

SAP Customer Activity Repository 3.0 FP3
Document Version: 1.0– 2018-04-20

CUSTOMER

Development and Extension Guide for
Omnichannel Promotion Pricing

Document History

Version Date Change

1.0 2018-04-20 Initial version

Development and Extension Guide for SAP CARAB 2.0 FP02
Overview of Omnichannel Promotion Pricing
Promotion Pricing Service

Open Source Dependencies of the PPS
PPS Module Concept

Defining and Overriding Beans
PPS Context
PPS Module api

Overview
Beans

Required Beans
Configuration Properties
Dependencies

PPS Module client-interface
Overview
Extensibility via any Elements
Beans
Configuration Properties
Dependencies

PPS Module core
Overview
PPS Application Context
PPS Context
Beans
Configuration Properties
Dependencies

PPS Module dataaccess-interface
Overview
Beans
Configuration Properties
Dependencies

PPS Module jackson
Overview

Configuring Jackson (Client Side)
Request Logging
Beans
Configuration Properties
Dependencies

PPS Module restapi
Overview
Known Issues
Beans
Configuration Properties
Dependencies

PPS Module client-impl
Overview

Request Validation
Single vs Bulk Access for Regular Prices
Handling of Business Unit Type

Beans
Required Beans

Configuration Properties
Dependencies

PPS Module calcengine-gk
Overview
Beans

Default Settings and Properties
Required Beans

Configuration Properties
Dependencies

PPS Module dataaccess-common
Overview

Regular Price
Promotional Information
Object-Related Mapping Using Spring
Multi-Step JPA Resource Mapping
Multi-Step JPA Property Definition
Support of JPA Entity Extensions
equals() and hashCode() for JPA Entities
Caching

Caching Regular Prices
Caching Promotional Information
Cache Keys
Prefetch of Price Derivation Rule Eligibility References

Support of Weaving
Support for Read-Only Transactions
Code Conversion
Handling of Currencies and Amounts
Handling Product IDs
Handling of Language-Specific Information
SAP Client and Logical System

Beans
Required Beans

Configuration Properties
Dependencies

PPS Module dataaccess-ddf
Overview
Attribute Converters

Boolean Values
Time Stamps

Beans
Configuration Properties
Dependencies

PPS Module dataaccess-localdb
Overview
Indexes
Beans

Required Beans
Configuration Properties
Dependencies

PPS Module idocinbound
Overview

Spring Integration Process Definition
Processing the IDoc Data
Conversion of the IDoc Payload to the Expected Java Types
Mapping Regular Prices
Mapping OPP Promotions

Posting to the Database
Regular Prices
OPP Promotions

Beans
Required Beans

Configuration Properties
Dependencies

PPS Performance Hints
Creating of the Offers
Distributing of the Data
Client Side (Price Calculation)
Client Side (Data Replication)
Server Side

Common Rules
Local-PPS-Specific
XSA-Based-PPS-Specific

Database Side
PPS Logging and Tracing
PPS Authentication

Enabling XSA Authentication
Price and Promotion Repository

Overview
Modeling of OPP Promotions

Keys and Foreign Keys
Validity Period for the OPP Promotion
Database Tables
Handling of Amounts

Transformation from DDF offers into OPP Promotion
Technical Information
How We Transform DDF Offers into OPP Promotions

Transformation of Simple Discount Offers
Examples

Transformation of Mix-and-Match Offers
Examples

Transformation of Packaged Offers

Transformation of Offers with Incentives
Default Values

ItemPriceDerivationRule
Fields Only Relevant for Coupons
Fields Only Relevant for Loyalty Points
CouponPriceDerivationRule Eligibility
PromotionPriceDerivationRule

Replication of the Price and Promotion Repository
Outbound Processing of IDocs via DRF

DRF Configuration
OPP Promotions

Outbound Implementation for Promotion-Centric Outbound Processing
Outbound Implementation for Location-Specific Outbound Procesing
Filtering the OPP Promotions
Controlling the Target Locations
Generic Mapping of Customer Enhancement Segments
Transfer OPP Promotions Using the Global Object List

Location-Specific Outbound Processing Using the Global Object List
Cleanup of the Global Object List

Regular Prices
Outbound Implementation
Data Filtering
Handling of the Expected Data Volume

OPP Extensibility
Extensibility of Demand Data Foundation (DDF)

Extensibility of DDF Offer Inbound API
Extensibility of DDF Regular Price Inbound API

Extensibility of the OPP Data Model (ABAP)
Extending SAP delivered ABAP domains

Extensibility of the OPP Business Logic (ABAP)
Extensibility of the Transformation from DDF Offer into OPP Promotion

Extensibility of the IDoc Outbound Processing (ABAP)
Extensibility of the OPP Data Model (Java)

Adding a Field to an Entity
Adding a Separate Entry
Adding an Attribute Converter to an Existing Attribute
Adding a Subentity to an Existing Entity
Adding a Specialization to an Existing Entity
Using Own Logic for Equals() and HashCode() of a JPA Entity

Extensibility of Client API (Java)
Extensibility of Enumerations
Extensibility of Content with User-Defined Attributes / Elements
Restrictions
Example: Enrich SaleForDelivery Entity with Address Information

Extending the PPS Business Logic (Java)
Plugin Concept

Calling the Plugins
Implementing a Plugin
Guaranteed Stability

Documented Stability
Your Choices for Extending the PPS Java Side

SAP Delivered Plugin Implementations
Structure of Your Extension Project
Installing your Extensions

Extensibility of the Promotion Calculation Engine (Java)
Extensibility of the sapppspricing PPS Integration (Java)
Extensibility Examples
Integrating Custom Extensions into the XSA-Based-PPS

Setting Up the Development Environment
Creating Your Extension Projects
Adding Your Extension to the PPS

Extending the PPS-Based Price Calculation in SAP ERP and SAP S/4HANA Sales Documents
Extending via BAdIs

Enriching with Further Article Hierarchy Nodes
Extending the SAP ERP/ SAP S/4HANA PPS Client
Support for Mocking of the SAP ERP/ SAP S/4HANA PPS Client

Overview of Omnichannel Promotion Pricing

The following two main features are provided with omnichannel promotion pricing (OPP):

Regular prices and price rules (promotions) are maintained and stored in a central repository called the price and promotion repository
(PPR).
The promotion pricing service (PPS) calculates effective sales prices for shopping carts and applies promotions to the shopping carts.

The PPR is part of SAP Customer Activity Repository (SAP CAR) based on SAP HANA. This repository contains regular prices as well as price
rules (so-called "offers"). Technically, this data is located in the Demand Data Foundation (DDF) software component. This data is also used by
SAP Promotion Management for Retail (SAP PMR), which is an optional add-on to SAP CAR. Therefore, OPP reuses the existing tools to
maintain price rules: SAP PMR, SAP Fiori UI-based maintenance, as well as the RFC-based import of offers to SAP Customer Activity
Repository. In the case of regular prices, the existing import is reused as well. In an SAP environment, the regular prices are typically imported
from SAP ERP. However, SAP ERP is not a mandatory component for OPP.

The PPS uses a Java-based engine to calculate prices and promotions. This ensures high system performance and a flexible deployment. The
deployment of the PPS embedded into SAP Hybris Commerce (local deployment) is offered. In this case, the PPS uses the same database as
SAP Hybris Commerce. The price and promotion calculation is exposed using a stateless service, which is based on the ARTS Price Service
Interface 1.0. This interface is consumed by SAP Hybris Commerce using an additional extension (sapppspricing) that can be used by any other
client.

Internally, the PPS is based on a different data model for price rules than the DDF offer. It is based on the . In theARTS promotion data model
following documentation, this runtime model is called . This model offers similar, but not identical, features to define price rulesOPP promotion
relating to the DDF offer.

To use the PPS to calculate promotions, the DDF offer must be transformed into the OPP promotion that is stored in separate database tables.
This is done automatically when a DDF offer is written. If the offer can be translated into an OPP promotion, an automatic compatibility check is
performed before the offer is saved. The status of the offer determines whether the compatibility check and the transformation can be performed.
Offers that have the status are not considered.In Process

This transformation with data replication is not performed for regular prices. The prices are consumed by the PPS using the database view.

To support the distributed deployment of the PPS, the prices and promotions can be replicated to external systems including SAP Hybris
Commerce. Since the basic concepts behind the calculation of promotions for the same as those behind the promotion GK POS solutions are
calculation engine used with OPP, it is possible to offer consistent pricing across all sales channels. The prices and promotions are replicated
using IDocs. The replication is done using the data replication framework (DRF), which is a central reuse component in SAP Business Suite. Delta
transfer is also supported.

The following figure illustrates the OPP architecture:

You have to distinguish between the repository view of a price rule (the DDF offer) and the runtime view (the OPP promotion).clearly

https://nrf.com/arts-operational-data-model-odm

Promotion Pricing Service

This chapter describes the promotion pricing service (PPS), in particular its concepts and its structure. The figure below shows the inner structure
of the PPS in more detail and the data flow of a price calculation request:

The PPS is an application that exposes an API based on the ARTS Pricing Service Interface 1.0. The structure of the requests is defined in the
client API layer. The requests are forwarded to the client API implementation layer where the regular prices are determined using the data access
API. Next, the request is forwarded to the promotion calculation engine that calculates discounts, and so on. The data access API is used again to
read data from the persistence. The implementation based on JPA) calls the underlying database in which the regularJava Persistence API (
prices and OPP promotions are stored. PPS core functions are available throughout the application. Spring framework is used extensively to
assemble the different parts and configure the PPS.

Open Source Dependencies of the PPS

The PPS uses various open-source libraries. For more information about these libraries, see the corresponding documentation listed below:

Spring framework for dependency injection, transaction management, cache abstraction, and so on
EclipseLink as a JPA implementation
FasterXML Jackson for unmarshaling/marshaling HTTP requests (such as IDoc inbound processing)
Woodstox as a Stax XML API implementation
SLF4J as a logging facade
Google Guava as a general purpose toolkit and, in particular, as a cache implementation (for named queries)
Various parts of Apache Commons as a general purpose toolkit:

commons-lang
commons-lang3
commons-logging
commons-collections3

Joda Time an alternative for Java date and time classesas
....

The following table provides an overview of the open-source libraries used for each PPS release. These are either contained in the shipment itself
or are expected on the classpath to be provided by the hosting application (such as SAP Hybris Commerce). Additional IPR libraries are required
for IDoc inbound processing.

PPS Release Commonly Used Libraries Additional IPR Libraries Comment

1.0 aopalliance-1.0.jar
commons-collections-3.2.1.jar
commons-lang-2.6.jar
commons-lang3-3.4.jar
commons-logging-1.2.jar
guava-18.0.jar
jackson-annotations-2.6.0.jar
jackson-core-2.6.4.jar
jackson-databind-2.6.4.jar
jackson-dataformat-xml-2.6.4.jar
jackson-module-jaxb-annotations-2.6.4.jar
javax.json-1.0.4.jar
javax.persistence-2.1.0.jar

.rs-api-2.0.1.jarjavax.ws
jcl-over-slf4j-1.7.13.jar
joda-time-2.9.1.jar
jul-to-slf4j-1.7.13.jar
log4j-api-2.3.jar
org.eclipse.persistence.antlr-2.6.1.jar
org.eclipse.persistence.asm-2.6.1.jar
org.eclipse.persistence.core-2.6.1.jar
org.eclipse.persistence.jpa-2.6.1.jar
org.eclipse.persistence.jpa.jpql-2.6.1.jar
slf4j-api-1.7.13.jar
spring-aop-4.1.9.RELEASE.jar
spring-beans-4.1.9.RELEASE.jar
spring-context-4.1.9.RELEASE.jar
spring-context-support-4.1.9.RELEASE.jar
spring-core-4.1.9.RELEASE.jar
spring-expression-4.1.9.RELEASE.jar
spring-jdbc-4.1.9.RELEASE.jar
spring-orm-4.1.9.RELEASE.jar
spring-tx-4.1.9.RELEASE.jar
spring-web-4.1.9.RELEASE.jar
spring-webmvc-4.1.9.RELEASE.jar
stax-api-1.0-2.jar
stax2-api-3.1.4.jar
woodstox-core-asl-4.4.1.jar

spring-integration-core-4.1.2.RELEASE.jar
spring-integration-http-4.1.2.RELEASE.jar
spring-integration-xml-4.1.2.RELEASE.jar
spring-messaging-4.1.4.RELEASE.jar
spring-xml-2.2.0.RELEASE.jar

Contained in IPR 2.1

http://javax.ws

1.1 aopalliance-1.0.jar
commons-collections-3.2.2.jar
commons-lang-2.6.jar
commons-lang3-3.4.jar
commons-logging-1.2.jar
guava-18.0.jar
jackson-annotations-2.6.0.jar
jackson-core-2.6.4.jar
jackson-databind-2.6.4.jar
jackson-dataformat-xml-2.6.4.jar
jackson-module-jaxb-annotations-2.6.4.jar
javax.json-1.0.4.jar
javax.persistence-2.1.0.jar

.rs-api-2.0.1.jarjavax.ws
jcl-over-slf4j-1.7.13.jar
joda-time-2.9.1.jar
jul-to-slf4j-1.7.13.jar
org.eclipse.persistence.antlr-2.6.1.jar
org.eclipse.persistence.asm-2.6.1.jar
org.eclipse.persistence.core-2.6.1.jar
org.eclipse.persistence.jpa-2.6.1.jar
org.eclipse.persistence.jpa.jpql-2.6.1.jar
spring-aop-4.2.7.RELEASE.jar
spring-beans-4.2.7.RELEASE.jar
spring-context-4.2.7.RELEASE.jar
spring-context-support-4.2.7.RELEASE.jar
spring-core-4.2.7.RELEASE.jar
spring-expression-4.2.7.RELEASE.jar
spring-jdbc-4.2.7.RELEASE.jar
spring-orm-4.2.7.RELEASE.jar
spring-oxm-4.2.7.RELEASE.jar
spring-tx-4.2.7.RELEASE.jar
spring-web-4.2.7.RELEASE.jar
spring-webmvc-4.2.7.RELEASE.jar
stax-api-1.0-2.jar
stax2-api-3.1.4.jar
woodstox-core-asl-4.4.1.jar

spring-integration-core-4.2.8.RELEASE.jar
spring-integration-http-4.2.8.RELEASE.jar
spring-integration-xml-4.2.8.RELEASE.jar
spring-messaging-4.2.6.RELEASE.jar
spring-xml-2.2.2.RELEASE.jar

Contained in IPR 2.2, CAR 3.0 FP0

1.2 commons-collections-3.2.1.jar
commons-lang-2.6.jar
commons-lang3-3.4.jar
commons-logging-1.2.jar
guava-18.0.jar
jackson-annotations-2.6.0.jar
jackson-core-2.6.4.jar
jackson-databind-2.6.4.jar
jackson-dataformat-xml-2.6.4.jar
jackson-module-jaxb-annotations-2.6.4.jar
javax.json-1.0.4.jar
javax.persistence-2.1.0.jar

.rs-api-2.0.1.jarjavax.ws
jcl-over-slf4j-1.7.13.jar
joda-time-2.9.1.jar
jul-to-slf4j-1.7.13.jar
log4j-api-2.3.jar
org.eclipse.persistence.antlr-2.6.1.jar
org.eclipse.persistence.asm-2.6.1.jar
org.eclipse.persistence.core-2.6.1.jar
org.eclipse.persistence.jpa-2.6.1.jar
org.eclipse.persistence.jpa.jpql-2.6.1.jar
slf4j-api-1.7.13.jar
spring-aop-4.3.3.RELEASE.jar
spring-beans-4.3.3.RELEASE.jar
spring-context-4.3.3.RELEASE.jar
spring-context-support-4.3.3.RELEASE.jar
spring-core-4.3.3.RELEASE.jar
spring-expression-4.3.3.RELEASE.jar
spring-jdbc-4.3.3.RELEASE.jar
spring-orm-4.3.3.RELEASE.jar
spring-oxm-4.3.3.RELEASE.jar
spring-tx-4.3.3.RELEASE.jar
spring-web-4.3.3.RELEASE.jar
spring-webmvc-4.3.3.RELEASE.jar
stax-api-1.0-2.jar
stax2-api-3.1.4.jar
woodstox-core-asl-4.4.1.jar

spring-integration-core-4.3.2.RELEASE.jar
spring-integration-http-4.3.2.RELEASE.jar
spring-integration-xml-4.3.2.RELEASE.jar
spring-messaging-4.3.3.RELEASE.jar
spring-xml-2.3.0.RELEASE.jar

Contained in IPR 2.3

http://javax.ws
http://javax.ws

2.0 commons-collections-3.2.2.jar
commons-lang-2.6.jar
commons-lang3-3.5.jar
commons-logging-1.2.jar
guava-21.0.jar
jackson-annotations-2.6.0.jar
jackson-core-2.6.7.jar
jackson-databind-2.6.7.jar
jackson-dataformat-xml-2.6.7.jar
jackson-jaxrs-base-2.6.7.jar
jackson-jaxrs-json-provider-2.6.7.jar
jackson-module-jaxb-annotations-2.6.7.jar
javax.json-1.0.4.jar
javax.persistence-2.1.0.jar

.rs-api-2.0.1.jarjavax.ws
jcl-over-slf4j-1.7.21.jar
joda-time-2.9.1.jar
jperf-1.0.3.jar
jul-to-slf4j-1.7.21.jar
org.eclipse.persistence.antlr-2.6.4.jar
org.eclipse.persistence.asm-2.6.4.jar
org.eclipse.persistence.core-2.6.4.jar
org.eclipse.persistence.jpa-2.6.4.jar
org.eclipse.persistence.jpa.jpql-2.6.4.jar
spring-aop-4.3.3.RELEASE.jar
spring-beans-4.3.3.RELEASE.jar
spring-context-4.3.3.RELEASE.jar
spring-context-support-4.3.3.RELEASE.jar
spring-core-4.3.3.RELEASE.jar
spring-expression-4.3.3.RELEASE.jar
spring-jdbc-4.3.3.RELEASE.jar
spring-orm-4.3.3.RELEASE.jar
spring-oxm-4.3.3.RELEASE.jar
spring-tx-4.3.3.RELEASE.jar
spring-web-4.3.3.RELEASE.jar
spring-webmvc-4.3.3.RELEASE.jar
stax-api-1.0-2.jar
stax2-api-3.1.4.jar
woodstox-core-asl-4.4.1.jar

spring-integration-core-4.3.2.RELEASE.jar
spring-integration-http-4.3.2.RELEASE.jar
spring-integration-xml-4.3.2.RELEASE.jar
spring-messaging-4.3.3.RELEASE.jar
spring-xml-2.3.0.RELEASE.jar

Contained in IPR 2.4, CAR 3.0 FP1

http://javax.ws

1.

