select the flowgraph container and enter the schema of your user to the Target Schema field in the
Properties view.

6. Add the table NORTH from the Node Palette to the flowgraph. For this, drag the Data Source entry from the
General tab of the Node Palette (located on the right side of the AFM) to the flowgraph (choose any free

SAP HANA Developer Guide
Developing Procedures P U B L I C 467

space inside the canvas of the flowgraph container). Choose the table NORTH from the schema of your
user in the dialog that appears.
The node NORTH is added to the flowgraph.

7. Add the table SOUTH from the catalog to the flowgraph. For this, navigate in the catalog to the directory
Tables in your schema (either in the Project Explorer view or in the Systems view). Drag the table SOUTH
from the catalog to the flowgraph (place it below the NORTH node). Choose Data Source in the dialog that
appears.
The node SOUTH is added to the flowgraph.

8. Add a Union node to the flowgraph. For this, drag the Union entry from the General tab of the Node Palette
to the flowgraph (place it right of the other two nodes).
The node UNION is added to the flowgraph.

9. Create a connection between the DATA anchor of the NORTH node and the INPUT1 anchor of the UNION

node. Click the Connect button in the context button pad of the DATA anchor and drag a connection to
the INPUT1 anchor.
A connection between the NORTH node and the UNION node is created.

10. Create a second connection between the DATA_2 anchor of the SOUTH node and the INPUT2 anchor of the
UNION node.
A connection between the SOUTH node and the UNION node is created.

11. Create a connection between the OUTPUT anchor of the UNION node and the output anchor region of the
flowgraph container (the light-blue area at its right boundary).
The output anchor OUTPUT_2 is added to the output anchor region of the flowgraph container and a
connection between the UNION node and the new anchor is created.

12. Save the flowgraph. Select File Save in the HANA Studio main menu.
13. Activate the flowgraph. For this, right-click the flowgraph object in the Project Explorer view and choose

Team Activate from the context-sensitive menu.
A new procedure is generated in the schema of your user.

 Caution
If the system user _SYS_REPO does not have SELECT and ALTER privileges then the activation fails.

14. Execute the generated procedure. For this, select the Execute button in the top right corner of the AFM.
The Data Preview view opens. It contains a tab with the SQL command that calls the generated procedure
(with no input and one output) and a tab with the result of the procedure. This result is the union of the
tables NORTH and SOUTH.

15. Return to the AFM view for the avg_temp flowgraph.

16. Add an Aggregation node from the GeneralNode Palette to the flowgraph (place it right of the UNION node).
17. The node AGGREGATION is added to the flowgraph.
18. Connect the OUTPUT anchor of the UNION node with the INPUT anchor of the AGGREGATION node.

compartment of the
The Mapping Editor for the connection is shown in the Properties view.

19. In the Target area of the Mapping Editor for the new connection, select the attribute SEASON of the target
INPUT. Remove this attribute by clicking the Remove button on the right side of the Mapping Editor.
The attribute SEASON and the corresponding mapping are deleted.

20.Select the AGGRAGATION node. In the General tab of its Properties view double-click the action of the
attribute TEMPERATURE and change it to the value AVG.

468 P U B L I C
SAP HANA Developer Guide

Developing Procedures

21. Create a connection between the OUTPUT_3 anchor of the AGGREGATION node and the output anchor
region of the flowgraph container.
The output anchor OUTPUT_4 is added to the output anchor region of the flowgraph container and a
connection between the AGGREGATION node and the new anchor is created.

22. Save and activate the flowgraph. Execute the generated procedure.
The Data Preview view opens again. It contains a tab with the SQL command that calls the generated
procedure (with no input and two outputs) and two tabs with the results of the procedure. One result is still
the union of the tables NORTH and SOUTH. The other result shows in two rows the average temperatures
for the regions North and South.

23. Return to the AFM view for the avg_temp flowgraph.

24. compartment ofDelete the OUTPUT_2 anchor of the flowgraph container by choosing Delete in its context
menu (or the respective button in the context button pad).

25. Save and activate the flowgraph. Execute the generated procedure.
The Data Preview view opens again. It contains a tab with the SQL command that calls the generated
procedure (with no input and one output) and a second result tab that again shows in two rows the average
temperatures for the regions North and South.

26. Return to the AFM view for the avg_temp flowgraph.

27. Delete the SOUTH node from the flowgraph.
The SOUTH node and its connection to the UNION node is deleted.

28.Create an additional input anchor for the flowgraph by adding the table type WEATHER from the catalog.
For this, navigate to the directory Procedures Table Types in the catalog and drag the entry
WEATHER to the input anchor region of the flowgraph container.
The input anchor DATA_2 is added to the flowgraph.

29. Create a connection between the new DATA_2 anchor and the INPUT_2 anchor of the UNION node.
A new connection between the DATA_2 anchor and the UNION node is created.

30.Save and activate the flowgraph. Execute the generated procedure.
A dialog appears where you can choose the free input DATA_2. Enter the table SOUTH in your user's
schema to the Catalog Object field. The Data Preview view opens. Again, it contains a tab with the SQL
command that calls the generated procedure (with one input and one output) and a second result tab that
shows in two rows the average temperatures for the regions North and South.

31. Close the flowgraph. Select File Close in the HANA Studio main menu.

Results

You have created a stored procedure that has one input table of the table type WEATHER and one output table
that is produced by first forming the union of the table NORTH with the input table and then calculating the
average temperature of each season. This procedure can now be used in any application that consumes stored
procedures.

Related Information

Modeling a flowgraph [page 430]

SAP HANA Developer Guide
Developing Procedures P U B L I C 469

Tutorial: Add an SAP HANA System [page 39]

7.7.6 Node palette flowgraphs

A node palette flowgraph represents a node palette or a node palette compartment.

The Node Palette of the SAP HANA application function modeler is customizable. A custom node palette is
represented by a node palette flowgraph. These flowgraphs have the file extension .hdbflowgraphtemplate
in the Project Explorer view.

A node palette flowgraph contains Palette Container and template nodes. These represent the compartments
or sub-compartments and the node templates of the corresponding node palette. The Palette Container nodes
and template nodes have a nested structure. This structure represents the hierarchy of the corresponding
node palette. Moreover, all nodes in a node palette flowgraph are aligned on a horizontal line. Their order (from
left to right) represents the order of the node palette entries (from top to bottom).

The Node Palette hierarchy can have up to three levels.

1. The first level contains the compartments (for example, the General compartment of the application
function modeler Node Palette). Nodes are not permitted on this level.

2. The second level contains nodes (for example, the Filter node) and sub-compartments.
3. The third level contains only nodes.

A node palette flowgraph represents either a complete node palette or a compartment of the node palette. In
the first case, the nesting depth of the node palette flowgraph is at least two and at most three, in the second
case, the nesting depth is at most two.

Each flowgraph can be assigned its own custom node palette. This is specified either on creation of the
flowgraph or in the Annotations tab of the Properties view of the flowgraph container.

Related Information

Flowgraphs [page 427]
Creating a flowgraph [page 431]
Editing the flowgraph container [page 434]

470 P U B L I C
SAP HANA Developer Guide

Developing Procedures

7.7.6.1 Exporting the Node Palette

Export the Node Palette as a node template flowgraph.

Procedure

1. Right-click the Node Palette and choose Export entire palette from the context-sensitive menu.
The Save As wizard appears.

2. Navigate to the directory of your project and save the node template flowgraph file with the
extension .hdbflowgraphtemplate in this project.
Refresh the Project Explorer view, and then the node template flowgraph is available in your project.

 Note
The standard location of HANA projects on your local system is the directory hana_work in the home
directory of your local user. There you find a sub-directory corresponding to the system shared with
your project. The directory of the project is then located in the sub-directory __empty__.

7.7.6.2 Customizing the Node Palette

Customize the node palette of a flowgraph by adding a reference to a node palette flowgraph to the annotations
of its flowgraph container.

Context

A flowgraph can be assigned a custom node palette. This can be done in three ways.

● Add additional compartments to the existing AFM node palette.
● Add additional compartments to an empty node palette.
● Add additional compartments to a custom node palette.

 Note
The recommended way to customize the node palette of a flowgraph is via the New Flowgraph Wizard
during the creation of the flowgraph. The following procedure of directly editing the annotations of the
flowgraph container is only advised if you actually need to change the node palette of an existing flowgraph.

SAP HANA Developer Guide
Developing Procedures P U B L I C 471

Procedure

1. Open the Annotations tab in the Properties view of the flowgraph container of a flowgraph.
2. If the annotation does not exist, add the annotation with the key sap.afm.palette.

3. (Optional) Insert the name of a node palette flowgraph (with the extension .hdbflowgraphtemplate) to
the Value of this annotation. This replaces the default AFM node palette with the custom node palette
defined by the specified node palette flowgraph.

4. If the nested annotation with the key isDefaultUsed does not exist, add it as a child to the annotation
sap.afm.palette.
The Value of this annotation determined if the default AFM node palette is shown.

5. If the nested annotation with the key additions does not exist, add it as a child to the annotation
sap.afm.palette.

6. (Optional) Insert a comma-separated list of names of node palette flowgraphs (with the
extension .hdbflowgraphtemplate) to the Value of this annotation. This adds the compartments
defined by the specified node palette flowgraph to the node palette of the flowgraph.

Related Information

Creating a flowgraph [page 431]

7.7.6.3 Editing a node palette flowgraph

Edit a node palette flowgraph to model a custom node palette.

Prerequisites

You have exported the Node Palette of the SAP HANA application function modeler to a node palette flowgraph
Template.hdbflowgraphtemplate.

In addition, you have created a new (standard) flowgraph Custom.hdbflowgraph with the advanced option of
choosing the node palette flowgraph Template.hdbflowgraphtemplate as the Custom Node Palette.

Context

A node palette flowgraph represents a custom node palette for the application function modeler. Node palette
flowgraphs can be edited with the application function modeler like standard flowgraphs. The behavior of the
application function modeler when editing node palette flowgraphs differs in two aspects from the editing of
standard flowgraphs.

472 P U B L I C
SAP HANA Developer Guide

Developing Procedures

1. All nodes in the node palette flowgraph are automatically aligned on a horizontal line. By this, the order of
the nodes (left to right) represents the order of the custom node palette entries (top to bottom).

2. The node palette flowgraph contains nested Palette Container nodes. These nodes represent the
hierarchical structure of the custom node palette. These nodes look and behave similar to the flowgraph
container.

In the following step by step tutorial, we use the application function modeler to customize the node palette of
the Custom flowgraph by editing the Template node palette flowgraph. We cover only those aspects of
modeling node palette flowgraphs that differ from modeling standard flowgraphs.

Procedure

1. Open the Custom flowgraph with the application function modeler.
The application function modeler displays the empty Custom flowgraph with a custom node palette
defined by the Template node palette flowgraph. At this point, this is still the default application function
modeler node palette.

2. Open the Template node palette flowgraph with the application function modeler.
The Template node palette flowgraph is displayed in a separate tab. The flowgraph container contains
Palette Container nodes representing the top compartments of the node palette for the Custom flowgraph.

 Note
A node palette flowgraph contains no connections. Therefore the flowgraph container has no anchor
regions. Creating connections is disabled when editing node palette flowgraphs.

3. Right-click the GENERAL node and choose Collapse/Expand in the context-sensitive menu.
The GENERAL node expands. It contains the template nodes of the General compartment of the
application function modeler node palette.

 Note
You can collapse a Palette Container node by choosing again Collapse/Expand in the context-sensitive
menu.

4. Drag the JOIN node to a position between the SORT node and the UNION node.
The auto-layout function of the application function modeler rearranges the nodes such that the JOIN node
and the SORT node have effectively swapped positions.

5. Switch to the editing tab of the Custom flowgraph. Refresh the custom Node Palette by right-clicking the
Node Palette and choosing Refresh in the context-sensitive menu.
The Join node template and the Sort node template have swapped places in the General compartment of
the Node Palette.

6. Switch to the editing tab of the Template node palette flowgraph. Add a Palette Container node to the
GENERAL node by dragging the corresponding node template from the General compartment of the Node
Palette to the canvas of the GENERAL node.
A nested Palette Container node named COMPARTMENT is added to the GENERAL node.

7. Add an object from the Project Explorer view to the canvas of the COMPARTMENT node.
8. Switch to the editing tab of the Custom flowgraph. Refresh the custom Node Palette.

SAP HANA Developer Guide
Developing Procedures P U B L I C 473

The sub-compartment Palette Container is added to the General compartment of the custom Node Palette.
It contains the node template for the object from the Project Explorer view added to the COMPARTMENT
node in the previous step.

9. Switch to the editing tab of the Template node palette flowgraph. Add a Filter node from the Node Palette
to the COMPARTMENT node. Edit the Display Name and the Description in the General tab of the
Properties view of the Filter node. In addition, edit the signatures of the input and the output of the Filter
node and define a filter expression.

10. Switch to the editing tab of the Custom flowgraph. Refresh the custom Node Palette.
A new node template with the chosen display name and description (tool-tip) was added to the Palette
Container sub-compartment.

11. Add node template of the new filter node from the custom Node Palette to the Custom flowgraph.
The added Filter node has received the modified input and output signatures and the filter expression of
the Filter node in the Template node palette flowgraph.

12. Switch to the editing tab of the Template node palette flowgraph. Move the COMPARTMENT node from the
canvas of the GENERAL node to the canvas of the flowgraph container.

13. Switch to the editing tab of the Custom flowgraph. Refresh the custom Node Palette.
The previous Palette Container sub-compartment in the General compartment is now a new top level
compartment of the Node Palette.

Related Information

Modeling a flowgraph [page 430]

474 P U B L I C
SAP HANA Developer Guide

Developing Procedures

8 Defining Web-based Data Access in XS
Classic

SAP HANA extended application services (SAP HANA XS) provide applications and application developers with
access to the SAP HANA database using a consumption model that is exposed via HTTP.

In addition to providing application-specific consumption models, SAP HANA XS also host system services that
are part of the SAP HANA database, for example: search services and a built-in Web server that provides
access to static content stored in the SAP HANA repository.

The consumption model provided by SAP HANA XS focuses on server-side applications written in JavaScript
and making use of a powerful set of specially developed API functions. However, you can use other methods to
provide access to the data you want to expose in SAP HANA. For example, you can set up the Web-based data
access for XS classic applications using the following services:

● OData (v2 or v4)
You can map the persistence and consumption models with the Open Data Protocol (OData), a resource-
based Web protocol for querying and updating data.

● XMLA
Use the XML for Analysis (XMLA) interface to send a Multi-dimensional Expressions (MDX) query. XMLA
uses Web-based services to enable platform-independent access to XMLA-compliant data sources for
Online Analytical Processing (OLAP).

● SAP HANA REST API
SAP HANA REST API supports the Orion protocol 1.0, which allows development tools to access the SAP
HANA Repository (XS classic) in a convenient and standards-compliant way.

8.1 Data Access with OData in SAP HANA XS

In SAP HANA Extended Application Services (SAP HANA XS), the persistence model (for example, tables,
views, and stored procedures) is mapped to the consumption model that is exposed to clients - the
applications you write to extract data from the SAP HANA database.

You can map the persistence and consumption models with the Open Data Protocol (OData), a resource-based
Web protocol for querying and updating data. An OData application running in SAP HANA XS is used to provide
the consumption model for client applications exchanging OData queries with the SAP HANA database.

 Note
SAP HANA XS currently supports OData version 2.0, which you can use to send OData queries (for
example, using the HTTP GET method). Language encoding is restricted to UTF-8.

You can use OData to enable clients to consume authorized data stored in the SAP HANA database. OData
defines operations on resources using RESTful HTTP commands (for example, GET, PUT, POST, and DELETE)
and specifies the URI syntax for identifying the resources. Data is transferred over HTTP using either the Atom
(XML) or the JSON (JavaScript) format.

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 475

 Note
For modification operations, for example, CREATE, UPDATE, and DELETE, SAP HANA XS supports only the
JSON format (“content-type: application/json”).

Applications running in SAP HANA XS enable accurate control of the flow of data between the presentational
layer, for example, in the Browser, and the data-processing layer in SAP HANA itself, where the calculations are
performed, for example, in SQL or SQLScript. If you develop and deploy an OData service running in SAP HANA
XS, you can take advantage of the embedded access to SAP HANA that SAP HANA XS provides; the embedded
access greatly improves end-to-end performance.

8.1.1 OData in SAP HANA XS
OData is a resource-based web protocol for querying and updating data. OData defines operations on
resources using HTTP commands (for example, GET, PUT, POST, and DELETE) and specifies the uniform
resource indicator (URI) syntax to use to identify the resources.

Data is transferred over HTTP using the Atom or JSON format:

 Note
OData makes it easier for SAP, for partners, and for customers to build standards-based applications for
many different devices and on various platforms, for example, applications that are based on a lightweight
consumption of SAP and non-SAP business application data.

The main aim of OData is to define an abstract data model and a protocol which, combined, enable any client
to access data exposed by any data source. Clients might include Web browsers, mobile devices, business-
intelligence tools, and custom applications (for example, written in programming languages such as PHP or
Java); data sources can include databases, content-management systems, the Cloud, or custom applications
(for example, written in Java).

The OData approach to data exchange involves the following elements:

● OData data model
Provides a generic way to organize and describe data. OData uses the Entity 1 Data Model (EDM).

● OData protocol
Enables a client to query an OData service. The OData protocol is a set of interactions, which includes the
usual REST-based create, read, update, and delete operations along with an OData-defined query
language. The OData service sends data in either of the following ways:
○ XML-based format defined by Atom/AtomPub
○ JavaScript Object Notation (JSON)

● OData client libraries
Enables access to data via the OData protocol. Since most OData clients are applications, pre-built libraries
for making OData requests and getting results reduces and simplifies work for the developers who create
those applications.
A broad selection of OData client libraries are already widely available, for example: Android, Java,
JavaScript, PHP, Ruby, and the best known mobile platforms.

● OData services
Exposes an end point that allows access to data in the SAP HANA database. The OData service
implements the OData protocol (using the OData Data Services runtime) and uses the Data Access layer to

476 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

map data between its underlying form (database tables, spreadsheet lists, and so on) and a format that the
requesting client can understand.

8.1.2 Define the Data an OData Service Exposes

An OData service exposes data stored in database tables or views as OData collections for analysis and display
by client applications. However, first of all, you need to ensure that the tables and views to expose as an OData
collection actually exist.

Context

To define the data to expose using an OData service, you must perform at least the following tasks:

Procedure

1. Create a database schema.
2. Create a simple database table to expose with an OData service.
3. Create a simple database view to expose with an OData service.

This step is optional; you can expose tables directly. In addition, you can create a modeling view, for
example, analytic, attribute, or calculation.

4. Grant select privileges to the tables and views to be exposed with the OData service.
After activation in the repository, schema and tables objects are only visible in the catalog to the
_SYS_REPO user. To enable other users, for example the schema owner, to view the newly created schema
in the SAP HANA studio's Modeler perspective, you must grant the user the required SELECT privilege.

call
_SYS_REPO.GRANT_SCHEMA_PRIVILEGE_ON_ACTIVATED_CONTENT('select','<SCHEMANAME>',
'<username>');

8.1.3 OData Service Definitions

The OData service definition is the mechanism you use to define what data to expose with OData, how, and to
whom. Data exposed as an OData collection is available for analysis and display by client applications, for
example, a browser that uses functions provided by an OData client library running on the client system.

To expose information by means of OData to applications using SAP HANA XS, you must define database views
that provide the data with the required granularity. Then you create an OData service definition, which is a file
you use to specify which database views or tables are exposed as OData collections.

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 477

 Note
SAP HANA XS supports OData version 2.0, which you can use to send OData queries (for example, using
the HTTP GET method). Language encoding is restricted to UTF-8.

An OData service for SAP HANA XS is defined in a text file with the file suffix .xsodata, for example,
OdataSrvDef.xsodata. The file must contain at least the entry service {}, which would generate a
completely operational OData service with an empty service catalog and an empty metadata file. However,
usually you use the service definition to expose objects in the database catalog, for example: tables, SQL views,
or calculation rules.

In the OData service-definition file, you can use the following ways to name the SAP HANA objects you want to
expose by OData:

 Note
The syntax to use in the OData service-definition file to reference objects depends on the object type, for
example, repository (design-time) or database catalog (runtime).

● Repository objects
Expose an object using the object's repository (design-time) name in the OData service-definition file. This
method of exposing database objects using OData enables the OData service to be automatically updated
if the underlying repository object changes. Note that a design-time name can be used to reference
analytic and calculation views; it cannot be used to reference SQL views. The following example shows how
to include a reference to a table in an OData service definition using the table's design-time name.

service { "acme.com.odata::myTable" as "myTable"; }

 Note
Calculation views are only accessible from within xsodata files by referring to the design-time name.
However, it is recommended to use design-time names whenever possible for calculation views or
common tables. With design-time names, the cross references are recreated during activation (for
example, for where-used), which means changes are visible automatically.

● Database objects
Expose an object using the object's database catalog (runtime) name. The support for database objects is
mainly intended for existing or replicated objects that do not have a repository design-time representation.
The following example shows how to include a reference to a table in an OData service definition using the
table's runtime name.

service { "mySchema"."myTable" as "MyTable"; }

 Note
It is strongly recommended not to use catalog (runtime) names in an OData service-definition. The use
of catalog object names is only enabled in a service-definition because some objects do not have a
design-time name. If at all possible, use the design-time name to reference objects in an OData service-
definition file.

478 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

By default, all entity sets and associations in an OData service are writeable, that is they can be modified with a
CREATE, UPDATE, or DELETE requests. However, you can prevent the execution of a modification request by
setting the appropriate keyword (create, update, or delete) with the forbidden option in the OData service
definition. The following example of an OData service definition for SAP HANA XS shows how to prevent any
modification to the table myTable that is exposed by the OData service. Any attempt to make a modification to
the indicated table using a CREATE, UPDATE, or DELETE request results in the HTTP response status 403
FORBIDDEN.

service { “sap.test::myTable”
 create forbidden
 update forbidden
 delete forbidden;
}

For CREATE requests, for example, to add a new entry to either a table or an SQL view exposed by an OData
service, you must specify an explicit key (not a generated key); the key must be included in the URL as part of
the CREATE request. For UPDATE and DELETE requests, you do not need to specify the key explicitly (and if
you do, it will be ignored); the key is already known, since it is essential to specify which entry in the table or
SQL view must be modified with the UPDATE or DELETE request.

 Note
Without any support for IN/OUT table parameters in SQLScript, it is not possible to use a sequence to
create an entry in a table or view exposed by an OData service. However, you can use XS JavaScript exits to
update a table with a generated value.

Related Information

Tutorial: Creating a Modification Exit with XS JavaScript [page 507]

8.1.3.1 OData Service-Definition Type Mapping

During the activation of the OData service definition, SQL types defined in the service definition are mapped to
EDM types according to a mapping table.

For example, the SQL type "Time" is mapped to the EDM type "EDM.Time"; the SQL type "Decimal" is mapped
to the EDM type "EDM.Decimal"; the SQL types "Real" and "Float" are mapped to the EDM type
"EDM.Single".

 Note
The OData implementation in SAP HANA Extended Application Services (SAP HANA XS) does not support
all SQL types.

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 479

In the following example, the SQL types of columns in a table are mapped to the EDM types in the properties of
an entity type.

{name = "ID"; sqlType = INTEGER; nullable = false;}, {name = "RefereeID";
sqlType = VARCHAR; nullable = true;}

<Property Name="ID" Type="Edm.Int32" Nullable="false"/> <Property
Name="RefereeID" Type="Edm.String" Nullable="true"/>

Related Information

OData Service Definition: SQL-EDM Type Mapping (XS Advanced) [page 511]
OData Service Definitions [page 477]

8.1.3.2 OData Service-Definition Features

The OData service definition provides a list of keywords that you use in the OData service-definition file to
enable important features. For example, the following list illustrates the most-commonly used features used in
an OData service-definition and, where appropriate, indicates the keyword to use to enable the feature:

● Aggregation
The results of aggregations on columns change dynamically, depending on the grouping conditions. As a
result, aggregation cannot be done in SQL views; it needs to be specified in the OData service definition
itself. Depending on the type of object you want to expose with OData, the columns to aggregate and the
function used must be specified explicitly (explicit aggregation) or derived from metadata in the database
(derived aggregation). Note that aggregated columns cannot be used in combination with the $filter
query parameter, and aggregation is only possible with generated keys.

● Association
Define associations between entities to express relationships between entities. With associations it is
possible to reflect foreign key constraints on database tables, hierarchies and other relations between
database objects.

● Key Specification
The OData specification requires an EntityType to denote a set of properties forming a unique key. In SAP
HANA, only tables can have a unique key, the primary key. All other (mostly view) objects require you to
specify a key for the entity. The OData service definition language (OSDL) enables you to do this by
denoting a set of existing columns or by generating a local key. Bear in mind that local keys are transient;
they exist only for the duration of the current session and cannot be dereferenced.

 Note
OSDL is the language used to define a service definition; the language includes a list of keywords that
you use in the OData service-definition file to enable the required features.

● Parameter Entity Sets
You can use a special parameter entity set to enter input parameters for SAP HANA calculation views and
analytic views. During activation of the entity set, the specified parameters are retrieved from the

480 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

metadata of the calculation (or analytical) view and exposed as a new EntitySet with the name suffix
"Parameters", for example "CalcViewParameters".

● Projection
If the object you want to expose with an OData service has more columns than you actually want to expose,
you can use SQL views to restrict the number of selected columns in the SELECT. However, for those cases
where SQL views are not appropriate, you can use the with or without keywords in the OData service
definition to include or exclude a list of columns.

Related Information

OData Service-Definition Examples [page 486]

8.1.4 Create an OData Service Definition

The OData service definition is a configuration file you use to specify which data (for example, views or tables)
is exposed as an OData collection for analysis and display by client applications.

Prerequisites

The following prerequisites apply when you create an OData service definition:

● SAP HANA studio (and client) is installed and configured
● An SAP HANA database user is available with repository privileges (for example, to add packages)
● An SAP HANA development system is added to (and available in) SAP HANA studio, for example, in either

the Systems view or the Repositories view
● A working development environment is available including: a repository workspace, a package structure for

your OData application, and a shared project to enable you to synchronize changes to the OData project
files in the local file system with the repository

● You have defined the data to expose with the OData application, for example, at least the following:
○ A database schema
○ A database table

Context

An OData service for SAP HANA XS is defined in a text file with the file suffix .xsodata, for example,
OdataSrvDef.xsodata. The file resides in the package hierarchy of the OData application and must contain
at least the entry service {}, which would generate an operational OData service with an empty service catalog
and an empty metadata file.

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 481

 Tip
File extensions are important. If you are using SAP HANA Studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the new file in the corresponding editor.

Procedure

1. In the shared project you are using for your OData application, use the Project Explorer view to locate the
package where you want to create the new OData service definition.

 Note
The file containing the OData service definition must be placed in the root package of the OData
application for which the service is intended.

2. Create the file that will contain your OData service definition.
In the Project Explorer view, right-click the folder where you want to create the new OData service definition
file and choose New Other SAP HANA Application Development XS OData Service in the
context-sensitive popup menu.

3. Enter or select the parent folder, where the new OData service definition is to be located.
4. Enter a name for the new OData service definition.
5. Select a template to use. Templates contain sample source code to help you.
6. Choose Finish.

 Note
If you are using the SAP HANA Studio to create artifacts in the SAP HANA Repository, the file creation
wizard adds the required file extension .xsodata automatically and opens the new file in the
appropriate editor.

7. Define the OData service.
The OData service definition uses the OData Service Definition Language (OSDL), which includes a list of
keywords that you specify in the OData service-definition file to enable important features.
The following example shows a simple OData service definition exposing a simple table:

service namespace "my.namespace" { "sample.odata::table" as "MyTable"; }

This service definition exposes a table defined in the file sample.odata:table.hdbtable and creates
an EntitySet for this entity named MyTable. The specification of an alias is optional. If omitted, the default
name of the EntitySet is the name of the repository object file, in this example, table.

8. Save and activate the OData service definition in the SAP HANA repository.

 Tip

To run an OData service, right-click the OData service file in the Project Explorer view and choose Run
As XS Service in the context-sensitive menu.

482 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

Related Information

OData Service Definitions [page 477]

8.1.5 Tutorial: Use the SAP HANA OData Interface

The package you put together to test the SAP HANA OData interface includes all the artifacts you need to use
SAP HANA Extended Application Services (SAP HANA XS) to expose an OData collection for analysis and
display by client applications.

Prerequisites

Since the artifacts required to get a simple OData application up and running are stored in the repository, it is
assumed that you have already performed the following tasks:

● Create a development workspace in the SAP HANA repository
● Create a project in the workspace
● Share the new project

Context

To create a simple OData application, perform the following steps:

 Tip
File extensions are important. If you are using SAP HANA studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the file in the appropriate editor.

Procedure

1. Create a root package for your OData application, for example, helloodata and save and activate it in the
repository.

a. Click the Content directory with the alternate mouse button and choose New Package .
b. Enter the required information for the package in the dialog box and choose OK.

 Note
The namespace sap is restricted. Place the new package in your own namespace, which you can create
alongside the sap namespace.

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 483

2. Create a schema, for example, HELLO_ODATA.hdbschema.

The schema is required for the table that contains the data to be exposed by your OData service-definition.
The schema is defined in a flat file with the file extension .hdbschema that you save in the repository and
which you must activate.

 Tip
File extensions are important. If you are using SAP HANA studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the file in the appropriate editor.

Enter the following code in the HELLO_ODATA.hdbschema file:

schema_name="HELLO_ODATA";

3. Create the database table that contains the data to be exposed by your OData service definition, for
example, otable.hdbtable.

In the Project Explorer view, right-click the folder where you want to create the new OData service definition
file and choose New Other SAP HANA Database Development Database Table in the context-
sensitive popup menu.

 Tip
File extensions are important. If you are using SAP HANA studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the file in the appropriate editor.

Enter the following code in the otable.hdbtable file:

 Note
If the editor underlines the keywords nullable and Defaultvalue in red, you can safely ignore this.

table.schemaName = "HELLO_ODATA"; table.tableType = COLUMNSTORE;
table.columns = [
 {name = "Col1"; sqlType = VARCHAR; nullable = false; length = 20; comment
= "dummy comment";},
 {name = "Col2"; sqlType = INTEGER; nullable = false;},
 {name = "Col3"; sqlType = NVARCHAR; nullable = true; length = 20;
defaultValue = "Defaultvalue";},
 {name = "Col4"; sqlType = DECIMAL; nullable = false; precision = 12;
scale = 3;}];
table.primaryKey.pkcolumns = ["Col1", "Col2"];

4. Grant SELECT privileges to the owner of the new schema.
After activation in the repository, the schema object is only visible in the catalog to the _SYS_REPO user. To
enable other users, for example the schema owner, to view the newly created schema in the SAP HANA
studio's Modeler perspective, you must grant the user the required SELECT privilege.
a. In the SAP HANA studio Systems view, right-click the SAP HANA system hosting the repository where

the schema was activated and choose SQL Console in the context-sensitive popup menu.

484 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

b. In the SQL Console, execute the statement illustrated in the following example, where <SCHEMANAME>
is the name of the newly activated schema, and <username> is the database user ID of the schema
owner:

call
_SYS_REPO.GRANT_SCHEMA_PRIVILEGE_ON_ACTIVATED_CONTENT('select','<SCHEMANAME
>','<username>');

5. Create an application descriptor for your new OData application in your root OData package helloodata.

The application descriptor (.xsapp) is the core file that you use to define an application's availability within
SAP HANA application. The .xsapp file sets the point in the application-package structure from which
content will be served to the requesting clients.

 Note
The application-descriptor file has no content and no name; it only has the extension .xsapp. File
extensions are important. If you are using SAP HANA studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the file in the appropriate editor.

a. In the Project Explorer view, right-click the folder where you want to create the new application
descriptor and choose New Other SAP HANA Application Development XS Application
Descriptor File in the context-sensitive popup menu.

b. Save and activate the application-descriptor file in the repository.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the
repository, To explicitly commit a file to the repository, right-click the file (or the project containing
the file) and choose Team Commit from the context-sensitive popup menu.

6. Create an application-access file for your new OData application and place it in your root OData package
helloodata.

The application-access file enables you to specify who or what is authorized to access the content exposed
by the application.

 Note
The application-access file has no name; it only has the extension .xsaccess. File extensions are
important. If you are using SAP HANA studio to create artifacts in the SAP HANA Repository, the file-
creation wizard adds the required file extension automatically and, if appropriate, enables direct editing
of the file in the appropriate editor.

a. In the Project Explorer view, right-click the folder where you want to create the new application
descriptor and choose New Other SAP HANA Application Development XS Application
Access File in the context-sensitive popup menu.

b. Enter the following content in the .xsaccess file for your new OData application:

{ "exposed" : true,
 "prevent_xsrf" : true }

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 485

 Note
It is highly recommended to always use the prevent_xsrf keyword to help protect your
application against attacks that use cross-site request forgery.

c. Save and activate the application-access file in the repository.
7. Create an OData service-definition file and place it in your root OData package helloodata.

The Odata service-definition file has the file extension .xsodata, for example, hello.xsodata and for
the purposes of this tutorial should be located in the root package of the OData application:

 Tip
File extensions are important. If you are using SAP HANA studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the file in the appropriate editor.

a. In the Project Explorer view, right-click the folder where you want to create the new application
descriptor and choose New Other SAP HANA Application Development XS OData File in
the context-sensitive popup menu.

b. Enter the following content in the hello.xsodata OData service-definition file:

service { "helloodata::otable"; }

c. Save and activate the OData service-definition file in the repository.
8. Test the new OData service.

Open a browser and enter the following URL.

 Note
If you are using Internet Explorer, press F12 and set compatibility mode = IE10 and document mode =
Standards.

http://<hana.server.name>:80<HANA_instance_number>/helloodata/hello.xsodata/
otable

 Tip
You can also run the service directly from the Project Explorer view where you activated it; right-click
the object in the Project Explorer view and chose Run As... in the context-sensitive popup menu.

8.1.6 OData Service-Definition Examples

The OData service definition describes how data exposed in an end point can be accessed by clients using the
OData protocol.

Each of the examples listed below is explained in a separate section. The examples show how to use the OData
Service Definition Language (OSDL) in the OData service-definition file to generate an operational OData
service that enables clients to use SAP HANA XS to access the OData end point you set up.

486 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

● Empty Service
● Namespace Definition
● Object Exposure
● Property Projection
● Key Specification
● Associations
● Aggregation
● Parameter Entity Sets
● ETag Support
● Nullable Properties

8.1.6.1 OData Empty Service

An OData service for SAP HANA XS is defined by a text file containing at least the following line:

Service definition sample.odata:empty.xsodata

 service {}

A service file with the minimal content generates an empty, completely operational OData service with an
empty service catalog and an empty metadata file:

 Note
● Examples and graphics are provided for illustration purposes only; some URLs may differ from the ones

shown.

http://<myHANAServer>:<port>/odata/services/<myService>.xsodata

{ "d" : {
 "EntitySets" : []
 }
}

http://<myHANAServer>:<port>/odata/services/<myService>.xsodata/$metadata

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 487

An empty service metadata document consists of one Schema containing an empty EntityContainer. The
name of the EntityContainer is the name of the .xsodata file, in this example "empty".

8.1.6.2 OData Namespace Definition

Every .xsodata file must define it's own namespace by using the namespace keyword:

Service definition sample.odata:namespace.xsodata

 service namespace "my.namespace" {}

The resulting service metadata document has the specified schema namespace:

 Note
Examples and graphics are provided for illustration purposes only; some URLs may differ from the ones
shown.

http://<myHANAServer>:<port>/odata/services/<myService>.xsodata/$metadata

8.1.6.3 OData Object Exposure

In the examples provided to illustrate object exposure, the following definition of a table applies:

Table definition sample.odata:table.hdbtable

COLUMN TABLE "sample.odata::table" ("ID" INTEGER,
 "Text" NVARCHAR(1000),
 "Time" TIMESTAMP,
 PRIMARY KEY ("ID"));

488 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

Database Objects

Similar to the exposure of an object by using the repository design-time name is the exposure by the database
name:

Service definition sample.odata:db.xsodata

 service { "sample.odata::table" as "MyTable"; }

The service exposes the same table by using the database catalog name of the object and the name of the
schema where the table is created in.

8.1.6.4 OData Property Projection
If the object you want to expose with an OData service has more columns than you actually want to expose, you
can use SQL views to restrict the number of selected columns in the SELECT.

Nevertheless, SQL views are sometimes not appropriate, for example with calculation views, and for these
cases we provide the possibility to restrict the properties in the OData service definition in two ways. By
providing an including or an excluding list of columns.

Including Properties

You can specify the columns of an object that have to be exposed in the OData service by using the with
keyword. Key fields of tables must not be omitted.

Service definition sample.odata:with.xsodata

 service { "sample.odata::table" as "MyTable" with ("ID","Text"); }

The resulting EntityType then contains only the properties derived from the specified columns:

 Note
Examples and graphics are provided for illustration purposes only; some URLs may differ from the ones
shown.

http://<myHANAServer>:<port>/odata/services/<myService>.xsodata/$metadata

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 489

Excluding Properties

The opposite of the with keyword is the without keyword, which enables you to specify which columns you
do NOT want to expose in the OData service:

Service definition sample.odata:without.xsodata

 service { "sample.odata::table" as "MyTable" without ("Text","Time"); }

The generated EntityType then does NOT contain the properties derived from the specified columns:

http://<myHANAServer>:<port>/odata/services/<myService>.xsodata/$metadata

8.1.6.5 OData Key Specification

The OData specification requires an EntityType to denote a set properties forming a unique key. In HANA
only tables may have a unique key, the primary key. For all other (mostly view) objects you need to specify a key
for the entity.

In OSDL, you can specify a key for an entity/object by denoting a set of existing columns or by generating a key.

 Note
Key attributes are not evaluated.

For the examples illustrating key specification, we use the following SQL view, which selects all data from the
specified table.

View definition sample.odata:view.hdbview

{ VIEW "sample.odata::view" as select * from "sample.odata::table" }

Existing Key Properties

If the object has set of columns that may form a unique key, you can specify them as key for the entity. These
key properties are always selected from the database, no matter if they are omitted in the $select query

490 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

option. Therefore explicit keys are not suitable for calculation views and analytic views as the selection has an
impact on the result.

Service definition sample.odata:explicitkeys.xsodata/$metadata

 service { "sample.odata::view" as "MyView" key ("ID","Text"); }

The metadata document for the exposure of the view above is almost equal to the metadata document for
repository objects. Only the key is different and consists now of two columns:

 Note
Examples and graphics are provided for illustration purposes only; some URLs may differ from the ones
shown.

http://<myHANAServer>:<port>/odata/services/<myService>.xsodata/$metadata

 Caution
The OData infrastructure cannot check whether your specified keys are unique, so be careful when
choosing keys.

Generated Local Key

For objects that do not have a unique key in their results, for example, calculation views or aggregated tables,
you can generate a locally valid key. This key value numbers the results starting with 1 and is not meant for

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 491

dereferencing the entity; you cannot use this key to retrieve the entity. The key is valid only for the duration of
the current session and is used only to satisfy OData's need for a unique ID in the results. The property type of
a generated local key is Edm.String and cannot be changed.

Service definition sample.odata:generatedkeys.xsodata

service { "sample.odata::view" as "MyView" key generate local "GenID";
}

http://<myHANAServer>:<port>/odata/services/<myService>.xsodata/$metadata

As a consequence of the transient nature of generated local keys, it is not possible to define navigation
properties on these entities or use them in filter or order by conditions.

8.1.6.6 OData Associations

You can define associations between entities to express relationships between entities. With associations it is
possible to reflect foreign key constraints on database tables, hierarchies and other relations between
database objects. OSDL supports simple associations, where the information about the relationship is stored
in one of the participating entities, and complex associations, where the relationship information is stored in a
separate association table.

Associations themselves are freestanding. On top of them you can specify which of the entities participating in
the relationship can navigate over the association to the other entity by creating NavigationProperty
objects.

For the examples used to illustrate OData associations, we use the tables customer and order:

Table definition: sample.odata:customer.hdbtable

COLUMN TABLE "sample.odata::customer" ("ID" INTEGER NOT NULL,
 "OrderID" INTEGER,
 PRIMARY KEY ("ID"));

Table definition: sample.odata:order.hdbtable

COLUMN TABLE "sample.odata::order" (

492 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

 "ID" INTEGER NOT NULL,
 "CustomerID" INTEGER,
 PRIMARY KEY ("ID"));

There is one relationship order.CustomerID to customer.ID.

Simple Associations

The definition of an association requires you to specify a name, which references two exposed entities and
whose columns keep the relationship information. To distinguish the ends of the association, you must use the
keywords principal and dependent. In addition, it is necessary to denote the multiplicity for each end of the
association.

Service definition: sample.odata:assocsimple.xsodata

service { "sample.odata::customer" as "Customers";
 "sample.odata::order" as "Orders";
 association "Customer_Orders" with referential constraint principal
"Customers"("ID") multiplicity "1" dependent "Orders"("CustomerID") multiplicity
"*"; }

The association in the example above with the name Customer_Orders defines a relationship between the
table customer, identified by its EntitySet name Customers, on the principal end, and the table order,
identified by its entity set name Orders, on the dependent end. Involved columns of both tables are denoted
in braces ({}) after the name of the corresponding entity set. The multiplicity keyword on each end of the
association specifies their cardinality - in this example, one-to-many.

The with referential constraint syntax ensures that the referential constraint check is enforced at
design time, for example, when you activate the service definition in the SAP HANA repository. The referential
constraint information appears in the metadata document.

 Note
SAP strongly recommends that you use the with referential constraint syntax.

The number of columns involved in the relationship must be equal for both ends of the association, and their
order in the list is important. The order specifies which column in one table is compared to which column in the
other table. In this simple example, the column customer.ID is compared to order.CustomerID in the
generated table join.

As a result of the generation of the service definition above, an AssociationSet named Customer_Orders
and an Association with name Customer_OrdersType are generated:

http://<myHANAServer>:<port>/odata/services/<myService>.xsodata/$metadata

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 493

The second association is similar to the first one and is shown in the following listing:

 association "Customer_Recruit" with referential constraint principal
"Customers"("ID") multiplicity "1" dependent "Customers"("RecruitID")
multiplicity "*";

Complex Associations

For the following example of a complex association, an additional table named knows is introduced that
contains a relationship between customers.

Table definition: sample.odata:knows.hdbtable

COLUMN TABLE "sample.odata::knows" ("KnowingCustomerID" INTEGER NOT NULL,
 "KnowCustomerID" INTEGER NOT NULL,
 PRIMARY KEY ("KnowingCustomerID","KnowCustomerID"));

494 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

Relationships that are stored in association tables such as knows can be similarly defined as simple
associations. Use the keyword over to specify the additional table and any required columns.

Service definition: sample.odata:assoccomplex.xsodata

service { "sample.odata::customer" as "Customers";
 "sample.odata::order" as "Orders";
 association "Customer_Orders"
 principal "Customers"("ID") multiplicity "*"
 dependent "Customers"("ID") multiplicity "*"
 over "sample.odata::knows" principal ("KnowingCustomerID") dependent
("KnownCustomerID"); }

With the keywords principal and dependent after over you can specify which columns from the
association table are joined with the principal respectively dependent columns of the related entities. The
number of columns must be equal in pairs, and their order in the list is important.

The generated Association in the metadata document is similar to the one created for a simple association
except that the ReferentialConstraint is missing:

http://<myHANAServer>:<port>/odata/services/<myService>.xsodata/$metadata

Navigation Properties

By only defining an association, it is not possible to navigate from one entity to another. Associations need to
be bound to entities by a NavigationProperty. You can create them by using the keyword navigates:

Service definition: sample.odata:assocnav.xsodata

service { "sample.odata::customer" as "Customers" navigates ("Customer_Orders" as
"HisOrders");
 "sample.odata::order" as "Orders";
 association "Customer_Orders" principal "Customers"("ID") multiplicity "1"
dependent "Orders"("CustomerID") multiplicity "*"; }

The example above says that it is possible to navigate from Customers over the association Customer_Order
via the NavigationProperty named "HisOrders".

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 495

The right association end is determined automatically by the entity set name. But if both ends are bound to the
same entity, it is necessary to specify the starting end for the navigation. This is done by specifying either from
principal or from dependent which refer to the principal and dependent ends in the association.

Service definition: sample.odata:assocnavself.xsodata

service { "sample.odata::customer" as "Customers"
 navigates ("Customer_Orders" as "HisOrders","Customer_Recruit" as
"Recruit" from principal);
 "sample.odata::order" as "Orders";
 association "Customer_Orders" principal "Customers"("ID") multiplicity "1"
dependent "Orders"("CustomerID") multiplicity "*";
 association "Customer_Recruit" principal "Customers"("ID") multiplicity
"1" dependent "Customers"("RecruitID") multiplicity "*"; }

In both cases a NavigationProperty is added to the EntityType.

http://<myHANAServer>:<port>/odata/services/<myService>.xsodata/$metadata

8.1.6.7 OData Aggregation

The results of aggregations on columns change dynamically depending on the grouping conditions. This means
that aggregation cannot be performed in SQL views; it needs to be specified in the OData service definition
itself. Depending on the type of object to expose, you need to explicitly specify the columns to aggregate and
the function to use or derived them from metadata in the database.

In general, aggregations do not have consequences for the metadata document. It just effects the semantics of
the concerning properties during runtime. The grouping condition for the aggregation contain all selected non-
aggregated properties. Furthermore, aggregated columns cannot be used in $filter, and aggregation is only
possible with generated keys.

Derived Aggregation

The simplest way to define aggregations of columns in an object is to derive this information from metadata in
the database. The only objects with this information are calculation views and analytic views. For all other

496 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

object types, for example, tables and SQL views, the activation will not work. To cause the service to use
derived information, you must specify the keywords aggregates always, as illustrated in the following example:

service { "sample.odata::calc" as "CalcView"
 keys generate local "ID"
 aggregates always; }

Explicit Aggregation

The example for the explicit aggregation is based on the following table definition:
sample.odata:revenues.hdbtable

COLUMN TABLE "sample.odata::revenues" ("Month" INTEGER NOT NULL,
 "Year" INTEGER NOT NULL,
 "Amount" INTEGER,
 PRIMARY KEY ("Month","Year"));

You can aggregate the columns of objects (without metadata) that are necessary for the derivation of
aggregation by explicitly denoting the column names and the functions to use, as illustrated in the following
example of a service definition: sample.odata:aggrexpl.xsodata

service { "sample.odata::revenues" as "Revenues"
 keys generate local "ID"
 aggregates always (SUM of "Amount"); }

The results of the entity set Revenues always contain the aggregated value of the column Amount. To extract
the aggregated revenue amount per year, add $select=Year,Amount to your requested URI.

8.1.6.8 OData Parameter Entity Sets

SAP HANA calculation views can interpret input parameters. For OData, these parameters can be entered by
using a special parameter entity set.

Parameter entity sets can be generated for calculation views by adding parameters via entity to the entity, as
illustrated in the following service-definition example:

service { "sample.odata::calc" as "CalcView"
 keys generate local "ID"
 parameters via entity; }

During loading of the service, parameters specified in sample.odata/calc.calculationview are retrieved
from the metadata of the calculation view and exposed as a new EntitySet named after the entity set name
and the suffix Parameters, for example, CalcViewParameters. A NavigationProperty named Results
is generated to retrieve the results from the parameterized call.

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 497

The name of the generated parameter entity set and the navigation property can be customized, as illustrated
in the following service-definition example:

service { "sample.odata::calc" as "CalcView"
 keys generate local "ID"
 parameters via entity "CVParams" results property "Execute"; }

With the definition above, the name of the parameter entity set is CVParams, and the name of the
NavigationProperty for the results is Execute.

Navigating to Entities via Parameters

In an OData service definition, you can enable navigation between an entity and a parameterized entity. This
feature is particularly useful if you need to have access to individual entries in a parameterized entity set, for
example, a calculation view with parameters. If you need to access individual entries in an entity set that has
parameters, you must expose the parameters as keys. If you do not need to have access to individual entries in
an entity set, you can use the key generate local option to generate a pseudo key.

To enable navigation between an entity and a parameterized entity, you must perform the following steps:

1. Specify the parameters as part of the key of the target entity
2. Define the association between the entities

Enabling navigation between an entity and a parameterized entity is only possible if the parameters are part of
the entity-type key in the OData service definition file. To make the parameters part of the key of the target
entity, use the via key syntax, as illustrated in the following example:

service { "sap.test::calcview" key ("theKeyColumns") parameters via key and entity; }

You also have to define an association between the source and target entities, for example, with additional
entries introduced by the via parameters keyword, as illustrated in the following example:

service { "sap.test::table" as "Tab" navigates ("avp" as "ViewNav");
 "sap.test::calcview" as "View" key ("theKeyColumns") parameters via key and
entity;
 association via parameters "avp" principal "Tab"("paramValue") multiplicity "*"
 dependent "View"("parameter") multiplicity "*"; }

 Note
The order of the property list of the dependent end is crucial.

The parameters you define in the dependent end of the association must be the first properties in the list. In
addition, the parameters specified must be given in the same order as they are specified in the view, as
illustrated in the following example:

association via parameters "avp"

498 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

 principal "Tab"("col1", "col2", "col3") multiplicity "*" dependent "View"("parameter1", "parameter2", "colA") multiplicity "*";

In the example immediately above, the principal “Tab” has three columns that contain the information that is
required to navigate to the dependent “View” in the association.

● “col1”
The value of “col1” should be set for “parameter1”

● “col2”
The value of “col2” should be set for “parameter2”

● “col3”
The parameter “col3” contains additional information that is not passed as an input parameter, but as
part of a WHERE condition.

The generated SQL statement would look like the following:

select ... from "sap.test::calcview"(placeholder."$$parameter1$$"=>?,
placeholder."$$parameter2$$"=>?) where "colA"=?

 Note
This navigation property cannot be used in combination with the OData query options $expand, $filter
and $orderby.

8.1.6.9 OData ETag Support

This feature allows a service to define the fields that are to be included in the concurrency check.

You can now use entity tags (ETags) for optimistic concurrency control. If you choose to use this feature, then
you must enable it per entity in the .xsodata file. Enabling this feature per entity allows for the concurrency
control to be applied to multiple fields. The following code example provides information about how to do this.

 Sample Code

service { entity "sap.test.odata.db.views::Etag" as "EtagAll"
 key ("KEY_00") concurrencytoken;
 entity "sap.test.odata.db.views::Etag" as "EtagNvarchar"
 key ("KEY_00") concurrencytoken ("NVARCHAR_01","INTEGER_03"); }

If you specify concurrencytoken only, then all properties, except the key properties, are used to calculate the
ETag value. If you provide specific properties, then only those properties are used for the calculation.

 Note
You cannot specify concurrencytoken on aggregated properties that use the AVG (average) aggregation
method.

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 499

8.1.6.10 OData Nullable Properties

You can create a service to enable nullable properties in OData.

During the 'Create' phase, the XSODATA layer generates all entity properties automatically. Since the
properties are not nullable, consumers of the code are forced to pass dummy values into them. However,
OData supports $filter and $orderby conditions on the null value. This means that it is now possible to
treat null as a value, if you enable it. You can enable this behavior for the entire service only, not per entity.

The following code example provides information about how you can do this.

 Sample Code

service { …
 }
settings { support null; content cache-control "no-store";
 metadata cache-control "max-age=86401,must-revalidate";
 hints
 "NO_CALC_VIEW_UNFOLDING";
 limits
 max_records = 10,
 max_expanded_records = 30; }

If you enable support for null, then $filter requests, such as $filter=NVARCHAR_01 eq null, are
possible. Otherwise null is rejected with an exception. If you do not enable the null support, then the default
behavior applies.

 Note
null values are “ignored” in comparisons: "ignored" in the sens that if you compare a column with null
and the columns contain per definition no null values, no record passes the filter.

Related Information

OData Configurable Cache Settings [page 500]

8.1.6.11 OData Configurable Cache Settings

You can create a service to configure the cache settings for the $metadata request to optimize performance.

When calling OData services, the services make repeated requests for the $metadata document. Since
changes to the underlying entity definitions occurs rarely, SAP has enabled the option to configure caching for
these $metadata documents. By configuring the cache, you can avoid many redundant queries to process the
metadata.

500 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

The following code example provides information about how you can do this.

 Sample Code

service { ...
}
settings {
 support null; content cache-control "no-store"; metadata cache-control "max-age=86401,must-revalidate"; hints
 "NO_CALC_VIEW_UNFOLDING";
 limits
 max_records = 10,
 max_expanded_records = 30; }

content cache-control

You can use the content cache-control parameter to set the HTTP header "value" that is used for cache
control in the data responses, for example:

content cache-control "no-store";

The value you specify must be enclosed in double quotes (for example, "<value>"), and multiple parameters
must be separated by a comma.

 Tip
You can include any value supported by the HTTP specification for cache-control. "no-store" indicates
that the cache should not store any details of the client request or server response.

metadata cache-control

You can use the metadata cache-control parameter to set the header HTTP "value" that is used for the
cache control in the metadata response, for example:

metadata cache-control "max-age=86401,must-revalidate";

The value you specify for metadata cache-control must be enclosed in double quotes (for example,
"<value>"), and multiple elements must be separated by a comma, as illustrated in the example above.

 Tip
You can include any value supported by the HTTP specification for cache-control. In the example, above,
"must-revalidate" indicates that the cache must verify the status of resources (fresh or stale) and not
use any stale resource whose validity has expired; "max-age" specifies the amount of time a resource is
considered fresh (and still usable).

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 501

Related Information

OData Nullable Properties [page 500]

8.1.6.12 Custom Exits for OData Write Requests

SAP HANA XS enables you to execute custom code at defined points of an OData write request.

If you provide a custom exit for an OData write request, the code has to be provided in form of an SQLScript
procedure with signatures that follow specific conventions. The following type of write exits are supported for
OData write requests in SAP HANA XS:

● Validation Exits
These exits are for validation of input data and data consistency checks. They can be registered for create,
update, and delete events and executed before or after the change operation, or before or after the commit
operation. You can specify a maximum of four validation exits per change operation; the exit is registered
for the corresponding event with the respective keyword: “before”, “after”, “precommit” or “postcommit”.

● Modification Exits
You can define custom logic to create, update, or delete an entry in an entity set. If a modification exit is
specified, it is executed instead of the generic actions provided by the OData infrastructure. You use the
using keyword to register the exit.

If registered, the scripts for the exits are executed in the order shown in the following table:

Execution Order of Exit Validation/Modification Scripts

OData Insert Type Script Execution Order

Single Insert before, using, after, precommit, postcommit

Batch Insert before(1), using(1), after(1), before(2), using(2), after(2), … , precommit(1), precommit(2),
postcommit(1), postcommit(2)

The signature of a registered script has to follow specific rules, depending on whether it is registered for entity
or link write operations and depending on the operation itself. The signature must also have table-typed
parameters for both input and output:

● Entity Write Operations
● Link Write Operations

For entity write operations, the methods registered for the CREATE operation are passed a table containing the
new entry that must be inserted into the target table; the UPDATE operation receives the entity both before and
after the modification; the DELETE operation receives the entry that must be deleted. The table type of the
parameters (specified with the EntityType keyword in the table below) corresponds to the types of the exposed
entity.

Entity Write Operations

Script Type Create Update Delete

before, after, precommit, us
ing

IN new EntityType, OUT error
ErrorType

IN new EntityType, IN old En
tityType, OUT error ErrorType

IN old EntityType, OUT error
ErrorType

502 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

Script Type Create Update Delete

postcommit IN new EntityType IN new EntityType, IN old En
tityType

IN old EntityType

For link write operations, all exits that are executed before the commit operation take two table-typed input
parameters and one table-typed output parameter. The first parameter must correspond to the structure of
the entity type at the principal end of the association; the second parameter must correspond to the
dependent entity type.

Link Write Operations

Script Type Create, Update, Delete

before, after, precommit, us
ing

IN principal PrincipalEntityType, IN dependent DependentEntityType, OUT error ErrorType

postcommit IN principal PrincipalEntityType, IN dependent DependentEntityType

 Note
Parameter types (IN, OUT) are checked during activation; the data types of table type columns are not
checked.

The OUT parameter enables you to return error information. The first row in the OUT table is then serialized as
inner error in the error message. If no error occurs, the OUT table must remain empty. The structure of the
table type ErrorType is not restricted. Any columns with special names HTTP_STATUS_CODE and
ERROR_MESSAGE are mapped to common information in the OData error response. Content of columns with
other names are serialized into the inner error part of the error message that allows the return of custom
error information.

Error Message Content

Column Name Type Value Range Error Response Information

HTTP_STATUS_CODE INTEGER 400-417 (default: 400) The HTTP response status
code

ERROR_MESSAGE NVARCHAR The error message
(<message>)

 Note
If the SQLScript procedure throws an exception or writes an error messages to the OUT parameter table,
the OData write operation is aborted. If more than one error message is added, only the content of the first
row is returned in the resulting error message. Any scripts registered for the postcommit event must not
have an OUT parameter as the write operation cannot be aborted at such a late stage, even in the event of
an error.

The following example illustrates a typical error-type table type, which is defined in a design-time file that must
have the .hdbtabletype file suffix, for example error.hdbtabletype:

"sample.odata::error" AS TABLE ("HTTP_STATUS_CODE" INTEGER,
 "ERROR_MESSAGE" NVARCHAR(100),
 "DETAIL" NVARCHAR(100)

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 503

)

The following example shows how information is extracted from the error table if an error occurs during the
execution of a create procedure for an OData write operation:

create procedure "sample.odata::createmethod"(IN new "sample.odata::table", OUT
error "sample.odata::error") language sqlscript
sql security invoker as
 id INT;
begin
 select ID into id from :new;
 if :id < 1000 then
 error = select 400 as http_status_code,
 'invalid ID' error_message,
 'value must be >= 1000' detail from dummy;
 else
 insert into "sample.odata::table" values (:id);
 end if;
end;

8.1.6.13 Tutorial: Creating a Validation Exit with SQLScript

Use SQLScript to create a custom validation exit which runs server-side verification and data-consistency
checks for an OData update operation.

Prerequisites

To perform this task, you need the following objects:

● A table to expose, for example, sample.odata::table.hdbtable
● An error type, for example, sample.odata::error.hdbtabletype

Context

In this tutorial, you see how to register an SQL script for an OData update operation; the script verifies, before
the execution of the update operation, that the updated value is larger than the previous one. In the example
shown in this tutorial, you define the table to be updated and a table type for the error output parameter of the
exit procedure.

Procedure

1. Create a table definition file using .hdbtable syntax.

504 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

The table to expose is defined in sample.odata:table.hdbtable, which should look like the following
example:

COLUMN TABLE "table" ("ID" INTEGER NOT NULL,
 PRIMARY KEY ("ID")
);

2. Create a table type for the error output parameter of the exit procedure.

The error type file sample.odata:error.hdbtabletype should look like the following example:

"sample.odata::error" AS TABLE ("HTTP_STATUS_CODE" INTEGER,
 "ERROR_MESSAGE" NVARCHAR(100),
 "DETAIL" NVARCHAR(100)
)

3. Create a procedure that runs before the UPDATE event.
The procedure script for the before UPDATE event must have two table input parameters and one output
parameter, for example:
○ IN new "sample.odata::table"
○ IN old "sample.odata::table"
○ OUT error "sample.data::error"

The procedure sample.odata:beforeupdate.hdbprocedure would look like the following example:

procedure "sample.odata::beforeupdate" (IN new "sample.odata::table", IN old "sample.odata::table", OUT error
"sample.odata::error")
language sqlscript
sql security invoker as
 idnew INT;
 idold INT;
begin
 select ID into idnew from :new;
 select ID into idold from :old;
if :idnew <= :idold then
error = select 400 as http_status_code,
 'invalid ID' error_message,
 'the new value must be larger than the previous' detail from dummy;
end if;
end;

4. Register the procedure to be executed at the before event.

You use the update events (before “...”) keywords to register the procedure, as illustrated in the
following example of an OData service file:

service { “sample.odata::table”
 update events (before “sample.odata::beforeupdate”);
}

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 505

8.1.6.14 Tutorial: Creating a Modification Exit with SQLScript

Register an SQL script as a modification exit for an OData create operation for an entity.

Prerequisites

To perform this task, you need the following objects:

● A table to expose for the OData create operation, for example, sample.odata::table.hdbtable
● An error type, for example, sample.odata::error.hdbstructure

 Note
These objects are used as types in the procedure.

Context

SAP HANA XS enables you to register custom code that handles the OData write operation for non-trivial
cases. In this tutorial, you see how to register a modification exit for an OData CREATE operation for an entity.
The procedure you register verifies the data to insert, refuses the insertion request if the specified ID is less
than 1000, and in the event of an error, inserts a row with error information into the output table.

 Tip
File extensions are important. If you are using SAP HANA Studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the new file in the corresponding editor.

Procedure

1. Create a table definition file using .hdbtable syntax.

The table you create in this step is used in the procedure you create later in the tutorial. The table to expose
is defined in sample.odata:table.hdbtable, which should look like the following example:

table.schemaName = "ODATASAMPLES"; table.columns = [{name = "ID"; sqlType = INTEGER; nullable = false;}];
table.primaryKey.pkcolumns = ["ID"];

2. Create a table type for the error output parameter of the exit procedure.

The error type you create in this step is used in the procedure you create later in the tutorial. The error type
file sample.odata:error.hdbstructure should look like the following example:

table.schemaName = "ODATASAMPLES";

506 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

 table.columns = [
 {name = "HTTP_STATUS_CODE"; sqlType = INTEGER;},
 {name = "ERROR_MESSAGE"; sqlType = NVARCHAR; length = 100;},
 {name = "DETAIL"; sqlType = NVARCHAR; length = 100;}
];

3. Create a procedure that runs before the UPDATE event.

The table and error type objects you created in the previous steps are used as types in the procedure
created here. The procedure also performs a verification on the data, rejects the insertion in case of an ID
below 1000, and inserts a row with error information into the output table.

The procedure sample.odata:createmethod.hdbprocedure should look like the following example:

procedure "ODATA_TEST"."sample.odata::createmethod" (IN new "sample.odata::table", OUT error "sample.odata::error")
language sqlscript
sql security invoker as
 id INT;
begin
 select ID into id from :new;
 if :id < 1000 then
 error = select 400 as http_status_code,
 'invalid ID' error_message,
 'value must be >= 1000' detail from dummy;
 else
 insert into "sample.odata::table" values (:id);
 end if;
end;

4. Register the procedure to be executed at the CREATE event.

You use the create using keywords to register the procedure, as illustrated in the following OData
service file:

service { “sample.odata::table”
 create using “sample.odata::createmethod”;
}

8.1.6.15 Tutorial: Creating a Modification Exit with XS
JavaScript

You can use server-side JavaScript to write a script which you register as a modification exit for an OData
update operation for an entity.

Prerequisites

To perform this task, bear in mind the following prerequisites:

● A table to expose for the OData create operation, for example, sample.odata::table.hdbtable

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 507

Context

SAP HANA XS enables you to register custom code that handles the OData write operation. In this tutorial, you
see how to use server-side JavaScript (XSJS) to write a script which you register as a modification exit for
OData UPDATE operations for an entity. The script you register verifies the data to insert, and throws a defined
error string in the event of an error, for example, Could not update table; check access
permissions.

To register an XS JavaScript function as an OData modification exit, perform the following steps:

Procedure

1. Create a table definition file, for example, using the .hdbtable syntax.

The table you create in this step is used in the XS JavaScript function you create later in the tutorial. The
table to expose is defined in sample.odata:table.hdbtable, which should look like the following
example:

COLUMN TABLE "table" ("ID" INTEGER NOT NULL,
 PRIMARY KEY ("ID"));

2. Create the XS JavaScript function that you want to register for OData modification events.

 Note
The XS JavaScript function that you want to register for OData modification events must be created in
the form of an XSJS library, for example, with the file extension .xsjslib; the XS JavaScript function
cannot be an .xsjs file.

The function you register has one parameter, which can have the properties listed in the following table:

Property Type Description

connection Connection The SQL connection used in the OData request

beforeTableName String The name of a temporary table with the single entry before
the operation (UPDATE and DELETE events only)

afterTableName String The name of a temporary table with the single entry after
the operation (CREATE and UPDATE events only)

The XS JavaScript function jsexit.xsjslib could look like the following example:

function update_instead(param) { $.trace.debug(“entered function”);
 let before = param.beforeTableName;
 let after = param.afterTableName;
 let pStmt = param.connection.prepareStatement('select * from ”' + after
+'"');
 // ...
 if (ok) {

508 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

 // update
 } else {
 throw “an error occurred; check access privileges”
 }
}

3. Bind the XS JavaScript function to the entity specified in the OData service definition.
To bind the XS JavaScript function to a specified entity, use the syntax:
<Package.Path>:<file>.<suffix>::<XSJS_FunctionName> as illustrated in the following example:

service { "sample.odata::table" as "Table" update using
"sap.test:jsexit.xsjslib::update_instead"; }

8.1.7 OData Service Definition Language Syntax (XS
Advanced)

The OData Service Definition Language (OSDL) provides a set of keywords that enable you to set up an ODATA
service definition file that specifies what data to expose, in what way, and to whom.

The following list shows the syntax of the OData Service Definition Language (OSDL) in an EBNF-like format;
conditions that apply for usage are listed after the table.

definition :=service [annotations] service :='service' [namespace] body
namespace :='namespace' quotedstring
quotedstring :=quote string quote
string :=UTF8
quote :='"'
body :='{' content '}'
content :=entry [content]
entry :=(entity | association) ';'
entity :=object [entityset] [with] [keys] [navigates]
[aggregates] [parameters] [modification]
object :=['entity'] (repoobject | catalogobject)
repoobject :=quote repopackage '/' reponame '.' repoextension quote
repopackage :=string
reponame :=string
repoextension :=string
catalogobject :=catalogobjectschema '.' catalogobjectname
catalogobjectschema :=quotedstring
catalogobjectname :=quotedstring
entityset :='as' entitysetname
entitysetname :=quotedstring
with :=('with' | 'without') propertylist
propertylist :='(' columnlist ')'
columnlist :=columnname [',' columnlist]
columnname :=quotedstring
keys :='keys' (keylist | keygenerated)
keylist :=propertylist
keygenerated :='generate' (keygenlocal)
keygenlocal :='local' columnname
navigates :='navigates' '(' navlist ')'
navlist :=naventry [',' navlist]
naventry :=assocname 'as' navpropname [fromend]
assocname :=quotedstring
navpropname :=quotedstring
fromend :='from' ('principal' | 'dependent')

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 509

aggregates :='aggregates' 'always' [aggregatestuple]
aggregatestuple :='(' aggregateslist ')'
aggregateslist :=aggregate [',' aggregateslist]
aggregate :=aggregatefunction 'of' columnname
aggregatefunction :=('SUM' | 'AVG' | 'MIN' | 'MAX')
parameters :='parameters' 'via' [parameterskeyand] 'entity'
[parameterentitysetname] [parametersresultsprop]
parameterskeyand :='key' 'and'
parameterentitysetname :=quotedstring
parametersresultsprop :='results' 'property' quotedstring
modification :=[create] [update] [delete]
create :='create' modificationspec
update :='update' modificationspec
delete :='delete' modificationspec
modificationspec :=(modificationaction [events] | events | 'forbidden')
modificationaction :='using' action
action :=quotedstring
events :='events' '(' eventlist ')'
eventlist :=eventtype action [',' eventlist]
eventtype :=('before' | 'after' | 'precommit' | 'postcommit')
association :=associationdef [assocrefconstraint] principalend
dependentend [(assoctable | storage | modification)]
associationdef :='association' assocname
assocrefconstraint :=‘with’ ‘referential’ ‘constraint'
principalend :='principal' end
dependentend :='dependent' end
end :=endref multiplicity
endref :=endtype [joinpropertieslist]
endtype :=entitysetname
joinpropertieslist :='(' joinproperties ')'
joinproperties :=columnlist
multiplicity :='multiplicity' quote multiplicityvalue quote
multiplicityvalue :=('1' | '0..1' | '1..*' | '*')
assoctable :='over' repoobject overprincipalend overdependentend
[modification]
overprincipalend :='principal' overend
overdependentend :='dependent' overend
overend :=propertylist
storage :=(nostorage | storageend [modification])
nostorage :='no' 'storage'
storageend :='storage' 'on' ('principal' | 'dependent')
annotations :='annotations' annotationsbody
annotationsbody :='{' annotationscontent '}'
annotationscontent :=annotationconfig [annotationscontent]
annotationconfig :='enable' annotation annotation :='OData4SAP'

 Note
Support for OData annotations is currently not available in SAP HANA XS Advanced.

Conditions

The following conditions apply when using the listed keywords:

1. If the namespace is not specified, the schema namespace in the EDMX metadata document will be the
repository package of the service definition file concatenated with the repository object name. E.g. if the
repository design time name of the .xsodata file is sap.hana.xs.doc/hello.xsodata the
namespace will implicitly be sap.hana.xs.doc.hello.

510 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

2. keyslist must not be specified for objects of type 'table'. They must only be applied to objects referring a
view type. keygenerated in turn, can be applied to table objects.

3. If the entityset is not specified in an entity, the EntitySet for this object is named after the repository
object name or the catalogobjectname. For example, if object is "sap.hana.xs.doc/odata_docu",
then the entitysetname is implicitly set to odata_docu, which then can also be referenced in
associations.

4. The fromend in a naventry must be specified if the endtype is the same for both the principalend
and the dependentend of an association.

5. The number of joinproperties in the principalend must be the same as in the dependentend.
6. Ordering in the joinproperties of ends is relevant. The first columnname in the joinproperties of

the principalend is compared with the first columnname of the dependentend, the second with the
second, and so on.

7. The overprincipalend corresponds to the principalend. The number of properties in the
joinproperties and the overproperties must be the same and their ordering is relevant. The same
statement is true for the dependent end.

8. aggregates can only be applied in combination with keygenerated.
9. If aggregatestuple is omitted, the aggregation functions are derived from the database. This is only

possible for calculation views and analytic views.
10. Specifying parameters is only possible for calculation views and analytic views.
11. The default parameterentitysetname is the entitysetname of the entity concatenated with the suffix

"Parameters".
12. If the parametersresultsprop is omitted, the navigation property from the parameter entity set to the

entity is called "Results".
13. Support for OData annotations is currently under development. For more information about the SAP-

specific metadata annotations that become available with the enable OData4SAP statement in
an .xsodata file, see the Related Links below. Note that not all annotations allowed by OData are
supported by SAP HANA XS.

Related Information

SAP Annotations for OData
Open Data Protocol

8.1.8 OData Service Definition: SQL-EDM Type Mapping (XS
Advanced)

During the activation of the OData service definition, the SAP HANA SQL types are mapped to the required
OData EDM types according to the rules specified in a mapping table.

The following mapping table lists how SAP HANA SQL types are mapped to OData EDM types during the
activation of an OData service definition.

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 511

http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fdocs%2FDOC-44986
http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org

 Note
The OData implementation in SAP HANA XS supports only those SQL types listed in the following table.

SAP HANA SQL to OData EDM Type Mapping

SAP HANA SQL Type OData EDM Type

Time Edm.Time

Date Edm.DateTime

SecondDate Edm.DateTime

LongDate Edm.DateTime

Timestamp Edm.DateTime

TinyInt Edm.Byte

SmallInt Edm.Int16

Integer Edm.Int32

BigInt Edm.Int64

SmallDecimal Edm.Decimal

Decimal Edm.Decimal

Real Edm.Single

Float Edm.Single

Double Edm.Double

Varchar Edm.String

NVarchar Edm.String

Char Edm.String

NChar Edm.String

Binary Edm.Binary

Varbinary Edm.Binary

Example SQL Type Mapping

The following examples shows how SAP HANA SQL types (name, integer, Varchar) of columns in a table are
mapped to the OData EDM types in the properties of an entity type.

SAP HANA SQL:

{name = "ID"; sqlType = INTEGER; nullable = false;}, {name = "RefereeID"; sqlType = VARCHAR; nullable = true;}

The following example illustrates how the SAP HANA SQL types illustrated in the previous example are mapped
to EDM types:

<Property Name="ID" Type="Edm.Int32" Nullable="false"/>

512 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

<Property Name="RefereeID" Type="Edm.String" Nullable="true"/>

8.1.9 OData Security Considerations

Enabling access to data by means of OData can create some security-related issues that you need to consider
and address, for example, the data you want to expose, who can start the OData service, and so on.

If you want to use OData to expose data to users and clients in SAP HANA application services, you need to
bear in mind the security considerations described in the following list:

● Data Access
Restrict user select authorization for tables/views exposed by the OData service

● OData Service
Restrict authorization rights to start the OData service

● OData Statistical content
Restrict access to the URL/Path used to expose OData content in the Web browser

8.1.10 OData Batch Requests (XS Advanced)

The OData standard allows the collection of multiple individual HTTP requests into one single batched HTTP
request.

Clients using a defined OData service to consume exposed data can collect multiple, individual HTTP requests,
for example, retrieve, create, update and delete (GET, POST, PUT, DELETE), in a single “batch” and send the
batched request to the OData service as a single HTTP request. You can compile the batch request manually
(by creating the individual requests in the batch document by hand) or automatically, for example, with an
AJAX call that adds requests to a queue and loops through the queues to build the batch request. In both
cases, the OData standard specifies the syntax required for the header and body elements of a valid batch
request document.

SAP HANA XS supports the OData $batch feature out-of-the-box; there is nothing to configure in SAP HANA
XS to use $batch to perform operations in SAP HANA using an OData service. To understand how the $batch
feature works, you need to look at the following phases of the operation:

● Batch Request
● Batch Response

A batch request is split into two parts: the request header and the request body. The body of a batch request
consists of a list of operations in a specific order where each operation either retrieves data (for example, using
the HTTP GET command) or requests a change. A change request involves one or more insert, update or delete
operations using the POST, PUT, or DELETE commands.

 Note
A change request must not contain either a retrieve request or any nested change requests.

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 513

The batch request must contain a Content-Type header specifying the value “multipart/mixed” and a
boundary ID boundary=batch_#; the batch boundary ID is then used to indicate the start of each batch
request, as illustrated in the following example.

POST /service/$batch HTTP/1.1 Host: host
Content-Type: multipart/mixed;boundary=batch_8219-6895 // Define batch ID
--batch_8219-6895 // Batch 1 start
 Content-Type: multipart/mixed; boundary=changeset_a4e3-a738 // Define
changeset ID
 --changeset_a4e3-a738 // Changeset 1
start
 Content-Type: application/http
 Content-Transfer-Encoding: binary
 [PUT...]

 --changeset_a4e3-a738 // Changeset 2
start
 Content-Type: application/http
 Content-Transfer-Encoding: binary
 [POST...]
 --changeset_a4e3-a738-- // Changeset (all)
end
--batch_8219-6895 // Batch part 2
start
 Content-Type: application/http
 Content-Transfer-Encoding:binary
 [GET...] --batch_8219-6895-- // Batch (all) end

Within the batch request, changeset is defined by another boundary ID (for example,
boundary=changeset_123), which is then used to indicate the start and end of the change requests. The
batch request must be closed, too.

 Note
In the following example of a simple OData batch request, some content has been removed to emphasize
the structure and layout.

POST http://localhost:8002/sap/sample/odata/syntax.xsodata/$batch HTTP/1.1 Host: localhost:8002
Connection: keep-alive
Content-Length: 471
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/30.0.1599.101 Safari/537.36
Cache-Control: no-cache
Content-Type: multipart/mixed; boundary=batch_123
Accept: */*
Accept-Encoding: identity
Accept-Language: en-US,en;q=0.8
x-sap-request-language: en-US
--batch_123
Content-Type:multipart/mixed;boundary=changeset_456
Content-Transfer-Encoding:binary
--changeset_456
Content-Type:application/http
Content-Transfer-Encoding:binary
POST BatchSample HTTP/1.1
Content-Type:application/json
Content-Length:11
{"ID" : 14}
--changeset_456
Content-Type:application/http
Content-Transfer-Encoding:binary

514 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

POST BatchSample HTTP/1.1
Content-Type:application/json
Content-Length:11
Accept: application/json
{"ID" : 15}
--changeset_456--
--batch_123--

The batch response includes a response for each of the retrieve or change operations included in the
corresponding batch request. The order of the responses in the response body must match the order of
requests in the batch request. In the context of the batch response, the following is true:

● The response to a retrieve request is always formatted in the same way regardless of whether it is sent
individually or as part of batch.

● The body of the collected response to a set of change-requests is one of the following:
○ A response for all the successfully processed change requests within the change set, in the correct

order and formatted exactly as it would have appeared outside of a batch
○ A single response indicating the failure of the entire change set

The following example shows the form and syntax of the OData batch response to the request illustrated above.

HTTP/1.1 202 Accepted content-type: multipart/mixed; boundary=0CDF14D90919CC8B4A32BD0E0B330DA10
content-length: 2029
content-language: en-US
cache-control: no-cache
expires: Thu, 01 Jan 1970 00:00:00 GMT
--0CDF14D90919CC8B4A32BD0E0B330DA10
Content-Type: multipart/form-data; boundary=0CDF14D90919CC8B4A32BD0E0B330DA11
Content-Length: 1843
--0CDF14D90919CC8B4A32BD0E0B330DA11
Content-Type: application/http
Content-Length: 1118
content-transfer-encoding: binary
HTTP/1.1 201 Created
Content-Type: application/atom+xml;charset=utf-8
location: http://localhost:8002/sap/sample/odata/syntax.xsodata/BatchSample(14)/
Content-Length: 943
<?xml version="1.0" encoding="utf-8" standalone="yes"?><entry xml:base="http://
localhost:8002/sap/sample/odata/syntax.xsodata/" xmlns:d="http://
schemas.microsoft.com/ado/2007/08/dataservices" xmlns:m="http://
schemas.microsoft.com/ado/2007/08/dataservices/metadata" xmlns="http://
www.w3.org/2005/Atom"><id>http://localhost:8002/sap/sample/odata/syntax.xsodata/
BatchSample(14)</id><title type="text"></title><author><name /></author><link
rel="edit" title="BatchSample" href="BatchSample(14)"/><link rel="http://
schemas.microsoft.com/ado/2007/08/dataservices/related/Ref" type="application/
atom+xml;type=entry" title="Ref" href="BatchSample(14)/Ref"></link><category
term="sap.sample.odata.syntax.BatchSampleType" scheme="http://
schemas.microsoft.com/ado/2007/08/dataservices/scheme" /><content
type="application/xml"><m:properties><d:ID m:type="Edm.Int32">14</d:ID><d:SELFID
m:type="Edm.Int32" m:null="true"></d:SELFID></m:properties></content></entry>
--0CDF14D90919CC8B4A32BD0E0B330DA11
Content-Type: application/http
Content-Length: 427
content-transfer-encoding: binary
HTTP/1.1 201 Created
Content-Type: application/json
location: http://localhost:8002/sap/sample/odata/syntax.xsodata/BatchSample(15)
Content-Length: 271
{"d":{"__metadata": {"uri":"http://localhost:8002/sap/sample/odata/
syntax.xsodata/
BatchSample(15)","type":"sap.sample.odata.syntax.BatchSampleType"},"ID":
15,"SELFID":null,"Ref":{"__deferred":{"uri":"http://localhost:8002/sap/sample/
odata/syntax.xsodata/BatchSample(15)/Ref"}}}}

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 515

--0CDF14D90919CC8B4A32BD0E0B330DA11--
--0CDF14D90919CC8B4A32BD0E0B330DA10--

OData Batch Requests in SAPUI5 Applications

If you are developing a UI client using SAPUI5, you can make use of the ODataModel tools to ensure that the
data requests generated by the various UI controls bound to an OData service are collected and sent in
batches. The SAPUI5 ODataModel toolset includes a large selection of tools you can use to configure the use of
the OData batch feature, for example:

● setUseBatch
Enable or disable batch processing for all requests (read and change)

● addBatchChangeOperations
Appends the change operations to the end of the batch stack, which is sent with the submitBatch
function

● addBatchReadOperations
Appends the read operations to the end of the batch stack, which is sent with the submitBatch function

● submitBatch
Submits the collected changes in the batch which were collected via addBatchReadOperations or
addBatchChangeOperations.

Related Information

Open Data Protocol
SAPUI5 ODataModel Reference

8.2 Data Access with XMLA in SAP HANA XS

In SAP HANA Extended Application Services (SAP HANA XS) , the persistence model (for example, tables,
views and stored procedures) is mapped to the consumption model that is exposed to clients - the applications
you write to extract data from the SAP HANA database.

You can map the persistence and consumption models with XML for Analysis (XMLA). With XMLA, you write
multi-dimensional-expressions (MDX) queries wrapped in an XMLA document. An XML for Analysis (XMLA)
application running in SAP HANA application services (SAP HANA XS) is used to provide the consumption
model for client applications exchanging MDX queries (wrapped in XMLA documents) with the SAP HANA
database.

XMLA uses Web-based services to enable platform-independent access to XMLA-compliant data sources for
Online Analytical Processing (OLAP). XMLA enables the exchange of analytical data between a client
application and a multi-dimensional data provider working over the Web, using a Simple Object Access
Protocol (SOAP)-based XML communication application-programming interface (API).

516 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.odata.org
https://sapui5.hana.ondemand.com/sdk/#docs/api/symbols/sap.ui.model.odata.html

Applications running in SAP HANA XS enable you to control the flow of data between the presentational layer,
for example, in the Web browser, and the data-processing layer in SAP HANA itself, where the calculations are
performed, for example in SQL or SqlScript. If you develop and deploy an XMLA service running in SAP HANA
XS, you can take advantage of the access to SAP HANA that SAP HANA XS provides to improve end-to-end
performance.

 Note
The XS advanced application xmla must not be installed in the SAP space.

If you are using multiple tenant databases, you must install the xmla application in a space (or spaces) other
than the default space SAP, for example, DEV or PROD. In addition, the target space must already be mapped to
a tenant database before you deploy the xmla application. You can map an XS advanced space to a tenant
database using the SAP HANA Service Broker Configuration tool that is included in the XS Advanced
Administration tools.

 Tip
The XMLA interface for XS advanced is available either on the SAP HANA media or for download from SAP
Service Marketplace for those people with the required S-User ID:

Service Marketplace Products Software download SUPPORT PACKAGES & PATCHES By
Alphabetical Index (A-Z) X XSAC XMLA INTERFACE FOR HANA 1

Related Information

SAP Support Portal: Software Downloads

8.2.1 XML for Analysis (XMLA)

XML for Analysis (XMLA) uses Web-based services to enable platform-independent access to XMLA-compliant
data sources for Online Analytical Processing (OLAP).

XMLA enables the exchange of analytical data between a client application and a multi-dimensional data
provider working over the Web, using a Simple Object Access Protocol (SOAP)-based XML communication
application-programming interface (API).

Implementing XMLA in SAP HANA enables third-party reporting tools that are connected to the SAP HANA
database to communicate directly with the MDX interface. The XMLA API provides universal data access to a
particular source over the Internet, without the client having to set up a special component. XML for Analysis is
optimized for the Internet in the following ways:

● Query performance
Time spent on queries to the server is kept to a minimum

● Query type
Client queries are stateless by default; after the client has received the requested data, the client is
disconnected from the Web server.

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 517

http://help.sap.com/disclaimer?site=https%3A%2F%2Fsupport.sap.com%2Fen%2Fmy-support%2Fsoftware-downloads.html

In this way, tolerance to errors and the scalability of a source (the maximum permitted number of users) is
maximized.

XMLA Methods

The specification defined in XML for Analysis Version 1.1 from Microsoft forms the basis for the implementation
of XML for Analysis in SAP HANA.

The following list describes the methods that determine the specification for a stateless data request and
provides a brief explanation of the method's scope:

● Discover
Use this method to query metadata and master data; the result of the discover method is a rowset. You
can specify options, for example, to define the query type, any data-filtering restrictions, and any required
XMLA properties for data formatting.

● Execute
Use this method to execute MDX commands and receive the corresponding result set; the result of the
Execute command could be a multi-dimensional dataset or a tabular rowset. You can set options to
specify any required XMLA properties, for example, to define the format of the returned result set or any
local properties to use to determine how to format the returned data.

Related Information

Data Access with XMLA in SAP HANA XS [page 516]

8.2.2 XMLA Service Definition

The XMLA service definition is a file you use to specify which data is exposed as XMLA collections. Exposed
data is available for analysis and display by client applications, for example, a browser that uses functions
provided either by the XMLA service running in SAP HANA XS or by an XMLA client library running on the client
system.

To expose information via XMLA to applications using SAP HANA Extended Application Services (SAP HANA
XS), you define database views that provide the data with the required granularity and you use the XMLA
service definition to control access to the exposed data.

 Note
SAP HANA XS supports XMLA version 1.1, which you can use to send MDX queries.

An XMLA service for SAP HANA XS is defined in a text file with the file suffix .xsxmla, for example,
XMLASrvDef.xsxmla. The file must contain only the entry {*}, which would generate a completely
operational XMLA service.

518 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

XMLA Service-Definition Keywords

Currently, the XMLA service-definition file enables you to specify only that all authorized data is exposed to
XMLA requests, as illustrated in the following example:

Service {*}

8.2.3 XMLA Security Considerations

Enabling access to data by means of XMLA opens up some security considerations that you need to address,
for example, the data you want to expose, who can start the XMLA service, and so on.

If you want to use XMLA to expose data to users and clients in SAP HANA XS, you need to bear in mind the
security considerations described in the following list:

● Data Access
Restrict user select authorization for data exposed by the XMLA service

● XMLA Statistical content
Restrict access to the URL/Path used to expose XMLA content in the Web browser, for example, using the
application-access file (.xsaccess)

8.2.4 Multidimensional Expressions (MDX)

Multidimensional Expressions (MDX) is a language for querying multidimensional data that is stored in OLAP
cubes.

MDX uses a multidimensional data model to enable navigation in multiple dimensions, levels, and up and down
a hierarchy. With MDX, you can access pre-computed aggregates at specified positions (levels or members) in
a hierarchy.