3.0 commons-collections-3.2.2.jar
commons-lang-2.6.jar
commons-lang3-3.5.jar
commons-logging-1.2.jar
guava-21.0.jar
jackson-annotations-2.8.0.jar
jackson-core-2.8.9.jar
jackson-databind-2.8.9.jar
jackson-dataformat-xml-2.8.9.jar
jackson-jaxrs-base-2.8.9.jar
jackson-jaxrs-json-provider-2.8.9.jar
jackson-module-jaxb-annotations-2.8.9.jar
javax.json-1.0.4.jar
javax.persistence-2.1.1.jar

.rs-api-2.0.1.jarjavax.ws
jcl-over-slf4j-1.7.21.jar
joda-time-2.9.1.jar
jperf-1.0.3.jar
jul-to-slf4j-1.7.21.jar
org.eclipse.persistence.antlr-2.6.4.jar
org.eclipse.persistence.asm-2.6.4.jar
org.eclipse.persistence.core-2.6.4.jar
org.eclipse.persistence.jpa-2.6.4.jar
org.eclipse.persistence.jpa.jpql-2.6.4.jar
spring-aop-4.3.3.RELEASE.jar
spring-beans-4.3.3.RELEASE.jar
spring-context-4.3.3.RELEASE.jar
spring-context-support-4.3.3.RELEASE.jar
spring-core-4.3.3.RELEASE.jar
spring-expression-4.3.3.RELEASE.jar
spring-jdbc-4.3.3.RELEASE.jar
spring-orm-4.3.3.RELEASE.jar
spring-oxm-4.3.3.RELEASE.jar
spring-plugin-core-1.2.0.RELEASE.jar
spring-plugin-metadata-1.2.0.RELEASE.jar
spring-tx-4.3.3.RELEASE.jar
spring-web-4.3.3.RELEASE.jar
spring-webmvc-4.3.3.RELEASE.jar
stax-api-1.0-2.jar
stax2-api-3.1.4.jar
woodstox-core-asl-4.4.1.jar

spring-integration-core-4.3.2.RELEASE.jar
spring-integration-http-4.3.2.RELEASE.jar
spring-integration-xml-4.3.2.RELEASE.jar
spring-messaging-4.3.3.RELEASE.jar
spring-xml-2.3.0.RELEASE.jar

Contained in CAR 3.0 FP2

PPS Module Concept

The business logic of the PPS is implemented by Spring beans. To support extensibility, the PPS comes with its own lightweight module concept
that uses Spring concepts. A PPS module is just a set of Spring beans, which are added to the application context during its initialization. From a
business perspective, a PPS module should contain Spring beans that are used to implement a - potentially large - functional block.

A PPS module, such as M1, can have dependencies to other PPS modules, such as M2 and M3. In this case, the beans of module M1 are added
to the Spring application context after the beans of modules M2 and M3. In this way, the M1 beans could hide or redefine the M2 or M3 beans. If
you want to enhance business logic in a customer project, the corresponding Spring bean (in module sapABC, for example) can be hidden by a
customer-specific bean. This can be done without modification of the standard shipment by adding a further module (custXYZ, for example) that
depends on the module sapABC. A new bean with the same bean alias (see below) can be created in this module.

A PPS module is defined as follows.

Create the file on the PPS classpath. The following example shows theMETA-INF/<moduleName>-ppe-module-metadata.xml
structure of this file type:

http://javax.ws

1.

2.
3.

Module declaration

<module xmlns="http://www.sap.com/ppengine/core/module"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.sap.com/ppengine/core/module
ppengine-module-0.2.xsd">
 <name name="client-impl" vendor="sap" />
 <dependencies>
 <module name="dataaccess-interface" vendor="sap"/>
 <module name="client-interface" vendor="sap"/>
 <module name="core" vendor="sap"/>
 </dependencies>
</module>

The combination of the name with the vendor name is the PPS module name. This module depends on three furtherclient-impl
modules: , client-interface, and , all with the vendor "sap". The purpose of the vendor attribute is to avoid namecore dataaccess-interface
collisions. Modules delivered by SAP have the vendor "sap".
To enable schema validation, place the file ppengine-module-0.2.xsd in the same folder as the module metadata file.
Create an XML file with the name in the same folder as the metadata file. This(META-INF/)<moduleName>-ppe-module-spring.xml
contains the Spring beans. Below is an excerpt from the SAP bean definitions:

3.

Spring beans of a module

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-4.1.xsd
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.1.xsd
 http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-4.1.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-4.1.xsd">

 <context:property-placeholder

location="classpath:/META-INF/client-impl-ppe-module.properties"
 ignore-unresolvable="true" />

 <!-- Validator for a price calculation request -->
 <alias name="sapDefaultCalculateRequestValidator"
alias="sapCalculateRequestValidator" />
 <bean id="sapDefaultCalculateRequestValidator"
class="com.sap.ppengine.client.impl.RequestValidatorImpl">
 <property name="objectFactory" ref="sapClientApiDtoFactory" />
 </bean>

 <!-- Further beans below -->

</beans>

When the PPS is started, the PPS classpath is scanned for all modules. All the modules that are found are loaded automatically in the correct
order.

A third, optional, part of a PPS module is a Java .properties file that holds default values for Spring properties used during the definition of the
Spring beans. By convention, this is located in the same folder as the metadata and resource file of the module and has the name META-INF/<m

. It is loaded via the tag in the corresponding resource file. DefaultsoduleName>-ppe-module.properties <context:property-placeholder>
stored in this file can either be changed using one dedicated file on the Java classpath or by setting Java environmentppe-local.properties
properties.

The PPS offers the following modules (dependencies are represented by arrows):

It is not possible to redefine the property values set in the .properties file of one module within the .properties file of another module.

In addition, if modules are added to the PPS application context in several steps, it is not possible to access the configuration properties
of loaded modules during the addition of further modules. For example, if the PPS module idocinbound is added to a PPS application
context that is already being used (as is the case for a local PPS within SAP Hybris Commerce), only the configuration properties of the
module idocinbound may be used.

Defining and Overriding Beans

By default, a Spring bean offered in the standard shipment is defined and used as follows:

The modules and are part of SAP Hybris Commerce, integration package for SAP for Retail.dataaccess-localdb idocinbound

The modules and are part of the central promotion pricing service, which is part of SAP Customer Activityrestapi dataaccess-ddf
Repository.

Specifying ID and alias of a Spring bean

<alias name="sapDefaultClientApiDtoFactory" alias="sapClientApiDtoFactory"
/>
<bean id="sapDefaultClientApiDtoFactory"
class="com.sap.ppengine.client.dto.ObjectFactory" />

<alias name="sapDefaultClientApiHelper" alias="sapClientApiHelper" />
<bean name="sapDefaultClientApiHelper"
class="com.sap.ppengine.client.util.RequestHelperImpl">
 <property name="objectFactory" ref="sapClientApiDtoFactory" />
</bean>

Each bean has a unique ID (here specified in the name attribute). If the bean is to be enhanced using subclassing within your project, the ID of
the original bean must be specified in the parent attribute of your bean. In addition, if the reference to the defined bean is to be injected into
another bean, it is not usually necessary to specify the name/ID; instead, the bean with the corresponding "purpose" should be taken (be it
delivered by SAP or created at the customer side). The "purpose" of a bean is represented by its Spring bean "alias". The majority of SAP beans
have an additional alias. References to other beans usually make use of the bean alias. In the above example, the bean
sapDefaultClientApiHelper uses the bean with the alias sapClientApiDtoFactory. In the standard shipment, this alias is provided by the bean
sapDefaultClientApiDtoFactory. If this bean is to be replaced by a customer-specific bean, this could appear as follows:

Subclassing a bean

<!-- Hide old alias -->
<alias name="myClientApiHelper" alias="sapClientApiHelper" />
<!-- Define new bean subclassing existing one -->
<bean name="myClientApiHelper" parent="sapDefaultClientApiHelper"
class="com.mycompany.MyHelper" />

Note that technically it is also possible to completely hide a bean by choosing the same name (and not only the same alias). However, this is not
usually recommended as this approach can lead to inconsistent class hierarchies if the parent attribute is used elsewhere in the bean definition.

The ID and alias of a bean provided by SAP always starts with "sap". The only exceptions are beans with a "magic name" expected by
Spring, such as "cacheManager".

Subclassing SAP beans offers a very flexible way to extend the application logic. However, it cannot be guaranteed that the SAP
classes will be changed in a compatible way . In other words, a method signature may change over time, making theonly over time
subclass syntactically incorrect. The probability that an SAP object will be changed in an incompatible way increases from first to last
entry in the following list:

Spring bean ID/alias
Java interface (methods may, however, be added)
Signature of public method of a Java class
Signature of protected method of a Java class
Protected attribute of a Java class

When you redefine a Spring bean, SAP recommends the following:

Let your custom class inherit from the SAP class. This makes sure that interface methods added by SAP are implemented.
Define the Spring bean of the SAP class as the parent bean to your replacement Spring bean. This makes sure that additional
bean properties added by SAP are set.
Set the alias of your Spring bean to the alias of the parent (SAP) bean.
If easily possible, reimplement the corresponding interface method(s).
Otherwise (code duplication needed), consider redefining protected methods as well.

PPS Context

The PPS context () offers a global container for arbitrary information that must be accessible at very differentcom.sap.ppengine.core.Context
places of the application/call stack. The main use case for the PPS context is to store information that does not change for most customer
installations during the time in which a price calculation request is processed. However, it can also be used as temporary global storage. Putting

 this information into the container leads to simpler methods with less parameters. Therefore, it is similar to the container offered by the javax.serv
 interface, but let.ServletContext can also be used outside of a servlet environment.

.The PPS context is provided by a separate class implementing com.sap.ppengine.core.ContextProvider An implementation of the PPS
context provider () is offered that holds separate contexts for each thread. Thiscom.sap.ppengine.core.impl.ThreadLocalContextProviderImpl
allows the easy of further PPS context initializers using a dedicated interface . The PPS context is used to store plug-in ContextInitializer
and modify parameters within a request scope, assuming that context parameters are written and read within the same thread.

The following information is usually constant in the standard shipment:

The SAP client (parameter)SAP_CLIENT
The logical system for which external IDs are defined (parameter)SAP_LOGSYS
The configuration of the promotion calculation engine (parameter)SAP_CALCENGINE_CONFIG

In addition, the following parameters are stored in the PPS context:

The business unit type
The requested language if provided

In addition to the parameters mentioned above, it is possible to store further data in the context.

The class contains all the context parameters used in the standard shipment.com.sap.ppengine.core.ContextParameters

For more information, see the documentation for the PPS Module Core in this guide.

PPS Module api

As of CAR 3.0 FP2, this module provides the public API for extensions of the PPS.

Overview

As described in the chapter that explains the PPS extensibility concept, the PPS provides stable extension points via Java plugin interfaces to be
implemented on the customer side. The PPS module api provides these interfaces as well as the registry of all implementations found at runtime.
PPS Java types referenced by the plugin interfaces (except for types from the PPS module dataaccess-interface and client-interface) are
contained in this module as well - some (such as the interface for the PPS context) were moved from other modules into this module as well.

The annotations indicating the degree of stability of a Java object are also located here:

@ExtensionStable - indicates that the annotated type can be extended safely on the customer side
@ConsumerStable- indicates that the annotated type can be called safely on the customer side
@PlannedIncompatibleChange- indicates if an incompatible change is planned for the annotated type; will be used for types annotated
with or @ExtensionStable @ConsumerStable

Beans

ID Alias Description

Context parameters that are provided by SAP have the prefix . SAP_

Starting with PPS 2.0, context parameters that are taken from the incoming request and do not need defaulting may also bedirectly
offered as properties accessed using setter and getter methods. As an example, the requested language has been migrated from the
parameter to a regular attribute of the context.SAP_LANGUAGE

sapDefaultContextEnrichmentPluginRegistry sapContextEnrichmentPluginRegistry Plugin registry of the ContextEn
 interface richment

sapDefaultRequestAdjustmentPluginRegistry sapRequestAdjustmentPluginRegistry Plugin registry of the RequestA
 interfacedjustment

sapDefaultResponseAdjustmentPluginRegistry sapResponseAdjustmentPluginRegistry Plugin registry of the Response
 interfaceAdjustment

sapDefaultRequestValidationPluginRegistry sapRequestValidationPluginRegistry Plugin registry of the RequestV
 interfacealidation

sapDefaultQueryAdjustmentPluginRegistry sapQueryAdjustmentPluginRegistry Plugin registry of the QueryAdj
 interfaceustment

sapDefaultCustomEligibilityPluginRegistry sapCustomEligibilityPluginRegistry Plugin registry of the CustomEli
 interfacegibility

sapDefaultCustomPriceRulePluginRegistry sapCustomPriceRulePluginRegistry Plugin registry of the CustomPr
 interfaceiceRule

sapDefaultPromotionServiceInitializationPluginRegistry sapPromotionServiceInitializationPluginRegistry Plugin registry of the Promotion
 interfaceServiceInitialization

sapDefaultFeatureCheckPluginRegistry sapFeatureCheckPluginRegistry Plugin registry of the FeatureCh
 interfaceeck

sapDefaultIDocInboundProcessingPluginRegistry sapIDocInboundProcessingPluginRegistry Plugin registry of the IdocInb
 interfaceoundProcessing

sapDefaultPluginAccess sapPluginAccess Provides access to the PPS
plugin interfaces via the
corresponding plugin registries;
PCE plugins are not accessible

sapDefaultNonUniqueBasePriceHandlingPluginRegistry sapNonUniqueBasePriceHandlingPluginRegistry Plugin registry of the NonUniqu
 interfaceeBasePriceHandling

Required Beans

This list contains only the additional beans to be provided if all dependencies of this module are resolved.

ID/Alias Comment

Configuration Properties

Name Description Default
Value

Comment

sap.client-impl.nonUniqueBasePriceHandling.strategy This property refers to the interface. ItNonUniqueBasePriceHandling
enables you to switch the activated strategy based on the implemented
interface method. By implementing these methods, you can implement a
specific logic for processing non-unique regular prices. This Plugin is always
called if a non-unique regular price is found. In this way, a specific logic can
be implemented to process this situation.

SAP00 see SAP
Note
2627591

Dependencies

This module depends on the following PPS modules:

dataaccess-interface
client-interface

1.

2.
3.

a.
b.

c.

PPS Module client-interface

This module provides the API of the PPS exposed to its clients. It contains the data transfer objects (DTOs) and the interface to trigger a price
calculation.

Overview

This module is the outermost facade of the PPS. A client requesting a price calculation must be aware of the artifacts contained in this module. It
does not contain any logic besides simple helpers to facilitate the creation of a price calculation request and evaluation of the corresponding
response. If you want to call a central PPS, place at least this JAR onto the classpath of your client application.

For more information about the client API, see the documentation for the OPP client API:

Information about a central scenario is available on SAP Help Portal at https://help.sap.com/viewer/p/CARAB > > <Version> Developmen
 > t Client API for Omnichannel Promotion Pricing

Information about a scenario with SAP Hybris Commerce is available on SAP Help Portal at https://help.sap.com/viewer/p/IPR > <Versio
 > > n> Development Client API for Omnichannel Promotion Pricing

Extensibility via Elementsany

As also described in the client API documentation, the request structure for the price calculation as well as the response structure offer extension
points via elements having no fixed structure. These allow arbitrary additional information to be transferred between the PPS and its client. Toany
ensure that these elements can be used in the same way for local and central deployments of the PPS, the way in which extensionany
information is stored must be clearly defined.

The internal storage of an any element is a List<Object> (the only exception is the any element in LineItemChoiceDomainSpecific.java where it is
only a simple object (Object)), as can be seen in the DTO for the ARTSHeader:

any-element in the ARTS Header DTO

public class ARTSCommonHeaderType {
 // ...
 @XmlAnyElement(lax = true)
 protected List<Object> any;
 // ...
}

What is the internal representation of the any elements and their content?

Each any element in an XML message or entry in the corresponding array of a JSON message corresponds to one entry in the List<Obj
.ect>

Each entry in the List, in other words the content of the any elements, is always a .Map<String,Object>
The value part of the Map entry can have the following types:

If the value corresponds to an elementary element in the XML/JSON message, this is a .String
If the value corresponds to a structured element in the XML/JSON message, this is a . The data definitionMap<String,Object>
of the value part is recursively defined applying rule 3.
If the value corresponds to an XML list/JSON array, this is a . The element type of the list is recursively definedList<Object>
applying rule 3.

This is illustrated in the following example. The following is an excerpt of a request, showing only the ARTS header:

The DTOs of the client interface are generated and use subclasses. SAP does not guarantee that the class hierarchy will remain stable
over time. Therefore, we strongly recommended that you do create subclasses of these DTOs on the customer side in casenot
additional information is transported. Instead, use the predefined extension points via elements realized as a List<Object>.any

The internal storage documented here is determined by the use of FasterXML Jackson. It uses the same XML (where elements areany
effectively unwrapped lists) and JSON-based messages (where elements are expected to be arrays) and should therefore also beany
used for local deployments where Jackson is not used.

https://help.sap.com/viewer/p/CARAB
https://help.sap.com/viewer/p/IPR

ARTS Header with any-elements - XML

<PriceCalculate xmlns="http://www.sap.com/IXRetail/namespace/"
InternalMajorVersion="1" InternalMinorVersion="0">
<ARTSHeader ActionCode="Calculate" MessageType="Request">
 <MessageID>9a89f2edfd1e413ea147e334b9c2ed4b</MessageID>
 <DateTime>2250-01-13T04:48:30.427-05:00</DateTime>
 <BusinessUnit TypeCode="RetailStore">FC01</BusinessUnit>
 <any>Hello</any>
 <any>
 <foo>bar</foo>
 </any>
 <any>
 <baz>17</baz>
 <ext1>true</ext1>
 </any>
 <any>
 <top>
 <field1>value1</field1>
 <myNode>
 <field2>value2</field2>
 </myNode>
 </top>
 </any>
 <any>
 <ele>one</ele>
 <ele>two</ele>
 <ele>
 <a>b
 </ele>
 </any>
</ARTSHeader>

This is equivalent to the following JSON format:

ARTS Header with any-elements - JSON

{
 "ARTSHeader":
 {
 "MessageID":
 {
 "value":"9a89f2edfd1e413ea147e334b9c2ed4b"
 },
 "DateTime":
 [{
 "value":"2250-01-13T04:48:30.427-05:00"
 }],
 "BusinessUnit":
 [{
 "value":"FC01",
 "TypeCode":"RetailStore"
 }],
 "ActionCode":"Calculate",
 "MessageType":"Request",
 "any":[
 "Hello",
 { "foo":"bar"},
 {"baz":"17", "ext1" : "true"},
 {"top": {
 "field1":"value1",
 "mynode": { "field2":"value2"}}},
 {"ele" : ["one","two",{"a" : "b"}]}
]
 },

This leads to the following internal representation:

The attribute of the DTO is a list of length 5.any ARTSCommonHeaderType
List entry 0 is "Hello"
List entry 1 is a Map with size 1.

This contains the entry
"foo" = "bar"

List entry 2 is a Map with size 2.
This contains the entries

"baz" = "17"
"ext1" = "true"

List entry 3 is a Map with size 1.
This contains the entry

"top" = <A Map with size 2>.
This contains the entries

"field1" = "value1"
"myNode" = <A Map with size 1>

This contains the entry
"field2" = "value2"

List entry 4 is a Map with size 1.
This contains the entry

"ele" = <A List with size 3>
This contains the entries

"one"
"two"
<A Map with size 1>

This contains the entry
"a" = "b"

If you extend the PPS, you can base your coding on these rules when you process incoming requests. If you want to enhance the response to the
client, you have to fill the attributes of the DTOs accordingly. Vice versa, if you extend a client of the PPS, you have to fill the DTOs of theany
request sent to the PPS accordingly but you can rely on these rules when you process the response.

Beans

ID Alias Description

sapDefaultClientApiDtoFactory sapClientApiDtoFactory Factory for creating the DTOs of the client API

sapDefaultClientApiHelper sapClientApiHelper Helper class to create a request skeleton, and so on

Configuration Properties

None

Dependencies

None

PPS Module core

This module provides basic functions that are used in the PPS.

Overview

The core module offers the following functions:

PPS application context supporting PPS modules
PPS context
Debug/profiling support

As described in the overview, the PPS offers a lightweight module concept based on Spring application contexts that support modification-free
extensibility. The classes enabling modularization via a PPS-specific application context are located here.

PPS Application Context

The following figure shows the most important classes that contribute to the PPS application contexts and how they interact:

ModuleEnabledXmlApplicationContext is the central class. This is a special Spring that supports aAbstractXmlApplicationContext
distributed definition of Spring beans in separate files without a central file that explicitly includes the other resource files. Each file corresponds to

a PPS module that has its metadata (name, dependencies to other modules) defined in a separate metadata file. By evaluating the defined
dependencies, you can also control the order in which these beans are added to the Spring application context. The order in which Spring beans
are added to an application context defines the beans that replace formerly added beans, allowing modification-free extensibility. The Spring
application context that is represented by this class is also called the main PPS application context.

ModuleLoaderHelper locates the Spring bean definitions and module metadata, evaluates module dependencies, sorts the Spring bean
definitions and modules according to their dependencies, and adds the Spring beans according to this sort sequence to the Spring application
context. This class scans the classpath for the following file pairs located in the same directory :

Spring bean definitions as an XML file following the resource pattern classpath*:META-INF/**/*-ppe-module-spring.xml
Module metadata definitions as an XML file following the resource pattern classpath*:META-INF/**/*-ppe-module-metadata.xml

The following two options are available for the creation of the main PPS application context:

Using the class . This class does the following:ApplicationContextProviderImpl
It offers a method that allows each caller to access the main PPS application context. To do so, it calls getContext()
internally the constructor of the . ModuleEnabledXmlApplicationContext
This option is sufficient if no external initialization of the main PPS application is required because, for example, all required
Spring configuration properties are set.
It internally holds a reference to this application context once the main PPS application context has been created. In this way,
subsequent calls of the method are very fast and the same application context is returned. There may be only onegetContext()
instance of a main PPS application context per classloader.

Using the class , it is easier to control the creation of the ApplicationContextCreatingBeanImpl ModuleEnabledXmlApplicationConte
. This class implements the Spring interface . If this class is defined as a Spring bean, the methoxt InitializingBean afterPropertiesSet()

d is called automatically by the Spring framework during the implementation of this interface. The following happens within this method:
The main PPS application context is created.
All injected Spring implementations are executed before the application context is refreshed. ApplicationContextInitializer Thes

 In particular, it is easy to set Spring configuratione initializers allow further initialization of the main PPS application context.
properties during runtime via the class . This is helpful if, for example, you are running the PPS as aPropertySourceAdderImpl
local deployment within a hosting application.
Finally, the main PPS application context is refreshed and registered in the class ,ApplicationContextProviderImpl
which makes it available in the application.

The main PPS application context is well suited if an application wants to call the PPS internally. Therefore, the logic to execute the price and
promotion calculation should be located within this application context. However, it is not possible to have only this application context for the
following reasons:

Exposing servlets, such as the IDoc inbound, requires a web application. Spring requires a web application context as the root application
context of a web application.
The PPS relies on several open-source libraries. If these libraries are on the same classpath as a hosting application, this may lead to
side effects. For example, if you use Jackson XML processes and the corresponding library is on the classpath, Spring automatically
gives Jackson preference over the Jaxb2-based XML processes for the commonly used . Since Jaxb2 and Jackson areRestTemplate
not 100% compatible with each other, this may lead to issues.

Therefore, a that extends is offered in addition to the ModuleEnabledWebApplicationContext XmlWebApplicationContext ModuleEnabledX
. This class does the following:mlApplicationContext

After creation, this automatically tries to make itself the child of an existing usincontext ModuleEnabledXmlApplicationContext
g the class . Therefore, all PPS modules located in the main PPS application context areApplicationContextProviderImpl
available in the Web application context.
It scans the classpath of the corresponding Web application for PPS modules using the . Modules that areModuleLoaderHelper
not yet available in the main PPS application context will be added to the Web application context. Since the classpath of a Web
application may be larger than the classpath of the main PPS application context, the issues mentioned above (first bullet point)
are avoided.

The Web application context needed for a Spring-based Web application must be loaded by a that is registered in theServletContextListener
web.xml of the corresponding Web application. The implementation that creates the is the class ModuleEnabledWebApplicationContext PPSW

. Once the servlet context is initialized, it automatically creates the PPS Web application context and stores in itebAppContextLoaderListener
the servlet context attribute .SAP_PPS_WEBAPPCONTEXT

Make the name of the servlet context attribute known to the following Spring :DispatcherServlet

A module located in the Web application context cannot be dependent only on a module located in the main PPS application context.

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <display-name>Price and Promotion Engine WebApp (central)</display-name>
 <!-- One dispatcher servlet for price calculation requests as well as iDoc

 inbound processing -->
 <servlet>
 <servlet-name>Dispatcher</servlet-name>

<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-
class>
 <init-param>
 <!-- Name of the servlet context attribute holding the PPS web app
context -->
 <param-name>contextAttribute</param-name>
 <param-value>SAP_PPS_WEBAPPCONTEXT</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Dispatcher</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
 <!-- Create & initialize PPS web app context on startup -->
 <listener>

<listener-class>com.sap.ppengine.core.spring.impl.PPSWebAppContextLoaderLi
stener</listener-class>
 </listener>
</web-app>

The class is offered as a convenience class and possible root class for applications that access to the main PPSPPSContextAware need
application context. Regardless of how the subclass has been created (either explicitly or by a runtime container, such as another Spring
application context), it offers internal access to the main PPS application context.

PPS Context

The PPS context (that is more related to a Spring servlet context than to a Spring application context) serves as a container that can be used to
store data during request processing. This container . Typically, these values should be constant. can be seen by all parts of the application
However, it is also possible to modify parameters that are stored in this context. For example, the requested language is information provided by
the price calculation request. This information is not known by the promotion calculation engine. However, it is relevant for the underlying data
access layer. This information can be extracted from the price calculation request using the PPS context and can be used later when reading
promotional data.

The PPS context also allows (and requires) an initialization at the beginning of request processing. This resets all of its values to a defined initial
state.

The following figure shows the main components of PPS context handling:

The is the container that holds the information on which the application works. It is implemented by the class , which doesContext ContextImpl
not contain additional logic besides the pure storage of data. To access the , the application requests it from a that isContext ContextProvider
offered as a Spring bean. This Spring bean can be injected into the corresponding application bean. As of now, there is only one implementation
of the , the . This stores the in a variable. Therefore, thisContextProvider ThreadLocalContextProviderImpl Context ThreadLocal
implementation relies on the assumption that the processing of one request is realized by one Thread (which may be reused later on).

The initialization of the by the is delegated to a list of instances. These are not injected into the Context ContextProvider ContextInitializer Con
. Instead, the searches in the current Spring application context for all Spring beans that implement the textProvider ContextProvider ContextIni

 interface. This interface extends the Spring interface and therefore allows you to control the order in which the tializer Ordered ContextInitializer
 are processed. The following two implementations of are offered that share common attributes and logic in the abstract s ContextInitializer Abstr

 class:actContextInitializerImpl

The class writes all the entries of the (that can be injected to this class) into the PPS ByImmutableValuesContextInitializerImpl Map C
.ontext

The following excerpt shows how a Spring bean that uses this class could look:

<!-- Data access relevant initialization parameters of PPS context -->
 <alias name="sapDefaultDbContextInitializer"
alias="sapDbContextInitializer" />
 <bean id="sapDefaultDbContextInitializer"
class="com.sap.ppengine.core.impl.ByImmutableValuesContextInitializer
Impl">
 <property name="initValues">
 <map>
 <entry key="SAP_CLIENT" value="${sap.dataaccess-common.db.client}"
/>
 <entry key="SAP_LOGSYS" value="${sap.dataaccess-common.logSys}" />
 <entry key="SAP_BUTYPE"
value="${sap.dataaccess-common.defaultBuType}" />
 </map>
 </property>
 </bean>

The class ByBeanNameContextInitializerImpl writes the reference to a bean into the PPS context. This bean is specified by its bean
name. This class should be used if the class of the references instance is not immutable, for example, a that might have Map
been changed in previous request processing. As shown in the following example, changes can be undone using prototype scoped

This class should be used if the values of the map entries are immutable, for example , , and so on.only String Integer

beans:

<!-- Calc engine relevant initialization parameters of PPS context -->
 <alias name="sapDefaultCalcEngineContextInitializer"
alias="sapCalcEngineContextInitializer" />
 <bean id="sapDefaultCalcEngineContextInitializer"
 class="com.sap.ppengine.core.impl.ByBeanNameContextInitializerImpl">
 <property name="paramName" value="SAP_CALCENGINE_CONFIG"></property>
 <property name="beanName" value="sapCalcEngineConfigCopy" />
 </bean>
 <!-- Prototype scoped bean! -->
 <alias name="sapDefaultCalcEngineConfigCopy"
alias="sapCalcEngineConfigCopy" />
 <bean id="sapDefaultCalcEngineConfigCopy"
factory-method="toProperties"
 scope="prototype" class="org.apache.commons.collections.MapUtils">
 <constructor-arg>
 <ref bean="sapCalcEngineConfig" />
 </constructor-arg>
 </bean>

Beans

ID Alias Description

sapDefaultTimeResolutionReducer sapTimeResolutionReducer Reduces the resolution of a . With this time stamps
implementation, the resolution is reduced to a day-level.
This is used ONLY when regular prices are read. Adjust
this bean if another resolution of regular price or OPP
promotion validities is required.

sapDefaultStringifier sapStringifier Helps to create a string representation of a Java class if
it does not offer a suitable toString() method. Used for
creating debug messages, and so on.

sapDefaultTimerFactory sapTimerFactory Factory to create a timer to measure the duration of a
price calculation. If the configuration parameter sap.core

 is set to true, a timer is.requesttimer
created that stores measurements in a conThreadLocal
tainer. Otherwise, a dummy implementation that records
no measurements is created.

sapDefaultThreadLocalTimer sapThreadLocalTimer Timer created by the . sapTimerFactory

sapDefaultContextProvider sapContextProvider Bean that offers a PPS . The bean isContext
implemented by default by a ThreadLocalContextProvi

.derImpl

sapDefaultEliCacheKeyGenerator sapEliCacheKeyGenerator Key generator used by Spring Cache abstraction.
Intended for the eligibility references except for those
referring to MerchandiseSet Eligibilities. Moved from the
dataccess-common PPS module into this module as of
PPS 3.0.

sapDefaultMerchSetEliCacheKeyGenerator sapMerchSetEliCacheKeyGenerator Key generator used by Spring Cache abstraction.
Intended for the eligibility references to MerchandiseSet
Eligibilities. Introduced with PPS 3.0.

sapDefaultPriceCacheKeyGenerator sapPriceCacheKeyGenerator Key generator used by Spring Cache abstraction.
Intended for the regular prices. Moved from the
dataccess-common PPS module into this module as of
PPS 3.0.

sapDefaultSystemProperties sapSystemProperties Java system properties exposed as a Spring bean.
Introduced with PPS 3.0.

sapDefaultPPSProperties sapPPSProperties Content of the ppe-local.properties merged with Java
system properties as a Spring bean. System properties
have precedence over the content of the
ppe-local.properties file entries. Introduced with PPS 3.0.