 Note
MDX is an open standard. However, SAP has developed extensions to MDX to enable faster and more
efficient access to multidimensional data; for example, to serve specific SAP HANA application
requirements and to optimize the result set for SAP HANA clients.

MDX is implicitly a hierarchy-based paradigm. All members of all dimensions must belong to a hierarchy. Even
if you do not explicitly create hierarchies in your SAP HANA data model, the SAP HANA modeler implicitly
generates default hierarchies for each dimension. All identifiers that are used to uniquely identify hierarchies,
levels and members in MDX statements (and metadata requests) embed the hierarchy name within the
identifier.

In SAP HANA, the standard use of MDX is to access SAP HANA models (for example, analytical and attribute
views) that have been designed, validated and activated in the modeler in the SAP HANA studio. The studio
provides a graphical design environment that enables detailed control over all aspects of the model and its
language-context-sensitive runtime representation to users.

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 519

MDX in SAP HANA uses a runtime cube model, which usually consists of an analytical (or calculation) view that
represents data in which dimensions are modeled as attribute views. You can use the analytical view to specify
whether a given attribute is intended for display purposes only or for aggregation. The attributes of attribute
views are linked to private attributes in an analytic view in order to connect the entities. One benefit of MDX in
SAP HANA is the native support of hierarchies defined for attribute views.

 Note
MDX in SAP HANA includes native support of hierarchies defined for attribute views. SAP HANA supports
level-based and parent-child hierarchies and both types of hierarchies are accessible with MDX.

SAP HANA supports the use of variables in MDX queries; the variables are an SAP-specific enhancement to
standard MDX syntax. You can specify values for all mandatory variables that are defined in SAP HANA studio
to various modeling entities. The following example illustrates how to declare SAP HANA variables and their
values:

MDX Select
From [SALES_DATA_VAR]
Where [Measures].[M2_1_M3_CONV]
SAP VARIABLES [VAR_VAT] including 10,
 [VAR_K2] including 112, [VAR_TARGET_CURRENCY] including 'EUR',

8.2.5 MDX Functions

MDX in SAP HANA supports a variety of standard MDX functions.

The following MDX functions are supported:

Aggregate
Ancestor
Ancestors
Ascendants
Avg
BottomCount
Children
ClosingPeriod
Count
Cousin
Crossjoin
CurrentMember
DefaultMember
Descendants
Dimension
Dimensions
Distinct
DistinctCount

520 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

DrillDownLevel
DrillDownLevelBottom
DrillDownLevelTop
DrillDownMember
DrillDownMemberBottom
DrillDownMemberTop
DrillUpLevel
DrillUpmember
Except
Filter
FirstChild
FirstSibling
Generate
Head
Hierarchize
Hierarchy
Instr
Intersect
IsAncestor
IsGeneration
IsLeaf
IsSibling
Item
IIF
Lag
LastChild
LastPeriods
LastSibling
Lead
Leaves
Left
Level
Levels
Max
Member_caption
Members
MembersAscendantsDescendants
Mid
Min
MTD
Name
NextMember
NOT
OpeningPeriod
OR

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 521

Ordinal
ParallelPeriod
Parent
PeriodsToDate
PrevMember
Properties
QTD
Range
Right
Siblings
StrToMember
StrToSet
StrToTuple
StrToValue
Subset
Sum
Tail
TopCount
Union
UniqueName
WTD
YTD

For more information about these functions, see Microsoft's Multidimensional Expressions (MDX) Reference.

8.2.6 MDX Extensions

SAP HANA supports several extensions to the MDX language, including additional predefined functions and
support for variables.

8.2.6.1 Sibling_Ordinal Intrinsic Property

The object Member includes a property called Sibling_Ordinal, that is equal to the 0-based position of the
member within its siblings.

 Example

WITH MEMBER [Measures].[Termination Rate] AS
 [Measures].[NET_SALES] / [Measures].[BILLED_QUANTITY]
SELECT
 {
 [Measures].[NET_SALES],
 [Measures].[BILLED_QUANTITY],
 [Measures].[Termination Rate]
 } ON COLUMNS,

522 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

 Descendants
 (
 [DISTRIBUTION_CHANNEL].[DISTRIBUTION_CHANNEL].[All].[(all)],
 1,
 SELF_AND_BEFORE
)
 DIMENSION PROPERTIES SIBLING_ORDINAL ON ROWS FROM SALES_DATA

8.2.6.2 MembersAscendantsDescendants Function

SAP HANA includes the MembersAscendantsDescendants function that enables you to get, for example, all
ascendants and descendants of a specific member.

This function improves on the standard MDX functions Ascendants and Descendants.

The function can be called as follows:

MembersAscendantsDescendants (<set>, <flag>)

● set: A set of members from a single hierarchy
● flag: Indicates which related members to return, and can be one of the following:

○ MEMBERS_AND_ASCENDANTS_AND_DESCENDANTS
○ MEMBERS_AND_ASCENDANTS
○ MEMBERS_AND_DESCENDANTS
○ ASCENDANTS_AND_DESCENDANTS
○ ONLY_ASCENDANTS
○ ONLY_DESCENDANTS

 Example

SELECT { [Measures].[SALES] }
ON COLUMNS,
NON EMPTY
{ Hierarchize(MembersAscendantsDescendants([SALES_DATA_TIME].[TimeHier].
[QUARTER].[3]:[SALES_DATA_TIME].[TimeHier].[QUARTER].[4],
MEMBERS_AND_ASCENDANTS_AND_DESCENDANTS)) }
ON ROWS FROM [SALES_DATA]

 Example

SELECT { [Measures].[SALES] }
ON COLUMNS,
NON EMPTY
{ Hierarchize(MembersAscendantsDescendants([SALES_DATA_TIME].[TimeHier].
[QUARTER].[3]:[SALES_DATA_TIME].[TimeHier].[QUARTER].[4], ONLY_ASCENDANTS)) }
ON ROWS FROM [SALES_DATA]

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 523

8.2.6.3 Variables in MDX

An MDX SELECT statement in SAP HANA enables you to send values for variables defined within modeling
views.

Analytic and calculation views can contain variables that can be bound to specific attributes. When calling the
view, you can send values for those variables. These variables can be used, for example, to filter the results.

SAP HANA supports an extension to MDX whereby you can pass values for variables defined in views by adding
an SAP Variables clause in your SELECT statement. Here is the syntax for a SELECT statement:

<select_statement>: [WITH <formula_specification>] SELECT [<axis_specification>[,<axis_specification>...]] FROM <cube_specification> [WHERE <slicer_specification> SAP VARIABLES: <sap_variable> [[,] <sap_variable>…]] <sap_variable>: <variable_name> <sign> [<option>] <variable_value> <sign>: INCLUDING | EXCLUDING <option>: = | > | >= | < | <= | <> <variable_value>: <unique_member_name> | <unsigned_numeric_literal> | <string_value_expression> | <member> : <member> | <character_string_literal> : <character_string_literal> | <unsigned_numeric_literal> : <unsigned_numeric_literal>

 Example
The following statement specifies a single value for variables VAR_VAT, VAR_K2, and
VAR_TARGET_CURRENCY.

SELECT FROM [SALES_DATA_VAR]
WHERE [Measures].[M2_1_M3_CONV]
SAP VARIABLES [VAR_VAT] including 10,
 [VAR_K2] including 112, [VAR_TARGET_CURRENCY] including 'EUR'

 Example
The following specifies an interval for variable VAR_K2.

SELECT NON EMPTY {
 [K2].[K2].Members
 }ON ROWS
FROM [SALES_DATA_VAR_SIMPLE]
WHERE [Measures].[M3_CONV] SAP VARIABLES [VAR_K2] including [K2].[K2].&[122]:[K2].[K2].&[221]

524 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

Metadata on Variables in Views

SAP HANA includes the following set of tables that contain information about the variables defined for views:

● BIMC_VARIABLE
● BIMC_VARIABLE_ASSIGNMENT
● BIMC_VARIABLE_VALUE

The tables enable, for example, an application to retrieve the variables defined for a view and create a user
interface so the user can enter values.

8.2.7 Define the Data an XMLA Service Exposes

Define the tables and views to expose as an XMLA service.

Prerequisites

If you already have a data model containing tables or views that can be exposed, you do not need to create
additional elements. You can use the tables and views that are already available.

Context

An XMLA service exposes data stored in database tables for analysis and display by client applications.
However, first of all, you need to ensure that the tables and views to expose as an XMLA service actually exist
and are accessible.

To define the data to expose using an XMLA service, you must perform at least the following tasks:

Procedure

1. Create a simple database schema.
2. Create a simple database table to expose with an XMLA service.
3. If required, create a simple database view to expose with an XMLA service.
4. Grant select privileges to the tables and views to be exposed with the XMLA service.

Related Information

Data Access with XMLA in SAP HANA XS [page 516]

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 525

8.2.8 Create an XMLA Service Definition

The XMLA service definition is a file you use to specify which data is exposed as XMLA/MDX collections for
analysis and display by client applications.

Prerequisites

For the creation of an XMLA service definition, the following conditions are required:

● SAP HANA studio and client is installed and configured
● An SAP HANA database user is available with repository privileges (for example, to add packages)
● An SAP HANA development system is added to (and available in) SAP HANA studio, for example, in either

the Systems view or the Repositories view
● A working development environment is available that includes: a repository workspace, a package

structure for your XMLA application, and a shared project to enable you to synchronize changes to the
XMLA project files in the local file system with the repository

● Data is available to expose using the XMLA interface.

Context

An XMLA service for SAP HANA XS is defined in a text file with the file suffix .xsxmla, for example,
XMLASrvDef.xsxmla. The file resides in the package hierarchy of the XMLA application and must contain the
entry service {*}, which generates an operational XMLA service.

Procedure

1. In the shared project you are using for your XMLA application, use the Project Explorer view to locate the
package where you want to create the new XMLA service definition.

 Note
The file containing the XMLA service definition must be placed in the root package of the XMLA
application for which the service is intended.

2. Create the file that will contain your XMLA service definition.
In the Project Explorer view, right-click the folder where you want to create the new XMLA service-definition
file and choose New File in the context-sensitive popup menu displayed.

3. Create the XMLA service definition.
The XMLA service definition is a configuration file that you use to specify which data is to be exposed as an
XMLA collection.

526 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

The following code is an example of a valid XMLA service definition, which exposes all authorized data to
XMLA requests:

service{*}

4. Place the valid XMLA service definition in the root package of the XMLA application.
5. Save the XMLA service definition.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository, To
explicitly commit a file to the repository, right-click the file (or the project containing the file) and
choose Team Commit from the context-sensitive popup menu.

6. Activate the XMLA service definition in the repository.
a. Locate and right-click the new service-definition file in the Project Explorer view.

b. In the context-sensitive pop-up menu, choose Team Activate .

8.2.9 Tutorial: Use the SAP HANA XMLA Interface

You can use the XML for Analysis (XMLA) interface included in SAP HANA Extended Application Services (SAP
HANA XS) to provide a service that enables XMLA-capable clients to query multidimensional cubes in SAP
HANA.

Prerequisites

Since the artifacts required to get a simple XMLA service up and running are stored in the repository, make
sure that you read through and comply with the following prerequisites:

● You have a development workspace in the SAP HANA repository
● You have created a dedicated project in the repository workspace
● You have shared the new project
● A multidimensional data cube is available in SAP HANA, for example, in the form of a calculation view, an

analytic view, or an attribute view
● An XMLA client is available

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 527

Context

To send an XMLA query to SAP using the XMLA interface provided by SAP HANA XS, perform the following
steps:

 Tip
File extensions are important. If you are using SAP HANA Studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the new file in the corresponding editor.

Procedure

1. Create a root package for your XMLA interface test, for example, helloxmla and save and activate it in the
repository.

 Note
The namespace sap is restricted. Place the new package in your own namespace, which you can create
alongside the sap namespace.

2. Create an application descriptor for your new XMLA test in your root XMLA package helloxmla.

The application descriptor (.xsapp) is the core file that you use to define an application's availability within
SAP HANA. The .xsapp file sets the point in the application-package structure from which content will be
served to the requesting clients.

 Note
The application-descriptor file has no content and no name; it only has the extension .xsapp.

3. Save, commit, and activate the application-descriptor file in the repository.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository, To
explicitly commit a file to the repository, right-click the file (or the project containing the file) and
choose Team Commit from the context-sensitive popup menu.

4. Create an application-access file for your new XMLA test and place it in your root XMLA package
helloxmla.

The application-access file enables you to specify who or what is authorized to access the content exposed
by the application.

 Note
The application-access file has no name; it only has the extension .xsaccess.

528 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

Ensure the application content is exposed to HTTP requests by entering the following command in
the .xsaccess file for your new XMLA test:

{ "exposed" : true,
 "prevent_xsrf" : true }

These entries ensure that application data can be exposed to client requests and that protection against
cross-site, request-forgery attacks is enabled.

5. Save, commit, and activate the application-access file in the repository.
6. Create an XMLA service-definition file and place it in your root XMLA package helloxmla.

The XMLA service-definition file has the file extension .xsxmla, for example, hello.xsxmla and must be
located in the root package of the XMLA application:

Enter the following content in the hello.xsxmla XMLA service-definition file:

service {*}

7. Save, commit, and activate the XMLA service-definition file in the repository.
8. Test the connection to the SAP HANA XS Web server.

http://<hana.server.name>:80<HANA_instance_number>/helloxmla/hello.xsxmla

 Note
You have successfully completed this step if you see a 404 Error page; the page indicates that the SAP
HANA XS Web server has responded.

9. Connect your XMLA client application to the inbuilt XMLA interface in SAP HANA XS.
To connect an XMLA-capable client (for example, Microsoft Excel) with the XMLA interface in SAP HANA
XS, you will need a product (for example, a plug-in for Microsoft Excel) that can transfer the XMLA message
that the SAP HANA XS XMLA interface can understand.

10. Configure your client to send an XMLA query to SAP HANA.

8.3 Using the SAP HANA REST API

The SAP HANA REST Application Programming Interface (REST API) is based on and extends the Orion server
and client APIs.

SAP HANA REST API supports the Orion protocol 1.0 which allows development tools to access the SAP HANA
Repository in a convenient and standards-compliant way. This not only makes access to the Repository easier
for SAP HANA tools, but it also enables the use of Orion-based external tools with the SAP HANA Repository.
For SAP tools, the Orion server protocol has been extended with the following SAP HANA-specific features

● Activate design-time artifacts in the Repository
● Perform change-tracking operations (assuming change-tracking is enabled in the target SAP HANA

system)
● Searching the database catalog

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 529

SAP HANA REST Application Programming Interfaces

API Description

File Enables access to services that you to browse and manipulate files and directories via HTTP

Workspace Enables you to create and manipulate workspaces and projects via HTTP

Transfer Enables you to import and export packages and files

Metadata Enables access to services that support search and auto-completion scenarios, for example, to
retrieve metadata from runtime, design-time, and other metadata locations

Change Tracking Enables the use of specific lifecycle-management features included with the SAP HANA Reposi
tory via HTTP

Info Enables access to information about the current version of the SAP HANA REST API

The SAP HANA REST API uses an additional parameter called SapBackPack to send request parameters that
are specific to SAP HANA; the SapBackPack parameter is added to the HTTP header. The value of the
SapBackPack parameter is a JSON object with the attributes and values of the additional SAP-specific
parameters. For example, when you create or update the content of a design-time artifiact, you can use the
SapBackPack value {"Activate":true} to request that the new version of the file is immediately activated
in the SAP HANA Repository. If you only want to create an inactive version of a design-time artifact, you can use
the “workspace” attribute to specify the name of the the Repository workspace where the inactive version is
to be stored.

Related Information

SAP HANA REST Info API [page 530]
SAP HANA REST File API [page 531]
SAP HANA REST Change-Tracking API [page 536]
SAP HANA REST Metadata API [page 537]
SAP HANA REST Transfer API [page 539]
SAP HANA REST Workspace API [page 540]
SAP HANA REST API Reference

8.3.1 SAP HANA REST Info API

The SAP HANA REST API includes an Info API that can be used to display information about the current version
of the REST API.

GET /sap/hana/xs/dt/base/info Orion-Version: 1.0

The information displayed by the Info API includes a description of the current version of the delivery unit and
the number of commands (API entry points) that are currently supported by the REST API.

HTTP/1.1 200 OK {

530 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

http://help.sap.com/hana/SAP_HANA_XS_REST_API_Reference_en/index.html

"DeliveryUnit":{
"name":"HANA_DT_BASE",
"version":"1",
"responsible":"x###007,x###077",
"vendor":"sap.com",
"version_sp":"0",
"version_patch":"8",
"ppmsID":"",
"caption":"",
"lastUpdate":1386163749544,
"sp_PPMS_ID":"",
"ach":""
},
"Commands":[
"/sap/hana/xs/dt/base/file",
"/sap/hana/xs/dt/base/workspace",
"/sap/hana/xs/dt/base/xfer/import",
"/sap/hana/xs/dt/base/metadata",
"/sap/hana/xs/dt/base/change",
"/sap/hana/xs/dt/base/info"
] }

Related Information

Using the SAP HANA REST API [page 529]
SAP HANA REST API Reference

8.3.2 SAP HANA REST File API

The SAP HANA REST API includes a File API which uses the basic HTTP methods GET, PUT, and POST to send
requests. JSON is used as the default representation format.

The File API enables you to perform the following actions:

Action Description

Actions on files [page 532] Get, set, or change file content and metadata

Actions on directories [page 533] Get and change directory metadata and list directory con
tents

Create files and directories [page 533] Create files and directories with or without content

Copy and move files [page 534] Copy, move, or delete files and directories

Mass transfer actions [page 534] Get multiple files (or file metadata) from a list, repository
package, or a workspace

Change tracking [page 535] Activate selectively the latest approved versions of reposi
tory objects

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 531

http://help.sap.com/hana/SAP_HANA_XS_REST_API_Reference_en/index.html

Actions on Files

GET /sap/hana/xs/dt/base/file/MyProj/myfile.txt Orion-Version: 1.0
If-Match: "358768768767" SapBackPack: "{'Workspace': 'ABC', 'Version': 12}"

The REST File API enables you to retrieve the content of a specific file, for example, myfile.txt.

 Note
In the request illustrated in the example above, the parameters Version, If-Match, and SapBackPack
are optional

The response to the retrieval request is displayed in the following example:

HTTP/1.1 200 OK Content-Type: text/plain
Content-Length: 22 This is the content

The REST File API enables you to retrieve the metadata associated with a specific file, for example,
myfile.txt.

 Note
In the request illustrated in the example below, the parameters Version, If-Match, and SapBackPack
are optional

GET /sap/hana/xs/dt/base/file/MyProj/myfile.txt?parts=meta Orion-Version: 1.0
SapBackPack: "{'History': 'false', 'Version': 12}" If-Match: "35987989879"

The response to the retrieval request for metadata is displayed in the following example:

{ "Name": "myfile.txt",
"Location": "/sap/hana/xs/dt/base/file/MyProj/myfile.txt",
"RunLocation": "/MyProj/myfile.txt",
"ETag": "35987989879",
"Directory": false,
"LocalTimeStamp": 01234345009837,
"Attributes": {
"ReadOnly": false,
"Executable": false,
"SapBackPack" : {'Activated' : true}
}
"SapBackPack": {
"Version":60,
"ActivatedAt":1397644007537,
"ActivatedBy":"User"
} }

532 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

Actions on Directories

You can use the REST File API to retrieve and change directory (repository package) metadata as well as list the
contents of a directory. The following example shows how to list the contents of a single directory, for example,
myfolder.

 Tip
To list all files from a directory recursively, use depth=infinity or -1. For security reasons the depth is
limited to 1000.

GET /sap/hana/xs/dt/base/file/MyProj/myfolder?depth=1

The following example shows the response to the directory listing request:

HTTP/1.1 200 OK Content-Type: application/json
Content-Length: 132
{
"Name": "myfolder",
"Location": "/sap/hana/xs/dt/base/file/MyProj/myfolder",
"ContentLocation": "/MyProj/myfolder",
"LocalTimeStamp": 01234345009837,
"Directory": true
"Attributes": {
"ReadOnly": false,
"Executable": false
},
"Children": [
{
"Name": "myfile.txt",
"Location": "/sap/hana/xs/dt/base/file/MyProj/myfolder/myfile.txt",
"RunLocation": "/MyProj/myfolder/myfile.txt",
"Directory": false }] }

File and Directory Creation

You can use the REST File API to create files and directories (repository packages) with or without content. The
following example shows how to create a new directory, for example, myfolder.

 Note
If a parent directory (in which the new directory is created) is already assigned to a delivery unit, the
created directory will be assigned automatically to the same delivery unit.

POST /sap/hana/xs/dt/base/file/MyProj/ Content-Type: application/json
X-CSRF-Token: "65ABA3082325A3408FBE71C87929102B"
Slug: myfolder
{
"Name": "myfolder",
"Directory": "true" }

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 533

The following example shows the response to the directory creation request:

HTTP/1.1 201 OK {
"Name": "myfolder",
"Location": "/sap/hana/xs/dt/base/file/MyProj/myfolder",
"ContentLocation": "/MyProj/myfolder",
"ETag": "35fd43td3",
"LocalTimeStamp": 01234345009837,
"Directory": true
"Attributes": {
"ReadOnly": false,
"Executable": false
} }

Copying and Moving Files

You can use the REST File API to copy, move, or delete files and directories (repository packages). You can also
use the File API to delete the workspace that contains files and directories used for development work. The
following example shows how to delete a directory, for example, myfolder.

DELETE /sap/hana/xs/dt/base/file/MyProj/myfile.txt Orion-Version = 1.0
X-CSRF-Token: "65ABA3082325A3408FBE71C87929102B" If-Match: "35" (optional)

The following example shows how to delete a workspace.

 Note
You need to include the parameters ProcessWorkspace=true and Workspace in the SapBackPack
parameter.

DELETE /sap/hana/xs/dt/base/file/MyProj/myfile.txt Orion-Version = 1.0
X-CSRF-Token: "65ABA3082325A3408FBE71C87929102B" SapBackPack: "{'Workspace': 'ABC', 'ProcessWorkspace': true}"

Both requests should receive the following response:

HTTP/1.1 204 OK

Mass File Transfer

Mass transfer with the REST File API enables you to apply GET and PUT operations to multiple files in a single
HTTP request.

 Note
The mass-transfer feature is not a part of the Orion specification; it was developed to optimize the
performance of GET and PUT requests when dealing with a large number of files.

534 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

There are different ways of specifying the file paths. One way is to point the request's URL to the root of the file
repository, as illustrated in the request example below. In this case, you must specify the complete path from
the root of the repository for each file. Another possibility is to point the request's URL to a specified sub-
package in the Repository, which is then considered to be the root package for the files to be retrieved in the
request. To request a file's meta-data, use the parameter parts=meta; the response contains a list of file
metadata formatted as a JSON string. If the request does not contain the parameter parts=meta, a multipart
response is returned.

GET /sap/hana/xs/dt/base/file?parts=meta Orion-Version = 1.0
SapBackPack: '{"MassTransfer":true, "MassTransferData": [{"Pkg":"MyProj/myfolder","Name":"destination1.txt","Dir":false}, ...]}'

The response expected should look like the following example:

HTTP/1.1 200 OK Content-Type: application/json
[
{
"Name": "destination1.txt",
"Location": "/sap/hana/xs/dt/base/file/MyProj/myfolder/destination1.txt",
"RunLocation": "/MyProj/myfolder/destination1.txt",
"ETag": "351234567",
"LocalTimeStamp": 01234345009837,
"Directory": false
"Attributes": { "ReadOnly": false, "Executable": true, "SapBackPack" :
{'Activated' : true}}
},
{
"Name": "destination2.txt",
"Location": "/sap/hana/xs/dt/base/file/MyProj/myfolder/destination2.txt",
"RunLocation": "/MyProj/myfolder/destination2.txt",
"ETag": 251237891,
"LocalTimeStamp": 01234345009837,
"Directory": false,
"Attributes": { "ReadOnly": false, "Executable": true, "SapBackPack" :
{'Activated' : true} }
}]

Change Tracking

Use can use the REST File API to perform change-tracking operations. Change tracking enables you to activate
selectively the latest approved versions of objects.

 Note
This feature of the REST File API assumes that the change-tracking feature is enabled in the SAP HANA
repository.

PUT /sap/hana/xs/dt/base/file/PATH?parts=meta Orion-Version = 1.0
X-CSRF-Token: securityToken SapBackPack: '{"MassTransfer":true, "Activate":true, "ChangeId": "ABC//11111",
"ChangeIdList": [{"Path": "PATH/file1.txt", "ChangeId" = "ABC//12345"},
{"Path": "PATH/file2.txt", "ChangeId" = "ABC//12345"}]}'

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 535

If an object (or a set of objects) is activated using the default change-tracking handling (for example, without
setting SapBackPack.ChangeTrackingMode or by setting SapBackPack.ChangeTrackingMode explicitly
to 0), a dynamic change list is created, and the file(s) are activated in the SAP HANA Repository using the
generated change list.

In the explicit handling of change tracking the user is allowed to activate files that are already assigned to a
change list. Files can also be activated using an explicitly provided change list ID. In the change-tracking
request above, the files PATH/file1.txt and PATH/file2.txt are assigned to the change list ABC//12345.
All other files will be activated using the change list ABC//11111.

The response to the change-tracking request would look like the following example:

HTTP/1.1 200 OK Content-Type: application/json ...

Related Information

Using the SAP HANA REST API [page 529]
SAP HANA REST API Reference

8.3.3 SAP HANA REST Change-Tracking API

The SAP HANA REST API includes a Change Tracking API which enables you to make use of specific lifecycle-
management features that are included with the SAP HANA Repository via HTTP.

Change Tracking is integrated with the SAP HANA XS Repository transport tool set; with change tracking
enabled, you can ensure that an export operation (to build a delivery unit) includes only the latest approved
versions of repository objects.

 Note
To use the Change-Tracking API, change tracking must enabled in the SAP HANA system whose repository
you are accessing.

To obtain the current status of change tracking in the system, for example, enabled or disabled, you can send a
GET request to the change entry point of the REST API.

GET /sap/hana/xs/dt/change

If the change tracking feature is enabled in the target system, the resulting response is true. If change
tracking is disabled in the target sytem or not supported by the system, the response to the the GET status
request is false

HTTP/1.1 200 OK {
"ChangeTrackingStatus": true }

536 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

http://help.sap.com/hana/SAP_HANA_XS_REST_API_Reference_en/index.html

You can also use the REST Change-Tracking API to manage change lists and track changes made to repository
objects. For example, to display all change lists, for which a specified user (“XYZ”) is a contributor:

GET /sap/hana/xs/dt/base/change SapBackPack: {'User': 'XYZ', 'Status': 1}

The response would look like the following example:

HTTP/1.1 200 OK [
{
 "changeID":"ABC//1234",
 "status":1,
 "description":"",
 "createdOn":"2014-04-09T13:26:58.868Z",
 "createdBy":"XYZ"
},
{
 "changeID":"ABC//1235",
 "status":1,
 "description":"",
 "createdOn":"2014-04-09T14:08:53.024Z",
 "createdBy":"XYZ"
}]

To display the change status of a single file SomeFile.txt, use the following command:

GET /sap/hana/xs/dt/base/change/MyProj/SomeFile.txt

The response would look like the following example, which shows the change ID and the user responsible for
the change:

HTTP/1.1 200 OK {
"ChangeId":"ABC//1234",
"User":"XYZ" }

Related Information

Using the SAP HANA REST API [page 529]
SAP HANA REST API Reference

8.3.4 SAP HANA REST Metadata API

The SAP HANA REST API includes a Metadata API which provides services to support search and
autocompletion scenarios

The REST-based Metadata API enables you to retrieve metadata from runtime and design-time objects as well
as other metadata locations. The typical location of runtime metadata is the SAP HANA database catalog. It is
possible to retrieve metadata for tables, views, procedures, functions, sequences, and schemas. The design-

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 537

http://help.sap.com/hana/SAP_HANA_XS_REST_API_Reference_en/index.html

time location for metadata is the SAP HANA Repository. Also accessible is the metadata location used by Core
Data Services (CDS).

The following services are provided with the Metadata API in the default location /sap/hana/xs/dt/base/
metadata; the services are called by setting the HTTP parameter Service-Name to the appropriate value:

● checkMetadataExistence
Checks for the existence of a provided set of entities and returns an array of entries which indicates if a
specified entity exists or not.

● checkMetadataExistence URI
Checks for the existence of a specific resource (entity) uniquely expressed as an HTTP universal resource
indicator (URI). checkMetadataExistence URI returns an array of entries which indicates if a given
entity exists or not.

● getMetadataSuggestion

 Note
This part of the interface only supports HTTP GET requests.

The following example shows how to use checkMetadataExistence URI to check for the existence of a
specific URI resource.

var strPayloadFromJava = "{}"; var strHeaderServiceName = "checkMetadataExistence";
var strSapBackPack = strPayloadFromJava;
var strAccessPath = cMetaDataAccessP + '/VIEW/RT/TABLES';
var request = new $.net.http.Request($.net.http.GET, strAccessPath);
request.headers.set('SapBackPack', strSapBackPack);
request.headers.set('Service-Name', strHeaderServiceName); var response = client.request(request, destination).getResponse();

checkMetadataExistence URI returns an array of entries which indicates if a given entity exists or not.

List<metadata> localName
 isExist
 List<exist> [6]
 namespace
 separator [7]
 baseLocalName
 baseType
 type
 mode [8] desc

Related Information

Using the SAP HANA REST API [page 529]
SAP HANA REST API Reference

538 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

http://help.sap.com/hana/SAP_HANA_XS_REST_API_Reference_en/index.html

8.3.5 SAP HANA REST Transfer API

The SAP HANA REST Transfer API is used to import and export packages and files.

You can use the Transfer API to perform both import and export operations:

● Import [page 539]
Upload files to the SAP HANA Repository, for example, using POST, PUT, or FTP

● Export [page 539]
Download files from the SAP HANA Repository to a client

Importing Files

The following example shows how to use the Transfer API to start an operation to upload files to the SAP HANA
Repository. The request URL uses the POST command to perform the action and must indicate the target
location of the uploaded file when the upload operation is complete. The request must also indicate the total
size of the file the server should expect to receive during the upload operation.

POST /sap/hana/xs/dt/base/xfer/import/MyProj/SomeFile.jpg Orion-Version: 1.0
X-CSRF-Token: "65ABA3082325A3408FBE71C87929102B"
Slug: MyFile.jpg
X-Xfer-Content-Length: 901024 X-Xfer-Options: raw

The response to the request would look as follows:

HTTP/1.1 200 OK Location: /sap/hana/xs/dt/base/xfer/import/fks3kjd7hf ContentLocation: /xfer/fks3kjd7hf

After initiating the transfer, uploads are performed as many times as required using PUT actions.

PUT /sap/hana/xs/dt/base/xfer/import/fks3kjd7hf Orion-Version: 1.0
X-CSRF-Token: "65ABA3082325A3408FBE71C87929102B"
Content-Length: 32768
Content-Type: image/jpeg Content-Range: bytes 0-32767/901024

For each successful upload operation, you should see the following response:

HTTP/1.1 200 success Range: bytes 0-32767

Exporting Files

You can use the REST Transfer API to export (download) files and packages to a designated client in a zip
archive, as illustrated in the following example:

GET /sap/hana/xs/dt/base/xfer/export/MyProj/SomeFolder.zip

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 539

 Orion-Version: 1.0

For each successful download operation, you should see the following response:

HTTP/1.1 201 OK Content-Type: application/zip File contents.

Related Information

Using the SAP HANA REST API [page 529]
SAP HANA REST API Reference

8.3.6 SAP HANA REST Workspace API

The Workspace API enables you to create and manipulate Repository workspaces and projects via HTTP.

With the Workspace API, you can perform the following types of operation on workspaces and projects:

● Workspaces
List available workspaces, create or delete a workspace, and display or change workspace metadata

● Projects
Add projects to a workspace, move (or rename) a project, remove a project from a workspace

Workspace Actions

You can use the REST Workspace API to create a new workspace called “My Dev Workspace”, as illustrated in
the following example:

POST sap/hana/xs/dt/base/workspace EclipseWeb-Version: 1.0
X-CSRF-Token: "65ABA3082325A3408FBE71C87929102B" Slug: My Dev Workspace

The response to the workspace-creation request should look like the following example:

HTTP/1.1 201 Created Location: [http://example.com/sap/hana/xs/dt/base/file/sap/hana/xs/dt/base/
content/workspace/SAM_My_Dev_workspace_0]
ETag: "1"
Content-Type: application/json
{
"Id": "SAM_My_Dev_workspace_0",
"Name": "My Dev Workspace",
"Location": "http://example.com/sap/hana/xs/dt/base/file/sap/hana/xs/dt/base/
content/workspace/SAM_My_Dev_workspace_0",
"Projects": [],
"Children": [] }

540 P U B L I C
SAP HANA Developer Guide

Defining Web-based Data Access in XS Classic

http://help.sap.com/hana/SAP_HANA_XS_REST_API_Reference_en/index.html

Projects

You can also use the REST Workspace API to create a new SAP HANA XS project (“My Project”) and add it an
existing workspace (“My Dev Workspace”), as illustrated in the following example. The Workspace API creates
the new project as an SAP HANA XS subpackage in the specified workspace package. The new project is
assigned to the list of projects in the specified workspace's metadata.

 Note
The new project is not an SAP HANA XS application package.

POST /sap/hana/xs/dt/base/workspace/SAM_My_Dev_workspace_0 X-CSRF-Token: "65ABA3082325A3408FBE71C87929102B"
EclipseWeb-Version: 1.0 Slug: "My Project"

The response to the project-creation request should look like the following example:

{ "Id": "SAM_My_Dev_Workspace_0_My_Project_0",
"Location": "http://localhost:8080/sap/hana/xs/dt/base/file/sap/hana/xs/dt/base/
content/workspace/SAM_My_Dev_Workspace_0/My Project",
"ContentLocation": "http://localhost:8080/sap/hana/xs/dt/base/file/sap/
hana/xs/dt/base/content/workspace/SAM_My_Dev_Workspace_0/My Project",
"Name": "My Project" }

Related Information

Using the SAP HANA REST API [page 529]
SAP HANA REST API Reference

SAP HANA Developer Guide
Defining Web-based Data Access in XS Classic P U B L I C 541

http://help.sap.com/hana/SAP_HANA_XS_REST_API_Reference_en/index.html

9 Writing Server-Side JavaScript Code

SAP HANA Extended Application Services (SAP HANA XS) provide applications and application developers
with access to the SAP HANA database using a consumption model that is exposed via HTTP.

In addition to providing application-specific consumption models, SAP HANA XS also host system services that
are part of the SAP HANA database, for example: search services and a built-in Web server that provides
access to static content stored in the SAP HANA repository.

The consumption model provided by SAP HANA XS focuses on server-side applications written in JavaScript.
Applications written in server-side JavaScript can make use of a powerful set of specially developed API
functions, for example, to enable access to the current request session or the database. This section describes
how to write server-side JavaScript code that enables you to expose data, for example, using a Web Browser or
any other HTTP client.

9.1 Data Access with JavaScript in SAP HANA XS

In SAP HANA Extended Application Services, the persistence model (for example, tables, views and stored
procedures) is mapped to the consumption model that is exposed via HTTP to clients - the applications you
write to extract data from SAP HANA.

You can map the persistence and consumption models in the following way:

● Application-specific code
Write code that runs in SAP HANA application services. Application-specific code (for example, server-side
JavaScript) is used in SAP HANA application services to provide the consumption model for client
applications.

Applications running in SAP HANA XS enable you to accurately control the flow of data between the
presentational layer, for example, in the Browser, and the data-processing layer in SAP HANA itself, where the
calculations are performed, for example in SQL or SQLScript. If you develop and deploy a server-side
JavaScript application running in SAP HANA XS, you can take advantage of the embedded access to SAP
HANA that SAP HANA XS provides; the embedded access greatly improves end-to-end performance.

542 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

9.2 Using Server-Side JavaScript in SAP HANA XS

SAP HANA application services (XS server) supports server-side application programming in JavaScript. The
server-side application you develop can use a collection of JavaScript APIs to expose authorized data to client
requests, for example, to be consumed by a client GUI such as a Web browser or any other HTTP client.

The functions provided by the JavaScript APIs enable server-side JavaScript applications not only to expose
data but to update, insert, and delete data, too. You can use the JavaScript APIs to perform the following
actions:

● Interact with the SAP HANA XS runtime environment
● Directly access SAP HANA database capabilities
● Interact with services on defined HTTP destinations.

JavaScript programs are stored in the repository along with all the other development resources. When the
programs are activated, the code is stored in the repository as a runtime object.

 Tip
To enable the Web Browser to display more helpful information if your JavaScript code causes an HTTP
500 exception on the SAP HANA XS Web server, ask someone with administrator privileges to start the
SAP HANA studio's Administration Console perspective and add the parameter developer_mode to the

xsengine.ini httpserver section of the Configuration tab and set it to true.

Related Information

Write XS Server-Side JavaScript [page 543]
JavaScript Security Considerations [page 546]

9.2.1 Tutorial: Write Server-Side JavaScript Application Code

SAP HANA Extended Application Services (SAP HANA XS) supports server-side application programming in
JavaScript. The server-side application you develop uses JavaScript APIs to expose authorized data to client
requests, for example, for consumption by a client GUI such as a Web browser, SAPUI5 applications, or mobile
clients.

Prerequisites

● Access to a running SAP HANA system.
● Access to SAP HANA studio
● Access to an SAP HANA Repository workspace

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 543

● Access to a shared project in the SAP HANA Repository where you can create the artifacts required for this
tutorial.

Context

Since JavaScript programs are stored in the SAP HANA Repository, the steps in this task description assume
that you have already created a workspace and a project (of type XS Project), and that you have shared the
project with other members of the development team. To write a server-side JavaScript application, you must
perform the following high-level steps.

 Tip
File extensions are important. If you are using SAP HANA studio to create artifacts in the SAP HANA
Repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the new file in the corresponding editor.

Procedure

1. Create a root package for your application, for example, helloxsjs.

2. Create an application descriptor for your application and place it in the root package you created in the
previous step.

The application descriptor is the core file that you use to describe an application's availability within SAP
HANA XS. The application-descriptor file has no contents and no name; it only has the file
extension .xsapp.

 Note
For backward compatibility, content is allowed in the .xsapp file but ignored.

a. In the Project Explorer view, right-click the folder where you want to create the new application
descriptor and choose New Other SAP HANA Application Development XS Application
Descriptor File in the context-sensitive popup menu.

b. Save the application-descriptor file.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the
repository, To explicitly commit a file to the repository, right-click the file (or the project containing
the file) and choose Team Commit from the context-sensitive popup menu.

c. Activate the application-descriptor file in the repository.
Locate and right-click the new application-descriptor file in the Project Explorer view. In the context-
sensitive pop-up menu, choose Team Activate .

3. Create an application-access file and place it in the package to which you want to grant access.

544 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

The application-access file does not have a name; it only has the file extension .xsaccess. The contents
of the .xsaccess file must be formatted according to JavaScript Object Notation (JSON) rules and
associated with the package the file belongs to. The rules defined in the .xsaccess file apply to the
package it resides in as well as any subpackages lower in the package hierarchy.
a. In the Project Explorer view, right-click the folder where you want to create the new application-access

file and choose New Other SAP HANA Application Development XS Application Access File
in the context-sensitive popup menu.

b. Enter the following content in the .xsaccess file for your new XSJS application:

{ "exposed" : true,
 "authentication" : { "method": "Form" },
 "prevent_xsrf" : true, }

 Note
These settings allows data to be exposed, require logon authentication to access the exposed data,
and help protect against cross-site request-forgery (XSRF) attacks.

c. Save and activate the application-access file in the repository.
4. Create the server-side JavaScript (XSJS) files that contain the application logic.

Server-side JavaScript files have the file suffix .xsjs, for example, hello.xsjs and contain the code that
is executed when SAP HANA XS handles a URL request.
a. In the Project Explorer view, right-click the folder where you want to create the new XSJS file and

choose New Other SAP HANA Application Development XS JavaScript File in the context-
sensitive popup menu.

b. Using the wizard, enter the following content in the .xsjs file for your new XSJS application:

$.response.contentType = "text/plain"; $.response.setBody("Hello, World!");
c. Save and activate the XSJS file in the repository.

5. Check the layout workspace.
Your application package structure should have a structure that looks like the following example:

. \
 helloxsjs
 \
 .xsapp
 .xsaccess
 .xsprivileges // optional hello.xsjs

6. Save and activate the changes and additions you made.
7. View the results in a Web browser.

The SAP HANA XS Web server enables you to view the results immediately after activation in the
repository, for example: http://<SAPHANA_hostname>:80<DB_Instance_Number>/helloxsjs/
hello.xsjs

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 545

9.2.1.1 JavaScript Editor

You can write server-side JavaScript using the SAP HANA studio JavaScript editor, which provides syntax
validation, code highlighting and code completion.

The SAP HANA studio's JavaScript editor includes the JSLint open-source library, which helps to validate
JavaScript code. The editor highlights any code that does not conform to the JSLint standards.

To configure the JSLint library and determine which validations are performed, go to: Window Preferences
SAP HANA Application Development JSLint . In the preferences window, each JSLint setting is followed

by the corresponding JSLint command name, which you can use to lookup more information on the JSLint Web
site.

 Tip
To disable all JSLint validations for files in a specific project, right-click the project and choose Disable
JSLint.

Related Information

http://www.jslint.com/lint.html

9.2.1.2 Server-Side JavaScript Security Considerations

If you choose to use server-side JavaScript to write your application code, you need to bear in mind the
potential for (and risk of) external attacks such as cross-site scripting and forgery, and insufficient
authentication.

The following list illustrates the areas where special attention is required to avoid security-related problems
when writing server-side JavaScript. Each of the problems highlighted in the list is described in detail in its own
dedicated section:

● SSL/HTTPS
Enable secure HTTP (HTTPS) for inbound communication required by an SAP HANA application.

● Injection flaws
In the context of SAP HANA Extended Application Services (SAP HANA XS) injection flaws concern SQL
injection that modifies the URL to expand the scope of the original request.

● Cross-site scripting (XSS)
Web-based vulnerability that involves an attacker injecting JavaScript into a link with the intention of
running the injected code on the target computer.

● Broken authentication and session management
Leaks or flaws in the authentication or session management functions allow attackers to impersonate
users and gain access to unauthorized systems and data.

● Insecure direct object references
An application lacks the proper authentication mechanism for target objects.

546 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

http://help.sap.com/disclaimer?site=http%3A%2F%2Fwww.jslint.com%2Flint.html

● Cross-site request forgery (XSRF)
Exploits the trust boundaries that exist between different Web sites running in the same web browser
session.

● Incorrect security configuration
Attacks against the security configuration in place, for example, authentication mechanisms and
authorization processes.

● Insecure cryptographic storage
Sensitive information such as logon credentials is not securely stored, for example, with encryption tools.

● Missing restrictions on URL Access
Sensitive information such as logon credentials is exposed.

● Insufficient transport layer protection
Network traffic can be monitored, and attackers can steal sensitive information such as logon credentials
or credit-card data.

● Invalid redirects and forwards
Web applications redirect users to other pages or use internal forwards in a similar manner.

● XML processing issues
Potential security issues related to processing XML as input or to generating XML as output

Related Information

SSL/HTTPS [page 548]
Injection flaws [page 548]
Cross-site scripting (XSS) [page 550]
Broken authentication and session management [page 550]
Insecure direct object references [page 551]
Cross-site request forgery (XSRF) [page 551]
Incorrect security configuration [page 553]
Insecure cryptographic storage [page 554]
Missing restrictions on URL Access [page 554]
Insufficient transport layer protection [page 555]
XML processing issues [page 557]

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 547

9.2.1.2.1 Server-Side JavaScript: SSL/HTTPS

If you choose to use server-side JavaScript to write your application code, you need to bear in mind the
potential for (and risk of) external attacks such as cross-site scripting and forgery, and insufficient
authentication. You can set up SAP HANA to use secure HTTP (HTTPS).

SSL/HTTPS Problem

Incoming requests for data from client applications use secure HTTP (HTTPS), but the SAP HANA system is
not configured to accept the HTTPS requests.

SSL/HTTPS Recommendation

Ensure the SAP Web Dispatcher is configured to accept incoming HTTPS requests. For more information, see
the SAP HANA Security Guide.

 Note
The HTTPS requests are forwarded internally from the SAP Web Dispatcher to SAP HANA XS as HTTP
(clear text).

 Tip
For more information about security in SAP HANA, see the SAP HANA Security Guide.

9.2.1.2.2 Server-Side JavaScript: Injection Flaws

If you choose to use server-side JavaScript to write your application code, you need to bear in mind the
potential for (and risk of) injection flaws. Typically, injection flaws concern SQL injection and involve modifying
the URL to expand the scope of the original request.

The XS JavaScript API provides a number of different ways to interact with the SAP HANA database by using
SQL commands. By default, these APIs allow you to read data, but they can also be used to update or delete
data, and even to grant (or revoke) access rights at runtime. As a general rule, it is recommended to write a
query which is either a call to an SQLScript procedure or a prepared statement where all parameters specified
in the procedure or statement are escaped by using either setString or setInt, as illustrated in the
examples provided in this section. Avoid using dynamic SQL commands with parameters that are not escaped.

548 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

Injection Flaws Problem

In the context of SAP HANA XS, injection flaws mostly concern SQL injection, which can occur in the SAP
HANA XS JavaScript API or SQL script itself (both standard and dynamic). For example, the URL http://
xsengine/customer.xsjs?id=3 runs the code in the JavaScript file customer.xsjs shown below:

var conn = $.db.getConnection(); var pstmt = conn.prepareStatement(" SELECT * FROM accounts WHERE custID='" +
$.request.parameters.get("id"));
var rs = pstmt.executeQuery();

By modifying the URL, for example, to http://xsengine/customer.xsjs?id=3 'OR 1=1', an attacker
can view not just one account but all the accounts in the database.

 Note
SAP HANA XS applications rely on the authorization provided by the underlying SAP HANA database.

Users accessing an SAP HANA XS based application require the appropriate privileges on the database objects
to execute database queries. The SAP HANA authorization system will enforce the appropriate authorizations.
This means that in those cases, even if the user can manipulate a query, he will not gain more access than is
assigned to him through roles or privileges. Definer mode SQL script procedures are an exception to this rule
that you need to take into consideration.

Injection Flaws Recommendation

To prevent injection flaws in the JavaScript API, use prepared statements to create a query and place-holders
to fill with results of function calls to the prepared-statement object; to prevent injection flaws in standard SQL
Script, use stored procedures that run in caller mode; in caller mode, the stored procedures are executed with
the credentials of the logged-on HANA user. Avoid using dynamic SQL if possible. For example, to guard against
the SQL-injection attack illustrated in the problem example, you could use the following code:

var conn = $.db.getConnection(); var pstmt = conn.prepareStatement(" SELECT * FROM accounts WHERE custID=?');
pstmt.setInt(1, $.request.parameters.get("id"), 10); var rs = pstmt.executeQuery();

Prepared statements enable you to create the actual query you want to run and then create several
placeholders for the query parameters. The placeholders are replaced with the proper function calls to the
prepared statement object. The calls are specific for each type in such a way that the SAP HANA XS JavaScript
API is able to properly escape the input data. For example, to escape a string, you can use the setString
function.

 Tip
For more information about security in SAP HANA, see the SAP HANA Security Guide and the SAP HANA
SQL System Views and Reference.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 549

9.2.1.2.3 Server-Side JavaScript: Cross-Site Scripting

If you use server-side JavaScript to write your application code, bear in mind the potential for (and risk of)
cross-site scripting (XSS) attacks. Cross-site scripting is a Web-based vulnerability that involves an attacker
injecting JavaScript into a link with the intention of running the injected code on the target computer.

Cross-Site Scripting Problem

The vulnerability to cross-site scripting attacks comes in the following forms:

● Reflected (non-persistent)
Code affects individual users in their local Web browser

● Stored (persistent)
Code is stored on a server and affects all users who visit the served page

A successful cross-site scripting attack could result in a user obtaining elevated privileges or access to
information that should not be exposed.

Cross-Site Scripting Recommendation

Since there are currently no libraries provided by the standard SAP HANA XS JavaScript API to provide proper
escaping, we recommend not to write custom interfaces but to rely on well-tested technologies supplied by
SAP, for example, OData or JSON together with SAPUI5 libraries.

 Tip
For more information about security in SAP HANA, see the SAP HANA Security Guide.

9.2.1.2.4 Server-Side JavaScript: Broken Authentication

If you choose to use server-side JavaScript to write your application code, you need to bear in mind the
potential for (and risk of) attack against authentication infrastructure. Leaks or flaws in the authentication or
session management functions allow attackers to impersonate users and gain access to unauthorized systems
and data.

Authentication Problem

Leaks or flaws in the authentication or session management functions allow attackers to impersonate users;
the attackers can be external as well as users with their own accounts to obtain the privileges of those users
they impersonate.

550 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

Authentication Recommendation

Use the built-in SAP HANA XS authentication mechanism and session management (cookies). For example,
use the "authentication" keyword to enable an authentication method and set it according to the
authentication method you want implement, for example: SAP logon ticket, form-based, or basic (user name
and password) in the application's .xsaccess file, which ensures that all objects in the application path are
available only to authenticated users.

 Tip
For more information about security in SAP HANA, see the SAP HANA Security Guide.

9.2.1.2.5 Server-Side JavaScript: Insecure Object
Reference

If you choose to use server-side JavaScript to write your application code, you need to bear in mind the
potential for (and risk of) attacks using insecure references to objects.

Object Reference Problem

An SAP HANA XS application is vulnerable to insecure direct object reference if the application lacks the proper
authentication mechanism for target objects.

Object Reference Recommendation

Make sure that only authenticated users are allowed to access a particular object. In the context of SAP HANA
XS, use the "authentication" keyword to enable an authentication method and set it according to the
authentication method you implement, for example: SAP logon ticket, form-based, or basic (user name and
password) in the application's .xsaccess file, which ensures that all objects in the application path are
available only to authenticated users.

 Tip
For more information about security in SAP HANA, see the SAP HANA Security Guide.

9.2.1.2.6 Server-Side JavaScript: Cross-Site Request
Forgery

If you choose to use server-side JavaScript to write your application code, you need to bear in mind the
potential for (and risk of) cross-site request forgery (XSRF). Cross-site scripting is a web-based vulnerability

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 551

that exploits the trust boundaries that exist between different websites running in the same web browser
session.

Cross-Site Request-Forgery Problem

Since there are no clear trust boundaries between different Web sites running in the same Web-browser
session, an attacker can trick users (for example, by luring them to a popular Web site that is under the
attacker's control) into clicking a specific hyperlink. The hyperlink displays a Web site that performs actions on
the visitor's behalf, for example, in a hidden iframe. If the targeted end user is logged in and browsing using an
account with elevated privileges, the XSRF attack can compromise the entire Web application.

Cross-Site Request-Forgery Recommendation

SAP HANA XS provides a way to include a random token in the POST submission which is validated on the
server-side. Only if this token is non-predictable for attackers can one prevent cross-site, request-forgery
attacks. The easiest way to prevent cross-site, request-forgery attacks is by using the standard SAP HANA XS
cookie. This cookie is randomly and securely generated and provides a good random token which is
unpredictable by an attacker ($.session.getSecurityToken()).

To protect SAP HANA XS applications from cross-site request-forgery (XSRF) attacks, make sure you always
set the prevent_xsrf keyword in the application-access (.xsaccess) file to true, as illustrated in the following
example:

 { "prevent_xsrf" : true }

The prevent_xsrf keyword prevents the XSRF attacks by ensuring that checks are performed to establish that a
valid security token is available for given Browser session. The existence of a valid security token determines if
an application responds to the client's request to display content. A security token is considered to be valid if it
matches the token that SAP HANA XS generates in the backend for the corresponding session.

 Note
The default setting is false, which means there is no automatic prevention of XSRF attacks. If no value is
assigned to the prevent_xsrf keyword, the default setting (false) applies.

The following client-side JavaScript code snippet show how to use the HTTP request header to fetch, check,
and apply the XSRF security token required to protect against XSRF attacks.

<html> <head>
 <title>Example</title>
 <script id="sap-ui-bootstrap" type="text/javascript"
 src="/sap/ui5/1/resources/sap-ui-core.js"
 data-sap-ui-language="en"
 data-sap-ui-theme="sap_goldreflection"
 data-sap-ui-libs="sap.ui.core,sap.ui.commons,sap.ui.ux3,sap.ui.table">
 </script>

552 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

 <script type="text/javascript" src="/sap/ui5/1/resources/jquery-sap.js"></
script>
 <script>
 function doSomething() {
 $.ajax({
 url: "logic.xsjs",
 type: "GET",
 beforeSend: function(xhr) {
 xhr.setRequestHeader("X-CSRF-Token", "Fetch");
 },
 success: function(data, textStatus, XMLHttpRequest) {
 var token = XMLHttpRequest.getResponseHeader('X-CSRF-Token');
 var data = "somePayLoad";
 $.ajax({
 url: "logic.xsjs",
 type: "POST",
 data: data,
 beforeSend: function(xhr) {
 xhr.setRequestHeader("X-CSRF-Token", token);
 },
 success: function() {
 alert("works");
 },
 error: function() {
 alert("works not");
 }
 });
 }
 });
 }
 </script>
</head>
<body>
 <div>
 Do something
 </div>
</body> </html>

 Tip
For more information about security in SAP HANA, see the SAP HANA Security Guide.

9.2.1.2.7 Server-Side JavaScript: Security Misconfiguration

If you choose to use server-side JavaScript to write your application code, you need to bear in mind the
potential for (and risk of) attacks against the security configuration in place, for example, authentication
mechanisms and authorization processes.

Insecure Configuration Problem

No or an inadequate authentication mechanism has been implemented.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 553

Insecure Configuration Recommendation

Applications should have proper authentication in place, for example, by using SAP HANA built-in
authentication mechanisms and, in addition, the SAP HANA XS cookie and session handling features.
Application developers must also consider and control which paths are exposed by HTTP to the outside world
and which of these paths require authentication.

 Tip
For more information about security in SAP HANA, see the SAP HANA Security Guide.

9.2.1.2.8 Server-Side JavaScript: Insecure Storage

If you choose to use server-side JavaScript to write your application code, you need to bear in mind the
potential for (and risk of) attacks against the insecure or lack of encryption of data assets.

Storage-Encryption Problem

Sensitive information such as logon credentials is exposed.

Storage-Encryption Recommendation

To prevent unauthorized access, for example, in the event of a system break-in, data such as user logon
credentials must be stored in an encrypted state.

 Tip
For more information about security in SAP HANA, see the SAP HANA Security Guide.

9.2.1.2.9 Server-Side JavaScript: Missing URL Restrictions

If you choose to use server-side JavaScript to write your application code, you need to bear in mind the
potential for (and risk of) unauthorized access to URLs.

URL Access Problem

Unauthenticated users have access to URLs that expose confidential (unauthorized) data.

554 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

URL Access Recommendation

Make sure you have addressed the issues described in "Broken Authentication and Session Management" and
"Insecure Direct Object References". In addition, check if a user is allowed to access a specific URL before
actually executing the code behind that requested URL. Consider putting an authentication check in place for
each JavaScript file before continuing to send any data back to the client's Web browser.

 Tip
For more information about Security in SAP HANA, see the SAP HANA Security Guide.

9.2.1.2.10 Server-Side JavaScript: Transport Layer Protection

If you choose to use server-side JavaScript to write your application code, you need to bear in mind the
potential for (and risk of) insufficient protection of the transport layer.

Transport Layer Protection Problem

Without transport-layer protection, the user's network traffic can be monitored, and attackers can steal
sensitive information such as logon credentials or credit-card data.

Transport Layer Protection Recommendation

Turn on transport-layer protection in SAP HANA XS; the procedure is described in the SAP HANA security
guide.

 Tip
For more information about security in SAP HANA, see the SAP HANA Security Guide.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 555

9.2.1.2.11 Server-Side JavaScript: Invalid Redirection

If you use server-side JavaScript to write your application code, bear in mind the potential for (and risk of)
redirection and internal fowarding from the requested Web page.

Invalid Redirection Problem

Web applications frequently redirect users to other pages or use internal forwards in a similar manner.
Sometimes the target page is specified in an invalid (not permitted) parameter. This enables an attacker to
choose a destination page leading to the possibility of phishing attacks or the spamming of search engines.

Invalid Redirection Recommendation

To prevent invalidated redirects or forwards, application developers should validate the requested destination
before forwarding, for example, by checking if the destination is present in a white list. If the destination URL
specified in the redirection request is not present in the white list, the redirection is refused.

 Tip
Avoid using redirection if you cannot control the final destination.

Alternatively, you can refuse to allow any direct user input; instead, the input can be used to determine the final
destination for the redirection, as illustrated in the following example:

var destination = $.request.parameters.get("dest"); switch (destination) {
 case "1": $.response.headers.set("location", "http://
FirstWhitelistedURL.com"); break;
 case "2": $.response.headers.set("location", "http://
SecondWhitelistedURL.com"); break;
 default: $.response.headers.set("location", "http://
DefaultWhitelistedURL.com"); }

 Tip
For more information about security in SAP HANA, see the SAP HANA Security Guide.

556 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

9.2.1.2.12 Server-Side JavaScript: XML Processing Issues

If you choose to use server-side JavaScript to write your application code, you need to bear in mind the
potential for (and risk of) attacks aimed at the process used to parse XML input and generate the XML output.

XML Processing Problem

There are several potential security issues related to processing XML as input or to generating XML as output.
In addition, problems with related technologies (for example, XSL Transformations or XSLT) can enable the
inclusion of other (unwanted) files.

XML Processing Recommendation

Turn on transport-layer protection in SAP HANA XS; the procedure is described in the SAP HANA security
guide.

Bear in mind the following rules and suggestions when processing or generating XML output:

● When processing XML that originates from an untrusted source, disable DTD processing and entity
expansion unless strictly required. This helps prevent Billion Laugh Attacks (Cross-Site Request Forgery),
which can bring down the processing code and, depending on the configuration of the machine, an entire
server.

● To prevent the inclusion (insertion) of unwanted and unauthorized files, restrict the ability to open files or
URLs even in requests included in XML input that comes from a trusted source. In this way, you prevent the
disclosure of internal file paths and internal machines.

● Ensure proper limits are in place on the maximum amount of memory that the XML processing engine can
use, the amount of nested entities that the XML code can have, and the maximum length of entity names,
attribute names, and so on. This practice helps prevent the triggering of potential issues.

 Tip
For more information about security in SAP HANA, see the SAP HANA Security Guide.

9.3 Using Server-Side JavaScript Libraries

The elements defined in normal server-side JavaScript programs cannot be accessed from other JavaScript
programs. To enable the reuse of program elements, SAP HANA Extended Application Services support server-
side JavaScript libraries.

Server-side JavaScript libraries are a special type of JavaScript program that can be imported and called in
other JavaScript programs. You can use JavaScript libraries to perform simple, repetitive tasks, for example, to
handle forms and form date, to manipulate date and time strings, to parse URLs, and so on.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 557

 Note
JavaScript libraries are internally developed extensions for SAP HANA.

The following example shows how to import a JavaScript mathematics library using the import function:

// import math lib $.import("sap.myapp.lib","math");
// use math lib var max_res = $.sap.myapp.lib.math.max(3, 7);

The import function requires the following parameters:

● Package name
Full name of the package containing the library object you want to import, for example, sap.myapp.lib

● Library name
Name of the library object you want to import, for example, math

 Note
Restrictions apply to the characters you can use in the names of JavaScript libraries and application
packages. Permitted characters are: upper- and lower-case letters (Aa-Zz), digits 0-9, and the dollar sign
($).

The standard JavaScript limitations apply to the characters you can use in either the name of the XSJS library
you create or the name of the package where the library is deployed. For example, you cannot use the hyphen
(-) in the name of an XSJS library or, if you are referencing the library, the name of a package in the application
package path. To prevent problems with activation of the object in the SAP HANA repository, you must follow
the standard rules for accessing JavaScript property objects by name. The following example, shows how to
use square brackets and quotes (["<STRING>"]) to access an object whose name uses non-permitted
characters such as a hyphen (-):

// import math lib $.import("sap.myapp.lib.XS-QGP-SPS7","math");
// use math lib var max_res = $.sap.myapp.lib["XS-QGP-SPS7"].math.max(3, 7);

Related Information

Import Server-Side JavaScript Libraries [page 559]
Write Server-Side JavaScript Libraries [page 560]

558 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

9.3.1 Import Server-Side JavaScript Libraries

Server-side JavaScript libraries are a special type of JavaScript program that can be imported and called in
other JavaScript programs. You can use JavaScript libraries to perform simple, repetitive tasks, for example:
handle forms and form date, manipulate date and time strings, parse URLs, and so on.

Context

JavaScript libraries are internally developed extensions for SAP HANA. The libraries exist in the context of a
package, which is referenced when you import the library. The following example of a JavaScript library
displays the word "Hello" along with a name and an exclamation mark as a suffix.

var greetingPrefix = "Hello, "; var greetingSuffix = "!";
function greet (name) {
 return greetingPrefix + name + greetingSuffix;
}

 Note
This procedure uses the illustrated example JavaScript library to explain what happens when you import a
JavaScript library, for example, which objects are created, when, and where. If you have your own library to
import, substitute the library names and paths shown in the steps below as required.

To import a JavaScript library for use in your server-side JavaScript application, perform the following tasks

Procedure

1. Import the JavaScript library into a JavaScript application.
Open the server-side JavaScript file into which you want to import the JavaScript library.

Use the $.import function, as follows:

$.import("<path.to.your.library.filename>","greetLib"); var greeting = $.<path.to.your.library.filename>.greet("World"); $.response.setBody(greeting);
2. Save and activate the changes to the JavaScript file.

Although the operation is simple, bear in mind the following points:
○ Additional objects in the package hierarchy

The import operation generates a hierarchy of objects below $ that resemble the library's location in
the repository, for example, for the library path/to/your/library/greetLib.xsjslib, you would
see the following additional object:

$.path.to.your.library.greetLib

○ Additional properties for the newly generated library object:

$.path.to.your.library.greetLib.greet()

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 559

 $.path.to.your.library.greetLib.greetingSuffix
$.path.to.your.library.greetLib.greetingPrefix

○ Pre-import checks:
○ It is not possible to import the referenced library if the import operation would override any

predefined runtime objects.
○ Do not import the referenced library if it is already present in the package.

○ Library context
Imported libraries exist in the context defined by their repository location.

9.3.2 Write Server-Side JavaScript Libraries

Server-side JavaScript libraries are a special type of JavaScript program that can be imported and called in
other JavaScript programs. You can use JavaScript libraries to perform simple, repetitive tasks, for example, to
handle forms and form date, to manipulate date and time strings, to parse URLs, and so on.

Context

JavaScript libraries are internally developed extensions for SAP HANA. However, you can write your own
libraries, too. JavaScript libraries exist in the context of a package, which is referenced when you import the
library. To write a JavaScript library to use in your server-side JavaScript application, perform the following
steps:

Procedure

1. Create the file that contains the JavaScript library you want to add to the package and make available for
import.
In SAP HANA XS, server-side JavaScript libraries have the file extension .xsjslib, for example
greetLib.xsjslib.

a. In the Project Explorer view, right-click the folder where you want to create the new XSJS file and
choose New Other SAP HANA Application Development XS JavaScript Library File in the
context-sensitive popup menu.

b. Type a name for the new XS JavaScript library file, for example greetLib and choose Finish.

If you are using SAP HANA studio to create artifacts in the SAP HANA Repository, the file creation
wizard adds a separator (.) and the required file extension automatically, for example, .xsjslib.

c. Enter the following content in the greetLib.xsjslibXSJS library file for your new XSJS application.
The following example creates a simple library that displays the word “Hello” along with a supplied
name and adds an exclamation point (!) as a suffix.

var greetingPrefix = "Hello, "; var greetingSuffix = "!";
function greet (name) {
 return greetingPrefix + name + greetingSuffix;

560 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

}
2. Save the new JavaScript library.

It is important to remember where the JavaScript library is located; you have to reference the package path
when you import the library.

3. Activate your new library in the repository so that it is available for import by other JavaScript applications.

9.4 Using the Server-Side JavaScript APIs

SAP HANA Extended Application Services (SAP HANA XS) provides a set of server-side JavaScript application
programming interfaces (API) that enable you to configure your applications to interact with SAP HANA.

The SAP HANA XS JavaScript Reference lists all the functions that are available for use when programing
interaction between your application and SAP HANA. For example, you can use the database API to invoke SQL
statements from inside your application, or access details of the current HTTP request for SAP HANA data with
the request-processing API.SAP HANA XS includes the following set of server-side JavaScript APIs:

XS JavaScript Application Programming Interfaces

API Description

Database Enables access to the SAP HANA by means of SQL statements. For example, you can open a
connection to commit or rollback changes in SAP HANA, to prepare stored procedures (or SQL
statements) for execution or to return details of a result set or a result set's metadata.

Outbound connectivity Enables outbound access to a defined HTTP destination that provides services which an applica
tion can use. For example, you can read the connection details for an HTTP destination, request
data, and set details of the response body. You can also set up an SMTP connection for use by
outgoing multipart e-mails.

Request processing Enables access to the context of the current HTTP request, for example, for read requests and
write responses. You can use the functions provided by this API to manipulate the content of the
request and the response.

Session Enables access to the SAP HANA XS session, for example, to determine the language used in the
session or if a user has the privileges required to run an application.

Job Schedule Enables access to the job-scheduling interface which allows you to define and trigger recurring
tasks that run in the background. The XS jobs API allows you to add and remove schedules from
jobs.

Security Enables access to the $.security.crypto namespace and the classes AntiVirus and
Store, which provide tools that allow you to configure a secure store, set up anti-virus scans,
and generate hashes..

Trace Enables access to the various trace levels you can use to generate and log information about ap
plication activity. You can view trace files in the diagnosis Files tab of the SAP HANA studio's
Administration perspective.

Utilities Enables access to utilities that you can use to parse XML and manipulate Zip archives, for exam
ple, to zip and unzip files, add and remove entries from Zip archives, and encrypt Zip archives
with password protection.

XS Data Services Provides access to a library of JavaScript utilities, which can be used to enable server-side Java
Script applications to consume data models that are defined using Core Data Services.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 561

API Description

XS Procedures Provides access to a library of JavaScript utilities, which can be used to enable server-side Java
Script applications to call SAP HANA stored procedures as if the procedures were JavaScript
functions.

 Restriction
XSProc is intended only for use with database connections made with the old $.db API. It
is not recommended to use XSProc with $.hdb connections. For $.hdb connections, use
$hdb.loadProcedure instead.

Database API

The SAP HANA XS Database API ($.hdb) provides tools that enable simple and convenient access to the
database.

 Caution
The $.hdb namespace is intended as a replacement for the older $.db namespace. Since different
database connections are used for the $.hdb and $.db APIs, avoid using both APIs in a single http-
request, for example, to update the same tables as this can lead to problems, including deadlocks.

You can use the Database API for the following operations

● $.hdb.Connection
Establish a connection to the SAP HANA database

● $.hdb.ProcedureResult
Represents the result of a stored procedure call to the SAP HANA database

● $.hdb.ResultSet
Represents the result of a database query

The following example shows how to use the database API to connect to the SAP HANA database, commit
some changes, and end the current transaction.

 Note
By default, auto-commit mode is disabled, which means that all database changes must be explicitly
committed.

var connection = $.hdb.getConnection(); connection.executeUpdate('UPDATE "DB_EXAMPLE"."ICECREAM" SET QUANTITY=? WHERE
FLAVOR=?', 9, 'CHOCOLATE'); connection.commit();

The following example of usage of the SAP HANA XS database API shows how to establish a connection with
SAP HANA and return a result set from the specified procedure call. The example code assumes that a
procedure exists with the following signature:

PROCEDURE 'DB_EXAMPLE'.icecream.shop::sell(IN flavor VARCHAR,

562 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

 IN quantity INTEGER,
 IN payment DECIMAL, OUT change DECIMAL)

Note that the result can be accessed as if it were a JSON object with a structure similar to the following
example: {change: 1.50, $resultSets:[....]} .

 Tip
$resultSets is not enumerable; it does not show up in a for-each loop.

var fnSell = connection.loadProcedure('DB_EXAMPLE', 'icecream.shop::sell'); var result = fnSell('CHOCOLATE', 3, 30.0);
// value of output parameter 'change'
var change = result['change'];
// array of $.hdb.ResultSet returned by the stored procedure
var resultSets = result['$resultSets'];
// iterate over all output parameters.
var params;
for (var outputParam in result) {
 params += outputParam + ' ';
}

Outbound API

The Outbound API ($.net) provides tools that you can use to perform the following actions:

● $.net.SMTPConnection
For sending $.net.Mail objects by means of an SMTP connection

● $.net.Mail
For constructing and sending multipart e-mails

● $.net.http
HTTP(s) client (and request) classes for outbound connectivity and an HTTP(s) destination class that hold
metadata, for example: host, port, useSSL.

The following example shows how to use the $.net.SMTPConnection class to send e-mail objects
($.net.Mail) by means of an SMTP connection object:

subscribers = ["kofi@sap.com", "kwaku@sap.com"]; smtpConnection = new SMTPConnection();
var mail = new $.net.Mail({ sender: "manager@sap.com",
 subject: "Promotion Notice",
 subjectEncoding: "UTF-8",
 parts: [new $.net.Mail.Part({
 type: $.net.Mail.Part.TYPE_TEXT,
 contentType: "text/html",
 encoding: "UTF-8"
 })]
 });
for (var i = 0; i < subscribers.length; ++i) {
 mail.to = subscribers[i];
 mail.parts[0].text = "Dear " + subscribers[i].split("@")[0] + ", \
 you have been promoted. Congratulations!";
 smtpConnection.send(mail);
} smtpConnection.close();

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 563

The following example shows how to use the $.net.Mail class to create an e-mail from an XS JavaScript
object and send it to the named recipients:

 Note
If mandatory information is missing or an error occurs during the send operation, the mail.send() call
fails and returns an error.

var mail = new $.net.Mail({ sender: {address: "sender@sap.com"},
 to: [{ name: "John Doe", address: "john.doe@sap.com", nameEncoding: "US-
ASCII"}, \
 {name: "Jane Doe", address: "jane.doe@sap.com"}],
 cc: ["cc1@sap.com", {address: "cc2@sap.com"}],
 bcc: [{ name: "Jonnie Doe", address: "jonnie.doe@sap.com"}],
 subject: "subject",
 subjectEncoding: "UTF-8",
 parts: [new $.net.Mail.Part({
 type: $.net.Mail.Part.TYPE_TEXT,
 text: "The body of the mail.",
 contentType: "text/plain",
 encoding: "UTF-8",
 })]
});
var returnValue = mail.send();
var response = "MessageId = " + returnValue.messageId + ", final reply = " +
returnValue.finalReply;
$.response.status = $.net.http.OK;
$.response.contentType = "text/html"; $.response.setBody(response);

The following example of server-side JavaScript shows how to use the outbound API to get (read) an HTTP
destination. You can also set the contents of the response, for example, to include details of the header, body,
and any cookies. For HTTPs connections you need to maintain a certificate (CA or explicit server certificate) in
a Trust Store; you use the certificate to check the connection against.

var dest = $.net.http.readDestination("inject", "ipsec"); var client = new $.net.http.Client();
var req = new $.web.WebRequest($.net.http.GET, "");
client.request(req, dest);
var response = client.getResponse();
var co = [], he = [];
for(var c in response.cookies) {
 co.push(response.cookies[c]);
}
for(var c in response.headers) {
 he.push(response.headers[c]);
}
var body = undefined;
if(response.body)
 var body = response.body.asString();
$.response.contentType = "application/json";

 Tip
You define the HTTP destination in a text file using keyword=value pairs. You must activate the HTTP
destination in the SAP HANA repository. After activation, you can view details of the HTTP destination in
the SAP HANA XS Administration tool.

564 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

Request-Processing API

The Request-Processing API ($.web) provides access to the body of HTTP request and response entities. For
example, you can use the following classes:

● $.web.Body
Represents the body of an HTTP request entity and provides access to the data included in the body of the
HTTP request entity

● $.web.EntityList
Represents a list of request or response entities; the EntityList holds WebEntityRequest or
WebEntityResponse objects.

● $.web.TupelList
Represents a list of name-value pairs. The TupelList is a container that provides tuples for cookies,
headers, and parameters. A “tuple” is a JavaScript object with the properties “name” and “value”.

● $.web.WebRequest
Enables access to the client HTTP request currently being processed

● $.web.WebResponse
Enables access to the client HTTP response currently being processed for the corresponding request
object (

● $.web.WebEntityRequest
Represents an HTTP request entity and provides access to the entity's metadata and (body) content.

● $.web.WebEntityResponse
Represents the HTTP response currently being populated

The following example shows how to use the request-processing API to display the message “Hello World” in a
browser.

$.response.contentType = "text/plain"; $.response.setBody("Hello, World !");

In the following example, you can see how to use the request-processing API to get the value of parameters
describing the name and vendor ID of a delivery unit (DU) and return the result set in JSON-compliant form.

var duName = $.request.parameters.get("du_name"); var duVendor = $.request.parameters.get("du_vendor");
result = {
 content_id : contentId.toString()
};
$.response.status = $.net.http.OK;
$.response.contentType = 'application/json';
$.response.setBody(JSON.stringify(result));

In the following example of use of the request-processing API, we show how to access to the request's meta
data (and body) and, in addition, how to set and send the response.

if($.request.method === $.net.http.GET) { // get query parameter named id
 var qpId = $.request.parameters.get("id");

 // handle request for the given id parameter...
 var result = handleRequest(qpId);

 // send response
 $.response.contentType = "plain/test";
 $.response.setBody("result: " + result);

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 565

 $.response.status = $.net.http.OK;
} else {
 // unsupported method
 $.response.status = $.net.http.INTERNAL_SERVER_ERROR;
}

Session API

Enables access to the SAP HANA XS session, for example, to determine the language used in the session or
check if a user has the privileges required to run an application.

You can use the XS JavaScript $.session API to request and check information about the currently open
sessions. For example, you can find out the name of a user who is currently logged on to the database or get
the session-specific security token. The $.session API also enables you to check if a user has sufficient
privileges to call an application. The following example checks if the user has the execute privilege that is
required to run an application. If the check reveals that the user does not have the required privilege, an error
message is generated indicating the name of the missing privilege.

if (!$.session.hasAppPrivilege("sap.xse.test::Execute")) { $.response.setBody("Privilege sap.xse.test::Execute is missing");
 $.response.status = $.net.http.INTERNAL_SERVER_ERROR; }

Job Schedule API

In SAP HANA XS, a scheduled job is created by means of an .xsjob file, a design-time file you commit to (and
activate in) the SAP HANA repository. The .xsjob file can be used to define recurring tasks that run in the
background; the Job Schedule API allows developers to add and remove schedules from such jobs.

The Job Schedule API provides the following tools:

● Job
$.jobs.Job represents a scheduled XS job

● JobLog
$.jobs.JobLog provide access to the log entries of a scheduled job

● JobSchedules
$.jobs.JobSchedules enables control of an XS job's schedules.

 Note
It is not possible to call the $.request and $.response objects as part of an XS job.

The XS jobs API $.jobs.Job enables you to add schedules to (and remove schedules from) jobs defined in
an .xsjob file.

The following example of server-side JavaScript shows how to use the Job Schedule API to add a schedule to a
existing job and delete a schedule from an existing job.

var myjob = new $.jobs.Job({uri:"myJob.xsjob", sqlcc:"sqlcc/otheruser.xssqlcc"});

566 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

 // add schedule to a job
var id = myjob.schedules.add({
 description: "Added at runtime, run every 10 minutes",
 xscron: "* * * * * */10 0",
 parameter: {
 a: "c"
 }
});
// delete a schedule from a job
myjob.schedules.delete({id: id});

If the XS job file referred to in the URI is not in the same package as the XS JavaScript or SQLScript function
being called, you must add the full package path to the XS job file specified in the URI illustrated in line 1 of the
example above, for example, </path/to/package.>MyXSjob.xsjob.

 Note
The path specified in </path/to/package.> can be either absolute or relative.

In addition, the SQL connection defined in sqlcc/otheruser.xssqlcc is used to modify the job; it is not
used to execute the job specified in myJob.xsjob.

To understand the cron-like syntax required by the xscron job scheduler, use the following examples:

● 2013 * * fri 12 0 0
Run the job every Friday in 2013 at 12:00.

● * * 3:-2 * 12:14 0 0

Run every hour between 12:00 and 14:00 every day between the third and second-to-last day of the month.
● * * * -1.sun 9 0 0

Run the job on the last Sunday of every month at 09:00.

Security API

The SAP HANA XS JavaScript security API $.security includes the $.security.crypto namespace and
the following classes:

● $.security.AntiVirus
Scan data with a supported external anti-virus engine

● $.security.Store
Store data securely in name-value form

The $.security.crypto namespace includes methods (for example, md5(), sha1(), and sha256()) that
enable you to compute an MD5 or SHA1/256 hash (or HMAC-MD5, HMAC-SHA1, and HMAC-SHA256).

The AntiVirus class includes a method scan() that enables you to set up a scan instance using one of the
supported anti-virus engines. The Store class enables you to set up a secure store for an SAP HANA XS
application; the secure store can be used to store sensitive information either at the application level
(store()) or per user (storeForUser()).

The following code example shows how to use the SAP HANA XS virus-scan interface (VSI) to scan a specific
object type: a Microsoft Word document.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 567

 Note
For more information about which antivirus engines SAP HANA supports, see SAP Note 786179.

var data = //Some data to be checked var av = new $.security.AntiVirus();
//AV scan data as Word document av.scan(data, "myDocument.docx");

The following code example shows how to set up a simple scan for data uploads using the SAP HANA XS virus-
scan interface.

//scan a buffer with own "upload" profile var av = new $.security.AntiVirus("upload"); av.scan(buffer);

The SAP HANA XS $.security.Store API can be used to store data safely and securely in name-value form.
The security API enables you to define a secure store (in a design-time artifact) for each application and refer
to this design time object in the application coding.

 Note
The design-time secure store is a file with the file extension “.xssecurestore”, for example,
localStore.xssecurestore; the secure-store file must include only the following mandatory content:
{}.

SAP HANA XS looks after the encryption and decryption of data and also ensures the persistency of the data.
For the stored data, you can choose between the following visibility options:

● Application-wide data visibility
Use store(<parameters>) to ensure that all users of the corresponding application have access to one
secure store where they can share the same data and can decrypt or encrypt data, for example, passwords
for a remote system.

● Application-wide data visibility but with user-specific stores separation
Use storeForUser(<parameters>) to ensures that each user of the corresponding application has a
separate container to securely store personal, encrypted data, for example, credit card numbers or
personal-information-number (PIN) codes; the encrypted data can only be decrypted by the owner of the
secure store; the user who encrypted it.

function store() { var config = {
 name: “foo”,
 value: “bar”
 };
 var aStore = new $.security.Store("localStore.xssecurestore");
 aStore.store(config);
}
function read() {
 var config = {
 name: “foo”
 };
 try {
 var store = new $.security.Store("localStore.xssecurestore");
 var value = store.read(config);
 }
 catch(ex) {
 //do some error handling
 }

568 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

 }

Trace API

Enables access to the various trace levels you can use to generate and log information about application
activity. The specified error message is written to the appropriate trace file.

$.trace.error("This is an error message")

You can set the following trace levels:

● $.trace.debug(message)
Writes the string defined in (message) to the application trace with debug level

● $.trace.error(message)
Writes the string defined in (message) to the application trace with error level

● $.trace.fatal(message)
Writes the string defined in (message) to the application trace with fatal level

● $.trace.info(message)
Writes the string defined in (message) to the application trace with info level

● $.trace.warning(message)
Writes the string defined in (message) to the application trace with warning level

 Note
If tracing is enable, messages generated by the $.trace API are logged in the SAP HANA trace file
xsengine_<host>_<Instance>_<#>.trc on the SAP HANA server, for example, in
<installation_path>/<SID>/HDB<nn>/<hostname>/trace. Trace messages with severity status
“warning”, “error” and “fatal” are also written to a similarly named alert file, for example,
xsengine_alert_<host>.trc.

Utilities API

The SAP HANA XS JavaScript Utilities API includes the $.util namespace, which contains the following
classes

● $.util.SAXParser
Tools for parsing XML content (for example, strings, array buffers, and the content of Web response body
objects)

● $.util.Zip
Compression tools for building, modifying, extracting, and encrypting archives

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 569

With the XS JavaScript Utilities API$.util.SAXParser class, you can create a new parser object and parse
the XML content of an XMLstring, an XML array buffer, or a $.web.Body object. The following example shows
how to use the XML parsing capabilities of the $.util.SAXParser class:

 Note
You can stop, reset, and resume a parsing operation. If the content to be parsed does not contain XML, the
parser throws an error.

var parser = new $.util.SAXParser(); var xml = "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"yes\"?>\n\
 <!-- this is a note -->\n\
 <note noteName='NoteName'>\n\
 <to>To</to>\n\
 <from>From</from>\n\
 <heading>Note heading</heading>\n\
 <body>Note body</body>\n\
 <note>\n";
var startElementHandlerConcat = "";
var endElementHandlerConcat = "";
var characterDataHandlerConcat = "";
parser.startElementHandler = function(name, atts) {
 startElementHandlerConcat += name;
 if (name === "note") {
 startElementHandlerConcat += " noteName = '" + atts.noteName + "'";
 }
 startElementHandlerConcat += "\n";
};
parser.endElementHandler = function(name) {
 endElementHandlerConcat += name + "\n";
};
parser.characterDataHandler = function(s) {
 characterDataHandlerConcat += s;
};
parser.parse(xml); ...

The following code snippet shows how to use the $.util.SAXParser tools to parse the content of a
$.web.Body object.

var body = $.request.body var parser = new $.util.SAXParser()
//... set handlers parser.parse(body);

The following encodings are supported:

● UTF-8 (default)
● UTF-16
● US-ASCII

The SAP HANA XS JavaScript Utilities API also includes the$.util.Zip tool, which enables you to perform a
series of actions on Zip archives, for example:

● Compress files into (zip) and extract files from (unzip) a Zip archive
● Add new entries to, update existing entries in, and remove entries from a Zip archive
● Encrypt Zip archives with password protection

The following code illustrates a simple usage of the Zip tool:

var zip = new $.util.Zip("myPassword");

570 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

 zip["entry.txt"] = "Two fish are in a tank. One turns to the other and asks 'How
do you drive this thing?'";
$.response.status = $.net.http.OK;
$.response.contentType = "application/zip";
$.response.headers.set("Content-Disposition", "attachment; filename =
Encrypted.zip"); $.response.setBody(zip.asArrayBuffer());

The following code snippets show how to use the $.util.Zip tools to work with Zip file content, for example,
by adding, updating, extracting, and deleting entries. When modeling folder hierarchies, the Zip object behaves
like an associative array; the entry names are the keys (the full paths to the indicated files). In the following
example, we add an entry to a Zip file:

 Note
“zip["entry1"]” is equivalent to “zip.entry1”.

var zip = new $.util.Zip(); zip["entry1"] = "old entry";

In the following example, we update an entry in a Zip file:

var zip = new $.util.Zip(); zip["entry1"] = "new entry";

In the following example, we extract an entry from a Zip file: if the entry does not exist, this returns undefined.

var zip = new $.util.Zip(); var content = zip["entry1"];

In the following example, we delete an entry from a Zip file: if the entry does not exist, nothing happens.

var zip = new $.util.Zip(); delete zip["entry1"];

 Note
There is a restriction on the amount of uncompressed data that can be extracted from a Zip archive using
the XS JS utilities API.

When using the XS JS utilities API to extract data from a Zip archive, the maximum amount of uncompressed
data allowed during the extraction process is defined with the parameter
max_uncompressed_size_in_bytes, which you can set in the zip section of the xsengine.ini
configuration file for a given SAP HANA system. If the zip section does not already exist, you must create it
and add the parameter to it, for example, using the SAP HANA Administration Console in SAP HANA studio. If
the parameter max_uncompressed_size_in_bytes is not set, a default value is assumed. The default value
is the value assigned to the property max_runtime_bytes in section jsvm section of the xsengine.ini file.

You can deactivate the global check on the amount of uncompressed data. If the global system
parametermax_uncompressed_size_in_bytes is set to -1, no check is performed on the amount of
uncompressed data generated by an extraction process using the Utilities API, unless there is a specific user
limitation in the XS JavaScript code, for example, with the maxUncompressedSizeInBytes parameter.

With the $.util.Zip class or the $.util.compression namespace, you can use the property
maxUncompressedSizeInBytes to override the global setting and reduce the amount of uncompressed data
allowed.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 571

 Note
Note that the parameter max_uncompressed_size_in_bytes cannot be used to increase the amount of
uncompressed data allowed beyond the value specified in the global setting.

XS Data Services API

SAP HANA XS Data Services (XSDS) is a collection of tools that includes a native client for Core Data Services
(CDS) and a query builder for SAP HANA Extended Application Services (SAP HANA XS) JavaScript. The XSDS
API provides a high-level abstraction of the database API ($.db, $.hdb) and gives access to SAP HANA
artifacts such as CDS entities or stored procedures. XSDS enables server-side JavaScript applications to
consume data models that are defined using Core Data Services more efficiently.

The following example shows how to import a CDS entity and how to update a given entity instance in XSDS
managed mode.

// import CDS client library var XSDS = $.import("sap.hana.xs.libs.dbutils", "xsds");
// import CDS entity
var MyEntity = XSDS.$importEntity("cds.namespace", "cds_context.cds_entity");
// retrieve entity instance
var instance = MyEntity.$get({ id: 69 });
// update instance
instance.stringProp = "new value";
instance.intProp++;
instance.assocProp.dateProp = new Date();
// persist changes
instance.$save();

The following example shows how to query the database using CDS model data in XSDS unmanaged mode.

// import CDS client library var XSDS = $.import("sap.hana.xs.libs.dbutils", "xsds");
// import CDS entity
var MyEntity = XSDS.$importEntity("cds.namespace", "cds_context.cds_entity");
// build query
var query = MyEntity.$query();
var projection = query.$project({
 stringProp: true,
aliasProp: "aliasName",
 assocProp: { dateProp: true }
});
var filter = query.$where({ stringProp: { $like: "A%" } });
// retrieve result
var result = projection.$execute();
// process result
for (var i = 0; i < result.length; i++) {
 var diff = result[i].assocProp.dateProp – Date.now();
 // ...
}

572 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

XS Procedures API

SAP HANA XS Procedures is a library of JavaScript tools which enable you to call SAP HANA stored procedures
from server-side JavaScript (XS JS) as if the stored procedures were native JavaScript functions.

 Restriction
XSProc is intended only for use with database connections made with the old $.db API. It is not
recommended to use XSProc with $.hdb connections. For $.hdb connections, use
$hdb.loadProcedure instead.

The following example shows how to consume a stored procedure using the XS Procedures API.

// import XS Procedures library var XSProc = $.import("sap.hana.xs.libs.dbutils", "procedures");
// set a schema where temporary tables can be created for passing table-valued
parameters to the procedure
XSProc.setTempSchema($.session.getUsername().toUpperCase());
// load the procedure
var proc = XSProc.procedure("schema", "namespace", "procedureName”);
// call the procedure
var result = proc(1, [{col1: 0, col2:1}, {col1: 1, col2:2}]);
// result is a JavaScript object

Related Information

SAP HANA XS JavaScript API Reference
Maintaining HTTP Destinations [page 118]
XS Job File Keyword Options [page 606]
SAP Note SAP Note 786179

9.4.1 Tutorial: Use the XSJS Outbound API

The application package you put together in this tutorial includes all the artifacts you need to enable your
server-side JavaScript application to use the Outbound Connectivity API to request and obtain data via HTTP
from a service running on a remote host.

Prerequisites

Since the artifacts required to get the JavaScript application up and running are stored in the repository, it is
assumed that you have already performed the following tasks:

● Create a development workspace in the SAP HANA repository
● Create a project in the workspace

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 573

http://help.sap.com/hana/SAP_HANA_XS_JavaScript_Reference_en/index.html
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/SAP Note 786179

● Share the new project
● The HTTPDestViewer SAP HANA user role

Context

SAP HANA Extended Application Services (SAP HANA XS) includes a server-side JavaScript API that enables
outbound access to a defined HTTP destination. The HTTP destination provides services which an application
can use, for example, to read live data. In this tutorial, you create a JavaScript application that queries financial
services to display the latest stock values. The financial services are available on a remote server, whose details
are specified in an HTTP destination configuration.

Procedure

1. Create a package for the SAP HANA XS application that will use the HTTP destination you define in this
tutorial.
For example, create a package called testApp. Make sure you can write to the schema where you create
the new application.
a. Start the SAP HANA studio and open the SAP HANA Development perspective.
b. In the SAP HANA Systems view, right-click the node in the package hierarchy where you want to create

the new package and, in the pop-up menu that displays, choose Packages...
c. In the New Package dialog that displays, enter the details of the new package (testApp) that you want

to add and click OK.
2. Define the details of the HTTP destination.

You define the details of an HTTP destination in a configuration file that requires a specific syntax. The
configuration file containing the details of the HTTP destination must have the file
extension .xshttpdest.

 Caution
Place the HTTP destination configuration in the same package as the application that uses it. An
application cannot reference an HTTP destination configuration that is located in another application
package.

a. Create a plain-text file called yahoo.xshttpdest and open it in a text editor.

You can use the file-creation wizard in the Project Explorer view to create this file, for example, New
Other XS HTTP Destination Configuration .

b. Enter the following code in the new file yahoo.xshttpdest.

host = "download.finance.yahoo.com"; port = 80;
description = "my stock-price checker";
useSSL = false;
pathPrefix = "/d/quotes.csv?f=a";
authType = none;
useProxy = false;
proxyHost = "";

574 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

proxyPort = 0; timeout = 0;

c. Save and activate the file.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the
repository.

3. View the activated HTTP destination.
You can use the SAP HANA XS Administration Tool to check the contents of an HTTP destination
configuration.

 Note
To make changes to the HTTP Destination configuration, you must use a text editor, save the changes
and reactivate the file.

a. Open a Web browser.
b. Start the SAP HANA XS Administration Tool.

The SAP HANA XS Administration Tool tool is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/admin/.

 Note
Access to details of HTTP destinations in the SAP HANA XS Administration Tool requires the
credentials of an authenticated database user and one of the following SAP HANA roles:
○ HTTPDestViewer
○ HTTPDestAdministrator

c. In the XS Artifact Administration screen, expand the nodes in the Application Objects tree to locate the
application testApp.

d. Choose yahoo.xshttpdest to display details of the HTTP destination .
e. Check the details displayed and modify if required.

4. Create a server-side JavaScript application that uses the HTTP destination you have defined.
The XSJS file must have the file extension .xsjs, for example, sapStock.xsjs.

 Caution
You must place the XSJS application and the HTTP destination configuration it references in the same
application package. An application cannot use an HTTP destination configuration that is located in
another application package.

a. Create a plain-text file called sapStock.xsjs and open it in a text editor.
b. Enter the following code in the new file sapStock.xsjs.

In this example, you define the following:
○ A variable (<stock>) that defines the name of the stock, whose value you want to check, for

example SAP.DE
○ A variable (<amount>) that defines the number of stocks you want to check, for example, 100
○ A variable (<dest>) that retrieves metadata defined for the specified HTTP(S) destination, for

example: host, port, useSSL...

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 575

○ A variable (<client>) that creates the client for the outbound connection
○ A variable (<req>) that enables you to add details to the request URL
○ A variable (<res>) that calculates the value of the stock/amount
○ The format and content of the response body displayed in the browser

var stock = $.request.parameters.get("stock"); var amount = $.request.parameters.get("amount");
var dest = $.net.http.readDestination("testApp", "yahoo");
var client = new $.net.http.Client();
var req = new $.web.WebRequest($.net.http.GET, "&s=" + stock);
client.request(req, dest);
var response = client.getResponse();
var co = [], he = [];
for(var c in response.cookies) {
 co.push(response.cookies[c]);
}
for(var c in response.headers) {
 he.push(response.headers[c]);
}
var body = undefined;
if(response.body)
 var body = response.body.asString();
$.response.contentType = "application/json";
var res = parseInt(response.body.asString()) * amount; $.response.setBody(amount + " of your " + stock + " are worth: " + res);

c. Save and activate the file.
5. Call the service provided by the application sapStock.xsjs.

a. Open a Web browser.
b. Enter the URL that calls your sapStock.xsjs application.

http://<XS_Webserver>:80<SAPHANA_InstanceNr>/testApp/sapStock.xsjs?
amount=100&stock=SAP.DE
○ <XS_Webserver>

Name of the system hosting the Web server for the SAP HANA XS instance where your
sapStock.xsjs application is located.

○ <SAPHANA_InstanceNr>
Number of the SAP HANA instance where the SAP HANA XS Web server is running, for example,
00

576 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

6. Change the details specified in the URL used to run the application.

You can enter different values for the parameters &amount and &stock in the URL:

○ amount=250
Change the number of stocks to check from 100 to 250

○ &stock=SAP.DE
Change the name of stock to check from SAP.DE to MCRO.L

Related Information

Maintaining HTTP Destinations [page 118]
SAP HANA XS JavaScript API Reference

9.4.2 Tutorial: Call an XS Procedure with Table-Value
Arguments

You can use the XS Procedures library to call stored procedures as if they were JavaScript functions.

Prerequisites

● The delivery unit HANA_XS_DBUTILS contains the XS procedures library. The content is available in the
package sap.hana.xs.libs.dbutils.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 577

http://help.sap.com/hana/SAP_HANA_XS_JavaScript_API_Reference_en/index.html

 Restriction
XSProc is intended only for use with database connections made with the old $.db API. It is not
recommended to use XSProc with $.hdb connections. For $.hdb connections, use
$hdb.loadProcedure instead.

● Create a new (or use an existing) development workspace in the SAP HANA repository.
● Create a new (or use an existing) shared project in the workspace.
● Create a new (or use an existing) stored procedure.

This tutorial refers to the stored procedure get_product_sales_price, which is included in the
demonstration content provided with the SAP HANA Interactive Education (SHINE) delivery unit (DU). The
SHINE DU is available for download in the SAP Software Download Center.

 Note
Access to the SAP Software Download Center is only available to SAP customers and requires logon
credentials.

Context

You can call stored procedures by using the contents of the XS Procedures library as if they were JavaScript
functions. For example, the library allows you to pass arguments as a JavaScript object to a stored procedure
that expects table arguments; XS Procedures manages the creation and use of the temporary tables needed to
pass arguments to a table-valued procedure. You can use the functions provided with the XS procedures library
to enable programmatic access to stored procedures in the SAP HANA database from an XS JavaScript
service; the access is provided by binding the stored procedure to a JavaScript function. The result of the call to
the bound function is a JavaScript object, whose properties are the outbound parameters of the procedure.

Procedure

1. Import the XS procedures library.
In your server-side (XS) JavaScript code, ensure that the XS procedures are made available.

var XSProc = $.import("sap.hana.xs.libs.dbutils", "procedures");

2. Specify a schema where temporary tables can be created and filled with the values that are passed as
arguments to the stored procedure.
XS procedures use temporary tables to pass table-valued parameters. As a user of XS procedures you
must specify the name of a schema where these temporary tables reside, for example, a user's own
schema.

578 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

 Note
The application code using XS procedures must ensure that the necessary privileges have been
granted to enable the creation and update of (and selection from) temporary tables in the specified
schema.

XSProc.setTempSchema($.session.getUsername().toUpperCase());

3. Bind the stored procedure to a JavaScript function.
This step creates one or more JavaScript functions which can later be used to call the stored procedure.
You can also define functions which map your call arguments to the parameters of the stored procedure.

 var createPurchaseOrder = XSProc.procedure("SAP_HANA_DEMO",
"sap.hana.democontent.epm.Procedures", "poCreate", {connection: conn});

 Note
XS procedures uses the connection {connection: conn} passed in a configuration object as a
parameter. If no connection object is passed, the XS procedure library opens a separate connection for
the call and closes the connection after the call completes.

4. Call the procedure.
Use the imported procedure like a normal JavaScript function using JavaScript object argument lists.

var result = createPurchaseOrder([{ "PURCHASEORDERID": '0300009001',
 "HISTORY.CREATEDBY": '0000000044',
 "HISTORY.CREATEDAT": new Date(),
 "HISTORY.CHANGEDBY": '0000000044',
 "HISTORY.CHANGEDAT": new Date()
}]);

Table-valued input arguments are passed to the stored procedure using a Javascript array that
corresponds to the rows of the table containing the values to pass. The row objects should contain the
properties of the name of the columns. Skipped columns are filled with NULL; properties without a same-
named column are ignored.

 Example

var XSProc = $.import("sap.hana.xs.libs.dbutils", "procedures"); XSProc.setTempSchema($.session.getUsername().toUpperCase());
var conn = $.db.getConnection();
var createPurchaseOrder = XSProc.procedure(
 "SAP_HANA_DEMO", "sap.hana.democontent.epm.Procedures",
 "poCreate", {connection: conn}
);
var result = createPurchaseOrder([{
 "PURCHASEORDERID": '0300009001',
 "HISTORY.CREATEDBY": '0000000044',
 "HISTORY.CREATEDAT": new Date(),
 "HISTORY.CHANGEDBY": '0000000044',
 "HISTORY.CHANGEDAT": new Date()
}]);
if (result && result.ERROR.length > 0) {
 $.response.setBody(result.ERROR.length + " errors occurred.");
} else {
 $.response.setBody("no error occurred");
}

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 579

Related Information

http://help.sap.com/hana/SAP_HANA_XS_DBUTILS_JavaScript_API_Reference_en/index.html

9.4.2.1 Accessing Stored Procedures from XS JavaScript

Call stored SAP HANA procedures from XS server-side JavaScript (XSJS) and process the results of the calls in
JavaScript.

XS procedures provide a convenient way to call stored procedures in SAP HANA from XS server-side Javascript
(XSJS) and process the results of the calls in JavaScript. The XS procedures library extends the features
already available with the SAP HANA XS JavaScript database API. Using XS procedures, SAP HANA stored
procedures can be considered as simple XS JavaScript functions for anyone developing XS JavaScript services.

For example, where an SAP HANA stored procedure uses a table as input parameter and a table as output, XS
Procedures use JavaScript objects (or an array of objects) which can be passed to the procedure. Similarly, the
result of the procedure call is provided as an array of JavaScript objects. You declare a stored procedure as an
XS JavaScript function and then call the stored procedure as if it were a JavaScript function delivering a
JavaScript object.

To use a stored procedure as an XS JavaScript function, the following steps are required:

Step Action Description

1 Import the XS Procedures library Provide access to the XS procedures

 Restriction
XSProc is intended only for use with database connec
tions made with the old $.db API. It is not recom
mended to use XSProc with $.hdb connections. For
$.hdb connections, use $hdb.loadProcedure in
stead.

2 Specify a schema for temporary tables Temporary tables are used to store the JavaScript arguments
provided for the function.

3 Import the procedure Create the XS JavaScript functions, which can later be used
to call the stored SAP HANA procedure. You can define func
tions which map your call arguments to the parameters of
the stored procedure.

580 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

http://help.sap.com/hana/SAP_HANA_XS_DBUTILS_JavaScript_API_Reference_en/index.html

Step Action Description

4 Call the procedure Use the imported procedure in the same way as any normal
JavaScript function, for example, using JavaScript object ar
gument lists.

 Restriction
XSProc is intended only for use with database connec
tions made with the old $.db API. For $.hdb connec
tions, use $hdb.loadProcedure instead.

Use Arguments that Reference an Exist
ing Table [page 581]

(Optional) Write the results or a procedure call into a physical
table and pass the table as an argument rather than a Java
Script object

Use Table-Valued Arguments [page 582] (Optional) Call a procedure with arguments stored as values
in a table

Calling Procedures with Arguments that Reference an Existing Table

If you want to pass a table as an argument rather than a JavaScript object, you must specify the name of the
table (as a string) in the call statement as well as the name of the schema where the table is located. The
following example shows how to reference the table rating_table.

getRating('schema.rating_table', 3);

The SAP HANA database enables you to materialize the results of a procedure call; that is, to write the results
into a physical table using the WITH OVERVIEW expression. In the WITH OVERVIEW expression, you pass a
string value to the output parameter position that contains the result you want to materialize. The value
returned is not the rating itself, but a reference to the table into which the results have been written. The results
of the procedure call can now be retrieved from the specified table, in this example, OUTPUT_TABLE.

var resCall = getRating(rating, 3, "schema.output_table"); // {"RESULT": [{"variable":"RESULT","table":"\"SCHEMA\".\"OUTPUT_TABLE\""}]}

The WITH OVERVIEW expression also allows you to write the results of a procedure into a global temporary
table; that is, a table that is truncated at session close. To use XS Procedures to write the results of a procedure
into a global temporary table, you do not specify a name for the result table; you include an empty string (''),
as illustrated in the following example:

var conn = $.db.getConnection(); resCall = getRating(rating, 3, '', conn); // {"RESULT": [{"variable":"RESULT","table":"\"SCHEMA\".
\"RESULT_5270ECB8F7061B7EE10000000A379516\""}]}

The returned reference points to a global temporary table which can be queried for the procedure results with
the same connection.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 581

 Note
To ensure access to the global temporary table, it is necessary to specify the connection object conn.

Using Table-Valued Arguments

XS Procedures enables you to call procedures with arguments stored as values in a table, as illustrated in the
following example. Table-valued input arguments are passed using a JavaScript array that corresponds to the
rows of the table to pass. These row objects must contain properties that correspond to the name of the
columns. Skipped columns are filled with NULL, and properties that do not correspond to an identically named
column are ignored.

var XSProc = $.import("sap.hana.xs.libs.dbutils", "procedures"); XSProc.setTempSchema($.session.getUsername().toUpperCase());
var conn = $.db.getConnection();
var createPurchaseOrder = XSProc.procedure("SAP_HANA_DEMO",
 "sap.hana.democontent.epm.Procedures::poCreate", {
 connection: conn
 });
var result = createPurchaseOrder([{
 "PURCHASEORDERID": '0300009001',
 "HISTORY.CREATEDBY": '0000000044',
 "HISTORY.CREATEDAT": new Date(),
 "HISTORY.CHANGEDBY": '0000000044',
 "HISTORY.CHANGEDAT": new Date()
}]);
if (result && result.ERROR.length > 0) {
 $.response.setBody(result.ERROR.length + " errors occurred.");
} else {
 $.response.setBody("no error occurred");
}

Related Information

SAP HANA XS JavaScript API Reference

9.4.3 Tutorial: Query a CDS Entity using XS Data Services

You can use the SAP HANA XS Data Services (XSDS) library to query CDS entities as if they were JavaScript
objects.

Prerequisites

● A new (or an existing) development workspace in the SAP HANA repository

582 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

http://help.sap.com/hana/SAP_HANA_XS_JavaScript_API_Reference_en/index.html

● A new (or an existing) shared project in the workspace
● This tutorial refers to CDS models that are included in the demonstration content provided with the SAP

HANA Interactive Education (SHINE) delivery unit (DU). The SHINE DU is available for download in the SAP
Software Download Center.

 Note
Access to the SAP Software Download Center is only available to SAP customers and requires logon
credentials.

Context

XS Data Service queries are used to build incrementally advanced queries against data models that are defined
with Core Data Service. Query results are arrays of nested JSON objects that correspond to instances of CDS
entities and their associations.

Procedure

1. Import the XS DS library and reference it through a variable.

var XSDS = $.import("sap.hana.xs.libs.dbutils", "xsds");

2. Import the CDS entities you want to query.
As a first step to working with CDS entities in SAP HANA XS JavaScript, you must import the CDS entities.
The following example shows how to import to the entities as defined in the SHINE demonstration content:

var soItem = XSDS.$importEntity("sap.hana.democontent.epm.data",
"EPM.SO.Item"); var soHeader = XSDS.$importEntity("sap.hana.democontent.epm.data",
"EPM.SO.Header", {
 items: {
 $association: {
 $entity: soItem,
 $viaBacklink: "SALESORDERID"
 }
 }
});

In addition to the basic CDS definition, the code in the example above shows how to extend the definition of
soHeader by an explicit association called items. This is done by using the keyword $association
together with the referenced entity (soItem) and the type of the association. In this case, $viaBacklink
is used as type, that is; the items of soHeader stored in soItem have a foreign key SALESORDERID
referencing the key of the soHeader table.

3. Add a query.
A general query related to an entity is built by calling the $query() method of the entity constructor.

var qOrders = soHeader.$query();

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 583

4. Refine the query if required.
You can refine the query object as necessary to suit your use case. For example, you can specify that the
query returns only the first three (3) entries.

qOrders = qOrders.$limit(3);

5. Execute the query.
Use the $execute method to run the query.

var result = qOrders.$execute();

result contains an array of unmanaged values, each of which represents a row of the Post entity.

 Note
In the refinements to the query, you must call $execute to send the query to the database.

6. Specify the fields the query should return.
Use the $project() method to create a query which specifies the fields the query should return. For
example, you can return the IDs of the sales orders together with the net amount of the header and the net
amount of all items.

var qOrderAndItemTitles = qOrders.$project({ SALESORDERID: true,
 NETAMOUNT: "TotalNet",
 items: {
 NETAMOUNT: true
 }
});

The list of projected fields is a JavaScript object, where desired fields are marked by either true or a String
literal such as "TotalNet" denoting an alias name. The query illustrated in the example above would
return the following result.

[{ "SALESORDERID": "0500000236",
 "TotalNet": 273.9,
 "items": {
 "NETAMOUNT": 29.9
 }
}, {
 "SALESORDERID": "0500000236",
 "TotalNet": 273.9,
 "items": {
 "NETAMOUNT": 102
 }
}, {
 "SALESORDERID": "0500000236",
 "TotalNet": 273.9,
 "items": {
 "NETAMOUNT": 55
 }
}]

The actual database query automatically JOINs all required tables based on the associations involved. In
the example above, the generated SQL looks like the following:

584 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

 Note
In the following code example, the names of table are abbreviated to help readability.

SELECT "t0"."SALESORDERID" AS "t0.SALESORDERID",
 "t0"."NETAMOUNT" AS "t0.NETAMOUNT",
 "t0.items"."NETAMOUNT" AS "t0.items.NETAMOUNT"
FROM "Header" "t0"
LEFT OUTER JOIN "Item" "t0.items"
 ON "t0"."SALESORDERID"="t0.items"."SALESORDERID"
LIMIT 10

7. Use conditions to restrict the result set.
You can use the $where() method to set conditions that restrict the result set returned by the query. The
following example show how to select all items with a net amount equal to a half (or more) of their order's
net amount.

var qSelectedOrders = qOrderAndItemTitles.$where(soHeader.items.NETAMOUNT.
$div(soHeader.NETAMOUNT).$gt(0.5))

References to fields and associations such as items are available as properties of the entity constructor
function, for example, soHeader.items. As in the case with projections, XSDS generates all required
JOINs for associations referenced by the conditions automatically, even if they are not part of the current
projection. To build more complex expressions in $where, see the SAP HANA XS Data Services JavaScript
API Reference.

8. Refine the query conditions to a specific matching pattern.
With the $matching() method you can specify conditional expressions using the JSON-like syntax of the
$find() and $findAll() methods. The following code example shows how to further refine the selection
returned by the result set, for example, to accept only those items with a EUR currency and quantity
greater than 2.

qSelectedOrders = qSelectedOrders.$matching({ items: {
 CURRENCY: 'EUR',
 QUANTITY: {
 $gt: 2
 }
 }
});

 Tip
Unlike $findAll(), $matching() returns an unmanaged plain value and ignores all unpersistent
changes to any entity instances.

9. Add arbitrary values to the result set.
You can add arbitrary calculated values to the result set by using the $addFields() method. The
following example shows how to query the days passed since the delivery of the sales item.

qSelectedOrders = qSelectedOrders.$addFields({ "DaysAgo": soHeader.items.DELIVERYDATE.$prefixOp("DAYS_BETWEEN", new
Date())
});

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 585

 Note
This query refers to the SQL function DAYS_BETWEEN, which is not a pre-defined function in XSDS.
Instead, you can use the generic operator $prefixOp, which can be used for any SQL function f, for
example, with the syntax f(arg1, … argN).

10. Use aggregations with calculated fields.
Aggregations are a special case of calculated fields that combine the $addFields() operator with an
additional $aggregate() method. The following example shows to retrieve the average quantity of the
first 100 sales order IDs together with their product ID.

var qAverageQuantity = soItem.$query().$limit(100).$aggregate({ SALESORDERID: true,
 PRODUCTID: true
}).$addFields({
 averageQuantity: soItem.QUANTITY.$avg()
});

 Tip
In SQL terms, the $aggregate() operator creates a GROUP BY expression for the specified paths and
automatically projects the result.

If you need to use a more restrictive projection, you can replace true with false in the $aggregate call,
as illustrated in the following example, which removes the sales order IDs for the result set.

var qAverageQuantity = soItem.$query().$limit(100).$aggregate({ SALESORDERID: false,
 PRODUCTID: true
}).$addFields({
 averageQuantity: soItem.QUANTITY.$avg()
});

11. Specify the order of the result set.
To specify the order in the result set, you can use the $order() method, including a number of order
criteria as arguments. Each order criteria contains a property “by” with an expression that defines the
desired order. Optionally each criterion can contain a flag $desc to require a descending order and a
$nullsLast flag. The following example uses two criteria to display the result set first in descending order
by the net amount in the header and then ascending order by the item net amount.

qSelectedOrders = qSelectedOrders.$order({$by: soHeader.NETAMOUNT,
$desc:true}, {$by: soHeader.items.NETAMOUNT});

12. Remove duplicates entries from the result set.
The $distinct operator removes duplicates from the result set. The following example shows how to
display the set of all the currencies used in the sales orders.

var qAllCurrencies = soHeader.$query().$project({CURRENCY: true}).$distinct();

Related Information

SAP HANA XS JavaScript API Reference

586 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

http://help.sap.com/hana/SAP_HANA_XS_JavaScript_API_Reference_en/index.html

SAP HANA XS DB Utilities JavaScript API Reference
Creating the Persistence Model in Core Data Services [page 159]

9.4.4 Tutorial: Update a CDS Entity Using XS Data Services

You can use the XS Data Services (XSDS) library to update CDS entities as if they were JavaScript objects.

Prerequisites

● A new (or an existing) development workspace in the SAP HANA repository
● A new (or an existing) shared project in the workspace
● This tutorial refers to CDS models that are included in the demonstration content provided with the SAP

HANA Interactive Education (SHINE) delivery unit (DU). The SHINE DU is available for download in the SAP
Software Download Center.

 Note
Access to the SAP Software Download Center is only available to SAP customers and requires logon
credentials.

Context

For read-write scenarios, SAP HANA XS Data Services (XSDS) offer a managed mode with automatic entity
management and additional consistency guarantees. Managed mode shares CDS imports and transaction
handling with unmanaged mode but uses a different set of methods provided by the entity constructors.

Procedure

1. Import the XSDS library and the CDS entities into your application.
In your entity import, specify a SAP HANA sequence that is used to generate the required keys.

// import XSDS client library var XSDS = $.import("sap.hana.xs.libs.dbutils", "xsds");
// import CDS entity as XSDS entity
var SOItem = XSDS.$importEntity("sap.hana.democontent.epm.data",
"EPM.SO.Item");
var SOHeader = XSDS.$importEntity("sap.hana.democontent.epm.data",
"EPM.SO.Header", {
 SALESORDERID: { $key: "\"SAP_HANA_DEMO\".
\"sap.hana.democontent.epm.data::salesOrderId\"" },
 items: {
 $association: {
 $entity: SOItem,

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 587

http://help.sap.com/hana/SAP_HANA_XS_DBUTILS_JavaScript_API_Reference_en/index.html

 $viaBacklink: "SALESORDERID"
 }
 }
});

2. Retrieve an existing entity instance in managed mode.
The $importEntity() function returns a constructor for the entity imported. To retrieve an existing
entity instance in managed mode, run a query using the entity's key (for example, using $get), or retrieve
multiple instances that satisfy a given condition.

var order = SOHeader.$get({ SALESORDERID:
"0500000236" }); // by key var orders = SOHeader.$findAll({ LIFECYCLESTATUS: "N", TAXAMOUNT: { $gt:
17000 } }); // by filter

3. Use or modify entity instances as required.
Iinstances of CDS entities are regular JavaScript objects which you can use and modify as required.

order.CURRENCY = "USD"; order.HISTORY.CHANGEDAT = new Date();
4. Ensure all changes are made persistent in the database.

Calling $save() flushes in-memory changes of the instance and all its reachable associated instances to
the database. Only entity instances that have been changed will be updated in the database.

order.$save();

5. Use the entity constructor to create a new CDS instance.
The key is generated automatically by the SAP HANA sequence supplied during the import of the XSDS
library and the CDS entities into your application.

var newOrder = new SoHeader ({ TAXAMOUNT": 69.04,
 NETAMOUNT": 190.9,
 GROSSAMOUNT": 325.94,
 CURRENCY": "EUR",
 PARTNERID": "0100000044",
 DELIVERYSTATUS: "I",
 BILLINGSTATUS: "I",
 LIFECYCLESTATUS: "N",
 HISTORY": {
 CHANGEDAT": Date.now(),
 CHANGEDBY": "0000000033",
 CREATEDAT": Date.now(),
 CREATEDBY": "0000000033"
 },
 items: []
});
newOrder.$save();

6. Discard any unwanted instances of a CDS entity.
Retrieved CDS entities are stored in the entity manager cache and subject to general JavaScript garbage-
collection rules. Use the $discard() function to permanently delete an entity instance from the database.

order.$discard();

7. Control how associations in a CDS document are followed.
By default, all associations are resolved, that is; association properties store a reference to their associated
entity instance. For heavily connected data, this may lead to very large data structures in memory. A “lazy”

588 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

association will delay the retrieval of the associated instances until the property is actually accessed. The
first time the lazy association is accessed, the associated entity is queried from the entity cache or the
database. After a lazy association has been resolved, it becomes a normal property of its parent entity
instance.

To control how associations are being followed, declare “lazy” associations during the import operation, as
shown in the following example:

var SOHeader = XSDS.$importEntity("sap.hana.democontent.epm.data",
"EPM.SO.Header", { SALESORDERID: { $key: "\"SAP_HANA_DEMO\".
\"sap.hana.democontent.epm.data::salesOrderId\"" },
 items: {
 $association: {
 $entity: SOItem,
 $viaBacklink: "SALESORDERID",
 $lazy: true
 }
 }
});

The retrieval of “Lazy” associations is handled transparently by XSDS.

var order = SOHeader.$get({ SALESORDERID: "0500000236" }); // retrieve
single SO header if (order.DELIVERYSTATUS != "D")
 return; // return without loading SO items from database
for (var item in order.items) { … }; // now retrieve items for processing

8. Manually control transactions for your application where necessary.
Every SAP HANA XS application using XSDS is associated with one database connection and one
transaction. This is also true if the application uses multiple imports of the XSDS library; XS libraries are
single instances by default. Entities retrieved from the database are stored in the entity manager cache,
and any updates need to be saved explicitly to the database. By default, database saves will automatically
commit the changes to the database. However, you can manually control transactions for your application
by disabling auto-commit and calling $commit and $rollback explicitly, as illustrated in the following
example.

// disable auto-commit XSDS.Transaction.$setAutoCommit(false);
var order = SOHeader.$get({ SALESORDERID: "0500000236" });
order.CURRENCY = "JPY";
order.$save(); // persist update
XSDS.Transaction.$commit(); // commit change
order.CURRENCY = "EUR";
order.$save(); // persist update
order.HISTORY.CHANGEDAT = new Date();
order.$save(); // persist update
XSDS.Transaction.$rollback(); // database rollback
// order #0500000236 now has currency JPY again

Related Information

SAP HANA XS JavaScript API Reference
SAP HANA XS DB Utilities JavaScript API Reference
Creating the Persistence Model in Core Data Services [page 159]

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 589

http://help.sap.com/hana/SAP_HANA_XS_JavaScript_API_Reference_en/index.html
http://help.sap.com/hana/SAP_HANA_XS_DBUTILS_JavaScript_API_Reference_en/index.html

9.5 Creating Custom XS SQL Connections

In SAP HANA Extended Application Services (SAP HANA XS), you use the SQL-connection configuration file to
configure a connection to the database; the connection enables the execution of SQL statements from inside a
server-side JavaScript application with credentials that are different to the credentials of the requesting user.

In cases where it is necessary to execute SQL statements from inside your server-side JavaScript application
with credentials that are different to the credentials of the requesting user, SAP HANA XS enables you to define
and use a specific configuration for individual SQL connections. Each connection configuration has a unique
name, for example, Registration or AdminConn, which is generated from the name of the corresponding
connection-configuration file (Registration.xssqlcc or AdminConn.xssqlcc) on activation in the
repository. The administrator can assign specific, individual database users to this configuration, and you can
use the configuration name to reference the unique SQL connection configuration from inside your JavaScript
application code.

The following code example shows how to use the XS SQL connection AdminConn.xssqlcc.

function test() { var body;
 var conn;
 $.response.status = $.net.http.OK;
 try { conn = $.db.getConnection("sap.hana.sqlcon::AdminConn"); var pStmt = conn.prepareStatement("select CURRENT_USER from dummy");
 var rs = pStmt.executeQuery();
 if (rs.next()) {
 body = rs.getNString(1);
 }
 rs.close();
 pStmt.close();
 } catch (e) {
 body = "Error: exception caught";
 $.response.status = $.net.http.BAD_REQUEST;
 }
 if (conn) {
 conn.close();
 }
 $.response.setBody(body);
} test();

To use the SQL connection from your application during runtime, you must bind the SQL connection
configuration to a registered database user and assign the user the appropriate permissions, for example, by
assigning a pre-defined role to the user. To maintain this user mapping, SAP HANA XS provides the Web-based
SAP HANA XS Administration Tool. When the run-time status of the XSSQLCC artifact is set to active, SAP
HANA generates a new auto user (with the name XSSQLCC_AUTO_USER_[...]. The new user is granted the
permissions specified in a role, which can be assigned using the parameter role_for_auto_user - either in
the design-time artifact or the run-time configuration.

 Note
Access to the tools provided by the XS Administration Tool requires the privileges granted by one or more
specific user roles.

590 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

To use the SAP HANA XS Administration Tool to view or maintain an XS SQL connection configuration, you need
the privileges granted by the following SAP HANA XS roles:

● sap.hana.xs.admin.roles::SQLCCViewer
Required to display the available SQL Connections and the current user mapping

● sap.hana.xs.admin.roles::SQLCCAdministrator
Required to modify details of the user mapping; the SQLCCAdministrator role includes the role
SQLCCViewer.

Troubleshooting Tips

If you are having problems implementing the XS SQL connection feature using an .xssqlcc configuration,
check the following points:

● User permissions
Make sure that you grant the necessary user the activated role (for example,
sap.hana.xs.admin.roles::SQLCCAdministrator). You can use the developer tools to grant roles (or
privileges), as follows:

 Note
The granting user must have the object privilege EXECUTE on the procedure
GRANT_ACTIVATED_ROLE.

○ SAP HANA studio
In the Systems view of the Administration Console perspective, choose Security Users

○ SAP HANA Web-based Development Workbench
In the Security tool, expand the Users node, choose the target (or add a new) user, and use the Granted
roles tab.

○ XS Administration Tools
In the SQL Connection Details tab of the XSSQLCC artifact's run time configuration. To edit user/role
details here, you will need the role SQLCCAdministrator and, in addition, the appropriate administrator
permissions required to set up (and assign roles to) a database user.

● File location
Make sure that the SQL-role configuration file (.xssqlcc) you create is located in the same package as
the application that references it.

● Logon dependencies
If your application is using form-based logon (configured in the application's .xsaccess file), make sure
the libxsauthenticator library is present and specified in the list of trusted libraries displayed in the
SAP HANA studio's Administration Console perspective (Administration Configuration Tab
xsengine.ini application_container application_list . If the libxsauthenticator library is not in the
list of authorized libraries, an SAP HANA system administrator must add it.

 Note
If you have to authorize libxsauthenticator, you might also need to refresh the Web page in your
browser the next time you want to access .xssqlcc to display the logon dialog again.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 591

9.5.1 Create an XS SQL Connection Configuration

The .xssqlcc file enables you to establish a database connection that you can use to execute SQL statements
from inside your server-side JavaScript application with credentials that are different to the credentials of the
requesting user.

Prerequisites

● Access to an SAP HANA system
● Access to a development workspace and a shared project.
● The application package structure in which to save the artifacts you create and maintain in this task
● The SQL connection configuration file (.xssqlcc) you create must be located in the same package as the

application that uses it.
● You have the privileges granted in the following SAP HANA user roles:

○ sap.hana.xs.admin.roles::SQLCCViewer
○ sap.hana.xs.admin.roles::SQLCCAdministrator

 Note
This tutorial combines tasks that are typically performed by two different roles: the application developer
and the database administrator. The developer would not normally require the privileges of the SAP HANA
administrator or those granted by the SQLCCAdministrator user role.

Context

In this tutorial, you learn how to configure an SQL connection that enables you to execute SQL statements from
inside your server-side JavaScript application with credentials that are different to the credentials of the user
requesting the XSJS service.

To configure and use an XS SQL configuration connection file, perform the following steps:

Procedure

1. Start the SAP HANA studio.
a. Open the SAP HANA Development perspective.
b. Open the Project Explorer view.

2. Create the application descriptors for the new application.
a. In the SAP HANA studio's Project Explorer view, right-click the folder acme.com.xs.testApp1 where

you want to create the new (.xsapp) file.

b. In the context-sensitive popup menu, choose New Other... .

592 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

c. In the Select a Wizard dialog, choose SAP HANA Application Development XS Application
Descriptor File

The file-creation wizard adds the required file extension .xsapp automatically.
d. Choose Finish.

 Tip
Files with names that begin with the period (.), for example, .xsapp or .xsaccess, are sometimes
not visible in the Project Explorer. To enable the display of all files in the Project Explorer view, use
the Customize View Available Customization option and clear all check boxes.

e. Activate the application descriptor file.

In the SAP HANA studio's Project Explorer view, right-click the new (.xsapp) file and choose Team
Activate from the context-sensitive popup menu.

3. Create the application access file for the new application.
a. In the SAP HANA studio, open the SAP HANA Development perspective.
b. In the Project Explorer view, right-click the folder where you want to create the new (.xsaccess) file.

c. In the context-sensitive popup menu, choose New Other... .

d. In the Select a Wizard dialog, choose SAP HANA Application Development XS Application Access
File
The file-creation wizard adds the required file extension .xsaccess automatically and enables direct
editing of the file.

 Note
The default name for the core application-access file is .xsaccess and cannot be changed.

e. Choose Finish.
f. Check the contents of the .xsaccess file.

{ "exposed" : true,
 "authentication" : { "method" : "Form"},
 "prevent_xsrf" : true }

The entries in the .xsaccess file ensure the following:

○ Application data can be exposed to client requests
○ Username and password credentials are required for logon authentication
○ Protection against cross-site, request-forgery attacks is enabled

g. Activate the application access file.
In the SAP HANA studio's Project Explorer view, right-click the new (.xsaccess) file and choose

Team Activate from the context-sensitive popup menu.
4. Create the XS SQL connection configuration file.

Browse to the folder in your project workspace where you want to create the new SQL connection
configuration file and perform the following steps:

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 593

 Note
The SQL connection configuration file (.xssqlcc) you create must be located in the same package as
the application that references it.

a. Right-click the folder where you want to save the XS SQL connection configuration file and choose
New Other... Application Development XS SQL Connection Configuration File in the context-

sensitive popup menu.
b. Enter the name of the SQL connection configuration file in the File Name box, for example,

AdminConn.

 Tip
The file-creation wizard adds the required file extension automatically (for example,
AdminConn.xssqlcc) and, if appropriate, enables direct editing of the new file in the
corresponding editor.

c. Choose Finish to save the changes and commit the new XS SQL connection configuration file in the
repository.

5. Configure the details of the SQL connection that the XS JavaScript service will use.
a. Define the required connection details.

{ "description" : "Admin SQL connection"
 "role_for_auto_user" : "com.acme.roles::JobAdministrator" }

 Tip
Replace the package path (com.acme.roles) and role name (JobAdministrator) with the
suitable ones for your case.

b. Activate the XS SQL connection configuration file.
In the SAP HANA studio's Project Explorer view, right-click the new (.xssqlcc) file and choose

Team Activate from the context-sensitive popup menu.

 Note

Activating the SQL connection configuration file AdminConn.xssqlcc creates a catalog object with the
name sap.hana.xs.testApp1::AdminConn, which can be referenced in a XS JavaScript application.

6. Write an XS JavaScript application that calls the XS SQL connection configuration.
To create a preconfigured SQL connection using the configuration object AdminConn, for example, from
inside your JavaScript application code, you must reference the object using the object name with the full
package path, as illustrated in the following code example.

function test() { var body;
 var conn;
 $.response.status = $.net.http.OK;
 try { conn = $.db.getConnection("sap.hana.xs.testApp1::AdminConn"); var pStmt = conn.prepareStatement("select CURRENT_USER from dummy");
 var rs = pStmt.executeQuery();

594 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

 if (rs.next()) {
 body = rs.getNString(1);
 }
 rs.close();
 pStmt.close();
 } catch (e) {
 body = "Error: exception caught";
 $.response.status = $.net.http.BAD_REQUEST;
 }
 if (conn) {
 conn.close();
 }
 $.response.setBody(body);
} test();

7. Save the changes to the artifacts you have created.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository.
You do not need to explicitly commit it again.

8. Activate the changes in the repository.
a. In the Project Explorer view, locate and right-click the package containing the new XS SQL and XS

JavaScript artifacts.

b. In the context-sensitive pop-up menu, choose Team Activate .
9. Bind the SQL connection configuration to a user.

You use the Web-based SAP HANA XS Administration Tool to configure the runtime elements of the XS SQL
connection.
a. Start the SAP HANA XS Administration Tool.

The SAP HANA XS Administration Tool is available on the SAP HANA XS Web server at the following
URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/admin/.

 Note
Access to details of HTTP destinations in the SAP HANA XS Administration Tool requires the
credentials of an authenticated database user and one of the following SAP HANA roles:
○ sap.hana.xs.admin.roles::SQLCCViewer
○ sap.hana.xs.admin.roles::SQLCCAdministrator

b. In the XS Applications tab, expand the nodes in the application tree to locate the application testApp.
c. Choose AdminConn to display details of the XS SQL configuration connection .

10. Set the run-time status of the XS SQL connection configuration.

You must change the status run-time status of the XS SQL connection configuration to Active. This run-
time status can only be changed by an administrator. When the run-time status of the XSSQL connection
configuration is set to active, SAP HANA automatically generates a new user
(XSSQLCC_AUTO_USER_[...]) for the XSSQL connection configuration object and assigns the role
defined in role_for_auto_user to the new auto-generated user.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 595

Related Information

The SQL Connection Configuration File [page 596]
SQL Connection Configuration Syntax [page 597]

9.5.1.1 The SQL Connection Configuration File

The SQL-connection configuration file specifies the details of a connection to the database that enables the
execution of SQL statements from inside a server-side (XS) JavaScript application with credentials that are
different to the credentials of the requesting user.

If you want to create an SQL connection configuration, you must create the configuration as a flat file and save
the file with the suffix .xssqlcc, for example, MYSQLconnection.xssqlcc.

 Tip
If you are using the SAP HANA studio to create artifacts in the SAP HANA Repository, the file creation
wizard adds the required file extension automatically and enables direct editing of the file.

The new configuration file must be located in the same package as the application that references it.

 Note
An SQL connection configuration can only be accessed from an SAP HANA XS JavaScript application
(.xsjs) file that is in the same package as the SQL connection configuration itself. Neither subpackages
nor sibling packages are allowed to access an SQL connection configuration.

The following example shows the composition and structure of a configuration file AdminConn.xssqlcc for an
SAP HANA XS SQL connection called AdminConn. On activation of the SQL connection configuration file
AdminConn.xssqlcc (for example, in the package sap.hana.sqlcon), an SQL connection configuration
with the name sap.hana.sqlcon::AdminConn is created, which can be referenced in your JavaScript
application. In the xssqlcc artifact, you can set the following values:

● description
A short description of the scope of the xs sql connection configuration

● role_for_auto_user
The name of the role to be assigned to the auto user (if required) that the XSSQL connection uses, and the
absolute path to the package where the role definition is located in the SAP HANA repository.

sap.hana.sqlcon::AdminConn.xssqlcc

{ "description" : "Admin SQL connection"
 "role_for_auto_user" : "com.acme.roles::JobAdministrator" }

The run-time status of an XSSQL connection configuration is inactive by default; the run-time status can only
be activated by an SAP HANA user with administrator privileges, for example, using the SAP HANA XS
Administration Tools. When the run-time status of the XSSQLCC artifact is set to active, SAP HANA generates a
new auto user (with the name XSSQLCC_AUTO_USER_[...]) and assigns the role defined in
role_for_auto_user to the new auto-generated user.

596 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

 Tip
In the SAP HANA XS Administration Tools, it is possible to view and edit both the the user's parameters and
the role's definition.

To create a preconfigured SQL connection using the configuration object AdminConn, for example, from inside
your JavaScript application code, you reference the object using the object name and full package path, as
illustrated in the following code example.

{ conn = $.db.getConnection("sap.hana.sqlcon::AdminConn"); }

Related Information

SQL Connection Configuration Syntax [page 597]
Create an XS SQL Connection Configuration [page 592]

9.5.1.2 SQL Connection Configuration Syntax

The XS SQL connection-configuration file .xssqlcc uses pairs of keywords and values to define the SQL
connection.

 Example
The XS SQL Connection Configuration (.xssqlcc) File

 Code Syntax

{ "description" : "Admin SQL connection" "role_for_auto_user" : "com.acme.roles::JobAdministrator" }

description

A short description of the selected SQL connection configuration.

 Sample Code

"description" : "Admin SQL connection"

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 597

role_for_auto_user

The name of (and package path to) the role assigned to be assigned to the new user that is automatically
generated on activation of the XSSQL connection-configuration artifact.

 Sample Code

"role_for_auto_user" : "com.acme.roles::JobAdministrator"

Activating the design-time XSSQL connection configuration generates a run-time object whose status is
“inactive” by default; the run-time status must be set to active by an SAP HANA user with administrator
privileges, for example, using the SAP HANA XS Administration Tools. When the run-time status of the
XSSQLCC artifact is set to active, SAP HANA generates a new auto user (with the name
XSSQLCC_AUTO_USER_[...]) and assigns the role defined in role_for_auto_user to the new auto-
generated user.

Related Information

The SQL Connection Configuration File [page 596]
Create an XS SQL Connection Configuration [page 592]

9.6 Setting the Connection Language in SAP HANA XS

HTTP requests can define the language used for communication in the HTTP header Accept-Language. This
header contains a prioritized list of languages (defined in the Browser) that a user is willing to accept. SAP
HANA XS uses the language with the highest priority to set the language for the requested connection. The
language setting is passed to the database as the language to be used for the database connection, too.

In server-side JavaScript, the session object's language property enables you to define the language an
application should use for a requested connection. For example, your client JavaScript code could include the
following string:

var application_language = $.session.language = 'de';

 Note
Use the language-code format specified in BCP 47 to set the session language, for example: “en-US” (US
English), “de-AT” (Austrian German), “fr-CA” (Canadian French).

As a client-side framework running in the JavaScript sandbox, the SAP UI5 library is not aware of the Accept-
Language header in the HTTP request. Since the current language setting for SAPUI5 is almost never the
same as the language specified in the SAP HANA XS server-side framework, SAPUI5 clients could have
problems relating to text displayed in the wrong language or numbers and dates formatted incorrectly.

598 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

The application developer can inform the SAP UI5 client about the current server-side language setting, for
example, by adding an entry to the <script> tag in the SAPUI5 HTML page, as illustrated in the following
examples:

● Script tag parameter:

<script id="sap-ui-bootstrap" type="text/javascript"
 src="/sap/ui5/1/resources/sap-ui-core.js"
 data-sap-ui-theme="sap_goldreflection"
 data-sap-ui-libs="sap.ui.commons" data-sap-ui-language="de"> </script>

● Global sap-ui-config object:

<script> window["sap-ui-config"] = { "language" : "de" }
</script>
[…]
<script id="sap-ui-bootstrap"
[…] </script>

The sap-ui-config object must be created and filled before the sap-ui-bootstrap script.

It is important to understand that the session starts when a user logs on, and the specified language is
associated with the session. Although the user can start any number of applications in the session, for
example, in multiple Browser tabs, it is not possible to set a different language for individual applications called
in the session,

Setting the Session Language on the Server side

The script tag for the SAPUI5 startup can be generated on the server side, for example, using the
$.session.language property to set the data-sap-ui-language parameter. Applications that have the
SAPUI5 <script> tag in a static HTML page can use this approach, as illustrated in the following example:

<script id="sap-ui-bootstrap" type="text/javascript"
 src="/sap/ui5/1/resources/sap-ui-core.js"
 data-sap-ui-theme="sap_goldreflection"
 data-sap-ui-libs="sap.ui.commons" data-sap-ui-language="$UI5_LANGUAGE$"> </script>

The called XSJS page can be instructed to replace the $UI5_LANGUAGE$ parameter, for example, with the
value stored in $.session.language when loading the static HTML page.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 599

Setting the Session Language with an AJAX Call

You can include an HTTP call in the static HTML page to fetch the correct language from the server using some
server-side JavaScript code, as illustrated in the following example:

<script> var xmlHttp = new XMLHttpRequest(); xmlHttp.open("GET", "getAcceptLanguage.xsjs", false); xmlHttp.send(null);
 window["sap-ui-config"] = {
 "language" : xmlHttp.getResponseHeader("Content-Language")
 }
</script>
<script id="sap-ui-bootstrap"
… </script>

This approach requires an XSJS artifact (for example, getAcceptLanguage.xsjs) that responds to the AJAX
call with the requested language setting, as illustrated in the following example:

$.response.contentType = "text/plain"; $.response.headers.set("Content-Language", $.session.language); $.response.setBody("");

9.7 Scheduling XS Jobs

Scheduled jobs define recurring tasks that run in the background. The JavaScript API $.jobs allows
developers to add and remove schedules from such jobs.

If you want to define a recurring task, one that runs at a scheduled interval, you can specify details of the job in
a .xsjob file. The time schedule is configured using cron-like syntax. You can use the job defined in
an .xsjob file to run an XS Javascript or SQLScript at regular intervals. To create and enable a recurring task
using the xsjob feature, you perform the following high-level tasks:

 Note
The tasks required to set up a scheduled job in SAP HANA XS are performed by two distinct user roles: the
application developer and the SAP HANA administrator. In addition, to maintain details of an XS job in the
SAP HANA XS Administration Tool, the administrator user requires the privileges granted by the role
template sap.hana.xs.admin.roles::JobAdministrator.

Setting up Scheduled Jobs in SAP HANA XS.

Step Task User Role Tool

1 Create the function or script you want to run at
regular intervals

Application developer Text editor

2 Create the job file .xsjob that defines details of
the recurring task

Application developer Text editor

600 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

Step Task User Role Tool

3 Maintain the corresponding runtime configuration
for the xsjob

SAP HANA administrator XS Job Dashboard

4 Enable the job-scheduling feature in SAP HANA
XS

SAP HANA administrator XS Job Dashboard

5 Check the job logs to ensure the job is running ac
cording to schedule.

SAP HANA administrator XS Job Dashboard

Related Information

The XSJob File [page 605]
Tutorial: Schedule an XS Job [page 601]
XS Job File Keyword Options [page 606]

9.7.1 Tutorial: Schedule an XS Job

The xsjob file enables you to run a service (for example, an XS JavaScript or an SQLScript) at a scheduled
interval.

Prerequisites

● You have access to an SAP HANA system.
● You have a role based on the role template sap.hana.xs.admin.roles::JobAdministrator.
● You have a role based on the role template sap.hana.xs.admin.roles::HTTPDestAdministrator.

 Note
This tutorial combines tasks that are typically performed by two different roles: the application developer
and the database administrator. The developer would not normally require the privileges granted to the
sap.hana.xs.admin.roles::JobAdministrator role, the
sap.hana.xs.admin.roles::HTTPDestAdministrator role, or the SAP HANA administrator.

Context

In this tutorial, you learn how to schedule a job that triggers an XS JavaScript application that reads the latest
value of a share price from a public financial service available on the Internet. You also see how to check that
the XS job is working and running on schedule.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 601

To schedule an XS job to trigger an XS JavaScript to run at a specified interval, perform the following steps:

Procedure

1. Create the application package structure that contains the artifacts you create and maintain in this tutorial.
Create a root package called yahoo. You use the new yahoo package to contain the files and artifacts
required to complete this tutorial.

/yahoo/ .xsapp // application descriptor
 yahoo.xsjob // job schedule definition
 yahoo.xshttpdest // HTTP destination details yahoo.xsjs // Script to run on schedule

2. Write the XS JavaScript code that you want to run at the interval defined in an XS job schedule.
The following XS JavaScript connects to a public financial service on the Internet to check and download
the latest prices for stocks and shares.
Create an XS JavaScript file called yahoo.xsjs and add the code shown in the following example:

function readStock(input) { var stock = input.stock;

 var dest = $.net.http.readDestination("yahoo", "yahoo");
 var client = new $.net.http.Client();
 var req = new $.web.WebRequest($.net.http.GET, "/d/quotes.csv?f=a&s=" +
stock);
 client.request(req, dest);
 var response = client.getResponse();
 var stockValue;
 if(response.body)
 stockValue = parseInt(response.body.asString(), 10);
 var sql = "INSERT INTO stock_values VALUES (NOW(), ?)";
 var conn = $.db.getConnection();
 var pstmt = conn.prepareStatement(sql);
 pstmt.setDouble(1, stockValue);
 pstmt.execute();
 conn.commit();
 conn.close();
}

Save and activate the changes in the SAP HANA Repository.

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository, To
explicitly commit a file to the repository, right-click the file (or the project containing the file) and
choose Team Commit from the context-sensitive popup menu.

3. Create an HTTP destination file using the wizard to provide access to the external service (via an outbound
connection).
Since the financial service used in this tutorial is hosted on an external server, you must create an HTTP
destination file, which provides details of the server, for example, the server name and the port to use for
HTTP access.

602 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

 Note
To maintain the runtime configuration details using the Web-based XS Administration Tool you need the
privileges granted in the SAP HANA user role sap.hana.xs.admin.roles::HTTPDestAdministrator.

Create a file called yahoo.xshttpdest and add the following content:

host = "download.finance.yahoo.com"; port = 80;

Save and activate the changes in the SAP HANA Repository.
4. Create the XS job file using the wizard to define the details of the schedule at which the job runs.

The XS job file uses a cron-like syntax to define the schedule at which the XS JavaScript must run. This job
file triggers the script yahoo.xsjs on the 59th second of every minute and provides the name “SAP.DE”
as the parameter for the stock value to check.
Create a file called yahoo.xsjob and add the following code:

{ "description": "Read stock value",
 "action": "yahoo:yahoo.xsjs::readStock",
 "schedules": [
 {
 "description": "Read current stock value",
 "xscron": "* * * * * * 59",
 "parameter": {
 "stock": "SAP.DE"
 }
 }
]
}

Save and activate the changes in the SAP HANA Repository.
5. Maintain the XS job's runtime configuration.

You maintain details of an XS Job's runtime configuration in the XS Job Dashboard.
a. Start the SAP HANA XS Administration Tool.

The SAP HANA XS Administration Tool is available on the SAP HANA XS Web server at the following
URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/admin/.

b. Maintain the details of the XS job.

 Note
To maintain details of an XS job using the Web-based XS Administration Tool you need the
privileges granted in the SAP HANA user role sap.hana.xs.admin.roles::JobAdministrator.

You need to specify the following details:

○ User
The user account in which the job runs, for example, SYSTEM

○ Password
The password required for user, whose account is used to run the job.

○ Locale
The language encoding required for the locale in which the job runs, for example, en_US

○ Start/Stop time

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 603

An optional value to set the period of time during which the job runs. Enter the values using the
syntax used for the SAP HANA data type LocalDate and LocalTime, for example, 2014-11-05
00:30:00 (thirty minutes past midnight on the 5th of November 2014).

○ Active
Enable or disable the job schedule

○ Session timeout
Specify the session timeout for this XSJob in seconds. If you specify a value of 0 (zero) seconds for
the XSJob's session timeout, the XSJob checks if a value is defined for the sessiontimeout key
in the section scheduler of the xsengine.ini file. If no such key exists, the default session
timeout of 900 seconds is used. If you want to define a non-default value for the scheduler's
sessiontimeout key, you must create the key in the scheduler section of the xsengine.ini
file and supply the desired timeout value, for example, 600 seconds.

 Caution
It is not recommended to specify a value of 0 (zero) for the sessiontimeout key; this
disables the session-timeout feature for all jobs started by the scheduler.

c. Save the job.
Choose Save Job to save and activate the changes to the job schedule.

6. Enable the job-scheduling feature in SAP HANA XS.
This step requires the permissions granted to the SAP HANA administrator.

 Note
It is not possible to enable the scheduler for more than one host in a distributed SAP HANA XS
landscape.

a. In the XS Job Dashboard set the Scheduler Enabled toggle button to YES.

Toggling the setting for the Scheduler Enabled button in the XS Job Dashboard changes the value set for
the SAP HANA configuration variable xsengine.ini scheduler enabled , which is set in the
Configuration tab of the SAP HANA studio's Administration perspective.

7. Check the job logs to ensure the XS job is active and running according to the defined schedule.
You can view the xsjob logs in the XS Job Dashboard tab of the SAP HANA XS Administration Tool.

 Note
To maintain details of an XS job using the Web-based XS Administration Tool you need the privileges
granted in the SAP HANA user role sap.hana.xs.admin.roles::JobAdministrator.

If the job does not run at the expected schedule, the information displayed in the xsjob logs includes details
of the error that caused the job to fail.

Related Information

The XS Job File [page 605]
XS Job-File Keyword Options [page 606]

604 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

9.7.1.1 The XS Job File

The .xsjob file defines the details of a task that you want to run (for example, an XS JavaScript or an
SQLScript) at a scheduled interval.

The XS job file uses a cron-like syntax to define the schedule at which the service defined in an XS JavaScript
or SQLScript must run, as you can see in the following example, which runs the specified job (the stock-price
checking service yahoo.xsjs) on the 59th second minute of every minute.

{ "description": "Read stock value",
 "action": "yahoo:yahoo.xsjs::readStock",
 "schedules": [
 {
 "description": "Read current stock value",
 "xscron": "* * * * * * 59",
 "parameter": {
 "stock": "SAP.DE"
 }
 }
] }

When defining the job schedule in the xsjob file, pay particular attention to the entries for the following
keywords:

● action
Text string used to specify the path to the function to be called as part of the job.

"action": "<package_path>:<XSJS_Service>.xsjs::<FunctionName>",

 Note
You can also call SQLScripts using the action keyword.

● description
Text string used to provide context when the XSjob file is displayed in the SAP HANA XS Administration
tool.

● xscron
The schedule for the specified task (defined in the “action” keyword); the schedule is defined using
cron-like syntax.

● parameter
A value to be used during the action operation. In this example, the parameter is the name of the stock
SAP.DE provided as an input for the parameter (stock) defined in the readStock function triggered by
the xsjob action. You can add as many parameters as you like as long as they are mapped to a parameter
in the function itself.

The following examples illustrate how to define an xscron entry including how to use expressions in the
various xscron entries (day, month, hour, minutes,...):

● 2013 * * fri 12 0 0
Every Friday of 2013 at 12:00 hours

● * * 3:-2 * 12:14 0 0
Every hour between 12:00 and 14:00 hours on every day of the month between the third day of the month
and the second-last day.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 605

 Tip
In the day field, third from the left, you can use a negative value to count days backwards from the end
of the month. For example, * * -3 * 9 0 0 means: three days from the end of every month at
09:00.

● * * * * * */5 *
Every five minutes (*/5) and at any point (*) within the specified minute.

 Note
Using the asterisk (*) as a wild card in the seconds field can lead to some unexpected consequences, if
the scheduled job takes less than 59 seconds to complete; namely, the scheduled job restarts on
completion. If the scheduled job is very short (for example, 10 seconds long), it restarts repeatedly until
the specified minute ends.

To prevent short-running jobs from restarting on completion, schedule the job to start at a specific second
in the minute. For example, * * * * * */5 20 indicates that the scheduled job should run every five
minutes and, in addition, at the 20th second in the specified minute.

● * * * -1.sun 9 0 0
Every last Sunday of a month at 09:00 hours

Related Information

XS Job File Keywords [page 606]
Tutorial: Schedule an XS Job [page 601]

9.7.1.2 XS Job File Keyword Options

The XS job file .xsjob uses a number of keywords to define the job that must be run at a scheduled interval.

 Example
The XS Job (.xsjob) File

{ "description": "Read stock value", "action": "yahoo:yahoo.xsjs::readStock", "schedules": [{
 "description": "Read current stock value", "signature_version": 1, "xscron": "* * * * * * 59", "parameter": { "stock": "SAP.DE"
 }
 }
] }

606 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

description

 { "description": "Read stock value", }

The description keyword enables you define a text string used to provide context when the XS job is displayed
for maintenance in the SAP HANA XS Administration Tool. The text string is used to populate the Description
field in the SCHEDULED JOB tab.

action

 { "action": "myapps.finance.yahoo:yahoo.xsjs::readStock",
}

The action keyword enables you to define the function to run as part of the XS job, for example, an XS
JavaScript or an SQLScript. The following syntax is required: “action” :
“<package.path>:<XSJS_Service>.xsjs::<functionName>”.

 Note
If you want to use the action to call an SQLScript, replace the name of the XSJS service in the example, with
the corresponding SQLScript name.

schedules

 { "schedules": [
 {
 "description": "Read current stock value",
 "xscron": "* * * * * * 59",
 "parameter": {
 "stock": "SAP.DE"
 }
 }
] }

The schedules keyword enables you define the details of the XS job you want to run. Use the following
additional keywords to provide the required information:

● description (optional)
Short text string to provide context

● xscron
Uses cron-like syntax to define the schedule at which the job runs

● parameter (optional)

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 607

Defines any values to be used as input parameters by the (XSJS or SQLScript) function called as part of
the job

signature_version

 { "signature_version": 1, }

The signature_version keyword enables you manage the version “signature” of an XS job. You change the XS job
version if, for example, the parameter signature of the job action changes; that is, an XS job accepts more (or
less) parameters, or the types of parameters differ compared with a previous version of an XS job. On
activation in the SAP HANA Repository, the signature of an XS job is compared to the previous one and, if the
job’s signature has changed, any job schedules created at runtime will be deactivated.

 Note
The default value for signature_version is 0 (zero).

Deactivation of any associated runtime job schedules prevents the schedules from silently failing (no
information provided) and enables you to adjust the parameters and reactivate the job schedules as required,
for example, using the enhanced XS JS API for schedules. Schedules defined in a design-time XS Job artifact
are replaced with the schedules defined in the new version of the XS job artifact.

 Tip
Minor numbers (for example, 1.2) are not allowed; the job scheduler interprets “1.2” as “12”.

xscron

 { "schedules": [
 {
 "description": "Read current stock value", "xscron": "* * * * * * 59", "parameter": {
 "stock": "SAP.DE"
 }
 }
] }

The xscron keyword is used in combination with the schedules keyword. The xscron keyword enables you to
define the schedule at which the job runs. As the name suggests, the xscron keyword requires a cron-like
syntax.

The following table explains the order of the fields (*) used in the “xscron” entry of the .xsjob file and lists
the permitted value in each field.

608 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

xscron Syntax in the XS Job File

xscron Field (* from left to right) Meaning and Permitted Value

Year 4-digit, for example, 2013

Month 1 to 12

Day -31 to 31

DayofWeek mon,tue,wed,thu,fri,sat,sun

Hour 0 to 23

Minute 0 to 59

Second 0 to 59

 Note
Using the asterisk (*) as a wild card in the seconds field can lead to some unexpected consequences, if the
scheduled job takes less than 59 seconds to complete; namely, the scheduled job restarts on completion. If
the scheduled job is very short (for example,10 seconds long), it restarts repeatedly until the specified
minute ends.

To prevent short-running jobs from restarting on completion, schedule the job to start at a specific second in
the minute. For example, * * * * * */5 20 indicates that the scheduled job should run every five minutes
and, in addition, at the 20th second in the specified minute. The job starts at precisely 20 seconds into the
specified minute and runs only once.

The following table illustrates the syntax allowed to define expressions in the “xscron” entry of the .xsjob
file.

Expression Where used... Value

* Anywhere Any value

*/a Anywhere Any a-th value

a:b Anywhere Values in range a to b

a:b/c Anywhere Every c-th value between a and b

a.y DayOfWeek On the a-th occurrence of the weekday
y (a = -5 to 5)

a,b,c Anywhere a or b or c

parameter

 { "schedules": [
 {
 "description": "Read current stock value",
 "xscron": "* * * * * * 59", "parameter": {
 "stock": "SAP.DE",
 "share": "BMW.DE"
 }

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 609

 }
] }

The optional parameter keyword is used in combination with the schedules keyword. The parameter keyword
defines values to be used as input parameters by the XSJS function called as part of the job. You can list as
many parameters as you like, separated by a comma (,) and using the JSON-compliant syntax quotations (“”).

9.7.2 Add or Delete a Job Schedule during Runtime

The $.jobs application programming interface (API) enables you to manipulate the schedules for an XS job at
runtime.

Context

You can use the $.jobs.JobSchedules API to add a schedule to (or delete a schedule from) a job defined in
an .xsjob file at runtime.

 Note
Schedules added at runtime are deleted when the .xsjob file is redeployed.

Procedure

1. Create an XS job file using the .xsjob syntax.

 Note
If you have already created this XS job file, for example, in another tutorial, you can skip this step.

Create a file called yahoo.xsjob and add the following code:

{ "description": "Read stock value",
 "action": "yahoo:yahoo.xsjs::readStock",
 "schedules": [
 {
 "description": "Read current stock value",
 "xscron": "* * * * * * 59",
 "parameter": {
 "stock": "SAP.DE"
 }
 }
]
}

Save and activate the changes in the SAP HANA Repository.

610 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

 Note
Saving a file in a shared project automatically commits the saved version of the file to the repository, To
explicitly commit a file to the repository, right-click the file (or the project containing the file) and
choose Team Commit from the context-sensitive popup menu.

2. Create the XS JavaScript (.xsjs) file you want to use to define the automatic scheduling of a job at
runtime.
Name the file schedule.xsjs.

3. Use the $.jobs JavaScript API to add or delete a schedule to a job at runtime.

The following example schedule.xsjs adds a new schedule at runtime for the XS job defined in
yahoo.xsjob, but uses the parameter keyword to change the name of the stock price to be checked.

var myjob = new $.jobs.Job({uri:"yahoo.xsjob"}); var id = myjob.schedules.add({
 description: "Query another stock",
 xscron: "* * * * * * * */10",
 parameter: {
 stock: "APC.DE"
 }
});
// delete a job schedule // myjob.schedules.delete({id: id });

4. Save and activate the changes in the SAP HANA Repository.
5. Call the XS JavaScript service schedule.xsjs to add the new job schedule at runtime.

Related Information

SAP HANA XS JavaScript Reference
XS Job File Keyword Options [page 606]

9.8 Tracing Server-Side JavaScript

The SAP HANA XS server-side JavaScript API provides tracing functions that enable your application to write
predefined messages in the form of application-specific trace output in the xsengine trace files
(xsengine*.trc) according to the trace level you specify, for example, “info”(information) or “error”.

If you use the server-side JavaScript API to enable your application to write trace output, you can choose from
the following trace levels:

● debug
● info
● warning
● error
● fatal

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 611

http://help.sap.com/hana/SAP_HANA_XS_JavaScript_Reference_en/index.html

For example, to enable debug-level tracing for your JavaScript application, include the following code:

$.trace.debug("request path: " + $.request.path);

 Note
You can view the xsengine*.trc trace files in the Diagnosis Files tab page in the Administration
perspective of the SAP HANA studio.

9.8.1 Trace Server-Side JavaScript Applications
The server-side JavaScript API for SAP HANA XS enables you to activate the writing of messages into a trace
file; the following trace levels are available: debug, error, fatal, info, and warning.

Context

By default, applications write messages of severity level error to the xsengine*.trc trace files; you can
increase the trace level manually, for example, to fatal. In SAP HANA XS, the following steps are required to
enable trace output for your server-side JavaScript application:

Procedure

1. Open the SAP HANA studio.
2. In the Systems view, double-click the SAP HANA instance to open the Administration view for the

repository where your server-side JavaScript source files are located.
3. Choose the Trace Configuration view.
4. In the Database Trace screen area, choose Edit Configuration.

The Edit Configuration icon is only visible if you have the required privileges on the selected SAP HANA
system.

612 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

 Note
If the Database Trace screen area is not displayed, check that you are using a version of SAP HANA
studio that is compatible (the same as) with the SAP HANA server where you want to set up tracing.

5. Select the Show All Components checkbox.
6. Enter the partial or full name of your application into the search box.
7. Find the trace matching your application name and choose the trace level you want to use to generate

output.
The application name is the location (package) of the .xsapp file associated with the application you are
tracing. The trace topic is named xsa:<package.path> <appName>.

 Note
To set the trace level, click the cell in the System Trace Level column that corresponds with the
application you want to trace and choose the desired trace level from the drop-down list.

8. Choose Finish to activate the trace level changes.

9.8.2 View XS JavaScript Application Trace Files

The server-side JavaScript API for SAP HANA XS enables you to instruct your JavaScript applications to write
application-specific trace messages in the xsengine*.trc trace files. You can view the trace files in the
Diagnosis Files tab page of the Administration perspective in the SAP HANA studio.

Context

The trace levels “debug”, “error”, “fatal”, “info”, and “warning” are available. To view trace output for your
server-side JavaScript application, perform the following steps:

Procedure

1. Open the SAP HANA studio.
2. In the Systems view, double-click the SAP HANA instance to open the Administration view for the

repository where your server-side JavaScript source files are located.
3. Choose the Diagnosis Files tab page.
4. In the Filter box, enter a string to filter the list of search files displayed, for example, xsengine*.trc.

The timestamp displayed in the Modified column does not always reflect the precise time at which the
trace file was written or most recently modified.

5. Locate the trace file for your SAP HANA XS application and doubleclick the entry to display the contents of
the selected trace-file in a separate tab page.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 613

9.9 Debugging Server-Side JavaScript

SAP HANA XS provides a set of dedicated tools to enable you to debug the XS JavaScript code that you write.
To trigger debugging, you need an XS JavaScript configuration.

Overview

To prepare the system for debugging, you need to perform the following high-level steps:

● Ensure all prerequisites listed below are met.
● Create a debug configuration or choose an existing debug configuration to use.
● Set breakpoints in the file you want to debug.
● Execute XS JavaScript debugging.

To trigger debugging, you need to choose an XS JavaScript configuration; each configuration type represents a
different starting point for debugging an XS JavaScript file. To debug XS JavaScript, you must choose one of
the following types of configuration:

● XS JavaScript
Use to debug a stand-alone XS JavaScript service.

● XS JavaScript: Manual Session
Use to debug an XS JavaScript initiated from any remote client using that specific XS session.

● XS JavaScript: HTML-based
Use to debug an XS JavaScript initiated from HTML.

● XS JavaScript: XS OData-based
Use to debug an XS JavaScript initiated from an XS OData breakout.

 Note
Before you start debugging server-side JavaScript on SAP HANA Extended Application Services (SAP
HANA XS), first check that you have fulfilled the following prerequisites:

● Ensure the delivery unit for SAPHANA XS debugging tools is imported
To import the HANA_XS_BASE.tgz delivery unit (DU) that contains the XS JavaScript debugging tools, in
SAP HANA Studio, choose the option New Import Delivery Unit .

614 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

● Enable debugging on the system level:
1. Ensure the SAP HANA XS Web server is running, and that you have HTTP access to the following URL:

http:<SAPHANA_HOSTNAME>:<PortNumber>:/

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 615

2. Start SAP HANA Studio and open the Administration perspective.

3. In the Configuration tab, add a section called xsengine.ini debugger (if it does not exist) and add
(or set) the following parameter: enabled=true

● Assign the debugging role to your user
SAP HANA XS provides a dedicated debugger user role; the role must be assigned to any user who wants
to start a debugging session for server-side JavaScript in SAP HANA XS.

● Assign the debugging role to another user (optional)
You can grant a user global access to any of your debug sessions or grant access to a debug session that is
flagged with a specified token. You can also restrict access to a debug session to a specified period of time.

 Note
By default, other users do not have the permissions required to access your XS JavaScript debugging
sessions. However, SAP HANA XS enables you to grant access to your debug sessions to other users,
and vice versa.

1. Start SAP HANA Studio and open the Administration perspective.
2. In the Systems view, expand the Security node and double-click the user to whom you want to assign

the debugger role.

616 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

3. In the Granted Roles view, choose the [+] icon and, in the Select Role dialog, enter debugger to search
for the debugger role and choose OK.

 Note
Debugging can also be done in other settings, for example, when a server is cloud-based or when it is a
secured server.

● Debugging with HANA Cloud Platform (HCP) (optional)
Debugging using HCP requires prerequisites to be fulfilled. For more information, see Getting Started in
the SAP HANA Cloud Documentation.

● Debugging using a secure server (optional)
Debugging using a secure server requires specific prerequisites to be fulfilled. For more information,
see Configure SSL for SAP HANA Studio Connections in the SAP HANA Security Guide.

Related Information

Debug Session Access [page 622]
The XSJS Debugger Role [page 621]

9.9.1 Create a Debug Configuration

Context

To create an XS JavaScript debug configuration, do the following:

Procedure

1. Open the Debug perspective.

2. Choose and select Debug Configurations.
3. Choose the debug configuration type you want to debug.

It can be one of the following:
○ XS JavaScript: Use to debug a standalone XS JavaScript service.
○ XS JavaScript: Manual Session : Use to debug an XS JavaScript initiated from any remote client using

that specific XS session.
○ XS JavaScript: HTML-based: Use to debug an XS JavaScript initiated from HTML.
○ XS JavaScript: XS OData-based: Use to debug an XS JavaScript initiated from an XS OData breakout.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 617

 Note
You can use an existing configuration, change it or create a new debug configuration by selecting the
file type to use for debugging, and clicking on the New button.

4. In the General tab, enter a name for the new debug configuration.
5. The external browser is your default debug mode. You can also choose to debug using the internal SAP

HANA Studio.
6. To build the URL, select the file and resource path or add parameters where relevant. Parameters can be

entered using raw text or a table format.
○ When creating a manual session debug configuration, you only need to select the system to debug.
○ If a system is logged off, it will not show in the system dropdown list.

7. You can include stored procedures in your debug configuration which will enable SQL script to be
debugged along with XS JavaScript. If your XS JavaScript code triggers stored procedures, you can set
breakpoints and debug them using the same debug configuration. You do not need to create a separate,
dedicated debug configuration for the stored procedures.

8. For configurations with an Input Parameters tab, select the method, and enter the header and body
information as relevant. Body details can be entered as raw text or in the x-www-form-urlencoded format.

9. Choose Apply.
10. Choose Close to save the configuration for later use or Debug to start debugging.

9.9.2 Execute XS JavaScript Debugging

SAP HANA studio enables you to debug XS JavaScript files, including setting breakpoints and inspecting
variables.

Context

To enable the display of more helpful and verbose information for HTTP 500 exceptions on the SAP HANA XS
Web server, add the parameter developer_mode to the xsengine.ini httpserver section and set it to
true. xsengine.ini is in the Configuration tab of the Administration perspective in SAP HANA studio.

Prerequisites

● Ensure that debugging is enabled on the SAP HANA server.
● You have the debugger role assigned to your user.
● User authentication is enabled. This is required to open the debugging session.

618 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

To start debugging, do the following:

Procedure

1. In a Web browser, run the XS JavaScript source file that you want to debug.
2. Create or choose a debug configuration for debug sessions for a specific SAP HANA installation.

a. Open the Debug view.
b. Choose a debug configuration.

You can also create a new configuration by doing one of the following:

○ From the menu bar, click Run Debug Configuration Run Debug Configurations .

○ Select the file to be debugged and right-click, choose Debug As Debug Configurations .
c. Choose Apply.
d. Choose Close.

3. Set Breakpoints

Set breakpoints in the JavaScript code by double-clicking the left vertical ruler.

4. Run the new debug configuration for your server by choosing and selecting your debug
configuration.
You can also run the debug configuration by doing one of the following:

○ From the menu bar, click Run Debug Configurations , then choose the debug configuration you
want to use.

○ Select the file to be debugged and right-click on it, and then choose Debug As.
○ From Debug Configurations, click the debug configuration you want to use.

○ For an HTML file, select the file to be debugged and right-click on it, then choose Debug As
HTML .

 Note
When using the external debug mode, you can only have one open XS debug session per system. This
is relevant for the following debug configurations:

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 619

○ XS JavaScript
○ XS JavaScript: HTML-based
○ XS JavaScript: XS OData-based

Related Information

Create a Debug Configuration [page 617]

9.9.2.1 The Debug Perspective

SAP HANA studio includes a dedicated debug perspective, which provides the tools needed by a developer who
wants to debug server-side JavaScript code.

Application developers can use the SAP HANA studio's Debug perspective to perform standard debugging
tasks, for example: starting and resuming code execution, stepping through code execution, adding
breakpoints to the code. Developers can also inspect variables and check the validity of expressions. The
following views are available as part of the standard Debug perspective:

● Debug
Displays the stack frame for the suspended or terminated threads for each target you are debugging. Each
thread in your program appears as a node in the tree. You can also see which process is associated with
each target.

● Breakpoints
Displays a list of the breakpoints set in the source file you are currently debugging

● Variables
Displays a list of the variables used in the source file you are currently debugging

● Expressions,
Displays global variables, such as $.request and other SAP HANA XS JavaScript API objects

● Outline
Displays a structural view of the source file you are currently debugging. You can double-click an element
to expand and collapse the contents.

● Source-code editor
SAP HANA studio uses the file extension (for example, .js or .xsjs) of the source file you want to debug
and opens the selected file in the appropriate editor. For example, files with the .js or .xsjs file extension
are displayed in the built-in JavaScript editor.

 Note
Unified Debugger

In the unified debugger, if you choose to include the SQL script layer in the debugging session, you will see
the targets of both the XS JavaScript and SQL script in the debug view.

If a breakpoint is set in the XS JavaScript or in an SQL script procedure, you will see the breakpoints in the
breakpoint view. The debugger will stop at the breakpoints in the relevant XS JavaScript or in the SQL script
as usual. SQL script debugging behavior is the same in the SQL script debugger as it is in the unified

620 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

debugger, with the exception of the call stack behavior. For more information about debugging SQL script
procedures, see Debugging Procedures.

Related Information

Debugging Procedures [page 415]

9.9.2.2 The XSJS Debugger Role

The JavaScript debugger included with SAP HANA Extended Application Services (SAP HANA XS) requires
user authentication to start a debug session. SAP HANA XS includes a dedicated debugger role, which defines
the permissions needed by a developer who wants to debug server-side JavaScript code.

Debugging application code is an essential part of the application-development process. SAP HANA Extended
Application Services (SAP HANA XS) includes a debug perspective, a debug view, and a dedicated debugger
role that must be assigned to any developer who wants to debug XS JavaScript. The debugging role is named
sap.hana.xs.debugger::Debugger and can be assigned to a user (or a role) either with the standard role-
assignment feature included in SAP HANA studio (the Application Privileges tab in the Security area of the
Systems view) or in a design-time, role-configuration file (.hdbrole).

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 621

Since a developer primarily needs to debug his own HTTP calls, the following limitations apply to a debug
session:

● Only authenticated users can start a debug session, for example, by providing a user name and password
when logging in to a debug session

● A user can debug his own sessions.
● A user can debug any session to which access has been explicitly granted, for example, by the owner of the

session.

 Note
It is also possible to use SSL for debugging. If SSL is configured, the server redirects the Web-socket
connect call to the corresponding SSL (secure HTTP) URL, for example, if sent by plain HTTP.

SAP HANA studio includes a graphical user interface (GUI) which you can use to grant access to debug
sessions at both the session level and the user level.

Related Information

Custom Development Role [page 717]

9.9.2.3 Debug Session Access

You can grant other developers access to the debug sessions you use for debugging server-side JavaScript on
SAP HANA XS.

By default, other users are not allowed to access your XSJS debugging sessions. However, SAP HANA XS
provides a tool that enables you to grant access to your debugging sessions to other users, too.

 Note
You can grant a user global access to any of your sessions or grant access to a session that is flagged with a
specified token. You can also restrict access to a debug session to a specified period of time.

The XS Debugging tool is available on the SAP HANA XS Web server at the following URL:
<SAPHANAWebServer>80<SAPHANAinstance>/sap/hana/xs/debugger/.

When you are grant access to your debugging session, the following options are available:

● User Name
The name of the database user who requires access to your debug session

● Privilege Expires
The point in time that marks the end of the period for which access to one or more debug sessions is
allowed.

● grant debug permission for all sessions
You can grant a user global access to any of your debug sessions.

622 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

 Restriction
The user you grant access to must already be registered and authenticated in the SAP HANA database.

● grant debug permission for this session only
You can grant access to a debug session that is flagged with a specific token:

 Restriction
Unauthenticated users must use the token-based option.

The following rules apply to access to debug sessions flagged with a token:
○ The session used for granting access to the debug sessions is flagged automatically.
○ The session token is distributed by means of a session cookie; the cookie is inherited by any session

created with the current browser session.
● Session Name

A freely definable name that can be used to distinguish your debug session in the context of multiple
sessions.

Related Information

The XSJS Debugger Role [page 621]
Debugging Server-Side JavaScript [page 614]

9.9.3 Troubleshoot Server-Side JavaScript Debugging

When debugging your JavaScript code, you sometimes need to solve problems, not only with the code itself,
but the configuration of the sessions and the tools you use to perform the debugging.

Prerequisites

● Start a Web-browser session with the SAP HANA server before starting a debug session.
Make sure you open a session with the SAP HANA server by calling an XS JavaScript file from your Web
browser before starting the debug operation.

● Select the session ID.
Before starting to debug, select the session whose ID is specified in the xsSessionId cookie in your open
Web-browser session.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 623

Context

If you are having problems using the embedded debugging tools to debug your server-side XSJS (JavaScript)
code, check the following solutions:

● Breakpoints
The execution of your XS JavaScript code is not stopping at a breakpoint.

● Network connections
Your SAP HANA server is behind a proxy or a firewall.

Procedure

1. Restart the SAP HANA studio with the -clean option.

 Sample Code

hdbstudio.exe -clean

To determine if a clean restart of SAP HANA studio is required, check if the Breakpoints view in SAP HANA
studio's Debug perspective displays the breakpoints as type SAP HANA XSE Script, as follows:

a. In the Breakpoints view, choose the View Menu.

b. Choose Group By Breakpoint Types
2. Remove breakpoints.

Try removing all the existing breakpoints from the debug session and recreating them.
3. Create a new workspace.

If a restart of SAP HANA studio with the -clean option does not solve the problem of unrecognized
breakpoints, it might be necessary to create a new Eclipse (not repository) Workspace.

4. Set the Active Provider feature to manual.

If your SAP HANA server is behind a proxy or firewall, check that your Network Connections are configured
for using a proxy, as follows:

 Note
It is not recommended to run a debugging session without using the Secure Sockets Layer (SSL)
protocol. The debugging session uses standard HTTP(S). The session either leverages an existing
session or requests basic (HTTP) authentication on the connection request. The debugging session
upgrades the HTTP connection to a WebSocket.

a. In SAP HANA studio, choose Window Preferences General Network Connections .
b. Set the Active Provider to Manual.

The default setting is Native
c. Update the schemas.
d. Add the relevant proxy host and port.

5. Configure the Debug Configuration Connection properties.

624 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

a. Select and right-click your SAP HANA system.

b. Choose Properties XS Properties .
c. Check that your system's SAP HANA XS properties match the Debug Configuration Connection

properties.

Related Information

Execute XS JavaScript Debugging [page 618]

9.10 Testing XS JavaScript Applications

SAP HANA provides a test framework called XSUnit that enables you to set up automatic tests for SAP HANA
XS applications.

The test framework SAP HANA XSUnit (XSUnit) is a custom version of the open-source JavaScript test
framework, Jasmine, adapted for use with SAP HANA XS. You can use the XSUnit test framework to automate
the tests that you want to run for SAP HANA XS applications, for example, to test the following elements:

● Server side JavaScript code
● SQLScript code (stored procedures and views)
● Modeled calculation views

To use the tools and features provided with the XSUnit test framework, you must perform the following high-
level steps:

1. Set up the client-side environment:
○ Install the latest version of SAP HANA studio (optional).
○ Ensure that the hdbclient tool is installed and running.

2. Set up the server-side environment.
The XSUnit test framework is included in the delivery unit HANA_TEST_TOOLS, which you must install
manually, for example, using the SAP HANA studio or the SAP HANA Application Lifecycle Management
tool. After the installation completes, the tools are available in the package sap.hana.testtools.

 Note
Importing a delivery unit into an SAP HANA system requires the REPO.IMPORT privilege, which is
normally granted only to the system administrator.

3. Maintain SAP HANA user privileges.
The system administrator must grant test users the privileges required to use the test tools. The privileges
are defined in roles, which the SAP HANA administrator can assign to all developers by default.

4. Maintain the test schema (optional).
If you write XSUnit tests that are designed to test database content, you require a test schema in which you
create test tables during your test execution and fill the tables with test data. To avoid conflicts when
different users run the same test at the same time, it is recommended that individual developers place test
tables in their corresponding user schema.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 625

 Note
You must ensure that _SYS_REPO has select permission to schema where the tables are located (for
example, either your user schema or the test schema).

grant select on schema MY_TEST_SCHEMA to _SYS_REPO with grant option;

Related Information

Automated Tests with XSUnit in SAP HANA [page 626]
XSUnit Test Examples [page 634]
SAP HANA XSUnit JavaScript API Reference

9.10.1 Automated Tests with XSUnit in SAP HANA

XSUnit is an integrated test environment that enables you to set up automatic tests for SAP HANA XS
applications.

People developing applications in the context of the SAP HANA database need to understand how to
implement a test-automation strategy. Especially for new applications which are designed to work exclusively
with SAP HANA, it is a good idea to consider the adoption of best practices and tools.

If you want to develop content that is designed to run specifically in SAP HANA, it is strongly recommended to
use the XSUnit test framework that is integrated in SAP HANA XS; this is the only way to transport your test
code with your SAP HANA content. The XSUnit tools are based on a Java Script unit test framework that uses
Jasmine as the underlying test library.

Test Isolation and Simulation

To write self-contained unit tests that are executable in any system, you have to test the various SAP HANA
objects in isolation. For example, an SAP HANA view typically has dependencies to other views or to database
tables; these dependencies pass data to the view that is being tested and must not be controlled or overwritten
by the test. For this reason, you need to be able to simulate dependencies on the tested view. XSUnit includes a
test-isolation tool that provides this functionality; it allows you to copy a table for testing purposes.

 Note
Although you cannot copy a view for testing purposes, you can create a table that acts like a view.

All (or specific) dependencies on any tables or views are replaced by references to temporary tables, which can
be created, controlled, and populated with values provided by the automated test.

626 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

http://help.sap.com/hana/SAP_HANA_XS_Unit_JavaScript_API_Reference_en/index.html

Test Data

Preparing and organizing test data is an important part of the process of testing SAP HANA content such as
views and procedures; specific data constellations are required that have to be stable in order to produce
reliable regression tests. In addition, test-isolation tools help reduce the scope of a test by enabling you to test
a view without worrying about dependent tables and views. Limiting the scope of a test also helps to reduces
the amount of data which needs to be prepared for the test.