Configuration Properties

Name Description Default Value Comment

sap.core.ppsconfiglocation Location of the PPS
configuration file in
Spring resource
syntax

classpath:/ppe-local.properties Since this property specifies the name of the configuration file, it
cannot be specified in the configuration file itself. It must be set
externally, for example, via a Java environment variable.

sap.core.requesttimer Switch to activate the
request timer

false The request timer can be used to measure how long the processing of
a price calculation request takes, broken down to certain parts of the
process. Note that only server-side processing time without
marshaling/unmarshaling is considered.

Dependencies

This module depends on the following modules:

api (starting with PPS 3.0)

PPS Module dataaccess-interface

This module provides the abstraction layer for the read-only persistence services and the data retrieved by them.

Overview

The main purpose of this module is to shield the implementation details of the data access to other modules. It only offers interfaces and classes
containing constants. Together with the module client-interface it offers the touch points between the promotion calculation engine and the rest of
the PPS.

The following figure shows the most important objects in this module. The interface offers a generic field extension to theAbstractEntity
promotion-related entities. For more information about the entities and services, see the Javadocs.

http://classpath/ppe-local.properties

Beans

None

Configuration Properties

None

Dependencies

Although they are logically part of the key, the SAP client and the logical system are not part of the exposed entities. They are provided
via the PPS context.

None

PPS Module jackson

This module provides a uniform configuration for a server and possible clients for the JSON- and XML-based message exchange.

Overview

The PPS uses Jackson for the conversion between request/response payload and its internal representation as Java classes. It is recommended
that the PPS client does the same. In addition, to enable a smooth integration between the PPS and its possible clients, it is necessary to have
the same data format, even using Jackson on both sides. This means that the conversion of the corresponding converters is the same on the
server and client side. This includes the following aspects:

Consideration of JAXB annotations in the Java classes for the DTOs
Date format (yyyy-MM-dd'T'HH:mm:ss.SSS)
(No) pretty printing
Handling of empty and null value fields (to be ignored)
Setting the time zone (to the corresponding default time zone). This is important because otherwise Jackson assumes that UTC is the
time zone of the request, which usually differs from the JVM time zone. Since the date and time of the price calculation request calls is
assumed to be in the local time zone of the PPS client and the price and promotion information is also stored in this schema, for example,
without time zones, it is not necessary to convert the date and time. This is achieved by the following:

Setting the converter time zone to the JVM time zone (no automatic Jackson internal conversion)
Not expecting time zone information, at least for the price validity dates in the payload

Configuring Jackson (Client Side)

Jackson is configured by declaring Spring beans. This is relevant on the server side as well as on the client side. Although technically not
required, we recommend that you place this module (more precisely, the JAR containing this module) on the classpath of the PPS clients to allow
for easy reuse. If this is the case, the configuration may look as follows (assuming the PPS client uses Spring as well):

JSON configuration on PPS client side

<alias name="myDefaultJacksonJsonConverter" alias="myJacksonJsonConverter"
/>
 <bean id="myDefaultJacksonJsonConverter"
factory-bean="myJacksonJsonConverterBuilder"
 factory-method="build" />
 <alias name="myDefaultJacksonJsonConverterBuilder"
alias="myJacksonJsonConverterBuilder" />
 <bean id="myDefaultJacksonJsonConverterBuilder"
class="com.sap.ppengine.jackson.JacksonJsonConverterBuilder" />

The resulting bean implements and can be easily used in, for example, a Spring assuming HttpMessageConverter RestTemplate (myJack
 has been injected as a dependency):sonJsonConverter

Although the configuration-relevant classes of the JSON- and XML-based message exchange are located here, the configuration itself
does not take place. This must be done explicitly in addition.

protected RestTemplate getRestTemplate()
 {
 final HttpMessageConverter<?> converter = getHttpMessageConverter();
 RestTemplate restTemplate = new
RestTemplate(Collections.<HttpMessageConverter<?>>
singletonList(converter));
 return restTemplate;
 }

Request Logging

For debugging purposes, it is helpful to trace the incoming requests with their payload on the server side. This is enabled using the class Reques
. The requests are traced if its log level is set to TRACE. This class must be registered as a filter in :tToSlf4JLoggger web.xml

Although this module declares a Maven dependency to jackson-dataformat-xml, this dependency is not required if only the data format
JSON is used.

Registering the request logger in web.xml

<!-- Filter to enable logging of ingoing requests via SLF4J - log level
 of filter class must be set to TRACE to become effective -->
 <filter>
 <filter-name>sapRequestLogger</filter-name>

<filter-class>com.sap.ppengine.web.filter.RequestToSlf4JLogger</filter-cla
ss>
 <init-param>
 <param-name>maxPayloadLength</param-name>
 <param-value>10000</param-value>
 </init-param>
 <init-param>
 <param-name>includePayload</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>includeQueryString</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>beforeMessagePrefix</param-name>
 <param-value>REQUEST BEFORE PROCESSING---></param-value>
 </init-param>
 <init-param>
 <param-name>afterMessagePrefix</param-name>
 <param-value>REQUEST AFTER PROCESSING---></param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>sapRequestLogger</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

Beans

ID Alias Description

Configuration Properties

None

Dependencies

None

PPS Module restapi

This module exposes the price calculation as a RESTful service.

Overview

The price calculation is exposed as a RESTful service. Both XML as well as JSON format is supported. In both cases, the JAXB annotations of
the client API DTOs are considered. The conversion between JSON/XML and the Java DTOs is done using FasterXML Jackson. The REST
service is exposed using the relative path It is realized using Spring MVC. The restapi is only a thin wrapper around the actual/restapi.
calculation logic. It delegates the calculation call to the corresponding PricingPromotionService instance and receives the response from it.

If exceptions are thrown during the processing of a price calculation request, these are not propagated back to the sender of the request. Instead
they are recorded in the application log for security reasons.

The following HTTP response codes are possible:

200 (OK): This is returned if the price and promotion calculation was successful.
400 (Bad Request): This is returned if the request validation detected an error.
401 (Unauthorized): Authentication data is missing or incorrect.
403 (Forbidden): The authorization required to perform the calculation is missing for the authenticated user.
500 (Internal Server Error): This is returned if an unexpected error occurs.

Known Issues

FasterXML Jackson is used for mapping between the JSON/XML format used by external clients and the internal representation as Java classes.
As of now, this library has the following known issues:

Under some circumstances, attributes marked as optional are treated as mandatory. This is particularly true for the
BusinessUnitTypeCode.

: Always specify the BusinessUnitTypeCode in the request.Workaround
The elements of unwrapped lists with an XML payload must be co-located within the corresponding parent node, in other words no other
element may be in between. For example, the following payload leads to the mapping of only part of the elements:

Illegal unwrapped list

<LineItem>
 <MerchandiseHierarchy ID="ID1" >hier1</MerchandiseHierarchy>
 <SequenceNumber>0</SequenceNumber>
 <MerchandiseHierarchy ID="ID2" >hier2</MerchandiseHierarchy>
</LineItem>

Workaround: Create the request accordingly.

Beans

ID Alias Description

sapDefaultPriceCalculateController sapPriceCalculateController Spring MVC controller that accepts the price calculation
requests via HTTP POST

sapDefaultJacksonJsonConverterBuilder sapJacksonJsonConverterBuilder Factory bean: Builder for the org.springframework.http.conv
 that takes care of the conversionerter.HttpMessageConverter

between the message/request body in JSON format and the
internal representation as Java classes

sapDefaultJacksonJsonConverter sapJacksonJsonConverter HttpMessageConverter built by
sapJacksonJsonConverterBuilder

Codes 401 and 403 are relevant if the REST service is secured by authorization checks. These are not part of this PPS module.only

1.

2.

sapDefaultJacksonXmlConverterBuilder sapJacksonXmlConverterBuilder HTTPMessageConverter built using the bean
sapJacksonXmlConverter

sapDefaultJacksonXmlConverter sapJacksonXmlConverter Factory for that uses Jackson toHTTPMessageConverter
convert from and to XML messages using a well-defined
configuration; JAXB annotations are considered

Configuration Properties

None

Dependencies

This module depends on the following modules:

client-impl
jackson

PPS Module client-impl

This module provides the implementation of the client API for calculating sales prices and promotions.

Overview

The PPS calculates a shopping cart as follows:

It determines the regular prices.
This step is optional since the regular prices can also be provided by the client.
It applies the relevant promotions based on the regular prices.

The first step is performed in this module. The regular prices are determined for all the items in the shopping cart for which prices have not been
provided by the consumer of the service. Before this is done, the price calculation request is validated. This price validation checks if all the fields
needed for the look-up of regular prices are filled.

The promotion calculation itself is delegated to a delegate that is referenced as another Spring bean.

The following figure shows the most important components of the module. Note that the class client-impl DummyPricingPromotionServiceImpl
is not used productively, it is just used as a stub if the promotion calculation engine is not available in a test environment.

Request Validation

This section describes the request validation in the layer. There are also other validations inside the promotion calculation engine. Forclient-impl
a complete list of the possible error codes, Thesee the documentation for the OPP client API for your local or central promotion pricing service.
request validation on the layer fails in at least one of the following cases:client-impl

InternalMajorVersion is missing in the request
Invalid InternalMajorVersion and/or InternalMinorVersion
There is no in the calculation requestARTSHeader
Unsupported in actionCode ARTSHeader
Unsupported messageType in ARTSHeader
The and fields are together in the calculation request (for PPS requests as ofRequestedLanguage RequestedMultiLanguage client
API version 2.0)
Wrong number of element in the calculation request (only one supported)PriceCalculateBody
DateTime is missing in PriceCalculateBody
Invalid BusinessUnit
BusinessUnit is longer than 60 characters (for PPS requests as of client API version 2.0)
Invalid number of in the calculation request (only one supported)BusinessUnits
There is no t in the calculation requestShoppingBaske
Invalid number of quantity elements in the calculation request (only one per line item supported)
There is no in the calculation requestLineItem
The number of line items exceeds the defined threshold
Invalid ItemID
ItemID is longer than 60 characters (for PPS requests as of client API version 2.0)
Invalid number of in the calculation request (only one per line item supported)ItemIDs
Invalid UnitOfMeasure
RegularSalesUnitPrice is missing although is set to FixedPriceFlag true
Invalid number of regular prices retrieved for a LineItem

More than two different merchandise group hierarchy identifier qualifiers for a request (depends if merchandise sets are
enabled)

Once an error is detected, t errors are not collected. In the case of a validation error, the response code is set to he validation stops and REJECT
. In addition, the of the response is filled with a element that describes the error using an SAP error code.ED ARTSHeader BusinessError

Documentation for the SAP error codes can be found in the Javadoc for the class com.sap.ppengine.client.impl.PriceCalculateConstants.

If all validations are successful and the regular prices (if needed) have been read, the request is forwarded to the promotion calculation engine for
further processing (applies the relevant promotions).

Single vs Bulk Access for Regular Prices

A main task of this module is to determine the regular prices of items if they have not yet been provided by the consumer of the service. This is
done using the of the module. , pricesBasePriceService dataaccess-interface To achieve the best performance and ensure consistent results
that have been determined for the corresponding shopping cart in former price calculation requests should be remembered on the client side and
sent as part of the next request (with set). As a result, a regular price should not have been determined yet for only a very limitedfixedPriceFlag
number of items (ideally only one). The price for the remaining item can be determined by a single price look-up that is cached in the data access
layer. Therefore, it is also possible that the regular priceHowever, this is not automatically ensured but determined by the consumer of the PPS.
has to be determined for several items (in some cases all items). In this case, a single look-up for each article is not feasible if the corresponding
prices are not within the cache.

Therefore, the following strategy is applied:

If the number of regular prices to be determined is below a fixed threshold, a single access is done for each price, considering application
built-in caches.

 If the number of regular prices to be determined is greater than or equal to the set threshold, one bulk access is performed. With PPS
1.0, this access bypassed the cache for regular prices. As of PPS 2.0, this access also considers and updates prices that are not
provided by the client but are already in the cache.

The threshold for the number of items without provided prices can be specified using configuration property sap.client-impl.basepricebulkacces
.sitemthreshold

Handling of Business Unit Type

The business unit type is externally provided information within the . Its handling differs from the business unit ID. This is due to aARTSHeader
difference in the data model of the promotion calculation engine and the corresponding data model of a DDF location:

In the case of the DDF location, the location has an external compound key consisting of the location ID and the location type code.
In the case of the ARTS data model, the business unit type is a simple attribute of the business unit. Therefore, the business unit type is
not considered within the promotion calculation engine. The engine does not supply the information about the business unit type when it
requests data from the data access layer.

To provide the business unit type to the data access layer, which needs it to access the database tables, this information is stored for the
corresponding price calculation request within the PPS context as the parameter . This is done within the module.SAP_BUTYPE client-impl

Beans

ID Alias Description

sapDefaultCalculateRequestValidator sapCalculateRequestValidator Validator for a price calculation request

For more information, see Request Validation.

sapDefaultBasePriceReader sapBasePriceReader Reader for regular prices

sapDefaultPricingPromotionService sapPricingPromotionService The main entry point of the PPS on Java level. This delegates
the work internally to the validation, the reading of regular
prices, and the calculation of promotions.

sapDummyPricingPromotionService sapDelegatePricingPromotionService Dummy implementation for the promotion calculation. The
bean with this alias is to be replaced by the "real"
implementation, as described in .PPS Module calcengine-gk

Due to the restrictions of the existing interface, the set of prices may be larger than needed.

Required Beans

This list contains only those additional beans to be provided if all the dependencies of this module are resolved.

ID/Alias Comment

sapBasePriceService Reads the regular prices

sapPromotionService Reads the promotions

sapTransactionManager Manages the (read) transactions

(sapDelegatePricingPromotionService) Does the real promotion calculation; by default a stub is used doing nothing

Configuration Properties

Name Description Default
Value

Comment

sap.client-impl.basepricebulkaccessitemthreshold Minimum number of line items
without prices leading to a bulk
access instead of single read
accesses

10 A bulk access to prices is done if the number of items
without prices provided by the client is greater than or
equal to this threshold. Setting this property to 0 will
always lead to a bulk access.

sap.client-impl.maxnumberoflineitems Maximum number of line items
that may be within a price
calculation request

200 Set to 0 if you do not want to set a threshold.

sap.client-impl.maxcalculationretries Maximum number of price
calculation retries

 10 A price calculation retry takes place when invalid cache
entries are detected. In this case, the invalid entries are
evicted from the cache and the whole calculation is
restarted.

Dependencies

This module depends on the following modules:

core
client-interface
dataaccess-interface

PPS Module calcengine-gk

This module provides the promotion calculation engine.

Overview

The PPS application context is not known by the promotion calculation engine. Its internal functions are described in the technical documentation
for the promotion calculation engine (SDK Promotion Calculation Engine) This module serves only as a wrapper to include the promotion.
calculation engine in the PPS application context. In addition, it contains the default settings of the configuration parameters for the promotion
calculation engine.

Beans

ID Alias Description

sapDefaultCalcEngineConfig sapCalcEngineConfig Default configuration for the promotion calculation engine as
Java Properties. No write access from the application.

sapDefaultCalcEngineConfigMap sapContextParametersEngine Maps the wrapping of the default configuration so that the
whole properties are stored in one map entry for value SAP

. This entry is automatically added_CALCENGINE_CONFIG
to the default PPS context.
This bean has prototype scope.

sapDefaultCalcEngineContextInitializer sapCalcEngineContextInitializer Initializer for the PPS context that fills the promotion
calculation engine configuration parameters.

pricingPromotionService sapDelegatePricingPromotionService This is the main bean for performing the promotion
calculation. Here it is wired to the delegate that is defaulted
to a dummy implementation by the module.client-impl

sapDefaultFeatureCheck sapFeatureCheck This is the bean that checks if special features of the PPS
are active (for example, offers on product groups).

(sapPromotionService) promotionServiceSAP The existing alias is also offered as sapPromotionService
, which represents the dataaccesspromotionServiceSAP

service required by the promotion calculation engine.

<many more> <many more> The promotion calculation engine consists of many more
Spring beans that are available on SAP Help Portal at https:

 //help.sap.com/viewer/p/CARAB > > <Version> Developmen
 > .t SDK Promotion Calculation Engine

Default Settings and Properties

The promotion calculation engine supports a lot of configuration properties that are set to default values in the PPS standard delivery. The use of
product groups via merchandise sets was introduced with PPS 3.0 and is not active by default. The corresponding property merchandiseSetsEn

 must be set to to use this feature. Each property of the promotion calculation engine can be set either as JVM environment propertyabled true
specified via the option (in the case of central deployment using XSA) or as local property located in the . The-D ppe-local.properties file
complete list of PCE config properties and is described in the SDK Promotion Calculation Engine on SAP Help Portal at https://help.sap.com/view

 > > > . er/p/CARAB <Version> Development SDK Promotion Calculaion Engine

Required Beans

This list contains only those additional beans to be provided if all the dependencies of this module are resolved.