Related Information

XSUnit Test Examples [page 634]
Test an SAP HANA XS Application with XSUnit [page 627]

9.10.2 Application Development Testing Roles

Dedicated roles enable developers to access and use the tools provided with the SAP HANA XS test framework
(XSUnit).

To grant access to the SAP HANA XS test framework that enables developers to set up automatic testing for
SAP HANA applications, the SAP HANA system administrator must ensure that the appropriate roles are
assigned. The following table lists the roles that are available; one (or more) of the listed roles must be assigned
to the application developers who want to use the XSUnit testing tools.

Default Developer Testing Roles

Role Name Description

sap.hana.testtools.common::TestExe
cute

Enables you to view the persisted test results produced by the XSUnit test frame
work and to execute the examples included in the demonstration package
(sap.hana.testtools.demo).

sap.hana.xs.debugger::Debugger Enables you to debug your server side JavaScript (test-)code

sap.hana.xs.ide.roles::Developer Enables you to view source files in the SAP HANA Web-based Work Bench (Web
IDE)

9.10.3 Test an SAP HANA XS Application with XSUnit

Use the XSUnit tools to set up automated testing of your applications in SAP HANA XS.

Prerequisites

The following prerequisites apply if you are using SAP HANA studio to set up and run tests with XSUnit:

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 627

● SAP HANA studio
You will need access to a shared development project in the SAP HANA system where you plan to run the
tests.

Context

If you want to develop content that is designed to run specifically with SAP HANA, you can use the XSUnit tools
that are integrated in SAP HANA XS. The XS Unit tools are based on a Java Script unit test framework that uses
Jasmine as the underlying test library.

Procedure

1. Create an Eclipse project.
If you want to create your first unit test, you need an XS Project that will contain the test code. You can
either create a new shared XS Project or, if a shared project already exists, you can checkout and import
the existing project from the SAP HANA Repository. Within that project you can structure your tests in
folders.

To create a shared Eclipse project, start SAP HANA studio and, in the SAP HANA Development perspective,
perform the following steps:

a. In the Systems view, add the SAP HANA system you want to work and test on.
b. In the Repositories view, add a repository workspace for your SAP HANA system
c. Create and share a project of type XS Project.

 Tip
You can also check out and import an existing project from the SAP HANA Repository.

2. Create an XSUnit test.
XSUnit test files are XSlibrary files (files with the .xsjslib suffix).

a. Create an XSlibrary file, for example, called <MyFirstTest>.xsjslib.

You can use the file-creation Wizard in SAP HANA studio, for example, File New Other SAP
HANA Development XS JavaScript Library File

b. Add the following content to the new XSlibrary test file <MyFirstTest>.xsjslib.

/*global jasmine, describe, beforeOnce, beforeEach, it, xit, expect*/ describe("My First Test Suite using Jasmine", function() {

 it('should show an assertion that passes', function() {
 expect(1).toBe(1);
 });
 it("should show an negative assertion", function() {
 expect(true).not.toBe(false);
 });
 it("should throw an expected error", function() {
 expect(function() {
 throw new Error("expected error");
 }).toThrowError("expected error");

628 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

 });
 //xit = this test case is excluded
 xit("should show an assertion that fails", function() {
 expect(1).toBe(2);
 }); });

The JSLint tool that SAP HANA studio uses to check your XSJS code tells you that functions (for
example, describe, it, expect) do not exist. This is not true; the functions do exist but they are
defined in another library. To ensure that JSLint considers functions to be globally available, add the
following comment as the first line of the XSUnit test file: /*global jasmine, describe,
beforeOnce, beforeEach, it, xit, expect*/

 Note
You can extend the list of globally available functions to include any additional functions that you
use in your test.

c. Save the test file.
d. Activate the test file.

In the SAP HANA studio's SAP HANA Development perspective, open the Project Explorer view, right-
click the test file, and choose Team Activate .

3. Execute the XSUnit test.
How you execute an XSUnit test depends on the development tool suite you are using, for example, SAP
HANA studio.

You execute an XSUnit test by entering the following URL in a Web Browser:

http://<hostname>:<port>/sap/hana/testtools/unit/jasminexs/TestRunner.xsjs?
package=<packageName>

Where <hostname> is the name of the SAP HANA system where you are running your application test, and
<port> is the port number that the SAP HANA instance is available on.

The TestRunner tool recursively searches the package <packageName> for any files with the
suffix .xsjslib whose names match the pattern “*Test”.

 Note
If you want to search for a string other than “*Test”, you must pass a custom pattern to TestRunner
using the parameter pattern.

Related Information

XSUnit Test Run Options [page 632]

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 629

9.10.3.1 XSUnit's Enhanced Jasmine Syntax

The XSUnit test framework is a custom version of the JavaScript test framework Jasmine adapted to suit SAP
HANA XS.

A test specifications begin with a call to the global Jasmine function describe. The describe functions
define suites that enable you to group together related test suites and specifications. Test-suite specifications
are defined by calling the global Jasmine function it. You can group several test suites in one test file. The
following code snippet shows one test suite (introduced by the function “describe”) and two test
specifications, indicated by the function “it”.

/*jslint undef:true */ describe('testSuiteDescription', function() {
 beforeOnce(function() {
 // beforeOnce function is called once for all specifications
 });
 beforeEach(function() {
 // beforeEach function is called before each specification
 });
 it('testSpecDescription', function() {
 expect(1).toEqual(1);
 });
 it('anotherTestSpecDescription', function() {
 expect(1).not.toEqual(0);
 }); });

To enable a test suite to remove any duplicate setup and teardown code, Jasmine provides the global functions
beforeEach and afterEach. As the name implies the beforeEach function is executed before each
specification in the enclosing suite and all sub-suites; the afterEach function is called after each
specification. Similarly, the special methods beforeOnce and afterOnce are called once per test suite.

● beforeOnce
Executed once before all specifications of the test suite

● afterOnce
Executed once after all specifications of the test suite

Database Connection Setup

The XSUnit framework provides a managed database connection called jasmine.dbConnection, which is
globally available. You can use it in the following scenarios:

● Directly (in the function “it”)
● In the functions “beforeEach” and “afterEach”
● In other functions defined in your test libraries
● In imported libraries (if you have moved test code to external libraries)

One obvious advantage of this is that you no longer have to pass the database connection as a parameter or
define it as a global variable. The jasmine.dbConnection is opened automatically and rolled back (and
closed). However, if you want to persist your data, you have to commit() jasmine.dbConnection manually.

630 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

XSUnit TestRunner Tool Flow Chart

9.10.3.2 XSUnit Test Tools Syntax

Example syntax for the functions, assertions, and parameters required by the SAP HANA XSUnit test tools.

The following code example lists the most commonly used functions and assertions used in the XSUnit
syntax.For more information about the assertions used, for example, toBe, toBeTruthy, or toBeFalsy, see
Assertions.

/*global jasmine, describe, beforeOnce, beforeEach, it, xit, expect*/ describe("My First Test Suite using Jasmine", function() {
 beforeOnce(function() {
 // beforeOnce is called only one time for all specs
 });
 beforeEach(function() {
 // beforeEach is called before each specs
 });
 // it = test case specification it("should show an assertion that passes",
function() {
 var array = [{foo: 'bar', baz: 'quux'}, {bar: 'foo', quux: 'baz'}];
 expect(1).toBeTruthy();
 expect(12).toBe(jasmine.any(Number));
 expect(array).toContain(jasmine.objectContaining({foo: 'bar' }));
 });
 it("should show an negative assertion", function() {
 expect(true).not.toBe(false);

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 631

 });
 it("should throw an expected error", function() {
 expect(function() {
 throw new Error("expected error");
 }).toThrowError("expected error");
 });
 // xit = this test case is excluded
 xit("should show an assertion that fails", function() {
 expect(1).toBe(2);
 }); });

XSUnit Assertions and Parameters

The following code example lists the most commonly used assertions, shows the required syntax, and the
expected parameters.

expect(actual).toBe(expected); expect(actual).toBeFalsy();
expect(actual).toBeTruthy()
expect(actual).toEqual(expected);
expect(actualArray).toContain(expectedItem);
expect(actual).toBeNull();
expect(actualNumber).toBeCloseTo(expectedNumber, precision);
expect(actual).toBeDefined();
expect(actual).toBeUndefined();
expect(actualString).toMatch(regExpression);
expect(actualFunction).toThrowError(expectedErrorMessage);
expect(actualFunction).toThrowError(expectedErrorType, expectedErrorMessage);
expect(actualTableDataSet).toMatchData(expected, keyFields);
expect(actual).toBeLessThan(expected); expect(actual).toBeGreaterThan(expected);

9.10.3.3 XSUnit Test Run Options

The XSUnit tool suite includes a generic tool that you can use to run tests.

You can start the XSUnit test-running tool (TestRunner.xsjs) by entering the following URL in a Web
Browser:

http://<hostname>:80<HANAinstancenumber>/sap/hana/testtools/unit/jasminexs/
TestRunner.xsjs?<parameters>

The following table lists the parameters that you can use to control the behavior of test-runner tool. If you
execute the test runner without specifying the pattern parameter, only the tests in *Test.xsjslib files are
discovered (and run) within the package hierarchy.

 Note
You can specify multiple parameters by separating each parameter=value pair with the ampersand
character (&), for example:coverage=true&exclude=sap.hana.tests

632 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

TestRunner.xsjs Parameters

Name Mandatory Description

package yes Package that acts as starting point for discovering the tests. If not otherwise
specified by parameter “pattern” all .xsjslib files in this package and its sub-pack
ages conforming to the naming pattern “*Test” will be assumed to contain tests
and will be executed.

package=sap.hana.testtools.demo

pattern no Naming pattern that identifies the .xsjslib files that contain the tests. If not speci
fied, the pattern “*Test” is applied. You can use question mark (?) and asterisk (*)
as wildcards to match a single or multiple arbitrary characters, respectively. To
match all “Suite.xsjslib” files, use the following code:

pattern=Suite

format no Specifies the output format the test runner uses to report test results. By default,
the results will be reported as HTML document. This parameter has no effect if a
custom reporter is provided via parameter “reporter”. To display outputs results
using the JSON format, use the following code:

format=json

reporter no Complete path to module that provides an implementation of the Jasmine re
porter interface. With this parameter a custom reporter can be passed to publish
the test results in an application specific format . To specify the reporter interface,
use the following code:

reporter=sap.hana.testtools.unit.jasminexs.reporter.db
.dbReporter

 Note
format=db produces the same result

tags no Comma-separated list of tags which is used to define the tests to be executed.

tags=integration,long_running

profile no Name of a "profile" defined in the test which filters the tests to be executed on the
basis of tags.

profile=end2end

coverage no Activate code coverage measurement for all server-side (XS) JavaScript code
that is executed by the tests or which is in the scope of a specified package.

coverage=true

coverage=sap.hana.testtools.mockstar

coverage=true&exclude=sap.hana.testtools.mockstar.test
s

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 633

9.10.3.4 XSUnit Test Examples

XSUnit includes a selection of test packages that demonstrate the scope of tests you can perform on an SAP
HANA XS application.

The following table lists the test packages included in the XSUnit test framework. The table also indicates the
name of the test file and provides a quick overview of the scope of the test.

 Note
If you want to have a look at the code in the tests, checkout the package sap.hana.testtools.demo as
an XS project to your local workspace.

ExampleTest Units

Package Name Test Name (.xsjslib) Description

tests.getting_started myFirstTest Shows the usage of some basic Jas
mine matchers as well as the usage of
custom matchers toMatchData and
toEqualObject that are supported
by the extended Jasmine version.

tests.attribute_view_1 AT_PRODUCTS_Test Shows how to configure mockstar in or
der to replace a CDS entity with a test
table. Be aware that this test does not
make sense, as this attribute test tests
nothing at all - no logic, no joins,...

tests.graphic_calcview_1 CA_ORDERS_Test Tests a copy of the graphical calculation
view where the direct dependent tables
are replaced by test tables.

tests.graphic_calcview_3 CA_OPEN_AMOUNT_Test Tests the integration with the analytic
view but replaces the dependencies to
the tables with test tables. This exam
ple test shows how to upload data from
a comma-separated-values (CSV) file
into the test tables

tests.hdbprocedure_with_cds CreateProductTest Tests a non-read-only HDBProcedure
with table in/out parameters while re
placing the underlying Core Data Serv
ices (CDS) entities with test tables.

tests.hdbprocedure_with_hdbview GetInvoicesTest Tests an HDBProcedure with scalar in
and view out parameters while replac
ing a dependent hdbview with a test
table.

tests.hdbprocedure_with_hierarchy
view

HierarchyProcedureTest Tests an HDBProcedure that includes a
hierarchy view while replacing all under
lying CDS entities with test tables.

tests.hdbprocedure_with_hdbproce
dure

CreateProductTest Tests an HDBProcedure while replacing
a dependent hdbprocedure with an
hdbprocedure that was created for
testing.

634 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

Package Name Test Name (.xsjslib) Description

tests.http_service whoAmIServiceTestE2E Tests an http service and checks if it re
turns the expected value. This test is
not automatically executed since the
SAP HANA instance needs to be main
tained by the system administrator.

tests.procedure_1 PR_OPEN_AMOUNT_Test Tests a copy of the stored procedure
where the directly dependent tables are
replaced with test tables.

tests.scripted_calcview_1 CA_ABC_PRODUCTS_Test Tests a copy of the scripted calculation
view where the directly dependent ana
lytic view is replaced with a test table.

tests.scripted_calcview_2 CA_OPEN_AMOUNT_SCRIPTED_W_PR
OCEDURE_Test

Tests the integration with the called
stored procedures but replaces the de
pendencies to the tables with test ta
bles.

apps.rating.tests validatorTest Tests a simple server-side (XS) Java
Script.

dataAccessorTest Tests the database layer of server-side
(XS) JavaScript using Jasmine
spyOn() for testing in isolation.

oDataTestE2E Checks the accessibility of an OData
service and tests an OData service
without dependencies using mockstar.

ratingServicesTestE2E Tests an XS JavaScript service (end-to-
end scenario test).

tests myMockstarEnvironment Shows how to enhance the
mockstarEnvironment library to
add further reuse functions or change
the behaviour slightly to suit the con
text.

9.10.3.5 The Mockstar Test Environment
Mockstar is a tool that is designed to enable you to isolate SAP HANA content in tests run by an automated test
suite.

To write self-contained unit tests that are executable in any system, it is essential to be able to test the selected
SAP HANA objects in isolation. For a typical unit test using the XSUnit tools, you need to be able to change any
direct dependencies between the tested objects and other views or tables with references to simple tables. For
integration tests, rather than change the direct dependencies to a view or a table, you might need to change
dependencies between the dependent views (deeper in the dependency hierarchy).

Mockstar is a tool that is specifically designed to enable you to isolate test objects, for example, a view or
procedure. Mockstar allows you to create a copy of the tested view or procedure and substitute the
dependency to a another view or table with a table that is stored in a test schema. It is strongly recommended
to use a dedicated schema for the tests; in this test schema, you have write permissions and, as a result, full
control over the data in the tables and views.

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 635

The Mockstart test-isolation tool provides the following features:

● Creates a copy of the SAP HANA object to test (for example, a view or database table); the copied object
retains the same business logic as the original one object, but replaces some or all dependencies.

● Replaces the (static) dependencies to tables or views with temporary tables
● Supports deep dependency substitution

Mockstar can determine dependencies deep within a hierarchy of dependencies and copy only the
necessary parts of the hierarchy.

Mockstar tools are included in the delivery unit HANA_TEST_TOOLS, which you must install manually, for
example, using the SAP HANA studio or the SAP HANA Application Lifecycle Management tool. After the
installation completes, the Mockstar tools are available in the package sap.hana.testtools.mockstar.

 Note
Importing a delivery unit into an SAP HANA system requires the REPO.IMPORT privilege, which is normally
granted only to the system administrator.

9.10.3.6 Mockstar Environment Example Syntax

A basic example of the syntax required to set up the Mockstar test environment.

The following example shows a simple setup using standard locations.

 Note
The names of schemas, tables, and views used in the following code example are intended to be for
illustration purposes only.

var mockstarEnvironment = $.import('sap.hana.testtools.mockstar',
'mockstarEnvironment'); describe('testSuiteDescription', function() {
 var testEnvironment = null;
 beforeOnce(function() {
 var definition = {
 schema : 'SCHEMA',
 model : {
 schema : '_SYS_BIC',
 name : 'modelName' //e.g. package/MODEL
 },
 substituteTables : {
 "table" : { name : 'package::TABLE' }
 },
 substituteViews : {
 "view" : {
 schema : '_SYS_BIC',
 name : 'package/VIEW'
 }
 }
 };
 testEnvironment = mockstarEnvironment.defineAndCreate(definition);
 }); });

636 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

9.10.3.7 XSUnit Troubleshooting Solutions

Use trace files and other tools to fix problems with test operations.

The Mockstar test-isolation tools write helpful information in the SAP HANA trace files. You can adapt the trace
level, for example, to debug to ensure the right amount and type of information is written during the test run.
Note that you need the corresponding administration role to be able to change the trace-level settings in SAP
HANA. The trace files are written in the trace component xsa:sap.hana.testtools (truncated to
“xsa:sap.hana.tes” in the trace files).

 Tip
As an alternative to reading the trace files directly, you can also use the SQL console to select data from the
table M_MERGED_TRACES.

This section contains information about the problems that developers frequently encounter during test runs:

● SAP HANA Test Tools Version [page 637]
● The Library is Not Part of an Application [page 637]
● Error for Cloned OData Service [page 638]
● Duplicate Entries When Inserting Test Data [page 638]
● Test Table Already Exists [page 638]
● Test Model Activation Fails [page 639]
● No Entries Returned From Copied Test Model [page 639]
● No Test Data Inserted into Test Table [page 639]
● TestRunner Tool Times Out [page 640]
● Test Model Creation is Aborted [page 641]
● Database Connections in XSUnit Test [page 641]

SAP HANA Test Tools Version

Which version of the SAP HANA test tools suite is installed?

1. Start SAP HANA studio
2. Open the SAP HANA Modeler perspective.
3. In the Quick Launch window, choose Delivery Units...
4. Choose HANA_TEST_TOOLS.

Import Error: The Library is Not Part of an Application

If the test runner tool shows the following error:

import: the library is not part of an application

The JavaScript library you want to test can only be loaded when there is an application descriptor (.xsapp file)
defined within the package hierarchy. The application descriptor is the core file that you use to describe an

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 637

application's framework within SAP HANA XS. If your tests are not part of your application package hierarchy, it
is recommended you to create an .xsapp file in the context of the XS Project that contains the tests.

Error for Cloned OData Service

The following error message is displayed when testing access to an OData service in SAP HANA XS:

404 - Not found: Error for cloned OData Service (.xsodata)

Try the following solutions:

1. Try to access the generated service directly in a separate Web browser.
2. Check whether the file (xsodata service definition) exists, has been activated in the SAP HANA repository,

and is in the expected target folder.
3. Ensure that the target folder or one of its parent folders contains the following activated artifacts:

○ .xsapp file
Application descriptor file required by an SAP HANA XS application

○ .xsaccess file
Application access file which enables access to an SAP HANA XS application

Duplicate Entries When Inserting Test Data

If you encounter problems concerning duplicate entries when running tests, try the following solutions:

1. When inserting records into a productive table, ensure that no jasmine.dbConnection.commit() call
occurs during test execution.

2. When inserting records into a test table, ensure that the table entries are deleted (dropped) before they are
(re)created.

var tableUtils = new TableUtils(jasmine.dbConnection); tableUtils.clearTableInUserSchema(invoicesTestTable);

Test Table Already Exists

You encounter an error message that explains that a test table cannot be created during the test because the
table already exists. You must ensure that the specified table is deleted before the test tries to create it during
the test run.

var sqlExecutor = new SqlExecutor(jasmine.dbConnection); var createTableString = 'CREATE COLUMN TABLE ' + <table name> + '...');
sqlExecutor.execSingleIgnoreFailing('drop table ' + <table name>); sqlExecutor.execSingle(createTableString);

638 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

You can also use the functions provided by the table utilitites library, which enables you to ensure that the table
is dropped at the right time:

var tableUtils = new TableUtils(jasmine.dbConnection); testTable = tableUtils.copyIntoUserSchema(originSchema, originTable);

Test Model Activation Fails

Your test produces an error relating to a failed activation:

Error: Repository: Activation failed for at least one object [...] identifier is too long:[...] Maximum length is 127: ...

the name of the model is too long (including the package name). You can reduce the name by setting the
TruncOptions option as shown in the following code snippet:

var mockstar = $.sap.hana.testtools.mockstar; testView = mockstar.apiFacade.createTestModel(originalModel, targetPackage, dependencySubstitutions, mockstar.TruncOptions.FULL);

 Tip
Its a good idea to analyze the created model before it is activated.

To generate a detailed and structured error log, in the SAP HANA Systems view in the SAP HANA studio and
locate the test package and activate it manually.

No Entries Returned From Copied Test Model

1. Open the generated test model.
The generated model is located in a package with the name
tmp.unittest.<userName>.<originalPackage>. If you have configured the createTestModel()
function with the parameter mockstar.TruncOptions.FULL, the package name is
tmp.unittest.<userName>.

2. Ensure that the dependencies have been replaced as expected.
To see if the tables are filled correctly by the test, see No Test Data Inserted into Test Table [page 639].

3. Check the test view itself.
If the tested view returns no data, but data are expected, check if the data are removed by a filter during
extraction from the underlying data source.

No Test Data Inserted into Test Table

To test whether a test inserts data as expected into the created test table, implement a
jasmine.dbConnection.commit() connection to ensure that the data created during the test is stored

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 639

persistently. Without the jasmine.dbConnection.commit(), the test data is not persistent; the test
deletes all test data when the database session is closed. Start the test again using the TestRunner tool. When
the test completes, the test table should contain test data.

TestRunner Tool Times Out

The default timeout setting for the TestRunner tool is ten (10) minutes. If your test run for longer than ten
minutes and cause a timeout, try splitting the test into smaller and shorter elements. If this is no possible, try
running the test in three phases:

1. Prepare the test run.
/sap/hana/testtools/unit/jasminexs/PrepareTestRun.xsjs
This generates a new test-run ID; no test runs are executed.
○ Response:

Returns the new test-run ID. If you request the answer in HTML format and provide all required
parameters for the TestRunner tool, you receive the appropriate links you can use in the following
steps (run the test and fetch the results).

○ Parameters:
format (optional; default = “html”)
Set this parameter to receive the test-run ID in the desired format. You can use any of the formats
supported by the TestRunner format parameter.

2. Run the tests.
/sap/hana/testtools/unit/jasminexs/TestRunner.xsjs
This step is almost identical to the usual test execution with the addition of parameter runid.
○ Response:

If the tests finish within the configured time frame, you receive the test results as expected. If the test
are too long,a timeout occurs.

○ Parameters:
runid. Required for this kind of (manual) execution: This is the test-run ID generated in the previous
step.

3. Fetch the test results (optional: only required if the test run causes a timeout).
/sap/hana/testtools/unit/jasminexs/GetTestResults.xsjs
Fetches the test results for a given test-run ID. You an run this service multiple times for each test.
○ Response:

Returns the test results in the requested format. If the tests are not yet finished, you receive a status
message (either “PREPARED” or “STARTED”). If the run ID provided does not exist, an error message is
displayed.

○ Parameters:
runid. Required for this kind of (manual) execution.
format (optional; default = “html”)

640 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

Test Model Creation is Aborted

This error sometimes occurs if you try to create a copy of the original view and replace some dependencies
with test tables. The reason for the error is one of the following:

● You did not provide any dependency substitutions. For example, you passed an empty array as the third
parameter of mockstar.createTestModel()).

● The view that you want to test does not depend on any of the original views specified in the dependency
substitutions.

● For active schema mapping, you have written the dependencies with the physical schema whereas the
view refers to the authoring schema. Provide the schema in the same way as it is written in the view (or
stored procedure).

Database Connections in XSUnit Test

The XSUnit test framework provides a new “managed” database connection called jasmine.dbConnection,
which is automatically opened and rolled back (and closed) after each test completes. You can use it in
beforeEach or afterEach functions, in other functions defined in your test libraries, or even in imported
libraries, in the event that you have moved test code into external libraries.

Related Information

Managed Database Connection Setup [page 630]

9.10.4 Testing JavaScript with XSUnit

Test an XS JavaScript using XSUnit test tools.

As the XSUnit test tools are based on a custom version of the JavaScript test framework Jasmine, you can use
XSUnit to test JavaScript. XSUnit provides tools that enable you to create and install a test “double” for one or
more object methods. In the Jasmine framework, a test double is known as a “spy”. A spy can be used not only
to stub any function but also to track calls to it and all arguments, too.

 Note
XSUnit includes special matchers that enable interaction with Jasmine spies.

The XSUnit test tools delivery unit (DU) includes a small XS JavaScript demo “Ratings” application which
comprises an SAPUI5 client front end on top of OData and XS JavaScript services; the Ratings application
enables you to experiment with different test techniques. You can try out the application at the following URL:

http://<SAPHANA_host>:80<instancenumber>/sap/hana/testtools/demo/apps/rating/
WebContent/

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 641

Related Information

XSUnit's Jasmine Spy Syntax [page 642]
Testing HTTP Services with XSUnit [page 643]

9.10.4.1 XSUnit's Jasmine Spy Syntax

A command “cheat sheet” for the Jasmine Spy syntax.

The following code example provides a quick overview of commonly used commands that enable the use of
Jasmine Spies. You can see how to perform the following actions:

● Install a method double [page 642]
● Install an object double [page 642]
● Check a function call (and values) [page 643]

Installing a Method Double

The following code example shows how install a method double (simple example).

spyOn(object, "method"); expect(object.method).toHaveBeenCalled();

The following code example shows how install a method double (variant).

var spyMethod = spyOn(object, "method"); expect(spyMethod).toHaveBeenCalled();

The following code example shows how install a method double (custom action for double).

spyOn(object, "method"); // delegates nowhere spyOn(object, "method").and.returnValue(3); // returns constant value
spyOn(object, "method").and.callThrough(); // delegates to original function
spyOn(object, "method").and.callFake(fakeFunction); // delegates to other
function

Installing an Object Double

The following code example shows how install an object double.

var spyObject = jasmine.createSpyObj("spy name", ["method1", "method2",
"method3"]); spyObject.method1.and.returnValue(3);
expect(spyObject.method1).toHaveBeenCalled();

642 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

Checking Function Calls (and Values)

The following code example shows how to check whether the function has been called as expected, and if so, if
the the right values were used.

expect(spyObject.method).toHaveBeenCalled(); expect(spyObject.method).toHaveBeenCalledWith(expArgValue1, expArgValue2);
expect(spyObject.method.calls.allArgs()).toContain([expArgValue1,
expArgValue2]);
expect(spyObject.method.calls.mostRecent().args).toEqual([expArgVal1,
expArgVal2]);
expect(spyObject.method.calls.count()).toBe(2);
spyObject.method.calls.reset(); // reset all calls

9.10.4.2 Testing HTTP Services with XSUnit

XS JavaScript files that can be accessed by performing an HTTP call against the service defined in the XS
JavaScript file.

You can use the TestRunner tool to call an XS JavaScript service. The TestRunner service is part of the test-
tools package sap.hana.testtools.unit.jasminexs and has one mandatory parameter, namely
package. Since TestRunner is an HTTP GET service, you can execute the service in the browser using the
following URL:

http://<hostname>:80<instancenumber>/sap/hana/testtools/unit/jasminexs/
TestRunner.xsjs?package=<mypackage>

Since it is not possible to import XS Javascript files (.xsjs) files into a JavaScript library (.xsjslib), the
functions you implement inside the XS JavaScript file cannot be tested within an XSUnit test. As a
consequence, it is recommended to include only minimal logic within the XSJS files and delegate tasks to the
functions implemented in corresponding JavaScript libraries; these libraries can be tested in isolation using
XSUnit tools (for example, Mockstar).

 Note
XSUnit enables you to perform an HTTP call to your XSJS services via HTTP. However, this is an end-to-end
system test with no possibility to use test doubles during the test. These tests are not suitable for testing a
JavaScript function.

Since you cannot insert test data into the test table during the test, the tests have no control over the data. This
restriction reduces the scope of the tests you can perform for HTTP calls, for example, you can test the
following scenarios:

● Service must return an error if mandatory parameters are missing
● Service must return an error if the chosen HTTP type is correct
● Service must return an error if the wrong input is provided
● End-to-end HTTP scenarios (CREATE, READ, UPDATE, and DELETE)

describe("example for http tests", function() { it("should receive answer from service", function() {
 var requestBody = '{"param1":42,"param2":"xyz"}';
 var headers = {

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 643

 "Content-Type" : "application/json"
 };
 var response = jasmine.callHTTPService("/path/to/your/app/Service.xsjs",
$.net.http.POST, requestBody, headers);
 expect(response.status).toBe($.net.http.OK);
 var body = response.body ? response.body.asString() : "";
 expect(body).toMatch(/regular expression that checks correct response/);
 }); });

SAP HANA Database Logon for XSUnit

To ensure access to SAP HANA, you need to adapt the default HTTP destination file
(:localhost.xshttpdest) provided with the XSUnit test tools. The default HTTP destination configuration
file is located in sap.hana.testtools.unit.jasminexs.lib:localhost.xshttpdest to fit to your
HANA instance. To access an HTTP destination configuration, you need the permissions granted in the user
role sap.hana.xs.admin.roles::HTTPDestAdministrator.

 Caution
To change the HTTP destination, create an HTTP extension" of your own; do not make any changes to the
file localhost.xshttpdest. Changes to localhost.xshttpdest are overwritten by updates to the
XSUnit test tools on your system.

Related Information

Maintaining HTTP Destinations [page 118]

9.10.4.3 Testing JavaScript Functions with XSUnit

Use XSUnit tools to test JavaScript code that depends on functions in your code, for example: dependencies on
functions, libraries, or to database tables.

In JavaScript it is possible to overwrite anything that is visible in a context, for example: public data, public
functions, or even the whole class. With XSUnit, you can make use of a simulation framework that is included
with Jasmine. The simulation framework provides a mechanism that enables you to create and install a test
double (so-called Jasmine “Spy”), which can help you to reduce some of the basic code and keep the code
more concise. Jasmine Spies should be created in the test setup, before you define any expectations. The
Spies can then be checked, using the standard Jasmine expectation syntax. You can check if a Spy is called (or
not) and find out what (if any) parameters were used in the call. Spies are removed at the end of every test
specification.

 Note
Each dependency increases the complexity of testing involved for a function or a component.

644 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

The Average Component Dependency (ACD) is the number of dependencies to other components, averaged
over all components; it indicates whether your system is loosely coupled. If you prefer to implement JavaScript
in an object-oriented way, you can apply dependency management aspects by following object-oriented design
principles (OOD).

The information in this topic covers the following test scenarios:

● Dependencies on Function Libraries [page 645]
● Dependency on Database Table [page 646]

Dependencies on Function Libraries

The following code snippet defines a controller that you want to test; the controller depends on a Date object.
The accompanying code snippet shows how you can test this code.

var Controller = null; (function() {
 //constructor function
 Controller = function(dataModel) {
 this.model = dataModel;
 };
 function updateModelWithTimestamp(newData) {
 this.model.updateData(newData, this.getCurrentDate());
 }
 Controller.prototype.updateModel = function(newData) {
 //bind 'this' to the private function
 updateModelWithTimestamp.call(this, newData);
 };
 Controller.prototype.getCurrentDate = function() {
 return new Date(Date.now());
 };
}());
function DataModel() {
 var modifiedAt = null;
 var modifiedBy = null;
 var data = null;
 this.updateData = function(newData, modifiedAtDate) {
 data = newData;
 modifiedAt = modifiedAtDate;
 modifiedBy = $.session.getUsername();
 };
 this.getModificationDate = function() {
 return modifiedAt;
 }; }

The following code snippets shows an example of the test code you could run; the code uses a Jasmine Spy
ensures the dependencies on the Date object are replaced and tested as expected.

var Controller = $.import("sap.hana.testtools.demo.objects.xs_javascript",
"javascriptOO").Controller; var DataModel= $.import("sap.hana.testtools.demo.objects.xs_javascript",
"javascriptOO").DataModel;
describe('Controller', function() {
 var controller = null;
 var model = null;
 var anyDate = new Date(2013, 8, 27, 11, 0, 0, 0);

 beforeEach(function() {
 model = new DataModel();

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 645

 controller = new Controller(model);
 });
 it('should set current date when data is modified (replace Date.now() using
jasmine spies)', function() {
 spyOn(Date, 'now').and.returnValue(anyDate.getTime());
 oController.updateModel({data : [1,2,3]});
 expect(model.getModificationDate()).toEqual(anyDate);
 }); });

Dependency on Database Table

It is important to try to avoid mixing business logic that is implemented in JavaScript with the data base
interaction. We recommend moving the database persistency logic into a dedicated persistency class, so that
just the business logic remains for testing. The goal of the test is to be able to test both normal and special
cases without interacting with the data base at all.

To unit test the persistency class, you can parameterize the schema and use a schema for testing, for example,
the user schema where you have all authorizations required to create, modify, and drop objects, and cannot
mess things up with the test. Last of all, you can offer a small set of integration tests, that just ensure that the
productive classes, the AnyService class, and the Persistency class, integrate well.

 Note
For sake of conciseness, resource closing and error handling is missing from the following code example.

function Persistency(dbConnection, schema) { var dbSchema = schema !== undefined ? schema : 'SAP_HANA_TEST_DEMO';
 this.existsEntry = function(key) {
 var pstmt = dbConnection.prepareStatement('SELECT key FROM "' +
dbSchema + '"."Table" WHERE KEY=?');
 pstmt.setString(1, key);
 if (pstmt.executeQuery().next()) {
 return true;
);
 return false;
 };
 this.insertEntry = function(newEntry) {
 var pstmt = dbConnection.prepareStatement('INSERT INTO "' + dbSchema +
'"."Table" VALUES(?,?)');
 pstmt.setString(1, newEntry.Id);
 pstmt.setString(2, newEntry.Value);
 pstmt.execute();
 };
}
function AnyService(persistency) {
 this.execute = function(input) {
 //validate input
 if (!persistency.existsEntry(input.Id)) {
 //calculate newEntry
 persistency.insertEntry(newEntry);
 }
 }; }

The following code snippets shows an example of the test code you could run to test the dependencies.

var Persistency = $.import("package.of.persistency", "persistency").Persistency;

646 P U B L I C
SAP HANA Developer Guide

Writing Server-Side JavaScript Code

describe('Persistency test', function() {
 var SqlExecutor = $.import('sap.hana.testtools.unit.util',
'sqlExecutor').SqlExecutor;
 var TableUtils = $.import('sap.hana.testtools.unit.util',
'tableUtils').TableUtils;
 var originTable = 'TableName';
 var testTable = null;
 var originSchema = 'SAP_HANA_TEST_DEMO';
 var userSchema = $.session.getUsername().toUpperCase();
 beforeOnce(function(){
 var tableUtils = new TableUtils(jasmine.dbConnection);
 testTable = tableUtils.copyIntoUserSchema(originSchema, originTable);
 });
 it('should insert one entry into table', function() {
 var persistency = new Persistency(jasmine.dbConnection, userSchema);
 persistency.insertEntry({ Id : '0815', Value : 1});
 expect(persistency.existsEntry('0815');
 expect(selectAllFromTable().getRowCount()).toBe(1);
 });
 function selectAllFromTable() {
 var sqlExecutor = new SqlExecutor(jasmine.dbConnection);
 return sqlExecutor.execQuery('select * from ' + testTable);
 } });

Testing a Self-Contained JavaScript Function

The following code snippet show how to use XSUnit to test a self-contained JavaScript function (mathlib); a
self-contained function has no dependencies to other JavaScript functions, database tables or session
parameters.

var mathlib = $.import("package.of.your.library", "math"); describe('The math XS JavaScript library', function() {
 it('should calculate "7" as maximum value of "3, 7"', function() {
 var maxValue = mathlib.max(3, 7);
 expect(maxValue).toBe(7);
 });
 it('should calculate "-10" as maximum value of "-10, -20"', function() {
 var maxValue = mathlib.max(-10, -20);
 expect(maxValue).toBe(-10);
 }); });

SAP HANA Developer Guide
Writing Server-Side JavaScript Code P U B L I C 647

10 Building UIs

10.1 Building User Interfaces with SAPUI5 for SAP HANA

UI development toolkit for HTML5 (SAPUI5) is a user-interface technology that is used to build and adapt client
applications based on SAP HANA. You can install SAPUI5 and use it to build user interfaces delivered by SAP
HANA's Web server.

The SAPUI5 run time is a client-side HTML5 rendering library with a rich set of standard and extension
controls. The SAPUI5 run time provides a lightweight programming model for desktop as well as mobile
applications. Based on JavaScript, it supports Rich Internet Applications (RIA) such as client-side features.
SAPUI5 complies with OpenAjax and can be used with standard JavaScript libraries.

SAPUI5 Demo Kit

The SAPUI5 Demo Kit contains the following components:

● Documentation
Information about the programming languages used, open source technology, development tools, and API
usage. You can also find tutorials to help you get started and details about the new features delivered with
each version of SAPUI5.

● API reference
The complete JavaScript documentation for the Framework and Control API, including featured
namespaces such as sap.m (main controls), sap.ui.layout (layout controls), sap.ui.table (table
controls), sap.f (SAP Fiori), and sap.ui.core (UI5 core run time).

● Samples
A detailed view of almost every control available in the kit, including detailed information about featured
controls such as: user interaction elements, lists, tables, pop-up dialogs tiles, messages, maps and charts,
smart controls, step-based interaction, and so on. You can also find detailed information about object
pages, dynamic pages, and how to use flexible columns.

● Demo Apps
A selection of apps for download that are designed to showcase UI5 concepts and controls in real-life
scenarios

● Tools
SAPUI5 comes with a built-in set of icons for use in your applications. The Icon Explorer helps you to find
icons by allowing you to browse through categories or simply start a search. You can see a live preview of
how the icon looks when being applied to a SAPUI5 control. You can also add icons to your favorites list to
make them easier to find at a later stage.
In addition, you can download development tools such as SAP Web IDE (and the SDK) as well as the UI5
Inspector which you can use for debugging and supporting both OpenUI5 and SAPUI5 applications.

648 P U B L I C
SAP HANA Developer Guide

Building UIs

Related Information

SAPUI5 Demo Kit

10.2 Consuming Data and Services with SAPUI5 for SAP
HANA

SAP HANA Extended Application Services (SAP HANA XS) can be used to expose the database data model,
with its tables, views and database procedures, to UI clients.

You can expose an SAP HANA model using OData services or by writing native server-side JavaScript code that
runs in the SAP HANA context. You can also use SAP HANA XS to build dynamic HTML5 client applications, for
example, using SAPUI5 for SAP HANA.

The server-centric approach to native application development envisaged for SAP HANA assumes the following
high-level scenario:

● View
UI rendering occurs completely in the client (SAPUI5, browser, mobile applications)

● Controller
Procedural (control-flow) logic is defined in (XS) JavaScript, SQLScript or an OData service

● Model
All application artifacts are stored in SAP HANA

SAP HANA Application Development with SAP HANA XS

Each of the levels illustrated in the graphic (view, control, model) is manifested in a particular technology and
dedicated languages. After you have defined the data model with design-time artifacts and the equivalent run-
time objects, you develop the control-flow logic to expose the data, for example, using server-side JavaScript or
an OData service. With the data model and control-flow logic in place, you can build the presentation logic to
view the exposed data in a UI client application using SAPUI5 for SAP HANA. For example, you can use an
SAPUI5 client to request and display data exposed by an OData service; the UI could include buttons that
trigger operations performed by SAP HANA XS JavaScript service; and the data displayed is retrieved from
data end points defined in your data model, for example, SQLScript or CDS.

SAP HANA Developer Guide
Building UIs P U B L I C 649

https://sapui5.hana.ondemand.com/

Related Information

SAPUI5 Demo Kit (version 1.32.7)

10.3 SAPUI5 for SAP HANA Development Tutorials

Tutorials are designed to extend task-based information to show you how to use real code and examples to
build native SAP HANA applications. The tutorials provided here include examples of how to build simple
SAPUI5 applications.

The tutorials provided here show you how to create your own simple SAPUI5-based applications. Some of the
tutorials make use of sample data, design-time development objects, and functions provided by the SAP HANA
Interactive Education (SHINE) demo application, for example: database tables, data views, server-side
JavaScript (XSJS) and OData services, and user-interface elements.

 Note
If the SHINE DU (HCODEMOCONTENT) is not already installed on your SAP HANA system, you can download
the DU from the SAP Software Download Center in the SAP Support Portal at http://
service.sap.com/swdc. On the SAP HANA PLATFORM EDIT. 1.0 Web page, locate the download package

SAP HANA DEMO MODEL 1.0 # OS independent SAP HANA database .

The tutorials provided here cover the following areas:

● SAPUI5 clients
○ Hello world

Build a simple “Hello World” application using SAPUI5 tools; the exercise shows how the development
process works and which components are required.

● Consuming Server-side JavaScript (XSJS) services with SAPUI5
Build an SAPUI5 application that calls an XSJS service in response to user interaction with the user
interface, for example, clicking a button to perform an action. In this case, the XSJS service called by the UI
request performs an action and returns a response, which is displayed in the SAPUI5 client.

● Consuming OData services with SAPUI5
Build an SAPUI5 application that calls an OData service in response to user interaction with the user
interface, for example, clicking a graph or report chart. In this case, the OData service called by the UI
request performs an action (collects data) and returns a response, which is displayed in the SAPUI5 client.
○ Bind a UI element in an SAPUI5 application to the data specified in an OData service. For example, you

can populate the contents of a table column displayed in an SAPUI5 application by using the data
stored in a database table defined in an OData service.

○ Build an SAPUI5 view that provides input fields, which you can use to create a new record or update an
existing record in a database table, for example, using the OData create, update, and delete (CRUD)
features.

● Localizing UI Strings in SAPUI5
Create a simple text-bundle file for translation purposes and re-import the translated text into SAP HANA
for use with a specific language locale. Textbundles containing text strings that define elements of the user-
interface (for example, buttons and menu options).

650 P U B L I C
SAP HANA Developer Guide

Building UIs

https://sapui5.hana.ondemand.com/

Related Information

SAPUI5 Demo Kit (version 1.28)
Tutorial: Create a Hello World SAPUI5 Application [page 651]
Tutorial: Consume an XSJS Service from SAPUI5 [page 655]
Tutorial: Consume an OData Service from SAPUI5 [page 661]
Tutorial: Consume an OData Service with the CREATE Option [page 668]
Tutorial: Create and Translate Text Bundles for SAPUI5 Applications [page 675]

10.3.1 Tutorial: Create a Hello-World SAP UI5 Application

SAPUI5 provides a client-side HTML5 rendering library with a comprehensive set of standard controls and
extensions that you can use to build a UI quickly and easily.

Prerequisites

To complete this tutorial successfully, bear in mind the following requirements:

● You have installed the SAP HANA studio.
● You have installed the SAPUI5 tools included in the delivery unit (DU) SAPUI5_1.

Context

SAPUI5 application development tools provides wizards to help you to create application projects and views
according to the model-controller-view concept. The development tools include features such as editors with
JavaScript code-completion, templates and code snippets, and application previews. To create a simple “Hello
World” application in SAPUI5, perform the following steps:

Procedure

1. Create a base structure for your application packages and files.
Your application files must be placed in a package structure in the SAP HANA Repository, for example /
workshop/session/ui/HelloWorld/.

2. Create the application-descriptor files that enable client access to the services and data exposed by the
new application.
Each SAP HANA XS application requires two mandatory application descriptor files, which are located in
the root package of the application they apply to.

SAP HANA Developer Guide
Building UIs P U B L I C 651

https://sapui5.hana.ondemand.com/1.28.33/

 Note
Application descriptors have a file extension, but no file name, for example, .xsapp or .xsaccess.

a. In the SAP HANA studio's Project Explorer view, right-click the application package where you want to
create the new application descriptors and, and in the popup menu, choose, New Other...

b. Create the XS application descriptor file (.xsapp).

In the Select a Wizard dialog, choose SAP HANA Application Development XS Application Access
File .

 Tip
The application descriptor has no content; its job is to mark the root package of the resources
exposed to client requests by the application.

c. Create the XS application-access file (.xsaccess).

In the Select a Wizard dialog, choose SAP HANA Application Development XS Application Access
File .

 Tip
The .xsaccess file controls who has access to the application (and how) and what data or
services the application can expose.

d. Select a template to use for the application-access file (for example, Basic) and choose Finish.
A basic .xsaccess file looks like the following example, which exposes your application data, requires
logon credentials for authentication, and helps to prevent cross-site request-forgery (XSRF) attacks:

{ "exposed" : true,
 "authentication" : { "method" : "Form"},
 "prevent_xsrf" : true }

e. Activate the XS application descriptor files in the SAP HANA Repository.
Right-click the package containing the application descriptor files you have created and, in the context-
sensitive menu, choose Team Activate .

You now have a basic package structure to hold your application files. The root package for your new
application also contains the required application descriptors, which control access to the services and
data exposed by the new application.

3. Create an SAPUI5 project.
a. Start the New Application Project wizard.

In the SAP HANA studio's Project Explorer view, choose New Other...
b. Select the application project.

SAP HANA studio provides dedicated wizards to help you set up an application project; here you
choose the project SAPUI5 Application Development Application Project in the New Project
wizard.

c. Define details of the new project.
○ Enter a name for the new SAPUI5 application project, for example, HelloWorldX.

652 P U B L I C
SAP HANA Developer Guide

Building UIs

○ Check the Use default location option.
d. Define details of the new SAPUI5 application view and choose Finish.

○ Check the folder for the project; it should be WebContent/helloworldx.
○ Provide a name for the base HTML page that the SAPUI5 application uses, for example,

HelloWorld.
○ Choose JavaScript as the Development Paradigm.

 Note
If prompted, do not switch to the Java EE perspective.

You now have an Eclipse project with a bootstrap HTML (index.html) page in the WebContent folder and
a HelloWorld controller and HelloWorld view in an sub-package called helloworldx.

4. Share the new SAPUI5 project with the SAP HANA Repository.
a. Choose the appropriate repository type, for example, SAP HANA Repository.
b. Specify the location in the SAP HANA repository where the new SAP UI5 application project should

reside.
In the Share Project wizard, choose Browse... to select the package in which you want to store the new
SAPUI5 application artifacts.

c. Check the settings you made for the new SAPUI5 application project.
d. Activate the new SAPUI5 application project.

 Note
Activate at the project level to ensure that all project artifacts are created and stored in the SAP
HANA repository.

5. Modify the default settings for the SAPUI5 bootstrap location in the base index.html.

The SAPUI5 project wizard inserts a default bootstrap location to the index.html file which is incorrect
for SAP HANA. You must manually change the bootstrap location in the SAPUI5 application's index.html

SAP HANA Developer Guide
Building UIs P U B L I C 653

file by adding /sap/ui5/1 to the start of the default location resources/sap-ui-core.js, as
illustrated in the following example:

<!DOCTYPE HTML> <html>
 <head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge"> <script src="/sap/ui5/1/resources/sap-ui-core.js" id="sap-ui-bootstrap"
 data-sap-ui-libs="sap.ui.commons"
 data-sap-ui-theme="sap_goldreflection"> </script>

6. Add UI elements to the SAPUI5 application interface.
You define UI elements in the createContent function section of the HelloWorld.view.js file. In
this example, you instantiate the Button UI element class as myButton and then return it at the end of the
createContent function. The SAPUI5 application renders any UI element (or element group) returned
from the createContent function function.

sap.ui.jsview("helloworldx.HelloWorld", { /** Specifies the Controller belonging to this View.
 * In the case that it is not implemented, or that "null" is returned,
this View does not have a Controller.
 * @memberOf helloworldx.HelloWorld
 */
 getControllerName : function() {
 return "helloworldx.HelloWorld";
 },
 /** Is initially called once after the Controller has been instantiated.
It is the place where the UI is constructed.
 * Since the Controller is given to this method, its event handlers can be
attached right away.
 * @memberOf helloworldx.HelloWorld
 */
 createContent : function(oController) {
 var myButton = new sap.ui.commons.Button("btn");
 myButton.setText("helloworld");
 myButton.attachPress(function(){$("#btn").fadeOut();});
 return myButton;
 } });

7. Save and activate all changes to all SAPUI5 application artifacts.

 Note
Activate at the project level to ensure that the changes made to all project artifacts are updated in the
SAP HANA repository.

8. Test your “Hello World” SAPUI5 application in a Web browser.
The URL for the SAPUI5 application is: http://<WebServerHost>:80<SAPHANAinstance>/
workshop/session/ui/HelloWorld/WebContent/.

 Note
The content of the URL is case sensitive. Log on using your SAP HANA user name and password.

You should see the Hello World button shown in the following example:

654 P U B L I C
SAP HANA Developer Guide

Building UIs

10.3.2 Tutorial: Consume an XSJS Service from SAPUI5

An XS server-side JavaScript (XSJS) application can be used to perform an action linked to an element such as
a button or a text box in an SAPUI5 application.

Prerequisites

To complete this tutorial successfully, bear in mind the following requirements:

● You have installed the SAP HANA studio.
● You have installed the SAPUI5 tools included in the delivery unit (DU) SAPUI5_1.
● You have installed the SHINE (democontent) delivery unit; this DU contains the XSJS service you want to

consume with the SAPUI5 application you build in this tutorial.
● You have generated data to populate the tables and views provided by the SHINE delivery unit and used in

this tutorial. You can generate the data with tools included in the SHINE delivery unit.

 Note
You might have to adjust the paths in the code examples provided to suit the folder/package hierarchy in
your SAP HANA repository, for example, to point to the underlying content (demonstration tables and
services) referenced in the tutorial.

Context

You can configure an SAPUI5 application to call an XSJS service in response to user interaction with the UI; the
XSJS service performs an action and returns a response. This tutorial demonstrates how to trigger an XSJS
service which performs a mathematical multiplication when numbers are typed in text boxes displayed in an
SAPUI5 application.

Procedure

1. Create an SAPUI5 project.

SAP HANA Developer Guide
Building UIs P U B L I C 655

a. Start the New Application Project wizard.

In the SAP HANA studio's Project Explorer view, choose New Other...
b. Select the application project.

SAP HANA studio provides dedicated wizards to help you set up an application project; here you
choose the project SAPUI5 Application Development Application Project in the New Project
wizard.

c. Define details of the new project.
○ Enter a name for the new SAPUI5 application project, for example, xsjsMultiply.
○ Check the Use default location option.

d. Define details of the new SAPUI5 application view and choose Finish.
○ Provide a name for the base HTML page that the SAPUI5 application uses, for example,

xsjsMultiply.
○ Choose JavaScript as the Development Paradigm.

 Note
If prompted, do not switch to the Java EE perspective.

You now have an Eclipse project for the new SAPUI5 application. The SAPUI5 application project has a
bootstrap HTML page in the WebContent folder and an xsjsMultiply controller (and a view) in the sub-
package xsjsMultiply.

2. Create the application-descriptor files that enable client access to the services and data exposed by the
new application.
Each SAP HANA XS application requires two mandatory application descriptor files, which are located in
the root package of the application they apply to. If the application-descriptor files already exist (for
example, because they are created as part of the new-application Wizard), you can safely skip this step.

 Note
Application descriptors have a file extension, but no file name, for example, .xsapp or .xsaccess.

a. In the SAP HANA studio's Project Explorer view, right-click the application package where you want to
create the new application descriptors and, and in the popup menu, choose, New Other...

b. Create the XS application descriptor file (.xsapp).

In the Select a Wizard dialog, choose SAP HANA Application Development XS Application Access
File .

 Tip
The application descriptor has no content; its job is to mark the root package of the resources
exposed to client requests by the application.

c. Create the XS application-access file (.xsaccess).

In the Select a Wizard dialog, choose SAP HANA Application Development XS Application Access
File .

656 P U B L I C
SAP HANA Developer Guide

Building UIs

 Tip
The .xsaccess file controls who has access to the application (and how) and what data or
services the application can expose.

d. Select a template to use for the application-access file (for example, Basic) and choose Finish.
A basic .xsaccess file looks like the following example, which exposes your application data, specifies
that logon credentials are required for authentication, and helps to prevent cross-site request-forgery
(XSRF) attacks:

{ "exposed" : true,
 "authentication" : { "method" : "Form"},
 "prevent_xsrf" : true }

e. Activate the XS application descriptor files in the SAP HANA Repository.
Right-click the package containing the application descriptor files you have created and, in the context-
sensitive menu, choose Team Activate .

You now have a basic package structure to hold your application files. The root package for your new
application also contains the required application descriptors, which control access to the services and
data exposed by the new application.

3. Share the new SAPUI5 project with the SAP HANA Repository.
In the SAP HANA studio's Project Explorer view, right-click the new SAPUI5 application project, and choose

Team Share Project...
a. Choose the appropriate repository type, for example, SAP HANA Repository.
b. Specify the package location in the SAP HANA repository where the new SAP UI5 application project

should reside.
In the Share Project wizard, choose Browse... to select the package in which you want to store the new
SAPUI5 application artifacts. Select the ui package in the SAPUI5 folder hierarchy.

c. Check the settings you made for the new SAPUI5 application project.
d. Activate the new SAPUI5 application project.

In the SAP HANA studio's Project Explorer view, right-click the new SAPUI5 application project, and
choose Team Activate .

 Tip
Remember to activate at the project level to ensure that all project artifacts are created and stored
in the SAP HANA repository.

4. Modify the default settings for the SAPUI5 bootstrap location in the base SAPUI5 index.html.

The SAPUI5 project wizard inserts a default bootstrap location into the index.html file which is incorrect
for SAP HANA. You must manually change the bootstrap location in the SAPUI5 application's index.html
file by adding /sap/ui5/1 to the beginning of the default path defined in the script src= tag, for
example, script src="/sap/ui5/1/resources/sap-ui-core.js as illustrated in the following
example:

SAP HANA Developer Guide
Building UIs P U B L I C 657

 Note
You must also declare any additional libraries you want the SAPUI5 application to use to render the
data it consumes. For this tutorial, add sap.ui.table to the list of SAPUI5 libraries, as shown in the
following example.

<!DOCTYPE HTML> <html>
 <head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge"> <script src="/sap/ui5/1/resources/sap-ui-core.js" id="sap-ui-bootstrap" data-sap-ui-libs="sap.ui.commons,sap.ui.table" data-sap-ui-theme="sap_goldreflection"> </script>

5. Set up the SAPUI5 view displayed in the application user interface.
The SAPUI5 view for this tutorial is specified in the file xsjsMultiply.view.js; it displays a simple UI
with two text boxes that you can use to specify the numbers to use for the multiplication action.

sap.ui.jsview("xsjsmultiply.xsjsMultiply", { getControllerName : function() {
 return "xsjsmultiply.xsjsMultiply";
 },
 createContent : function(oController) {
 var multiplyPanel = new sap.ui.commons.Panel().setText("XS Service
Test - Multiplication");

 var layoutNew = new
sap.ui.commons.layout.MatrixLayout({width:"auto"});
 multiplyPanel.addContent(layoutNew);
 var oVal1 = new sap.ui.commons.TextField("val1",{tooltip: "Value
#1", editable:true});
 var oVal2 = new sap.ui.commons.TextField("val2",{tooltip: "Value
#2", editable:true});
 var oResult = new sap.ui.commons.TextView("result",{tooltip:
"Results"});
 var oEqual = new sap.ui.commons.TextView("equal",{tooltip:
"Equals", text: " = "});
 var oMult = new sap.ui.commons.TextView("mult",{tooltip: "Multiply
by", text: " * "});

 //Attach a controller event handler to Value 1 Input Field
 oVal1.attachEvent("liveChange", function(oEvent){
 oController.onLiveChange(oEvent,oVal2); });
 //Attach a controller event handler to Value 2 Input Field
 oVal2.attachEvent("liveChange", function(oEvent){
 oController.onLiveChange(oEvent,oVal1); });

 layoutNew.createRow(oVal1, oMult, oVal2, oEqual, oResult);

 return multiplyPanel;
 } });

6. Set up the SAPUI5 controller functions to handle the UI events.
The code described in this step must be added to the SAPUI5 view controller file
xsjsMultiply.controller.js.

a. Add the code that creates an event handler named onLiveChange.

658 P U B L I C
SAP HANA Developer Guide

Building UIs

The onLiveChange function has two parameters: oEvent and oVal, which are used in the
jQuery.Ajax call to the XSJS service at the specified URL. This is the event which is triggered every time
the value is changed in either of the text boxes displayed in the application UI.

onLiveChange: function(oEvent,oVal){ var aUrl = '/sap/hana/democontent/epm/services/multiply.xsjs?
cmd=multiply'+'&num1='
 +escape(oEvent.getParameters().liveValue)
+'&num2='+escape(oVal.getValue());
 jQuery.ajax({
 url: aUrl,
 method: 'GET',
 dataType: 'json',
 success: this.onCompleteMultiply, error: this.onErrorCall });

If the AJAX call is successful, call a controller event named onCompleteMultiply; if the AJAX call is
not successful, call a controller event named onErrorCall.

b. Add the code that creates an event handler named onCompleteMultiply.

The onCompleteMultiply function accepts the response object as an input parameter called myTxt.
This text box will contain the result of the multiplication in clear text. Use the
sap.ui.core.format.NumberFormat to format the output as an integer and set the value back into
the oResult textView.

onCompleteMultiply: function(myTxt){ var oResult = sap.ui.getCore().byId("result");
 if(myTxt==undefined){ oResult.setText(0); }
 else{
 jQuery.sap.require("sap.ui.core.format.NumberFormat");
 var oNumberFormat =
sap.ui.core.format.NumberFormat.getIntegerInstance({
 maxFractionDigits: 12,
 minFractionDigits: 0,
 groupingEnabled: true });
 oResult.setText(oNumberFormat.format(myTxt)); } },

c. Add the code that produces an error dialog if the event produces an error.
The onErrorCall function displays a message dialog (sap.ui.commons.MessageBox.show) in the
event of an error during the multiplication action provided by the XSJS service. The information
displayed in the error message is contained in jqXHR.responseText.

onErrorCall: function(jqXHR, textStatus, errorThrown){ sap.ui.commons.MessageBox.show(jqXHR.responseText,
 "ERROR",
 "Service Call Error");
 return; }

The complete xsjsMultiply.controller.js file should look like the following example:

sap.ui.controller("xsjsmultiply.xsjsMultiply", { onLiveChange: function(oEvent,oVal){
 var aUrl = '/sap/hana/democontent/epm/services/multiply.xsjs?
cmd=multiply'+'&num1='
 +escape(oEvent.getParameters().liveValue)
+'&num2='+escape(oVal.getValue());
 jQuery.ajax({
 url: aUrl,
 method: 'GET',
 dataType: 'json',

SAP HANA Developer Guide
Building UIs P U B L I C 659

 success: this.onCompleteMultiply,
 error: this.onErrorCall });
 },

 onCompleteMultiply: function(myTxt){
 var oResult = sap.ui.getCore().byId("result");
 if(myTxt==undefined){ oResult.setText(0); }
 else{
 jQuery.sap.require("sap.ui.core.format.NumberFormat");
 var oNumberFormat =
sap.ui.core.format.NumberFormat.getIntegerInstance({
 maxFractionDigits: 12,
 minFractionDigits: 0,
 groupingEnabled: true });
 oResult.setText(oNumberFormat.format(myTxt)); }
 },

 onErrorCall: function(jqXHR, textStatus, errorThrown){
 sap.ui.commons.MessageBox.show(jqXHR.responseText,
 "ERROR",
 "Service Call Error");
 return;
 } });

7. Save and activate all changes to all SAPUI5 application artifacts.

 Note
Activate at the project level to ensure that the changes made to all project artifacts are updated in the
SAP HANA repository.

8. Test your “xsjsMultiply” SAPUI5 application in a Web browser.
The URL for the SAPUI5 application is: http://<WebServerHost>:80<SAPHANAinstance>/
workshop/session/ui/xsjsMultiply/WebContent/.

 Note
The content of the URL is case sensitive. If prompted, log on using your SAP HANA user name and
password.

660 P U B L I C
SAP HANA Developer Guide

Building UIs

10.3.3 Tutorial: Consume an OData Service from SAPUI5

An OData service can be used to provide the data required for display in an SAPUI5 application.

Prerequisites

To complete this tutorial successfully, bear in mind the following requirements:

● You have installed the SAP HANA studio.
● You have installed the SAPUI5 tools included in the delivery unit (DU) SAPUI5_1.
● You have installed the SHINE delivery unit (DU); this DU contains the views

(sap.hana.democontent.epm.models:: AN_SALES_OVERVIEW_WO_CURR_CONV and
sap.hana.democontent.epm.models::AT_BUYER) specified in the OData service
(salesOrders.xsodata) that you want to consume with the SAPUI5 application you build in this tutorial.

● You have generated data to populate the tables and views provided by the SHINE DU and used in this
tutorial. You can generate the data with tools included in the SHINE DU.

 Note
You might have to adjust the paths in the code examples provided to suit the folder/package hierarchy in
your SAP HANA repository, for example, to point to the underlying content (demonstration tables and
services) referenced in the tutorial.

Context

You can bind a UI element in an SAPUI5 application to the data specified in an OData service. For example, you
can populate the contents of a table column displayed in an SAPUI5 application with the data stored in a
database table defined in an OData service.

Procedure

1. Create an SAPUI5 project.
a. Start the New Application Project wizard.

In the SAP HANA studio's Project Explorer view, choose New Other...
b. Select the application project.

SAP HANA studio provides dedicated wizards to help you set up an application project; here you
choose the project SAPUI5 Application Development Application Project in the New Project
wizard.

c. Define details of the new project.
○ Enter a name for the new SAPUI5 application project, for example, odataBasic.

SAP HANA Developer Guide
Building UIs P U B L I C 661

○ Check the Use default location option.
d. Define details of the new SAPUI5 application view and choose Finish.

○ Check the folder for the project; it should be WebContent/odatabasicx.
○ Provide a name for the base HTML page that the SAPUI5 application uses, for example,

odataBasic.
○ Choose JavaScript as the Development Paradigm.

 Note
If prompted, do not switch to the Java EE perspective.

You now have an Eclipse project for the new SAPUI5 application. The SAPUI5 application project has a
bootstrap HTML page (index.html) in the WebContent folder and an odataBasic controller (and view)
in the sub-package odatabasicxas illustrated in the following example:.

2. Create the application-descriptor files that enable client access to the services and data exposed by the
new application.
Each SAP HANA XS application requires two mandatory application descriptor files, which are located in
the root package of the application they apply to. If the application-descriptor files already exist (for
example, because they are created as part of the new-application Wizard), you can safely skip this step.

 Note
Application descriptors have a file extension, but no file name, for example, .xsapp or .xsaccess.

a. In the SAP HANA studio's Project Explorer view, right-click the application package where you want to
create the new application descriptors and, and in the popup menu, choose, New Other...

b. Create the XS application descriptor file (.xsapp).

In the Select a Wizard dialog, choose SAP HANA Application Development XS Application Access
File .

 Tip
The application descriptor has no content; its job is to mark the root package of the resources
exposed to client requests by the application.

662 P U B L I C
SAP HANA Developer Guide

Building UIs

c. Create the XS application-access file (.xsaccess).

In the Select a Wizard dialog, choose SAP HANA Application Development XS Application Access
File .

 Tip
The .xsaccess file controls who has access to the application (and how) and what data or
services the application can expose.

d. Select a template to use for the application-access file (for example, Basic) and choose Finish.
A basic .xsaccess file looks like the following example, which exposes your application data, specifies
that logon credentials are required for authentication, and helps to prevent cross-site request-forgery
(XSRF) attacks:

{ "exposed" : true,
 "authentication" : { "method" : "Form"},
 "prevent_xsrf" : true }

e. Activate the XS application descriptor files in the SAP HANA Repository.
Right-click the package containing the application descriptor files you have created and, in the context-
sensitive menu, choose Team Activate .

You now have a basic package structure to hold your application files. The root package for your new
application also contains the required application descriptors, which control access to the services and
data exposed by the new application.

3. Share the new SAPUI5 project with the SAP HANA Repository.
In the SAP HANA studio's Project Explorer view, right-click the new SAPUI5 application project, and choose

Team Share Project...
a. Choose the appropriate repository type, for example, SAP HANA Repository.
b. Specify the package location in the SAP HANA repository where the new SAP UI5 application project

should reside.
In the Share Project wizard, choose Browse... to select the package in which you want to store the new
SAPUI5 application artifacts. Select the ui package in the SAPUI5 folder hierarchy.

c. Check the settings you made for the new SAPUI5 application project.
d. Activate the new SAPUI5 application project.

In the SAP HANA studio's Project Explorer view, right-click the new SAPUI5 application project, and
choose Team Activate .

 Tip
Remember to activate at the project level to ensure that all project artifacts are created and stored
in the SAP HANA repository.

4. Modify the default settings for the SAPUI5 bootstrap location in the base SAPUI5 index.html.

The SAPUI5 project wizard inserts a default bootstrap location into the index.html file which is incorrect
for SAP HANA. You must manually change the bootstrap location in the SAPUI5 application's index.html
file by adding /sap/ui5/1 to the beginning of the default path defined in the script src= tag, for
example, script src="/sap/ui5/1/resources/sap-ui-core.js as illustrated in the following
example:

SAP HANA Developer Guide
Building UIs P U B L I C 663

 Note
You must also declare any additional libraries you want the SAPUI5 application to use to render the
data it consumes. For this tutorial, add sap.ui.table to the list of SAPUI5 libraries, as shown in the
following example.

<!DOCTYPE HTML> <html>
 <head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge"> <script src="/sap/ui5/1/resources/sap-ui-core.js" id="sap-ui-bootstrap" data-sap-ui-libs="sap.ui.commons,sap.ui.table" data-sap-ui-theme="sap_goldreflection"> </script>

5. Connect the SAPUI5 table element to the OData service.
The code described in this step must be added to the SAPUI5 view controller file odataBasic.view.js.

a. Add the code to create an object named oModel of type sap.ui.model.odata.ODataModel, as
illustrated in the following code example:

var oModel = new sap.ui.model.odata.ODataModel("/sap/hana/democontent/epm/
services/salesOrders.xsodata/", true);

b. Add the code to set the model named oModel to the UI table control named oTable.

The code you add creates a sorting mechanism (of type sap.ui.model.Sorter) which uses the
column SALESORDERID. Bind the table to the entity SalesOrderHeader in the OData service
definition and add the sorter object to the binding.

this.oSHTable.setModel(oModel); var sort1 = new sap.ui.model.Sorter("SALESORDERID", true);

 this.oSHTable.bindRows({
 path: "/SalesOrderHeader",
 parameters: {expand: "Buyer",
 select:
"SALESORDERID,CURRENCY,GROSSAMOUNT,PARTNERID.PARTNERID,Buyer/COMPANYNAME"},
 sorter: sort1
 });

These two steps connect the SAPUI5 table element to the OData service salesOrders.xsodata. The
result in the odataBasic.view.js file should look like the code illustrated in the following example:

sap.ui.jsview("odatabasic.odataBasic", { /** Specifies the Controller belonging to this View.
 * In the case that it is not implemented, or that "null" is returned,
this View does not have a Controller.
 * @memberOf databasic.odataBasic
 */
 getControllerName : function() {
 return "odatabasic.odataBasic";
 },
 /** Is initially called once after the Controller has been instantiated.
It is the place where the UI is constructed.
 * Since the Controller is given to this method, its event handlers can be
attached right away.
 * @memberOf databasic.odataBasic
 */
 createContent : function(oController) {

664 P U B L I C
SAP HANA Developer Guide

Building UIs

 var oLayout = new
sap.ui.commons.layout.MatrixLayout({width:"100%"});

 var oModel = new sap.ui.model.odata.ODataModel("/sap/hana/
democontent/epm/services/salesOrders.xsodata/", true);

 var oControl;
 this.oSHTable = new sap.ui.table.Table("soTable",{
 visibleRowCount: 10,
 });
 this.oSHTable.setTitle("SALES_ORDER_HEADERS");

 //Table Column Definitions
 oControl = new
sap.ui.commons.TextView().bindProperty("text","SALESORDERID");
 this.oSHTable.addColumn(new sap.ui.table.Column({label:new
sap.ui.commons.Label({text: "SALES_ORDER_ID"}),
 template: oControl, sortProperty: "SALESORDERID",
filterProperty: "SALESORDERID", filterOperator:
sap.ui.model.FilterOperator.EQ, flexible: true }));

 oControl = new
sap.ui.commons.TextView().bindProperty("text","PARTNERID.PARTNERID");
 this.oSHTable.addColumn(new sap.ui.table.Column({label:new
sap.ui.commons.Label({text: "PARTNER_ID"}),
 template: oControl, sortProperty: "PARTNERID", filterProperty:
"PARTNERID" }));

 oControl = new sap.ui.commons.TextView().bindProperty("text","Buyer/
COMPANYNAME");
 this.oSHTable.addColumn(new sap.ui.table.Column({label:new
sap.ui.commons.Label({text: "COMPANY"}),
 template: oControl, sortProperty: "Buyer/CompanyName",
filterProperty: "Buyer/CompanyName", filterOperator:
sap.ui.model.FilterOperator.Contains }));

 oControl = new
sap.ui.commons.TextView().bindText("GROSSAMOUNT",oController.numericFormatter)
;
 oControl.setTextAlign("End");
 this.oSHTable.addColumn(new sap.ui.table.Column({label:new
sap.ui.commons.Label({text: "GROSS_AMOUNT"}),
 template: oControl, sortProperty: "GROSSAMOUNT",
filterProperty: "GROSSAMOUNT", hAlign: sap.ui.commons.layout.HAlign.End}));
 oControl = new
sap.ui.commons.TextView().bindProperty("text","CURRENCY");
 this.oSHTable.addColumn(new sap.ui.table.Column({label:new
sap.ui.commons.Label({text: "CURRENCY"}),
 template: oControl, sortProperty: "CURRENCY", filterProperty:
"CURRENCY" }));
 this.oSHTable.setModel(oModel);
 var sort1 = new sap.ui.model.Sorter("SALESORDERID", true);

 this.oSHTable.bindRows({
 path: "/SalesOrderHeader",
 parameters: {expand: "Buyer",
 select:
"SALESORDERID,CURRENCY,GROSSAMOUNT,PARTNERID.PARTNERID,Buyer/COMPANYNAME"},
 sorter: sort1
 });

 this.oSHTable.setTitle("Sales Orders");
 oLayout.createRow(this.oSHTable);

 return oLayout;
 }
});

SAP HANA Developer Guide
Building UIs P U B L I C 665

6. Save and activate all changes to all SAPUI5 application artifacts.

 Note
Activate at the project level to ensure that the changes made to all project artifacts are updated in the
SAP HANA repository.

7. Test your “odataBasic” SAPUI5 application in a Web browser.
The URL for the SAPUI5 application is: http://<WebServerHost>:80<SAPHANAinstance>/
workshop/session/ui/odataBasic/WebContent/.

 Note
The content of the URL is case sensitive. Log on using your SAP HANA user name and password.

8. Optional: Use the metadata that OData exposes to build the table columns dynamically.
You do not have to hard code the column definitions in the *.view.js file. To use Odata metadata to build
the columns dynamically, replace the list of hard-coded table-column definitions in the
odataBasic.view.js with the code that builds the table columns dynamically, as illustrated in the
following example.

sap.ui.jsview("odatabasic.odataBasic", { /** Specifies the Controller belonging to this View.
 * In the case that it is not implemented, or that "null" is returned,
this View does not have a Controller.
 * @memberOf databasic.odataBasic
 */
 getControllerName : function() {
 return "odatabasic.odataBasic";
 },
 /** Is initially called once after the Controller has been instantiated.
It is the place where the UI is constructed.
 * Since the Controller is given to this method, its event handlers can be
attached right away.
 * @memberOf databasic.odataBasic
 */
 createContent : function(oController) {

 var oLayout = new sap.ui.commons.layout.MatrixLayout({width:"100%"});

 var oModel = new sap.ui.model.odata.ODataModel("/sap/hana/
democontent/epm/services/salesOrders.xsodata/", true);

666 P U B L I C
SAP HANA Developer Guide

Building UIs

 var oControl;
 this.oSHTable = new sap.ui.table.Table("soTable",{
 visibleRowCount: 10,
 });
 this.oSHTable.setTitle("SALES_ORDER_HEADERS");
 //Table Column Definitions
 var oMeta = oModel.getServiceMetadata();
 var oControl;

 for (var i = 0; i < oMeta.dataServices.schema[0].entityType[0].property.length; i++) {
 var property = oMeta.dataServices.schema[0].entityType[0].property[i];

 oControl = new sap.ui.commons.TextField().bindProperty("value",property.name);
 oTable.addColumn(new sap.ui.table.Column({label:new sap.ui.commons.Label({text:
property.name}), template: oControl, sortProperty: property.name, filterProperty: property.name,
filterOperator: sap.ui.model.FilterOperator.EQ, flexible: true, width: "125px" }));
 } this.oSHTable.setModel(oModel);
 var sort1 = new sap.ui.model.Sorter("SALESORDERID", true);

 this.oSHTable.bindRows({
 path: "/SalesOrderHeader",
 parameters: {expand: "Buyer",
 select:
"SALESORDERID,CURRENCY,GROSSAMOUNT,PARTNERID,Buyer/COMPANYNAME"},
 sorter: sort1
 });

 this.oSHTable.setTitle("Sales Orders");
 oLayout.createRow(this.oSHTable);

 return oLayout;
 } });

The code you insert performs the following actions:
○ Uses the function getServiceMetadata() to connect to the OData metadata object
○ Inspects the OData metadata and extracts the columns of the service defined in the property

dataServices.schema[0].entityType[0].property
○ Loops over this collection of OData metadata and creates a column for each property.name in the

service dynamically.

SAP HANA Developer Guide
Building UIs P U B L I C 667

10.3.4 Tutorial: Consume an OData Service with the CREATE
Option

An OData service can be used to provide the data required for display in an SAPUI5 application.

Prerequisites

To complete this tutorial successfully, bear in mind the following requirements:

● You have installed the SAP HANA studio.
● You have installed the SAPUI5 tools included in the delivery unit (DU) SAPUI5_1.
● You have installed the SHINE delivery unit (DU); this DU contains the tables and OData services that you

want to consume with the SAPUI5 application you build in this tutorial.
● You have generated data to populate the tables and views provided by the SHINE delivery unit and used in

this tutorial. You can generate the data with tools included in the SHINE delivery unit.

 Note
You might have to adjust the paths in the code examples provided to suit the folder/package hierarchy in
your SAP HANA repository, for example, to point to the underlying content (demonstration tables and
services) referenced in the tutorial.

Context

You can bind a UI element in an SAPUI5 application to the data specified in an OData service. For example, you
can populate the contents of table columns displayed in an SAPUI5 application with the data stored in a
database table defined in an OData service. In this tutorial, you learn how to build an SAPUI5 view that provides
input fields, which you can use to create a new record or update an existing record in a database table, for
example, using the OData create, update, and delete (CRUD) features.

Procedure

1. Create an SAPUI5 project.
a. Start the New Application Project wizard.

In the SAP HANA studio's Project Explorer view, choose New Other...
b. Select the application project.

SAP HANA studio provides dedicated wizards to help you set up an application project; choose the
project SAPUI5 Application Development Application Project in the New Project wizard.

c. Define details of the new project.
○ Enter a name for the new SAPUI5 application project, for example, userCRUD.

668 P U B L I C
SAP HANA Developer Guide

Building UIs

○ Check the Use default location option.
d. Define details of the new SAPUI5 application view and choose Finish.

○ Provide a name for the base HTML page that the SAPUI5 application uses, for example, userCRUD.
○ Choose JavaScript as the Development Paradigm.

 Note
If prompted, do not switch to the Java EE perspective.

You now have an Eclipse project for the new SAPUI5 application. The SAPUI5 application project has a
bootstrap HTML page (index.html) in the WebContent folder and an odataBasic controller (and view)
in the sub-package odatacrudx.

2. Create the application-descriptor files that enable client access to the services and data exposed by the
new application.
Each SAP HANA XS application requires two mandatory application descriptor files, which are located in
the root package of the application they apply to. If the application-descriptor files already exist (for
example, because they are created as part of the new-application Wizard), you can safely skip this step.

 Note
Application descriptors have a file extension, but no file name, for example, .xsapp or .xsaccess.

a. In the SAP HANA studio's Project Explorer view, right-click the application package where you want to
create the new application descriptors and, and in the popup menu, choose, New Other...

b. Create the XS application descriptor file (.xsapp).

In the Select a Wizard dialog, choose SAP HANA Application Development XS Application Access
File .

 Tip
The application descriptor has no content; its job is to mark the root package of the resources
exposed to client requests by the application.

c. Create the XS application-access file (.xsaccess).

In the Select a Wizard dialog, choose SAP HANA Application Development XS Application Access
File .

 Tip
The .xsaccess file controls who has access to the application (and how) and what data or
services the application can expose.

d. Select a template to use for the application-access file (for example, Basic) and choose Finish.
A basic .xsaccess file looks like the following example, which exposes your application data, specifies
that logon credentials are required for authentication, and helps to prevent cross-site request-forgery
(XSRF) attacks:

{ "exposed" : true,
 "authentication" : { "method" : "Form"},
 "prevent_xsrf" : true }

SAP HANA Developer Guide
Building UIs P U B L I C 669

e. Activate the XS application descriptor files in the SAP HANA Repository.
Right-click the package containing the application descriptor files you have created and, in the context-
sensitive menu, choose Team Activate .

You now have a basic package structure to hold your application files. The root package for your new
application also contains the required application descriptors, which control access to the services and
data exposed by the new application.

3. Share the new SAPUI5 project with the SAP HANA repository.
In the SAP HANA studio's Project Explorer view, right-click the new SAPUI5 application project, and choose

Team Share Project...
a. Choose the appropriate repository type, for example, SAP HANA Repository.
b. Specify the package location in the SAP HANA repository where the new SAP UI5 application project

should reside.
In the Share Project wizard, choose Browse... to select the package in which you want to store the new
SAPUI5 application artifacts. Select the ui package in the SAPUI5 folder hierarchy.

c. Check the settings you made for the new SAPUI5 application project.
d. Activate the new SAPUI5 application project.

In the SAP HANA studio's Project Explorer view, right-click the new SAPUI5 application project, and
choose Team Activate .

 Tip
Remember to activate at the project level to ensure that all project artifacts are created and stored
in the SAP HANA repository.

4. Modify the default settings for the SAPUI5 bootstrap location in the base SAPUI5 index.html.

The SAPUI5 project wizard inserts a default bootstrap location into the index.html file which is incorrect
for SAP HANA. You must manually change the bootstrap location in the SAPUI5 application's index.html
file by adding /sap/ui5/1 to the beginning of the default path defined in the script src= tag, for
example, script src="/sap/ui5/1/resources/sap-ui-core.js as illustrated in the following
example:

 Note
You must also declare any additional libraries you want the SAPUI5 application to use to render the
data it consumes. For this tutorial, add sap.ui.table to the list of SAPUI5 libraries, as shown in the
following example.

<!DOCTYPE HTML> <html><head><meta http-equiv="X-UA-Compatible" content="IE=edge"> <script src="/sap/ui5/1/resources/sap-ui-core.js" id="sap-ui-bootstrap" data-sap-ui-libs="sap.ui.commons, sap.ui.table,
sap.ui.ux3, sap.viz" data-sap-ui-theme="sap_goldreflection">
 </script>
 <!-- add sap.ui.table,sap.ui.ux3 and/or other libraries to
'data-sap-ui-libs' if required -->
 <script>
 var version = sap.ui.version;
 var versionMinor = version.substring(2,4);
 if(versionMinor>=14){
 sap.ui.getCore().applyTheme("sap_bluecrystal")

670 P U B L I C
SAP HANA Developer Guide

Building UIs

 }
 sap.ui.localResources("usercrud");
 var view = sap.ui.view({id:"iduserCRUD1",
viewName:"usercrud.userCRUD", type:sap.ui.core.mvc.ViewType.JS});
 view.placeAt("content");
 </script>
 </head>
 <body class="sapUiBody" role="application">
 <div id="content"></div>
 </body>
</html>

5. Set up the SAPUI5 user interface and bind it to an OData service.
The code you need to add to the userCRUD.view.js performs the following actions:
○ Adds three text-entry boxes (sap.ui.commons.TextField) to the SAPUI5 application interface

(First Name, Last Name, and Email)
○ Adds a Create Record button (sap.ui.commons.Button) to the SAPUI5 application interface
○ Binds the SAPUI5 view to the OData service user.xsodata

sap.ui.jsview("usercrud.userCRUD", {
 getControllerName : function() {
 return "usercrud.userCRUD";
 },

 createContent : function(oController) {

 var oLayout = new sap.ui.commons.layout.MatrixLayout();
 this.oModel = new sap.ui.model.odata.ODataModel("/sap/hana/
democontent/epm/services/user.xsodata/", true);

 var updatePanel = new sap.ui.commons.Panel("updPanel").setText('New
User Record Details');
 var layoutNew = new
sap.ui.commons.layout.MatrixLayout({width:"auto"});
 var oVal1 = new sap.ui.commons.TextField("fName",{tooltip: "First
Name", width: "200px", editable:true}); var oVal2 = new sap.ui.commons.TextField("lName",{tooltip: "Last
Name", width: "200px", editable:true}); var oVal3 = new sap.ui.commons.TextField("email",{tooltip: "Email",
width: "200px", editable:true}); var oExcButton = new sap.ui.commons.Button({ text : "Create Record", press : oController.callUserService });
 layoutNew.createRow(new sap.ui.commons.Label({text: "First Name:
"}), oVal1); //oExcButton);
 layoutNew.createRow(new sap.ui.commons.Label({text: "Last Name:
"}), oVal2); //oExcButton);
 layoutNew.createRow(new sap.ui.commons.Label({text: "Email:
"}), oVal3, oExcButton);
 updatePanel.addContent(layoutNew);
 oLayout.createRow(updatePanel);

 oTable = new sap.ui.table.Table("userTbl",{tableId: "tableID",
 visibleRowCount: 10});
 oTable.setTitle("Users");

 //Table Column Definitions
 var oMeta = this.oModel.getServiceMetadata();
 var oControl;

 for (var i = 0; i <
oMeta.dataServices.schema[0].entityType[0].property.length; i++) {

SAP HANA Developer Guide
Building UIs P U B L I C 671

 var property =
oMeta.dataServices.schema[0].entityType[0].property[i];

 oControl = new sap.ui.commons.TextField({change:
oController.updateService }).bindProperty("value",property.name);
 if(property.name === 'PERS_NO'){
 oControl.setEditable(false);
 }
 oTable.addColumn(new sap.ui.table.Column({label:new
sap.ui.commons.Label({text: property.name}), template: oControl,
sortProperty: property.name, filterProperty: property.name, filterOperator:
sap.ui.model.FilterOperator.EQ, flexible: true, width: "125px" }));
 }

 oTable.setModel(this.oModel);
 oTable.bindRows("/Users");
 oTable.setTitle("Users");
 oTable.setEditable(true);

 oLayout.createRow(oTable);
 return oLayout;

 }
});

The userCRUD.view.js file should display the UI view illustrated in the following example:

6. Set up the UI elements that the SAPUI5 application uses to handle create and update events.
The functions that handle the create and update events are defined in the SAPUI5 controller.js file.

a. Add a declaration for the oModel and set it to null.

This code ensures that the model instance is passed from the SAPUI5 view to the SAPUI5 controller.

sap.ui.controller("usercrud.userCRUD", { oModel : null, }

b. Add the event handlers required to create and update a database record with OData CRUD operations.
The event handlers are empty at this point but, when finished, ensures that the functions
callUserService (which creates new records in a table) and updateService (which updates
records in a table) are available.

callUserService : function() { },
updateService: function(Event) {

672 P U B L I C
SAP HANA Developer Guide

Building UIs

 }
c. Set up the callUserService function to handle create events.

The code required for this implementation of the callUserService function is illustrated in the
following example:

callUserService : function() { var oModel = sap.ui.getCore().byId("userTbl").getModel();
 var oEntry = {};
 oEntry.PERS_NO = "0000000000";
 oEntry.FIRSTNAME = sap.ui.getCore().byId("fName").getValue();
 oEntry.LASTNAME = sap.ui.getCore().byId("lName").getValue();
 oEntry.E_MAIL = sap.ui.getCore().byId("email").getValue();
 oModel.setHeaders({"content-type" : "application/
json;charset=utf-8"});
 oModel.create('/Users', oEntry, null, function() {
 alert("Create successful");
 }, function() {
 alert("Create failed");
 }); },

In this example, the callUserService function performs the following actions:
○ Provides access to the model object by means of the controller with a call to var oModel =

sap.ui.getCore().byId("userTbl").getModel();.
○ Creates a JSON object with the service fields: PERS_NO, FIRSTNAME, LASTNAME, and E_MAIL.

PERS_NO can have a fixed value 0000000000. The other fields should be read from the screen with
sap.ui.getCore().byId("<insert field id>").getValue();

○ Sets a custom header of “content-type” with the value “application/
json;charset=utf-8” in the model. This enables a call to the oModel.create function for the
entity /Users.

d. Set up the updateService function to handle update events.

The code required for this implementation of the updateService function is illustrated in the
following example:

updateService: function(Event) { var oModel = sap.ui.getCore().byId("userTbl").getModel();
 var index = Event.getSource().oParent.getIndex();
 var oEntry = {};
 oEntry.PERS_NO = sap.ui.getCore().byId("__field0-col0-
row"+index).getValue();
 switch (Event.mParameters.id){
 case "__field1-col1-row"+index:
 oEntry.FIRSTNAME = Event.mParameters.newValue; break;
 case "__field2-col2-row"+index:
 oEntry.LASTNAME = Event.mParameters.newValue; break;
 case "__field3-col3-row"+index:
 oEntry.E_MAIL = Event.mParameters.newValue;
break;
 }

 var oParams = {};
 oParams.fnSuccess = function(){ alert("Update successful");};
 oParams.fnError = function(){alert("Update failed");};
 oParams.bMerge = true;
 oModel.setHeaders({"content-type" : "application/
json;charset=utf-8"});
 oModel.update("/Users('"+oEntry.PERS_NO+"')", oEntry, oParams);

 }

SAP HANA Developer Guide
Building UIs P U B L I C 673

});
The updateService performs the following actions:
○ Accesses the model to read the index of the table for the changed record using

Event.getSource().oParent.getIndex().
○ Creates a JSON object with the service fields PERS_NO and whichever field was modified or

updated. You can access the fields in the table using the event parameter ID “__field<index>-
col<index>-row”+index, where index is the table index you read earlier, for example,
__field1-col1-row"+index.

○ Sets a custom header of “content-type” with the value “application/
json;charset=utf-8” in the model. Then you can call the oModel.update function for the
entity /Users.

7. Save and activate all changes to all SAPUI5 application artifacts.

 Note
Activate at the project level to ensure that the changes made to all project artifacts are updated in the
SAP HANA repository.

8. Test your “userCRUD” SAPUI5 application in a Web browser.
The URL for the SAPUI5 application is: http://<WebServerHost>:80<SAPHANAinstance>/sap/
hana/democontent/epm/ui/userCRUD/index.html. You should test both the create and the update
operations.
a. Create a new record in the table referenced in the OData service.

b. Update an existing record in the table referenced in the OData service.

674 P U B L I C
SAP HANA Developer Guide

Building UIs

10.3.5 Tutorial: Create and Translate Text Bundles for SAPUI5
Applications

Text bundles are used in the context of internationalization (i18n) to store text strings that are displayed in the
user interface, for example, dialog titles, button texts, and error messages.

Prerequisites

To complete this tutorial successfully, bear in mind the following requirements:

● You have installed the SAP HANA studio.
● You have installed the SAPUI5 tools included in the delivery unit (DU) SAPUI5_1.
● You have installed the democontent delivery unit; this DU contains the tables and OData services that you

want to consume with the SAPUI5 application you build in this tutorial.
● You have generated data to populate the tables and views provided by the democontent delivery unit and

used in this tutorial. You can generate the data with tools included in the democontent delivery unit.

 Note
You might have to adjust the paths in the code examples provided to suit the folder/package hierarchy in
your SAP HANA repository, for example, to point to the underlying content (demonstration services and
tables) referenced in this tutorial.

Context

For applications running in production environments, you need to maintain text strings independently so the
strings can easily be translated. For UI5 development in SAP HANA you create a so-called “text bundle” named
<FileName>.hdbtextbundle which contains the text strings. If you need to provide text strings in an

SAP HANA Developer Guide
Building UIs P U B L I C 675

alternative language, you can use the Repository Translation Tool (rtt) to export the hdbtextbundle to a
translation system. The translated text can then be imported back into the system for use in language-specific
application sessions.

 Note
In the SAP HANA repository, there is only a single hdbtextbundle file. However, if available, multiple
language versions of the strings are stored in the SAP HANA database, and the appropriate string is
selected and used automatically depending on the languages settings in the application.

Procedure

1. In an existing SAPUI5 application folder structure, create a dedicated folder (package) for the
internationalization elements, for example, the text bundles.
Name the new folder i18n.

 Note
For Translation purposes you must specify the Translation Domain and the Text collection in the
Translation section of the package creation dialog.

2. Create a container for the text bundle.
The file containing the text bundle must have the file extension .hdbtextbundle, for example,
ErrorMessages.hdbtextbundle
Create a file with the name messagebundle.hdbtextbundle.

3. Add content to the message bundle.
Add the text in the following code example to the messagebundle.hdbtextbundle file:

TRANSLATE helloworld=Hello World

4. Save the messagebundle.hdbtextbundle file and activate it in the SAP HANA repository.

5. Add a reference to the hdbtextbundle in the core HTML file for the SAP UI5 “Hello World” application you
are developing.

Open the file <...>/WebContent/index.html in the SAP UI5 “Hello World” project and add the
following text (in bold font type in the example) to the Language Resource Loader section:

<!DOCTYPE HTML> <html>
 <head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <script src="/sap/ui5/1/resources/sap-ui-core.js"
 id="sap-ui-bootstrap"
 data-sap-ui-libs="sap.ui.commons"
 data-sap-ui-theme="sap_goldreflection">
 </script>
 <!-- add sap.ui.table,sap.ui.ux3 and/or other libraries to 'data-sap-
ui-libs' if required -->
 <script>
 /*************** Language Resource Loader *************/ jQuery.sap.require("jquery.sap.resources");
 var sLocale =

676 P U B L I C
SAP HANA Developer Guide

Building UIs

 sap.ui.getCore().getConfiguration().getLanguage();
 var oBundle =
 jQuery.sap.resources({url : "./i18n/messagebundle.hdbtextbundle",
locale: sLocale});
 sap.ui.localResources("helloworldx");
 var view = sap.ui.view({id:"idHelloWorld1",
viewName:"helloworldx.HelloWorld", type:sap.ui.core.mvc.ViewType.JS});
 view.placeAt("content");
 </script>
 </head>
 <body class="sapUiBody" role="application">
 <div id="content"></div>
 </body> </html>

6. Save the index.html file and activate it in the Repository.

7. Add a reference to the hdbtextbundle in the core JavaScript file for the SAP UI5 “Hello World”
application you are developing.
In this step, you tell the setText function of the Hello World button in the UI to use the information in the
specified text bundle to display the required text.

Open the file <...>/ui/HelloWorldX/helloworldx/HelloWorld.view.js in the SAP UI5 “Hello
World” project and add the following text myButton.setText(oBundle.getText("helloworld"));
to the createContent section:

 Note
The additional text is indicated in bold font type in the example.

sap.ui.jsview("helloworldx.HelloWorld", { /** Specifies the Controller belonging to this View.
 * In the case that it is not implemented, or that "null" is returned,
this View does not have a Controller.
 * @memberOf helloworldx.HelloWorld
 */
 getControllerName : function() {
 return "helloworldx.HelloWorld";
 },
 /** Is initially called once after the Controller has been instantiated.
It is the place where the UI is constructed.
 * Since the Controller is given to this method, its event handlers can be
attached right away.
 * @memberOf helloworldx.HelloWorld
 */
 createContent : function(oController) {
 var myButton = new sap.ui.commons.Button("btn"); myButton.setText(oBundle.getText("helloworld")); myButton.attachPress(function(){$("#btn").fadeOut();});
 return myButton;
 } });

8. Save the changes to the HelloWorld.view.js file and activate the file in the SAP HANA repository.

9. Test the changes in a Web browser.
http://<hostname>:<port>/<...>/ui/HelloWorld/WebContent/.

SAP HANA Developer Guide
Building UIs P U B L I C 677

 Note
The URL path and resource names are case sensitive. If prompted, enter you SAP HANA user name
and password.

The text string “Hello World” should appear in the Web browser.
10. Export the text bundle for translation.

You use the repository translation tool (rtt) included with the SAP HANA client to produce an XML
document with the XLIFF format required for upload to an SAP translation system.

 Note
One XML document is used for each language pair in the translation process, for example, English to
German.

Open a command shell on the machine running the SAP HANA studio/client, and type the following
command:

rtt -export -p <package containing hdbtextbundle>

The XML document generated by the export process specifies the source language (English) and the
source text to translate.

<?xml version="1.0" encoding="UTF-8"?> <xliff xmlns="urn:oasis:names:tc:xliff:document:1.2" version="1.2"> <file datatype="plaintext" original="bla.test.hdbtextbundle" source-
language="en"> <header>
 <sxmd:metadata xmlns:sxmd="urn:x-sap:mlt:xliff12:metadata:1.0"
xmlns="urn:x-sap:mlt:tsmetadata:1.0">
 <object-name>1.bla.test.hdbtextbundle</object-name>
 <collection>coll</collection>
 <domain>1A</domain>
 <developer>SYSTEM</developer>
 <description>n/a</description>
 <origin>bla.test.hdbtextbundle</origin>
 </sxmd:metadata>
 </header>
 <body>
 <group resname="c.test.hdbtextbundle" restype="x-objectContentTexts">
 <trans-unit xmlns:sap="urn:x-sap:sls-mlt" id="TEST" maxwidth="20"
sap:sc="XTIT" size-unit="char"> <source>hello world</source> </trans-unit>
 </group>
 </body>
 </file> </xliff>

11. Add the translated version of the text string to the XLF document.
Typically, the XML document containing the translated text strings is generated by a translation system.
However, for the purposes of this tutorial, you can manually add the required information to the
hdbtextbundle.xlf file:
○ Language information

The translated language is defined in the XML metadata using the target-language="de-DE" option, for
example, <file [...] target-language="de-DE"> tag.

○ The translated text:

678 P U B L I C
SAP HANA Developer Guide

Building UIs

The translated text is specified in the body of the XML document using the <target> tag, as
illustrated in the following example:

○ The hdbtextbundle file name
The name of the XLIFF hdbtextbundle file with language-specific content must include the following
characters in the file suffix: a dash (“-”), the appropriate ISO 639 language key (for example, “de”), an
underscore (“_”), and an ISO 3166 country code (for example, “DE”).
○ Target language=German

messagebundle.hdbtextbundle-de_DE.xlf
○ Target language=Chinese

messagebundle.hdbtextbundle-zh_ZH.xlf
The XML document you use to import translated version of text strings specifies both the original source
language (English) and the target (translated) text, which in this example is German (DE).

<?xml version="1.0" encoding="UTF-8"?> <xliff xmlns="urn:oasis:names:tc:xliff:document:1.2" version="1.2"> <file datatype="plaintext" date="2013-09-05T13:57:13Z"
original="bla.test.hdbtextbundle" source-language="en" target-language="de-DE"> <header>
 <sxmd:metadata xmlns:sxmd="urn:x-sap:mlt:xliff12:metadata:1.0"
xmlns="urn:x-sap:mlt:tsmetadata:1.0">
 <object-name>1.bla.test.hdbtextbundle</object-name>
 <collection>coll</collection>
 <domain>1A</domain>
 <developer>SYSTEM</developer>
 <description>n/a</description>
 <origin>bla.test.hdbtextbundle</origin>
 </sxmd:metadata>
 </header>
 <body>
 <group resname="c.test.hdbtextbundle" restype="x-objectContentTexts">
 <trans-unit xmlns:sap="urn:x-sap:sls-mlt" id="TEST" maxwidth="20"
sap:sc="XTIT" size-unit="char">
 <source>hello world</source> <target>Hallo Welt</target> </trans-unit>
 </group>
 </body>
 </file>
</xliff>

12. Import the XLF file containing the text strings for the source and target languages into the SAP HANA
repository.
You use the repository translation tool (rtt) included with the SAP HANA client to import the .XLF file.

Open a command shell on the machine running the SAP HANA studio/client, and type the following
command:

rtt -import -p <package containing hdbtextbundle>

13. Activate the package containing the XLF file with the translated text strings.
The import operation inserts the translated strings into the appropriate table in the SAP HANA database.
You can check which language versions of which text strings are stored in the SAP HANA repository by
looking in the table _SYS.REPO.ACTIVE_CONTENT_TEXT_CONTENT, for example, with the following SQL
command:

SELECT TOP 1000 * "_SYS.REPO"."ACTIVE_CONTENT_TEXT_CONTENT" WHERE PACKAGE_ID
= <path>.ui.HelloWorld.i18n

SAP HANA Developer Guide
Building UIs P U B L I C 679

14. Change the language setting of your Web browser to German.
You can set the language of the Web browser session either by adding the string sap-ui-language=de or
changing the language setting in the Web Browser itself.
The request still points at the original text bundle messagebundle.hdbtextbundle, but the button in the
simple SAPUI5 application now displays the text Hallo Welt.

10.4 Using UI Integration Services

SAP HANA UI Integration Services is a set of Eclipse-based tools that enable you to integrate standalone SAP
HANA client applications into Web user interfaces to support end-to-end business scenarios.

These Web user interfaces are referred to as SAP Fiori launchpad sites.

Prerequisites

● SAP HANA studio is installed on your local system. The SAP HANA studio version must match the current
SAP HANA version.

● A supported browser is installed on your local system. At design time, the following browsers are
supported on desktop:
○ Windows: Internet Explorer 9 or higher
○ Linux: latest version of Firefox

 Note
For end users at runtime, the following browsers are supported:
○ On desktop:

○ Windows: Internet Explorer 9 or higher, latest versions of Chrome, Firefox
○ Linux: latest version of Firefox
○ Mac: latest versions of Safari, Chrome and Firefox

○ On mobile devices: Safari on iOS

● You are assigned the sap.hana.uis.db::SITE_DESIGNER role. End users are assigned the
sap.hana.uis.db::SITE_USER role, and are assigned privileges for the relevant sites.

 Note
Make sure you have the appropriate repository package privileges to read, edit and activate files in the
package of your project.

680 P U B L I C
SAP HANA Developer Guide

Building UIs

● You have set up an SAP HANA application project.

Related Information

Creating Content for Application Sites [page 681]
SAP Fiori Launchpad Sites [page 693]
Setting Up Roles and Privileges [page 702]
Using SAP HANA Projects [page 67]

10.4.1 Creating Content for Application Sites

You can create content for launchpad application sites.

Launchpad sites use tiles, which serve as entry points to SAP Fiori applications running on SAP HANA.

Tiles are used to launch apps from launchpad sites.

Tile catalogs are collections of logically related tiles, which are created and configured by administrators. Site
designers choose tiles from available catalogs and add them to the launchpad application sites.

Related Information

Create a Tile Catalog [page 681]
Configuring Tiles [page 683]
SAP Fiori Launchpad Sites [page 693]

10.4.1.1 Create a Tile Catalog

In the SAP HANA studio, you can create tile catalogs from which site designers and users choose tiles for
application sites.

Procedure

1. In Project Explorer, in the project's context menu, choose New Other... .

2. In the New dialog box, choose SAP HANA Application Development UIS Catalog , and choose Next.
3. In the New Catalog dialog box, choose the parent folder, and enter the file name and the name of the

catalog.

SAP HANA Developer Guide
Building UIs P U B L I C 681

4. Choose Finish.

The newly created catalog is added to the project.

Related Information

Edit a Tile Catalog [page 682]

10.4.1.2 Edit a Tile Catalog

You can edit tile catalogs in the browser-based design environment embedded in the SAP HANA studio.

Context

When planning tile catalogs, consider that access to a catalog is assigned to a role and applies to all the tiles
within the catalog. Therefore, do not place tiles that require different permission levels in the same catalog, for
example, tiles for managers and for employees.

Procedure

1. To open a catalog for editing in the embedded browser, in Project Explorer, double-click the
catalog's .xswidget file.

You can perform the following tasks:

Task Instructions

Edit the catalog's title Click (Edit title). In the dialog box that opens, edit
the title and choose Save.

Add a tile Click (Add tile). In the page that opens, click a tile
template that you want to add to the catalog.

Delete a tile Drag a tile to the trash can image in the lower-left corner
of the page.

682 P U B L I C
SAP HANA Developer Guide

Building UIs

Task Instructions

Configure a tile Tiles are added to catalogs as generic templates. To make
a tile usable, you need to configure it.

Double-click a tile to open the configuration page and edit
its properties as required.

2. When you have finished editing, save the catalog by choosing File Save from the main menu.

3. To make the catalog available to users, activate it by choosing Team Activate from the context menu
of the catalog's .xswidget file.

4. If the site in which you want to use this catalog is open for editing, close and reopen the site to refresh the
catalog.

Next Steps

● Configure each tile that you have added to the catalog.
● When you have completed editing the catalog, make it available to users by assigning the application

privileges for this catalog to the relevant roles or users.

Related Information

Configuring Tiles [page 683]

10.4.1.3 Configuring Tiles

Tiles are added to catalogs as generic templates. To make a tile usable, you need to configure it to point to a
specific application.

Procedure

1. Double-click a tile to open its configuration page.
2. Configure the properties of the tile, following the instructions for the specific tile type:

Tile Type Instructions

Static, dynamic and custom app launchers App Launcher Tiles [page 684]

Navigation target and target mapping Navigation Target and Target Mapping [page 687]

SAP HANA Developer Guide
Building UIs P U B L I C 683

Tile Type Instructions

News News Tile [page 691]

3. Choose Save, and choose OK in the confirmation dialog.

Results

The configured tile appears in the catalog.

Related Information

Edit a Tile Catalog [page 682]

10.4.1.3.1 App Launcher Tiles

App launcher tiles are used to launch applications. This topic describes how to configure properties of the app
launcher tiles.

App launcher tiles come in three flavors: static, dynamic, and custom. All tile flavors are used to launch
applications. In addition, dynamic tiles can display data that is updated at regular intervals, for example, KPIs.
This data is retrieved from the back-end system using oData services. Custom tiles can display any content
defined by a custom SAPUI5 application.

You need to configure the app launcher tile properties, which are divided into the following sections:

General

Property Description

Title Name of the tile.

Subtitle Text displayed below the title.

Keywords Keywords used to tag a tile so that users can find it more easily using the search function in
the tile catalog at runtime.

Icon Open the dropdown list to select an SAPUI5 icon.

After you have selected an icon, the property is set to the icon's URL, preceded by sap-
icon://. For example, sap-icon://Fiori2/F0072.

Information Text displayed at the bottom of the tile.

684 P U B L I C
SAP HANA Developer Guide

Building UIs

Property Description

Number Unit (for dynamic
tiles only)

Unit displayed below the number. For example, USD.

Configuration (for custom tiles only)

Property Description

Module Type In the dropdown box, select the type of the SAPUI5 applica
tion module: UIComponent or one of the view types, such as
XMLView.

Module Name Name of the module. For example,test.ui5.

Module Name Prefix Name prefix to map to the server location of the module. For
example, test.

Module Path Relative path to the module on the server. For example, /
content/ui5.

Custom Properties Custom properties as key-value pairs.

Dynamic Data (for dynamic tiles only)

Property Description

Service URL URL of an OData service from which data should be read. The response is expected in
JSON format.

When the service is called, the values that are provided by the service override the values
that are configured manually in the tile.

Note that the service is executed at runtime only. At design time, sample data is displayed.

 Tip
If you want to read only a number of entities dynamically from an OData service, and
read all other content for the app launcher statically from the configuration, you can
use the $count parameter in the service URL.

For more information on the OData service API for dynamic app launcher tiles, see Related
Information.

SAP HANA Developer Guide
Building UIs P U B L I C 685

Property Description

Refresh Interval Number of seconds after which dynamic content is reloaded from the data source and the
display is refreshed.

Note the following:

● Default value and minimum value is 10 seconds.
● If the entered value is between 1 and 9 inclusive, it is automatically modified to 10.
● If the entered value is 0, the dynamic tile is updated only once upon loading.
● If the entered value is 10 or greater, it is used as is.

Navigation

Property Description

Use Semantic Object
Navigation

Deselect this checkbox if you want to define the navigation target using a simple URL rather
than a semantic object, and leave all properties empty, except for Target URL.

Otherwise, configure intent-based navigation. For more information, see Related Informa
tion.

Target URL Navigation target URL, including the protocol. For example, http://help.sap.com.

Related Information

Intent-Based Navigation [page 686]
Navigation Target and Target Mapping [page 687]
Intent-Based Navigation in App Launcher Tiles [page 689]
OData Structure for Dynamic App Launchers [page 690]

10.4.1.3.1.1 Intent-Based Navigation

The intent-based navigation mechanism in Fiori Launchpad allows users to launch applications in different
views or modes depending on the runtime parameters.

This is achieved by defining application navigation targets using abstract intents, which at runtime are resolved
into actual URLs by the Fiori Launchpad target resolution service.

Intent-based navigation is helpful in the following use cases:

● Enabling the user to make a selection from multiple navigation targets.
● When extending and customizing Fiori scenarios, you need to be able to change a target without modifying

the application code.
● Enabling communication between Fiori apps that have different life cycles and might not be available in the

same productive environment.

686 P U B L I C
SAP HANA Developer Guide

Building UIs

Syntax

An intent is a combination of the following elements:

Semantic object Represents a business entity, such as a customer, a sales
order, or a product. Enables you to refer to such entities in
an abstract implementation-independent way.

Action Defines an operation, such as display or approve purchase
order.This operation is intended to be performed on a se
mantic object, such as a purchase order or a product.

Parameters Optional. Parameters that define an instance of the seman
tic object, for example, employee ID.

Intents have the following syntax: #<semantic object>-<action>?<semantic object
parameter>=<value1>.

For example, the intent #SalesOrder-displayFactSheet?SalesOrder=27 specifies a fact sheet for sales
order number 27. At runtime, this intent is resolved into the actual URL https://<server>:<port>/sap/
hana/uis/clients/ushell-app/shells/fiori/FioriLaunchpad.html#SalesOrder-
displayFactSheet?SalesOrder=27.

Workflow

To configure intent-based navigation for an application, the administrator should perform the following tasks:

1. In a navigation target tile, configure the actual application navigation URL.
2. Configure a target mapping tile to map an intent (a combination of a semantic object and an action) to the

same navigation target.
3. Configure the navigation in an app launcher tile to the same intent.

Related Information

Navigation Target and Target Mapping [page 687]
Intent-Based Navigation in App Launcher Tiles [page 689]

10.4.1.3.1.2 Navigation Target and Target Mapping

Navigation target and target mapping are auxiliary tiles used for configuring intent-based navigation in app
launcher tiles.

These tiles are maintained in tile catalogs, but cannot be added to Fiori Launchpad sites.

In a navigation target tile, you configure the actual application navigation target, whereas in a target mapping
tile you map an intent to this navigation target. At runtime, this mapping is resolved to the actual target URL.

SAP HANA Developer Guide
Building UIs P U B L I C 687

The following sections describe the properties that you need to configure in each of the tiles.

General

General properties of both tiles.

Property Applies to Description

Title Navigation Target Title of the tile

Description Navigation Target Description displayed below the title

Information Target Mapping Optional additional information

Target

Properties that define the application navigation target. Values of the properties that apply to both tiles need to
be identical.

Property Applies to Description

Namespace Level 1 Both Comprises the application namespace in combination with
Namespace Level 2, for example, test

Namespace Level 2 Both Comprises the application namespace in combination with
Namespace Level 1, for example, Comp

Application Alias Both Alias of the application, for example, compAlias

Application ID Target Mapping Leave empty

URI Navigation Target URI of the navigation target, for example, /content/ui5/
TestComponent

Type Navigation Target Type of the navigation target: URL

View Name Navigation Target Name of the SAPUI5 component to display this target; enter in the
format SAPUI5.Component=<name>

Application Parameters Navigation Target Optional. An &-separated list of parameters to pass to the target
application.

Intent

Properties of the intent that you map to the navigation target.

688 P U B L I C
SAP HANA Developer Guide

Building UIs

Property Description

Semantic Object Semantic object on which to perform an action.

Enter the technical name of the semantic object, for example, SalesOrder.

Action Action to perform on the semantic object when the user clicks on the tile, for example,
display.

Related Information

Intent-Based Navigation [page 686]
Intent-Based Navigation in App Launcher Tiles [page 689]

10.4.1.3.1.3 Intent-Based Navigation in App Launcher Tiles

You can enable intent-based navigation in app launcher tiles by configuring the navigation properties.

In the Navigation section of an app launcher tile configuration page, set the properties described in the table
below.

 Note
The property values should be equal to the corresponding values in the target mapping and navigation
target tiles that are configured for this app launcher tile.

Property Description

Use Semantic Object
Navigation

Select this checkbox and configure the following properties as described below.

Semantic Object Semantic object on which to perform an action.

Enter the technical name of the semantic object, for example, SalesOrder.

Action Action to perform on the semantic object when the user clicks on the tile, for example
display.

Parameters Key-value pairs defining parameters for the semantic object, for example
orderID=4711.

If you enter multiple parameters, separate them with an ampersand (&), for example
orderID=10000&custID=c82200.

Target URL Not required if you chose to use semantic object navigation.

Related Information

App Launcher Tiles [page 684]

SAP HANA Developer Guide
Building UIs P U B L I C 689

Navigation Target and Target Mapping [page 687]
Intent-Based Navigation [page 686]

10.4.1.3.1.4 OData Structure for Dynamic App Launchers

You can use OData services to retrieve data to display on a dynamic app launcher tile.

In order to feed an app launcher with dynamic content, you have to create an OData service that returns the
configuration properties as in the following example structure:

{ "d": {
 "icon": "sap-icon://travel-expense",
 "info": "Quarter Ends!",
 "infoState": "Critical",
 "number": 43.333,
 "numberDigits": 1
 “numberFactor”: “k”,
 "numberState": "Positive",
 "numberUnit": "EUR",
 "stateArrow": "Up",
 "subtitle": "Quarterly overview",
 "title": "Travel Expenses",
 }
}

Properties

Property Description

icon Enter an sap-icon:// URL, for example sap-icon://
cart.

You can look up the names of the available icons in the app
launcher tile configuration.

info Text to be displayed at the bottom of the tile.

infoState The color of the tile is adapted according to the value of this
property. The precise color depends on the theme that you
have selected in UI theme designer.

Allowed values: Negative, Neutral, Positive,
Critical

number Number to be displayed in the top right corner of the tile.

numberDigits Number of digits to be displayed following the decimal sepa
rator (decimal point or decimal comma, depending on the
language settings).

690 P U B L I C
SAP HANA Developer Guide

Building UIs

Property Description

numberFactor A factor for scaling numbers, for example, for displaying
large numbers like 1.000.000 (-> number = 1 and number
Factor=“M”) or for percentages (number = 22.2 and num
berFactor = “%”). The scaling is not done by the front end
but has to be provided by the app developer.

numberState The color of the number is adapted according to the value of
this property. The precise color depends on the theme that
you have selected in UI theme designer.

Allowed values: Negative, Neutral, Positive,
Critical

numberUnit Unit to be displayed below the number, for example, USD.

stateArrow Displays an arrow indicating a trend.

Allowed values: None, Up, Down

subtitle Subtitle to be displayed below the tile title.

targetParams List of key-value-pairs separated by ampersands.

When the application is launched (by clicking on it), these
parameters are passed to the application as business pa
rameters (if semantic object-based navigation is used) or as
URL parameters (if URL-based navigation is used).

If any parameters have been entered in the Parameters field
in the tile configuration, the parameters passed by the
OData service are appended to the list of parameters to be
passed to the application.

title Title to be displayed in the tile.

If the service returns an entity collection (rather than a single entity), all values from the number elements are
accumulated.

10.4.1.3.2 News Tile

News tiles can be configured to display news feeds.

In the configuration page of a News tile, set the following parameters:

Configuration Parameters Description

Tile Default Image A URL that sets the default image for the News tile.

SAP HANA Developer Guide
Building UIs P U B L I C 691

Configuration Parameters Description

You can set this parameter to select an alternate default image to
display on the News tile. By default, the News application provides 12
default images and cycles through these default images in sequence.

Always Use Default Image When this checkbox is selected, the News tile ignores any image that
accompanies an RSS feed article. Depending on the checkbox
selection, the following order of precedence is used:

● When not selected:
1. Image from the RSS Article (if present)
2. Image from the RSS Channel (if present)
3. Image from Tile Default Image (if set)
4. Image from one of the twelve (12) default images

● When selected:
1. Image from Tile Default Image (if set)
2. Image from one of the twelve (12) default images

Article Cycle Interval (secs) An integer (the minimum and default value is 5).

This parameter controls the rate at which the articles cycle through
the News tile.

Article Refresh Interval Select a value from the dropdown box. The default value is 15
minutes.

This parameter controls the rate at which the News tile requests new
articles from the value defined in the Article Feeds parameter.

Article Feeds You can configure up to 10 RSS feeds. The News tile monitors the
RSS feeds and retrieves new articles based on the value defined in
the Article Refresh Interval parameter.

 Note
If the URL references an external feed, the feed must be CORS-
compliant. If the URL references an internal feed, the feed must
originate from the same server and port as the launchpad.

Feed #1 – Feed #10 The URL of the RSS feed.

Inclusion Filters You can configure up to 5 inclusion filters. The News tile filters the
feeds and includes any articles that contain the same text in the title
of the article.

Filter #1 – Filter #5 Filter text that is compared to the title of the article. If the text is
found, the article is included in the list of articles.

Exclusion Filters You can configure up to 5 exclusion filters. The News tile filters the
feeds and excludes any articles that contain the same text in the title
of the article.

Filter #1 – Filter #5 Filter text that is compared to the title of the article. If the text is
found, the article is excluded from the list of articles.

692 P U B L I C
SAP HANA Developer Guide

Building UIs

 Note
Consider the following limitations for the News tile parameters:

● Feed URLs are limited to the following sources:
○ Internal sources (same URL and port as the Suite Page Builder application)
○ Any external CORS-compliant source

● URL format should follow the http://[server]:[port]/[path] pattern.
URLs that use feed:// as the transport are not supported.

● UI5 URL validation requires the tilde '~' character to be replaced by the sequence ~.
For example, in the path ...filterID=content~tag, the tilde should be replaced
by ...filterID=content~tag.

● Bookmarking and direct navigation to the list of feed articles is not supported.

10.4.2 SAP Fiori Launchpad Sites

A SAP Fiori launchpad site serves as an entry point to SAP Fiori applications, which are developed and run on
the SAP HANA platform.

SAP Fiori launchpad provides the apps with services such as navigation, embedded support, and application
configuration.

The following section provides information about creating, designing, and administering SAP Fiori launchpad
sites.

Related Information

Creating a Launchpad Site [page 694]
Designing a Launchpad Site [page 694]
Creating Content for Application Sites [page 681]
Configuring Access to Launchpad Content [page 699]
SAP Fiori Launchpad in User Interface Add-On

SAP HANA Developer Guide
Building UIs P U B L I C 693

http://help.sap.com/saphelp_uiaddon10/helpdata/en/a7/fff23179874b34a8a5b995c3a55a63/frameset.htm

10.4.2.1 Creating a Launchpad Site

You create a SAP Fiori launchpad site in the SAP HANA studio.

Procedure

1. In the project's context menu in Project Explorer, choose New Other .

2. In the New dialog box, choose SAP HANA Application Development UIS Application Site , and then
choose Next.

3. In the New Application Site dialog box, select a parent folder, and enter the site properties: File Name, and
optionally Title and Description.

4. Choose the site type, Fiori Launchpad.
5. Choose Finish.

The newly created site opens for design in the embedded browser window.

Related Information

Designing a Launchpad Site [page 694]

10.4.2.2 Designing a Launchpad Site

You can visually design and manage SAP Fiori launchpad sites in the browser-based design environment that is
embedded in SAP HANA studio.

Procedure

1. To open a launchpad site for editing in the embedded browser, in Project Explorer, double-click the
site's .xsappsite file.

 Note
If you open the site from its context menu, make sure that you choose the default SAP HANA
Application Site Editor. Choosing another editor is not recommended.

You can perform the following tasks:

694 P U B L I C
SAP HANA Developer Guide

Building UIs

Task Instructions

Create and edit groups of tiles Create and Edit Groups [page 695]

Manage tiles in groups Add and Organize Tiles in Groups [page 696]

Select a theme for the site Select a Site Theme [page 697]

Access the runtime version of the site Click (Options), and choose Runtime Version from
the dropdown menu

Assign site content to roles Configuring Access to Launchpad Content [page 699]

Enable end users to personalize the site Select or deselect the Enable personalization checkbox

At runtime, display the groups and tiles in this site and in
catalogs in the user's language

Select or deselect the Display in User's Language check
box

2. To save your changes, from the main menu, choose File Save .

3. To make the site available to end users, activate it by choosing Team Activate from the context menu
of the site's .xsappsite file.

10.4.2.2.1 Create and Edit Groups

In a Fiori Launchpad site, you can create and edit groups of tiles.

Context

In a Fiori Launchpad site, the list of groups appear in the Groups panel, whereas the tiles included in the
currently selected group appear in the content area of the page.

Site designers can create groups as predefined content for end users. End users can personalize their sites by
modifying existing groups and creating their own groups.

 Note
When planning groups, consider that access to a group is assigned to a role and applies to all the tiles
within the group. Therefore, do not place tiles that require different permission levels in the same group, for
example, tiles for managers and for employees.

Procedure

1. To create a group, click the (Add group) icon at the bottom of the Groups panel.
2. In the Create Group dialog box that opens, enter the group's properties and choose Save. The new group is

added to the Groups panel.

SAP HANA Developer Guide
Building UIs P U B L I C 695

You can perform the following tasks:

Task Instructions

Edit the group's title Click (Edit title). In the dialog box that opens, edit
the title and choose Save.

Add, delete or move tiles in the group Add and Organize Tiles in Groups [page 696]

Delete the group Drag the group to the trash can image in the lower-left cor
ner of the panel.

Related Information

Add and Organize Tiles in Groups [page 696]

10.4.2.2.2 Add and Organize Tiles in Groups

In a Fiori Launchpad site, you can add and organize tiles in a group.

Context

To add a tile to a group, perform the following steps:

Procedure

1. Open a group and click (Add tile) in the content area. The Add Tile to Group <Name of Selected Group
> page opens.

2. Open the catalog dropdown list. The Catalogs dialog box opens.
3. Clear the default selection, type the required catalog name or part of it, and choose one of the displayed

suggestions The chosen catalog is displayed below the dropdown list.

4. Click the (Add tile) icon of the tile that you want to add. The icon changes to (Tile
added), indicating that the tile has been added to the group.

5. Repeat steps 3-4 to add more tiles from the same or other catalogs.

6. Click (Back) to return to the group.
You can perform the following tasks:

696 P U B L I C
SAP HANA Developer Guide

Building UIs

Task Instructions

Move a tile in the group Drag a tile to a required position within the group.

Delete a tile from the group Drag a tile to the trash can image in the lower-right corner
of the page.

Related Information

Create and Edit Groups [page 695]

10.4.2.2.3 Select a Site Theme

You can select a theme for a Fiori Launchpad site.

Prerequisites

Site themes are available in your SAP HANA system. For information about creating and importing custom
themes, see Related Information.

Procedure

1. Click (Options) and choose Select Theme. The Select Theme dialog box opens.
2. Select a theme from the list of available themes and choose OK.

Results

After activation of the site, the selected theme is applied to the runtime version of the site.

Related Information

Create and Import Custom Themes [page 698]

SAP HANA Developer Guide
Building UIs P U B L I C 697

10.4.2.2.3.1 Create and Import Custom Themes

You can create custom themes using the UI theme designer and import these themes into your SAP HANA
system.

Context

UI theme designer is a browser-based tool that allows you to develop custom themes by modifying theme
templates provided by SAP. For information about this tool, see UI Theme Designer under Related Information.

Procedure

1. In the UI theme designer tool, create and export a custom SAPUI5 theme that you want to use for your
sites.
A .zip file containing the exported theme is saved on your local machine.

2. Import the exported theme into your project in SAP HANA Studio:
a. Copy the contents of the .zip file into your project.
b. To register the theme in the THEME database table using the table import mechanism, create the

following files in your project:
○ myTheme.hdbti

import = [{
 hdbtable = "sap.hana.uis.db::THEMES";
 file = "<package of your project>:myTheme.csv";
 delimField = ";";
 header = true; // Mandatory for preventing upgrade errors if the
structure of .hdbtable changes
 keys = ["ID" : "<unique ID from myTheme.csv>"];
}
];

○ myTheme.csv

// Mandatory header ID;NAME;ROOT_PATH
// <unique ID>;<name of the theme>;<location of the theme on the SAP
HANA server>
// For example: 1;new_sap_bluecrystal;/tests/themes/myTheme/UI5/

For information about table import, see Data Provisioning Using Table Import under Related
Information.

3. Activate the .hdbti and .csv files by choosing Team Activate from each file's context menu.
4. Repeat the above steps for any other custom theme that you want to use.

 Caution
A mismatch between the SAPUI5 versions of the UI theme designer and your SAP HANA system might
cause unexpected behavior of custom themes.

698 P U B L I C
SAP HANA Developer Guide

Building UIs

Related Information

UI Theme Designer
Data Provisioning Using Table Import [page 271]

10.4.2.3 Configuring Access to Launchpad Content

Configure role-based access to content in SAP Fiori launchpad sites.

Prerequisites

End users are assigned to SAP HANA roles, as well as to the predefined sap.hana.uis.db::SITE_USER role.
For more information about managing and authorizing users, see User Provisioning in the SAP HANA
Administration Guide.

Context

To enable user access to the content in a launchpad site, you need to assign user roles to content items, such
as tile catalogs and groups of tiles.

 Note
The predefined designer sap.hana.uis.db::SITE_DESIGNER role has access to all content, so there is
no need to assign content items to this role.

Procedure

1. To open the site for editing in the embedded browser, in Project Explorer, double-click the
site's .xsappsite file.

2. Click (Options), and choose Role Assignment from the dropdown menu.
The Role Assignment page opens. The side panel displays a list of roles defined in your SAP HANA system,
and the content area displays assignments of the currently selected role, organized by tabs.

3. In the side panel, select a role to which you want to assign content, and click the relevant content type
(Catalogs or Groups).

4. Perform the following tasks:

SAP HANA Developer Guide
Building UIs P U B L I C 699

https://help.hana.ondemand.com/theme_designer/frameset.htm

Task Instructions

Search for roles Enter text in the search box of the side panel, and click

 (Search). The role list is filtered by the search text.

Search for content items Enter text in the search box of the content area, and click

 (Search). The list of content items is filtered by the
search text.

Assign content items to the role Click (Assign) to open the assignment dialog box.
If needed, search for, and then select one or more content
items that you want to assign to the role, and click OK.
Selected items are added to the list.

Unassign content items from the role Select one or more content items that you want to unas

sign and click (Unassign). Selected items are re
moved from the list.

Related Information

Setting Up Roles and Privileges [page 702]

10.4.3 Creating a Standard Site

Context

 Note
Standard sites and related features are deprecated as of SAP HANA SPS 09, and are replaced by SAP Fiori
launchpad sites.

700 P U B L I C
SAP HANA Developer Guide

Building UIs

10.4.4 Configuring the SAP HANA Home Page

You can configure a supplied Fiori Launchpad site or any other application site to serve as the home page for an
SAP HANA system.

Context

The supplied Fiori Launchpad site displays a collection of tiles that provide access to various SAP HANA
resources and documentation. To configure this or any other site as the home page, you need to configure it as
the root page of a HANA system.

Procedure

1. In the Systems view of the SAP HANA studio, double-click a system instance.
2. In the system administration page that opens, select the Configuration tab.

3. Expand the xsengine.ini httpserver nodes.
4. If the root_page parameter under httpserver does not exist, from the context menu of httpserver, choose

Add Parameter:
a. In the Add Parameter Wizard, in the Scope Selection step, make sure that System is selected, and

choose Next.
b. In the Key Value Pairs step, in the Key field, enter root_page.
c. In the Value field, enter the following URL for a Fiori Launchpad site that you created /sap/hana/uis/

clients/ushell-app/shells/fiori/FioriLaunchpad.html?siteId=<site ID>.
d. Choose Finish.

5. If the root_page parameter already exists, from its context menu, choose Change:
a. In the Change Configuration Wizard, in the New Value field, enter the URL as described in the previous

step.
b. Choose Save.

Results

After logging on to an SAP HANA system machine at http://<host>:<port>, the configured home page
opens.

SAP HANA Developer Guide
Building UIs P U B L I C 701

11 Setting Up Roles and Privileges

Every user who wants to work directly with the SAP HANA database must have a database user with the
necessary privileges. Although privileges can be granted to users directly, roles are the standard way to
authorize users. A role is a collection of privileges.

Overview of Roles and Privileges

After users have successfully logged on to SAP HANA, they can do only those things they are authorized to do.
This is determined by the privileges that they have been granted. Several privilege types exist in the SAP HANA
database, for example system privileges, object privileges, and application privileges.

Privileges can be granted to users directly or indirectly through roles. Roles are the standard mechanism of
granting privileges as they allow you to implement complex, reusable authorization concepts that can be
modeled on business roles. It is possible to create roles as pure runtime objects that follow classic SQL
principles (catalog roles) or as design-time objects in the repository of the SAP HANA database (repository
roles). In general, repository roles are recommended as they offer more flexibility. For example, they can be
transported between systems. For more information, see Catalog Roles and Repository Roles Compared in the
SAP HANA Security Guide.

 Note
Part of the logon process is user authentication. SAP HANA supports several authentication mechanisms,
including user name/password authentication and external authentication services such as SAML and
Kerberos. For more information, see SAP HANA Authentication and Single Sign-On in the SAP HANA
Security Guide.

Application Authorization

Application developers define application descriptors to specify how users accessing their applications are
authenticated and what authorization is required. For more information, see Creating the Application
Descriptors.

User Management

User administrators are responsible for creating database users and granting them the required roles and
privileges. For more information about creating and authorizing users, as well as other user provisioning tasks,
see User Provisioning in the SAP HANA Administration Guide.

702 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

Related Information

Creating the Application Descriptors [page 86]

11.1 Create a Design-Time Role

You use the role editor of the SAP HANA studio to create a role in the SAP HANA repository.

Prerequisites

● A shared project exists with a suitable package for storing roles.
● You have the system, object, and privileges required for creating and activating objects in the repository.

For more information, see Roles and Permissions.

 Caution
Theoretically, a user with authorization to create and activate repository objects can change a role that
he has been granted. Once the role is activated, the user has the new privileges that he or she just
added. Therefore, it is important that roles in production systems are imported from a test or
development system and that changes to imported objects are not allowed. This danger is however not
specific to roles but also applies to other repository objects, for example, modeled views.

● You have granted privileges on any catalog-only objects that you plan to grant in the new role to the
technical user _SYS_REPO. For more information, see Roles as Repository Objects.

Context

The design-time definition of a role is specified in a text file with the extension .hdbrole. In the SAP HANA
studio, you create and define a role in a role-specific text editor using the role domain-specific language (DSL)
(see Role Domain-Specific Language Syntax).

Procedure

1. Create the role:

a. From the main menu in the SAP HANA studio, choose File New Other SAP HANA Database
Development Role .
The New Role dialog box appears.

Create New Role

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 703

b. In the Container field, enter the path to the package where you want to create the role and in the Role
name field, enter the name of the new role.

Package and Role Name

704 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

c. Choose Finish.

The new role appears in the Project Explorer view and opens in the role text editor as follows:

role Roles::example_role { }

The role is now ready to be defined.
2. Specify the role(s) that you want to grant to the new role.

You can specify both catalog roles and repository roles.

Roles::example_role extends role sap.example::role1
 extends catalog role "CATROLE2"
{ }

3. Grant the required privileges.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 705

 Note
Unlike when you create a role using SQL, it is not possible to grant ALL PRIVILEGES when you create
a role in the repository. You must grant every privilege individually.

○ System privileges:

{ // multiple privileges in one line are OK
 system privilege: BACKUP ADMIN, USER ADMIN;
 // you can also split lists into multiple entries
 system privilege: LICENSE ADMIN; }

○ Object privileges on design-time objects, that is tables, views, procedures, and sequences:

{ sql object sap.example:MY_VIEW.attributeview: DROP;
 // object privileges can be split across lines
 sql object sap.example:MY_PROCEDURE.hdbprocedure: DROP;
 // a single privilege can be given on multiple objects in a single line
 sql object sap.example:MY_VIEW.attributeview,
sap.example:MY_OTHER_VIEW.analyticview,
sap.example:MY_THIRD_VIEW.analyticview: SELECT;
}

 Tip
Many object types can be created in the SAP HANA repository. To verify that you have the correct
extension, refer to the object file in the relevant package in the Project Explorer view.

○ Object privileges on catalog objects:

{ // catalog objects must always be qualified with the schema name
 catalog sql object "MY_SCHEMA"."MY_TABLE": SELECT;
}

 Note
You must always qualify catalog objects with the schema name. You must also reference catalog
objects within double quotes, unlike design-time objects.

 Caution
Do not grant object privileges on a catalog object if it was created in design time. If you do, the next
time the design-time object is activated (which results in the creation of a new version of the
catalog object), the privilege on the original catalog object will be removed from the role. Always
grant privileges on design-time objects.

○ Privileges on design-time schemas:

{ catalog schema "MY_SCHEMA": SELECT;
 schema sap.example:MY_OTHER_SCHEMA.hdbschema: SELECT;
}

706 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

 Note
You must still use the deprecated extension .schema if you are referring to a repository schema
that uses this extension.

○ Privileges on catalog schemas:

{ catalog schema "MY_SCHEMA": SELECT; }

○ Package privileges:

{ package sap.example: REPO.READ; }

○ Analytic privileges:

{ analytic privilege: sap.example:sp1.analyticprivilege,
sap.example:AP2.analyticprivilege;
 catalog analytic privilege: "sp3"; }

○ Catalog analytic privileges:

{ catalog analytic privilege: "sp3"; }

○ Application privileges:

{ application privilege: sap.example::Execute; }

 Note
Application privileges are implemented using the application-privileges file (.xsprivileges).

4. Save the role by choosing File Save .
The role is saved as an .hdbrole file. After it has been saved, the file is committed to the repository.

5. Activate the role by right-clicking it in the Project Explorer view and choosing Team Activate .

 Caution
Any changes made to a previously activated version of the role in runtime will be reverted on activation.
This is to ensure that the design-time version of a role in the repository and its activated runtime
version contain the same privileges. It is therefore important that the activated runtime version of a
role is not changed in runtime.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 707

Results

The activated role is now visible in the Systems view under Security Roles following the naming
convention <package>::<role_name> and can be granted to users as part of user provisioning. For more
information, see Grant Privileges to Users in the SAP HANA Studio.

 Example
Complete Role Definition Example

role Roles::example_role
 extends role sap.example::role1
 extends catalog role "CATROLE1", "CATROLE2"
{
 // system privileges
 system privilege: BACKUP ADMIN, USER ADMIN;
 // schema privileges
 catalog schema "SYSTEM": SELECT;
 schema sap.example:app1.hdbschema: INSERT, UPDATE, DELETE;
 // sql object privileges
 // privileges on the same object may be split up in several lines
 catalog sql object "SYSTEM"."TABLE2": SELECT;
 catalog sql object "SYSTEM"."TABLE2": INSERT, UPDATE, DELETE;
 // or a list of objects may get a list of privileges (object = table,
view, procedure, sequence)
 // SELECT, DROP for all objects in list
 sql object sap.example:VIEW1.attributeview,
sap.example:PROC1.hdbprocedure, sap.example:SEQ1.sequence: SELECT, DROP;
 // additional INSERT, UPDATE for TABLE1
 sql object sap.example:MY_VIEW.attributeview: DROP;
 // analytic privileges
 analytic privilege: sap.example:sp1.analyticprivilege,
sap.example:AP2.analyticprivilege;
 catalog analytic privilege: "sp3";
 // design time privileges
 package sap.example: REPO.EDIT_NATIVE_OBJECTS;
 package sap.example, sap.co: REPO.READ;
 application privilege: sap.example::Execute, sap.example::Save;
}

Related Information

Role Domain-Specific Language Syntax [page 713]
Repository Roles [page 710]
Role Domain-Specific Language Syntax [page 713]
System Privileges [page 722]
Object Privileges [page 728]
Analytic Privileges [page 734]
Package Privileges [page 736]
Application Privileges [page 739]

708 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

11.1.1 Database Roles

A database role is a collection of privileges that can be granted to either a database user or another role in
runtime.

A role typically contains the privileges required for a particular function or task, for example:

● Business end users reading reports using client tools such as Microsoft Excel
● Modelers creating models and reports
● Database administrators operating and maintaining the database and its users

Privileges can be granted directly to users of the SAP HANA database. However, roles are the standard
mechanism of granting privileges as they allow you to implement complex, reusable authorization concepts
that can be modeled on business roles.

Creation of Roles

Roles in the SAP HANA database can exist as runtime objects only (catalog roles), or as design-time objects
that become catalog objects on deployment (database artifact with file suffix .hdbrole).

In an SAP HANA XS classic environment, database roles are created in the built-in repository of the SAP HANA
database using either the SAP HANA Web Workbench or the SAP HANA studio. These are also referred to as
repository roles. In an SAP HANA XS advanced environment, design-time roles are created using the SAP Web
IDE and deployed using SAP HANA deployment infrastructure (SAP HANA DI, or HDI).

 Note
Due to the container-based model of HDI where each container corresponds to a database schema, HDI
roles, once deployed, are schema specific.

SAP HANA XS advanced has the additional concept of application roles and role collections. These are
independent of database roles in SAP HANA itself. In the XS advanced context, SAP HANA database roles are
used only to control access to database objects (for example, tables, views, and procedures) for XS advanced
applications. For more information about the authorization concept of XS advanced, see the SAP HANA
Security Guide.

Role Structure

A role can contain any number of the following privileges:

● System privileges for general system authorization, in particular administration activities
● Object privileges (for example, SELECT, INSERT, UPDATE) on database objects (for example, schemas,

tables, views, procedures, and sequences)
● Analytic privileges on SAP HANA information models
● Package privileges on repository packages (for example, REPO.READ, REPO.EDIT_NATIVE_OBJECTS,

REPO.ACTIVATE_NATIVE_OBJECTS)

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 709

● Application privileges for enabling access to SAP HANA-based applications developed in an SAP HANA
XS classic environment

 Note
There are no HDI or XS advanced equivalents in the SAP HANA authorization concept for package
privileges on repository packages and applications privileges on SAP HANA XS classic applications. For
more information about the authorization concept of XS advanced, see the SAP HANA Security Guide.

A role can also contain other roles.

Roles Best Practices

For best performance of role operations, in particular, granting and revoking, keep the following basic rules in
mind:

● Create roles with the smallest possible set of privileges for the smallest possible group of users who can
share a role (principle of least privilege).

● Avoid granting object privileges at the schema level to a role if only a few objects in the schema are relevant
for intended users.

● Avoid creating and maintaining all roles as a single user. Use several role administrator users instead.

11.1.1.1 Repository Roles

In an SAP HANA XS classic environment, role developers create database roles as design-time objects in the
built-in repository of the SAP HANA database using either the SAP HANA Web Workbench or the SAP HANA
studio.

 Note
SAP HANA XS classic and the SAP HANA repository are deprecated as of SAP HANA 2.0 SPS 02. For more
information, see SAP Note 2465027.

Roles created in the repository differ from roles created directly as runtime objects using SQL in several ways.

● What authorization does a user need to grant privileges to a role? [page 711]
● What about the WITH ADMIN OPTION and WITH GRANT OPTION parameters? [page 712]
● How are repository roles granted and revoked? [page 712]
● How are repository roles dropped? [page 712]
● Can changes to repository roles be audited? [page 712]

710 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

What authorization does a user need to grant privileges to a role?

According to the authorization concept of the SAP HANA database, a user can only grant a privilege to a user
directly or indirectly in a role if the following prerequisites are met:

● The user has the privilege him- or herself
● The user is authorized to grant the privilege to others (WITH ADMIN OPTION or WITH GRANT OPTION)

A user is also authorized to grant object privileges on objects that he or she owns.

The technical user _SYS_REPO is the owner of all objects in the repository, as well as the runtime objects that
are created on activation. This means that when you create a role as a repository object, you can grant the
following privileges:

● Privileges that have been granted to the technical user _SYS_REPO and that _SYS_REPO can grant further
This is automatically the case for system privileges, package privileges, analytic privileges, and application
privileges. Therefore, all system privileges, package privileges, analytic privileges, and application privileges
can always be granted in design-time roles.

● Privileges on objects that _SYS_REPO owns
_SYS_REPO owns all activated objects. Object privileges on non-activated runtime objects must be
explicitly granted to _SYS_REPO.

 Note
This is true even for objects belonging to schema SYS.

It is recommended that you use a technical user to do this to ensure that privileges are not dropped when
the granting user is dropped (for example, because the person leaves the company).

The following table summarizes the situation described above:

Privilege Action Necessary to Grant in Repository Role

System privilege None

Package privilege None

Analytic privilege None

Application privilege None

SQL object on activated object (for example, attribute view,
analytic view)

None

SQL object privilege on runtime object (for example, repli
cated table)

Grant privilege to user _SYS_REPO with WITH GRANT OP
TION

 Note
Technically speaking, only the user _SYS_REPO needs the privileges being granted in a role, not the
database user who creates the role. However, users creating roles in the SAP HANA Web-based
Development Workbench must at least be able to select the privileges they want to grant to the role. For
this, they need either the system privilege CATALOG READ or the actual privilege to be granted.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 711

What about the WITH ADMIN OPTION and WITH GRANT OPTION
parameters?

When you create a role using SQL (that is, as a runtime object), you can grant privileges with the additional
parameters WITH ADMIN OPTION or WITH GRANT OPTION. This allows a user who is granted the role to grant
the privileges contained within the role to other users and roles. However, if you are implementing your
authorization concept with privileges encapsulated within roles created in design time, then you do not want
users to grant privileges using SQL statements. For this reason, it is not possible to pass the parameters WITH
ADMIN OPTION or WITH GRANT OPTION with privileges when you model roles as repository objects.

Similarly, when you grant an activated role to a user, it is not possible to allow the user to grant the role further
(WITH ADMIN OPTION is not available).

How are repository roles granted and revoked?

It is not possible to grant and revoke activated design-time roles using the GRANT and REVOKE SQL
statements. Instead, roles are granted and revoked through the execution of the procedures
GRANT_ACTIVATED_ROLE and REVOKE_ACTIVATED_ROLE. Therefore, to be able to grant or revoke a role, a
user must have the object privilege EXECUTE on these procedures.

How are repository roles dropped?

It is not possible to drop the runtime version of a role created in the repository using the SQL statement DROP
ROLE. To drop a repository role, you must delete it in the repository and activate the change. The activation
process deletes the runtime version of the role.

Can changes to repository roles be audited?

The auditing feature of the SAP HANA database allows you to monitor and record selected actions performed
in your database system. One action that is typically audited is changes to user authorization. If you are using
roles created in the repository to grant privileges to users, then you audit the creation of runtime roles through
activation with the audit action ACTIVATE REPOSITORY CONTENT.

Related Information

SAP Note 2465027

712 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2465027

11.1.1.2 Role Domain-Specific Language Syntax

The design-time definition of a role is specified in a text file with the extension .hdbrole. Roles are defined
using a domain-specific language (DSL).

 Example

role Roles::example_role extends role sap.example::role1 extends catalog role "CATROLE1", "CATROLE2" { system privilege: BACKUP ADMIN, USER ADMIN; catalog sql object"SYSTEM"."TABLE2": SELECT; catalog sql object "SYSTEM"."TABLE2": INSERT, UPDATE, DELETE; sql object sap.example:VIEW1.attributeview,
sap.example:PROC1.hdbprocedure, sap.example:SEQ1.sequence: SELECT, DROP; sql object sap.example:MY_VIEW.attributeview: DROP; catalog schema "SYSTEM": SELECT; schema [page 715] sap.example:app1.hdbschema: INSERT, UPDATE, DELETE; analytic privilege: sap.example:sp1.analyticprivilege,
sap.example:AP2.analyticprivilege; catalog analytic privilege: "sp3"; package sap.example: REPO.EDIT_NATIVE_OBJECTS; package sap.example, sap.co: REPO.READ; application privilege: sap.example::Execute, sap.example::Save; }

A role definition specifies the following information:

● The package in which the role is created
● The role name
● Other roles granted to the role
● The privileges granted to the role

The package and role name are specified as follows:

role <package_name>::<role_name>

The keywords listed below are used to specify which roles and privileges are granted to the role.

 Note
The following general conventions apply when modeling a role definition using the role DSL:

● Comments start with a double-slash (//) or double-dash (--) and run to the end of the line.
● When specifying a reference to a design-time object, you must always specify the package name as

follows:
○ <package>::<object> if you are referencing a design-time role
○ <package>:<object>.<extension> if you are referencing any other design-time object

● When specifying multiple privileges on the same object or the same privilege on multiple objects, you
can do so individually line by line, or you can group them on a single line. Separate multiple objects
and/or multiple privileges using a comma.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 713

extends role

extends role <package>.<package>::<role>

The keyword extends role allows you to include another design-time role in the role. If role A extends role B,
role B is granted to role A. This means that effectively A has all privileges that B has.

extends catalog role

extends catalog role "<role>"

The keyword extends catalog role allows you to include a catalog role in the role. If role A extends role B,
role B is granted to role A. This means that effectively A has all privileges that B has.

system privilege

{ system privilege: BACKUP ADMIN, USER ADMIN;
 system privilege: LICENSE ADMIN; }

The system privilege keyword allows you to grant a system privilege to the role.

For more information about all available system privileges, see System Privileges (Reference).

sql object

{ sql object sap.example:MY_VIEW.attributeview: DROP;
 sql object sap.example:MY_PROCEDURE.hdbprocedure: DROP;
 sql object sap.example:MY_VIEW.attributeview,
sap.example:MY_OTHER_VIEW.analyticview, sap.example:MY_THIRD_VIEW.analyticview:
SELECT; }

The sql object keyword allows you to grant an object privilege on a design-time object (table, view,
procedure,sequence) to the role.

 Tip
Many object types can be created in the repository. To verify the correct extension, refer to the object file in
the relevant package in the Project Explorer view (SAP HANA studio) or the file explorer (SAP HANA Web-
based Developer Workbench).

714 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

For more information about all available object privileges and to which object types they apply, see Object
Privileges (Reference).

catalog sql object

{ catalog sql object "MY_SCHEMA"."MY_TABLE": SELECT; }

The catalog sql object keyword allows you to grant an object privilege on a catalog object (table, view,
procedure, sequence) to the role.

 Note
Catalog objects must always be qualified with the schema name. Catalog objects must also be referenced
within double quotes, unlike design-time objects.

 Caution
Do not grant object privileges on a catalog object if it was created in design time. If you do, the next time the
design-time object is activated (which results in the creation of a new version of the catalog object), the
privilege on the original catalog object will be removed from the role. Therefore, grant privileges on design-
time objects.

For more information about all available object privileges and to which object types they apply, see Object
Privileges (Reference).

catalog schema

{ catalog schema "MY_SCHEMA": SELECT; }

The catalog schema keyword allows you to grant a catalog schema to the role.

For more information about the object privileges that apply to schemas, see Object Privileges (Reference).

schema

{ schema sap.example:MY_OTHER_SCHEMA.hdbschema: SELECT; }

The schema keyword allows you to grant a design-time schema to the role.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 715

 Note
You must still use the deprecated extension .schema if you are referring to a repository schema that uses
this extension.

For more information about the object privileges that apply to schemas, see Object Privileges (Reference).

package

{ package sap.example: REPO.READ; }

The package keyword allows you to grant a repository package to the role.

For more information about all available package privileges, see Package Privileges.

analytic privilege

{ analytic privilege: sap.example:sp1.analyticprivilege,
sap.example:AP2.analyticprivilege; }

The analytic privilege keyword allows you to grant a design-time analytic privilege to the role.

For more information, see Analytic Privileges.

catalog analytic privilege

{ catalog analytic privilege: "sp3"; }

The catalog analytic privilege keyword allows you to grant an activated analytic privilege to the role.

For more information, see Analytic Privileges.

application privilege

{ application privilege: sap.example::Execute; }

716 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

The application privilege keyword allows you to grant an application privilege to the role.

 Note
Application privileges are implemented using the application-privileges file (.xsprivileges).

For more information, see Application Privileges.

Related Information

System Privileges (Reference) [page 723]
Object Privileges (Reference) [page 729]
Package Privileges [page 736]
Analytic Privileges [page 734]
Application Privileges [page 739]

11.1.1.3 Custom Role for Developers

Create a custom role for developers so that you can to grant developers all required privileges quickly and
efficiently.

A role enables you to assign various types of privileges to a user, for example: SQL privileges, analytic
privileges, system privileges, as well as application and package privileges. You can also restrict the type of
privilege, for example, to SELECT, INSERT or UPDATE statements (or any combination of desired statements).
You can use an existing role as the basis for a new, extended, custom role. The privileges granted by an
extended role include all the privileges specified in all the roles that are used as the basis of the extended role
plus any additional privileges defined in the new extended role itself.

 Note
It is not possible to restrict the privileges granted by the existing role that you are extending. For example, if
role A extends role B, role A will always include all the privileges specified in role B.

The following example shows how to create a DEVELOPMENT role as a design-time object. Note that a role-
definition file must have the suffix .hdbrole, for example, MyRoleDefinition.hdbrole.

 Tip
File extensions are important. If you are using SAP HANA studio to create artifacts in the SAP HANA
repository, the file-creation wizard adds the required file extension automatically and, if appropriate,
enables direct editing of the new file in the corresponding editor.

After activating the design-time role definition, you can grant the resulting runtime role object to application
developers, for example, by executing the _SYS_REPO procedure GRANT_ACTIVATED_ROLE. The call requires

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 717

the parameters: ROLENAME (the name of the runtime role object you want to assign) and USERNAME (the name
of the user to whom you want to assign the new runtime role).

call “_SYS_REPO”.“GRANT_ACTIVATED_ROLE”
('acme.com.data::MyUserRole','GranteeUserName');

The example role illustrated in this topic defines the following privileges for the SAP HANA application
developer:

● Schema privileges:
○ _SYS_BIC

SELECT and EXECUTE for all tables
● Object privileges:

○ Schema _SYS_BI
○ SELECT privilege for all BIMC_* tables
○ UPDATE, INSERT, and DELETE privilege for M_* tables

○ Catalog object REPOSITORY_REST (SYS)
EXECUTE privilege

● Analytic privileges:
○ _SYS_BI_CP_ALL

SELECT for the data preview on the views
● Design-time privileges:

○ Package privileges:
○ For the root package

REPO.MAINTAIN_NATIVE_PACKAGES
○ For packages containing application content

REPO.EDIT_NATIVE_OBJECTS
REPO.ACTIVATE_NATIVE_OBJECTS

○ Application privileges:
Application privileges are used to authorize user (and client) access to an application, for example, to
start the application or perform administrative actions in the application. When creating a role for
developers, make sure that the developers have (at least) the following application privileges:
○ Execute and Save privileges for the applications the developers are assigned to work on. The

application privileges can be defined in a .xsprivileges file, which must reside in application
package to which the defined privileges apply.

○ The privileges granted with the debugger role that is included with SAP HANA XS.

 Note
It is also possible to grant application privileges in SAP HANA studio, for example, using the list of
privileges displayed in the Application Privileges tab in the Security [Users | Roles] runtime area.
To grant (or revoke) application privileges, the granting (or revoking) user must also have the object
privilege Execute for the GRANT_APPLICATION_PRIVILEGE or REVOKE_APPLICATION_PRIVILEGE
procedure respectively.

● Additional privileges
User _SYS_REPO requires the SELECT privilege on <schema_where_tables_reside> to enable the
activation and data preview of information views.

718 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

 Example
Application-Development Role-Definition Example

role <package_name>::DEVELOPMENT // extends role com.acme::role1
// extends catalog role "CATROLE1", "CATROLE2"
{
// system privileges
// system privilege: BACKUP ADMIN, USER ADMIN;
// schema privileges
catalog schema "_SYS_BIC": SELECT, EXECUTE;
// sql object privileges
// privileges on the same object may be split up in several lines
catalog sql object "SYS"."REPOSITORY_REST": EXECUTE;
catalog sql object "_SYS_BI"."BIMC_ALL_CUBES": SELECT;
catalog sql object "_SYS_BI"."BIMC_CONFIGURATION": SELECT;
catalog sql object "_SYS_BI"."BIMC_DIMENSIONS": SELECT;
catalog sql object "_SYS_BI"."BIMC_PROPERTIES": SELECT;
catalog sql object "_SYS_BI"."BIMC_VARIABLE": SELECT;
catalog sql object "_SYS_BI"."BIMC_VARIABLE_ASSIGNMENT": SELECT;
catalog sql object "_SYS_BI"."BIMC_VARIABLE_VALUE": SELECT;
catalog sql object "_SYS_BI"."M_CONTENT_MAPPING": UPDATE, INSERT, DELETE;
catalog sql object "_SYS_BI"."M_FISCAL_CALENDAR": UPDATE, INSERT, DELETE;
catalog sql object "_SYS_BI"."M_IMPORT_SERVER_CONFIG": UPDATE, INSERT, DELETE;
catalog sql object "_SYS_BI"."M_REPLICATION_EXCEPTIONS": UPDATE, INSERT,
DELETE;
catalog sql object "_SYS_BI"."M_SCHEMA_MAPPING": UPDATE, INSERT, DELETE;
catalog sql object "_SYS_BI"."M_TIME_DIMENSION": UPDATE, INSERT, DELETE;
catalog sql object "_SYS_BI"."M_TIME_DIMENSION _MONTH": UPDATE, INSERT,
DELETE;
catalog sql object "_SYS_BI"."M_TIME_DIMENSION _WEEK": UPDATE, INSERT, DELETE;
catalog sql object "_SYS_BI"."M_TIME_DIMENSION _YEAR": UPDATE, INSERT, DELETE;
catalog sql object "_SYS_BI"."M_USER_PERSONALIZATION": UPDATE, INSERT, DELETE;
// analytic privileges
catalog analytic privilege: "_SYS_BI_CP_ALL";
// design time privileges
package com.acme: REPO.MAINTAIN_NATIVE_PACKAGES;
package com.acme.myapps: REPO.EDIT_NATIVE_OBJECTS;
package com.acme.myapps: REPO.ACTIVATE_NATIVE_OBJECTS;
application privilege: com.acme.myapps.app1::Execute, com.acme.xs.app1::Save;
application privilege: com.acme.myapps.debugger::Execute; }

Related Information

Repository Roles [page 710]
Create a Design-Time Role [page 703]
Privileges [page 720]

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 719

11.1.2 Privileges

Several privilege types are used in SAP HANA (system, object, analytic, package, and application).

Privilege Type Applicable To Target User Description

System privilege System, database Administrators, devel
opers

System privileges control general system activi
ties. They are mainly used for administrative
purposes, such as creating schemas, creating
and changing users and roles, performing data
backups, managing licenses, and so on.

System privileges are also used to authorize ba
sic repository operations.

System privileges granted to users in a particu
lar tenant database authorize operations in that
database only. The only exception is the system
privileges DATABASE ADMIN, DATABASE STOP,
and DATABASE START. These system privileges
can only be granted to users of the system data
base. They authorize the execution of opera
tions on individual tenant databases. For exam
ple, a user with DATABASE ADMIN can create
and drop tenant databases, change the data
base-specific properties in configuration (*.ini)
files, and perform database-specific backups.

Object privilege Database objects
(schemas, tables,
views, procedures and
so on)

End users, technical
users

Object privileges are used to allow access to and
modification of database objects, such as tables
and views. Depending on the object type, differ-
ent actions can be authorized (for example, SE
LECT, CREATE ANY, ALTER, DROP, and so on).

Schema privileges are object privileges that are
used to allow access to and modification of
schemas and the objects that they contain.

Source privileges are object privileges that are
used to restrict access to and modification of
remote data sources, which are connected
through SAP HANA smart data access.

Object privileges granted to users in a particular
database authorize access to and modification
of database objects in that database only. That
is, unless cross-database access has been ena
bled for the user. This is made possible through
the association of the requesting user with a re
mote identity on the remote database. For more
information, see Cross-Database Authorization
in Tenant Databases in the SAP HANA Security
Guide.

720 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

Privilege Type Applicable To Target User Description

Analytic privilege Analytic views End users Analytic privileges are used to allow read access
to data in SAP HANA information models (that
is, analytic views, attribute views, and calcula
tion views) depending on certain values or com
binations of values. Analytic privileges are evalu
ated during query processing.

Analytic privileges granted to users in a particu
lar database authorize access to information
models in that database only.

Package privilege Packages in the classic
repository of the SAP
HANA database

Application and con
tent developers work
ing in the classic SAP
HANA repository

Package privileges are used to allow access to
and the ability to work in packages in the classic
repository of the SAP HANA database.

Packages contain design time versions of vari
ous objects, such as analytic views, attribute
views, calculation views, and analytic privileges.

Package privileges granted to users in a particu
lar database authorize access to and the ability
to work in packages in the repository of that da
tabase only.

 Note
With SAP HANA XS advanced, source code
and web content are not versioned and
stored in the SAP HANA database, so pack
age privileges are not used in this context.
For more information, see Authorization in
SAP HANA XS Advanced.

Application privilege SAP HANA XS classic
applications

Application end users,
technical users (for
SQL connection con
figurations)

Developers of SAP HANA XS classic applica
tions can create application privileges to author
ize user and client access to their application.
They apply in addition to other privileges, for ex
ample, object privileges on tables.

Application privileges can be granted directly to
users or roles in runtime in the SAP HANA stu
dio. However, it is recommended that you grant
application privileges to roles created in the re
pository in design time.

 Note
With SAP HANA XS advanced, application
privileges are not used. Application-level
authorization is implemented using OAuth
and authorization scopes and attributes.
For more information, see Authorization in
SAP HANA XS Advanced.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 721

 Note
An additional privilege type, privileges on users, can be granted to users. Privileges on users are SQL
privileges that users can grant on their user. ATTACH DEBUGGER is the only privilege that can be granted
on a user.

For example, User A can grant User B the privilege ATTACH DEBUGGER to allow User B debug SQLScript
code in User A's session. User A is only user who can grant this privilege. Note that User B also needs the
object privilege DEBUG on the relevant SQLScript procedure.

For more information, see the section on debugging procedures in the SAP HANA Developer Guide.

Related Information

Debug an External Session [page 419]

11.1.2.1 System Privileges

System privileges control general system activities.

System privileges are mainly used to authorize users to perform administrative actions, including:

● Creating and deleting schemas
● Managing users and roles
● Performing data backups
● Monitoring and tracing
● Managing licenses

System privileges are also used to authorize basic repository operations, for example:

● Importing and exporting content
● Maintaining delivery units (DU)

System privileges granted to users in a particular database authorize operations in that database only. The only
exception is the system privileges DATABASE ADMIN, DATABASE STOP, and DATABASE START . These system
privileges can only be granted to users of the system database. They authorize the execution of operations on
individual tenant databases. For example, a user with DATABASE ADMIN can create and drop tenant
databases, change the database-specific properties in configuration (*.ini) files, and perform database-specific
or full-system data backups.

Related Information

System Privileges (Reference) [page 723]

722 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

11.1.2.1.1 System Privileges (Reference)

System privileges control general system activities.

General System Privileges

System privileges restrict administrative tasks. The following table describes the supported system privileges
in an SAP HANA database.

System Privilege Description

ADAPTER ADMIN Controls the execution of the following adapter-related
statements: CREATE ADAPTER, DROP ADAPTER, and AL
TER ADAPTER. It also allows access to the ADAPTERS and
ADAPTER_LOCATIONS system views.

AGENT ADMIN Controls the execution of the following agent-related state
ments: CREATE AGENT, DROP AGENT, and ALTER AGENT. It
also allows access to the AGENTS and ADAPTER_LOCA
TIONS system views.

ATTACH DEBUGGER Authorizes debugging across different user sessions. For ex
ample, userA can grant ATTACH DEBUGGER to userB to al
low userB to debug a procedure in userA’s session (userB
still needs DEBUG privilege on the procedure, however).

AUDIT ADMIN Controls the execution of the following auditing-related
statements: CREATE AUDIT POLICY, DROP AUDIT POLICY,
and ALTER AUDIT POLICY, as well as changes to the auditing
configuration. It also allows access to the AUDIT_LOG,
XSA_AUDIT_LOG, and ALL_AUDIT_LOG system views.

AUDIT OPERATOR Authorizes the execution of the following statement: ALTER
SYSTEM CLEAR AUDIT LOG. It also allows access to the AU
DIT_LOG system view.

BACKUP ADMIN Authorizes BACKUP and RECOVERY statements for defining
and initiating backup and recovery procedures. It also au
thorizes changing system configuration options with respect
to backup and recovery.

BACKUP OPERATOR Authorizes the BACKUP statement to initiate a backup.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 723

System Privilege Description

CATALOG READ Authorizes unfiltered access to the data in the system views
that a user has already been granted the SELECT privilege
on. Normally, the content of these views is filtered based on
the privileges of the user. CATALOG READ does not allow a
user to view system views on which they have not been
granted the SELECT privilege.

CERTIFICATE ADMIN Authorizes the changing of certificates and certificate collec
tions that are stored in the database.

CLIENT PARAMETER ADMIN Authorizes a user to override the value of the CLIENT param
eter for a database connection or to overwrite the value of
the $$client$$ parameter in a SQL query.

CREATE CLIENTSIDE ENCRYPTION KEYPAIR Authorizes a user to create client-side encryption key pairs.

CREATE R SCRIPT Authorizes the creation of a procedure by using the language
R.

CREATE REMOTE SOURCE Authorizes the creation of remote data sources by using the
CREATE REMOTE SOURCE statement.

CREATE SCENARIO Controls the creation of calculation scenarios and cubes
(calculation database).

CREATE SCHEMA Authorizes the creation of database schemas using the CRE
ATE SCHEMA statement.

CREATE STRUCTURED PRIVILEGE Authorizes the creation of structured (analytic privileges).

Only the owner of the privilege can further grant or revoke
that privilege to other users or roles.

CREDENTIAL ADMIN Authorizes the use of the statements CREATE CREDENTIAL,
ALTER CREDENTIAL, and DROP CREDENTIAL.

DATA ADMIN Authorizes reading all data in the system views. It also ena
bles execution of Data Definition Language (DDL) state
ments in the SAP HANA database.

A user with this privilege cannot select or change data in
stored tables for which they do not have access privileges,
but they can drop tables or modify table definitions.

DATABASE ADMIN Authorizes all statements related to tenant databases, such
as CREATE, DROP, ALTER, RENAME, BACKUP, and RECOV
ERY.

DATABASE START Authorizes a user to start any database in the system and to
select from the M_DATABASES view.

724 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

System Privilege Description

DATABASE STOP Authorizes a user to stop any database in the system and to
select from the M_DATABASES view.

DROP CLIENTSIDE ENCRYPTION KEYPAIR Authorizes a user to drop other users' client-side encryption
key pairs.

ENCRYPTION ROOT KEY ADMIN Authorizes all statements related to management of root
keys:

Allows access to the system views pertaining to encryption
(for example, ENCRYPTION_ROOT_KEYS, M_ENCRYP
TION_OVERVIEW, M_PERSISTENCE_ENCRYPTION_STA
TUS, M_PERSISTENCE_ENCRYPTION_KEYS, and so on).

EXPORT Authorizes EXPORT to a file on the SAP HANA server. The
user must also have the SELECT privilege on the source ta
bles to be exported.

EXTENDED STORAGE ADMIN Authorizes the management of SAP HANA dynamic tiering
and the creation of extended storage.

IMPORT Authorizes the import activity in the database using the IM
PORT statements. The user must also have the INSERT priv
ilege on the target tables to be imported.

INIFILE ADMIN Authorizes making changes to system settings.

LDAP ADMIN Authorizes the use of the CREATE | ALTER | DROP | VALI
DATE LDAP PROVIDER statements.

LICENSE ADMIN Authorizes the use of the SET SYSTEM LICENSE statement
to install a new license.

LOG ADMIN Authorizes the use of the ALTER SYSTEM LOGGING [ON |
OFF] statements to enable or disable the log flush mecha
nism.

MONITOR ADMIN Authorizes the use of the ALTER SYSTEM statements for
events.

OPTIMIZER ADMIN Authorizes the use of the ALTER SYSTEM statements con
cerning SQL PLAN CACHE and ALTER SYSTEM UPDATE
STATISTICS statements, which influence the behavior of the
query optimizer.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 725

System Privilege Description

RESOURCE ADMIN Authorizes statements concerning system resources (for ex
ample, the ALTER SYSTEM RECLAIM DATAVOLUME and AL
TER SYSTEM RESET MONITORING VIEW statements). It
also authorizes many of the statements available in the Man
agement Console.

ROLE ADMIN Authorizes the creation and deletion of roles by using the
CREATE ROLE and DROP ROLE statements. It also author
izes the granting and revoking of roles by using the GRANT
and REVOKE statements.

Activated repository roles, meaning roles whose creator is
the predefined user _SYS_REPO, can neither be granted to
other roles or users nor dropped directly. Not even users
with the ROLE ADMIN privilege can do so. Check the docu
mentation concerning activated objects.

SAVEPOINT ADMIN Authorizes the execution of a savepoint using the ALTER
SYSTEM SAVEPOINT statement.

SCENARIO ADMIN Authorizes all calculation scenario-related activities (includ
ing creation).

SERVICE ADMIN Authorizes the ALTER SYSTEM [START|CANCEL|RECON
FIGURE] statements for administering system services of
the database.

SESSION ADMIN Authorizes the ALTER SYSTEM commands concerning ses
sions to stop or disconnect a user session or to change ses
sion variables.

SSL ADMIN Authorizes the use of the SET...PURPOSE SSL statement. It
also allows access to the PSES system view.

STRUCTUREDPRIVILEGE ADMIN Authorizes the creation, reactivation, and dropping of struc
tured (analytic) privileges.

TENANT ADMIN Authorizes the tenant operations performed by the ALTER
SYSTEM [RESUME|SUSPEND] TENANT statements.

TABLE ADMIN Authorizes LOAD, UNLOAD and MERGE of tables and table
placement.

TRACE ADMIN Authorizes the use of the ALTER SYSTEM...TRACES state
ments for operations on database trace files and authorizes
changing trace system settings.

TRUST ADMIN Authorizes the use of statements to update the trust store.

726 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

System Privilege Description

USER ADMIN Authorizes the creation and modification of users by using
the CREATE | ALTER | DROP USER statements.

VERSION ADMIN Authorizes the use of the ALTER SYSTEM RECLAIM VER
SION SPACE statement of the multi-version concurrency
control (MVCC) feature.

WORKLOAD ADMIN Authorizes execution of the workload class and mapping
statements (for example, CREATE | ALTER | DROP WORK
LOAD CLASS, and CREATE | ALTER | DROP WORKLOAD
MAPPING).

WORKLOAD ANALYZE ADMIN Used by the Analyze Workload, Capture Workload, and Re
play Workload applications when performing workload anal
ysis.

WORKLOAD CAPTURE ADMIN Authorizes access to the monitoring view M_WORK
LOAD_CAPTURES to see the current status of capturing and
captured workloads, as well of execution of actions with the
WORKLOAD_CAPTURE procedure.

WORKLOAD REPLAY ADMIN Authorizes access to the monitoring views M_WORK
LOAD_REPLAY_PREPROCESSES and M_WORKLOAD_RE
PLAYS to see current status of preprocessing, preprocessed,
replaying, and replayed workloads, as well as the execution
of actions with the WORKLOAD_REPLAY procedure.

<identifier>.<identifier> Components of the SAP HANA database can create new sys
tem privileges. These privileges use the component-name as
the first identifier of the system privilege and the compo
nent-privilege-name as the second identifier.

Repository System Privileges

 Note
The following privileges authorize actions on individual packages in the SAP HANA repository, used in the
SAP HANA Extended Services (SAP HANA XS) classic development model. With SAP HANA XS advanced,
source code and web content are no longer versioned and stored in the repository of the SAP HANA
database.

System Privilege Description

REPO.EXPORT Authorizes the export of delivery units for example

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 727

System Privilege Description

REPO.IMPORT Authorizes the import of transport archives

REPO.MAINTAIN_DELIVERY_UNITS Authorizes the maintenance of delivery units (DU, DU vendor and system vendor
must be the same

REPO.WORK_IN_FOREIGN_WORK
SPACE

Authorizes work in a foreign inactive workspace

REPO.CONFIGURE Authorize work with SAP HANA Change Recording, which is part of SAP HANA
Application Lifecycle Management

REPO.MODIFY_CHANGE

REPO.MODIFY_OWN_CONTRIBUTION

REPO.MODIFY_FOREIGN_CONTRIBU
TION

11.1.2.2 Object Privileges

Object privileges are SQL privileges that are used to allow access to and modification of database objects.

For each SQL statement type (for example, SELECT, UPDATE, or CALL), a corresponding object privilege exists.
If a user wants to execute a particular statement on a simple database object (for example, a table), he or she
must have the corresponding object privilege for either the actual object itself, or the schema in which the
object is located. This is because the schema is an object type that contains other objects. A user who has
object privileges for a schema automatically has the same privileges for all objects currently in the schema and
any objects created there in the future.

Object privileges are not only grantable for database catalog objects such as tables, views and procedures.
Object privileges can also be granted for non-catalog objects such as development objects in the repository of
the SAP HANA database.

Initially, the owner of an object and the owner of the schema in which the object is located are the only users
who can access the object and grant object privileges on it to other users.

An object can therefore be accessed only by the following users:

● The owner of the object
● The owner of the schema in which the object is located
● Users to whom the owner of the object has granted privileges
● Users to whom the owner of the parent schema has granted privileges

 Caution
The database owner concept stipulates that when a database user is deleted, all objects created by that
user and privileges granted to others by that user are also deleted. If the owner of a schema is deleted, all
objects in the schema are also deleted even if they are owned by a different user. All privileges on these
objects are also deleted.

 Note
The owner of a table can change its ownership with the ALTER TABLE SQL statement. In this case, the new
owner becomes the grantor of all privileges on the table granted by the original owner. The original owner is

728 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

also automatically granted all privileges for the table with the new owner as grantor. This ensures that the
original owner can continue to work with the table as before.

Authorization Check on Objects with Dependencies

The authorization check for objects defined on other objects (that is, stored procedures and views) is more
complex. In order to be able to access an object with dependencies, both of the following conditions must be
met:

● The user trying to access the object must have the relevant object privilege on the object as described
above.

● The user who created the object must have the required privilege on all underlying objects and be
authorized to grant this privilege to others.

If this second condition is not met, only the owner of the object can access it. He cannot grant privileges on it to
any other user. This cannot be circumvented by granting privileges on the parent schema instead. Even if a user
has privileges on the schema, he will still not be able to access the object.

 Note
This applies to procedures created in DEFINER mode only. This means that the authorization check is run
against the privileges of the user who created the object, not the user accessing the object. For procedures
created in INVOKER mode, the authorization check is run against the privileges of the accessing user. In
this case, the user must have privileges not only on the object itself but on all objects that it uses.

 Tip
The SAP HANA studio provides a graphical feature, the authorization dependency viewer, to help
troubleshoot authorization errors for object types that typically have complex dependency structures:
stored procedures and calculation views.

Related Information

Object Privileges (Reference) [page 729]

11.1.2.2.1 Object Privileges (Reference)

Object privileges are used to allow access to and modification of database objects, such as tables and views.

The following table describes the supported object privileges in an SAP HANA database.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 729

Object Privilege Command Types Applies to Privilege Description

ALL PRIVILEGES DDL & DML ● Schemas
● Tables
● Views

This privilege is a collection
of all Data Definition Lan
guage (DDL) and Data Ma
nipulation Language (DML)
privileges that the grantor
currently possesses and is al
lowed to grant further. The
privilege it grants is specific
to the particular object being
acted upon.

This privilege collection is dy
namically evaluated for the
given grantor and object.

ALTER DDL ● Schemas
● Tables
● Views
● Functions/procedures

Authorizes the ALTER state
ment for the object.

CREATE ANY DDL ● Schemas
● Tables
● Views
● Sequences
● Functions/procedures
● Remote sources
● Graph workspaces

Authorizes all CREATE state
ments for the object.

CREATE VIRTUAL FUNC
TION

DDL ● Remote sources Authorizes creation of virtual
functions (the REFERENCES
privilege is also required).

CREATE VIRTUAL PROCE
DURE

DDL ● Remote sources Authorizes creation of virtual
procedure to create and run
procedures on a remote
source.

CREATE VIRTUAL PACKAGE DDL ● Schemas Authorizes creation of virtual
packages that can be run on
remote sources.

CREATE VIRTUAL TABLE DDL ● Remote sources Authorizes the creation of
proxy tables pointing to re
mote tables from the source
entry.

730 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

Object Privilege Command Types Applies to Privilege Description

CREATE TEMPORARY TABLE DDL ● Schemas Authorizes the creation of a
temporary local table, which
can be used as input for pro
cedures, even if the user
does not have the CREATE
ANY privilege for the
schema.

DEBUG DML ● Schemas
● Calculation Views
● Functions/procedures

Authorizes debug functional
ity for the procedure or cal
culation view or for the pro
cedures and calculation
views of a schema.

DEBUG MODIFY DDL ● Functions/procedures For internal use only.

DELETE DML ● Schemas
● Tables
● Views
● Functions/procedures

Authorizes the DELETE and
TRUNCATE statements for
the object.

While DELETE applies to
views, it only applies to up
datable views (that is, views
that do not use a join, do not
contain a UNION, and do not
use aggregation).

DROP DDL ● Schemas
● Tables
● Views
● Sequences
● Functions/procedures
● Remote sources
● Graph workspaces

Authorizes the DROP state
ments for the object.

EXECUTE DML ● Schemas
● Functions/procedures

Authorizes the execution of a
SQLScript function or a data
base procedure by using the
CALLS or CALL statement
respectively. It also allows a
user to execute a virtual
function.

INDEX DDL ● Schemas
● Tables

Authorizes the creation,
modification, or dropping of
indexes for the object.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 731

Object Privilege Command Types Applies to Privilege Description

INSERT DML ● Schemas
● Tables
● Views

Authorizes the INSERT state
ment for the object.

The INSERT and UPDATE
privilege are both required on
the object to allow the RE
PLACE and UPSERT state
ments to be used.

While INSERT applies to
views, it only applies to up
datable views (views that do
not use a join, do not contain
a UNION, and do not use ag
gregation).

REFERENCES DDL ● Schemas
● Tables

Authorizes the usage of all
tables in this schema or this
table in a foreign key defini-
tion, or the usage of a per
sonal security environment
(PSE). It also allows a user to
reference a virtual function
package.

SELECT DML ● Schemas
● Tables
● Views
● Sequences
● Graph workspaces

Authorizes the SELECT
statement for the object or
the usage of a sequence.
When selection from system-
versioned tables, users must
have SELECT on both the ta
ble and its associated history
table.

SELECT CDS METADATA DML ● Schemas
● Tables

Authorizes access to CDS
metadata from the catalog.

SELECT METADATA DML ● Schemas
● Tables

Authorizes access to the
complete metadata of all ob
jects in a schema (including
procedure and view defini-
tions), including objects that
may be located in other
schemas.