ID/Alias Comment

sapPromotionService Reads the promotions

sapTransactionManager Manages the (read) transactions

Configuration Properties

Name Description Default value Comment

sap.calcengine-gk.configpropslocation Location of the default
promotion calculation
engine configuration
properties in Spring
resource syntax

classpath:META-INF/calcengine-gk-config.properties The list of configuration properties is
part of the promotion calculation
engine documentation that is

 available on SAP Help Portal at https
://help.sap.com/viewer/p/CARAB > <

 > > Version> Development SDK
Promotion Calculation Engine.

Dependencies

The default values of the configuration properties differ from the description in the OPP Functional Guide for the Promotion Calculation
. The functional guide describes the defaullt values for properties that are not set via the file specified with Engine sap.calcengine-gk.c

.onfigpropslocation

https://help.sap.com/viewer/p/CARAB
https://help.sap.com/viewer/p/CARAB
https://help.sap.com/viewer/p/CARAB
https://help.sap.com/viewer/p/CARAB
https://help.sap.com/viewer/p/CARAB
https://help.sap.com/viewer/p/CARAB

This module depends on the following PPS modules:

client-impl
dataaccess-interface (transitive dependency as of PPS 3.0)

PPS Module dataaccess-common

This module provides the implementation of the data access layer, independent of the underlying database.

Overview

The module is the main module that is needed to provide access to the persistence (OPP promotions and regular prices).dataaccess-common
It provides the implementations of the entity interfaces and of the interfaces to access the entities offered via the module .dataaccess-interface
The implementation is based on Java Persistence API (JPA) 2.1. is used as the JPA provider. The dataaccess-common moduleEclipseLink
contains database-independent information and, for example, to isolate database specifics so that enhancements ofmodule dataaccess-localdb
the database access can be reused on different databases. These common artifacts are stored in , whereas dataaccess-common dataaccess-lo

 contains artifacts specific to a local, row-oriented relational database.caldb

Regular Price

The regular price is modeled as JPA entity . It is accessed using the class . The regular price is held at theBasePriceImpl BasePriceServiceImpl
level of and .Article ID/Unit of Measure Code/Price Class (Net/Gross)/Business Unit/Business Unit Type/SAP Client/Logical System Valid From

Promotional Information

The promotion is stored in several entities located in the package . The root JPAcom.sap.ppengine.dataaccess.promotion.common.entities
entity is . The class hierarchy follows the interface hierarchy shown in the section . Promotional informationPromotionImpl dataaccess-interface
is accessed using .PromotionServiceImpl

Object-Related Mapping Using Spring

The following Spring enhancements are used for object-related mapping:

The class is used as the entity manager factory. Thisorg.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean
allows an easy configuration using Spring properties instead of having to maintain a persistence.xml file. In addition, it also supports the
easy configuration of JPA properties by reusing existing Spring concepts, such as maps stored as properties files. Setting the list of
packages to scan for JPA entities can be just a matter of Spring property configuration.
The class enables automatic injection of an entityorg.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor
manager using the annotation . In addition, Spring automatically provides a thread-safe entity manager so that @PersistenceContext
concurrent requests can be handled without further precautions.
The class implements JPA transaction handling.org.springframework.orm.jpa.JpaTransactionManager

Multi-Step JPA Resource Mapping

The aim of the data access is to have the JPA entities independent of the underlying database. This will become important if several deployment
options are offered. This module provides the entity implementations, making some abstractions from specific database table design details, such
as indexes. These specifics are added using the module .dataaccess-localdb

Since JPA entities are subject to extensibility, the following strategy is used for their definition:

The properties of a JPA entity expected to be common to all deployment options are specified via annotations as an integral part of the
Java class for the JPA entity.
Properties specific to one standard deployment option, such as local Java DB, are added by XML file-based mapping (),orm.xml
potentially overruling annotations on class level. For example, specific attribute converters or database indexes may be added in this
way.
Properties specific to a specific (customer) installation are expected in the file . In particular, this may contain theppe-schema-orm.xml
database schema if not yet specified in the database connection URL. In the case of a local deployment, this file is not relevant.
Properties specific to customer extensions are expected in additional orm files that are specified using the configuration property sap.dat

.aaccess-common.custmappingresources

http://www.eclipse.org/eclipselink/

Multi-Step JPA Property Definition

The JPA properties, such as the configuration properties for the JPA provider, are treated in a similar way as the definition of JPA entities. They
are expected in the following three files:

A file for JPA properties independent of the deployment (SAP owned)
A file for JPA properties dependent on the deployment (SAP owned)
A file for customer-specific configuration (empty in SAP shipment)

These files are specified using Spring configuration properties (see below). If a parameter appears in more than one file, the standard Spring logic
is executed to merge properties using the tag.<util:properties>

Support of JPA Entity Extensions

The entities provided by SAP support the addition of fields to existing JPA entities without replacing or extending the corresponding Java classes.
This is achieved using the concept of virtual properties offered by . Technically, additional attributes or relations of the JPA entity areEclipseLink
stored in a map that can be accessed by dedicated set- and get-methods. Both the attribute name and the property that it is a virtual attribute are
specified externally in an file. Therefore, you can use customer-specific mapping files, such as .orm.xml ppe-local-orm.xml

Consider the following example that introduces the attribute as another database column .zzUpSellingCode ZZUP_SELL_TCD

Adding a virtual attribute via ppe-local-orm.xml

<entity-mappings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.eclipse.org/eclipselink/xsds/persistence/o
rm
 http://www.eclipse.org/eclipselink/xsds/eclipselink_orm_2_4.xsd"
 version="2.4">

 <!-- ... -->
 <entity

class="com.sap.ppengine.dataaccess.promotion.common.entities.PromotionImpl
">
 <attributes>
 <!-- Attribute name is zzUpSellingCode, type is String. Access is
virtual -->
 <basic name="zzUpSellingCode " attribute-type="String" access="VIRTUAL">
 <!-- This maps to ordinary column name -->
 <column name="ZZUP_SELL_TCD" />
 <!-- Name of setter and getter method for this attribute -->
 <access-methods get-method="get" set-method="set" />
 </basic>
 </attributes>
 </entity>
</entity-mappings>

This attribute is an ordinary column in the database. For example, you can define database indexes on it, as for any other column.
Furthermore, it is possible to use the virtual attribute like any other attribute in named queries, and so on.

How you add this column to the database depends on the deployment scenario. The PPS takes care of the creation of this column in a
. In a central deployment that runs on an ABAP-owned database, the field must belocal deployment (such as in SAP Hybris Commerce)

created explicitly using the ABAP Data Dictionary (SE11). This is controlled in the corresponding deployment specific modules, such as
dataaccess-localdb or dataaccess-ddf.

http://www.eclipse.org/eclipselink/documentation/2.6/solutions/extensible001.htm

The virtual attributes are inherited by the common base class .AbstractEntityImpl

More examples of how to extend entities using this concept are given in the chapter .OPP Extensibility

equals() and hashCode() for JPA Entities

The and methods are used in many places in a Java application. By default, the provided JPA entities implement theequals() hashCode()
following behavior:

Two entities are equal if they have the same type and if they have equal keys.
Two entity keys are equal if they have the same type and all their components are equal.
The hashCode of a JPA entity is the hashCode of its key.
The hashCode of a JPA entity (compound) key is calculated from the hashCodes of its components.

However, you might want to have a different logic in these methods. Since there are no plans to replace the provided SAP JPA entities on the
customer side, not even using subclasses, it is not possible to reimplement the standard logic by overriding the methods within a subclass of the
corresponding entity. To allow extensions of the standard logic, these methods are implemented as follows:

Each JPA entity inheriting from has a (shared) static attribute "helper" of the type . Within AbstractEntityImpl EqualsHashCodeHelper Abstract
, the and methods simply delegate the work to this helper. Since the helper attribute is not managed by JPA, it isEntityImpl equals() hashCode()

determined using the class if not yet set. This is a wrapper that gets the PPS Spring application context andEqualsHashCodeHelperProvider
retrieves the Spring bean with the fixed name . In the default shipment this is a class of type sapJpaEqualsHashCodeHelper KeyBasedEqualsH

.ashCodeHelperImpl

Therefore, the and logic can be redefined by replacing a Spring bean. equals() hashCode()

Caching

Regular prices and OPP promotion have to be cached in order to achieve good performance. During the processing of a price calculation request,
the number of accesses to information about regular prices and OPP promotions can be high. To avoid cross-system communication and to free
the database server from additional load, caching is done in the application (for each Spring application context).

The following requirements were considered for the caching strategy:

It must use well-proven, fast technology.
It must provide consistent results during the processing of one price calculation request. This is particularly relevant for the promotion as
a complex object stored in many entries of several database tables.
It must be easily configurable to support installation-specific needs.
It should be possible to replace the cache provider.

The following figure illustrates how regular prices and OPP promotions are cached on the server side. The ItemPriceDerivationRuleEligibiltyCa
 that handles the bulk access of is introduced with PPS 3.0.cheAwareBulkAccessorImpl ItemPriceDerivationRuleEligibilities

The following three types of caches are used:

The EclipseLink level 1 cache that is simply the persistence context bound to the transaction Tcreated for each price calculation request.
he persistence context is attached to the entity manager.
The EclipseLink level 2 cache that holds the JPA entities of a complete OPP promotion (apart from assigned business units because they
are not needed to calculate the OPP promotions once it is known that they are relevant). This is attached to the entity manager factory
that exists once in a PPS application context.
Caches holding the results of named queries. These are defined using Spring cache abstraction (see http://docs.spring.io/spring/docs/cur

). In the standard shipment, Google Guava Cache (see rent/spring-framework-reference/html/cache.html https://github.com/google/guava/
) is used as an implementation. Two separate cache regions are offered:wiki/CachesExplained

A cache region to hold the results of a single price lookup
A cache region to hold the results of search queries for eligibilities based on information about the corresponding shopping cart

Caching Regular Prices

Single record look-up results are cached using Spring cache abstraction. This is done by adding the corresponding annotation:

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/cache.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/cache.html
https://github.com/google/guava/wiki/CachesExplained
https://github.com/google/guava/wiki/CachesExplained

Caching the result of single price look-up

public class BasePriceServiceImpl implements BasePriceService {

 @Cacheable(value = DefaultCacheSettings.CACHE_REGION_BASEPRICE)
 public List<BasePrice> getBasePriceForProduct(final String itemId,
 final String businessUnitId, final String businessUnitType,
 final boolean isNet, final String uomCode, final Timestamp
timestamp) {
 // ...
 }

This leads to the creation of a Spring-managed proxy class () during the creation of the application context. This classBasePriceServiceProxy
delegates the price look-ups to the cache manager. The logic of the class is called only if a cached entry cannot be found.BasePriceServiceImpl
Likewise, the result of the price look-up is automatically placed into the Spring-managed cache in the event of a cache miss. The cache
implementations (for example, the classes responsible for offering and updating the cache) are defined using Spring beans:

Defining caches in Spring

 <!-- Cache for regular prices - aware of the underlying cache provider -->
 <alias name="sapDefaultBasePriceCache" alias="sapBasePriceCache" />
 <bean id="sapDefaultBasePriceCache"
class="org.springframework.cache.guava.GuavaCache">
 <constructor-arg
 value="#{T(com.sap.ppengine.dataaccess.promotion.common.entities.Defaul
tCacheSettings).CACHE_REGION_BASEPRICE}" />
 <constructor-arg>
 <bean factory-bean="sapBasePriceCacheBuilder" factory-method="build" />
 </constructor-arg>
 </bean>

 <!-- Cache for eligibility references - omitted here -->

 <!-- Cache for named queries. Currently all named queries share a common
result cache -->
 <bean id="cacheManager"
 class="com.sap.ppengine.core.spring.impl.SwitchableCacheManager">
 <constructor-arg value="${sap.dataaccess-common.cachenamedqueries}" />
 <property name="caches">
 <set>
 <ref bean="sapBasePriceCache" />
 <ref bean="sapEligibilityCache" />
 </set>
 </property>
 </bean>
 <!-- Builder for cache of promotional information omitted here -->

 <!-- Builder for cache of base prices: Create google guava cache with
dedicated
 spec -->
 <alias name="sapDefaultBasePriceCacheBuilder"
alias="sapBasePriceCacheBuilder" />
 <bean id="sapDefaultBasePriceCacheBuilder"
class="com.google.common.cache.CacheBuilder"
 factory-method="from">
 <constructor-arg value="${sap.dataaccess-common.basepricecachespec}" />
 </bean>

The result of a price look-up is not a managed entity. Inconsistencies between several calls within one price calculation request are avoided by
reading each price only once. This is ensured by the class .BasePriceReaderImpl

Caching Promotional Information

Bulk accesses for regular prices are also offered. However, the behavior slightly differs between the PPS releases: With PPS 1.0, the
query completely bypasses the cache for regular prices. As of PPS 2.0, the database query contains those products/uom codesonly
that are not yet in the cache. In addition, the query result is added to the cache, leading to faster processing in the event of cache
misses and therefore more robust behavior.

The caching of promotional information is more complex than the caching of regular prices, since different parts of the OPP promotion are
retrieved by the promotion calculation engine in several steps. Once one part of the OPP promotion is read, it must be ensured that the other
parts of the OPP promotion are consistent. At the beginning, a search is made for OPP promotions with the requested eligibilities. Although the
class PromotionServiceImpl offers methods to find the corresponding eligibilities, it simply delegates the work to the class
NamedQueryServiceImpl, which is located behind the NamedQueryServiceProxy. Therefore, the same approach is applied as for reading the
regular prices. With this approach, the result of this search is stored in the eligibility query cache. This is configured via Spring cache abstraction
and implemented by Google Guava, as for the regular price cache. However, only a very limited amount of information is read in this case, not the
full eligibility.
All the OPP promotions for the eligibilities found are read by key (apart from the assigned business units). The assumption is that if an eligibility is
found for an OPP promotion, the OPP promotion will become effective soon. This means not necessarily within this price calculation request but
in one of the following ones if all eligibilities for the OPP promotion are met. Two caches become effective when the OPP promotion is read:

The JPA L2 cache managed automatically by the JPA provider. Its content is shared by several price calculation requests. If the
promotion to be read is already in the L2 cache, the database is not accessed. In the case of a database access, the L2 cache is updated
automatically.
The JPA L1 cache/persistence context that is valid for the current price calculation request. The persistence context is automatically filled
by the entity manager when OPP promotions and their subentities are read and guarantees unique objects per key. This cache is used to
serve further requests related to the corresponding OPP promotions in the current request, such as reading . The PriceDerivationRules
L1 cache ensures that during request processing an OPP promotion does not change within a request. However, it does not ensure that
this constant OPP promotion as such is consistent.

Since the results of the eligibility search and the OPP promotions are stored in different caches and due to the possibility of cache eviction in the
L2 cache, it must be ensured that data inconsistencies are detected and resolved. This is done by storing the time stamp of the last write access
to any part of the OPP promotion both on promotion level, such as in the L1 and L2 cache, and eligibility level, such as in the query cache. This
time stamp is introduced by the class , which is a super class to all promotional entities except for ChangeAwareEntity BusinessUnitAssignmen

.tImpl

The following logic is implemented:

Case
#

Description Action

1 The time stamp of the eligibility is more recent than the time stamp of the OPP
promotion (in cache) or the time stamps of OPP promotion subentities are inconsistent.

The promotion is read again from the
database

2 The OPP promotion referred to by the eligibility does not exist or is not active (any
more).

Eligibility is skipped

3 The time stamp of the eligibility is the same or older than the time stamp of the OPP
promotion.

Eligibility of the OPP promotion is returned
if it still exists and has the expected type

The action for may look wrong if the time stamp differs, since the returned eligibility might not have the requested content any more.case #3
However, existing eligibilities are not reused when a DDF offer is transformed into an OPP promotion. Instead, new eligibilities with new keys are
created. Therefore, existing eligibilities are not updated.