732 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

Object Privilege Command Types Applies to Privilege Description

TRIGGER DDL ● Schemas
● Tables

Authorizes the CREATE
TRIGGER/DROP TRIGGER
statement for the specified
table or the tables in the
specified schema.

UNMASKED DML ● Schemas
● Views
● Tables

Authorizes access to masked
data in user-defined views
and tables. This privilege is
required to view the original
data in views and tables that
are defined by using the
WITH MASK clause.

UPDATE DML ● Schemas
● Tables
● Views

While UPDATE applies to
views, it only applies to up
datable views (views that do
not use a join, do not contain
a UNION, and do not use ag
gregation).

USERGROUP OPERATOR DML ● User groups Authorizes a user to change
the settings for a user group,
and to add and remove users
to/from a user group.

Users with the USERGROUP
OPERATOR privilege can also
create and drop users, but
only within the user group
they have the USERGROUP
OPERATOR privilege on
(CREATE USER
<user_name> SET
USERGROUP
<usergroup_name>).

A user can have the
USERGROUP OPERATOR
privilege on more than one
user group, and a user group
can have more than one user
with the USERGROUP OPER
ATOR privilege on it.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 733

Object Privilege Command Types Applies to Privilege Description

<identifier>.<identifi
er>

DDL Components of the SAP
HANA database can create
new object privileges. These
privileges use the compo
nent-name as first identifier
of the system privilege and
the component-privilege-
name as the second identi
fier.

11.1.2.3 Analytic Privileges

Analytic privileges grant different users access to different portions of data in the same view based on their
business role. Within the definition of an analytic privilege, the conditions that control which data users see is
either contained in an XML document or defined using SQL.

Standard object privileges (SELECT, ALTER, DROP, and so on) implement coarse-grained authorization at
object level only. Users either have access to an object, such as a table, view or procedure, or they don't. While
this is often sufficient, there are cases when access to data in an object depends on certain values or
combinations of values. Analytic privileges are used in the SAP HANA database to provide such fine-grained
control at row level of which data individual users can see within the same view.

 Example
Sales data for all regions are contained within one analytic view. However, regional sales managers should
only see the data for their region. In this case, an analytic privilege could be modeled so that they can all
query the view, but only the data that each user is authorized to see is returned.

Creation of Analytic Privileges

Although analytic privileges can be created directly as catalog objects in runtime, we recommend creating
them as design-time objects that become catalog objects on deployment (database artifact with file
suffix .hdbanalyticprivilege). In an SAP HANA XS classic environment, analytic privileges are created in
the built-in repository of the SAP HANA database using either the SAP HANA Web Workbench or the SAP
HANA studio. In an SAP HANA XS advanced environment, they are created using the SAP Web IDE and
deployed using SAP HANA deployment infrastructure (SAP HANA DI).

 Note
HDI supports only SQL-based analytic privileges (see below). Furthermore, due to the container-based
model of HDI, where each container corresponds to a database schema, analytic privileges created in HDI
are schema specific.

734 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

XML- Versus SQL-Based Analytic Privileges

Before you implement row-level authorization using analytic privileges, you need to decide which type of
analytic privilege is suitable for your scenario. In general, SQL-based analytic privileges allow you to more easily
formulate complex filter conditions using sub-queries that might be cumbersome to model using XML-based
analytic privileges.

 Recommendation
SAP recommends the use of SQL-based analytic privileges. Using the SAP HANA Modeler perspective of
the SAP HANA studio, you can migrate XML-based analytic privileges to SQL-based analytic privileges. For
more information, see the SAP HANA Modeling Guide (For SAP HANA Studio).

 Note
As objects created in the repository, XML-based analytic privileges are deprecated as of SAP HANA SPS
02. For more information, see SAP Note 2465027.

The following are the main differences between XML-based and SQL-based analytic privileges:

Feature
SQL-Based Analytic Privi
leges

XML-Based Analytic Privi
leges

Control of read-only access to SAP HANA information mod
els:

● Attribute views
● Analytic views
● Calculation views

Yes Yes

Control of read-only access to SQL views Yes No

Control of read-only access to database tables No No

Design-time modeling using the SAP HANA Web-based
Workbench or the SAP HANA Modeler perspective of the
SAP HANA studio

 Note
This corresponds to development in an SAP HANA XS
classic environment using the SAP HANA repository.

Yes Yes

Design-time modeling using the SAP Web IDE for SAP HANA

 Note
This corresponds to development in an SAP HANA XS
advanced environment using HDI.

Yes No

Transportable Yes Yes

HDI support Yes No

Complex filtering Yes No

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 735

Enabling an Authorization Check Based on Analytic Privileges

All column views modeled and activated in the SAP HANA modeler and the SAP HANA Web-based
Development Workbench automatically enforce an authorization check based on analytic privileges. XML-
based analytic privileges are selected by default, but you can switch to SQL-based analytic privileges.

Column views created using SQL must be explicitly registered for such a check by passing the relevant
parameter:

● REGISTERVIEWFORAPCHECK for a check based on XML-based analytic privileges
● STRUCTURED PRIVILEGE CHECK for a check based on SQL-based analytic privileges

SQL views must always be explicitly registered for an authorization check based on analytic privileges by
passing the STRUCTURED PRIVILEGE CHECK parameter.

 Note
It is not possible to enforce an authorization check on the same view using both XML-based and SQL-based
analytic privileges. However, it is possible to build views with different authorization checks on each other.

Related Information

Create Classical XML-based Analytic Privileges (SAP HANA Studio) [page 741]
Create SQL Analytic Privileges (SAP HANA Studio) [page 744]
SAP Note 2465027

11.1.2.4 Package Privileges

Package privileges authorize actions on individual packages in the SAP HANA repository.

Privileges granted on a repository package are implicitly assigned to the design-time objects in the package, as
well as to all sub-packages. Users are only allowed to maintain objects in a repository package if they have the
necessary privileges for the package in which they want to perform an operation, for example to read or write
to an object in that package. To be able perform operations in all packages, a user must have privileges on the
root package .REPO_PACKAGE_ROOT.

If the user authorization check establishes that a user does not have the necessary privileges to perform the
requested operation in a specific package, the authorization check is repeated on the parent package and
recursively up the package hierarchy to the root level of the repository. If the user does not have the necessary
privileges for any of the packages in the hierarchy chain, the authorization check fails and the user is not
permitted to perform the requested operation.

In the context of repository package authorizations, there is a distinction between native packages and
imported packages.

● Native package
A package that is created in the current system and expected to be edited in the current system. Changes
to packages or to objects the packages contain must be performed in the original development system

736 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2465027

where they were created and transported into subsequent systems. The content of native packages are
regularly edited by developers.

● Imported package
A package that is created in a remote system and imported into the current system. Imported packages
should not usually be modified, except when replaced by new imports during an update. Otherwise,
imported packages or their contents should only be modified in exceptional cases, for example, to carry
out emergency repairs.

 Note
The SAP HANA administrator can grant the following package privileges to an SAP HANA user: edit,
activate, and maintain.

Related Information

Package Privilege Options [page 82]

11.1.2.4.1 Package Privilege Options

Package privileges authorize actions on individual packages in the SAP HANA repository. In the context of
repository package authorizations, there is a distinction between native packages and imported packages.

 Note
To be able perform operations in all packages in the SAP HANA repository, a user must have privileges on
the root package .REPO_PACKAGE_ROOT.

Privileges for Native Repository Packages

A native repository package is created in the current SAP HANA system and expected to be edited in the
current system. To perform application-development tasks on native packages in the SAP HANA repository,
developers typically need the privileges listed in the following table:

Package Privilege Description

REPO.READ Read access to the selected package and design-time ob
jects (both native and imported)

REPO.EDIT_NATIVE_OBJECTS Authorization to modify design-time objects in packages
originating in the system the user is working in

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 737

Package Privilege Description

REPO.ACTIVATE_NATIVE_OBJECTS Authorization to activate/reactivate design-time objects in
packages originating in the system the user is working in

REPO.MAINTAIN_NATIVE_PACKAGES Authorization to update or delete native packages, or create
sub-packages of packages originating in the system in which
the user is working

Privileges for Imported Repository Packages

An imported repository package is created in a remote SAP HANA system and imported into the current
system. To perform application-development tasks on imported packages in the SAP HANA repository,
developers need the privileges listed in the following table:

 Note
It is not recommended to work on imported packages. Imported packages should only be modified in
exceptional cases, for example, to carry out emergency repairs.

Package Privilege Description

REPO.READ Read access to the selected package and design-time ob
jects (both native and imported)

REPO.EDIT_IMPORTED_OBJECTS Authorization to modify design-time objects in packages
originating in a system other than the one in which the user
is currently working

REPO.ACTIVATE_IMPORTED_OBJECTS Authorization to activate (or reactivate) design-time objects
in packages originating in a system other than the one in
which the user is currently working

REPO.MAINTAIN_IMPORTED_PACKAGES Authorization to update or delete packages, or create sub-
packages of packages, which originated in a system other
than the one in which the user is currently working

Related Information

Package Privileges [page 736]

738 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

11.1.2.5 Application Privileges

In SAP HANA Extended Application Services (SAP HANA XS), application privileges define the authorization
level required for access to an SAP HANA XS application, for example, to start the application or view particular
functions and screens.

Application privileges can be assigned to an individual user or to a group of users, for example, in a user role.
The user role can also be used to assign system, object, package, and analytic privileges, as illustrated in the
following graphic. You can use application privileges to provide different levels of access to the same
application, for example, to provide advanced maintenance functions for administrators and view-only
capabilities to normal users.

Application Privileges for Users and User Roles

If you want to define application-specific privileges, you need to understand and maintain the relevant sections
in the following design-time artifacts:

● Application-privileges file (.xsprivileges)
● Application-access file (.xsaccess)
● Role-definition file (<RoleName>.hdbrole)

Application privileges can be assigned to users individually or by means of a user role, for example, with the
“application privilege” keyword in a role-definition file (<RoleName>.hdbrole) as illustrated in the following
code. You store the roles as design-time artifacts within the application package structure they are intended
for, for example, acme.com.hana.xs.app1.roles.

role acme.com.hana.xs.app1.roles::Display { application privilege: acme.com.hana.xs.appl::Display; application privilege: acme.com.hana.xs.appl::View; catalog schema "ACME_XS_APP1": SELECT;
 package acme.com.hana.xs.app1: REPO.READ;
 package ".REPO_PACKAGE_ROOT" : REPO.READ;
 catalog sql object "_SYS_REPO"."PRODUCTS": SELECT;
 catalog sql object "_SYS_REPO"."PRODUCT_INSTANCES": SELECT;
 catalog sql object "_SYS_REPO"."DELIVERY_UNITS": SELECT;
 catalog sql object "_SYS_REPO"."PACKAGE_CATALOG": SELECT;
 catalog sql object "ACME_XS_APPL"."acme.com.hana.xs.appl.db::SYSTEM_STATE":
SELECT, INSERT, UPDATE, DELETE; }

The application privileges referenced in the role definition (for example, Display and View) are actually
defined in an application-specific .xsprivileges file, as illustrated in the following example, which also
contains entries for additional privileges that are not explained here.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 739

 Note
The .xsprivileges file must reside in the package of the application to which the privileges apply.

The package where the .xsprivileges resides defines the scope of the application privileges; the privileges
specified in the.xsprivileges file can only be used in the package where the .xsprivileges resides (or
any sub-packages). This is checked during activation of the .xsaccess file and at runtime in the by the XS
JavaScript API $.session.(has|assert)AppPrivilege().

{ "privileges" : [{ "name" : "View", "description" : "View Product Details" }, { "name" : "Configure", "description" : "Configure Product Details" }, { "name" : "Display", "description" : "View Transport Details" }, { "name" : "Administrator", "description" : "Configure/Run Everything" },
 { "name" : "ExecuteTransport", "description" : "Run Transports"},
 { "name" : "Transport", "description" : "Transports"}
]
}

The privileges are authorized for use with an application by inserting the authorization keyword into the
corresponding .xsaccess file, as illustrated in the following example. Like the .xsprivileges file,
the .xsaccess file must reside either in the root package of the application to which the privilege
authorizations apply or the specific subpackage which requires the specified authorizations.

 Note
If a privilege is inserted into the .xsaccess file as an authorization requirement, a user must have this
privilege to access the application package where the .xsaccess file resides. If there is more than one
privilege, the user must have at least one of these privileges to access the content of the package.

{ "prevent_xsrf": true,
 "exposed": true,
 "authentication": {
 "method": "Form"
 },
 "authorization": ["acme.com.hana.xs.appl::Display", "acme.com.hana.xs.appl::Transport"
]
}

Related Information

Custom Role for Developers [page 717]
Creating the Application Descriptors [page 86]

740 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

11.2 Creating Analytic Privileges

You can create analytic privileges based on either an XML document (the "classic" variation) or an SQL
definition.

Related Information

Analytic Privileges [page 734]
Create Classical XML-based Analytic Privileges [page 741]
Create SQL Analytic Privileges [page 744]

11.2.1 Create Classical XML-based Analytic Privileges

Create analytic privileges for information views and assign them to different users to provide selective access
that are based on certain combinations of data.

Prerequisites

If you want to use a classical XML-based analytic privilege to apply data access restrictions on information
views, set the Apply Privileges property for the information view to Classical Analytic Privileges.

1. Open the information view in the view editor.
2. Select the Semantics node.
3. Choose the View Properties tab.
4. In the Apply Privileges dropdown list, select Classical Analytic Privileges.

Context

Analytic privileges help restrict data access to information views based on attributes or procedures. You can
create and apply analytic privileges for a selected group of models or apply them to all models across
packages.

After you create analytic privileges, assign it to users. This restricts users to access data only for certain
combinations of dimension attributes.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 741

Procedure

1. Launch SAP HANA studio.
2. In the SAP HANA Systems view, expand the content node.
3. In the navigator pane, select a package where you want to create the new analytic privilege.

4. In the context menu of the package, select New Analytic Privilege .
5. Provide a name and description.
6. In the Type dropdown list, select Classical Analytic Privilege.
7. Choose Finish.
8. Define validity for the analytic privilege.

In the Privilege Validity section, specify the time period for which the analytic privilege is valid.
a. Choose Add.
b. Select a required operator.
c. Provide the validity period based on the selected operator.

9. Define scope of the analytic privilege.
In the Secured Models section, select the models for which the analytic privileges restrictions are
applicable.
a. Choose Add.
b. If you want to create an analytic privilege and apply the data access restrictions for selected list of

models, in the Select Information Models dialog, select the models for which you want to apply the
analytic privilege restrictions.

c. Choose OK.
d. If you want to create an analytic privilege and apply the data access restrictions for all models, then in

the General section, select the Apply to all information models checkbox.
10. Select attributes.

Use attributes from the secured models to define data access restrictions.

a. In the Associated Attributes Restrictions section, choose Add.
b. In the Select Objects dialog, select the attributes.

 Note
Select a model if you want to use all attributes from the model to define restrictions.

c. Choose OK.
11. Define attribute restrictions

Modeler uses the restrictions defined on the attributes to restrict data access. Each attribute restriction is
associated with only one attribute, but can contain multiple value filters. You can create more than one
attribute restriction.

a. In the Assign Restrictions section, choose Add.
b. In the Type dropdown list, select a restriction type.
c. Select the required operator and provide a value using the value help.
d. For catalog procedure or repository procedure, you can also provide values using the syntax <schema

name>::<procedure name> or <package name>::<procedure name> respectively.
12. Define Attribute Restrictions Using Hierarchy Node Column

742 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

If you have enabled SQL access for calculation views, modeler generates a node column. You can use the
node column to filter and perform SQL group by operation. For analytic privileges, you can maintain a filter
expression using this node column.

a. Select the Hierarchy tab.
b. In the Hierarchy dropdown list, select a parent-child hierarchy.
c. In the Value field, select a node value.

For example, if the node column is SalesRepHierarchyNode for a parent-child hierarchy, then you can
create a hierarchical analytic privilege for a calculation view that filters the subtree of the node at
runtime. "SalesRepHierarchyNode" = MAJESTIX

 Note
You can create hierarchical analytic privileges only if all secured models are shared dimensions
used in star join calculation views and if the view property of the calculation views is enabled for
SQL access.

13. Activate analytic privileges.
a. If you want to activate the analytic privilege, then in the toolbar choose Save and Activate.
b. If you want to activate the analytic privilege along with all objects, then in the toolbar choose Save and

Activate All.

 Note
Activate the analytic privilege only if you have defined at least one restriction on attributes in the
Associated Attributes Restrictions section.

14. Assign privileges to a user.
If you want to assign privileges to an authorization role, then in your SAP HANA studio, execute the
following steps:

a. In the SAP HANA Systems view, go to Security Authorizations Users .
b. Select a user.
c. In the context menu, choose Open.
d. In the Analytic Privileges tab page, add the privilege.
e. In the editor toolbar, choose Deploy.

Related Information

Structure of Analytic Privileges [page 747]
Example: Create an XML-Based Analytic Privilege with Dynamic Value Filter [page 754]

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 743

11.2.2 Create SQL Analytic Privileges

SQL based analytic privileges provides you the flexibility to create analytic privileges within the familiar SQL
environment. You can create and apply SQL analytic privileges for a selected group of models or apply them to
all models across packages.

Prerequisites

If you want to use a SQL analytic privilege to apply data access restrictions on information views, set the Apply
Privileges property for the information view to SQL Analytic Privileges.

1. Open the information view in the view editor.
2. Select the Semantics node.
3. Choose the View Properties tab.
4. In the Apply Privileges dropdown list, select SQL Analytic Privileges.

Context

SAP HANA modeler support types SQL analytic privileges, the static SQL analytic privileges with predefined
static filter conditions, and dynamic SQL analytic privileges with filter conditions determined dynamically at
runtime using a database procedure.

Procedure

1. Launch SAP HANA studio.
2. In the SAP HANA Systems view, expand the Content node.
3. In the navigator pane, select a package where you want to create the new analytic privilege.

4. In the context menu of the package, select New Analytic Privilege .
5. Provide a name and description.
6. In the Type dropdown list, select SQL Analytic Privilege.
7. Choose Finish.
8. In the header region, select SQL Editor.

 Note
You can also use the attribute editor to create the analytic privilege using the attribute restrictions and
then switch to the SQL editor to deploy the same privilege as SQL analytic privilege.

9. Select information models.

If you want to create an analytic privilege and apply the data access restrictions for selected list of models,
in the Secured Models section,

744 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

a. Choose Add.
b. In the Select Information Models dialog, select the models for which you want to apply the analytic

privilege restrictions.
c. Choose OK.

10. Defining static SQL analytic privileges.

If you want to define static SQL analytic privileges, then

a. In the SQL editor, provide the attribute restrictions and its validity.
For example,

(("REGION" = 'EAST') OR ("REGION" = 'NORTH')) AND (("CUSTOMER_ID" =
'SAP')) AND ((CURRENT_DATE BETWEEN 2015-05-15 00:00:00.000 AND 2015-05-15
23:59:59.999))

 Note
If you have enabled SQL access for calculation views (of type dimensions used in a star join
calculation view), modeler generates a node column. For analytic privileges, you can maintain a
filter expression using this node column.. For example, if SalesRepHierarchyNode is the node
column that modeler generates for a parent-child hierarchy, then "SalesRepHierarchyNode" =
"MAJESTIX" is a possible filter expression.

11. Defining dynamic SQL analytic privileges.
Dynamic SQL analytic privileges determine the filter condition string at runtime. If you want to define
dynamic SQL analytic privileges,
a. In the SQL editor, specify the procedure within the CONDITION PROVIDER clause.

For example, CONDITION PROVIDER schema_name.procedure_name.
12. Activate analytic privileges.

a. If you want to activate the analytic privilege, then in the toolbar choose Save and Activate.
b. If you want to activate the analytic privilege along with all objects, then in the toolbar choose Save and

Activate All.

 Note
Activate the analytic privilege only if you have defined at least one restriction on attributes in the
Associated Attributes Restrictions section.

13. Assign privileges to a user.
If you want to assign privileges to an authorization role, then in your SAP HANA studio, execute the
following steps:

a. In the SAP HANA Systems view, go to Security Authorizations Users .
b. Select a user.
c. In the context menu, choose Open.
d. In the Analytic Privileges tab page, add the privilege.
e. In the editor toolbar, choose Deploy.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 745

11.2.3 Analytic Privileges

Analytic privileges grant different users access to different portions of data in the same view based on their
business role. Within the definition of an analytic privilege, the conditions that control which data users see is
either contained in an XML document or defined using SQL.

Standard object privileges (SELECT, ALTER, DROP, and so on) implement coarse-grained authorization at
object level only. Users either have access to an object, such as a table, view or procedure, or they don't. While
this is often sufficient, there are cases when access to data in an object depends on certain values or
combinations of values. Analytic privileges are used in the SAP HANA database to provide such fine-grained
control at row level of which data individual users can see within the same view.

 Example
Sales data for all regions are contained within one analytic view. However, regional sales managers should
only see the data for their region. In this case, an analytic privilege could be modeled so that they can all
query the view, but only the data that each user is authorized to see is returned.

XML- Versus SQL-Based Analytic Privileges

Before you implement row-level authorization using analytic privileges, you need to decide which type of
analytic privilege is suitable for your scenario. In general, SQL-based analytic privileges allow you to more easily
formulate complex filter conditions that might be cumbersome to model using XML-based analytic privileges.

The following are the main differences between XML-based and SQL-based analytic privileges:

Feature
SQL-Based Analytic Privi
leges

XML-Based Analytic Privi
leges

Control of read-only access to SAP HANA information mod
els:

● Attribute views
● Analytic views
● Calculation views

Yes Yes

Control of read-only access to SQL views Yes No

Control of read-only access to database tables No No

Design-time modeling in the Editor tool of the SAP HANA
Web Workbench

Yes Yes

Design-time modeling in the SAP HANA Modeler perspective
of the SAP HANA studio

Yes Yes

Transportable Yes Yes

Complex filtering Yes No

746 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

Enabling an Authorization Check Based on Analytic Privileges

All column views modeled and activated in the SAP HANA modeler and the SAP HANA Web-based
Development Workbench automatically enforce an authorization check based on analytic privileges. XML-
based analytic privileges are selected by default, but you can switch to SQL-based analytic privileges.

Column views created using SQL must be explicitly registered for such a check by passing the relevant
parameter:

● REGISTERVIEWFORAPCHECK for a check based on XML-based analytic privileges
● STRUCTURED PRIVILEGE CHECK for a check based on SQL-based analytic privileges

SQL views must always be explicitly registered for an authorization check based analytic privileges by passing
the STRUCTURED PRIVILEGE CHECK parameter.

 Note
It is not possible to enforce an authorization check on the same view using both XML-based and SQL-based
analytic privileges. However, it is possible to build views with different authorization checks on each other.

11.2.3.1 Structure of XML-Based Analytic Privileges

An analytic privilege consists of a set of restrictions against which user access to a particular attribute view,
analytic view, or calculation view is verified. In an XML-based analytic privilege, these restrictions are specified
in an XML document that conforms to a defined XML schema definition (XSD).

 Note
As objects created in the repository, XML-based analytic privileges are deprecated as of SAP HANA SPS
02. For more information, see SAP Note 2465027.

Each restriction in an XML-based analytic privilege controls the authorization check on the restricted view
using a set of value filters. A value filter defines a check condition that verifies whether or not the values of the
view (or view columns) qualify for user access.

The following restriction types can be used to restrict data access:

● View
● Activity
● Validity
● Attribute

The following operators can be used to define value filters in the restrictions.

 Note
The activity and validity restrictions support only a subset of these operators.

● IN <list of scalar values>
● CP <pattern with *>

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 747

● EQ (=), LE (<=), LT (<), GT (>), GE (>=) <scalar value>
● BT <scalar value as lower limit><scalar value as upper limit>
● IS_NULL
● NOT_NULL

All of the above operators, except IS_NULL and NOT_NULL, accept empty strings (" ") as filter operands.
IS_NULL and NOT_NULL do not allow any input value.

The following are examples of how empty strings can be used with the filter operators:

● For the IN operator: IN ("", "A", "B") to filter on these exact values
● As a lower limit in comparison operators, such as:

○ BT ("", “XYZ”), which is equivalent to NOT_NULL AND LE "XYZ”"GT "", which is equivalent to
NOT_NULL

○ LE "", which is equivalent to EQ ""
○ LT "", which will always return false
○ CP "", which is equivalent to EQ ""

The filter conditions CP "*" will also return rows with empty-string as values in the corresponding attribute.

View Restriction

This restriction specifies to which column views the analytic privilege applies. It can be a single view, a list of
views, or all views. An analytic privilege must have exactly one cube restriction.

 Example
IN ("Cube1", "Cube2")

 Note
When an analytic view is created in the SAP HANA modeler, automatically generated views are included
automatically in the cube restriction.

 Note
The SAP HANA modeler uses a special syntax to specify the cube names in the view restriction:
_SYS_BIC:<package_hierarchy>/<view_name>

For example:

<cubes> <cube name="_SYS_BIC:test.sales/AN_SALES" />
 <cube name="_SYS_BIC:test.sales/AN_SALES/olap" />
</cubes>

748 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

Activity Restriction

This restriction specifies the activities that the user is allowed to perform on the restricted views, for example,
read data. An analytic privilege must have exactly one activity restriction.

 Example
EQ "read", or EQ "edit"

 Note
Currently, all analytic privileges created in the SAP HANA modeler are automatically configured to restrict
access to READ activity only. This corresponds to SQL SELECT queries. This is due to the fact that the
attribute, analytic, and calculation views are read-only views. This restriction is therefore not configurable.

Validity Restriction

This restriction specifies the validity period of the analytic privilege. An analytic privilege must have exactly one
validity restriction.

 Example
GT 2010/10/01 01:01:00.000

Attribute Restriction

This restriction specifies the value range that the user is permitted to access. Attribute restrictions are applied
to the actual attributes of a view. Each attribute restriction is relevant for one attribute, which can contain
multiple value filters. Each value filter represents a logical filter condition.

 Note
The SAP HANA modeler uses different ways to specify attribute names in the attribute restriction
depending on the type of view providing the attribute. In particular, attributes from attribute views are
specified using the syntax "<package_hierarchy>/<view_name>$<attribute_name>", while local
attributes of analytic views and calculation views are specified using their attribute name only. For example:

<dimensionAttribute name="test.sales/AT_PRODUCT$PRODUCT_NAME"> <restrictions>
 <valueFilter operator="IN">
 <value value="Car" />
 <value value="Bike" />
 </valueFilter>
 </restrictions> </dimensionAttribute>

Value filters for attribute restrictions can be static or dynamic.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 749

● A static value filter consists of an operator and either a list of values as the filter operands or a single value
as the filter operand. All data types are supported except those for LOB data types (CLOB, BLOB, and
NCLOB).
For example, a value filter (EQ 2006) can be defined for an attribute YEAR in a dimension restriction to
filter accessible data using the condition YEAR=2006 for potential users.

 Note
Only attributes, not aggregatable facts (for example, measures or key figures) can be used in
dimension restrictions for analytic views.

● A dynamic value filter consists of an operator and a stored procedure call that determines the operand
value at runtime.
For example, a value filter (IN (GET_MATERIAL_NUMBER_FOR_CURRENT_USER())) is defined for the
attribute MATERIAL_NUMBER. This filter indicates that a user with this analytic privilege is only allowed to
access material data with the numbers returned by the procedure
GET_MATERIAL_NUMBER_FOR_CURRENT_USER.

It is possible to combine static and dynamic value filters as shown in the following example.

 Example

<dimensionAttribute name=" test.sales/AT_PRODUCT$PRODUCT_NAME "> <restrictions>
 <valueFilter operator="CP"> <value value="ELECTRO*"/> </
valueFilter>
 <valueFilter operator="IN"> <procedureCall
schema="PROCEDURE_OWNER" procedure="DETERMINE_AUTHORIZED_PRODUCT_FOR_USER" />
</valueFilter >
 </restrictions>
 </dimensionAttribute>
 <dimensionAttribute name=" test.sales/AT_TIME$YEAR ">
 <restrictions>
 <valueFilter operator="EQ"> <value value="2012"/> </valueFilter>
 <valueFilter operator="IN"> <procedureCall
schema="PROCEDURE_OWNER" procedure="DETERMINE_AUTHORIZED_YEAR_FOR_USER" /> </
valueFilter > </restrictions>

An analytic privilege can have multiple attribute restrictions, but it must have at least one attribute restriction.
An attribute restriction must have at least one value filter. Therefore, if you want to permit access to the whole
content of a restricted view, then the attribute restriction must specify all attributes.

Similarly, if you want to permit access to the whole content of the view with the corresponding attribute, then
the value filter must specify all values.

The SAP HANA modeler automatically implements these two cases if you do not select either an attribute
restriction or a value filter.

 Example
Specification of all attributes:

<dimensionAttributes> <allDimensionAttributes/ >
 </dimensionAttributes>

750 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

 Example
Specification of all values of an attribute:

<dimensionAttributes> <dimensionAttribute name="PRODUCT">
 <all />
 </dimensionAttribute>
 </dimensionAttributes>

Logical Combination of Restrictions and Filter Conditions

The result of user queries on restricted views is filtered according to the conditions specified by the analytic
privileges granted to the user as follows:

● Multiple analytic privileges are combined with the logical operator OR.
● Within one analytic privilege, all attribute restrictions are combined with the logical operator AND.
● Within one attribute restriction, all value filters on the attribute are combined with the logical operator OR.

 Example
You create two analytic privileges AP1 and AP2. AP1 has the following attribute restrictions:

● Restriction R11 restricting the attribute Year with the value filters (EQ 2006) and (BT 2008, 2010)
● Restriction R12 restricting the attribute Country with the value filter (IN ("USA", "Germany"))

Given that multiple value filters are combined with the logical operator OR and multiple attribute
restrictions are combined with the logical operator AND, AP1 generates the condition:

((Year = 2006) OR (Year BT 2008 and 2010)) AND (Country IN ("USA", "Germany"))

AP2 has the following restriction:

Restriction R21 restricting the attribute Country with the value filter (EQ "France")

AP2 generates the condition:

(Country = "France")

Any query of a user who has been granted both AP1 and AP2 will therefore be appended with the following
WHERE clause:

((Year = 2006) OR (Year BT 2008 and 2010)) AND (Country IN ("USA", "Germany")))
OR (Country = "France")

Related Information

SAP Note 2465027

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 751

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/2465027

11.2.3.1.1 Dynamic Value Filters in the Attribute Restriction of
XML-Based Analytic Privileges

The attribute restriction of an XML-based analytic privilege specifies the value range that the user is permitted
to access using value filters. In addition to static scalar values, stored procedures can be used to define filters.

By using storing procedures to define filters, you can have user-specific filter conditions be determined
dynamically in runtime, for example, by querying specified tables or views. As a result, the same analytic
privilege can be applied to many users, while the filter values for authorization can be updated and changed
independently in the relevant database tables. In addition, application developers have full control not only to
design and manage such filter conditions, but also to design the logic for obtaining the relevant filter values for
the individual user at runtime.

Procedures used to define filter conditions must have the following properties:

● They must have the security mode DEFINER.
● They must be read-only procedures.
● A procedure with a predefined signature must be used. The following conditions apply:

○ No input parameter
○ Only 1 output parameter as table type with one single column for the IN operator
○ Only 1 output parameter of a scalar type for all unary operators, such as EQUAL
○ Only 2 output parameters of a scalar type for the binary operator BETWEEN

● Only the following data types are supported as the scalar types and the data type of the column in the table
type:
○ Date/Time types DATE, TIME, SECONDDATE, and TIMESTAMP
○ Numeric types TINYINT, SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, and DOUBLE
○ Character string types VARCHAR and NVARCHAR
○ Binary type VARBINARY

NULL as Operand for Filter Operators

In static value filters, it is not possible to specify NULL as the operand of the operator. The operators IS_NULL
or NOT_NULL must be used instead. In dynamic value filters where a procedure is used to determine a filter
condition, NULL or valid values may be returned. The following behavior applies in the evaluation of such cases
during the authorization check of a user query:

Filter conditions of operators with NULL as the operand are disregarded, in particular the following:

● EQ NULL, GT NULL, LT NULL, LE NULL, and CP NULL
● BT NULL and NULL

If no valid filter conditions remain (that is, they have all been disregarded because they contain the NULL
operand), the user query is rejected with a “Not authorized” error.

 Example
Dynamic analytic privilege 1 generates the filter condition (Year >= NULL) and dynamic analytic privilege 2
generates the condition (Country EQ NULL). The query of a user assigned these analytic privileges
(combined with the logical operator OR) will return a “Not authorized” error.

752 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

 Example
Dynamic analytic privilege 1 generates the filter condition (Year >= NULL) and dynamic analytic privilege 2
generates the condition (Country EQ NULL AND Currency = “USD”). The query of a user assigned these
analytic privileges (combined with the logical operator OR) will be filtered with the filter Currency = ‘USD’.

In addition, a user query is not authorized in the following cases even if further applicable analytic privileges
have been granted to the user.

● The BT operator has as input operands a valid scalar value and NULL, for example, BT 2002 and NULL or
BT NULL and 2002

● The IN operator has as input operand NULL among the value list, for example, IN (12, 13, NULL)

Permitting Access to All Values

If you want to allow the user to see all the values of a particular attribute, instead of filtering for certain values,
the procedure must return "*" and '' '' (empty string) as the operand for the CP and GT operators respectively.
These are the only operators that support the specification of all values.

Implementation Considerations

When the procedure is executed as part of the authorization check in runtime, note the following:

● The user who must be authorized is the database user who executes the query accessing a secured view.
This is the session user. The database table or view used in the procedure must therefore contain a column
to store the user name of the session user. The procedure can then filter by this column using the SQL
function SESSION_USER. This table or view should only be accessible to the procedure owner.

 Caution
Do not map the executing user to the application user. The application user is unreliable because it is
controlled by the client application. For example, it may set the application user to a technical user or it
may not set it at all. In addition, the trustworthiness of the client application cannot be guaranteed.

● The user executing the procedure is the _SYS_REPO user. In the case of procedures activated in the SAP
HANA modeler, _SYS_REPO is the owner of the procedures. For procedures created in SQL, the EXECUTE
privilege on the procedure must be granted to the _SYS_REPO user.

● If the procedure fails to execute, the user’s query stops processing and a “Not authorized” error is
returned. The root cause can be investigated in the error trace file of the indexserver,
indexserver_alert_<host>.trc.

When designing and implementing procedures as filter for dynamic analytic privileges, bear the following in
mind:

● To avoid a recursive analytic privilege check, the procedures should only select from database tables or
views that are not subject to an authorization check based on analytic privileges. In particular, views
activated in the SAP HANA modeler are to be avoided completely as they are automatically registered for
the analytic privilege check.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 753

● The execution of procedures in analytic privileges slows down query processing compared to analytic
privileges containing only static filters. Therefore, procedures used in analytic privileges must be designed
carefully.

11.2.3.1.2 Example: Create an XML-Based Analytic Privilege
with Dynamic Value Filter

Use the CREATE STRUCTURED PRIVILEGE statement to create an XML-based analytic privilege that contains a
dynamic procedure-based value filter and a fixed value filter in the attribute restriction.

Context

 Note
The analytic privilege in this example is created using the CREATE STRUCTURED PRIVILEGE statement.
Under normal circumstances, you create XML-based analytic privileges using the SAP HANA modeler or
the SAP HANA Web-based Development Workbench. Analytic privileges created using CREATE
STRUCTURED PRIVILEGE are not owned by the user _SYS_REPO. They can be granted and revoked only by
the actual database user who creates them.

Assume you want to restrict access to product data in secured views as follows:

● Users should only see products beginning with ELECTRO, or
● Users should only see products for which they are specifically authorized. This information is contained in

the database table PRODUCT_AUTHORIZATION_TABLE in the schema AUTHORIZATION.

To be able to implement the second filter condition, you need to create a procedure that will determine which
products a user is authorized to see by querying the table PRODUCT_AUTHORIZATION_TABLE.

Procedure

1. Create the table type for the output parameter of the procedure:

CREATE TYPE "AUTHORIZATION"."PRODUCT_OUTPUT" AS TABLE("PRODUCT" int);
2. Create the table that the procedure will use to check authorization:

CREATE TABLE "AUTHORIZATION"."PRODUCT_AUTHORIZATION_TABLE" ("USER_NAME"
NVARCHAR(128), "PRODUCT" int);

3. Create the procedure that will determine which products the database user executing the query is
authorized to see based on information contained in the product authorization table:

CREATE PROCEDURE "AUTHORIZATION"."DETERMINE_AUTHORIZED_PRODUCT_FOR_USER" (OUT
VAL "AUTHORIZATION"."PRODUCT_OUTPUT") LANGUAGE SQLSCRIPT SQL SECURITY DEFINER READS SQL DATA AS

754 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

BEGIN
 VAL = SELECT PRODUCT FROM "AUTHORIZATION"."PRODUCT_AUTHORIZATION_TABLE”
WHERE USER_NAME = SESSION_USER; END;

 Note
The session user is the database user who is executing the query to access a secured view. This is
therefore the user whose privileges must be checked. For this reason, the table or view used in the
procedure should contain a column to store the user name so that the procedure can filter on this
column using the SQL function SESSION_USER.

 Caution
Do not map the executing user to the application user. The application user is unreliable because it is
controlled by the client application. For example, it may set the application user to a technical user or it
may not set it at all. In addition, the trustworthiness of the client application cannot be guaranteed.

4. Create the analytic privilege:

CREATE STRUCTURED PRIVILEGE '<?xml version="1.0" encoding="utf-8"?> <analyticPrivilegeSchema version="1">
 <analyticPrivilege name="AP2">
 <cubes>
 <allCubes />
 </cubes>
 <validity>
 <anyTime/>
 </validity>
 <activities>
 <activity activity="read" />
 </activities>
 <dimensionAttributes>
 <dimensionAttribute name="PRODUCT">
 <restrictions>
 <valueFilter operator="CP"> <value value="ELECTRO*"/> </
valueFilter>
 <valueFilter operator="IN"> <procedureCall schema="AUTHORIZATION"
procedure="DETERMINE_AUTHORIZED_PRODUCT_FOR_USER"/> </valueFilter>
 </restrictions>
 </dimensionAttribute>
 </dimensionAttributes>
 </analyticPrivilege>
</analyticPrivilegeSchema>';

Results

Now when a database user requests access to a secured view containing product information, the data
returned will be filtered according to the following condition:

(product LIKE "ELECTRO*" OR product IN
(AUTHORIZATION.DETERMINE_AUTHORIZED_PRODUCT_FOR_USER())

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 755

11.2.3.2 Structure of SQL-Based Analytic Privileges

An analytic privilege consists of a set of restrictions against which user access to a particular attribute view,
analytic view, calculation view, or SQL view is verified. In an SQL-based analytic privilege, these restrictions are
specified as filter conditions that are fully SQL based.

SQL-based analytic privileges are created using the CREATE STRUCTURED PRIVILEGE statement:

CREATE STRUCTURED PRIVILEGE <privilege_name> FOR <action> ON <view_name>
<filter_condition>

The FOR clause is used restrict the type of access (only the SELECT action is supported). The ON clause is
used to restrict access to one or more views with the same filter attributes.

The <filter condition> parameter is used to restrict the data visible to individual users. The following
methods of specifying filter conditions are possible:

● Fixed filter (WHERE) clause
● Dynamically generated filter (CONDITION PROVIDER) clause

Fixed Filter Clauses

A fixed filter clause consists of an WHERE clause that is specified in the definition of the analytic privilege
itself.

You can express fixed filter conditions freely using SQL, including subqueries.

By incorporating built-in SQL functions into the subqueries, in particular SESSION_USER, you can define an
even more flexible filter condition.

 Example
country IN (SELECT a.country FROM authorizationtable a WHERE SESSION_USER=
a.user_name)

 Note
A calculation view cannot be secured using an SQL-based analytic privilege that contains a complex filter
condition if the view is defined on top of analytic and/or attributes views that themselves are secured with
an SQL-based analytic privilege with a complex filter condition.

 Remember
If you use a subquery, you (the creating user) must have the required privileges on the database objects
(tables and views) involved in the subquery.

Comparative conditions can be nested and combined using AND and OR (with corresponding brackets).

 Tip
To create an analytic privilege that allows either access to all data or no data in a view, set a fixed filter
condition such as 1=1 or 1!=1.

756 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

Dynamically Generated Filter Clauses

With a dynamically generated filter clause, the WHERE clause that specifies the filter condition is generated
every time the analytic privilege is evaluated. This is useful in an environment in which the filter clause changes
very dynamically. The filter condition is determined by a procedure specified in the CONDITION PROVIDER
clause, for example:

 Sample Code
CREATE STRUCTURED PRIVILEGE dynamic_ap FOR SELECT ON schema1.v1 CONDITION PROVIDER
schema2.procedure1;

Procedures in the CONDITION PROVIDER clause must have the following properties:

● They must have the security mode DEFINER.
● They must be read-only procedures.
● They must have a predefined signature. Here, the following conditions apply:

○ No input parameter
○ Only one output parameter for the filter condition string of string type NVARCHAR, VARCHAR, CLOB,

or NCLOB
While VARCHAR and NVARCHAR have length limitations of 5000 characters, CLOB and NCLOB can be
used to accommodate longer filter strings.

● The procedure may only return conditions expressed with the following operators:
○ =, <=, <, >, >=
○ LIKE
○ BETWEEN
○ IN
○ NOT (...)
○ !=

A complex filter condition, that is a subquery, may not be returned.

 Tip
A procedure that returns the filter condition 1=1 or 1>1 can be used to create an analytic privilege that
allows access to all data or no data in a view.

● The procedure must be executable by _SYS_REPO, that is, either_SYS_REPO must be the owner of the
procedure or the owner of the procedure has all privileges on the underlying tables/views with GRANT
OPTION and has granted the EXECUTE privilege on the procedure to the _SYS_REPO user.

If errors occur in procedure execution, the user receives a Not authorized error, even if he has the analytic
privileges that would grant access.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 757

11.2.3.2.1 Examples: Securing Views Using SQL-Based
Analytic Privileges

Use the CREATE STRUCTURED PRIVILEGE statement to create SQL-based analytic privileges for different
scenarios.

Context

The examples provided here take you through the following scenarios:

● Example 1: Securing a column view using an SQL-based analytic privilege with a fixed filter clause [page
758]

● Example 2: Securing an SQL view using an SQL-based analytic privilege with a complex filter clause
(subquery) [page 760]

● Example 3: Securing a column view using an SQL-based analytic privilege with a dynamically generated
filter clause [page 762]

 Note
The analytic privileges in these example are created using the CREATE STRUCTURED PRIVILEGE
statement. Under normal circumstances, you create SQL-based analytic privileges using the SAP HANA
Web-based Development Workbench. Analytic privileges created using CREATE STRUCTURED PRIVILEGE
are not owned by the user _SYS_REPO. They can be granted and revoked only by the actual database user
who creates them.

Example 1: Secure a Column View Using an SQL-Based
Analytic Privilege with a Fixed Filter Clause

Prerequisites

The database user TABLEOWNER has set up a calculation scenario based on the table SALES_TABLE, which
contains the data to be protected.

Context

All sales data is contained in a single view. You want to restrict user access so that sales managers can see only
information about the product "car" in the sales region UK and Germany. You want to do this by creating an
analytic privilege with a fixed filter clause.

A fixed filter clause consists of an SQL WHERE clause that is specified in the definition of the analytic privilege
itself.

758 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

Procedure

1. Create the view containing the sales data:

CREATE COLUMN VIEW "TABLEOWNER"."VIEW_SALES" TYPE CALCULATION WITH PARAMETERS
('PARENTCALCINDEXSCHEMA'='TABLEOWNER', 'PARENTCALCINDEX'='CALCSCEN_SALES',
 'PARENTCALCNODE'='SALES_TABLE',
 'REGISTERVIEWFORAPCHECK'='0') STRUCTURED PRIVILEGE CHECK ;

 Note
You can see above that the authorization check using XML-based analytic privileges is disabled with
'REGISTERVIEWFORAPCHECK'='0', while the authorization check using SQL-based analytic
privileges is enabled with STRUCTURED PRIVILEGE CHECK. Both checks cannot be enabled at the
same time.

2. Create the analytic privilege:

CREATE STRUCTURED PRIVILEGE AP_SALES_1 FOR SELECT ON TABLEOWNER.VIEW_SALES
WHERE REGION IN ('DE','UK')
OR PRODUCT = 'CAR' ;

 Remember
When specifying filters, remember the following:

○ You can specify only the SELECT action in the FOR clause.
○ You can specify one or more views with the same filter attributes in the ON clause
○ You can specify comparative conditions between attributes and constant values using only the

following operators:
○ =, <=, <, >, >=
○ LIKE
○ BETWEEN
○ IN

○ You can create complex filter conditions by including SQL statements as subqueries inside the
WHERE clause. Example 2 illustrates how you do this. But remember: A calculation view cannot be
secured using an SQL-based analytic privilege that contains a complex filter condition if the view is
defined on top of analytic and/or attributes views that themselves are secured with an SQL-based
analytic privilege with a complex filter condition.
Also remember that if you use a subquery, you must have the required privileges on the database
objects (tables and views) involved in the subquery.

3. Grant the SELECT privilege on the view TABLEOWNER.VIEW_SALES to the relevant users/roles:

GRANT SELECT on TABLEOWNER.VIEW_SALES to <SALES_MANAGERS>;

 Remember
Only the view owner or a user who has the SELECT privilege WITH GRANT OPTION on the view can
perform the grant.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 759

4. Grant the analytic privilege to the relevant users/roles:

GRANT STRUCTURED PRIVILEGE AP_SALES_1 TO <SALES_MANAGERS>;

 Remember
Only the owner of the analytic privilege can grant it.

Example 2: Secure an SQL View Using an SQL-Based Analytic
Privilege with a Complex Filter Clause
(Subquery)

Prerequisites

The database user TABLEOWNER has created a table TABLEOWNER.SALES, which contains the data to be
protected.

Context

All sales data is contained in a single view. You want to restrict access of user MILLER so that he can see only
product information from the year 2008. You want to do this by creating an analytic privilege with a complex
filter clause.

With a complex filter clause, the SQL WHERE clause that specifies the filter condition includes an SQL
statement, or a subquery. This allows you to create complex filter conditions to control which data individual
users see.

Procedure

1. Create the view containing the sales data which needs to be secured:

CREATE VIEW "VIEWOWNER"."ROW_VIEW_SALES_ON_SALES" AS SELECT * FROM "TABLEOWNER"."SALES" WITH STRUCTURED PRIVILEGE CHECK ;

 Remember
The user creating the view must have the SELECT privilege WITH GRANT OPTION on the table
TABLEOWNER.SALES.

2. Create the table containing user-specific authorization data:

CREATE COLUMN TABLE "VIEWOWNER"."AUTHORIZATION_VALUES"("VALUE" VARCHAR(256),

760 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

 "USER_NAME" VARCHAR(20));

3. Insert authorization information for user MILLER:

INSERT INTO "VIEWOWNER"."AUTHORIZATION_VALUES" VALUES('2008', 'MILLER);

4. Create the analytic privilege using a subquery as the condition provider:

CREATE STRUCTURED PRIVILEGE AP_ROW_VIEW_SALES_ON_SALES FOR SELECT ON "VIEWOWNER"."ROW_VIEW_SALES_ON_SALES"
WHERE (CURRENT_DATE BETWEEN 2015-01-01 AND 2015-01-11) AND YEAR IN (SELECT
VALUE FROM VIEWOWNER.AUTHORIZATION_VALUES WHERE USER_NAME = SESSION_USER) ;

 Remember
○ Subqueries allow you to create complex filter conditions, but remember: A calculation view cannot

be secured using an SQL-based analytic privilege that contains a complex filter condition if the
view is defined on top of analytic and/or attributes views that themselves are secured with an SQL-
based analytic privilege with a complex filter condition.

○ The user creating the analytic privilege must have the SELECT privilege on the objects involved in
the subquery, in this case table VIEWOWNER.AUTHORIZATION_VALUES.

○ The session user is the database user who is executing the query to access a secured view. This is
therefore the user whose privileges must be checked. For this reason, the table containing the
authorization information needs a column to store the user name so that the subquery can filter on
this column using the SQL function SESSION_USER.

 Caution
Do not map the executing user to the application user. The application user is unreliable because it is
controlled by the client application. For example, it may set the application user to a technical user or it
may not set it at all. In addition, the trustworthiness of the client application cannot be guaranteed.

5. Grant the SELECT privilege on the view VIEWOWNER.ROW_VIEW_SALES_ON_SALES to user MILLER.

GRANT SELECT ON "VIEWOWNER"."ROW_VIEW_SALES_ON_SALES" TO MILLER;

 Remember
Only the view owner or a user who has the SELECT privilege WITH GRANT OPTION on the view can
perform the grant.

6. Grant the analytic privilege to user MILLER.

GRANT STRUCTURED PRIVILEGE AP_ROW_SALES_ON_SALES TO MILLER;

 Remember
Only the owner of the analytic privilege can grant it.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 761

Example 3: Secure a Column View Using an SQL-Based
Analytic Privilege with a Dynamically Generated
Filter Clause

Prerequisites

The database user TABLEOWNER has set up a calculation scenario based on the table SALES_TABLE, which
contains the data to be protected.

Context

All sales data is contained in a single view. You want to restrict access of user ADAMS so that he can see only
information about cars bought by customer Company A or bikes sold in 2006. You want to do this by creating
an analytic privilege with a dynamically generated filter clause.

With a dynamically generated filter clause, the SQL WHERE clause that specifies the filter condition is
generated every time the analytic privilege is evaluated. This is useful in an environment in which the filter
clause changes very dynamically.

Procedure

1. Create the view containing the sales data:

CREATE COLUMN VIEW "TABLEOWNER"."VIEW_SALES" TYPE CALCULATION WITH PARAMETERS
('PARENTCALCINDEXSCHEMA'='TABLEOWNER', 'PARENTCALCINDEX'='CALCSCEN_SALES',
 'PARENTCALCNODE'='SALES_TABLE',
 'REGISTERVIEWFORAPCHECK'='0') STRUCTURED PRIVILEGE CHECK ;

2. Create a table containing user-specific filter strings:

CREATE COLUMN TABLE "AUTHORIZATION"."AUTHORIZATION_FILTERS"("FILTER"
VARCHAR(256), "USER_NAME" VARCHAR(20)) ;

3. Create an authorization filter for user ADAMS:

INSERT INTO "AUTHORIZATION"."AUTHORIZATION_FILTERS" VALUES('(CUSTOMER=''Company A''
AND PRODUCT=''Car'') OR (YEAR=''2006'' AND PRODUCT=''Bike'')',
 'ADAMS') ;

 Remember
Filters containing comparative conditions must be defined as specified in example 1.

762 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

4. Create the database procedure that provides the filter clause for the analytic privilege and grant it to user
_SYS_REPO:

CREATE PROCEDURE "PROCOWNER"."GET_FILTER_FOR_USER"(OUT OUT_FILTER
VARCHAR(5000)) LANGUAGE SQLSCRIPT SQL SECURITY DEFINER READS SQL DATA AS
 v_Filter VARCHAR(5000);
 CURSOR v_Cursor FOR SELECT "FILTER" FROM
"PROCOWNER"."AUTHORIZATION_FILTERS" WHERE "USER_NAME" = SESSION_USER;
BEGIN
 OPEN v_Cursor;
 FETCH v_Cursor INTO v_Filter;
 OUT_FILTER := v_Filter;
 CLOSE v_Cursor;
END; GRANT EXECUTE ON "PROCOWNER"."GET_FILTER_FOR_USER" TO _SYS_REPO;

 Remember
When using procedures as the condition provider in an SQL-based analytic privilege, remember the
following:

○ Procedures must have the following properties:
○ They must have the security mode DEFINER.
○ They must be read-only procedures.
○ A procedure with a predefined signature must be used. The following conditions apply:

○ No input parameter
○ Only one output parameter for the filter condition string of string type NVARCHAR,

VARCHAR, CLOB, or NCLOB
While VARCHAR and NVARCHAR have length limitations of 5000 characters, CLOB and
NCLOB can be used to accommodate longer filter strings.

○ The procedure may not return a complex filter condition, that is a subquery.
○ The procedure must be executable by _SYS_REPO, that is, either_SYS_REPO must be the owner of

the procedure or the owner of the procedure has all privileges on the underlying tables/views with
GRANT OPTION and has granted the EXECUTE privilege on the procedure to the _SYS_REPO user.

○ The session user is the database user who is executing the query to access a secured view. This is
therefore the user whose privileges must be checked. For this reason, the table or view used in the
procedure should contain a column to store the user name so that the procedure can filter on this
column using the SQL function SESSION_USER.

○ If errors occur in procedure execution, the user receives a Not authorized error, even if he has
the analytic privileges that would grant access.

5. Create the analytic privilege using the procedure as condition provider:

CREATE STRUCTURED PRIVILEGE AP_SALES_2 FOR SELECT ON
"TABLEOWNER"."VIEW_SALES" CONDITION PROVIDER
"AUTHORIZATION"."GET_FILTER_FOR_USER";

On evaluation of the analytic privilege for user ADAMS, the WHERE clause (CUSTOMER='Company A' AND
PRODUCT='Car') OR (YEAR='2006' AND PRODUCT='Bike'), as provided by the procedure
GET_FILTER_FOR_USER, will be used.

6. Grant the SELECT privilege on the view TABLEOWNER.VIEW_SALES to user ADAMS:

GRANT SELECT on TABLEOWNER.VIEW_SALES to ADAMS;

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 763

 Remember
Only the view owner or a user who has the SELECT privilege WITH GRANT OPTION on the view can
perform the grant.

7. Grant the analytic privilege to user ADAMS:

GRANT STRUCTURED PRIVILEGE AP_SALES_2 TO ADAMS;

 Remember
Only the owner of the analytic privilege can grant it.

11.2.3.3 Runtime Authorization Check of Analytic Privileges

When a user requests access to data stored in an attribute, analytic, calculation, or SQL views, an authorization
check based on analytic privileges is performed and the data returned to the user is filtered accordingly. The
EFFECTIVE_STRUCTURED_PRIVILEGES system view can help you to troubleshoot authorization problems.

Access to a view and the way in which results are filtered depend on whether the view is independent or
associated with other views (dependent views).

Independent Views

The authorization check for a view that is not defined on another column view is as follows:

1. The user's authorization to access the view is checked.
A user can access the view if both of the following prerequisites are met:
○ The user has been granted the SELECT privilege on the view or the schema in which it is located.

 Note
The user does not require SELECT on the underlying base tables or views of the view.

○ The user has been granted an analytic privilege that is applicable to the view.
Applicable analytic privileges are those that meet all of the following criteria:

XML-Based Analytic Privilege SQL-Based Analytic Privilege

A view restriction that includes the accessed view An ON clause that includes the accessed view

A validity restriction that applies now If the filter condition specifies a validity period (for ex
ample, WHERE (CURRENT_TIME BETWEEN ...
AND) AND <actual filter>)), it must
apply now

764 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

XML-Based Analytic Privilege SQL-Based Analytic Privilege

An action in the activity restriction that covers the ac
tion requested by the query

 Note
All analytic privileges created and activated in the
SAP HANA modeler and SAP HANA Web-based De
velopment Workbench fulfill this condition. The only
action supported is read access (SELECT).

An action in the FOR clause that covers the action re
quested by the query

 Note
All analytic privileges created and activated in the
SAP HANA Web-based Development Workbench
fulfill this condition. The only action supported is
read access (SELECT).

An attribute restriction that includes some of the view’s
attributes

A filter condition that applies to the view

 Note
When the analytic privilege is created, the filter is
checked immediately to ensure that it applies to the
view. If it doesn't, creation will fail. However, if the
view definition subsequently changes, or if a dy
namically generated filter condition returns a filter
string that is not executable with the view, the au
thorization check will fail and access is rejected.

If the user has the SELECT privilege on the view but no applicable analytic privileges, the user’s request is
rejected with a Not authorized error. The same is true if the user has an applicable analytic privilege but
doesn't have the SELECT privilege on the view.

2. The value filters specified in the dimension restrictions (XML-based) or filter condition (SQL-based) are
evaluated and the appropriate data is returned to the user. Multiple analytic privileges are combined with
the logical operator OR.
For more information about how multiple attribute restrictions and/or multiple value filters in XML-based
analytic privileges are combined, see XML-Based Analytic Privileges.

Dependent Views

The authorization check for a view that is defined on other column views is more complex. Note the following
behavior.

Calculation and SQL views
● Individual views in the hierarchy are filtered according to their respective analytic privileges, which use the

logical OR combination.
● The filtered result of the calculation view is derived from the filtered result of its underlying views. This

corresponds to a logic AND combination of the filters generated by the analytic privileges for the individual
views.

Result filtering on the view is then performed as follows:

● The user has been granted the SELECT privilege on the view or the schema that contains the view.
● The user has been granted analytic privileges that apply to the view itself and all the other column views in

the hierarchy that are registered for a structured privilege check.

SAP HANA Developer Guide
Setting Up Roles and Privileges P U B L I C 765

A user can access a calculation or SQL view based on other views if both of the following prerequisites are met:

If a user requests access to a calculation view that is dependent on another view, the behavior of the
authorization check and result filtering is performed as follows:

Calculation views and SQL views can be defined by selecting data from other column views, specifically
attribute views, analytic views, and other calculation views. This can lead to a complex view hierarchy that
requires careful design of row-level authorization.

Analytic views
An analytic view can also be defined on attribute views, but this does not represent a view dependency or
hierarchy with respect to authorization check and result filtering. If you reference an attribute view in an
analytic view, analytic privileges defined on the attribute view are not applied.

This represents a view hierarchy for which the prerequisites described above for calculation views also apply.

● Currency or unit conversions
● Calculated attributes
● Calculated measures that use attributes, calculated attributes, or input parameters in their formulas

If an analytic view designed in the SAP HANA modeler contains one of the elements listed below, it will
automatically be activated with a calculation view on top. The name of this calculation view is the name of the
analytic view with the suffix /olap.

Troubleshooting Failed Authorization

Using the EFFECTIVE_STRUCTURED_PRIVILEGES system view, you can quickly see:

● Which analytic privileges apply to a particular view, including the dynamic filter conditions that apply (if
relevant)

● Which filter is being applied to which view in the view hierarchy (for views with dependencies)
● Whether or not a particular user is authorized to access the view

Query EFFECTIVE_STRUCTURED_PRIVILEGES as follows:

SELECT * from "PUBLIC"."EFFECTIVE_STRUCTURED_PRIVILEGES" where ROOT_SCHEMA_NAME
= '<schema>' AND ROOT_OBJECT_NAME = '<OBJECT>' AND USER_NAME = '<USER>'

Related Information

Structure of XML-Based Analytic Privileges [page 747]

766 P U B L I C
SAP HANA Developer Guide

Setting Up Roles and Privileges

12 SAP HANA Application Lifecycle
Management

SAP HANA application lifecycle management supports you in all phases of an SAP HANA application lifecycle,
from modeling your product structure, through application development, transport, assemble, and install.

The following graphic illustrates the phases in a product lifecycle of an SAP HANA application:

Phases of SAP HANA Application Lifecycle Management

● Model
You define your product structure to provide a framework for efficient software development. This includes
creating delivery units and assigning packages to delivery units. The delivery units are then bundled in
products.

● Develop
You perform software development in repository packages. SAP HANA application lifecycle management
supports you with change tracking functions.

● Transport
You can transport your developed content in different ways according to your needs. You can choose
between transporting products or delivery units, based on changelists or complete entities. The transport
type can be native SAP HANA transport or transport using Change and Transport System (CTS). You can
also export delivery units, and import them into another system.

● Assemble

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 767

The developed software plus the metadata defined when modeling your product structure as well as
possible translation delivery units are the basis for assembling your add-on product. You can also build
Support Packages and patches for your product.

● Install
You can install SAP HANA products that you downloaded from SAP Support Portal or that you assembled
yourself.

● Configure
If the SAP HANA product delivers configuration content, you can use the process engine of SAP HANA
application lifecycle management to automate configuration tasks.

All phases of SAP HANA application lifecycle management are documented in the SAP HANA Application
Lifecycle Management Guide. The tasks related to the Install and Configure phases of SAP HANA application
lifecycle management are relevant for system administrators and are therefore also documented in the SAP
HANA Administration Guide. The tasks related to software development are documented in the SAP HANA
Developer Guide (For SAP HANA Studio).

Availability of SAP HANA Application Lifecycle Management

SAP HANA application lifecycle management for XS classic is installed with SAP HANA as automated content.
You can access the SAP HANA application lifecycle management functions in different ways:

● Using the XS user interface SAP HANA Application Lifecycle Management which is available in the
following places:
○ On the SAP HANA XS Web server at the following URL: http://<WebServerHost>:

80<SAPHANAinstance>/sap/hana/xs/lm.
○ Using a link in SAP HANA Web-based Development Workbench.

For example, to open the home screen, choose Navigation Links Lifecycle Management in the
SAP HANA Web-based Development Workbench Editor tool.

○ Using the context menu in SAP HANA studio.
For example, to open the home screen from, choose Lifecycle Management Application Lifecycle
Management Home Screen from the context menu for a particular system in the SAP HANA
Administration Console perspective in SAP HANA studio.

● Using the command line tool hdbalm.
The file is shipped with the SAP client installation. If you leave the default installation options unchanged
hdbalm is located in the ..\sap\hdbclient directory.

You cannot perform all application lifecycle management tasks with one tool. For example, assembling
products and software components can only be done using the hdbalm tool, whereas the full set of transport
functions is available only in the XS user interface. Whenever a function is available in the XS user interface it is
documented there. When used in SAP HANA studio, the functions are the same as in the XS user interface.
Therefore, these options are not separately documented.

 Note
For information about the SAP HANA platform lifecycle management tools, see the SAP HANA Server
Installation and Update Guide and SAP HANA Platform Lifecycle Management in the SAP HANA
Administration Guide.

768 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

Related Information

Using hdbalm [page 817]

12.1 Preparing to Use SAP HANA Application Lifecycle
Management

Before you can use SAP HANA Application Lifecycle Management, you must assign predefined roles to users
who need to perform application lifecycle management tasks and set the content vendor ID for the SAP HANA
system.

Prerequisites

To use the SAP HANA Application Lifecycle Management tool, you must ensure that the following prerequisites
are met:

● An SAP HANA system is available.
● SAP HANA XS is up and running on the SAP HANA system.
● You have system privileges on the SAP HANA system (for example, to add users).

For the prerequisites required to use hdbalm, see the Prerequisites section in the Using hdbalm topic. The link
to the topic is in the More Information section.

Context

With SAP HANA Application Lifecycle Management, your authorization level determines which tasks you are
able to perform. Authorization levels are granted by assigning the appropriate role, for example,
sap.hana.xs.lm.roles::Administrator. If you do not have the required level of access, in the Web-
based tool, certain buttons are disabled, and certain options are hidden. In hdbalm, you receive an error
message informing you that authorization is missing.

Procedure

1. Assign copies of the necessary roles to the users who perform application lifecycle management tasks for
example, SAP HANA application lifecycle management administrator tasks.

 Note
This step must be performed in the SAP HANA studio or SAP HANA Web-based Development
Workbench by a user with administrator privileges.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 769

Access to features and options in the SAP HANA Application Lifecycle Management is based on user
privileges, which are assigned in user roles, for example, administrator or transport manager.

 Recommendation
As repository roles delivered with SAP HANA can change when a new version of the package is
deployed, either do not use them directly but instead as a template for creating your own roles, or have
a regular review process in place to verify that they still contain only privileges that are in line with your
organization's security policy. Furthermore, if repository package privileges are granted by a role, we
recommend that these privileges be restricted to your organization’s packages rather than the
complete repository. To do this, for each package privilege (REPO.*) that occurs in a role template and
is granted on .REPO_PACKAGE_ROOT, check whether the privilege can and should be granted to a
single package or a small number of specific packages rather than the full repository.

2. Set the Vendor ID.
The vendor ID sets the namespace in SAP HANA where your application development takes place, for
example, “sap.com” or “com.mycompany”.

 Note
The namespace sap is restricted; you must not develop your own applications in this namespace.
Place your packages in your own namespace.

Related Information

SAP HANA Application Lifecycle Management [page 767]
Using hdbalm [page 817]

12.1.1 Assign User Roles

Access to features and functionality in SAP HANA Application Lifecycle Management is based on roles and
privileges; the role you have determines the tasks you can perform.

Prerequisites

To assign privileges to users of the SAP HANA Application Lifecycle Management, you must ensure the
following prerequisites are met:

● You have access to an SAP HANA system.
● You have administrator/system privileges on the SAP HANA system (for example, you can add/maintain

database users).

770 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

Context

In the SAP HANA Application Lifecycle Management, the availability of features, screens, tabs, and UI controls
(for example, Add, Edit, Save, or Delete buttons) is based on user privileges. For the sake of convenience, the
specific privileges required to use the features provided with a particular tool have been collected into a
selection of specific roles, which you can use as a template to assign the relevant privileges to the user who
needs to use a particular tool.

 Note
To start the SAP HANA Application Lifecycle Management, you must have a role based on the the privileges
granted by one of the dedicated ALM roles, for example, sap.hana.xs.lm.roles::Display.

To assign the required privileges to people who want to use the features provided by the SAP HANA ALM tool,
perform the following steps:

Procedure

Create a new user or assign a copy of the required application lifecycle management role to an existing user
who needs to perform a specific task.
For more information on the how to assign roles to users, see Provisioning Users in the SAP HANA
Administration Guide. For more information on the available application lifecycle management roles, see SAP
HANA Application Lifecycle Management Roles. The links can be found in the Related Information section.

 Recommendation
As repository roles delivered with SAP HANA can change when a new version of the package is deployed,
either do not use them directly but instead as a template for creating your own roles, or have a regular
review process in place to verify that they still contain only privileges that are in line with your organization's
security policy. Furthermore, if repository package privileges are granted by a role, we recommend that
these privileges be restricted to your organization’s packages rather than the complete repository. To do
this, for each package privilege (REPO.*) that occurs in a role template and is granted
on .REPO_PACKAGE_ROOT, check whether the privilege can and should be granted to a single package or a
small number of specific packages rather than the full repository.

The user can now use SAP HANA application lifecycle management to perform the required task.

Related Information

SAP HANA Application Lifecycle Management Roles [page 772]
SAP HANA Application Lifecycle Management [page 767]

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 771

12.1.1.1 SAP HANA Application Lifecycle Management Roles

To grant users the privileges they require to perform tasks with the SAP HANA Application Lifecycle
Management, you must assign them the privileges of one or more dedicated application lifecycle management
roles.

The following table lists the roles that can be used as templates for users who want to perform lifecycle-
management-related tasks using SAP HANA Application Lifecycle Management tool. The roles are hierarchical
and interlinked. For example, by default, the Administrator role grants the privileges included in all other roles;
the ExecuteTransport role grants the privileges assigned in the Transport and Display roles.

 Note
Some lifecycle-management tasks require interaction with external tools, and this requires additional
privileges, which you can grant by assigning the appropriate roles. For example, to register an HTTP
destination as part of the setup of a transport route, you need to supply logon credentials for an existing
technical user on the source system - the system defined in the HTTP destination configuration. To
maintain logon credentials, you can use the SAP HANA XS Administration Tool, which requires the privileges
granted by the delivered role sap.hana.xs.admin.roles::HTTPDestAdministrator. To display all
available roles, start the SAP HANA studio, and in the SAP HANA Systems view, expand the node

Security Roles .

 Recommendation
As repository roles delivered with SAP HANA can change when a new version of the package is deployed,
either do not use them directly but instead as a template for creating your own roles, or have a regular
review process in place to verify that they still contain only privileges that are in line with your organization's
security policy. Furthermore, if repository package privileges are granted by a role, we recommend that
these privileges be restricted to your organization’s packages rather than the complete repository. To do
this, for each package privilege (REPO.*) that occurs in a role template and is granted
on .REPO_PACKAGE_ROOT, check whether the privilege can and should be granted to a single package or a
small number of specific packages rather than the full repository.

SAP HANA Application Lifecycle Management Roles

Role Name Description

sap.hana.xs.lm.roles::Administrator Full read/write access to all the features in the SAP HANA
Application Lifecycle Management tool, including the access
privileges granted to all other user roles available in the SAP
HANA Application Lifecycle Management , for example,
Display, ExecuteTransport, and Transport.

sap.hana.xs.lm.roles::Developer A role based on this role template is required if change re
cording is activated: Enables the user to work on a changelist
to which he is assigned and to approve own contributions to
the changelist. This role includes the privileges of the Display
role.

772 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

Role Name Description

sap.hana.xs.lm.roles::DevelopmentExpert A role based on this role template is required if change re
cording is activated: Enables the user to perform all actions
involved in change recording (for example, create, assign ob
jects to, release, delete, assign other users to a changelist,
approve own or foreign contributions). This role includes the
privileges of the Display and the Developerroles.

sap.hana.xs.lm.roles::Display View-only access; some features and options are hidden. A
user with a role based on this role template can view all infor
mation available but cannot make any changes or trigger
any transport operations.

sap.hana.xs.lm.roles::ExecuteTransport Users with a role based on this role template can view all in
formation as well as trigger predefined transport operations.
However, they cannot register or maintain systems, create
transport routes, or edit details of a product, a delivery unit,
or a package.

sap.hana.xs.lm.roles::Transport For technical users only. Do not assign a role based on this
role template to normal users; the required privileges are
part of the ExecuteTransport role. The Transport role grants
the privileges required for export or import actions during a
transport operation. The credentials and privileges of a tech
nical user with the Transport role cannot be used for interac
tive logons, for example, to start the SAP HANA Application
Lifecycle Management.

sap.hana.xs.lm.roles::SLP_display For technical users used for HTTP-based deployment when
using CTS Transport. Users with a role based on this role
template can perform all supported read requests for SL
protocol services.

sap.hana.xs.lm.roles::SLP_CTS_deploy_adm
in

For technical users used for HTTP-based deployment when
using CTS Transport. Users with a role based on this role
template can perform all supported requests for CTS Deploy
SL protocol service.

sap.hana.xs.lm.roles::SLP_CTS_ping_admin For technical users used for HTTP-based deployment when
using CTS Transport. Users with a role based on this role
template can perform all supported requests for CTS Ping
SL protocol service.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 773

Additional Roles

Role Name Description

sap.hana.ide.roles::EditorDeveloper Inspect, create, change, delete and activate SAP HANA repo
sitory objects

A role based on this role template is required when you se
lect the Packages tile to maintain SAP HANA Repository
Packages in SAP HANA Web-based Development Work
bench.

To create new packages, additional privileges may be re
quired. For more information, see Define Repository Package
Privileges in the SAP HANA Developer Guide for Web-based
Development Workbench.

sap.hana.xs.admin.roles::HTTPDestAdminis
trator

Full access to HTTP destination configurations (display and
edit)

A role based on this role template is required when you reg
ister a system for a transport route.

sap.hana.xs.admin.roles::RuntimeConfAdmi
nistrator

Full access to the configuration settings for SAP HANA XS
application security and the related user-authentication pro
viders

A role based on this role template is required when you reg
ister a system for a transport route.

Related Information

Register a System for a Transport Route [page 779]

12.1.2 Maintain the Delivery-Unit Vendor ID

In SAP HANA, the vendor ID is used primarily to define the identity of the company developing a software
component that it plans to ship for use with SAP HANA, for example, “sap.com”. To create a delivery unit, it is a
prerequisite to maintain a vendor ID in your system.

Prerequisites

To set the vendor ID, you must ensure the following prerequisites are met:

● You have access to an SAP HANA system.
● You have been assigned the privileges granted by a role based on the SAP HANA XS

sap.hana.xs.lm.roles::Administrator user role template.

774 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

Context

Before creating your own first delivery unit, you must set the identity of the vendor in the development
system's configuration. To maintain details of the delivery-unit vendor ID, perform the following steps:

Procedure

1. Start the SAP HANA Application Lifecycle Management.
The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm

 Note
To start the SAP HANA Application Lifecycle Management, you must use the logon credentials of an
existing database user, who has the appropriate user role assigned.

2. Choose the SETTINGS tab.
3. Maintain details of the vendor ID.

In the SETTINGS tab, perform the following steps:
a. Choose Change Vendor.
b. In the Set Vendor dialog, enter the name of the new vendor, for example, mycompany.com.
c. Choose OK to save the changes.

The new vendor ID appears in the Vendor box.

 Note
The vendor ID is required to create a delivery unit.

Related Information

SAP HANA Application Lifecycle Management [page 767]

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 775

12.2 Setting Up the Transport

You can choose to perform transports in native SAP HANA mode using transport routes or using the Change
and Transport System (CTS).

Prerequisites

To set up the transport you want to use for the entire SAP HANA system, you must ensure the following
prerequisites are met:

● You have the privileges granted by a role based on the SAP HANA Application Lifecycle Management
sap.hana.xs.lm.roles::Administrator role template.

● You have the privileges granted by roles based on the following SAP HANA XS role templates:
○ sap.hana.xs.admin.roles::HTTPDestAdministrator
○ sap.hana.xs.admin.roles::RuntimeConfAdministrator

● You have decided which transport scenario you want to use for this system, Native SAP HANA transport or
CTS Transport. For more information on the scenarios, see Transport Scenarios in SAP HANA Application
Lifecycle Management. The link to the topic is in the Related Information section.

Context

Use the following steps to set up your transports using either a native SAP HANA system to transport to a
single system or using CTS to transport through a transport landscape defined in CTS.

 Note
Bear in mind that exports for native SAP HANA are executed on the target system while exports using CTS
are started on the source system.

 Note
If you want to transport SAP HANA content for SAP HANA applications that are closely connected with
ABAP applications in terms of content (ABAP for SAP HANA applications), you can also use SAP HANA
Transport for ABAP (HTA) as transport tool.

For more information, search for SAP HANA Transport for ABAP or Transport Scenarios for SAP HANA
Content documentation in the SAP NetWeaver documentation on SAP Help Portal at https://help.sap.com.

You usually perform these steps once after you have set up the system.

776 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

https://help.sap.com

Procedure

1. Open the SAP HANA Application Lifecycle Management.

The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm

2. Choose the SETTINGS tab.
3. In the Transport section, make the selection that suits your needs.

○ Ensure that Enable Native SAP HANA Transport is selected, if you want to use this option. This is the
default setting.

○ Select Enable CTS Transport, if you want to use this option.
In the Switch Transport Mode popup, choose Yes to confirm your choice.

Results

If you have selected CTS Transport, then the TRANSPORT tab changes to CTS EXPORT.

If you have changed from CTS Transport to Native SAP HANA Transport, then the CTS EXPORT tab changes to
TRANSPORT.

To transport objects using CTS Transport or Native SAP HANA Transport, you must make further settings.
Follow the instructions for the transport type that you want to use.

Related Information

SAP HANA Application Lifecycle Management [page 767]
Setting Up and Using Native SAP HANA Transport [page 777]
Setting Up and Using CTS Transport [page 785]

12.2.1 Setting Up and Using Native SAP HANA Transport

You use the Native SAP HANA Transport option to transport native SAP HANA objects.

Prerequisites

● You have enabled your system for Native SAP HANA Transport.
● You have planned your transport scenario. This includes deciding which systems are required for

transports, and if you want to use change recording in the development system. For more information, see
Transport Scenarios in SAP HANA Application Lifecycle Management. If you have enabled change
recording, see also Setup of the Transport Landscape.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 777

Context

If you transport native SAP HANA objects only and you do not have any ABAP transports or other non-SAP
HANA transport activites, then you should use the native SAP HANA transport.

You perform native SAP HANA transports on the target system, pulling the content from the source system
into the target system.

To use native SAP HANA transport, you must perform the following tasks.

Procedure

1. Register your SAP HANA source systems.
On the SAP HANA target system, you must make the source system for transports known to the target
system. This includes entering the host and the XS engine port of the source system and maintaining the
transport destination in the SAP HANA XS Administration Tool.

2. Create transport routes.
A transport route defines the connection details, content and mode for the transport between SAP HANA
source and target systems.

3. Execute the transport on the specified transport routes.

Execute a transport operation that exports delivery units or a product from the source SAP HANA system
(defined in an HTTP destination) and imports them into the local (target) SAP HANA system.

You can trigger a transport with the privileges granted by a role based on the
sap.hana.xs.lm.roles::ExecuteTransport role template, you do not need to have the privileges of
a role based on the Lifecycle Management Administrator role template.

Related Information

SAP HANA Application Lifecycle Management [page 767]
Setting Up the Transport [page 776]
Register a System for a Transport Route [page 779]
Create a Transport Route [page 781]
Start the Transport [page 783]

778 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

12.2.1.1 Register a System for a Transport Route

In the context of a SAP HANA transport route, the system you register is an HTTP destination representing the
source system where the object you want to transport is located, for example a delivery unit (DU).

Prerequisites

To register a system for a transport route, you must ensure the following prerequisites are met:

● You are logged on to the SAP HANA system that is the target of the transport route.
● A technical user must already exist on the source (HTTP destination) system you register in this step. The

technical user for SAP HANA application lifecycle management transport must not be an SAP HANA
restricted user and it requires the privileges granted by a role based on the SAP HANA XS
sap.hana.xs.lm.roles::Transport user role template.

● You have the privileges granted by a role based on the SAP HANA Application Lifecycle Management
sap.hana.xs.lm.roles::Administrator role template.

● You have the privileges granted by roles based on the following SAP HANA XS role templates:
○ sap.hana.xs.admin.roles::HTTPDestAdministrator
○ sap.hana.xs.admin.roles::RuntimeConfAdministrator

Context

To create and register an HTTP destination as part of the setup of a transport route, you must have the
privileges required to create an HTTP destination configuration and, in addition, maintain the logon credentials
of an existing technical user on the destination system.

Procedure

1. Open the SAP HANA Application Lifecycle Management.
The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm

2. Choose the TRANSPORT tab.
3. Choose the System tab.
4. Register a new system.

Choose Register to start the registration process and enter the system details in the Register System
dialog.
○ Host

The name of the source SAP HANA system, where the delivery units you want to transport are located.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 779

If you want to use a tenant database on a tenant database system, make sure that you specify the host
of the tenant database here. You do this by adding the system ID (SID) of the tenant database as an
alias to the host name of the SAP HANA system. Use the following format:

<Host name of SAP HANA system>-<SID of tenant database>

For more information about where to get the SID of the tenant database, see Configure HTTP Access to
Tenant Databases in the SAP HANA Administration Guide.

 Example
○ Host: lo1234-DB1.mycompany.com or
○ Host: lo1234-DB1

○ XS Engine HTTP(S) Port
The port number of the XS Engine associated with the SAP HANA instance running on the host
specified in Host.

Choose Next to continue registering the system.

The Configure Destination panel appears.
5. Maintain the HTTP destination.

Choose Maintain Destination to display details of the HTTP destination you want to maintain in the SAP
HANA XS Administration Tool.

 Note
You must have the SAP HANA XS HTTPDestAdministrator role to complete this step.

6. Maintain details of the required technical user.
The technical user is required for the execution of the transport on the destination system.
a. In the Authentication panel of the HTTP Destination screen (in the SAP HANA XS Administration Tool),

select the method used to authenticate the user on the destination system, or tenant database, for
example, Basic.

If you want to use single sign-on, see Maintaining Single Sign-On for SAP HANA XS Applications in the
SAP HANA Administration Guide for more information.

b. Enter the name of the technical user described in the Prerequisites section. No check is made at this
point to ensure the validity of the user name (or the corresponding password) on the destination
system.

c. Enter a password for the technical user.
7. Choose Save to make the changes to the HTTP destination configuration and close the SAP HANA XS

Administration Tool.
8. Choose Finish to create the new HTTP destination.

 Note
Before the changes are saved, a check is made to ensure a logon is possible on the destination system
with the user name and password provided. If the check fails, then a message appears with details.

780 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

Results

You have registered an HTTP destination for communication with the source system, or with a tenant database
on this system.

If you use a tenant database, the SID column displays the system in the following format: <Name of tenant
database>@<Name of SAP HANA system>.

You can now create transport routes for the registered system.

You can modify registered systems by choosing Edit for a selected system.

You can delete registered systems by choosing Remove for a selected system. If you want to do this, you must
make sure that all transport routes which use this system are removed beforehand.

Related Information

SAP HANA Application Lifecycle Management [page 767]

12.2.1.2 Create a Transport Route

A transport route defines the configuration details which specify the source and target systems for a transport
operation.

Prerequisites

To create a transport route for SAP HANA objects, you must ensure the following prerequisites are met:

● You are logged on to the target SAP HANA system.
● You have the privileges granted by a role based on the SAP HANA Application Lifecycle Management

sap.hana.xs.lm.roles::Administrator role template.
● You have registered the source system for the transport route that you want to configure on the target

system.

Context

A transport route specifies the source and target systems for a transport operation as well as additional details
about the objects to transport and the transport mode, for example, transport based on changelists or
transport based on complete delivery units. You can use the transport route to transfer a delivery unit between
a source system (defined in an HTTP destination on the target system) and a target system, which is the local
SAP HANA system that you are logged onto as the application lifecycle administrator.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 781

To create a transport route, perform the following steps:

Procedure

1. Open SAP HANA Application Lifecycle Management.
SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the following
URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm

2. Display the TRANSPORT tab.
Choose the Transports tab.

3. Create a new transport route.
Choose Create and use the Create Transport Route dialog to enter details of the new SAP HANA transport
route. If change recording is active in the system, some options are different.
○ Name

Enter a name for the transport route.
○ Source System

Use the drop-down list to select the System ID (SID) of the SAP HANA source system on which the
delivery unit to transport is located. All systems that you have registered before as source systems are
available in the list.
After you have selected the source system the delivery units or the product instance changes to reflect
the content of the selected source system. The transport mode may also change between Complete
Delivery Units and Selected Changelists or All Changelists.

○ Content
Choose the content that you want to transport. If you select the Delivery Units option, delivery units are
transported. If you select the Product Instance option, product instances are transported. Depending
on which option you select, the system displays a list of delivery units or product instances that exist
on the source system.
You can select one or more (with the CTRL key) delivery units to include in the transport, but you can
select only one product instance.

○ If change recording is not active in the selected source system, the Complete Delivery Units Mode is
preselected. You cannot make any changes. The system always transports complete delivery units of
the selected delivery units or product instance.

○ If change recording is active in the selected source system, you have the following options for the
Mode:
○ Selected Changelists

This transports all objects that are part of released changelists of the selected delivery units or the
product instance that were not yet transported to the target system. When you start the transport,
a dialog box with a list of changelists appears where you can select the changelists that you want
to transport.

○ All Changelists
This transports all changelists that are in status released for the selected delivery units or the
product instance. This transport mode corresponds to a transport of the complete delivery unit or
product instance.

For more information on the transport modes available with change recording, see Transport Modes in
Change Recording. The link to the topic is in the Related Information section.

○ Enter a meaningful comment in the Comment field to enable others to differentiate between the
transport routes. This is especially important if you work with a multitude of transport routes.

782 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

4. Save the details of the new transport route.
Choose OK to finish creating the new transport route.

Results

You have created a new transport route. You can now start the transport on this transport route.

You can modify transport routes by choosing Edit for a selected transport route.

You can delete transport routes by choosing Remove for a selected transport route.

Related Information

SAP HANA Application Lifecycle Management [page 767]
Register a System for a Transport Route [page 779]

12.2.1.3 Start the Transport

A transport operation enables you to move a delivery unit (DU) or a product between a source system (defined
in an HTTP destination) and a target system, which is the local SAP HANA system that you are logged onto as
the application lifecycle administrator.

Prerequisites

To execute a transport using a defined SAP HANA transport route, you must ensure the following prerequisites
are met:

● You can log on to the target system defined in the SAP HANA transport route.
● A technical user with valid logon credentials exists on the source system specified in the SAP HANA

transport route.
● You have the privileges granted by a role based on the SAP HANA Application Lifecycle Management

sap.hana.xs.lm.roles::ExecuteTransport role template.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 783

Context

To transport a DU or a product between a source system and a target system, perform the following steps:

Procedure

1. Open the SAP HANA Application Lifecycle Management on the SAP HANA target system.
The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm

2. Choose the TRANSPORT tab.
3. Choose the Transports tab.
4. Select the transport route on which you want to execute the transport.
5. Choose Start Transport.

SAP HANA Application Lifecycle Management displays the details of the transport you want to start in the
Start the Transport dialog.
Choose OK to start the transport.

 Note
If change recording is active in the selected source system and if transport mode Selected Changelists
is set in the transport route, the Transport of Changelists dialog box appears. Select the changelists
that you want to transport and choose Next.

If changelists exist in the same package that were released earlier than the ones that you want to
attach to the transport request, the predecessor changelists are also included in the transport request.
You must always transport the predecessors with the selected changelists. For more information, see
Predecessor Changelists in SAP HANA Change Recording. If you do not want to transport predecessor
changelists, you must modify your selection.

To see the objects of a changelist, ensure that the Show Objects field is selected and select the Change ID
in the list.

The list of objects appears in Objects in the selected Changelist(s) section of the screen.
6. Choose Next.
7. Verify the DU/product name and the changelists and then choose Transport and Close.

Results

If no errors occurred, the Transport completed successfully message appears at the bottom of your
screen. Check the transport logs by selecting the status message in the Last Transport column.

784 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

Related Information

SAP HANA Application Lifecycle Management [page 767]
Create a Transport Route [page 781]

12.2.2 Setting Up and Using CTS Transport

You use the CTS Transport option to transport SAP HANA objects in transport landscapes where CTS is already
in place.

Prerequisites

● You have enabled CTS Transport in your SAP HANA source system.
● You have planned your transport scenario. This includes deciding which systems are required for

transports, and if you want to use change recording in the development system. For more information, see
Transport Scenarios in SAP HANA Application Lifecycle Management. If you have enabled change
recording, see also Setup of the Transport Landscape.

● You have performed all configuration steps that are necessary on the AS ABAP to be able to perform SAP
HANA transports. For more information, search for Transporting Non-ABAP Objects in Change and
Transport System in the SAP NetWeaver documentation on SAP Help Portal, or see the guide How To ...
Configure SAP HANA for CTS. The link to the guide is in the Related Information section.