Activating the JPA L2 cache for the OPP promotion is done explicitly because the shared cache mode is set to by default:ENABLE_SELECTIVE

sap.dataaccess-common.sharedcachemode=ENABLE_SELECTIVE

All promotional entities except for the business unit assignment are defined as cacheable, using the default settings. The excerpt below shows
how this is done for the promotion header:

Making PromotionImpl cacheable

@Entity
@Table(name = DBTables.PROMOTION)
@Cacheable
@Cache
public class PromotionImpl extends ChangeAwareEntity implements Promotion {
 // the attributes etc.
}

It is not usually necessary to make changes here. However, it is possible to change the settings of the L2 cache by setting the corresponding JPA
properties (see Spring property):sap.dataaccess-common.custjpapropertieslocation

Adjust cache settings in the JPA properties file

Default cache type & size
eclipselink.cache.type.default=SoftWeak
eclipselink.cache.size.default=1000
Do it differently for promotion header - just as an example!
eclipselink.cache.type.com.sap.ppengine.dataaccess.promotion.common.entiti
es.PromotionImpl=Soft
eclipselink.cache.size.com.sap.ppengine.dataaccess.promotion.common.entiti
es.PromotionImpl=10000

Cache Keys

The following keys are used for the various objects stored in the Spring-managed cache:

Regular price: Business Unit ID, Business Unit Type Code, Timestamp, Unit Of Measure Code, Item ID, Net Flag
Common to all eligibility references: Business Unit ID, Business Unit Type Code, Timestamp, Status Code, Lineitem Mode, Identification
of Eligibility Type (currently: name of cached method). Note that the business unit type code is only cached from PPS 3.0.
In addition for TotalPurchaseMarketBasket Eligibility: ./.
In addition for Coupon Eligibility: Coupon ID
In addition for Customer Group Eligibility: Customer Group ID
In addition for Item Eligibility: Item ID, Unit Of Measure Code
In addition for Merchandise Hierarchy Eligibility: Node ID, Node ID Qualifier
In addition for the Manual Eligibility: Trigger Type, Trigger Value
In addition for Merchandise Set Eligibility: Item ID - and not the list of assigned merchandise hierarchy nodes(!). It is assumed that the
PPS clients have access to the same master data and provide identical hierarchy node assignments in the price calculation request.
In addition for the OtherEligibility extension: Eligibility Type, additional parameters

If you want to adjust the cache key, you can replace the standard Spring beans for cache key generation. For example, in a custom key generator
it would be possible to access additional information stored in the PPS context, such as the logical system.

Prefetch of Price Derivation Rule Eligibility References

As of PPS version 3.0, you can prefetch eligibility references. Depending on the number of line items in the price calculation cart, it may make
sense to prefetch (via a bulk access) certain eligibility references at the very beginning of the price calculation. If the eligibility reference cache is
not completely filled, this avoids many single selects, leading to improved performance. In particular, this helps for eligibilities that are based on
the individual item ID, such as the Item eligibilities and the eligibilities. For other eligibility types, such as the MerchandiseSet MerchandiseHiera

 or the , the number of possible distinct values across several requests (in other words, the number of differentrchy CouponEligibility
Merchandise Hierarchy nodes or coupon IDs) is much lower, leading to a much faster population of the caches. Therefore, such eligibilities are
not considered.

However, the bulk selection is not as specific as the corresponding single selects. For the Item eligibilities, many different UOM codes reduce the
selectiveness of the database queries. For eligibilities, the individual assignment of an item to merchandise hierarchy nodesMerchandiseSet
gets lost. In rare cases, this can lead to a deterioration in performance. Therefore, this optimization can be turned on or off using a threshold. The
threshold for this prefetch is defined by the configuration property for Item eligibilities and sap.dataaccess-common.bulkitemelithreshold sap.

for eligibilities. When this threshold is reached, the corresponding eligibilitiesdataaccess-common.bulkmerchsetelithreshold MerchandiseSet
that are not already cached are read with one database query (for each type).
Afterwards, the results are added to the cache in a way that they can be retrieved using single access from the cache later on during price
calculation.

In addition to the threshold configuration property, this prefetch also needs the property to besap.dataaccess-common.cachenamedqueries
set to true.

The bulk access of eligibility references is realized as separate plugin implementations for plugin interface com.sap.ppengine.api.plugin.Promo

 The is created by Spring in order to handle transactions automatically.PromotionServiceProxy

The following values are not part of the cache key since they are expected to be constant for each PPS installation: SAP Client, Logical
System.

.tionServiceInitialization

Support of Weaving

As of PPS version 2.0, weaving is supported. The EclipseLink feature of weaving the JPA entities (load-time waving) leads to an improved
 performance, for example, by reading the promotional entities in a more efficient manner from the database. This approach performs the weaving

of entities during startup of the application. As a consequence, possible customer extensions automatically benefit from weaving and it is not
 necessary to recompile JARs. Weaving is enabled using the Spring profile . This must be set as an environment variable when thesapweaving

corresponding (Web) application is started:

Enabling weaving

-Dspring.profiles.active=sapweaving

Load-time weaving has some requirements of the runtime environment. This environment is prepared by the Spring class org.springframework.
. This automatically checks whether the classloader supports load-time weaving andcontext.weaving.DefaultContextLoadTimeWeaver

supports recent versions of Tomcat 8 or later (necessary for the XSA-based PPS).

As a result of the introduction of weaving, how the promotional entities are read has changed with PPS version 2.0. In PPS version 1.0, the
promotion for the corresponding eligibility was read using the fetch type . In PPS version 2.0, the fetch type is used.EAGER LAZY

For more information about weaving, see .http://www.eclipse.org/eclipselink/documentation/2.6/solutions/testingjpa004.htm

Support for Read-Only Transactions

As of PPS version 2.0, promotional information can also be read in a read-only mode. In this mode, no change tracking of the JPA entities is
done. This results in an optimized resource consumption. Consequently, no changes to the read JPA entities are saved to the database once the
transaction is committed. The request of a read-only transaction is controlled using a dedicated attribute of the PPS context. This is set to TRUE
in the case of a price calculation request.

Depending on the cache isolation set for the corresponding entities, read-only transactions may have no "working copy" of the entity in the
persistence context during the price calculation. This can lead to consistency issues in the case of concurrent read and write operations on the
same entity. If you create custom subentities of an OPP promotion, they must fulfill the following constraint:

The following subentities of an OPP promotion are not considered as critical:

The promotion texts (because they do not contain information that influences the price itself)
The assigned business units (because they are not taken into account once a promotion is considered as relevant and because they
contain only key fields)

There is no change of system behavior for regular prices. They are not cached in the JPA L2 cache.

Code Conversion

Following SAP standards, , and refer in the database to the SAP internal code lists. This is also true for the encoding ofamounts quantities texts
the business unit type. The following values are allowed for the database representation of these codes:

The following issues are known to occur with weaving:

If weaving is enabled, all weaving features are activated . As a result, potentially existing constructors or fieldby default
initializers of JPA entities (that are not recommended) are no longer called. If this leads to issues, it is possible to selectively
disable specific weaving features by setting the corresponding JPA properties. For instance, setting eclipselink.weaving.

can help to reduce these types of issues.internal=false
In general, weaving supports the extension of JPA entities using virtual access methods. However, according to the
EclipseLink documentation, weaving is not supported when virtual access methods are used with mappings.OneToOne
Load-time weaving of a JPA entity takes place when the corresponding Java class is loaded. If it has been loaded before
load-time weaving is activated (for example, within a JUnit test), it cannot be woven anymore. As a result, NoSuchMethodErro

.exceptions due to incomplete weaving will be thrown, causing the application to stop workingr

The subentities of an OPP promotion must be immutable objects if they are critical to the correct price calculation. If a new version of an
OPP promotion is created, the subentities must be new objects with new keys replacing the subentities of the former version.

http://www.eclipse.org/eclipselink/documentation/2.6/solutions/testingjpa004.htm

Code Same Table Field/ABAP Domain

Language T002-SPRAS

Currency and Decimals TCURC-WAERS, TCURX-CURRDEC

Unit of Measure T006-MSEHI

Business Unit Type Domain /DMF/LOCATION_TYPE_CODE

This schema is not generally known to an external client. Therefore, the PPS works from the client API down to the JPA entities with the ISO
schema of these codes. Since there is no ISO representation for the business unit type, the ARTS schema is used. The translation between the
database representation and the JPA entity representation is realized using JPA implementations. However, it might beAttributeConverter
desirable to configure this mapping, particularly in view of the unit of measure codes. The following figure shows how to configure this mapping for
unit codes:

The class is a JPA attribute converter. The lifecycle of an AttributeConverter is now managed by the JPADelegatingUnitCodeConverter
provider not by Spring. In particular, only a default constructor is supported and does not offer further configuration. Therefore, this converter
simply delegates the actual work to a Spring bean with a fixed alias. The Spring bean is retrieved using the class ApplicationContextProviderIm

. This delegate bean also implements but has the full support of Spring offerings, such as configuration parameters,pl AttributeConverter
support of properties files, and so on. Hence, the code mapping can be specified using a properties file whose location can be specified by a
Spring configuration property.

At first sight, it might look surprising that the attribute converter does not simply access the content of the corresponding customizing tables and
instead reads the content of a properties file, leading to double maintenance if additional unit codes are introduced. However, reading another
database table within an attribute converter again requires access to a JPA entity manager, making the implementation of the attribute converter
much more difficult and its performance likely worse.

Handling of Currencies and Amounts

As described in the section under in this guide, amounts need special handling if they referHandling of Amounts Price and Promotion Repository
to a currency that does not have two decimals and if they are stored in a database table owned by an ABAP system. This is the case for the
central XSA-based PPS that directly accesses the database tables of the central price and promotion repository. Special handling comprises a
scaling of the amounts before they are used by the PPS, depending on the number of currency decimals:

Currency Decimals Scaling Factor Database Value > Application-Visible Value

0 100

1 10

2 1

3 0.1

4 0.01

5 0.001

In addition, the SAP internal schema for currency codes has to be converted into the ISO schema. This is achieved by a JPA attribute converter
similar to the one described for unit codes. In this case, however, one database column (the currency code containing the SAP currency code) is
converted to a tuple of values (the ISO code and the scaling factor). This conversion uses two properties files:

The properties file containing the mapping between SAP and ISO currency codes. The location of this file is read from the configuration
property sap.dataaccess-common.currencycodeslocation.
The properties file containing the decimals <> 2 for SAP codes. The content of this file depends on the deployment scenario and is used
to calculate the scaling factor. No scaling of amounts is needed for a local deployment so this file can be empty. The location of this file is
read from the configuration property sap.dataaccess-common.currencydecimalslocation.

This information is stored in the class . The following table shows the mapping of database --> JPA entity using someCurrencyWithScale
hypothetical examples:

SAP
Currency

ISO
Currency

Currency
Decimals

CurrencyWithScale Comment

EU EUR <not maintained> currencyCode=EUR
scale=1

SAP code EU would actually be EUR.

BD BHD 3 currencyCode=BHD
scale=0.1

Bahrain dinar stored in the central PPR. SAP code would actually be BHD.

BD BHD <not maintained> currencyCode=BHD
scale=1

Bahrain dinar stored in a local copy of the central PPR. SAP code would
actually be BHD.

YEN JPY 0 currencyCode=JPY
scale=100

Japanese yen stored in the central PPR. SAP code would actually be JPY.

YEN JPY <not maintained> currencyCode=JPY
scale=1

Japanese yen stored in a local copy of the central PPR. SAP code would
actually be JPY.

The scaling itself is done when the data is accessed from the database. Instead, this is performed in the getter method of the correspondingnot
amount field of the JPA entity.

The reverse mapping from JPA entities to database values is simpler since this can happen only in a local PPS - the central PPS never writes
data to the database. Since the local PPS receives data always in the "natural" format (either within the IDoc inbound or within the price
calculation), a scaling of amounts is not needed. Therefore, when a currency code is set within the application, the scaling factor can simply be
set to one. Consequently, the conversion of to the SAP currency code simply converts the ISO to the SAP currency code.CurrencyWithScale

Handling Product IDs

The product ID with SAP CAR has a length of 60 characters. In addition, a conversion exit is called when products are imported from external
systems, which adds leading zeros to numeric product IDs. This has the following consequence, taking SAP Hybris Commerce as an example of
a PPS client:

The SAP ERP material number of an article has the internal representation 000000001234567890.
When this article is replicated to the SAP Hybris Commerce catalog, its ID (hybris: code) has the same value: 000000001234567890.
When this article is replicated to SAP CAR via the Data Replication Framework to the DDF data model, the external product ID has the
following value: 001234567890.
When regular prices and OPP promotions are replicated to external systems (including a locally deployed PPS), the external product ID
of the DDF data model is taken, in other words 001234567890.
When a price calculation is requested, the internal ID is expected. Hence, a hybris client sends the number 000000001234567890.
No such ID exists in the database.

The following is done to overcome this:

A JPA implementation (class) isAttributeConverter com.sap.ppengine.dataaccess.converter.common.InternalProductIDConverter
offered that translates between the client side (used in JPA entity) and the database side representation of a product ID,
This becomes effective only if the corresponding ID is numeric.
When the JPA entity is converted to the database representation, leading zeros are added up to a length of 60 characters.
When the database is converted to the JPA entity representation, the prefix of the ID is removed so that the result has a fixed number of
digits that is configurable via property .sap.dataaccess-common.fixednumberofplacesinproductid
If this parameter is zero, all leading zeros are removed, not considering a fixed length.

Handling of Language-Specific Information

The client API for price calculation allows the specification of a requested language in which language-dependent information (promotion
descriptions, external action price rule texts) is returned to the caller. This information is stored in the PPS context (bean) andsapContext
evaluated once the corresponding parent object, such as the Promotion or the , is requested. If language codes areExternalActionPriceRule
specified and the resulting set of language-dependent information differs from the original set, the caller gets a detached copy of the parent object
for each method call. This copy contains only the requested information.

SAP Client and Logical System

An SAP client and logical system must be specified in order to uniquely identify which information is to be retrieved from the database. This is
particularly true when regular prices are read with a given external product and business unit (location) ID. However, this information is not
provided externally as part of the request for the price calculation. Therefore, this information must be provided via Spring configuration
properties. They are stored in the PPS context that is globally visible with request processing via the bean .sapContext

Beans

ID Alias Description

sapDefaultPersistenceAnnotationBeanPostProcessor sapPersistenceAnnotationBeanPostProcessor Spring postprocessor enabling
automatic transaction management
via annotation

@Transactional

sapDefaultJpaProperties sapJpaProperties Properties bean holding the JPA
properties

Refers to configuration properties:

sap.dataaccess-common.
defaultjpapropertieslocation
sap.dataaccess-common.
jpapropertieslocation
sap.dataaccess-common.
custjpapropertieslocation

sapDefaultEntityManagerFactory sapEntityManagerFactory Spring-based entity manager
factory, configurable via properties
instead of a single persistence.xml
file

sapDefaultTransactionManager sapTransactionManager Spring-based transaction manager

sapDefaultJpaDialect sapJpaDialect Spring JPA Dialect "Eclipselink" to
be used for transaction manager

sapDefaultJpaVendorAdapter sapJpaVendorAdapter Registers EclipseLink as a JPA
provider

sapAbstractPersistenceService ./. Base class for all persistence
services

sapDefaultPromotionService sapPromotionService Central service for accessing
promotional information from
database

Requesting and returning language-specific information is supported as of PPS version 2.0.

If you need to support several values for a logical system, SAP clients or business unit types for each installation, you also need to
adjust the cache key generators since this information is not considered to be part of the cache key for named queries by default.

sapDefaultNamedQueryService sapNamedQueryService Service for reading promotional
information from database via
named queries. Used by sapPromot

.ionService

sapDefaultBasePriceService sapBasePriceService Central service for accessing regular
price information from database

sapDefaultDbContextInitializer sapDbContextInitializer Initializer of the PPS context adding
parameters relevant for accessing
the database (client, business unit
type, logical system)

sapDefaultLanguageCodes sapLanguageCodes Default mapping to translate
between SAP and ISO language
codes

sapDefaultCurrencyCodes sapCurrencyCodes Default mapping to translate
between SAP and ISO currency
codes

sapDefaultUnitCodes sapUnitCodes Default mapping to
translate between SAP and ISO unit
of measure codes

sapDefaultCurrencyDecimals sapCurrencyDecimals Default decimals of SAP currencies

sapDefaultCurrencyMappingFactory sapCurrencyMappingFactory Default factory to create mapping
from SAP currency codes to tuple
<ISO code + scaling factor>. Uses
beans sapDefaultCurrencyCodes
and sapDefaultCurrencyDecimals.

sapDefaultCurrencyCodesWithScale sapCurrencyCodesWithScale Default mapping between SAP
currency codes and
CurrencyWithDecimals. Created by
the bean
sapCurrencyMappingFactory.

sapDefaultBusinessUnitLocationTypes sapBusinessUnitLocationTypes Default mapping file to translate
between SAP and ARTS business
unit type codes

sapDefaultLanguageCodeConverter sapLanguageCodeConverter Converter between SAP and ISO
language codes accessing the
mapping file

Called by corresponding JPA
attribute converter

sapDefaultCurrencyCodeConverter sapCurrencyCodeConverter Converter between SAP and ISO
currency codes accessing the
mapping file

Called by corresponding JPA
attribute converter. Only to be used
if scaling of amounts is not needed.

sapDefaultCurrencyWithScaleConverter sapCurrencyWithScaleConverter Converter between SAP currency
and CurrencyWithDecimals. Uses
sapCurrencyCodesWithScale.

sapDefaultUnitCodeConverter sapUnitCodeConverter Converter between SAP and ISO
unit of measure codes accessing the
mapping file

Called by corresponding JPA
attribute converter

sapDefaultBusinessUnitLocationTypeConverter sapBusinessUnitLocationTypeConverter Converter between SAP and ARTS
business unit type codes accessing
the mapping file

Called by corresponding JPA
attribute converter

sapDefaultInternalProductIDConverter sapInternalProductIDConverter Converter between SAP CAR
internal representation of numeric
product IDs and their (internal)
representation used by the PPS
client

cacheManager ./. Spring cache manager introducing
caches for promotional information
(OPP promotion eligibilities) and
single accesses for regular prices

sapDefaultPromoCacheBuilder sapPromoCacheBuilder Cache builder for storing OPP
promotion eligibility keys using
Google Guava as cache
implementation

sapDefaultBasePriceCacheBuilder sapBasePriceCacheBuilder Cache builder for regular prices
using Google Guava as cache
implementation

sapDefaultEligibilityCache sapEligibilityCache Spring wrapper for the cache for
regular prices
Before PPS 2.0 this was an
anonymous Spring bean

sapDefaultBasePriceCache sapBasePriceCache Spring wrapper for the cache for
promotional information (eligibility
references)

Before PPS 2.0 this was an
anonymous Spring bean

sapDefaultEliCacheKeyGenerator sapEliCacheKeyGenerator Enhancement of the default Spring
 cache key generator considering the

name of the method in addition to
the provided arguments.

Necessary if different read methods
 have the same arguments but

should provide different results.

sapDefaultPriceCacheKeyGenerator sapPriceCacheKeyGenerator Cache key generator used when
caching regular prices.

sapDefaultItemEligibilityBulkAccessor sapItemEligibilityBulkAccessor Default implementation for the item
price derivation rule eligibility bulk
access (as of PPS 3.0)

sapDefaultMSetEligibilityBulkAccessor sapMSetEligibilityBulkAccessor Default implementation for the
MerchandiseSet price derivation rule
eligibility bulk access (as of PPS 3.0)

As of PPS verison 3.0, this
bean is contained in the
core module.

As of PPS version 3.0, this
bean is contained in the
core module.

sapDefaultJpaEqualsHashCodeHelper sapJpaEqualsHashCodeHelper Default implementation of aequals()
nd for JPA entitieshashCode()

sapDefaultLoadTimeWeaver sapLoadTimeWeaver If weaving is active (as of PPS 2.0):
provides Environment for
EclipseLink weaving

sapDefaultSelectionIntervalCreator sapSelectionIntervalCreator As of PPS 2.0:

Converter of a provided time stamp
for price calculation into an interval.
This is used for searching eligibilities
only.
In order to be found, the
corresponding promotion must
intersect with this interval.
By default, the whole day of the
given time stamp is considered as
an interval.

See also bean
sapTimeResolutionReducer in the
core module.

 2017-30-03 12:34:56 isExample:
converted into interval
2017-30-03 00:00:00 (inclusive)
until 2017-03-31 00:00:00
(exclusive)

Required Beans

ID/Alias Comment

sapDataSource Provides database connection

Configuration Properties

Name Description Default Value Comment

sap.dataaccess-common.persistenceunitname Name of the JPA
persistence unit to
be used for reading
and writing OPP
promotion and
regular price
information

SAPDefaultPU

sap.dataaccess-common.sharedcachemode Defines the JPA
entities for which a
JPA Level2 cache
is to be used

ENABLE_
SELECTIVE

Explicit enablement of caching
per entity

sap.dataaccess-common.defaultjpapropertieslocation Location of the
default JPA
properties (to be
used independent
of the underlying
database) in Spring
resource syntax

classpath:
META-INF/defaultjpaprops.
properties

sap.dataaccess-common.weavingdefaultjpapropertieslocation Location of the
default JPA
properties (to be
used independent
of the underlying
database) in Spring
resource syntax.
Used if weaving is
active.

classpath:
META-INF/
weavingdefaultjpaprops.
properties

Weaving available with PPS 2.0
or later

sap.dataaccess-common.custjpapropertieslocation Location of
customer-specific
JPA properties in
Spring resource
syntax

classpath:
META-INF/
empty.properties

Example value:

classpath:

METAINF/myjpapros.properties

sap.dataaccess-common.packagestoscan Comma-separated
list of package
names to be
scanned for JPA
entities or attribute
converters

com.sap.ppengine.
dataaccess.
promotion.common.entities,
com.sap.ppengine.
dataaccess.
converter.common,
com.sap.ppengine.
dataaccess.baseprice.
common.entities

Should not be changed

sap.dataaccess-common.custpackagestoscan Comma-separated
list of additional
package names to
be scanned for JPA
entities or attribute
converters

<empty> Example value:

,com.mycompany.myentities

(note the leading comma)

sap.dataaccess-common.mappingresources Comma-separated
list of mapping
resource files
overruling/adding to
annotations defined
in the classes for
the JPA entities.
Must be on the
Java classpath.

META-INF/orm.
xml,ppe-schema-orm.xml

Should not be changed

sap.dataaccess-common.custmappingresources Comma-separated
list of maadditional
pping resource file
intended for
customer-specific
extensions

<empty> Example value:

 ,ppe-local-orm.xml

(note the leading comma)

sap.dataaccess-common.cachenamedqueries Switch for caching
the result of named
queries

true Set this to false, if you always
want to access updated regular
prices and OPP promotions.

Disabling the L2 cache for OPP
promotions should not be
needed.

sap.dataaccess-common.promocachespec Cache specification
of the cache for
promotional
information read via
named queries as
defined by Google
Guava

maximumSize = 10000,
expireAfterAccess = 10m,
expireAfterWrite = 20m

Only relevant if

sap.dataaccess-common.

cachenamedqueries = true

sap.dataaccess-common.basepricecachespec Cache specification
of the cache for
single records of
regular prices read
via named queries
as defined by
Google Guava

maximumSize = 10000,
expireAfterAccess = 10m,
expireAfterWrite = 20m

Only relevant if

sap.dataaccess-common.

cachenamedqueries = true

sap.dataaccess-common.currencycodeslocation Location of the
mapping file to
translate between
SAP currency
codes in the
database and ISO
codes used within
JPA entities. Spring
resource syntax is
used.

classpath:META-INF/
currencycodes.properties

sap.dataaccess-common.unitcodeslocation Location of the
mapping file to
translate between
SAP unit codes in
the database and
ISO codes used
within JPA entities.
Spring resource
syntax is used.

classpath:META-INF/
unitcodes.properties

sap.dataaccess-common.languagecodeslocation Location of the
mapping file to
translate between
SAP language
codes in the
database and ISO
codes used within
JPA entities. Spring
resource syntax is
used.

classpath:META-INF/
languagecodes.properties

sap.dataaccess-common.businessunitlocationtypelocation Location of the
mapping file to
translate between
SAP encoding of
business unit types
(same values as
location types of
SAP CAR) codes in
the database and
ARTS codes used
within JPA entities.
Spring resource
syntax is used.

classpath:METAINF/
businessunitlocationtype.
properties

sap.dataaccess-common.currencydecimalslocation Location of the
properties file
containing the
number of decimals
for SAP currency
codes. Only codes
for currencies that
do not have two
decimals are
expected in this file.

Not set Set in dataaccess-ddf or
dataaccess-localdb

sap.dataaccess-common.fixednumberofplacesinproductid Number of digits of
a numerical product
ID including leading
zeros as provided
and expected by
the consumer of the
PPS

18 Length of the SAP ERP material
number is 18

sap.dataaccess-common.db.client SAP client to use
when accessing the
database

./. To be set for each installation

sap.dataaccess-common.logSys Logical system to
use then accessing
information having
compound key
(external ID +
logical system),
such as the SAP
CAR anProductID
d LocationID

./. To be set for each installation

sap.dataaccess-common.defaultBuType Default business
unit type to use
when reading
regular prices and
promotional
eligibilities

RetailStore

sap.dataaccess-common.partitionSizeSqlInStatement Maximum number
of list entries when
using IN operator in
SQL statements

100 Used, for example, during
inbound processing of regular
prices

sap.dataaccess-common.bulkitemelithreshold Threshold for
numbers of line
items deciding if an
item eligibility
prefetch (bulk
access) is
executed.
Note: The overall
number of line
items (without
coupons, and so
on) is compared
against this
threshold - not only
the number of items
for which the
ItemEligibility
reference is still
missing in the
cache.

10 Only relevant if

sap.dataaccess-common.

cachenamedqueries = true

Bulk access for Item Eligibilities
available with PPS 3.0 or later

sap.dataaccess-common.bulkmerchsetelithreshold Threshold for
numbers of line
items deciding if a
Merchandise Set
Eligibility prefetch
(bulk access) is
executed.
Note: The overall
number of line
items (without
coupons, and so
on) is compared
against this
threshold - not only
the number of items
for which the
MerchandiseSet
Eligibility reference
is still missing in the
cache.

10 Only relevant if

sap.dataaccess-common.

cachenamedqueries = true

Bulk access for MerchandiseSet
Eligibilities available with PPS 3.0
or later

sap.dataaccess-common.bulkmerchgroupelithreshold Threshold for
numbers of
merchandise
hierarchy nodes
deciding if a
Merchandise Group
Eligibility prefetch
(bulk access) is
executed.
Note: The overall
number of
merchandise
hierarchy nodes is
compared against
this threshold - not
only the number of
nodes for which the
Merchandise Group
Eligibility reference
is still missing in the
cache.

5 Only relevant if

sap.dataaccess-common.

cachenamedqueries = true

Bulk access for Merchandise
Group Eligibilities available with
PPS 3.0.14 or later

sap.dataaccess-common.overwritewitholderdata Switch controlling
the behavior when
importing OPP
promotions. If set to
true, the imported
promotion replaces
the existing
promotion on the
database,
regardless of the
value of the chang

 attributeedOn
(indicating when
this version of the
promotion was
created). If set to
false, the received
promotion is only
written to the
database if it has
been changed more
recently than the
promotion on the
database.

true If the promotions are sent or
received in the wrong order, the
most recent data are used.

It is not possible to resend an old
IDoc to revert an unwanted
change of a promotion, since the
contained promotion will be
ignored due to its changedOn
value.

Available as of PPS version
3.0.17

Dependencies

This module depends on the following modules:

core
dataaccess-interface (transitive dependency of core since PPS 3.0)

PPS Module dataaccess-ddf

This module provides the specifics for the data access against the SAP HANA database of the SAP Customer Activity Repository system.

Overview

As mentioned in the documentation for the module , the JPA entities should not depend on the specifics of the underlyingdataaccess-common
database or system that provides the database table. In the case of the central PPS, the database tables are defined using the data dictionary of
the SAP Customer Activity Repository system running on an SAP HANA database. This has the following consequences:

No changes are made to the database schema using JPA - SAP Customer Activity Repository is the leading system. This is done by
simply not setting the JPA property .eclipselink.ddl-generation
The format for time stamps in the database is different from the usual format in a Java environment.
The format for Boolean values in the database is different from the usual format in a Java environment.
Running against an SAP HANA database, the JDBC database driver is determined.

Furthermore, the is provided over JNDI when running on SAP HANA XS Advanced.javax.sql.DataSource

This module configures the data access accordingly.

Attribute Converters

The conversion between database values and the attributes of JPA entities is realized using an implementation of javax.persistence.AttributeC
. They are declared in the file on the Java classpath.onverter META-INF/orm.xml

Boolean Values

In ABAP, there is no dedicated basic type for Boolean values. Instead, this information is usually stored in a character array of length 1 with the

following values:

ABAP Boolean

'X' TRUE

'' FALSE

This mapping is implemented by the class located in the module com.sap.ppengine.dataaccess.converter.common.AbapBooleanConverter
.dataaccess-common

Time Stamps

In ABAP, time stamps are stored in a packed decimal number. The following time stamps are known:

A time stamp down to second level (see the domain TZNTSTMPS)
A time stamp down to sub-microsecond level (see the domain TZNTSTMPL)

Only the time stamp with a precision on seconds-level is supported. On the Java side, is usually taken to store time stamps.java.sql.Timestamp
The mapping between ABAP and Java is done as follows:

ABAP value Year Month Day Hour Minute Second Nanoseconds

YYYYMMDDHHMMSS YYYY MM DD HH MM SS 0

 This mapping is implemented by the class located in thecom.sap.ppengine.dataaccess.converter.common.AbapTimestampConverter
module .dataaccess-common

Beans

ID Alias Description

sapDefaultDataSource sapDataSource Factory bean for the data source looking up JNDI for property java:comp/env/jdbc/DefaultDB

sapDefaultDataSource sapDataSource Implementation of the data source reading Spring configuration properties (see below). Only used
if the Spring profile is active, replacing the JNDI variant.development

This option is not meant for productive use.

Configuration Properties

Name Description Default Value Comment

sap.dataaccess-common.currencydecimalslocation Location of the properties file
containing the number of
decimals for SAP currency
codes. Only codes for currencies
that do not have two decimals
are expected in this file.

classpath:/META-INF/currencydecimals.properties Contains a
copy of
TCURX

sap.dataaccess-common.db.driverClassName Name of the JDBC database
driver

com.sap.db.jdbc.Driver Might be
changed in
a test
environment

sap.dataaccess-common.db.url URL of the database connection ./. To be set in
a test
environment

sap.dataaccess-common.db.userName Database user ./. To be set in
a test
environment

sap.dataaccess-common.db.passWord Password of the database user ./. To be set in
a test
environment

http://classpath/META-INF/currencydecimals.properties

Dependencies

This module depends on the following modules:

dataaccess-common

PPS Module dataaccess-localdb

This module the specifics for the access to a local database that is only accessed via JPA.provides

Overview

As mentioned in the documentation for the module , the JPA entities should not depend on the specifics of the underlyingdataaccess-common
database or system that provides the database table. If the PPS is deployed locally in another hosting application, such as in SAP Hybris
Commerce, the following specialties of this module have to be considered:

The default name of the database tables with the prefix can lead to issues. Therefore, the prefix is replaced with the prefix /ROP/ /ROP/ S
 for all PPS database tables.APPS

Additional (named) queries and database fields are needed for the inbound of promotional information. In particular, this is a version field
for JPA optimistic locking on promotion header level.
Additional indexes typically needed in (row store) relational databases are needed in order to speed up the process of reading data.
The database tables are created via JPA.
If you use an Oracle database, the standard logic to set the lengths of character-like columns is not sufficient because it specifies the
length in bytes instead of characters. To overcome this, SAP provides an adjusted implementation
of org.eclipse.persistence.platform.database.DatabasePlatform. This is automatically checked during startup of the application context.

The adjustments are done in the file .first three orm.xml

Indexes

The following table shows the database indexes that are added to the indexes automatically created due to the foreign key relationships that are
defined in the JPA entities:

Table Index Fields Unique?

SAPPSPROMOTION SAP_BYFROMDATE EFFECTIVE_DATE No

SAPPSELIGIBILITY SAP_BYITEMID ITEM_ID
EFFECTIVE_DATE

No

SAPPSELIGIBILITY SAP_BYNODEID NODE_ID
EFFECTIVE_DATE

No

SAPPSELIGIBILITY SAP_BYTYPECODE TYPE_CODE
EFFECTIVE_DATE

No

Beans

This module does not provide a as required by the module. It is expected that this isjavax.sql.DataSource dataaccess-common
provided by the hosting application.

The list of database indexes is most likely incomplete for your specific needs. The index that is used if an SQL query is executed
depends on the database used and on the amount of data in the corresponding tables. We strongly recommend that you review the
database indexes for your specific needs.

When product groups (available with PPS 3.0) are used with a huge amount of product group entries, it could be very helpful to create
indexes in table for the item or the product hierarchy node identifiers.SAPPSMERCH_SET

ID Alias Description

sapDefaultForeignKeyRemover sapForeignKeyRemover Contains functionality to execute the native SQL query specified via configuration
property . Used to remove asap.dataacess-localdb.fkremovalquery
problematic foreign key constraint from the database. Note that this bean itself
does not actively execute the query by itself.

sapDefaultValidationQueries sapValidationQueries Map of known JDBC drivers and appropriate validation queries for the
corresponding DBMS

sapAbstractDataSourceFactory Abstract base class and bean for factories of DataSources supporting connection
pooling with automatic determination of the correct validation query. Can be used
by the hosting application where the type of (pooling) DataSource is known. As
an example, in newer releases, the local PPS within the sapppspricing extension
uses a DataSource created by a child of this class.

sapOracleConsistencyChecks Performs automatic checks during startup of the application context if you use an
Oracle database. Checks if the SAP provided database platform class is
configured in the JPA properties of the entity manager factory.