Context

In the following cases we recommend that you use CTS transport:

● If you already use CTS for transports of ABAP or other non-ABAP objects to manage transports of SAP
HANA objects using the CTS infrastructure.

● If you use a change control solution (Change Request Management or Quality Gate Management in SAP
Solution Manager) to manage your transports.

You perform CTS transport activities on the source system, transporting the content from the source system
to the target system.

To use CTS transport, you must perform the following tasks.

Procedure

1. Make the configuration settings for CTS transport in your SAP HANA source system.
On the SAP HANA source system, you configure an HTTP destination to the CTS communication system
and the representation of the source system in the CTS communication system.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 785

2. To transport your development artifacts using CTS, you have the following options:
a. Export delivery units with CTS

You can execute a CTS transport for complete delivery units that are assigned to CTS if change
recording is not active in the SAP HANA system, or you can execute a transport of all released
changelists of specific delivery units, if change recording is active.

b. Export changelists with CTS
You can execute a CTS transport for selected changelists of DUs that are assigned to CTS, if change
recording is active in the SAP HANA system.

For more information on the transport of changelists, see Transport Modes in Change Recording.

Related Information

SAP HANA Application Lifecycle Management [page 767]
Setting Up the Transport [page 776]
Configure SAP HANA Systems for CTS Transport [page 786]
Export Delivery Units for CTS Transport [page 790]
Export Changelists for CTS Transport [page 791]
How To ... Configure SAP HANA for CTS

12.2.2.1 Configure SAP HANA Systems for CTS Transport

To use CTS transport, you need to configure both the SAP HANA system and the CTS communication system
(AS ABAP). This chapter covers only the steps that you need to perform in the SAP HANA system.

Prerequisites

To configure the SAP HANA source system for CTS transport, you must ensure the following prerequisites are
met:

● You are logged on to the SAP HANA source system.

 Note
If you use tenant databases, make sure you are logged on to the correct source tenant database. For
more information, see the How-To Configure SAP HANA for CTS guide. The link to the guide is in the
Related Information section.

● You have the privileges granted by a role based on the SAP HANA Application Lifecycle Management
sap.hana.xs.lm.roles::Administrator role template.

● You have the privileges granted by roles based on the following SAP HANA XS role templates:
○ sap.hana.xs.admin.roles::HTTPDestAdministrator

786 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fdocs%2FDOC-8576%23HANA

○ sap.hana.xs.admin.roles::RuntimeConfAdministrator
● You have enabled CTS transport in SAP HANA Application Lifecycle Management.

Context

Configuration is required on the SAP HANA source system only. If you use tenant databases, configuration is
performed on the source tenant database. You have to configure the SID under which this system is known in
CTS (CTS upload system ID) and you have to configure an HTTP destination to your CTS communication
system to enable communication between the SAP HANA system and the CTS communication system.

The information about the target system for the transport is defined in the CTS communication system (AS
ABAP).

Procedure

1. Open SAP HANA Application Lifecycle Management on the SAP HANA source system.
SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the following
URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm.

2. Choose the SETTINGS tab.
3. Configure the CTS system.

a. In the Transport section, choose Configure CTS System.
b. In the CTS Upload System dialog, under SID, you must enter the system ID of the SAP HANA source

system in CTS. This is the representation of the source system in the CTS communication system. The
SID of the SAP HANA system to which you are currently logged on is entered automatically. This is
usually correct.

c. Optional: Enter a comment.
d. The number of the export file format is pre-selected. It corresponds to the export file format used in

the current SAP HANA server. If you want to import the exported file in older SAP HANA server
versions, select a lower file format from the list. For a mapping between the file format and the SAP
HANA server version, see SAP Note 1984354. The link to the SAP Note can be found in the Related
Information section.

4. Configure the HTTP destination to the CTS communication system.
a. Choose Configure CTS Destination.

The HTTP Destination maintenance in the SAP HANA XS Administration Tool opens. If it opens in
display mode, switch to change mode if you need to change data.

b. Check that the data for the CTS communication system is displayed here.
c. In the Path Prefix field, enter the relative path to the appropriate Export Web Service as configured on

the CTS communication system. For more information on the CTS Export Web Service, refer to the
How-To Configure SAP HANA for CTS guide. The link to the guide can be found in the Related
Information section.

d. Enter the data in the Authentication section as required by the security policy in your company.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 787

 Tip
We recommend that you use SAP Assertion Ticket. For more information about how to set up your
system to use assertion tickets, see Authentication Assertion Tickets in the SAP NetWeaver
Security Guide.

If you want to use single sign-on, see Maintaining Single Sign-On for SAP HANA XS Applications in the
SAP HANA Administration Guide for more information.

e. Choose Save to make the changes to the HTTP destination configuration and close the SAP HANA XS
Administration Tool.

5. Choose Save to conclude configuring the CTS system.

 Note
Before the changes are saved, a check is made to ensure a logon is possible on the destination system
with the authentication data provided. If the check fails, then a message appears in the dialog and you
cannot save the data.

Results

You have made the relevant configuration settings in SAP HANA Application Lifecycle Management for CTS
transport.

Related Information

SAP HANA Application Lifecycle Management [page 767]
Setting Up the Transport [page 776]
How-To Configure SAP HANA for CTS guide
SAP Note SAP Note 1984354

12.2.2.2 Change CTS Configuration

If you need to make changes to the CTS configuration (CTS upload system or CTS communication system),
you need to consider some important points.

Prerequisites

To change the configuration on the SAP HANA source system for CTS transport, you must ensure the following
prerequisites are met:

788 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fdocs%2FDOC-8576%23HANA
http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/SAP Note 1984354

● You are logged on to the SAP HANA source system.

 Note
If you use tenant databases, make sure you are logged on to the correct source tenant database. For
more information, see the guide How-To Configure SAP HANA for CTS. The link to the guide is in the
Related Information section.

● You have the privileges granted by a role based on the SAP HANA Application Lifecycle Management
sap.hana.xs.lm.roles::Administrator role template.

● You have the privileges granted by roles based on the following SAP HANA XS role templates:
○ sap.hana.xs.admin.roles::HTTPDestAdministrator
○ sap.hana.xs.admin.roles::RuntimeConfAdministrator

● You have configured CTS transport in SAP HANA Application Lifecycle Management.

Context

In general, we recommend that you do not change the CTS configuration. However, there are situations where
it might be required. Only change the configuration if you are an expert user.

Making changes to the CTS configuration can cause inconsistencies in your system landscape, because
changes to the configuration will not lead to a re-export of already exported changelists or delivery units. If you
have also made changes to the transport landscape, you may have to manually re-export the complete delivery
units to guarantee consistency, before performing new exports. To perform a re-export of DUs, choose CTS
EXPORT Delivery Units Attach to transport request for the selected DUs.

If you only change the name of the upload system or the communication system, but the system and the
transport routes remain unchanged, you can continue to perform the transport of selected changelists.

Procedure

1. To change the configuration of the CTS upload system, you can choose Configure CTS System and change
details in the dialog, such as the SID, or details of the HTTP destination.

2. If you want to change the CTS communication system, you must first delete the CTS configuration. When
you have deleted the information, you can configure a new CTS communication system.
Concerning changes to the CTS communication system, read the recommendations described in SAP
Note 1715802.

Related Information

SAP HANA Application Lifecycle Management [page 767]
Configure SAP HANA Systems for CTS Transport [page 786]
SAP Note 1715802

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 789

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1715802

12.2.2.3 Export Delivery Units for CTS Transport

The export of delivery units (DUs) using CTS involves assigning them to CTS and exporting them.

Prerequisites

● To execute a transport using CTS, you must ensure that you have the privileges granted by a role based on
the SAP HANA Application Lifecycle Management sap.hana.xs.lm.roles::ExecuteTransport role
template.

● The SAP HANA system must be enabled and configured for CTS transport.

Context

To export DUs with CTS, perform the following steps:

Procedure

1. Open the SAP HANA Application Lifecycle Management.
The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm

2. Choose the CTS EXPORT tab.
3. Choose the Delivery Units tab if it is not open by default.
4. Choose Assign Delivery Units, if the DUs you want to transport are not assigned to CTS yet.

In the list of DUs displayed in the Assign Delivery Units dialog, select the Assigned to CTS checkbox to the
right of the DUs you want to export, then choose Save. Only DUs that are assigned to CTS can be exported
with CTS.

5. Select the DUs that you want to transport from the list and then choose Attach to transport request.

In the Start CTS Export dialog, you usually see a Transport Request ID, its description, and owner.
6. Verify the information and the transport request.

 Note
It depends on the configuration of your source system in CTS, whether a transport request is available
for selection or not (TMS Parameter WBO_GET_REQ_STRATEGY).

To display more details, or to change properties, choose Go to Transport Organizer UI. Transport
Organizer Web UI is used to manage transport requests. This includes creating transport requests,
editing, and releasing them as well as changing details.

For more information, see the How To... Configure SAP HANA for CTS guide or Managing Transports of
Non-ABAP Objects in the CTS Plug-In documentation. The links can be found in the Related Information
section.

790 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

7. To start the export, choose Export and Close in the Start CTS Export dialog.

Results

The DUs are exported. If change recording is active in the system, the export is executed for all active objects
that are part of released changelists of the DU(s). After the export, check the log. To do this, choose Logs.

Depending on the configuration of your source system in CTS, you must release the transport request in the
CTS communication system so that it can be imported in the target system, or it is automatically released
(TMS Parameter WBO_REL_REQ_STRATEGY). To do this, choose Open Transport Organizer or use the link in the
export log. For more information, see the How To... Configure SAP HANA for CTS guide.

Related Information

SAP HANA Application Lifecycle Management [page 767]
Setting Up the Transport [page 776]
Configure SAP HANA Systems for CTS Transport [page 786]
How To... Configure SAP HANA for CTS

12.2.2.4 Export Changelists for CTS Transport

The export of changelists using CTS involves assigning the corresponding delivery units (DUs) to CTS, and
exporting selected changelists of the DUs.

Prerequisites

● To execute an export of changelists for CTS transport, you must ensure that you have the privileges
granted by a role based on the SAP HANA Application Lifecycle Management
sap.hana.xs.lm.roles::ExecuteTransport role template.

● The SAP HANA system must be enabled and configured for CTS Transport.
● Change recording must be activated in the SAP HANA system and released changelists must exist.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 791

http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fdocs%2FDOC-8576%23HANA

Context

To export changelists, perform the following steps:

Procedure

1. Open SAP HANA Application Lifecycle Management.
The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm

2. Choose the CTS EXPORT tab.
3. Choose the Released Changelists tab.
4. If you have not yet assigned DUs to CTS, choose Assign Delivery Units and assign the DUs to CTS for which

you want to export changelists.
5. Choose Attach to Transport Request.
6. Select the released changelists (assigned to CTS DUs) to export and choose Next.

The system executes a predecessor check. If changelists exist in the same package that were released
earlier than the ones that you want to attach to the transport request the predecessor changelists are also
included in the transport request. You must always transport the predecessors with the selected
changelists. For more information, see Predecessor Changelists in SAP HANA Change Recording.

 Note
If you do not want to export predecessor changelists, you must modify your selection.

A list of objects for each changelist appears in Objects in the Changelist section on the screen.
7. Choose Next.
8. Verify the information and the transport request..

 Note
It depends on the configuration of your source system in CTS, whether a transport request is available
for selection or not (TMS Parameter WBO_GET_REQ_STRATEGY).

To display more details, or to change properties, choose Go to Transport Organizer UI. Transport
Organizer Web UI is used to manage transport requests. This includes creating transport requests,
editing, and releasing them as well as changing details.

For more information, see the How To... Configure SAP HANA for CTS guide or Managing Transports of
Non-ABAP Objects in the CTS Plug-In documentation. The links can be found in the Related Information
section.

9. To start the export, choose Export and Close in the Start CTS Export dialog,

792 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

Results

The selected changelists are exported. After the export, check the export log. To do this, choose Logs.

Depending on your CTS configuration, you must release the transport request in the CTS communication
system so that it can be imported in the target system, or it is automatically released (TMS Parameter
WBO_REL_REQ_STRATEGY). To do this, choose Open Transport Organizer or use the link in the export log. For
more information, see the How To... Configure SAP HANA for CTS guide.

Related Information

SAP HANA Application Lifecycle Management [page 767]
How To... Configure SAP HANA for CTS

12.3 Maintaining Delivery Units

A delivery unit (DU) is a collection of packages that are to be transported together. You assign all the packages
belonging to your application to the same DU to ensure that they are transported consistently together within
your system landscape. Each DU has a unique identity.

Prerequisites

To maintain delivery units with the SAP HANA Application Lifecycle Management, you must ensure the
following prerequisites are met:

● You have access to an SAP HANA system.
● You have been assigned the privileges granted by a role based on the SAP HANA

sap.hana.xs.lm.roles::Administrator user role template.
● A vendor ID (repository namespace) is already defined.

Context

The identity of a delivery unit consists of two parts: a vendor name and a delivery-unit name. The combined ID
ensures that delivery units from different vendors are easy to distinguish and follows a pattern that SAP uses
for all kinds of software components.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 793

http://help.sap.com/disclaimer?site=http%3A%2F%2Fscn.sap.com%2Fdocs%2FDOC-8576%23HANA

To create and manage delivery units you first need to maintain the identity of the vendor, with whom the
delivery units are associated, and in whose namespace the packages that make up the delivery unit are stored.
As part of the vendor ID maintenance process, you must perform the following tasks:

Procedure

1. Understand delivery units.
You must be familiar with the conventions that exist for delivery-unit names and understand the phases of
the delivery-unit lifecycle.

2. Maintain details of the vendor ID associated with a delivery unit.
Delivery units are located in the namespace associated with the vendor who creates them and who
manages the delivery-unit's lifecycle.

3. Create a delivery unit.
Create a transportable “container” to hold the repository packages in application.

4. Assign packages to a delivery unit.
Add to a delivery unit the repository packages that make up your application.

5. Export a delivery unit.
You can export the contents of a delivery unit from the SAP HANA Repository to a compressed Zip archive,
which you can download to a client file system.

6. Import a delivery unit.
You can import the contents of a delivery unit into the SAP HANA Repository, for example, from a
compressed Zip archive, which you upload from a client file system.

Related Information

Maintain the Delivery-Unit Vendor ID [page 64]
Create a Delivery Unit [page 65]
Export a Delivery Unit [page 798]
Import a Delivery Unit [page 799]

794 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

12.3.1 Create a Delivery Unit

A delivery unit (DU) is a group of transportable packages that contain objects used for content delivery. You
can use the SAP HANA Application Lifecycle Management to create a DU for your application content or your
software component.

Prerequisites

To create a delivery unit with the SAP HANA Application Lifecycle Management, you must ensure the following
prerequisites are met:

● You have access to an SAP HANA system.
● You have the privileges granted by a role based on the SAP HANA

sap.hana.xs.lm.roles::Administrator user role template.
● The vendor ID is defined for the DU; the vendor ID defines the repository namespace in which the new DU

resides.

Context

You use a DU to transport the design-time objects that are stored in the SAP HANA repository between two
systems, for example, from a development system to a consolidation system. To create a new delivery unit
using the SAP HANA application lifecycle management, perform the following steps.

Procedure

1. Open SAP HANA Application Lifecycle Management.
SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the following
URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm

2. Choose the PRODUCTS tab.
3. Choose the Delivery Units tab.
4. Choose Create.

The New Delivery Unit dialog box appears.
5. Enter details for the new DU.

When entering details, note the following points:
○ Name

The field is mandatory and you must follow strict naming conventions, for example, use capital letters.
○ Vendor

This field is mandatory. However, you cannot enter a vendor here; the box is populated by the value you
enter when defining the vendor in the SETTINGS tab.

○ Version

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 795

Version numbers must take the form “#.#.#”, for example, 1.0.5, where:
○ 1 = the DU version number
○ 0 = the support package version (if required)
○ 5 = the patch version (if required)

 Note
The numbers you enter here refer to the application component that you are developing; the
numbers do not refer to the patch or service-pack level deployed on the SAP HANA server.

6. Choose Create.
The new delivery unit is added to the SAP HANA repository in the namespace specified by the vendor ID
and the application path.

7. Check the status bar at the bottom of the browser window for error messages. Choose the message link to
display the message text.

Results

You have created a delivery unit.

Related Information

SAP HANA Application Lifecycle Management [page 767]
SAP HANA Change Recording [page 804]
Enable SAP HANA Change Recording [page 806]

12.3.2 Assign Packages to a Delivery Unit

By default, a new delivery unit (DU) is empty; you must assign packages to it manually.

Prerequisites

To assign packages to a DU with the SAP HANA Application Lifecycle Management, you must ensure the
following prerequisites are met:

● You have access to an SAP HANA system.
● You have the privileges granted by a role based on the SAP HANA

sap.hana.xs.lm.roles::Administrator user role template.

796 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

Context

A DU contains one or more packages. You must assign the packages to the DU manually. You can also remove
(unassign) packages from a DU and edit the details of a package. A package can only be assigned to one DU. To
assign packages to a DU, perform the following steps:

Procedure

1. Open the SAP HANA Application Lifecycle Management.
The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm

2. Choose the PRODUCTS tab.
3. Choose the Delivery Units tab.
4. Select the DU to which you want to assign some packages.

The Assigned Packages panel displays the current contents of the selected DU.

 Tip
To remove (unassign) a package from a DU, select the package and choose Unassign.

5. Assign new packages to the DU.
Choose Assign and select the name of the package you want to assign to the DU.

 Note
Ensure that the Select sub-packages field is selected.

6. Choose Check for Unassigned to ensure that you have selected all packages and sub-packages that you
want to assign to the DU.
If you have missed a sub-package, select it from this dialog box and choose Assign.

7. Check the status bar at the bottom of the browser window for error messages. Choose the message link to
display the message text.

Related Information

Create a Delivery Unit [page 65]
Maintaining Repository Packages [page 75]

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 797

12.3.3 Export a Delivery Unit

You can export a delivery unit (DU), for example, to a file, for your application content or your software
components using the SAP HANA Application Lifecycle Management.

Prerequisites

To export a delivery unit with the SAP HANA Application Lifecycle Management, you must ensure the following
prerequisites are met:

● You have access to an SAP HANA system
● You have the privileges granted by roles based on one of the following SAP HANA user role templates:

○ sap.hana.xs.lm.roles::Administrator
○ sap.hana.xs.lm.roles::ExecuteTransport

Context

A DU is a group of transportable objects used for content delivery. You can use a DU to transport the design-
time objects that are stored in the SAP HANA repository between two systems, for example, from a
development system to a consolidation system.

 Note
If a system is configured to work with change recording, all activated objects must be approved before their
release. Only released objects are exported from that system.

If a system is not configured to work with change recording, all active objects in a delivery unit are exported.

To export a DU (for example, from the SAP HANA repository to a file) using the SAP HANA Application Lifecycle
Management, perform the following steps.

Procedure

1. Open the SAP HANA Application Lifecycle Management.
The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm

2. Choose the PRODUCTS tab.
3. Choose the Delivery Units tab.
4. Select the DU you want to export.

In the Delivery Units list, locate and select the DU you want to export to a file.

798 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

 Tip
You can check the details and contents of the selected DU in the Details and Assigned Packages panels
respectively.

5. Export the selected DU.
To start the export, choose Export.

The Export Delivery Unit to File screen appears where you can select the file format for export. By default
the newest file format is selected. If you want to import the DU into older SAP HANA servers, you can
select an older file format. For more information on export file formats, you can choose the ? icon on the
screen and see SAP Note 1984354. The link to the SAP Note can be found in the Related Information
section.

If you choose Export, a dialog appears that enables you to specify the location where you want to save the
exported DU, for example, on a local file system.

 Note
Depending on the browser settings, the import might start automatically or the file location might not
be requested. For example, you have created a default location for all download operations.

Related Information

SAP Note 1984354
SAP HANA Change Recording [page 804]

12.3.4 Import a Delivery Unit

You can import a delivery unit (DU), for example, from a file, for your application content or your software
components using the SAP HANA Application Lifecycle Management.

Prerequisites

To import a delivery unit with the SAP HANA Application Lifecycle Management, you must ensure the following
prerequisites are met:

● You have access to an SAP HANA system
● You have the privileges granted by a role based on the SAP HANA

sap.hana.xs.lm.roles::Administrator user role template.
● The package name of the DU does not exist in the system.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 799

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1984354

 Note
Package names are case-insensitive. If you have a package name with only upper-case and lower-case
differences, the import fails because the system sees this as a duplicate. To import the DU, either
delete the package from the system and then import the DU or rename the new package.

Context

A DU is a group of transportable objects used for content delivery. You can use a DU to transport the design-
time objects that are stored in the SAP HANA repository between two systems, for example, from a
development system to a consolidation system.

To import a delivery unit (for example, from a file to the SAP HANA repository) using the SAP HANA Application
Lifecycle Management, perform the following steps.

Procedure

1. Open the SAP HANA Application Lifecycle Management.
The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm

2. Choose the PRODUCTS tab.
3. Choose the Delivery Units tab.
4. Choose Import
5. Select the DU you want to import.

Choose Browse to display a file explorer, which you can use to locate the DU you want to import, and
choose Open.

 Tip
Exported DUs have the file extension .tgz, for example, MyDU.tgz.

The Confirm Import of Delivery Unit screen appears containing the list of objects included in that DU.
6. Confirm that this is the DU that you want to import.

Choose Import to import the selected delivery unit.

 Note
The import operation overwrites any identical objects in the target system with the content of the
imported DU.

800 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

Related Information

SAP HANA Change Recording [page 804]

12.4 Maintaining Products

A product contains one or more delivery units. A delivery unit (DU) is a collection of packages that logically
belong together. You assign delivery units to a product to ensure that they are transported consistently
together within your system landscape.

Prerequisites

To maintain products with the SAP HANA Application Lifecycle Management, you must ensure the following
prerequisites are met:

● You have access to an SAP HANA system.
● You have the privileges granted by a role based on the SAP HANA

sap.hana.xs.lm.roles::Administrator user role template.
● A vendor ID is already defined.
● You have created at least one DU.

Context

To create and manage products, you first need to maintain the DUs which you assign to the product. A DU
requires a vendor ID, the name of the vendor with whom the DUs are associated and in whose namespace in
the SAP HANA repository the packages that make up the DU are stored. As part of the product maintenance
process, you must perform the following tasks:

Procedure

1. Create a product.
2. Assign delivery units to a product.

Related Information

Create a Product [page 802]

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 801

Assign a Delivery Unit to a Product [page 803]
Maintaining Delivery Units [page 62]
Maintain the Delivery-Unit Vendor ID [page 64]

12.4.1 Create a Product

Use the SAP HANA Application Lifecycle Management to create a product and its components.

Prerequisites

To perform this task, you must ensure the following prerequisites are met:

● You have access to an SAP HANA system.
● You have the privileges granted by a role based on the SAP HANA XS

sap.hana.xs.lm.roles::Administrator user role templates.
● The vendor ID is already defined for the delivery units you assign to the product.

Context

A product contains one or more delivery units, packages, and can contain applications associated with the
packages. To use the SAP HANA Application Lifecycle Management to create a new product, perform the
following steps:

Procedure

1. Open the SAP HANA Application Lifecycle Management.
The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm

2. Choose the PRODUCTS tab.
3. Choose the Products tab.
4. Choose Create.

The New Product dialog box appears.
5. Define the details of the new product.

a. Specify a name for the new product.

The Vendor box is populated with the value defined in the SETTINGS tab; you cannot enter or change
the value here.

b. Optional: Enter a Version, and a Description for the product.

802 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

c. Optional: Create a default instance (with the instance ID 1) for the product by selecting the
corresponding check box and entering a name for the instance.
Each product version requires at least one product instance. The product instance indicates the entity
that is to be installed. If you do not create the product instance now, you must do it later when you
assign delivery units to the product. You can then enter an instance ID from 1 to 999, and a name for
the instance.

6. Create the new product.
Choose Create to add the new product to the list of products displayed in the Products tab.
The new product is empty at this stage; you must assign one or more delivery units to it.

Related Information

SAP HANA Application Lifecycle Management [page 767]
Assign a Delivery Unit to a Product [page 803]

12.4.2 Assign a Delivery Unit to a Product

A product can contain one or more product instances which can contain one or more delivery units. You must
assign the delivery units (DU) manually to the product instances of the product.

Prerequisites

To assign DUs to a product, you must ensure the following prerequisites are met:

● You have access to an SAP HANA system.
● You have the privileges granted by a role based on the SAP HANA XS

sap.hana.xs.lm.roles::Administrator user role template.
● The vendor ID is already defined for the DUs you assign to the product.

Context

To use the SAP HANA Application Lifecycle Management to assign an existing delivery unit to a product ,
perform the following steps.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 803

Procedure

1. Open the SAP HANA Application Lifecycle Management.
The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm

2. Choose the PRODUCTS tab.
3. Choose the Products tab.
4. Select the product to which you want to assign a DU or DUs.

In the list of products displayed on the left-hand side of the Products tab, select the product to which you
want to assign a DU.

5. If no product instance exists for the product, first create a product instance.

a. In the Instances and Assigned Delivery Units panel, choose Instance New .
b. Enter a number between 0 and 999 as ID.
c. Optional: Enter a description.

6. If a product instance exists for the product, assign a DU to the selected product instance.
a. Choose Assign Delivery Unit to display a list of available DUs.
b. In the Assign Delivery Units dialog locate the DUs you want to assign to the selected product instance

and choose Assign.
The assigned DUs are immediately removed from the Assign Delivery Units list and added to the
Assigned Delivery Units list for the selected product instance.

c. Close the dialog after having assigned all relevant DUs.

Related Information

SAP HANA Application Lifecycle Management [page 767]
Create a Product [page 802]
Maintaining Delivery Units [page 62]

12.5 SAP HANA Change Recording

Change recording in SAP HANA is the infrastructure to keep track of changes during SAP HANA development.

It provides the following functions:

● Automatic Recording and Grouping of Object Changes
When change recording is enabled, you are prompted to assign your changes to a changelist when you
activate a repository object in your development environment. You can group the objects that you want to
transport together in one changelist.
We recommend that you assign objects of only one DU to the same changelist. If you use native SAP HANA
transport, you should configure the transport route accordingly for the same DU, and if you use CTS
transport, you should assign this DU to CTS and trigger the transport of changelists for this DU. This way,

804 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

you make sure that all objects that belong to packages of this DU and that are part of a changelist are
transported together.

● Decoupling of Activation and Transport
When change recording is not enabled, a transport of a delivery unit contains all active objects that are
contained in the packages of the delivery unit. You can only transport the entire delivery unit, no matter
whether the objects are ready for transport or not. Change recording allows you to make changes to
individual objects of a delivery unit and transport only these in changelists whenever they are ready for
transport. Only released changelists can be transported. The objects are transported in the state in which
they were at the point in time when the changelist was released.

● Different Transport Modes
The changelist-based transport can be set up in two modes: Either all changelists that were ever released
in one or more delivery units or a product, or selected changelists in one or more delivery units or a
product can be transported.

 Note
Transport of products is only supported using native SAP HANA transport.

If you use native SAP HANA transport, you configure the transport mode when you register the system for
a transport route. If you use CTS transport, you select whether you want to attach Released changelists or
Delivery Units to a transport request when you perform an export for CTS in SAP HANA Application
Lifecycle Management.

● Predecessor Calculation of Changes
If a changelist contains objects from the same package that depend on objects in other changelists that
are released but not yet transported, the system detects these and includes them in the transport as well.

● Team Development
Multiple team members can work on the same development objects (and use the same changelist). The
changelist can only be released when all team members have indicated that the objects are ready for
transport by approving their contribution to the changelist. The objects that are part of the changelist are
locked for developers who do not contribute to the changelist.

Integration

The functions of change recording are integrated in the XS user interface SAP HANA Application Lifecycle
Management. In your development environment (SAP HANA studio, or SAP HANA Web-based Development
Workbench), you can start this UI using the context menus. For example, in the Developer Perspective of SAP
HANA studio in the Repositories view, you choose Change Management, and in the Project Explorer view, you
choose Team HALM Change Management . In the Editor of SAP HANA Web-based Development
Workbench, choose Navigation Links Lifecycle Management .

There is an eclipse-based change view available as part of SAP HANA studio. However, to benefit from all
functions, we recommend that you use the XS UI using the context menu.

Related Information

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 805

Enable SAP HANA Change Recording [page 806]

12.5.1 Enable SAP HANA Change Recording

You enable change recording in your development system to manage changes to repository objects.

Prerequisites

● An SAP HANA system is available.
● You have been granted the sap.hana.xs.lm.roles::Administrator user role.
● You have informed yourself about the implications of enabling change recording. For more information, see

Technical Details of Initial Change Recording Setup. The link to this topic is in the Related Information
section.

Context

The system administrator should enable change recording. If a system is configured to work with change
recording, the activation of a repository object prompts developers to assign the object to a changelist. A
changelist thus contains a list of one or more changed objects. This allows you to work on a development
object or artifact and release the changelist only when the object is ready to be transported to the test system.
This provides more precise control over which objects are transported from the development system. An
object’s changelist must be released in order to be included in the export in which the delivery unit containing
the object is transported. Releasing a changelist does not trigger any automatic semantic checks but is a
manual confirmation by you that the objects are consistent and ready for transport.

Procedure

1. Open the SAP HANA Application Lifecycle Management.

The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm.

2. Choose the SETTINGS tab.
3. Select the Enable Change Recording checkbox.

 Note
When you enable change recording for your development system, the system initially records all active
objects in the system. This process may take some time. During the process, the UI does not respond
and there is no progress indicator telling you that the base changelist is being created. For more
information, see Technical Details of Initial Change Recording Setup.

806 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

Results

Change recording is enabled.

 Note
If you want to disable change recording, first verify that there are no open changelists in the system. You
can disable change recording by repeating these steps and deselecting the Enable Change Recording
checkbox.

Related Information

SAP HANA Application Lifecycle Management [page 767]

12.5.2 Create Changelists

You can create a changelist in SAP HANA Application Lifecycle Management for your user, and add
contributors to it.

Prerequisites

● Change recording is enabled in your development system.
● You have the privileges granted by the SAP HANA Application Lifecycle Management

sap.hana.xs.lm.roles::DevelopmentExpert role.

Context

You usually create a changelist while you are editing an object in the SAP HANA development environment.
When you activate changes to an SAP HANA repository object, you are prompted to assign the changes to a
changelist. If no changelist is available, you can create a new one.

Alternatively, you can create a changelist in SAP HANA Application Lifecycle Management. This is useful, for
example, if you are a project manager and you want to create a changelist for multiple users who work closely
together. You can add a description to the changelist, for example, to further specify for which developments
the changelist is to be used.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 807

Procedure

1. Open the SAP HANA Application Lifecycle Management.

The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm.

2. Choose the CHANGES tab.
3. Choose Create.
4. Optional: Add a description for the changelist that you want to create and choose Create.

The changelist is created in the status Open with you as a contributor. A unique changelist ID is created.
The changelist is added to the list of changelists on the left hand side of the screen. On the right hand side
of the screen, the details of the changelist are displayed. This includes an Contributions area as well as an
Objects area. Both areas are initially empty.

5. Optional: You can add more users as contributors to the changelist. To do this, choose Add in the
Contributions area and select the users that are supposed to work on the changelist.

You can add a comment to the contribution. When prompted for a changelist in the development
environment, this changelist is offered for selection to the contributors. The changelist can only be
released if all contributors have approved their contributions.

6. Optional: You can change the changelist description. To save the changed description, choose Save.

Results

You have created a changelist. If required, you have added contributors to the changelist.

All contributors to the changelist can now assign their changes to the changelist.

You can also remove contributors from the changelist, as long as it is an empty contribution.

You can delete a changelist, as long as it is open and no objects are assigned to it.

Related Information

SAP HANA Application Lifecycle Management [page 767]
Assign Objects to Changelists [page 809]

808 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

12.5.3 Assign Objects to Changelists

You can assign an object to a changelist if change recording is configured and enabled in your development
environment.

Prerequisites

● Change recording is enabled in your development system.
● You have the following system privileges on the SAP HANA system:

○ If you assign objects in your development environment: REPO.MODIFY_CHANGE,
REPO.MODIFY_OWN_CONTRIBUTION.

○ If you want to move objects in SAP HANA Application Lifecycle Management from one changelist to
another: sap.hana.xs.lm.roles::DevelopmentExpert

Context

You have the following options to assign objects to changelists:

● You can assign objects while you are performing software development in your SAP HANA development
environment. Change recording is integrated in SAP HANA studio and Web-based Development
Workbench. If change recording is enabled, the system prompts you to assign the object to a changelist
when you activate the object.

 Note
If the change recording is disabled from the SAP HANA Application Lifecycle Management system, the
information will not be reflected in the activation process until the SAP HANA Studio is restarted.

● You can move objects from one open changelist to another open changelist in SAP HANA Application
Lifecycle Management.

 Note
The following is an example of assigning objects in SAP HANA Web-based Development Workbench.

Assign objects in SAP HANA Web-based Development
Workbench

Procedure

1. Open the SAP HANA Web-based Development Workbench Editor tool.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 809

The Editor tool is available on the SAP HANA XS Web server at the following URL: http://
<WebServerHost>:80<SAPHANAinstance>/sap/hana/ide/editor

2. When you create or activate changes to an existing object, a dialog window opens where you can select or
create a changelist to which you can assign the object.
a. If you are already contributor to changelists, these changelists are displayed in the table. You can select

the relevant changelist for the object and choose Assign.
b. To create a new changelist, choose New Changelist Enter a description for the changelist, and

choose Create. You can assign the object to the new changelist.

Move objects from one changelist to another

Procedure

1. Open the SAP HANA Application Lifecycle Management.
The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm.

From the SAP HANA Web-based Development Workbench Editor tool, you can choose Navigation Links
Lifecycle Management to open the SAP HANA Application Lifecycle Management.

2. Choose the CHANGES tab.
3. Select a changelist that contains objects that you want to move to another changelist.
4. In the Objects area, select the objects that you want to assign to another changelist, and choose Move.
5. Select the target changelist and choose Move.

Related Information

SAP HANA Application Lifecycle Management [page 767]

12.5.4 Approve Contributions to Changelists

By approving your contribution to the changelist, you mark that your work on the changelist is finished. The
changelist can only be released after all contributors have approved their contribution.

Prerequisites

● Change recording is enabled in your development system.
● You have made a contribution to the changelist.

810 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

● You have the privileges granted by one of the SAP HANA Application Lifecycle Management roles:
○ To approve your own contribution: sap.hana.xs.lm.roles::Developer role
○ To approve contributions of others: sap.hana.xs.lm.roles::DevelopmentExpert role

Procedure

1. Open the SAP HANA Application Lifecycle Management.
The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm.

2. Choose the CHANGES tab.
a. To approve your own contribution: Choose Approve My Contribution.
b. To approve contributions of others: In the Contributions area, select the user whose contribution you

want to approve and choose Approve.
3. You can enter a comment that is saved for your contribution. Choose OK.

The status of the contribution changes from open to approved.

Results

The contribution to the changelist was approved.

As long as the changelist is open, you can edit the comment of the contribution.

Related Information

SAP HANA Application Lifecycle Management [page 767]

12.5.5 Release Changelists

After all contributions of changelists are approved, you can release the changelist.

Prerequisites

● Change recording is enabled in your development system.
● You have the privileges granted by the SAP HANA Application Lifecycle Management

sap.hana.xs.lm.roles::DevelopmentExpert role.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 811

● The contribution status must be approved for all contributors of a changelist before you can release the
changelist, and the changelist status must be Open.

Procedure

1. Open the SAP HANA Application Lifecycle Management.

The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm.

2. Choose the CHANGES tab.
3. From the list of open changelists, select the changelist that you want to release.
4. If all contributors have approved their contributions, you can choose Release.

If the Release button is greyed out make sure that all contributions are approved and that the changelist is
in status Open. The status of the changelist changes from Open to Released.

Results

The changelist is released and it is ready to be transported.

If you have left the default filter settings unchanged, the released changelist disappears from the list of open
changelists.

To display it, change the filter settings so that released changelists also appear in the list. If you select the
released changelist, details are displayed, including the release date and time and the user who released it.

Related Information

SAP HANA Application Lifecycle Management [page 767]
Filter and Search for Changelists [page 813]

812 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

12.5.6 Filter and Search for Changelists

The filter function allows you to filter the changelists according to different filter criteria and display all
changelists that meet the criteria. If the list of displayed changelists is very long, you can search the list for
specific changelists.

Prerequisites

● Change recording is enabled in your development system.
● You have the privileges granted by one of the SAP HANA Application Lifecycle Management roles:

○ sap.hana.xs.lm.roles::Developer
○ sap.hana.xs.lm.roles::DevelopmentExpert

Filter Changelists

Procedure

1. Open the SAP HANA Application Lifecycle Management.

The SAP HANA Application Lifecycle Management is available on the SAP HANA XS Web server at the
following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm.

2. Choose the CHANGES tab.

By default, changelists are displayed that correspond to the following criteria:

○ Status Open.
○ Local changelists
○ Log-on user is contributor of the changelist

The filter criteria are displayed next to the Set Filter link.
3. To change the filter criteria, choose Set Filter.
4. In the Filter dialog box, filter options are available, such as contributor, creator, release interval,

contribution status, or changelist status. To remove the filter for a specific filter criterion, select the blank
field from the dropdown list of the filter criterion. If you deselect the Only Local Changelists option,
changelists that were imported into the current system are displayed in addition to changelists that were
created locally in the system. You can only deselect this option if you also change the default value for
changelist status.

If you remove the filter for the changelist status, it is possible that changelists in status Suspended are
displayed. A changelist gets the status Suspended if change recording is disabled while the changelist is in
status Open. If change recording is later re-enabled, previously open changelists can no longer be used.
However, to provide a history of changelists, they are documented in the system with the status
Suspended.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 813

You have the following options:

○ To display the changelists according to the specified filter criteria without closing the dialog box,
choose Apply.

○ To close the dialog box and display the changelists according to the specified filter criteria, choose
Apply and Close.

○ To reset the filter criteria to the default values, choose Reset.
○ To close the dialog box without applying the selected filter criteria, choose Close.

The changelists that meet your filter criteria are displayed in the list.

When you restart SAP HANA Application Lifecycle Management, the default filter settings are re-set.

Search for Changelists

Procedure

1. Enter the character string for which you want to search in the search field.

Use a sequence of characters that really exists. You cannot use wildcards. All the changelists that
correspond to your string and that match the currently selected filter are displayed in a dropdown list.

2. If the changelist you were searching is in the dropdown list, select it there.

The details of the changelist are displayed.

Related Information

SAP HANA Application Lifecycle Management [page 767]

12.6 Assembling Add-On Products and Software
Components

To ship SAP HANA add-on product archives or software components archives, you must bring the developed
software into a format that can later be installed in another system. To do this, you use the hdbalm assemble
command.

Prerequisites

● You have modeled and developed your SAP HANA content along the guidelines laid out in the SAP HANA
Developer Guide.

814 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

● You have access to hdbalm and you have the permissions required to use hdbalm. For more information,
see the link to Using hdbalm in the Related Information section.

Context

Add-on product archives are *.zip files that contain one or more software component archives plus the
metadata files stack.xml and pd.xml required for installation.

Software component archives are *.zip files (in previous versions, also *.sar files exist as software
component archives) that contain one delivery unit archive file each plus (optionally) corresponding translation
DUs and the metadata file SL_MANIFEST.XML required for installation. Support Packages or patches to add-on
products are usually shipped as single software component archives.

For more information on the archive types, see SAP HANA Content in the SAP HANA Administration Guide.

You can build *.zip archives for add-on products and software components using the hdbalm assemble
command. These can later be installed using SAP HANA Application Lifecycle Management.

When assembling your developments into installable archives, the required metadata files are added to the
archives which contain relevant installation information, such as required database versions, or other
dependencies. In addition, you can add language DUs to the archives.

For more information on the assemble command, see the Related Information section.

Procedure

1. Start a command line client and navigate to the directory where hdbalm is located.

You can also add this directory to your path.
2. Start the assembly of your product or software components.

a. Use the assemble command with the options that you require.

For information on the available options, you can use the hdbalm help assemble command. You
can also read the hdbalm assemble Command documentation.

To assemble an add-on product, you can specify one product name or multiple software component
names.

Results

If no errors occur, the assembled product archive file or software component archive files can be found in the
local directory or in the directory that you specified.

If errors occur during the assembly, an error message indicates the reason for the error and the system
provides a log file with more detailed information.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 815

Related Information

Using hdbalm [page 817]
Installing and Updating SAP HANA Products and Software Components in SAP HANA XS Classic Model [page
816]
SAP HANA Developer Guide for SAP HANA Studio [page 9]
SAP HANA Application Lifecycle Management [page 767]
hdbalm assemble Command [page 829]

12.7 Installing and Updating SAP HANA Products and
Software Components in SAP HANA XS Classic Model

SAP HANA application lifecycle management provides functions for installing and updating SAP HANA
products or individual software components of SAP HANA XS classic model that you have downloaded from
the SAP Support Portal, or that you have assembled yourself.

Context

SAP HANA products consist of software components which are deployed to the SAP HANA repository. You
have the following options to install and update SAP HANA products and software components:

● Using a SAP Fiori application integrated in the SAP HANA Application Lifecycle Management XS
application. This application can be started in the following ways:
○ Start the SAP HANA Application Lifecycle Management on the SAP HANA XS Web server at the

following URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/lm.
Afterwards, choose the INSTALLATION tab or tile.

○ Using a link in SAP HANA Web-based Development Workbench.
In the SAP HANA Web-based Development Workbench Editor tool, choose Navigation Links
Lifecycle Management . The SAP HANA Application Lifecycle Management home screen opens,
where you can choose the INSTALLATION tab or tile..

○ Using the context menu in SAP HANA studio.
Choose Lifecycle Management Application Lifecycle Management Installation from the context
menu for a particular system in the SAP HANA Administration Console perspective in SAP HANA
studio.

The documentation about using SAP HANA Application Lifecycle Management to install and update SAP
HANA products and software components describes the following use cases:
○ Installing and Updating SAP HANA Products
○ Installing and Updating SAP HANA Software Components

● Using the hdbalm commandline tool.
To start hdbalm, start a command line client and navigate to the directory where hdbalm is located. You
can also add this directory to your path.

816 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

For more information about using hdbalm to install and update SAP HANA products and software
components, see the following topics in the SAP HANA Application Lifecycle Management Guide:
○ Using hdbalm
○ hdbalm install Command

 Note
SAP HANA system components like the SAP HANA client, SAP HANA studio, and additional system
components like Application Function Libraries (AFL and the product-specific AFLs POS, SAL, SCA, SOP,
UDF), SAP liveCache applications (SAP LCA or LCAPPS-Plugin), XS advanced runtime applications, or SAP
HANA smart data access (SDA) are installed and updated using the SAP HANA database lifecycle manager
(HDBLCM). For more information, refer to the SAP HANA Server Installation and Update Guide.

Related Information

Using hdbalm [page 817]
hdbalm install Command [page 825]

12.8 Using hdbalm

SAP HANA provides the hdbalm command line tool to perform application lifecycle-management tasks.

Prerequisites

● You have performed the SAP HANA client installation.
If you have left the default installation options unchanged hdbalm is located in the c:\Program Files
\sap\hdbclient directory on Microsoft Windows and /usr/sap/hdbclient directory on Linux.
For more information, see the SAP HANA Client Installation and Update Guide.

● You have Python installed in your system with the latest 2.6 or 2.7 version.
hdbalm is written in the programming language Python. It requires a Python version 2.6 or 2.7.
On Unix, Python is usually installed as part of the operating system, or it can be installed using the package
management provided by the system. As an alternative, and on Windows, download and install the latest
2.6 or 2.7 Python release from https://www.python.org .
To make sure that hdbalm uses the correct Python version, set the environment variable PYTHON_HOME to
the location of the Python installation:
○ On Windows, you can set the environment variable as shown in the following example:

set PYTHON_HOME="c:\Program Files\Python27"

 Note
Make sure you set the value for this environment variable in quotation marks.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 817

http://help.sap.com/disclaimer?site=https%3A%2F%2Fwww.python.org

○ On Unix (bourne shell), you can set the environment variable as shown in the following example:

export PYTHON_HOME=/usr/python27

● You have the permissions required to run hdbalm: You have an SAP HANA database user with the
privileges granted by a role based on the SAP HANA sap.hana.xs.lm.roles::Administrator user
role template assigned to it.
Note that you cannot use a newly created user that still has the initial password, since hdbalm will not ask
you to change it. Change the password for this user in SAP HANA studio, for example, before using
hdbalm.

Context

The command line tool hdbalm is part of the SAP HANA client installation (Microsoft Windows 64-bit and Linux
64-bit). You use hdbalm to assemble SAP HANA products and software components. You can also use hdbalm
to execute other application lifecycle management functions, if you prefer to use a command line tool over the
SAP HANA XS user interface, or if you want to automate specific tasks.

 Note
You can also use all commands of hdbalm for tenant databases on tenant database systems if you have
specified the correct host and port of the tenant database. For more information, see hdbalm Commands,
Options, and Variables.

Procedure

1. Start a command line client and navigate to the directory in which hdbalm is located (or add this directory
to your path).

2. Optional: Set environment variables.
3. Enter the required hdbalm command with the required options, command options, or parameters.

Results

hdbalm executes the command. If errors occur, error messages indicate the reason for the errors. For the
install, import, and assemble commands, the system provides log files with more detailed information.

Related Information

Assembling Add-On Products and Software Components [page 814]

818 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

Installing and Updating SAP HANA Products and Software Components in SAP HANA XS Classic Model [page
816]
hdbalm Commands, Options, and Variables [page 819]
hdbalm install Command [page 825]
hdbalm assemble Command [page 829]
hdbalm import Command [page 830]
hdbalm transport Command [page 831]
hdbalm log Command [page 832]
hdbalm product Command [page 832]
hdbalm du Command [page 834]
hdbalm dependencies Command [page 836]
hdbalm package Command [page 837]
hdbalm admin Command [page 838]
Enable SSL for hdbalm [page 823]
Proxy Support for hdbalm [page 824]
SAP HANA Application Lifecycle Management [page 767]

12.8.1 hdbalm Commands, Options, and Variables
With hdbalm you can use a selection of commands and their options to perform application lifecycle-
management tasks in SAP HANA.

The following example depicts the syntax for hdbalm:

hdbalm [<general options>] <command> [<command-specific options>]

The general options are specified before the command and the command-specific options are specified after
the command. Each command offers its own specific options.

 Note
Enter hdbalm to display general information about the commands, options, and environment variables.
Enter hdbalm help <command> to display more information about a specific command and its options.

If you normally work in one environment, then you can set environment variables for your user, password, SAP
HANA Extended Services (XS) engine host (including tenant database), and SAP HANA XS engine port. This
way, you need not specify these details every time you use a command.

 Example
Examples for Setting Environment Variables

On Microsoft Windows, you can set the environment variable for the user as in the following example:

set HDBALM_USER=<user name>

On Unix (bourne shell), you can set the environment variable for the user as in the following example:

export HDBALM_USER=<user name>

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 819

The following tables describe the various commands, options, and environment variables available for hdbalm.

hdbalm Commands

The following table contains the hdbalm commands and explains their functions.

Command Description

help Provides information about available commands, general options, and environment varia
bles

The help command also provides more information for every command using hdbalm
help <command>.

install Provides functions for installing and updating product archives and software component ar
chives (.zip files) that were downloaded from the SAP Support Portal

assemble Provides funtions for assembling SAP HANA add-on products and software components

import Provides functions for importing delivery unit archives (.tgz files)

transport Provides functions for managing transports, such as starting transports or displaying trans
port routes

log Provides functions for displaying log files

product Provides functions for managing SAP HANA products, such as creating a product or assign
ing delivery units to a product

du Provides functions for managing delivery units, such as creating a delivery unit

dependencies Provides functions for displaying delivery unit dependencies in the system

package Provides functions for managing packages, such as creating packages and assigning pack
ages to a delivery unit

admin Provides administrative application lifecycle-management functions, such as enabling
change recording

General hdbalm Options

The following options are supported by all hdbalm commands.

Option Description

-u <user>, --user=<user> User name

820 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

Option Description

-h <host>, --host=<host> SAP HANA Extended Services (XS) engine host

 Example
lo1234.mycompany.com

If you want to use the command for a tenant database on a
multiple-container system, then you specify the host of the
tenant database. You do this by adding the system ID (SID)
of the tenant database as an alias to the host name of the
SAP HANA system. Use the following format: <Host name
of SAP HANA system>-<SID of tenant
database>

 Example
lo1234-DB1.mycompany.com or lo1234-DB1

For more information about where to find the SID of the ten
ant database, see Configure HTTP Access to Multitenant Da
tabase Containers in the SAP HANA Administration Guide. A
link to this guide is provided in the Related Information sec
tion.

-p <port>, --port=<port> SAP HANA Extended Services (XS) engine port

The default XS engine port is 80+<instance number>.

If you set set this option for a tenant database on a multiple-
container system, make sure that you specify the correct
port of the tenant database.

-v, --verbose Writes debug messages to standard error

-s, --https Sends request using https

-c <certificate>, --certs=<certificate> Certificate file when using https

-y, --yes Runs command in non-interactive mode (does not prompt
for confirmation)

 Note
This option is useful for automated mode.

-j, --json Prints result in json notation if successful

 Note
This option is not available for all commands.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 821

Environment Variables

You can set the following environment variables:

Environment Variable Description

HDBALM_USER User name

HDBALM_PASSWD Password

HDBALM_HOST XS engine host

 Example
lo1234.mycompany.com

If you want to set the environment variable for a tenant data
base on a multiple-container system, specify the host as de
scribed above for option -h <host>, --host=<host>.

HDBALM_PORT XS engine port

The default XS engine port is 80+<instance number>.

If you set the environment variable for a tenant database on
a multiple-container system, make sure that you specify the
correct port of the tenant database.

http_proxy HTTP proxy

For more information, see Proxy Support for hdbalm.

https_proxy HTTPS proxy

For more information, see Proxy Support for hdbalm.

no_proxy Use this environment variable if you want to specify hosts
and domains for which no proxy is to be used. You can enter
a comma-separated list of hosts and domains.

For more information, see Proxy Support for hdbalm.

 Note
The options -u, -h, and -p take precedence over environment variables. The program requests a password
for the user if no password is set as an environment variable.

Related Information

Proxy Support for hdbalm [page 824]

822 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

12.8.2 Enable SSL for hdbalm

You can secure the communication between hdbalm and the SAP HANA system using the Secure Sockets
Layer (SSL) protocol and certificates.

Prerequisites

You have Python installed in your system and set the environment variable PYTHON_HOME to the location of the
Python installation as described in Using hdbalm.

Context

hdbalm is written in the programming language Python. To enable SSL for hdbalm, you must have a Python
version installed in your system that includes SSL libraries and that supports secure HTTPS connections. SAP
supports Python versions 2.6 and 2.7.

 Note
For general information on how to use SSL and certificates to secure the SAP HANA server, see Securing
Data Communication in the SAP HANA Security Guide.

Procedure

To enable secure communication in hdbalm, set the hdbalm option -s or --https and provide a valid
certificate using the -c <certificate> or --certs=<certificate> options. The certificate is used to
validate the identity of the SAP HANA server. The certificate needs to be stored in a file in X.509 PEM format.

 Note
If you use these options with a Python version that does not support SSL, you receive an error message.

Results

You have enabled SSL for hdbalm.

 Note
If you use proxies for communication, the proxy settings might also be relevant when you enable SSL. For
more information, see Proxy Support for hdbalm.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 823

Related Information

hdbalm Commands, Options, and Variables [page 819]
Proxy Support for hdbalm [page 824]
Using hdbalm [page 817]

12.8.3 Proxy Support for hdbalm

hdbalm supports proxies both for HTTP and HTTPS communication.

If you can only access the SAP HANA system using a proxy, you can set the following environment variables so
that hdbalm can connect to the SAP HANA system:

● http_proxy
You can set an HTTP proxy.

● https_proxy
You can set an HTTPS proxy.

● no_proxy
You can define that no proxy should be used for specific hosts and domains. You can specify a comma-
separated list of hosts and domains for which no proxy is to be used.

Usually on Linux, the environment variables are already configured by your system administration. If not, you
can set them as in the following example:

 Example

export http_proxy=http://<host>:<port>/ export https_proxy=http://<host>:<port>/ export no_proxy=<.mycompany.com>

On Microsoft Windows, you can set them as described in the following example:

 Example

set http_proxy=http://<host>:<port>/ set https_proxy=http://<host>:<port>/ set no_proxy=<.mycompany.com>

Related Information

hdbalm Commands, Options, and Variables [page 819]

824 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

12.8.4 hdbalm install Command

Use this command and its corresponding options to install and update SAP HANA products (product archives
and software component archives).

The install command is available both for installing product and software component archives (*.zip files)
and for updating these. The install command detects whether the archive is an add-on product archive or a
software component archive. It also detects whether the add-on product or software component is installed
already and subsequently executes either an installation or update operation.

The following options are available to install or update products:

● You can specify an archive file.
● You can specify a directory location that contains unpacked archive files (usually shipped on DVDs).
● You can specify single instances by specifying a comma-separated list of instances.

The following options are available to install or update software components:

● You can specify one or more archive files.
● You can specify one or more directory locations that contain unpacked archive files.

The following code sample depicts the standard syntax in hdbalm.

hdbalm [<general options>] install [<command option>]* [<archive>|<directory>]*

 Note
Command options are command-specific. For more information about the install command, enter
hdbalm help <command> in hdbalm. Some command options depend on the archive type. For example,
you can only use the --instances option for product archives.

The following table describes the command options available for the install command. For general options
and environment variables that you can use with this command, see hdbalm Commands, Options, and
Environment Variables. For examples of how to use the install command, see Examples: hdbalm install
Command in the SAP HANA Application Lifecycle Management Guide. Links to this guide and these topics are
included in the Related Information section.

Command Options

Option Description

-d, --display Displays the contents of the archive

No changes are applied to the system.

-l <file name>, --log=<file name> Sets an alternate location for the log file.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 825

Option Description

-o <installation option>, --
option=<installation option>

Provides installation options which can be used to override the default
behavior if a version of the product or the software component is already
installed

Multiple options can be specified by repeating the -o option. The follow
ing installation options are available:

● ALLOW_DU_DOWNGRADE
Allows downgrades of software components.
By default, the system does not install a software component if this
leads to a downgrade of the software component. It is possible, how
ever, to override this behavior, for example, if the newer version has
errors and you want to revert to the previous version. This option
may also be required if the versioning sequence was changed be
tween Support Packages, for example, if SP09 has version 100.0.0
and SP10 has version 1.001.0.

 Caution
Use this option carefully.

● ALLOW_DU_SAME_VERSION
Reinstalls the same version of a software component
By default, the system does not install a software component if the
same version is already installed. It is possible to override this be
havior in the following situations:
○ If a previous installation operation failed, for example, because

of activation errors
○ If you run continuous integration scenarios in which the same

version of a software component is installed regularly
● ALLOW_DU_VERSION_UPDATE

Allows version updates of software components
hdbalm attempts to keep the system in a consistent state. In some
cases, for example, if a software component is part of several prod
ucts, a version update of a software component could render one
product inoperable. If hdbalm detects an inconsistency, it aborts
the operation. You can use this option to turn off this behavior.

● ALLOW_KEEP_DU_NEWER_VERSION
Allows to keep the version of the software component if it is installed
already in a newer version
This option is useful if a software component is part of several prod
ucts. If the product to be installed contains the software component
in a version which is lower than the one already installed, you can
choose to retain the newer version. In this case, the installation of
the software component is skipped.

● USE_TWO_COMMIT_ACTIVATION
By default, the installation is canceled if any activation errors occur
and the complete installation is rolled back.

826 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

Option Description

Installation is also rolled back if you modified objects in your system
and a modified object cannot be activated because it references an
object that is part of the installation archive. This can occur, for ex
ample, if a procedure or view references a table in the archive.
If an installation fails because an object outside of the archive can
not be activated due to references to an object in the archive, you
can repeat the installation with this activation option. In this case,
the object remains broken in the system after the installation, but
the installation itself finishes successfully. You must correct the er
rors manually after the installation.
You can check the transport log after performing the installation
without this option to find out whether the activation errors were
caused by objects in the archive or outside of the archive. After re
peating the installation with this option, check the transport log to
find out which objects must be repaired afterwards.

 Recommendation
Do not use this option for installations into production systems.

--instances
 Note
This option is available only for the installation and update of product
archives.

By default all relevant instances are installed. A comma-separated list of
instances can be specified here to install only particular product instan
ces.

Related Information

hdbalm Commands, Options, and Variables [page 819]
Installing and Updating SAP HANA Products and Software Components in SAP HANA XS Classic Model [page
816]
Examples: hdbalm install Command [page 827]
SAP HANA Application Lifecycle Management [page 767]

12.8.4.1 Examples: hdbalm install Command

The examples show how you can use the hdbalm install command.

In the following examples, no environment variables are set. The general options -u <user>, -h <host>, and
-p <port> are included in the command. When the user is included as a general hdbalm option in the
command, you are prompted for a password after starting the command.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 827

● The following example installs or updates the product contained in the file
SAP_APO_ANALYTICS_1.0.zip on the XS engine host lo1234.mycompany.com and port 8000.

 Note
The default XS engine port is 80+<instance number>.

The installation or update is performed using the SYSTEM user. You are prompted for a password after
starting the command.

hdbalm -u SYSTEM -h lo1234.mycompany.com -p 8000 install
SAP_APO_ANALYTICS_1.0.zip

● The following example installs or updates the product contained in the file
SAP_APO_ANALYTICS_1.0.zip on the tenant database with the SID DB1 of the XS engine host
lo1234.mycompany.com and port 8000. The installation or update is performed using the SYSTEM user.
You are prompted for a password after starting the command.

hdbalm -u SYSTEM -h lo1234-DB1.mycompany.com -p 8000 install
SAP_APO_ANALYTICS_1.0.zip

In the following examples, the environment variables HDBALM_USER, HDBALM_PASSWD, HDBALM_HOST, and
HDBALM_PORT are set. This way, you do not have to include this information as general options in the
command.

● The following example installs or updates the product located in the directory c:\products
\SAP_APO_ANALYTICS and writes the log file to the file %TEMP%\install.log:

hdbalm install -l %TEMP%\install.log c:\products\SAP_APO_ANALYTICS

● The following example installs or updates instances 1 and 2 of the product contained in the file
my_product.zip. Any additional instances that might be part of this product archive are not installed:

hdbalm install --instances 1,2 my_product.zip

● The following command installs or updates the software components SCV1 and SCV2:

hdbalm install scv1.zip scv2.zip

● The following command installs the software components SCV1 and SCV2. The new version is installed
even if either of the two components are installed already and the new version has a higher version or
higher SP version than the installed software component:

hdbalm install --option=ALLOW_DU_VERSION_UPDATE scv1.zip scv2.zip

● The following command looks for software component files in the c:\patches directory and installs or
updates the software components in the SAP HANA system:

hdbalm install c:\patches

Related Information

hdbalm install Command [page 825]

828 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

hdbalm Commands, Options, and Variables [page 819]

12.8.5 hdbalm assemble Command

Use this command to assemble SAP HANA add-on products and software components.

Use the following syntax for the assemble command:

hdbalm [<general options>] assemble [<command options>] [<name>,<vendor>]+

 Note
If the vendor is unique in the system, you can omit it.

Command Options

The following command options exist:

Command Option Description

-d <directory>, --directory=<directory> Specifies an alternate location for the assembled add-on
product archives or software component archives

-l <file name>, --log=<file name> Sets an alternate location for the log file

--languages <languages> Comma-separated list of language codes that are exported
for the software components

--ignore_language_errors Ignores errors if languages are inconsistently configured for
a delivery unit

No language delivery unit is exported.

--overwrite Overwrites archives if they exist in the file system

--timestamp Adds a timestamp to the archive file name to distinguish be
tween different assembly builds

--products_only Assembles only product archives

This can be required if a product and a delivery unit have the
same name in the system.

--scvs_only Assembles only software components

This can be required if a product and a software component
have the same name in the system.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 829

Command Option Description

--export_version An export format can be specified to make the format com
patible with older SAP HANA versions. By default, the cur
rent file format is used. This can be required if you want to
install the assembled product or software component in an
older SAP HANA version. For a mapping between file format
and SAP HANA version, see SAP Note 1984354.

 Example
The following example assembles the product SAP APO ANALYTICS of the vendor sap.com and writes the
product archive to the local directory:

hdbalm assemble "SAP APO ANALYTICS",sap.com

Related Information

SAP Note 1984354
Assembling Add-On Products and Software Components [page 814]
hdbalm Commands, Options, and Variables [page 819]

12.8.6 hdbalm import Command

Use this command to import SAP HANA delivery units (.tgz files).

Use the following syntax for the import command:

hdbalm [<general options>] import [<command option>]* [<du tgz>|<directory>]*

Command Options

The following command options exist:

Command Option Description

-d, --display Displays the archive contents

No changes are applied to the system.

-l <file name>, --log=<file name> Sets an alternate location for the log file

830 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

http://help.sap.com/disclaimer?site=https://launchpad.support.sap.com/#/notes/1984354

 Example
The following example imports delivery units mydu1 and mydu2:

hdbalm import mydu1.tgz mydu2.tgz

This command looks for delivery units in the c:\delivery_units directory and imports them:

hdbalm import c:\delivery_units

Related Information

hdbalm Commands, Options, and Variables [page 819]

12.8.7 hdbalm transport Command

Use this command to execute transport-related SAP HANA application lifecycle-management activities, such
as displaying transport routes and starting the transport for a specific transport route.

Use the following syntax for the transport command:

hdbalm [<general options>] transport <transport command>

Transport commands

The following transport commands exist:

Transport Command Description

list Lists available transport routes.

start Starts a transport operation.

 Example
The following example shows how to start a transport operation on the specified transport route:

hdbalm transport start <route id>

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 831

Related Information

hdbalm Commands, Options, and Variables [page 819]

12.8.8 hdbalm log Command

Use this command to display logs for other commands.

Use the following syntax for the log command:

hdbalm [<general options>] log <log command> [<parameter>]*

Log Commands

The following log commands exist:

Log Command Description

list Lists available log entries.

get Displays the log for another command.

 Example
The following example shows how to display the log for a particular process ID.

hdbalm log get <ID>

Related Information

hdbalm Commands, Options, and Variables [page 819]

12.8.9 hdbalm product Command

Use this command to manage SAP HANA add-on products.

Use the following syntax for the product command:

hdbalm [<general options>] product <product commands> [<command option>]*
[<parameter>]*

832 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

Product Commands

The following product commands exist:

Product Command Description

list Lists all products installed in the system.

get Displays metadata for the product.

create Creates a product in the system (metadata only). The ven
dor is set to the vendor name configured in the system.

The supported command options are:

● -v <version>, --version=<version>
● -d <description>, --

description=<description>

delete Deletes the product (metadata only). No delivery units are
removed from the system.

createInstance Creates a product instance for the specified product.

There is one supported command option:

d <description>, --
description=<description>

deleteInstance Deletes a product instance for the specified product. All as
signed delivery units are unassigned.

assign Assigns a delivery unit to a product instance.

unassign Unassigns a delivery unit from a product instance.

Examples

The following example shows how to display metadata for the product.

hdbalm product get <product name> <vendor name>

The following example shows how to create a product in the system (metadata only). The vendor is set to the
vendor name configured in the system.

hdbalm product create [<command option>]* <product name>

The following example shows how to delete the product (metadata only). It does not remove deliver units.

hdbalm product delete <product name> <vendor name>

The following example shows how to create a product instance for the specified product.

hdbalm product createInstance [<command option>] <product name> <vendor name>
<instance id>

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 833

The following example shows how to delete a product instance for the specified product and ensures that all its
assigned delivery units are unassigned.

hdbalm product deleteInstance <product name> <vendor name> <instance id>

The following example shows how to assign a delivery unit to a product instance.

hdbalm product assign <du name> <du vendor> <product name> <product vendor>
<instance id>

The following example shows how to unassign a delivery unit from a product instance.

unassign product <du name> <du vendor> <product name> <product vendor> <instance
id>

Related Information

hdbalm Commands, Options, and Variables [page 819]

12.8.10 hdbalm du Command

Use this command to manage SAP HANA delivery units.

Use the following syntax for the du command:

hdbalm [<general options>] du <du command> [<command option>]* [<parameter>]*

DU Commands

The following du commands exist:

DU Command Description

list Lists all delivery units deployed in the system.

get Displays metadata for the delivery unit.

834 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

DU Command Description

create Creates a new delivery unit (metadata only).

The supported command options are:

● -v <version>, --version=<version>
● -r <responsible>, --

responsible=<responsible>
● -d <description>, --

description=<description>

The version syntax must use this format: a, a.b, or a.b.c,
where a is the version number, b the version SP, and c the
patch number.

delete Deletes a delivery unit (metadata only). No objects are re
moved from the system.

undeploy Undeploys a delivery unit. The delivery unit metadata and all
objects are removed from the system.

 Caution
Use this command option with caution.

make_local This is a developer feature that sets the source system of a
delivery unit to the local system. This is not supported for
delivery units shipped by SAP.

languages Retrieves the original language for a delivery unit and all
translations available in the system.

set_original_language Sets the original language attribute for all packages that be
long to the specified delivery unit.

The language is either a two-character ISO 639-1 language
code or a two-character ISO 639-1 language code followed
by an underscore followed by a two-character ISO 3166-1
country code.

Examples

The following example shows how to display metadata for the delivery unit.

hdbalm du get <du name> <du vendor>

The following example shows how to create a new delivery unit (metadata only).

hdbalm du create [<command option>]* <du name>

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 835

The following example shows how to delete a delivery unit (metadata only). This command does not remove
objects from the system.

hdbalm du delete <du name> <du vendor>

The following example shows how to undeploy a delivery unit. This command removes delivery unit metadata
and all objects from the system.

 Caution
Use this command option with caution.

hdbalm du undeploy <du name> <du vendor>

The following example shows how to retrieve the original language for a delivery unit and all translations
available in the system.

hdbalm du languages <du name> <du vendor>

The following example shows how to set the original language attribute for all packages that belong to the
specified delivery unit.

hdbalm du set_original_language <du name> <du vendor> <language>

Related Information

hdbalm Commands, Options, and Variables [page 819]

12.8.11 hdbalm dependencies Command

Use this command to display and analyze dependencies of SAP HANA delivery units.

Use the following syntax for the dependencies command:

hdbalm [<general options>] dependencies [<command option>]* [<source du>]
[<source du vendor>] [<target du>] [<target du vendor>]

Command options

The following command options exist:

Command Option Description

-f, --full Shows the full dependency view and analysis.

836 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

Command Option Description

-r, --references Shows object references between delivery units.

This command requires the name and vendor of the source
and the target delivery units.

-n, --nirvana Shows nirvana references for a delivery unit.

This option displays object references for objects that are
part of a delivery unit to objects which are not part of a deliv
ery unit. If a delivery unit contains objects with these refer
ences, it cannot be imported into another system.

 Note
If you do not specify any command options, a list of delivery unit dependencies is displayed. Each line of the
output lists a delivery unit followed by a colon and a comma-separated list of referenced delivery units.

 Example
To display the dependencies of the delivery unit HANA_XS_LM, you use the following command:

hdbalm dependencies HANA_XS_LM sap.com

The delivery unit HANA_XS_LM has references to the delivery units SAPUI5_1 and HANA_XS_BASE. The
output appears as follows:

HANA_XS_LM(sap.com): SAPUI5_1(sap.com), HANA_XS_BASE(sap.com)

Related Information

hdbalm Commands, Options, and Variables [page 819]

12.8.12 hdbalm package Command

Use this command to manage SAP HANA packages.

Use the following syntax for the package command:

hdbalm [<general options>] package <package command> [<parameter>]*

Package Commands

The following package commands exist:

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 837

Command Option Description

create Creates a new package.

delete Deletes a package. The package must not contain any sub-
packages or objects.

assign Assigns a package to a delivery unit.

 Example
The following example shows the syntax for assigning a package to a delivery unit.

package assign <du name> <du vendor> <package name>

Related Information

hdbalm Commands, Options, and Variables [page 819]

12.8.13 hdbalm admin Command

Use this command to execute administrative commands in SAP HANA application lifecycle management.

Use the following syntax for the admin command:

hdbalm [<general options>] admin <admin command> [<parameter>]*

Admin Commands

The following admin commands exist:

Admin Command Description

getvendor Returns the vendor name of the system.

setvendor Sets the vendor to the new vendor name.

838 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

Admin Command Description

enablechangemanagement Enables change recording.

 Caution
Enabling change recording makes all existing active ob
jects part of a released changelist. In addition, all object
in subsequent activations are assigned to changelists
that are released afterwards. Only these changelists can
be transported from the system.

disablechangemanagement Disables change recording.

 Caution
Disabling change recording switches off change tracking
in the system. This makes all existing objects transport
able, including those active objects that were already
part of open changelists.

 Example
The following example shows the syntax for setting a new vendor.

hdbalm admin setvendor <new vendor>

Related Information

hdbalm Commands, Options, and Variables [page 819]

12.9 SAP HANA Repository Translation Tool

The Repository Translation Tool (RTT) is a Java-based command line tool shipped with the SAP HANA client
that enables you to transport language files in a standard format between the SAP HANA repository and a file
system or between the SAP HANA repository and a dedicated SAP translation system.

During the translation process, the inactive (design-time) content of tables in the SAP HANA repository must
be uploaded to the translation system using the repository translation tool (RTT). After translation is
completed, you use the repository translation tool to re-import the translated texts into the SAP HANA
repository.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 839

Use the following RTT commands to implement the translation process:

Command Abbreviation Definition

download (SAP Internal
Only)

d Downloads the translated texts from the SAP translation system to a
file system.

export Exports the texts in the original language (written by the developer)
from the SAP HANA repository text tables to a file system.

export/upload (SAP
Internal Only)

e Exports and uploads the texts in the original language (written by the
developer) from the SAP HANA repository text tables to a file sys
tem.

import Imports the translated texts from a file system to the SAP HANA re
pository text tables.

download/import
(SAP Internal Only)

i Downloads and imports the translated texts from a file system to the
SAP HANA repository text tables.

upload (SAP Internal
Only)

u Uploads the texts from the file system to the SAP translation system
where the translators can translate the texts from the original lan
guage into the required target languages.

If you are using the SAP translation system, you can combine operations in one command, as follows:

● export/upload
(SAP Internal Only): Exports the texts in the original language and uploads the texts to the SAP translation
system.

● download/import
(SAP Internal Only): Downloads the translated texts from the SAP translation system and imports the
translated texts to the SAP HANA repository text tables.

The following graphic depicts the translation tool process using the commands provided by the RTT.

 Note
This tool is designed for use with one SAP HANA system and one translation system.

840 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

Related Information

SAP HANA Repository Translation Tool (RTT) Parameters [page 841]
Create Text-Strings Packages for Translation [page 844]
Export Text-Strings Files for Translation [page 845]
Import Translated Text-Strings Files [page 845]

12.9.1 SAP HANA Repository Translation Tool (RTT)
Parameters

The SAP HANA Repository Translation Tool (RTT) is a Java-based command line tool that exports language
files in a standard format for translation for customer or partner use.

The following parameters can be used with the commands.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 841

Parameter Abbreviation Definition

config c Configuration file (default: C:\Users\<your_user_ID>\workspace-
java-indigo\rtt.properties)

dbPasswd Database password (overrides config file) (default: no password)

dbReadFromStdin Read database password from stdin (overrides config file and --
dbpasswd) (default: false)

deliveryUnit d

du

Delivery units (format: <vendor>.<deliveryunit>) (default: no deliv
ery units)

force Force import of translated texts (skip source text matching) (default:
false)

languageChange Allow original language change (default: false)

locale l Locales to download/import (default: all locales)

noDelete Do not delete XLIFF files before export/download (default: false)

noExcludePrivate Do not exclude objects marked as private (=''fncViewLayer'' tag set
to ''Private'') (default: false)

package p Packages to export/upload/download/import (default: no packages)

r3ReadFromStdin Read R/3 translation system password from stdin (overrides config
file and --r3passwd) (default: false)

r3Passwd Database password (overrides config file) (default: no password)

severity Log severity level (all, debug, error, fatal, info, none, path or warning)
(default: WARNING)

skipReview Specifies that the review step is to be skipped. (default: false)

 Note
Setting the parameter to true will overwrite already reviewed
texts.

verbose v Verbose mode (show messages with severity INFO) (default: false)

veryVerbose vv Very verbose mode (show all messages with severity DEBUG) (de
fault: false)

xliffDir x XLIFF file directory (default: "rtt_exports" or "rtt_imports" in "C:
\Users \<your_user_ID>\AppData\Local\Temp\")

Here are some examples of RTT syntax:

● Export the texts from those packages matching "pack*" from the database using the default configuration
file ("rtt.properties"):
rtt --export -p pack*

● Import the translated texts into the database using the default configuration file ("rtt.properties"):
rtt --import -p pack*

● Export the texts from the database into the directory "exports":
rtt --export -p pack* -x exports

● Import the translated texts from the directory "imports":

842 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

rtt --import -p pack* -x imports

12.9.2 Configure the Repository Translation Tool

The repository translation tool (RTT) reads a configuration file (rtt.properties) to determine the settings
for file transfer.

Context

You need to maintain your information in the rtt.properties file in order to use the RTT. The
rtt.properties file enables you to specify the settings required to transfer text-resource files (in the
required XLIFF format) between the system hosting the SAP HANA repository and the system hosting the
translation database and tools. You can use rtt.properties file to set system-related access details, for
example, system user-logon IDs, and the translation-area number (TAN) for the translation system.

Procedure

1. Locate the hdbclient directory on your server's hard drive.

2. Open the rtt.properties file and add all required information by replacing the placeholders.

db settings (SAP HANA repository) db.hostname=<db hostname, e.g. myhost.name.com>
db.instance=<db instance, e.g. 00>
db.user=<db username>
db.passwd=<db password>
translation system settings
jco.client.tan=<translation area number e.g. 027001>
jco.client.client=<translation system client, e.g. 000>
jco.client.user=<translation system user>
jco.client.passwd=<translation system password>
jco.client.mshost=<translation system host> jco.client.r3name=<translation system SID>

 Note
The RTT properties file is intended to help automate the connection between SAP HANA and the
translation system, which are installed and licensed separately. The connection details for a specific
translation system will need to be obtained from the system's administrator.

The translation area number required in jco.client.tan represents a technical area in a specific
language and is typically of the form “027001”; the “translation-system user” specified in
jco.client.user is used to establish a connection to the translation system and must have the
permissions required to log on (and upload content) to the translation system. The name of the R3 system
defined in jco.client.r3name is the typical three-character-long system ID, for example, “B1Y”.

3. Save your work.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 843

 Note
The rtt.properties file is not encrypted, which means that information you include in the
configuration potentially is exposed.

12.9.3 Create Text-Strings Packages for Translation

You must create packages to transport text strings for translation.

Context

All text strings must be stored in a .hdbtextbundle file. The .hdbtextbundle file can be retrieved using a
JavaScript API. The following example demonstrates how you can externalize the texts in a .hdbtextbundle
file.

TRANSLATE # XBUT,20
BUTTON_SAVE=Save
XBUT,20
BUTTON_CANCEL=Don’t save
XMSG,40 MSG_SUCCESS=File has been saved.

In this example, # TRANSLATE defines that the texts can be translated (exported), and # XBUT,20 defines the
text type with a 20-character length maximum.

Procedure

1. In the SAP HANA studio, select the system from which you want to transport text files for translation.

2. Click the Content file with the alternate mouse button and choose New Package .
3. In the New Package dialog box, enter all relevant information and then choose Translation.
4. Select a Terminology Domain, enter a Text Collectionname, and choose OK.
5. Choose Save and Activate.

Related Information

Tutorial: Create and Translate Text Bundles for SAPUI5 Applications [page 675]

844 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

12.9.4 Export Text-Strings Files for Translation

You want to export text-strings files to a file system for translation.

Prerequisites

You have updated the rtt.properties file with all appropriate information.

Context

When you have created your text-strings files and assigned them to packages, you can begin exporting them to
a file system for translation.

Procedure

1. Start a command line application and navigate to the directory in which the <rtt.properties> file is
stored.

2. Type rtt -e -p <name of the package> -v <other parameters> and press Enter .

Results

The Upload finished message appears. The file has been exported to the file server and is ready to be sent
for translation.

12.9.5 Import Translated Text-Strings Files

You want to import translated text-strings files from a file system.

Context

When you text strings are translated, you can import them back into your system.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 845

Procedure

1. Start a command line application and navigate to the directory in which the <rtt.properties> file is
stored.

2. Type rtt -i -p <name of the package> -v <other parameters> and press Enter .

Results

The Download finished message appears. The file has been imported from the file server.

12.10 Maintaining Translation Text Strings

Maintain the translated text strings used in an application's user interface, error messages, and
documentation.

For the purposes of localisation (L10N), you can provide the text strings displayed in an application's user
interface in multiple languages, for example, English, French, or Chinese. You can also provide notifications and
error messages in the same, local languages. To manage and maintain these translated text strings, SAP HANA
provides an online translation tool (OTT). The translation of the text strings themselves can be performed
manually or with suggestions provided by an external service, for example, SAP Translation Hub. Access to
external translation services is not covered by the SAP HANA license and usually requires a user account.

Setting up and maintaining the online translation tools for SAP HANA includes the following high-level tasks:

● Enabling the translation tool
● Accessing packages in the SAP HANA repository
● Maintaining text strings in the source and target languages

This tasks involves maintaining the contents of the following SAP HANA tables:
○ ACTIVE_CONTENT_TEXT
○ ACTIVE_CONTEXT_TEXT_CONTENT
○ ACTIVE_OBJECT_TEXT
○ ACTIVE_OBJECT_TEXT_CONTENT

● Enabling access to a remote text-translation service (optional)

 Restriction
Access to external translation services is not granted in the SAP HANA license. To use external
translation services such as the SAP Translation Hub, an additional license is required. In addition, the
SAP Translation Hub is currently available only for Beta testing.

● Maintaining HTTP destinations for any remote systems that provide services used by the Online Translation
Tool (optional)
Remote translation services such as SAP Translation Hub can provide access to a database of translated
text strings, which are used to provide suggestions in the target language. To access such a remote service,
you must maintain an HTTP destination (or extend an existing destination) that provides details of the host

846 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

system where the translation service is running as well as a valid user account and logon authentication.
You must also ensure that a trust relationship exists between the translation server and SAP HANA, for
example, by importing the translation server's client certificate into the SAP HANA trust store.

The SAP HANA Online Translation Tool is available on the SAP HANA XS Web server at the following URL:

http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/translationTool/

 Tip
The privileges required to use the SAP HANA Online Translation Tool (OTT) are granted by the role
templatesap.hana.xs.translationTool.roles::translator.

Related Information

Create and Edit Text Translations [page 847]
Export and Import Translated Text [page 851]
SAP Translation Hub Cloud Service (beta)

12.10.1 Create and Edit Text Translations

Maintain translations for text strings displayed in an SAP HANA application's user interface.

Prerequisites

To maintain translated text for an application in SAP HANA XS, the following prerequisites apply:

● You have access to an SAP HANA system.
● You have the privileges required to access the repository packages containing the text strings to be

localized/translated.
● You have a role based on the role template sap.hana.xs.translationTool.roles::translator.
● If you want to make use of optional external translation services, you must maintain access to the

translation server system.

 Restriction
Access to external translation services is not granted in the SAP HANA license. To use external
translation services such as the SAP Translation Hub, an additional license is required. The SAP
Translation Hub is currently available only for BETA testing.

Details of the remote systems where the translation service is running (for example, SAP Translation Hub)
are defined in HTTP destination configuration files along with details of any corresponding user account
and authentication certificates.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 847

https://help.hana.ondemand.com/help/frameset.htm?1b15cf69580449c0bd8525696c97b90d.html

Context

An application's user interface and notifications can be translated from the original source language (for
example, English) into one or more local (target) languages, for example, French, Spanish, or Japanese. You
can either translate the texts manually or with the help of an (optional) external translation service. To provide
translations of the UI text strings for your SAP HANA application, perform the following steps:

Procedure

1. Start the SAP HANA Online Translation Tool.
The SAP HANA Online Translation Tool tool is available on the SAP HANA XS Web server at the following
URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/translationTool.

 Note
In the default configuration, the URL redirects the request to a logon screen, which requires the
credentials of an authenticated SAP HANA database user to complete the logon process. The user who
logs on must also have the privileges required to perform the tasks associated with the maintenance of
translation texts.

2. Select the delivery unit that contains the application with the text strings you want to translate.

Use the Delivery Unit drop-down list to select a delivery unit.

 Tip
The name of the vendor associated with the selected delivery unit is displayed automatically in the
Vendor field, for example, acme.com; the vendor name cannot be changed here.

3. Select the package that contains the text strings you want to translate.

Use the Package drop-down list to select a package. If the selected package contains text elements, they
are displayed alphabetically in a list.

 Tip
The original source language associated with the contents of the selected package is displayed
automatically.

4. Enable access to a text-translation service, for example, SAP Translation Hub. (optional).

 Restriction
Access to external translation services is not granted in the SAP HANA license. To use external
translation services, an additional license is required.

If you want to make user of the services provided by a translation server, you need to maintain an HTTP
destination extension that provide details of the host system where the translation service is running;
access to the translation service usually requires a user account and logon authentication. You must also
ensure that a trust relationship exists between the translation server and SAP HANA, for example, by
importing the translation server's client certificate into the SAP HANA trust store that you are using to
handle authentication for this HTTP destination.

848 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

The HTTP destination configuration
sap.hana.xs.translationTool.server:translationService.xshttpdest defines details of the
server hosting the SAP Translation Hub service. Although you cannot edit this destination configuration,
note that you can use an HTTP destination extension to change the details, for example, to point to an
alternative host name.

5. Add a translation for a text element.

For a given text element in the Text ID list, you can provide a suitable translation in one or more languages,
for example: French (fr), Spanish (es), and Japanese (ja).

a. Expand the desired UI text element.

In the Text ID list, locate and expand the element for which you want to provide a translation.
b. Add a translation.

Choose Add Translation.
c. Select the desired language for the translation from the Target Language drop-down list.
d. In the Target Language Text box, type the translation for the selected text element.

 Tip
If the SAP Translation Hub option is enabled, language-specific suggestions for possible translation
matches are provided as you type. If you see a suggestion that is suitable, use the mouse to select
the suggested text.

e. Add another translation.

Choose Add Translation
f. Edit an existing translation

Choose the Edit icon next to the translation you want to modify and make the required changes.
6. Save your additions and changes.

Choose Save to store the added translations or any modifications in the appropriate tables in the SAP
HANA database.

Related Information

Online Translation Tool Details [page 849]
Export and Import Translated Text [page 851]

12.10.1.1 Online Translation Tool Details

Display details of the source text for an application's user interface elements and, if available, any available
translations.

The Online Translation Tool tool enables you to view details of the text elements contained in the individual
packages of an SAP HANA application. The following table indicates which information can be viewed.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 849

 Note
The privileges required to use the SAP HANA Online Translation Tool (OTT) are granted by the role template
sap.hana.xs.ott.roles::translator.

Translation Text Details

UI Element Description Example

Delivery Unit Name of the SAP HANA delivery unit (DU) that contains the
default text strings for which a translation is required along
with the name of the vendor associated with the selected de
livery unit

ACME_XS_BASE - acme.com

Package The name of (and path to) the package containing the text
strings for which a translation is required

acme.com.app.ui.login

Source language Short name of the source language for the text strings con
tained in the selected package, for example: en (English), fr
(French), ja, (Japanese)

en

Target Language Long or short name of the target language for the text strings
contained in the selected package, for example: Bulgarian
(bg), French (fr), Japanese (ja)

Chinese (zh)

Domains The SAP product-specific translation domain to which the
selected DU/package belongs, for example, Financial Ac
counting or Customer Relationship Managment. Domains are
used in the translation process to determine the correct ter
minology for a text string that has to be translated; the same
text might require a different translation depending on the
domain (or application) in which it is used. Suggestions from
a remote translation service such as the SAP Translation Hub
are restricted to the currently selected domain.

“Basis”, or “Accounting -
General”

Enable Translation Hub Enable automatic suggestions (in the Target language text
box) for translation texts using a remote service such as SAP
Translation Hub; the suggestions are provided by a remote
translation database.

 Restriction
Access to external translation services is not granted in
the SAP HANA license. To use external translation serv
ices such as the SAP Translation Hub, an additional li
cense is required. The SAP Translation Hub is currently
available only for BETA testing.

Access to the remote translation service usually requires a
user account and logon authentication. You also need to
maintain an HTTP destination (or extend an existing one) for
the translation server system and ensure the server system
is trusted by SAP HANA, for example, by importing the trans
lation server's client certificate into the SAP HANA trust
store.

Yes/No

850 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

UI Element Description Example

Text ID The name/ID of the UI element for which a text string is re
quired. This could be a tab title, a box name, a notification, or
an error message.

LOGON_LABEL

Default Text The text string associated with the text ID HANA Logon

Target Language Text Proposed/accepted translation (in the target language) of
the text string displayed (in the source language) in the
Default Text field. Activate the Enable Translation Hub option
to enable auto-suggestions in the target language.

-

Source Object The name of the design-time artifact that contains the UI text
strings.

logonForm.hdbtextbundle

Related Information

Create and Edit Text Translations [page 847]
Export and Import Translated Text [page 851]

12.10.2 Export and Import Translated Text

Transport text translations between systems using the industry-standard, XML-based xliff format.

Prerequisites

To export and import translated text for an application in SAP HANA XS, the following prerequisites apply:

● You have access to an SAP HANA system.
● You have access to the repository packages containing the text strings to be localized/translated.
● You have been granted a role based on the role template

sap.hana.xs.translationTool.roles::translator.

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 851

Context

An application's user interface and notifications can be translated from the original source language (for
example, English) into one or more target local languages, for example, French, Spanish, or Japanese. To
provide translations of the UI text strings for your SAP HANA application, perform the following steps:

Procedure

1. Start the SAP HANA Online Translation Tool.
The SAP HANA Online Translation Tool tool is available on the SAP HANA XS Web server at the following
URL: http://<WebServerHost>:80<SAPHANAinstance>/sap/hana/xs/translationTool.

 Note
In the default configuration, the URL redirects the request to a logon screen, which requires the
credentials of an authenticated SAP HANA database user to complete the logon process. The user who
logs on must also have the privileges required to perform the tasks associated with the maintenance of
translation texts.

2. Select the delivery unit that contains the application with the text strings you want to translate.

Use the Delivery Unit drop-down list to select a delivery unit.

 Tip
The name of the vendor associated with the selected delivery unit is displayed automatically in the
Vendor field, for example, acme.com. You cannot change this here.

3. Select the package that contains the text strings you want to translate.

Use the Packagedrop-down list to select a package. If the selected package contains text elements, they
are displayed automatically in an alphabetically ordered list.

 Tip
The original source language associated with the contents of the selected package is displayed
automatically.

4. Export the UI text elements from the local source system.

You can export the translation texts to an archive on a local file system using the industry-standard, XML-
based xliff format.

5. Import the UI text elements to the remote target system.

You can import the translation texts into SAP HANA from an archive whose content are stored using the
industry-standard, XML-based xliff format.

6. Confirm that the import operation was successful.
Check the status of the following tables in the SAP HANA database:
○ ACTIVE_CONTENT_TEXT
○ ACTIVE_CONTEXT_TEXT_CONTENT

852 P U B L I C
SAP HANA Developer Guide

SAP HANA Application Lifecycle Management

○ ACTIVE_OBJECT_TEXT
○ ACTIVE_OBJECT_TEXT_CONTENT

Related Information

Online Translation Tool Details [page 849]
Create and Edit Text Translations [page 847]

SAP HANA Developer Guide
SAP HANA Application Lifecycle Management P U B L I C 853

13 SAP HANA Database Client Interfaces

SAP HANA provides a selection of client interfaces for connecting applications to retrieve and update data.

SAP HANA exposes data with client and web-based interfaces.

SAP HANA supports many common database application programming interfaces (APIs). For example, a
spreadsheet application can use ODBO to consume analytic views and enable users to create pivot tables, or a
web application can use an OData interface to access data and display it.

● Client interfaces are available as long as the SAP HANA client is installed. The following APIs are
supported:

API Description
Supported Ver
sion(s)

Has SQLDBC as a
basis

JDBC The JDBC driver 4.2 No

ODBC The ODBC driver 3.51 Yes

SQLDBC The SQLDBC API (for internal use only) Not Applicable

ODBO/MDX The ODBO API driver that executes MDX statements
(most commonly used with Microsoft Excel)

1.5.26.30 Yes

Python DB API The Python DB API (hdbcli.dbapi) With a few ex
ceptions, it con
forms to the Py
thon Database
API specification
version 2.0.

Yes

ADO.NET The data provider for Microsoft ADO.NET .NET 3.5, 4.5.2,
and 4.6

Yes

Node.js The Node.js driver for JavaScript on Joyent's Node.js
software platform

4 and 6 Yes

Go The Go driver 1.8 and later Yes

● Web-based interfaces must be defined by the application developer, who determines what data to expose
and to whom. The following web-based interfaces are supported:
○ OData
○ XMLA
○ Server-Side JavaScript

Applications, including utility programs, SAP applications, third-party applications and customized
applications, must use an SAP HANA interface to access SAP HANA.

854 P U B L I C
SAP HANA Developer Guide

SAP HANA Database Client Interfaces

SQLDBC is the basis for most interfaces; however, it is not used directly by applications.

The following diagram displays all supported SAP HANA interfaces and common SAP applications and utility
programs:

 Caution
If tracing is enabled for client interfaces, then sensitive information included in SQL statements (for
example, names, passwords, or credit card information) is logged in the SAP HANA trace files as plain text.

13.1 Setting Session-Specific Client Information

The client information is a list of session variables (defined in property-value pairs and case sensitive) that an
application can set in the SAP HANA client interface.

The SAP HANA client interface stores the values specified in the M_SESSION_CONTEXT system table. Apart
from storing the client information in the appropriate place in the database, the methods described here do not
alter the behavior of the connection in any way. The values supplied to these methods are used for internal
checks, diagnostics, and debugging purposes only.

When connecting to your database, you can set session variables by using the SESSIONVARIABLE: connection
option prefix. Each session variable must be specified as an independent key-value pair. For example, in JDBC:

jdbc:sap://ykfl00540545a:30115/?
autocommit=false&sessionVariable:APPLICATION=myapp&sessionVariable:APPLICATIONUSE
R=user1&sessionVariable:myvar=myval&distribution=connection

In ODBC, session variables are specified similarly to the following example:

DSN=HANADataSource;UID=myUser;PWD=myPassword;SESSIONVARIABLE:APPLICATION=myapp;SE
SSIONVARIABLE:APPLICATIONUSER=user1;SESSIONVARIABLE:myvar=myval

SAP HANA Developer Guide
SAP HANA Database Client Interfaces P U B L I C 855

For the purposes of workload classes, the following keys are supported:

Supported Key-Value Pairs

Key Workload Class Default (JDBC)
Default (other
APIs) Value

APPLICATION Application Name System.getProp
erty("sun.java.com
mand")

The executable
name (with .exe
suffix removed on
Microsoft Win
dows).

NVARCHAR string with a maximum
character length of 256

APPLICATIO
NUSER

Application User
Name

System.getProp
erty("user.name")

The operating sys
tem user name as
sociated with the
application proc
ess.

NVARCHAR string with a maximum
character length of 256

CLIENT Client 3 characters

USER User Name NVARCHAR string with a maximum
character length of 256 (the data
base user name)

ODBC

Use connection attributes to access client information with the ODBC API:

SQL_SQLDBC_SET_CLIENTINFO_KEY = 11003 SQL_SQLDBC_SET_CLIENTINFO_VALUE = 11004 SQL_SQLDBC_GET_CLIENTINFO_VALUE = 11005

The attributes are defined in <client install directory>/sdk/odbc/incl/sqlsdbodbc.h, and are
illustrated in the following example:

// setting key HOMER and value mafimi char key[] = "HOMER";
rc = SQLSetConnectAttr(hdbc, SQL_SQLDBC_SET_CLIENTINFO_KEY, key, SQL_NTS);
char value[] = "mafimi";
rc = SQLSetConnectAttr(hdbc, SQL_SQLDBC_SET_CLIENTINFO_VALUE, value, SQL_NTS);
// retrieving the value for the currently set SQL_SQLDBC_SET_CLIENTINFO_KEY key
// if the buffer is too short: rc is SQL_SUCCESS_WITH_INFO and sqlstate 01004:
// String data, right truncated
char buf[64];
SQLINTEGER bufLen = 0; rc = SQLGetConnectAttr(hdbc, SQL_SQLDBC_GET_CLIENTINFO_VALUE, buf, sizeof(buf),
&bufLen);

856 P U B L I C
SAP HANA Developer Guide

SAP HANA Database Client Interfaces

JDBC

The JDBC 4.2 API provides the following methods on java.sql.Connection to set or get the client
information for a session:

● setClientInfo

void setClientInfo(String name, String value)
 throws SQLClientInfoException
void setClientInfo(Properties properties) throws SQLClientInfoException

● getClientInfo

String getClientInfo(String name) throws SQLException
Properties getClientInfo() throws SQLException

 Note
When you retrieve a client information property name with the command getClientInfo, the names are
case sensitive.

For details on the API, refer to the JDBC specification:

//set client info property connection.setClientInfo("APPLICATION", "Simpson");
connection.setClientInfo("APPLICATIONVERSION", "0.100");
//unset client info property
connection.setClientInfo("APPLICATION", null);
//get client info property
Properties ci = connection.getClientInfo();
Enumeration e = ci.keys();
while (e.hasMoreElements()) {
 String key = (String) e.nextElement();
 String val = (String) ci.get(key);
 System.out.println("Key="+key+" Value="+val);
}

Python DB API

The Python DB API (hdbcli.dbapi) provides the following methods on the Connection class to get or set
the client information:

● getclientinfo
Gets client information with a key.

conn = dbapi.connect(address=<host>, port=<port>, user=<user>,
password=<password>) value = conn.getclientinfo("MYKEY")

○ If the key for getclientinfo is “key=None”, then all defined key-value pairs are returned.
○ The dbapi.Connection.getclientinfo command is similar to the command

java.sql.Connection.getClientInfo() that is included in the JDBC API.

SAP HANA Developer Guide
SAP HANA Database Client Interfaces P U B L I C 857

● setclientinfo
Sets client information with a key and a corresponding value.

conn = dbapi.connect(address=<host>, port=<port>, user=<user>,
password=<password>) conn.setclientinfo("MYKEY", 1000)

○ If the key for setclientinfo is “value=None”, then the key is removed from the client-information
dictionary.

○ The dbapi.Connection.setClientInfo command is similar to the command
java.sql.Connection.setClientInfo() that is included in the JDBC API.

● Example

conn = dbapi.connect(address=<host>, port=<port>, user=<user>,
password=<password>) cur = conn.cursor()
conn.setclientinfo("SCRIPT", _file_)
cur.execute("create column table table_to_check_clientinfo (z int primary
key)") ci = conn.getclientinfo("SCRIPT")

Node.js API

The Node.js driver's connection class provides the setClientInfo and getClientInfo methods for setting and
accessing the client information.

● For example:

var hana = require('hana.node'); var conn = hana.createConnection();
conn.connect(‘serverNode=myserver:30015;uid=system;pwd=manager’);
conn.setClientInfo('LOCALE', 'en-CA');
var locale = conn.getClientInfo('LOCALE');
conn.close();

Go

Set session variables for the Go driver by using the SESSIONVARIABLE: connection option prefix. Each
session variable must be specified as an independent key-value pair. For example:

hdb://<user>:<password>@<host>:<port>?
sessionVariable:<var1>=<val1>&sessionVariable:<var2>=<val2>

In the above example, replace <var1> and <var2> with the name of session variable.

858 P U B L I C
SAP HANA Developer Guide

SAP HANA Database Client Interfaces

13.2 Connect to SAP HANA via ODBC

SAP HANA provides a driver for connecting applications to the database with ODBC.

Context

Use the 32-bit ODBC driver for 32-bit applications, and the 64-bit driver for 64-bit applications.

Procedure

1. Install the ODBC driver. The driver is installed as part of the SAP HANA client installation.
2. Write code to create a connection to the database. You can use one of the following methods:

Connection String
(SQLDriverConnect)

Use a connection string similar to the following (the command must be all on one
line):

DRIVER={<driver>};UID=<username>;PWD=<password>; SERVERNODE=<server>:<port>;DATABASENAME=<dbname>

<driver> should be one of the following:
○ HDBODBC (64-bit applications)
○ HDBODBC32 (32-bit applications)

The following example shows a connection string that establishes a connection to an
SAP HANA database:

DRIVER={HDBODBC};UID=myUser;PWD=myPassword;SERVERNODE=myServer:
30015

You can specify a specific database (for example, TDB1) using the DATABASENAME
parameter (the command must be all on one line):

DRIVER={HDBODBC};UID=myUser;PWD=myPassword;SERVERNODE=myServer:
30013; DATABASENAME=TDB1

odbc.ini file on
Linux and Unix
(SQLDriverConnect
or SQLConnect)

This file defines ODBC data sources on Linux and Unix. User data sources are usually
defined in ~/.odbc.ini (where ~ is the user's home directory). The odbc.ini file is
used by the ODBC driver manager find the ODBC driver and provide connection
parameters. SAP HANA specific connection parameter names are case sensitive. The
following is an example data source in the odbc.ini file:

[HANADB1] DRIVER=/usr/sap/hdbclient/libodbcHDB.so
SERVERNODE=myServer:30013

SAP HANA Developer Guide
SAP HANA Database Client Interfaces P U B L I C 859

DATABASENAME=DB1 DESCRIPTION=Sample HANA ODBC Data Source for DB1

You can use the following SQLDriverConnection connection string to connect using
the above HANADB1 data source:

DSN=HANADB1;UID=myUser;PWD=myPassword

ODBC Data Sources
on Microsoft
Windows
(SQLDriverConnect
or SQLConnect)

Create a data source by running the odbcad32.exe tool. You can run this tool on the
command line or via the Control Panel by searching for "ODBC" and selecting "Set up
ODBC data sources".

The odbcad32.exe tool is located in the system32 directory. To create a data source
for the 32-bit driver on a 64-bit Microsoft Windows machine, run the tool from the
SysWOW64 directory.

On the DSN tab, choose Add, select the HDBODBC or HDBODBC32 driver, and select
Finish. A dialog is displayed that enables you to specify the name and details of the
data source that you want to add:

○ Data Source Name
○ Description
○ Sever and Port

You can either enter a key created using the SAP HANA user store (which defines
the server, port, user name and password), or you can enter a server and port (for
example, myServer:30015). If you enter a server and port, then the application
must supply the user name and password when connecting.
You cannot enter a user name and password when adding a new data source. The
user credentials are required at connection time.

○ Settings…
Clicking the Settings… button brings up an Advanced Setup dialog. You can add
additional connection parameters in the "Special property settings" section by
clicking Add. For example, you can add the DATABASENAME connection property
here. These connection property names are case sensitive.

If you used "HANADataSource" as the Data Source Name, you can use the following
SQLDriverConnection connection string to connect:

DSN=HANADataSource;UID=myUser;PWD=myPassword

13.2.1 Use the User Store (hdbuserstore)
The SAP HANA user store enables you to store information that is used to connect to an SAP HANA system.

Context

To avoid entering connection-related information manually each time you want to establish a connection to an
SAP HANA database, store the connection information in the user store. As part of the configuration, you

860 P U B L I C
SAP HANA Developer Guide

SAP HANA Database Client Interfaces

assign a key and use this key when making connections. The user store is located on the system running the
client interface.

Connection information stored in the secure store is saved in the (per user) secure store file SSFS_HDB.DAT.
For example, the default location on Linux is: $HOME/.hdb/<hostname>/SSFS_HDB.DAT.

Storing the connection information makes it easier to move between systems (for example, when executing
SQL from the command line), and also keeps connection information, including user names and passwords, in
a secure place.

The SAP HANA user store is part of the client installation and is compatible with all SQLDBC- and JDBC-based
connections included in the installation.

Procedure

1. Run the following command:

hdbuserstore.exe set <key> <server>:<port>@<database> <user> <password>

The server, port, database name, user name, and password are now stored in the user store.
@<database> is optional if <server>:<port> specifies the database location directly. The key is a string
that you use to refer to this set of connection information.

2. Use the key to reference a connection to a particular system. Always precede the key with an @ (for
example, @mykey).

Use the example key in the following ways:

○ In the connection string, use the key for the SERVERNODE parameter and do not include a user name
and password. For example:

SERVERNODE={@mykey};DRIVER={hdbodbc};

○ To create an ODBC data source, enter the key (for example, @mykey) for the server and port.
○ To test your connection on Microsoft Windows (by running odbcreg -t HDBODBC), use the example

key @mykey for the server and port. If the connection is successful, then your results look similar to the
following:

odbcreg -t HDBODBC MDAC version: 6.3.9600.16384
ODBC Driver test for 'HDBODBC'.
retcode: 0 outString(35): SERVERNODE={@mykey};DRIVER={HDBODBC};

The response includes a sample connection string using the key.

For more information regarding the SAP HANA user store, see "Secure User Store (hdbuserstore)" in the
SAP HANA Security Guide.

SAP HANA Developer Guide
SAP HANA Database Client Interfaces P U B L I C 861

13.2.2 Test the ODBC Installation on Microsoft Windows

Test the installation of the ODBC driver and your ability to connect by using the odbcreg tool, which is part of
the ODBC installation.

Procedure

1. Open a command window.
2. Start the odbcreg tool by enter a command in the form: odbcreg -t hdbcodbc (for the 64-bit driver) or

odbcreg32 -t hdbcodbc32 (for the 32-bit driver).

If the driver is installed properly, then you see the ODBC connection screen.

You can also run the command odbcreg -g or odbcreg32 -g to get a list of installed drivers. The SAP
HANA driver is called HDBODBC.

To connect to SAP HANA using the native SAP HANA ODBC driver, provide the following information:

○ Server and Port
Enter the server name and the corresponding port number for the ODBC connection. For example,
myServer:30015.

○ User and Password
Enter the user credentials required to connect to SAP HANA using the ODBC interface.

○ Connect using SSL
Enable if you want to ensure that the ODBC connection to SAP HANA is established using the Secure
Sockets Layer.

3. Test the connection by entering connection information (system, port, user name, and password) and
selecting OK. The tool closes and the results of the test are printed in the command window.

Results

You can also run odbcreg -g to get a list of installed ODBC drivers and verify that the SAP HANA driver (either
HDBODBC or HDBODBC32) is installed.

862 P U B L I C
SAP HANA Developer Guide

SAP HANA Database Client Interfaces

13.3 Connect to SAP HANA via JDBC

SAP HANA provides a driver that enables Java applications to connect to the SAP HANA database with the
JDBC application programming interface (API).

Procedure

1. Install the JDBC driver.

The driver (ngdbc.jar) is installed as part of the SAP HANA client installation and by default is located at:
○ C:\Program Files\sap\hdbclient\ on Microsoft Windows platforms
○ /usr/sap/hdbclient/ on Linux and UNIX platforms

2. Add ngdbc.jar to your classpath.

3. Write Java code to create a connection to the database and execute SQL commands. Use a connection
string in the form of jdbc:sap://<server>:<port>[/?<options>]. For example:

jdbc:sap://myServer:30015/?autocommit=false

Specify one or more failover servers by adding additional hosts, as in the following example:

jdbc:sap://myServer:30015;failover1:30015;failover2:30015/?autocommit=false

To connect to a specific database, for example tdb1, use the databaseName parameter, as illustrated in
the following code:

jdbc:sap://localhost:30013/?databaseName=tdb1&user=SYSTEM&password=manager

 Example
The following is an example of connecting to an SAP HANA server called myhdb, which was installed as
instance 07, with user name myName and password mySecret. Make sure to change these for your system,
and add the JDBC driver (ngdbc.jar) to your classpath.

import java.sql.*; public class jdemo {
 public static void main(String[] argv) {
 Connection connection = null;
 try {
 connection = DriverManager.getConnection(
 "jdbc:sap://myhdb:30715/?autocommit=false", "myName",
"mySecret");
 } catch (SQLException e) {
 System.err.println("Connection Failed:");
 System.err.println(e);
 return;
 }
 if (connection != null) {
 try {
 System.out.println("Connection to HANA successful!");
 Statement stmt = connection.createStatement();
 ResultSet resultSet = stmt.executeQuery("Select 'Hello, world'
from dummy");

SAP HANA Developer Guide
SAP HANA Database Client Interfaces P U B L I C 863

 resultSet.next();
 String hello = resultSet.getString(1);
 System.out.println(hello);
 } catch (SQLException e) {
 System.err.println("Query failed!");
 }
 }
 } }

13.3.1 Trace a JDBC Connection

Activate JDBC tracing to find errors while your application is connected to a database via JDBC.

Prerequisites

You must be logged on as the operating system user who started (or will start) the JDBC application.

 Note
● You must always activate the JDBC trace for all JDBC applications that the current operating system

user has started.
● Configuration changes have an effect on all JDBC applications that the current operating system user

has started.
● Enabling the JDBC trace results in a significant reduction in JDBC performance.
● Enabling tracing can result in sensitive information (such as connection properties, SQL text, and result

set values) being included in the trace file.

Context

When JDBC tracing is activated, the JDBC driver logs the following information on the client:

● JDBC API calls called by the JDBC application
● JDBC API call parameters
● Executed SQL statements and their results

The location of the trace file is determined by the trace options.

864 P U B L I C
SAP HANA Developer Guide

SAP HANA Database Client Interfaces

13.3.1.1 Trace a JDBC Connection Using the GUI

Configure and start JDBC tracing by using the HANA JDBC Driver Trace Configuration graphical user interface
(GUI).

Context

Tracing via the GUI enables you to start and configure tracing without stopping and restarting your application
that is connected via JDBC.

Procedure

1. Open the HANA JDBC Driver Trace Configuration GUI by running the following command:

java -jar <installation_path>\ngdbc.jar

On Linux or Unix, use / rather than \.
2. Click Enable tracing.
3. Select and configurate your tracing options.
4. Click OK.

13.3.1.2 Trace a JDBC Connection Using the Command Line

Configure and atart tracing by running the tracing configuration tool on the command line.

Context

Tracing via the command line enables you to start and configure tracing without stopping and restarting your
application that is connected with JDBC.

Procedure

1. Display the current tracing configuration by running the following command:

java -jar <installation_path>\ngdbc.jar SHOW

On Linux or Unix, use / or \.

SAP HANA Developer Guide
SAP HANA Database Client Interfaces P U B L I C 865

2. Optionally, show the available trace command line options by running the following command:

java -jar <installation_path>\ngdbc.jar -h

3. Select trace options by running the following command:

java -jar <installation_path>\ngdbc.jar <option>

4. Start tracing by running the following command:

java -jar <installation_path>\ngdbc.jar TRACE ON

13.3.1.3 Trace a JDBC Connection Using a Connection String

Start tracing by adding an option in the connection string when creating a JDBC connection.

Context

Tracing via a connection string requires you to stop and restart the application that is making the JDBC
connection. Also, with a connection string, you cannot turn off tracing or set any options except the trace
filename.

Procedure

Add the trace option to the connection when creating a JDBC connection.

Here is an example connection string that starts tracing:

jdbc:sap://localhost:30015/?autocommit=false&trace=traceFile.txt

Next Steps

Determine the trace options by locating the trace file.

13.3.1.4 JDBC Trace Options

Options when enabling JDBC tracing.

The first column shows the field name in the HANA JDBC Driver Trace Configuration tool, and the second
column shows the command to enter when using the command-line tool.

866 P U B L I C
SAP HANA Developer Guide

SAP HANA Database Client Interfaces

Trace Options

Option Command-Line Option Description

Enable tracing TRACE ON | OFF Starts and stops tracing.

Trace file name TRACE FILENAME [<path>]<file_name> Sets the name of the trace file.

The system assigns each trace file an
additional unique ID, so the file name is:
<file_name><ID>.<extension
>.

The default file name is jdbctrace
and the default extension is prt.

JDBC APIs TRACE API ON | OFF Enables/disables JDBC API tracing.
This has no effect until tracing is ena
bled by using the Enable tracing field or
the TRACE ON command.

Packets TRACE PACKET ON | OFF Enables/disables trace of communica
tion packets. This has no effect until
tracing is enabled by using the Enable
tracing field or the TRACE ON com
mand.

Distribution TRACE DISTRIBUTION ON | OFF Enables/disables trace of distribution
features. This has no effect until tracing
is enabled by using the Enable tracing
field or the TRACE ON command.

Statistics TRACE STATISTICS ON | OFF Enables/disables trace of connection
statistics, including durations, packet
and byte counts, and compression ra
tios. This has no effect until tracing is
enabled by using the Enable tracing
field or the TRACE ON command.

Show time
stamps

TRACE SHOW TIMESTAMPS ON | OFF Enables/disables timestamps for each
trace record.

Limit trace file to TRACE SIZE <size> [KB|MB|GB]

To remove the size limit, use the following option:

TRACE SIZE UNLIMITED

Limits the size of each trace file.

Stop tracing on
error code

TRACE STOP ON ERROR <error_code>

To no longer stop on the specified error, use the following op
tion:

TRACE STOP ON ERROR OFF

Stops writing the JDBC trace when the
specified error code occurs.

SAP HANA Developer Guide
SAP HANA Database Client Interfaces P U B L I C 867

13.3.2 Valid Java-to-SQL Conversions

SAP HANA allows each Java object to be converted to specific SQL types using the JDBC method
PreparedStatement.setObject or RowSet.setObject.

Some conversions may fail at runtime if the value passed is invalid.

Boo
lean

Byte Short Int Long Float Dou
ble

Big
Deci
mal

Date Time Time
stam
p

Strin
g

byte[
]

Clob NClo
b

Blob

BOO
LEAN

X X X X X X X X X

TI
NYIN
T

X X X X X X X X X

SMA
LLIN
T

X X X X X X X X X

INTE
GER

X X X X X X X X X

BI
GINT

X X X X X X X X X

REAL X X X X X X X X X

DOU
BLE

X X X X X X X X X

DEC
IMAL

X X X X X X X X X

SMA
LLDE
CI
MAL

X X X X X X X X X

DATE
/
DAY
DATE

X X X

868 P U B L I C
SAP HANA Developer Guide

SAP HANA Database Client Interfaces

TIME
/
SEC
OND
TIME

X X X

SEC
OND
DATE

X X X X

TIME
STA
MP/
LON
GDA
TE

X X X X

CHA
R

X X X X X X X X X X X X X

VAR
CHA
R

X X X X X X X X X X X X X

NCH
AR

X X X X X X X X X X X X X

NVA
RCH
AR

X X X X X X X X X X X X X

SHO
RTTE
XT

X X X X X X X X X X X X X

AL
PHA
NUM

X X X X X X X X X X X X X

BI
NAR
Y

X X

VAR
BI
NAR
Y

X X

ST_P
OINT

X X

SAP HANA Developer Guide
SAP HANA Database Client Interfaces P U B L I C 869

ST_G
EO
ME
TRY

X X

CLO
B

X X X X

NCL
OB

X X X X

BLO
B

X X X

TEXT X X X X

BIN
TEXT

X X X X

AR
RAY

13.3.3 JDBC Command-Line Connection Options

A number of parameters enable you to test the connection to a database by running a simple but specific
query.

The ngdbc.jar file enables you execute simple commands or check if a connection to the SAP HANA
database can be established with the JDBC client.

java -jar ngdbc.jar -u <user,password> [-n <hostname:port>] [-i <instance_number>] [-d <database_name>] [-o <connect option>] [-c <sql command>]

 Tip
The -d option is useful when you need to provide the name of a specific database to connect to.

Connections with an Instance Number and Database Name

The -i and -d options specify the instance number and database name (for example, tdb1) to use for the
connection to SAP HANA:

java -jar ngdbc.jar -u MyUser,MyPassword1 -i 00 -n myServer -d tdb1 -c "SELECT
DATABASE_NAME FROM SYS.M_DATABASES"

870 P U B L I C
SAP HANA Developer Guide

SAP HANA Database Client Interfaces

Connections with SYSTEMDB Port and Database Name

The -n option specifies the port number to use for connections to the SAP HANA database; the -d option
enables you to provide the name of a specific database instance (for example, tdb1):

java -jar ngdbc.jar -u MyUser,MyPassword1 -n myServer:30013 -d tdb1 -c "SELECT
DATABASE_NAME FROM SYS.M_DATABASES"

Connections with the SYSTEMDB Port and Database Name as a Property

The -o parameter specifies the name of a specific database instance (for example, tdb1) as a connection
option:

java -jar ngdbc.jar -u MyUser,MyPassword1 -n myServer:30013 -o databaseName=tdb1
-c "SELECT DATABASE_NAME FROM SYS.M_DATABASES"

13.3.4 JDBC Connection Options in Java Code

It is possible to establish a connection to the SAP HANA database directly from the Java code you write.

The JDBC database connection URL is extended to include the database name and the instance number as
properties. With ngdbc.jar set in the environment variable <CLASSPATH>, the method to establish a
connection to the SAP HANA database is java.sql.DriverManager.getConnection().

java.sql.DriverManager.getConnection(url, user, password)

Use the java.sql.DriverManager.getConnection method to connect to SAP HANA with a URL, a user
name, and the corresponding password.

import java.sql.Connection; import java.sql.DriverManager;
java.sql.Connection conn = java.sql.DriverManager.getConnection ("jdbc:sap://localhost:30013/?databaseName=tdb1", "SYSTEM", "manager");

Use the databaseName=<DB_Name> option to extend the URL to specify the name of a particular SAP HANA
instance to connect to, for example.

import java.sql.Connection; import java.sql.DriverManager;
java.sql.Connection conn = java.sql.DriverManager.getConnection ("jdbc:sap://localhost/?instanceNumber=00&databaseName=tdb1", "SYSTEM",
"manager");

SAP HANA Developer Guide
SAP HANA Database Client Interfaces P U B L I C 871

java.sql.DriverManager.getConnection(url)

Use the java.sql.DriverManager.getConnection method to connect to SAP HANA with a URL. The URL
can be extended to include the connection options; for example: the user name and corresponding password,
and the database name.

import java.sql.Connection; import java.sql.DriverManager;
java.sql.Connection conn =
java.sql.DriverManager.getConnection ("jdbc:sap://localhost:30013/?databaseName=tdb1&user=SYSTEM&password=manager");

java.sql.DriverManager.getConnection(url, properties)

Use the java.sql.DriverManager.getConnection method to connect to SAP HANA with a URL, which
you then extend using information specified in properties, as illustrated in the following example.

import java.sql.Connection; import java.sql.DriverManager;
import java.util.Properties;
java.util.Properties info = new java.util.Properties();
info.put("databaseName", "tdb1");
info.put("user", "SYSTEM");
info.put("password", "manager");
java.sql.Connection conn = java.sql.DriverManager.getConnection ("jdbc:sap://localhost:30013", info);

13.4 Connect to SAP HANA via ODBO

SAP HANA provides a driver that enables applications to connect to the SAP HANA database with the ODBO
application programming interface (API) and execute MDX statements.

Procedure

1. Install the ODBO driver. The driver is installed as part of the SAP HANA client installation.
2. Specify in your client the provider name: SAPNewDBMDXProvider
3. Create a connection string in the form of:

<host_of_HANA>;User ID=<your
user>;Password=<your_password;SFC_USE_ROWCACHE=true;SFC_INSTANCE_NUM=<instance
_number>

872 P U B L I C
SAP HANA Developer Guide

SAP HANA Database Client Interfaces

For example:

localhost;User
ID=system;Password=mypassword;SFC_USE_ROWCACHE=true;SFC_INSTANCE_NUM=00

If the server instance is 00, then you can omit the SFC_INSTANCE_NUM parameter.

SFC_USE_ROWCACHE is optional. It enables backward and forward navigation through rowsets.

13.4.1 Connecting with Microsoft Excel

Use Microsoft Excel and its PivotTables to access and analyze SAP HANA data by connecting with ODBO.

Context

SAP HANA supports Microsoft Excel 2007, 2010, 2013, and 2016 for Microsoft Windows.

Procedure

1. If not already installed, install the SAP HANA clients for 32 bit or 64 bit Windows. 32 bit versions of
Microsoft Excel require the 32 bit SAP HANA ODBO driver, and similarly 64 bit versions of Excel require 64
bit SAP HANA ODBO driver.

2. Start the Data Connection Wizard, and select Other/Advanced as the type of data source.
3. In the Data Link Properties dialog, scroll down the OLE DB Provider(s) list and choose SAP HANA MDX

Provider.
4. In the Connection tab of the Data Link Properties dialog, enter the connection details.

The following information is required:

○ Host
The SAP HANA server name.

○ Instance number
The number of the SAP HANA instance to connect to.

○ Database Mode
The database to connect to.

○ User and Password
The user credentials required to connect to SAP HANA.

 Tip
Choose Test Connection to ensure that the connection details are correct.

5. In the Data Connection Wizard, select the database and table or cube with the data you want to connect to.
○ Select the database that contains the data you want:

Use the drop-down list to select the database that contains the data you want to use.

SAP HANA Developer Guide
SAP HANA Database Client Interfaces P U B L I C 873

○ Connect to a specific cube:
Enable this check box, if required, and choose the cube from the list displayed.

 Note
SAP HANA analytic and calculation views are exposed as cubes.

6. Enter a name and description for the connection file and choose Finish to save.

 Caution
Although you can choose to save the password in the connection file, it is recommended that you do
not since the saved password is not encrypted.

Results

SAP HANA supports the following Microsoft Excel features:

● Drilling down
● Selection filtering
● Top/bottom filters
● Report filters
● Member properties
● Refresh cube
● Convert PivotTable into formulas
● Server formatting
● Pre-modeled calculated members
● Show/hide fields
● Enhanced value and label filters
● Insert slicer
● Text search in report filter
● PivotTable filter
● Creation of named sets

13.4.2 Multidimensional Expressions (MDX)

Multidimensional Expressions (MDX) is a language for querying multidimensional data that is stored in OLAP
cubes.

MDX uses a multidimensional data model to enable navigation in multiple dimensions, levels, and up and down
a hierarchy. With MDX, you can access pre-computed aggregates at specified positions (levels or members) in
a hierarchy.

874 P U B L I C
SAP HANA Developer Guide

SAP HANA Database Client Interfaces

 Note
MDX is an open standard. However, SAP has developed extensions to MDX to enable faster and more
efficient access to multidimensional data; for example, to serve specific SAP HANA application
requirements and to optimize the result set for SAP HANA clients.

MDX is implicitly a hierarchy-based paradigm. All members of all dimensions must belong to a hierarchy. Even
if you do not explicitly create hierarchies in your SAP HANA data model, the SAP HANA modeler implicitly
generates default hierarchies for each dimension. All identifiers that are used to uniquely identify hierarchies,
levels and members in MDX statements (and metadata requests) embed the hierarchy name within the
identifier.

In SAP HANA, the standard use of MDX is to access SAP HANA models (for example, analytical and attribute
views) that have been designed, validated and activated in the modeler in the SAP HANA studio. The studio
provides a graphical design environment that enables detailed control over all aspects of the model and its
language-context-sensitive runtime representation to users.

MDX in SAP HANA uses a runtime cube model, which usually consists of an analytical (or calculation) view that
represents data in which dimensions are modeled as attribute views. You can use the analytical view to specify
whether a given attribute is intended for display purposes only or for aggregation. The attributes of attribute
views are linked to private attributes in an analytic view in order to connect the entities. One benefit of MDX in
SAP HANA is the native support of hierarchies defined for attribute views.

 Note
MDX in SAP HANA includes native support of hierarchies defined for attribute views. SAP HANA supports
level-based and parent-child hierarchies and both types of hierarchies are accessible with MDX.

SAP HANA supports the use of variables in MDX queries; the variables are an SAP-specific enhancement to
standard MDX syntax. You can specify values for all mandatory variables that are defined in SAP HANA studio
to various modeling entities. The following example illustrates how to declare SAP HANA variables and their
values:

MDX Select
From [SALES_DATA_VAR]
Where [Measures].[M2_1_M3_CONV]
SAP VARIABLES [VAR_VAT] including 10,
 [VAR_K2] including 112, [VAR_TARGET_CURRENCY] including 'EUR',

13.4.3 MDX Functions

MDX in SAP HANA supports a variety of standard MDX functions.

The following MDX functions are supported:

Aggregate
Ancestor
Ancestors
Ascendants

SAP HANA Developer Guide
SAP HANA Database Client Interfaces P U B L I C 875

Avg
BottomCount
Children
ClosingPeriod
Count
Cousin
Crossjoin
CurrentMember
DefaultMember
Descendants
Dimension
Dimensions
Distinct
DistinctCount
DrillDownLevel
DrillDownLevelBottom
DrillDownLevelTop
DrillDownMember
DrillDownMemberBottom
DrillDownMemberTop
DrillUpLevel
DrillUpmember
Except
Filter
FirstChild
FirstSibling
Generate
Head
Hierarchize
Hierarchy
Instr
Intersect
IsAncestor
IsGeneration
IsLeaf
IsSibling
Item
IIF
Lag
LastChild
LastPeriods
LastSibling
Lead
Leaves
Left

876 P U B L I C
SAP HANA Developer Guide

SAP HANA Database Client Interfaces

Level
Levels
Max
Member_caption
Members
MembersAscendantsDescendants
Mid
Min
MTD
Name
NextMember
NOT
OpeningPeriod
OR
Ordinal
ParallelPeriod
Parent
PeriodsToDate
PrevMember
Properties
QTD
Range
Right
Siblings
StrToMember
StrToSet
StrToTuple
StrToValue
Subset
Sum
Tail
TopCount
Union
UniqueName
WTD
YTD

For more information about these functions, see Microsoft's Multidimensional Expressions (MDX) Reference.

SAP HANA Developer Guide
SAP HANA Database Client Interfaces P U B L I C 877

13.4.4 MDX Extensions

SAP HANA supports several extensions to the MDX language, including additional predefined functions and
support for variables.

13.4.4.1 Sibling_Ordinal Intrinsic Property

The object Member includes a property called Sibling_Ordinal, that is equal to the 0-based position of the
member within its siblings.

 Example

WITH MEMBER [Measures].[Termination Rate] AS
 [Measures].[NET_SALES] / [Measures].[BILLED_QUANTITY]
SELECT
 {
 [Measures].[NET_SALES],
 [Measures].[BILLED_QUANTITY],
 [Measures].[Termination Rate]
 } ON COLUMNS,
 Descendants
 (
 [DISTRIBUTION_CHANNEL].[DISTRIBUTION_CHANNEL].[All].[(all)],
 1,
 SELF_AND_BEFORE
)
 DIMENSION PROPERTIES SIBLING_ORDINAL ON ROWS FROM SALES_DATA

13.4.4.2 MembersAscendantsDescendants Function

SAP HANA includes the MembersAscendantsDescendants function that enables you to get, for example, all
ascendants and descendants of a specific member.

This function improves on the standard MDX functions Ascendants and Descendants.

The function can be called as follows:

MembersAscendantsDescendants (<set>, <flag>)

● set: A set of members from a single hierarchy
● flag: Indicates which related members to return, and can be one of the following:

○ MEMBERS_AND_ASCENDANTS_AND_DESCENDANTS
○ MEMBERS_AND_ASCENDANTS
○ MEMBERS_AND_DESCENDANTS
○ ASCENDANTS_AND_DESCENDANTS
○ ONLY_ASCENDANTS

878 P U B L I C
SAP HANA Developer Guide

SAP HANA Database Client Interfaces

○ ONLY_DESCENDANTS

 Example

SELECT { [Measures].[SALES] }
ON COLUMNS,
NON EMPTY
{ Hierarchize(MembersAscendantsDescendants([SALES_DATA_TIME].[TimeHier].
[QUARTER].[3]:[SALES_DATA_TIME].[TimeHier].[QUARTER].[4],
MEMBERS_AND_ASCENDANTS_AND_DESCENDANTS)) }
ON ROWS FROM [SALES_DATA]

 Example

SELECT { [Measures].[SALES] }
ON COLUMNS,
NON EMPTY
{ Hierarchize(MembersAscendantsDescendants([SALES_DATA_TIME].[TimeHier].
[QUARTER].[3]:[SALES_DATA_TIME].[TimeHier].[QUARTER].[4], ONLY_ASCENDANTS)) }
ON ROWS FROM [SALES_DATA]

13.4.4.3 Variables in MDX

An MDX SELECT statement in SAP HANA enables you to send values for variables defined within modeling
views.

Analytic and calculation views can contain variables that can be bound to specific attributes. When calling the
view, you can send values for those variables. These variables can be used, for example, to filter the results.

SAP HANA supports an extension to MDX whereby you can pass values for variables defined in views by adding
an SAP Variables clause in your SELECT statement. Here is the syntax for a SELECT statement:

<select_statement>: [WITH <formula_specification>] SELECT [<axis_specification>[,<axis_specification>...]] FROM <cube_specification> [WHERE <slicer_specification> SAP VARIABLES: <sap_variable> [[,] <sap_variable>…]] <sap_variable>: <variable_name> <sign> [<option>] <variable_value> <sign>: INCLUDING | EXCLUDING <option>: = | > | >= | < | <= | <> <variable_value>: <unique_member_name> | <unsigned_numeric_literal> | <string_value_expression> | <member> : <member> | <character_string_literal> : <character_string_literal> | <unsigned_numeric_literal> : <unsigned_numeric_literal>

SAP HANA Developer Guide
SAP HANA Database Client Interfaces P U B L I C 879

 Example
The following statement specifies a single value for variables VAR_VAT, VAR_K2, and
VAR_TARGET_CURRENCY.

SELECT FROM [SALES_DATA_VAR]
WHERE [Measures].[M2_1_M3_CONV]
SAP VARIABLES [VAR_VAT] including 10,
 [VAR_K2] including 112, [VAR_TARGET_CURRENCY] including 'EUR'

 Example
The following specifies an interval for variable VAR_K2.

SELECT NON EMPTY {
 [K2].[K2].Members
 }ON ROWS
FROM [SALES_DATA_VAR_SIMPLE]
WHERE [Measures].[M3_CONV] SAP VARIABLES [VAR_K2] including [K2].[K2].&[122]:[K2].[K2].&[221]

Metadata on Variables in Views

SAP HANA includes the following set of tables that contain information about the variables defined for views:

● BIMC_VARIABLE
● BIMC_VARIABLE_ASSIGNMENT
● BIMC_VARIABLE_VALUE

The tables enable, for example, an application to retrieve the variables defined for a view and create a user
interface so the user can enter values.

880 P U B L I C
SAP HANA Developer Guide

SAP HANA Database Client Interfaces

14 Migrating XS Classic Applications to XS
Advanced Model

SAP HANA provides tools to help you migrate an XS classic application to the XS advanced run-time
environment.

From HANA 1.0 SPS 11, SAP HANA includes an additional run-time environment for application development:
SAP HANA extended application services (XS), advanced model. SAP HANA XS advanced model represents
an evolution of the application server architecture within SAP HANA by building upon the strengths (and
expanding the scope) of SAP HANA extended application services (XS), classic model. If you are developing
new applications, it is recommended to use SAP HANA XS advanced model.

 Tip
If you want to migrate existing XS classic applications to run in the new XS advanced run-time environment,
SAP recommends that you first check the features available with the installed version of XS advanced. If
the XS advanced features match the requirements of the XS classic application you want to migrate, then
you can start the migration process, for example, using the XS Advanced Migration Assistant, which
automates many of the steps in the migration process and is described in more detail in this section.

Before starting the migration process, it is recommended to review the design of your XS classic application
and compare it with the design required for applications running in the XS advanced-model run-time
environment. It is important to bear in mind the fundamental differences in design between the XS classic an
XS advanced run-time environments.

For example, the security concept underpinning XS advanced is different to the one used in XS classic. In XS
classic, business users are also database users, to whom privileges can be assigned which grant or restrict
access to data. In XS advanced, business users are not linked to database access privileges, and it is no longer
possible to differentiate between users by assigning different privileges to database-related objects or
schemas. Instead, authorization scopes are defined in the application layer.

You can also optimize some of the components used in the XS classic application to make an automatic
migration easier and faster. Alternatively, you can rewrite the application, to take advantage of the new features
XS advanced provides.

SAP HANA XS, Classic Model

In XS classic applications, data-intensive and model-based calculations must be close to the data and,
therefore, need to be executed in the index server, for example, using SQLScript or the code of the specialized
functional libraries. The presentation (view) logic runs on the client – for example, as an HTML5 application in a
Web browser or on a mobile device. Native application-specific code, supported by SAP HANA Extended
Application Services, classic model, can be used to provide a thin layer between the clients on one side, and the
views, tables and procedures in the index server on the other side. A typical XS classic application contains
control-flow logic based on request parameter; invokes views and stored procedures in the index server; and
transforms the results to the response format expected by the client.

SAP HANA Developer Guide
Migrating XS Classic Applications to XS Advanced Model P U B L I C 881

SAP HANA XS, Advanced Model

SAP HANA Extended Application Services advanced model (XS advanced) adds an application platform to the
SAP HANA in-memory database. In the Cloud, this platform is provided by Cloud Foundry. An SAP-developed
run-time environment is bundled with SAP HANA on-premise which provides a compatible platform that
enables applications to be deployed to both worlds: the Cloud and on-premise. XS advanced is optimized for
simple deployment and the operation of business applications that need to be deployed in both worlds. For this
reason, the XS advanced programming model fully embraces the Cloud Foundry model and leverages its
concepts and technologies. In areas where Cloud Foundry as an intentionally generic platform for distributed
Web applications does not address relevant topics or offers choice, the XS advanced programming model
provides guidance that is in line with the general Cloud programming model.

In simple terms, XS advanced is basically the Cloud Foundry open-source Platform-as-a-Service (PaaS) with a
number of tweaks and extensions provided by SAP. These SAP enhancements include amongst other things:
an integration with the SAP HANA database, OData support, compatibility with XS classic model, and some
additional features designed to improve application security. XS advanced also provides support for business
applications that are composed of multiple micro-services, which are implemented as separate Cloud Foundry
applications, which combined are also known as Multi-Target Applications (MTA). A multi-target application
includes multiple so-called “modules” which are the equivalent of Cloud Foundry applications.

Related Information

The XS Advanced Application-Migration Process [page 882]
The XS Advanced Migration Assistant [page 884]
The XS Application Migration Report [page 886]

14.1 The XS Advanced Application-Migration Process

The high-level steps required to migrate an XS classic application to the XS advanced run-time environment.

The XS Advanced Migration Assistant enables you to automate most of the tasks required to migrate an XS
classic application to the XS advanced run-time environment. The following table lists the main steps required
to complete the migration process:

 Tip
For more information about the migration assistant and a step-by-step guide to the migration process, see
the SAP HANA XS Advanced Migration Guide.

882 P U B L I C
SAP HANA Developer Guide

Migrating XS Classic Applications to XS Advanced Model

Application Migration Steps

Steps Action Comments

1 Prepare for the migration operation Some XS classic artifacts have been deprecated or are no lon
ger used in XS advanced applications, for example:

● Application Function Library (AFL) models (*.aflpmml)
● Decision Tables (*.decrule)

All deprecated object types used in the migrated XS classic ap
plication must be migrated manually, for example, using the
view-migration tool included in SAP HANA Studio's Modeler per
spective. For more information about this tool and the migration
process, see the SAP HANA XS Advanced Migration Guide.

2 Prepare the SAP HANA source systems
and required users

Since the application-migration process requires access to the
SAP HANA XS classic Repository, it is necessary to configure
the source system that hosts the Repository where the legacy
XS classic application artifacts are located.

 Note
If your source system is older than SAP HANA SPS 11, you
also need an “external parse system”. Your target XS ad
vanced system can be configured to play the role of external
parser.

3 Migrate the XS classic application Install and run the XS Advanced Migration Assistant and then
start the migration process.

 Restriction
The target XS advanced system where you plan to deploy
the migrated application must be running HANA 2.0. You
cannot use the XS Advanced Migration Assistant to help you
migrate your XS classic application to an SAP HANA 1.0
system, for example, SPS 11 or SPS 12.

4 Locate and read the report generated by
the XS Advanced Migration Assistant.

The report generated by the XS Advanced Migration Assistant
lists the problems found during the migration process; the prob
lems must be fixed before running the migration again. Typically,
the problems concern the following artifacts:

● Deprecated attribute views
● Incorrectly formatted calculation views

● Security artifacts (.hdbroles and .xsprivileges)

● Database artifacts (.hdbtable, .hdbview, etc.)

● XS JavaScript artifacts (.xsjs/.xsjslib)

SAP HANA Developer Guide
Migrating XS Classic Applications to XS Advanced Model P U B L I C 883

Steps Action Comments

5 Deploy the migrated application to XS ad
vanced

Upload the successfully migrated design-time application arti
facts to XS advanced.

Build the new XS advanced application using the migrated arti
facts.

Set up the target system (including any required user-provided
services).

Deploy the migrated and built application to the XS advanced
run time.

Related Information

The XS Advanced Migration Assistant [page 884]
The XS Application Migration Report [page 886]
Legacy Object Types not Supported in XS Advanced [page 887]

14.2 The XS Advanced Migration Assistant

The migration assistant helps you to migrate an XS classic application to the XS advanced model run time
environment.

SAP HANA XS advanced model includes the XS Advanced Migration Assistant - a tool that is designed to help
you migrate an XS classic application to the XS advanced run-time environment. After downloading and
installing the XS Advanced Migration Assistant, you can use it to automate large parts of the migration process,
for example, the conversion of many design-time artifacts from the XS classic file format and syntax to the
syntax, format, and file extension required to build and deploy the migrated application in the XS advanced run-
time environment.

 Tip
The XS Advanced Migration Assistant is available for download from the SAP Software Download Center
listed in Related Information below. Search for the component XSAC MIGRATION 1 in SUPPORT PACKAGES
AND PATCHES.

The XS Advanced Migration Assistant scans the XS classic application and generates a report that indicates
which design-time artifacts can be automatically migrated to the format required in XS advanced and which
artifacts require attention before the migration process can be started. For example, scripted (text-based)
calculation views, attribute views, and analytic views and privileges can all now be converted automatically into
graphical calculation views using tools included in the Migration Assistant; some deprecated artifacts, for
example, decision tables, must be manually converted using the XS classic admin tool SAP HANA Studio.

When all the issues listed in the migration report have been addressed and fixed, the XS Advanced Migration
Assistant must be run again to perform the migration. During the migration process, the migration assistant

884 P U B L I C
SAP HANA Developer Guide

Migrating XS Classic Applications to XS Advanced Model

converts the XS classic application's design-time artifacts to the appropriate format for XS advanced and
places the migrated artifacts in the application-project containers required to be able to build and deploy the
migrated application in the XS advanced run-time environment.

During the application-migration process, SAP HANA XS classic Repository objects are migrated to their
equivalent counterparts in XS advanced and placed in the appropriate project container, for example: web
(user interface objects and static Web content), xsjs (application code, XS jobs, and HTTP destinations), and
db (database objects such as tables, views, procedures, and so on).

The migration assistant puts objects whose destination cannot be automatically established into the migration
container. For these objects, it is necessary to decide how each file must be processed. Objects in the migration
container must be copied manually by a developer into the appropriate target container in the XS advanced
application project, for example, web, xsjs, or db. This includes but is not limited to the following file types:

 Note
For more details about which design-time artifacts are copied to which container during the migration
process, see the SAP HANA XS Advanced Migration Guide in Related Information.

● .properties
In XS classic applications, the .properties file typically contains translation text. However, the XS
Advanced Migration Assistant is not able to establish if a .properties file really is a translation-text file.
The migration assistant also does not know to which target application container to copy
the .properties file, for example, the web, xsjs, or db container.

● .xml
The XS Advanced Migration Assistant checks for known structures in .xml files and, depending on what it
finds and recognizes, copies the file to the appropriate application project container (web, xsjs, or db). If
the migration assistant is not able to determine the type of XML file to be migrated, the .xml file is copied
to the migration container from where it must be moved manually to the appropriate application-project
container.

● .json
The XS Advanced Migration Assistant checks for known structures in .json files and copies the file to the
appropriate XS advanced application project container. If it is not possible to determine the type of file to
be migrated, the migration assistant copies the file to the migration container from where it must be
moved manually to the appropriate XS advanced application-project container.

Related Information

The XS Application Migration Report [page 886]
SAP Software Download Center (Logon required)

SAP HANA Developer Guide
Migrating XS Classic Applications to XS Advanced Model P U B L I C 885

http://help.sap.com/disclaimer?site=https%3A%2F%2Flaunchpad.support.sap.com%2F%23%2Fsoftwarecenter

14.3 The XS Application Migration Report

The XS Advanced Migration Assistant generates a report, which lists details of the migration operation
including any problems that need to be fixed.

The report generated by the XS Advanced Migration Assistant is in the form of an HTML file that is split into
convenient categories, for example, “Security”, “Database”, or “XS JavaScript”. The information generated for
each category includes a summary of the migration as well as a comprehensive list of any problems that
occurred during the migration. The location of the migration report is specified in the options you can define
before you run the XS Advanced Migration Assistant.

The source objects from the provided XS classic application's delivery units (DU) are exported from the source
XS classic system, analyzed, migrated, and then written into the folder structure required for an XS advanced
application.

 Tip
For more detailed information about the steps required to migrate XS classic applications to XS advanced,
see the SAP HANA XS Advanced Migration Guide in Related Information.

The format of the information in the report matches the order and scope of the phases the migration process
goes through, for example, preparation, security, database, etc. The following table lists the sections included
in migration report generated by the XS Advanced Migration Assistant and provides a brief description of each
section's contents:

XS Advanced Migration Report Elements

Report Section Content

Preparation A list of the XS classic artifacts that require manual migration before you start the migration
of the XS classic application. For example, using the tools provided in SAP HANA Studio, you
need to manually migrate decision tables and files generated by the Application Function
Modeler (*.aflpmml) artifacts. After the manual migration of the listed artifacts is com
plete, it is necessary to run the XS Advanced Migration Assistant again.

Security Since the security concept used in XS advanced is incompatible with the one used in XS
Classic, manual migration steps are required in order to complete the migration of an XS
classic application's security artifacts to XS Advanced. The Warnings section includes a list
of the roles and access privileges that must be checked using the XS JavaScript command
getConnection() in the XS JS $.hdb API.

 Restriction
Due to the change in security concepts between XS classic and XS advanced, not all the
features configured in the XS classic application's access-configuration file
(*.xsaccess) can be migrated to the XS advanced application router's configuration
file (xs-app.json).

Unsupported Features A list of the XS classic objects that are no longer supported or have been discontinued.
These are objects which the migration assistant cannot migrate automatically. Any prob
lems listed in this section must be fixed by hand.

886 P U B L I C
SAP HANA Developer Guide

Migrating XS Classic Applications to XS Advanced Model

Report Section Content

Database Artifacts Information about design-time database artifacts which created warnings during the migra
tion process.

 Note
The technical HDI user in XS advanced must be granted permission to access the SAP
HANA database in order to be able to read and retrieve the XS classic database arti
facts, for example, tables, views, procedures, and so on.

XS JavaScript Migration A list of the statements in XS JavaScript code (for example, in the application's code
*.xsjs and libraries *.xsjslib which cannot be migrated automatically; you must mi
grate this XS JavaScript code manually.

Translation A list of the XS classic application's *.hdbtextbundle files, which contain UI texts and
possibly existing translation texts. The contents of the .hdbtextbundle files are mi
grated to .properties files using the rules concerning references to (and
from) .hdbtextbundle files.

Unknown File Types or Con
tent

A list of the components that the XS Advanced Migration Assistant was not able to identify.
For each unidentified component the file type is specified. You must decide whether these
objects are relevant, and copy them into the appropriate target container directory if
needed.

Objects not Migrated Details of the objects which the XS Advanced Migration Assistant was not able to migrate,
for example, because the objects are either not relevant (do not belong to the application
project) or have been successfully migrated to another object type.

14.4 Legacy Object Types not Supported in XS Advanced

Some XS classic object types cannot be migrated to XS advanced.

The files listed in the following table cannot be migrated to XS advanced and are not moved to the XS advanced
application project that is generated by the migration process.

 Note
Strictly speaking, not all of the object types listed in the following table are XS classic objects, for example:
Eclipse-related files such as *.project and *.classpath or the Windows *.bat file, and Python *.pyc
files. The one thing in common that all the files in this table share is that they are no longer relevant for XS
advanced applications, and are not migrated by the XS Advanced Migration Assistant.

SAP HANA Developer Guide
Migrating XS Classic Applications to XS Advanced Model P U B L I C 887

Non-Migratable Object Types

Object Type Description

*.xsapp An application-specific file in an XS classic repository package that defines the root folder of a
native SAP HANA application. All files in that package (and any subpackages) are available to
be called via URL.

*.project An Eclipse project descriptor used in SAP HANA studio for . The *.project file is a design-
time artifact that is stored in the SAP HANA XS classic repository.

*.pyc Compiled Python files

*.regiignore A file containing ignore of exclude patterns for XS Classic repository used by HANA Studio Re
pository Team Provider

*.DS_Store MacOS Desktop Services Store used for custom file attributes, icons, etc. Should not be com
mitted to any project repository.

*.bat MS DOS Batch files

*.classpath Eclipse JDT project Classpath configuration

*.jdtscope Eclipse JDT project configuration

*.gitignore A file containing ignore (exclude) patterns for Git client

*.db A database file used by Sybase SQL Anywhere, SQLite, and others

*.xsprivileges A file that defines a privilege that can be assigned to an SAP HANA Extended Application Serv
ices application, for example, the right to start or administer the application.

*.xssecurestore The design-time file that creates an application-specific secure store; the store is used by the
application to store data safely and securely in name-value form.

*.xssqlcc A file that enables execution of SQL statements from inside server-side JavaScript code with
credentials that are different to those of the requesting user

888 P U B L I C
SAP HANA Developer Guide

Migrating XS Classic Applications to XS Advanced Model

Important Disclaimer for Features in SAP
HANA Platform

For information about the capabilities available for your license and installation scenario, refer to the Feature
Scope Description (FSD) for your specific SAP HANA version on the SAP HANA Platform webpage.

SAP HANA Developer Guide
Important Disclaimer for Features in SAP HANA Platform P U B L I C 889

https://help.sap.com/viewer/product/SAP_HANA_PLATFORM/

Important Disclaimers and Legal Information

Hyperlinks
Some links are classified by an icon and/or a mouseover text. These links provide additional information.
About the icons:

● Links with the icon : You are entering a Web site that is not hosted by SAP. By using such links, you agree (unless expressly stated otherwise in your
agreements with SAP) to this:

● The content of the linked-to site is not SAP documentation. You may not infer any product claims against SAP based on this information.
● SAP does not agree or disagree with the content on the linked-to site, nor does SAP warrant the availability and correctness. SAP shall not be liable for any

damages caused by the use of such content unless damages have been caused by SAP's gross negligence or willful misconduct.

● Links with the icon : You are leaving the documentation for that particular SAP product or service and are entering a SAP-hosted Web site. By using such
links, you agree that (unless expressly stated otherwise in your agreements with SAP) you may not infer any product claims against SAP based on this
information.

Beta and Other Experimental Features
Experimental features are not part of the officially delivered scope that SAP guarantees for future releases. This means that experimental features may be changed by
SAP at any time for any reason without notice. Experimental features are not for productive use. You may not demonstrate, test, examine, evaluate or otherwise use
the experimental features in a live operating environment or with data that has not been sufficiently backed up.
The purpose of experimental features is to get feedback early on, allowing customers and partners to influence the future product accordingly. By providing your
feedback (e.g. in the SAP Community), you accept that intellectual property rights of the contributions or derivative works shall remain the exclusive property of SAP.

Example Code
Any software coding and/or code snippets are examples. They are not for productive use. The example code is only intended to better explain and visualize the syntax
and phrasing rules. SAP does not warrant the correctness and completeness of the example code. SAP shall not be liable for errors or damages caused by the use of
example code unless damages have been caused by SAP's gross negligence or willful misconduct.

Gender-Related Language
We try not to use gender-specific word forms and formulations. As appropriate for context and readability, SAP may use masculine word forms to refer to all genders.

890 P U B L I C
SAP HANA Developer Guide

Important Disclaimers and Legal Information

SAP HANA Developer Guide
Important Disclaimers and Legal Information P U B L I C 891

www.sap.com/contactsap

© 2018 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any form
or for any purpose without the express permission of SAP SE or an SAP
affiliate company. The information contained herein may be changed
without prior notice.

Some software products marketed by SAP SE and its distributors
contain proprietary software components of other software vendors.
National product specifications may vary.

These materials are provided by SAP SE or an SAP affiliate company for
informational purposes only, without representation or warranty of any
kind, and SAP or its affiliated companies shall not be liable for errors or
omissions with respect to the materials. The only warranties for SAP or
SAP affiliate company products and services are those that are set forth
in the express warranty statements accompanying such products and
services, if any. Nothing herein should be construed as constituting an
additional warranty.

SAP and other SAP products and services mentioned herein as well as
their respective logos are trademarks or registered trademarks of SAP
SE (or an SAP affiliate company) in Germany and other countries. All
other product and service names mentioned are the trademarks of their
respective companies.

Please see https://www.sap.com/about/legal/trademark.html for
additional trademark information and notices.

THE BEST RUN

https://www.sap.com/about/legal/trademark.html

	SAP HANA Developer Guide
	Content
	1 SAP HANA Developer Guide for SAP HANA Studio
	2 Introduction to SAP HANA Development
	2.1 SAP HANA Architecture
	2.1.1 SAP HANA In-Memory Database
	2.1.1.1 Columnar Data Storage
	2.1.1.2 Parallel Processing
	2.1.1.3 Simplifying Applications

	2.1.2 SAP HANA Database Architecture
	2.1.3 SAP HANA Extended Application Services
	2.1.4 SAP HANA-Based Applications

	2.2 Developer Information Map for XS Classic
	2.3 Developer Scenarios
	2.3.1 Developing Native SAP HANA Applications
	2.3.1.1 Database Development Scenarios
	2.3.1.2 Professional Application Development Scenarios
	2.3.1.3 UI Client-Application Development Scenarios

	2.3.2 Developing Non-Native SAP HANA Applications
	2.3.2.1 ABAP Client Interface
	2.3.2.2 The JDBC Client Interface
	2.3.2.3 ODBC Client Interface
	2.3.2.4 ODBO Client Interface
	2.3.2.5 SAP HANA Data Provider for Microsoft ADO.NET

	3 Getting Started
	3.1 Prerequisites
	3.2 SAP HANA Studio
	3.2.1 The SAP HANA Development Perspective
	3.2.1.1 The Repositories View
	3.2.1.2 The Project Explorer View
	3.2.1.3 The Systems View

	3.3 SAP HANA XS Application Descriptors
	3.4 SAP HANA Projects
	3.5 Tutorials
	3.5.1 Tutorial: My First SAP HANA Application
	3.5.1.1 Tutorial: Add an SAP HANA System
	3.5.1.2 Tutorial: Add a Repository Workspace
	3.5.1.3 Tutorial: Add an Application Project
	3.5.1.4 Tutorial: Share an Application Project
	3.5.1.5 Tutorial: Write Server-Side JavaScript
	3.5.1.6 Tutorial: Retrieve Data from SAP HANA

	3.5.2 Tutorial: Use the SAP HANA OData Interface

	4 Setting Up Your Application
	4.1 Roles and Permissions for XS Development
	4.2 Maintaining Delivery Units
	4.2.1 Maintain the Delivery-Unit Vendor ID
	4.2.2 Create a Delivery Unit
	4.2.2.1 SAP HANA Delivery Unit Naming Conventions

	4.3 Using SAP HANA Projects
	4.3.1 Maintain a Repository Workspace
	4.3.1.1 SAP HANA Repository Workspaces

	4.3.2 Create a Project for SAP HANA XS
	4.3.2.1 SAP HANA Studio Projects

	4.3.3 Share an SAP HANA XS Project
	4.3.4 Import an SAP HANA XS Project

	4.4 Maintaining Repository Packages
	4.4.1 Define the Repository Package Hierarchy
	4.4.1.1 Repository Package Hierarchy
	4.4.1.2 SAP HANA Repository Packages and Namespaces

	4.4.2 Assign Repository Package Privileges
	4.4.2.1 Package Privilege Options

	4.4.3 Create a Repository Package
	4.4.3.1 Repository Package Types

	4.4.4 Delete a Repository Package

	4.5 Creating the Application Descriptors
	4.5.1 Create an Application Descriptor File
	4.5.1.1 The SAP HANA XS Application Descriptor

	4.5.2 Enable Access to SAP HANA XS Application Packages
	4.5.2.1 The Application-Access File
	4.5.2.2 Application-Access File Keyword Options
	4.5.2.3 Application-Access URL Rewrite Rules

	4.5.3 Create an SAP HANA XS Application Privileges File
	4.5.3.1 The Application-Privileges File

	4.6 Maintaining Application Security
	4.6.1 Set up Application Security
	4.6.1.1 SAP HANA XS Application Security

	4.6.2 Set up Application Authentication
	4.6.2.1 SAP HANA XS Application Authentication

	4.7 Maintaining HTTP Destinations
	4.7.1 Tutorial: Create an HTTP Destination
	4.7.1.1 The HTTP Destination Configuration
	4.7.1.2 HTTP Destination Configuration Syntax

	4.7.2 Tutorial: Extend an HTTP Destination
	4.7.2.1 The HTTP Destination Extension

	4.7.3 Tutorial: Create an OAuth Configuration Package
	4.7.3.1 OAuth Application Configuration Syntax
	4.7.3.2 OAuth Client Configuration Syntax
	4.7.3.3 OAuth Client Flavor Syntax

	4.8 Maintaining Application Artifacts
	4.8.1 Design-Time Application Artifacts
	4.8.2 Studio-Based SAP HANA Development Tools

	5 Setting up the Data Persistence Model in SAP HANA
	5.1 Creating the Persistence Model in Core Data Services
	5.1.1 CDS Editors
	5.1.1.1 CDS Text Editor

	5.1.2 Create a CDS Document
	5.1.2.1 CDS Documents
	5.1.2.2 External Artifacts in CDS
	5.1.2.3 CDS Naming Conventions
	5.1.2.4 CDS Namespaces
	5.1.2.5 CDS Contexts
	5.1.2.6 CDS Annotations
	5.1.2.6.1 User-Defined CDS Annotations
	5.1.2.6.2 CDS Annotation Usage Examples

	5.1.2.7 CDS Comment Types

	5.1.3 Create an Entity in CDS
	5.1.3.1 CDS Entities
	5.1.3.2 Entity Element Modifiers
	5.1.3.3 CDS Entity Syntax Options

	5.1.4 Migrate an Entity from hdbtable to CDS (hdbdd)
	5.1.4.1 Migration Guidelines: hdbtable to CDS Entity
	5.1.4.2 SAP HANA to CDS Data-Type Mapping

	5.1.5 Create a User-Defined Structured Type in CDS
	5.1.5.1 CDS User-Defined Data Types
	5.1.5.2 CDS Structured Type Definition
	5.1.5.3 CDS Structured Types
	5.1.5.4 CDS Primitive Data Types

	5.1.6 Create an Association in CDS
	5.1.6.1 CDS Associations
	5.1.6.2 CDS Association Syntax Options

	5.1.7 Create a View in CDS
	5.1.7.1 CDS Views
	5.1.7.2 CDS View Syntax Options
	5.1.7.3 Spatial Types and Functions

	5.1.8 Modifications to CDS Artifacts
	5.1.9 Tutorial: Get Started with CDS
	5.1.10 Import Data with CDS Table-Import
	5.1.10.1 Data Provisioning Using Table Import
	5.1.10.2 Table-Import Configuration
	5.1.10.3 Table-Import Configuration-File Syntax
	5.1.10.4 Table-Import Configuration Error Messages

	5.2 Creating the Persistence Model with HDBTable
	5.2.1 Create a Schema
	5.2.1.1 Schema

	5.2.2 Create a Table
	5.2.2.1 Tables
	5.2.2.2 Table Configuration Syntax

	5.2.3 Create a Reusable Table Structure
	5.2.3.1 Reusable Table Structures

	5.2.4 Create a Sequence
	5.2.4.1 Sequences
	5.2.4.2 Sequence Configuration Syntax

	5.2.5 Create an SQL View
	5.2.5.1 SQL Views
	5.2.5.2 SQL View Configuration Syntax

	5.2.6 Create a Synonym
	5.2.6.1 Synonyms
	5.2.6.2 Synonym Configuration Syntax

	5.2.7 Import Data with hdbtable Table-Import
	5.2.7.1 Data Provisioning Using Table Import
	5.2.7.2 Table-Import Configuration
	5.2.7.3 Table-Import Configuration-File Syntax
	5.2.7.4 Table-Import Configuration Error Messages

	6 Setting Up the Analytic Model
	6.1 Setting Up the Modeling Environment
	6.1.1 Set Modeler Preferences
	6.1.2 Set Keyboard Shortcuts

	6.2 Creating Views
	6.2.1 Attributes and Measures
	6.2.2 First Steps to View Creation
	6.2.3 Create Attribute Views
	6.2.3.1 Attribute Views
	6.2.3.2 Generate Time Data

	6.2.4 Native HANA Models
	6.2.4.1 Analytic Views
	6.2.4.2 Create Temporal Joins

	6.2.5 Create Graphical Calculation Views
	6.2.5.1 Calculation Views
	6.2.5.2 Create Calculated Columns
	6.2.5.3 Map Input Parameters
	6.2.5.4 Create Unions
	6.2.5.5 Constant Column
	6.2.5.6 Dynamic Joins
	6.2.5.7 Filter Output of Aggregation or Projection View Nodes

	6.2.6 Create Script-Based Calculation Views
	6.2.7 Activating Objects
	6.2.8 Description Mapping
	6.2.9 Import BW Objects
	6.2.10 Group Related Measures

	6.3 Additional Functionality for Information Views
	6.3.1 Create Level Hierarchies
	6.3.2 Create Parent-Child Hierarchies
	6.3.3 Input Parameters
	6.3.4 Assign Variables
	6.3.5 Using Currency and Unit of Measure Conversions
	6.3.6 Manage Information Views with Missing Objects

	6.4 Working with Views
	6.4.1 Manage Editor Layout
	6.4.2 Validate Models
	6.4.3 Maintain Search Attributes
	6.4.4 Data Preview Editor
	6.4.5 Using Functions in Expressions
	6.4.6 Resolving Conflicts in Modeler Objects

	6.5 Create Decision Tables
	6.5.1 Changing the Layout of a Decision Table
	6.5.2 Using Parameters in a Decision Table
	6.5.3 Using Calculated Attributes in Decision Tables

	6.6 Generate Object Documentation

	7 Developing Procedures
	7.1 SQLScript Security Considerations
	7.2 Create and Edit Procedures
	7.2.1 Define and Use Table Types in Procedures
	7.2.2 Tutorial: Create an SQLScript Procedure that Uses Imperative Logic

	7.3 Create Scalar and Table User-Defined Functions
	7.3.1 Tutorial: Create a Scalar User-Defined Function
	7.3.2 Tutorial: Create a Table User-Defined Function

	7.4 Create Procedure Templates
	7.4.1 Create Procedure Template Instances
	7.4.2 Update Procedure Templates and Instances
	7.4.3 Delete Procedure Templates and Instances

	7.5 Debugging Procedures
	7.5.1 Setup Debugger Privileges
	7.5.2 Debug Design-Time and Catalog Procedures
	7.5.3 Debug an External Session

	7.6 Developing Procedures in the Modeler Editor
	7.7 Transforming Data Using SAP HANA Application Function Modeler
	7.7.1 Converting deprecated AFL Models (AFLPMML objects)
	7.7.2 Setting up the SAP HANA Application Function Modeler
	7.7.3 Flowgraphs
	7.7.4 Modeling a flowgraph
	7.7.4.1 Creating a flowgraph
	7.7.4.2 Editing the flowgraph container
	7.7.4.3 Adding an object from the Project Explorer
	7.7.4.4 Adding a node from the Node Palette
	7.7.4.5 Editing a node
	7.7.4.5.1 Data Source [Application Function Modeler]
	7.7.4.5.1.1 Data Source Options [Application Function Modeler]

	7.7.4.5.2 Data Sink [Application Function Modeler]
	7.7.4.5.2.1 Data Sink Options [Application Function Modeler]

	7.7.4.5.3 Aggregation
	7.7.4.5.3.1 Aggregation Options

	7.7.4.5.4 Filter [Application Function Modeler]
	7.7.4.5.4.1 Filter Options [Application Function Modeler]

	7.7.4.5.5 Join [Application Function Modeler]
	7.7.4.5.5.1 Join Options [Application Function Modeler]

	7.7.4.5.6 Sort [Application Function Modeler]
	7.7.4.5.6.1 Sort Options [Application Function Modeler]

	7.7.4.5.7 Union [Application Function Modeler]
	7.7.4.5.7.1 Union Options [Application Function Modeler]

	7.7.4.5.8 Procedure [Application Function Modeler]
	7.7.4.5.8.1 Procedure options [Application Function Modeler]

	7.7.4.5.9 AFL Function [Application Function Modeler]

	7.7.4.6 Adding an anchor
	7.7.4.7 Editing an anchor
	7.7.4.8 Creating a connection
	7.7.4.9 Editing a connection
	7.7.4.10 Using the Table Editor
	7.7.4.11 Using the Mapping Editor
	7.7.4.12 Using the Expression Editor
	7.7.4.13 Using the Annotation Editor

	7.7.5 Tutorial: Creating a Runtime Procedure using Application Function Modeler (AFM)
	7.7.6 Node palette flowgraphs
	7.7.6.1 Exporting the Node Palette
	7.7.6.2 Customizing the Node Palette
	7.7.6.3 Editing a node palette flowgraph

	8 Defining Web-based Data Access in XS Classic
	8.1 Data Access with OData in SAP HANA XS
	8.1.1 OData in SAP HANA XS
	8.1.2 Define the Data an OData Service Exposes
	8.1.3 OData Service Definitions
	8.1.3.1 OData Service-Definition Type Mapping
	8.1.3.2 OData Service-Definition Features

	8.1.4 Create an OData Service Definition
	8.1.5 Tutorial: Use the SAP HANA OData Interface
	8.1.6 OData Service-Definition Examples
	8.1.6.1 OData Empty Service
	8.1.6.2 OData Namespace Definition
	8.1.6.3 OData Object Exposure
	8.1.6.4 OData Property Projection
	8.1.6.5 OData Key Specification
	8.1.6.6 OData Associations
	8.1.6.7 OData Aggregation
	8.1.6.8 OData Parameter Entity Sets
	8.1.6.9 OData ETag Support
	8.1.6.10 OData Nullable Properties
	8.1.6.11 OData Configurable Cache Settings
	8.1.6.12 Custom Exits for OData Write Requests
	8.1.6.13 Tutorial: Creating a Validation Exit with SQLScript
	8.1.6.14 Tutorial: Creating a Modification Exit with SQLScript
	8.1.6.15 Tutorial: Creating a Modification Exit with XS JavaScript

	8.1.7 OData Service Definition Language Syntax (XS Advanced)
	8.1.8 OData Service Definition: SQL-EDM Type Mapping (XS Advanced)
	8.1.9 OData Security Considerations
	8.1.10 OData Batch Requests (XS Advanced)

	8.2 Data Access with XMLA in SAP HANA XS
	8.2.1 XML for Analysis (XMLA)
	8.2.2 XMLA Service Definition
	8.2.3 XMLA Security Considerations
	8.2.4 Multidimensional Expressions (MDX)
	8.2.5 MDX Functions
	8.2.6 MDX Extensions
	8.2.6.1 Sibling_Ordinal Intrinsic Property
	8.2.6.2 MembersAscendantsDescendants Function
	8.2.6.3 Variables in MDX

	8.2.7 Define the Data an XMLA Service Exposes
	8.2.8 Create an XMLA Service Definition
	8.2.9 Tutorial: Use the SAP HANA XMLA Interface

	8.3 Using the SAP HANA REST API
	8.3.1 SAP HANA REST Info API
	8.3.2 SAP HANA REST File API
	8.3.3 SAP HANA REST Change-Tracking API
	8.3.4 SAP HANA REST Metadata API
	8.3.5 SAP HANA REST Transfer API
	8.3.6 SAP HANA REST Workspace API

	9 Writing Server-Side JavaScript Code
	9.1 Data Access with JavaScript in SAP HANA XS
	9.2 Using Server-Side JavaScript in SAP HANA XS
	9.2.1 Tutorial: Write Server-Side JavaScript Application Code
	9.2.1.1 JavaScript Editor
	9.2.1.2 Server-Side JavaScript Security Considerations
	9.2.1.2.1 Server-Side JavaScript: SSL/HTTPS
	9.2.1.2.2 Server-Side JavaScript: Injection Flaws
	9.2.1.2.3 Server-Side JavaScript: Cross-Site Scripting
	9.2.1.2.4 Server-Side JavaScript: Broken Authentication
	9.2.1.2.5 Server-Side JavaScript: Insecure Object Reference
	9.2.1.2.6 Server-Side JavaScript: Cross-Site Request Forgery
	9.2.1.2.7 Server-Side JavaScript: Security Misconfiguration
	9.2.1.2.8 Server-Side JavaScript: Insecure Storage
	9.2.1.2.9 Server-Side JavaScript: Missing URL Restrictions
	9.2.1.2.10 Server-Side JavaScript: Transport Layer Protection
	9.2.1.2.11 Server-Side JavaScript: Invalid Redirection
	9.2.1.2.12 Server-Side JavaScript: XML Processing Issues

	9.3 Using Server-Side JavaScript Libraries
	9.3.1 Import Server-Side JavaScript Libraries
	9.3.2 Write Server-Side JavaScript Libraries

	9.4 Using the Server-Side JavaScript APIs
	9.4.1 Tutorial: Use the XSJS Outbound API
	9.4.2 Tutorial: Call an XS Procedure with Table-Value Arguments
	9.4.2.1 Accessing Stored Procedures from XS JavaScript

	9.4.3 Tutorial: Query a CDS Entity using XS Data Services
	9.4.4 Tutorial: Update a CDS Entity Using XS Data Services

	9.5 Creating Custom XS SQL Connections
	9.5.1 Create an XS SQL Connection Configuration
	9.5.1.1 The SQL Connection Configuration File
	9.5.1.2 SQL Connection Configuration Syntax

	9.6 Setting the Connection Language in SAP HANA XS
	9.7 Scheduling XS Jobs
	9.7.1 Tutorial: Schedule an XS Job
	9.7.1.1 The XS Job File
	9.7.1.2 XS Job File Keyword Options

	9.7.2 Add or Delete a Job Schedule during Runtime

	9.8 Tracing Server-Side JavaScript
	9.8.1 Trace Server-Side JavaScript Applications
	9.8.2 View XS JavaScript Application Trace Files

	9.9 Debugging Server-Side JavaScript
	9.9.1 Create a Debug Configuration
	9.9.2 Execute XS JavaScript Debugging
	9.9.2.1 The Debug Perspective
	9.9.2.2 The XSJS Debugger Role
	9.9.2.3 Debug Session Access

	9.9.3 Troubleshoot Server-Side JavaScript Debugging

	9.10 Testing XS JavaScript Applications
	9.10.1 Automated Tests with XSUnit in SAP HANA
	9.10.2 Application Development Testing Roles
	9.10.3 Test an SAP HANA XS Application with XSUnit
	9.10.3.1 XSUnit's Enhanced Jasmine Syntax
	9.10.3.2 XSUnit Test Tools Syntax
	9.10.3.3 XSUnit Test Run Options
	9.10.3.4 XSUnit Test Examples
	9.10.3.5 The Mockstar Test Environment
	9.10.3.6 Mockstar Environment Example Syntax
	9.10.3.7 XSUnit Troubleshooting Solutions

	9.10.4 Testing JavaScript with XSUnit
	9.10.4.1 XSUnit's Jasmine Spy Syntax
	9.10.4.2 Testing HTTP Services with XSUnit
	9.10.4.3 Testing JavaScript Functions with XSUnit

	10 Building UIs
	10.1 Building User Interfaces with SAPUI5 for SAP HANA
	10.2 Consuming Data and Services with SAPUI5 for SAP HANA
	10.3 SAPUI5 for SAP HANA Development Tutorials
	10.3.1 Tutorial: Create a Hello-World SAP UI5 Application
	10.3.2 Tutorial: Consume an XSJS Service from SAPUI5
	10.3.3 Tutorial: Consume an OData Service from SAPUI5
	10.3.4 Tutorial: Consume an OData Service with the CREATE Option
	10.3.5 Tutorial: Create and Translate Text Bundles for SAPUI5 Applications

	10.4 Using UI Integration Services
	10.4.1 Creating Content for Application Sites
	10.4.1.1 Create a Tile Catalog
	10.4.1.2 Edit a Tile Catalog
	10.4.1.3 Configuring Tiles
	10.4.1.3.1 App Launcher Tiles
	10.4.1.3.1.1 Intent-Based Navigation
	10.4.1.3.1.2 Navigation Target and Target Mapping
	10.4.1.3.1.3 Intent-Based Navigation in App Launcher Tiles
	10.4.1.3.1.4 OData Structure for Dynamic App Launchers

	10.4.1.3.2 News Tile

	10.4.2 SAP Fiori Launchpad Sites
	10.4.2.1 Creating a Launchpad Site
	10.4.2.2 Designing a Launchpad Site
	10.4.2.2.1 Create and Edit Groups
	10.4.2.2.2 Add and Organize Tiles in Groups
	10.4.2.2.3 Select a Site Theme
	10.4.2.2.3.1 Create and Import Custom Themes

	10.4.2.3 Configuring Access to Launchpad Content

	10.4.3 Creating a Standard Site
	10.4.4 Configuring the SAP HANA Home Page

	11 Setting Up Roles and Privileges
	11.1 Create a Design-Time Role
	11.1.1 Database Roles
	11.1.1.1 Repository Roles
	11.1.1.2 Role Domain-Specific Language Syntax
	11.1.1.3 Custom Role for Developers

	11.1.2 Privileges
	11.1.2.1 System Privileges
	11.1.2.1.1 System Privileges (Reference)

	11.1.2.2 Object Privileges
	11.1.2.2.1 Object Privileges (Reference)

	11.1.2.3 Analytic Privileges
	11.1.2.4 Package Privileges
	11.1.2.4.1 Package Privilege Options

	11.1.2.5 Application Privileges

	11.2 Creating Analytic Privileges
	11.2.1 Create Classical XML-based Analytic Privileges
	11.2.2 Create SQL Analytic Privileges
	11.2.3 Analytic Privileges
	11.2.3.1 Structure of XML-Based Analytic Privileges
	11.2.3.1.1 Dynamic Value Filters in the Attribute Restriction of XML-Based Analytic Privileges
	11.2.3.1.2 Example: Create an XML-Based Analytic Privilege with Dynamic Value Filter

	11.2.3.2 Structure of SQL-Based Analytic Privileges
	11.2.3.2.1 Examples: Securing Views Using SQL-Based Analytic Privileges
	Example 1: Secure a Column View Using an SQL-Based Analytic Privilege with a Fixed Filter Clause
	Example 2: Secure an SQL View Using an SQL-Based Analytic Privilege with a Complex Filter Clause (Subquery)
	Example 3: Secure a Column View Using an SQL-Based Analytic Privilege with a Dynamically Generated Filter Clause

	11.2.3.3 Runtime Authorization Check of Analytic Privileges

	12 SAP HANA Application Lifecycle Management
	12.1 Preparing to Use SAP HANA Application Lifecycle Management
	12.1.1 Assign User Roles
	12.1.1.1 SAP HANA Application Lifecycle Management Roles

	12.1.2 Maintain the Delivery-Unit Vendor ID

	12.2 Setting Up the Transport
	12.2.1 Setting Up and Using Native SAP HANA Transport
	12.2.1.1 Register a System for a Transport Route
	12.2.1.2 Create a Transport Route
	12.2.1.3 Start the Transport

	12.2.2 Setting Up and Using CTS Transport
	12.2.2.1 Configure SAP HANA Systems for CTS Transport
	12.2.2.2 Change CTS Configuration
	12.2.2.3 Export Delivery Units for CTS Transport
	12.2.2.4 Export Changelists for CTS Transport

	12.3 Maintaining Delivery Units
	12.3.1 Create a Delivery Unit
	12.3.2 Assign Packages to a Delivery Unit
	12.3.3 Export a Delivery Unit
	12.3.4 Import a Delivery Unit

	12.4 Maintaining Products
	12.4.1 Create a Product
	12.4.2 Assign a Delivery Unit to a Product

	12.5 SAP HANA Change Recording
	12.5.1 Enable SAP HANA Change Recording
	12.5.2 Create Changelists
	12.5.3 Assign Objects to Changelists
	Assign objects in SAP HANA Web-based Development Workbench
	Move objects from one changelist to another

	12.5.4 Approve Contributions to Changelists
	12.5.5 Release Changelists
	12.5.6 Filter and Search for Changelists
	Filter Changelists
	Search for Changelists

	12.6 Assembling Add-On Products and Software Components
	12.7 Installing and Updating SAP HANA Products and Software Components in SAP HANA XS Classic Model
	12.8 Using hdbalm
	12.8.1 hdbalm Commands, Options, and Variables
	12.8.2 Enable SSL for hdbalm
	12.8.3 Proxy Support for hdbalm
	12.8.4 hdbalm install Command
	12.8.4.1 Examples: hdbalm install Command

	12.8.5 hdbalm assemble Command
	12.8.6 hdbalm import Command
	12.8.7 hdbalm transport Command
	12.8.8 hdbalm log Command
	12.8.9 hdbalm product Command
	12.8.10 hdbalm du Command
	12.8.11 hdbalm dependencies Command
	12.8.12 hdbalm package Command
	12.8.13 hdbalm admin Command

	12.9 SAP HANA Repository Translation Tool
	12.9.1 SAP HANA Repository Translation Tool (RTT) Parameters
	12.9.2 Configure the Repository Translation Tool
	12.9.3 Create Text-Strings Packages for Translation
	12.9.4 Export Text-Strings Files for Translation
	12.9.5 Import Translated Text-Strings Files

	12.10 Maintaining Translation Text Strings
	12.10.1 Create and Edit Text Translations
	12.10.1.1 Online Translation Tool Details

	12.10.2 Export and Import Translated Text

	13 SAP HANA Database Client Interfaces
	13.1 Setting Session-Specific Client Information
	13.2 Connect to SAP HANA via ODBC
	13.2.1 Use the User Store (hdbuserstore)
	13.2.2 Test the ODBC Installation on Microsoft Windows

	13.3 Connect to SAP HANA via JDBC
	13.3.1 Trace a JDBC Connection
	13.3.1.1 Trace a JDBC Connection Using the GUI
	13.3.1.2 Trace a JDBC Connection Using the Command Line
	13.3.1.3 Trace a JDBC Connection Using a Connection String
	13.3.1.4 JDBC Trace Options

	13.3.2 Valid Java-to-SQL Conversions
	13.3.3 JDBC Command-Line Connection Options
	13.3.4 JDBC Connection Options in Java Code

	13.4 Connect to SAP HANA via ODBO
	13.4.1 Connecting with Microsoft Excel
	13.4.2 Multidimensional Expressions (MDX)
	13.4.3 MDX Functions
	13.4.4 MDX Extensions
	13.4.4.1 Sibling_Ordinal Intrinsic Property
	13.4.4.2 MembersAscendantsDescendants Function
	13.4.4.3 Variables in MDX

	14 Migrating XS Classic Applications to XS Advanced Model
	14.1 The XS Advanced Application-Migration Process
	14.2 The XS Advanced Migration Assistant
	14.3 The XS Application Migration Report
	14.4 Legacy Object Types not Supported in XS Advanced

	Important Disclaimer for Features in SAP HANA Platform
	Important Disclaimers and Legal Information
	Copyright / Legal Notice