Required Beans

The following table contains the additional beans that are to be provided if all the dependencies of this module are resolved:

ID/Alias Comment

sapDataSource Provides the database access

Configuration Properties

Name Description Default Value Comment

sap.dataaccess-common.jpapropertieslocation Location of the
JPA properties for
a local
deployment

classpath:/META-INF/

dataaccess-localdb-jpaprops.properties

Should usually not be changed -
see property sap.dataaccesscom
mon.custjpapropertieslocation

sap.dataaccess-localdb.connectionpool.initialsize Initial size of a
connection pool
if used to access
the database via
an own
connection pool

10 Not used in module

sap.dataaccess-localdb.connectionpool.maxsize Maximum size of
a connection pool
if used to access
the database via
an own
connection pool

50 Not used in module

sap.dataaccess-localdb.connectionpool.validationQuery Validation query
used by the
connection pool to
check if the
corresponding
connection is still
usable

select 1 from
INFORMATION_SCHEMA.SYSTEM_US
ERS

Works for HSQLDB, which is the
Hybris default.

Other queries are:

Oracle - select 1 from dual
DB2 - select 1 from
sysibm.sysdummy1
mysql - select 1
MS SQL server - select 1
Postgresql - select 1
Derby - select 1
H2 - select 1

sap.dataaccess-common.currencydecimalslocation Location of the
properties file
containing the
number of
decimals for SAP
currency codes.
Only codes for
currencies that do
not have two
decimals are
expected in this
file.

classpath:/META-INF/empty.properties Java-owned database tables
store amounts in their natural
format

sap.dataacess-localdb.fkremovalquery Native SQL query
which deletes the
foreign key
constraint for the
parent eligibilities
of a given
eligibility record.
This constraint
may cause issues
during IDoc
inbound
processing if the
used DBMS does
not use deferred
foreign key
checks. The
syntax of this
query and the
name of the
foreign key
constraint is
DBMS-specific.

To reduce the risk of data
corruption caused by a wrong
SQL query, it must have a certain
format. See class RemoveForeig

 in case of an issue.nKeyImpl

Dependencies

This module depends on the following modules:

dataaccess-common

PPS Module idocinbound

If you do not set the validation query correctly, the application may not start.

You only have to set the valdiation query if one of the following preconditions is met:

You are using a PPS with patch levels lower than:
PPS 3.0.3
PPS 2.0.5
PPS 1.2.7
PPS 1.1.8
PPS 1.0.14

You are using a PPS with a higher patch level than in the list above, but the JDBC driver class is not in the list of known
drivers. If the driver class is known, the validation query can be determined automatically using a factory bean having bean sap

 as parent bean.AbstractDataSourceFactory

The same patch levels as mentioned above are also required for the foreign key removal query to take effect.

http://classpath/META-INF/currencydecimals.properties

1.
2.

a.
b.

3.

4.

5.

This module provides the implementation IDoc inbound processing for OPP promotions and regular prices.

Overview

If the PPS is deployed locally, for example the PPS is embedded in SAP Hybris Commerce, it accesses its own locally stored data. The module id
 provides the possibility to receive IDocs holding regular prices and OPP promotions and to update this information on the localocinbound

database. These IDocs are usually created by the SAP Customer Activity Repository system that contains the central price and promotion
repository (PPR). The IDoc inbound supports the following IDoc types and the corresponding message types:

Regular prices can be processed using IDoc type (message type)/ROP/BASE_PRICE01 /ROP/BASE_PRICE
OPP promotions can be processed using IDoc type (message type)/ROP/PROMOTION01 /ROP/PROMOTION

These IDocs can be processed only with an XML payload.

The IDoc inbound processing processes the incoming requests synchronously. No staging of requests is executed. Furthermore, only very basic
consistency checks of the IDoc content are performed.

Spring Integration Process Definition

The inbound processing is realized based on . The following figure shows the process flow:Spring Integration

In detail, the following is done:

The IDoc inbound processing is triggered via an HTTP POST request to the context path ./idocinbound
The incoming request is handled by a Spring Integration (). This integration ishttp-inbound-channel-adapter sapIdocInboundGateway
connected to the following Spring Integration channels:

The propagates the request to the next processing stage. sapIdocInboundRequestChannel
The propagates error messages to the corresponding error handler.sapIdocInboundErrorChannel

The request forwarded by is received by , which is a Spring Integration sapIdocInboundAdapter sapIdocToStringTransformer object-t
. Its output, a plain string, is propagated via the channel .o-string-transformer sapIdocInboundStringRequestChannel

At the other end of this channel, a Spring Integration () receives this string.unmarshalling-transfomer sapIdocUnmarshallTransformer
This is a wrapper delegating the actual unmarshaling of the string to a more structured Java class to the that is ansapIdocUnmarshaller
ordinary Spring bean.
This Spring bean of type uses Jackson from FasterXML to convert the string into a Java . Each map entryXmlToMapUnmarshaller Map
represents one element of the XML payload. In addition, it also supports unwrapped lists in the XML document, for example, payloads in

http://projects.spring.io/spring-integration/

5.

6.
7.

8.
a.

b.

9.

10.

a.

b.

c.
d.

11.

which one XML element is contained on the same level several times together with other XML elements. With this approach, it is not
necessary to provide Java classes (usually created by XSD via XJC) for each IDoc type to be processed.
The resulting map is propagated via the channel to the next stage.sapIdocInboundUnmarshalledChannel
This stage is a Spring Integration looking at the IDoc type that is stored in the IDoc control header. Based on the content of thisrouter
field, the name of the channel that forwards the message to the next stage is determined dynamically. The name of the channel follows
the schema is .sapIdocTypeChannel_{idocType}
The following two channels exist in the standard implementation:

sapIdocTypeChannel_/ROP/PROMOTION01 for IDoc type and . This is/ROP/PROMOTION01 /ROP/PROMOTION02
connected to the Spring , delegating the actual work to an ordinaryservice-activator sapPromotionInboundServiceActivator
Spring bean with the name .sapPromotionInboundProcessor
sapIdocTypeChannel_/ROP/BASE_SALES_PRICE01 for IDoc type . This is connected to the Spring /ROP/BASE_PRICE01 se

, delegating the actual work to an ordinary Spring bean with the name rvice-activator sapBasePriceInboundServiceActivator
.sapBasePriceInboundProcessor

If an exception is thrown during the inbound processing, this is automatically wrapped into a message forwarded via the channel sapIdoc
 to the Spring Integration transformer .InboundErrorChannel sapIdocErrorTransformer

The spring integration transformer delegates the actual work to , an ordinary Spring bean. ThissapIdocInboundExceptionTransformer
Spring bean implements the following logic:

If the error message refers to an exception of type issued during the mapping from the IllegalIdocContentExceptionindicating
IDoc to the database format, the HTTP response must have the error code 400 ().Bad Request
In the case of an during posting of the received data, the HTTP response must have the error codeOptimisticLockException
409 ().Conflict
In the case of another exception, the HTTP response must have the error code 500 ().Internal Server Error
In any other cases, the HTTP response will have the error code 200 (), which is the default return code of the HTTP inboundOK
adapter (actually not part of error handling).

The error response is sent via the channel to the Spring Integration sapIdocInboundTransformedErrorChannel object-to-string-trans
. This Spring Integration converts it into a string that is returned to the caller.formersapIdocErrorToStringTransformer

Processing the IDoc Data

After the xml file has been converted into a Java , the converted IDoc content can be mapped to the corresponding entities.Map<String,Object>
This happens in an Inbound-Processor that is implemented by the class or reBasePriceInboundProcessorImpl PromoInboundProcessorImpl
spectively. The inbound processor does the following:

It calls the corresponding mapper to the JPA entities.
It triggers the posting to the database.

Conversion of the IDoc Payload to the Expected Java Types

As the payload in the received IDocs is converted into a Java , you need to convert each field of the content in the JavaMap<String,Object>
types that are expected by the JPA entities. The class is provided for this purpose.EntityTypeConversionHelper

The following Java types are supported by default:

String
BigDecimal
long
Timestamp
int
Character
byte

In addition, the following data is supported and requires special handling:

Unit Of Measure Code: Expected ISO code is verified to determine whether it can be mapped to database format.
Currency Code: Expected ISO code is verified to determine whether it can be mapped to database format.
Language Code: Expected ISO code is verified to determine whether it can be mapped to database format.
Business Unit Type Code: Expected SAP code (corresponding to the DDF location type code) is converted to the corresponding ARTS
format.
Boolean: Expected ABAP format ('X' or '') is converted into a Java Boolean.
Product ID: Expected database format is converted into the format of the JPA entity. This may be different for numeric product IDs. For
more information, see the documentation for the module .dataaccess-common

Regardless of the target JPA entity type, the mapping follows two strategies:

For known JPA entities the received IDoc segments are only processed for the fields of the target entity. This means that if the received
IDoc segment contains unexpected additional fields, they are simply ignored.
In addition, the content of extension segments (name/value pairs) are mapped to the extension maps of the target JPA entity if the JPA
metamodel contains a field with the corresponding name. If the field is not known in the JPA metamodel, it is ignored.

Mapping Regular Prices

Regular prices are mapped by the class , which implements the interface . The regular price entity thatBasePriceMapperImpl BasePriceMapper
needs to be mapped to is , which implements the interface . For more information about the regular price entity, see theBasePriceImpl BasePrice
documentation for the modules and . ppengine-dataaccess-common ppengine-dataaccess-interface

Mapping OPP Promotions

OPP promotions are mapped by the class (that implements the interface Promotion) and its subclasses that represent all thePromotionImpl
entities needed to replicate the runtime model in SAP Customer Activity Repository.
For more information about promotion entities, see the documentation for the modules and ppengine-dataaccess-common ppengine-dataacce

.ss-interface

Posting to the Database

After the mapping process, the JPA entities need to be posted to the database.

Regular Prices

The posting of regular prices must ensure that no overlapping prices exist. Since information about price deletions is not transferred, it has to be
done on the receiver side as follows:

For the corresponding list of business units within a top-level IDoc price segment, the existing prices are read for each product, uom,
price classification, business unit type, and logical system. This is done for all prices with an effective date that is at least the earliest
effective date of the transferred prices.
These prices are compared to the mapping result as follows:

Prices not yet existing are inserted in the database
Prices that existed before are updated in the database if at least one attribute has been changed
Prices that exist in the database that are not part of the received IDoc are removed

The data access for regular sales prices is delegated to the bean .sapBasePriceService

OPP Promotions

The data access for OPP promotions is delegated to the bean .sapPromotionService

Posting of the OPP promotions is either a or a from a JPA perspective point of view. To optimize performance, a merge is executedmerge persist
only if there is already a version for the corresponding promotion ID. Otherwise a persist is done. Physical deletion of an OPP promotion is not

As of PPS version 2.0, the PPS version is checked against the current PPS version (reflected by the promotion IDoc content-attribute M
).IN_PPS_RELEASE

The current PPS must be able to process the corresponding promotion. This is assumed to be the case if the PPS version of the
promotion is lower than or equal to the version of the local PPS. If this precondition is not fulfilled, the IDoc is rejected. The current PPS
version is stored as a configuration property (). sap.idocinbound.currentppsrelease

OPP promotions marked as obsolete that are not relevant anymore for the receiver of the IDoc, are treated as OPPfor example,
promotions that have been logically deleted on the sender side.

The inbound processing of regular prices relies on the constraint that for a given transfer session all prices for a given combination of
product ID, unit of measure code, price classification, business unit type, and logical system are in the same IDoc. If not, this can result
in inconsistent data.

A top level IDoc segment that contains a lot of business unit IDs reading the existing prices can lead to oversized SQL statements. The
size of these statements can be controlled by the configuration parameter thasap.dataaccess-common.partitionSizeSqlInStatement
t controls the number of business unit IDs that can be part of one SQL statement. If the total number of business units exceeds this
limit, the system automatically reads the data in smaller chunks.

For more information about this configuration parameter, see the documentation for the module .dataaccess-commonin

done during IDoc inbound processing.

Beans

ID Alias Description

sapIdocInboundGateway ./. Spring Integration HTTP inbound gateway
receiving IDocs and sending confirmation
responses

sapIdocErrorTransformer Spring Integration Transformer
transforming exceptions created during
request processing into HTTP responses.
Delegates work to the bean sapIdocInbo

 and sends theundExceptionConverter
result to sapIdocErrorToStringTransfor

.mer

sapDefaultIdocInboundExceptionConverter sapIdocInboundExceptionConverter Actual implementation of the exception
conversion. Hides the stack trace from the
response and sets the HTTP response
code depending on the exception type

sapIdocErrorToStringTransformer Spring Integration Transformer creating a
string representation of the converted
error response

sapIdocInboundRequestChannel Spring Integration Channel transporting
the originally received payload of the
HTTP request

sapIdocInboundErrorChannel Spring Integration Channel connecting sa
 and pIdocInboundGateway sapIdocErro

rTransformer

sapIdocInboundTransformedErrorChannel Spring Integration Channel connecting sa
 and pIdocErrorTransformer sapIdocErr

orToStringTransformer

sapIdocToStringTransformer Spring Integration Transformer creating a
string representation of the received IDoc
body payload

sapIdocInboundStringRequestChannel Spring Integration Channel connecting sa
 and pIdocToStringTransformer sapIdoc

UnmarshallTransformer

sapIdocUnmarshallTransformer Spring Integration Unmarshalling
Transformer transforming the string
payload into a format consumable by the
application logic. Delegates work to sapId

.ocUnmarshaller

sapDefaultIdocUnmarshaller sapIdocUnmarshaller Unmarshaller using Jackson to create a
generic representation of the IDoc payload
as a Map<String,Object>

sapIdocInboundUnmarshalledChannel Spring Integration Channel connecting sa
 and pIdocUnmarshallTransformer sapId

ocTypeRouter

sapIdocTypeRouter Spring Integration Router looking at the
IDoc type as stored in the IDoc control
header to decide to which channel the
message shall be forwarded. Channel
name is defined as sapIdocTypeChannel

._<idocType>

sapIdocTypeChannel_/ROP/BASE_PRICE01 Spring Integration Channel connecting sa
 and pIdocTypeRouter sapBasePriceInb

. Intended for IDocoundServiceActivator
type ./ROP/BASE_PRICE01

sapIdocTypeChannel_/ROP/PROMOTION01 Spring Integration Channel connecting sa
 and pIdocTypeRouter sapPromotionInb

. Intended for IDocoundServiceActivator
type ./ROP/PROMOTION01

sapBasePriceInboundServiceActivator Spring Integration Service Activator
receiving representation of a regular price
IDoc, delegating work to sapDefaultBase
PriceInboundProcessor

sapPromotionInboundServiceActivator Spring Integration Service Activator
receiving representation of an OPP
promotion IDoc, delegating work to sapDe
faultPromotionInboundProcessor

sapDefaultEntityTypeConversionHelper sapEntityTypeConversionHelper Helper to read information from the
Map<String,Object> representation of an
IDoc and returning it in the expected java
type

sapDefaultEntityPromoMapper sapEntityPromoMapper Helper to map the complete content of an
OPP promotion IDoc representation as
Map<String,Object> into the
corresponding JPA entities

sapDefaultEntityBasePriceMapper sapEntityBasePriceMapper Helper to map the complete content
regular price IDoc representation as
Map<String,Object> into the
corresponding JPA entities

sapDefaultExtensionMapper sapExtensionMapper Generic mapper of the extension
segments of the OPP promotion IDoc to
the corresponding attributes of the target
JPA entities

sapDefaultPromotionInboundProcessor sapPromotionInboundProcessor Main entry point into the application logic
for inbound processing of OPP promotion
IDocs. Delegates work to mapping helper
and updates the database.

sapDefaultBasePriceInboundProcessor sapBasePriceInboundProcessor Main entry point into the application logic
for inbound processing of regular price
IDocs. Delegates work to mapping helper
and updates the database.

sapDefaultIdocInboundCommon sapIdocInboundCommon Parent bean for all IDoc inbound related
functions, holding commonly used
dependencies.

sapInboundPersistenceAnnotationBeanPostProcessor sapInboundAnnotationBeanPostProcessor Bean post processor that enables the
support of the @Persistence annotation
for a threadsafe . This isEntityManager
required for the generic mapping of IDoc
extension segments.

Note that a Spring Bean of the same type
also exists in the dataaccess-common

However, in a deployment withmodule.
Hybris, the PPS application context is
created in 2 steps and the postprocessor
in the is nodataaccess-common module
longer considered when creating the
second level of the application context
(containing the).idocinbound module

sapDefaultFKRemovalExecutor Bean that automatically executes the
native query for foreign key removal as
offered via bean sapForeignKeyRemove
. The query is executed during ther

initialization of the PPS application context
(as part of the PPS application context in
which the isidocinbound module
located).

Required Beans

The following table contains the additional beans to be provided if all dependencies of this module are resolved:

ID / Alias Comment

sapDataSource Provides the database access

Configuration Properties

The following properties are used by this module:

Name Description Default Value Comment

sap.idocinbound.currentppsrelease Reference to the current
version of the PPS

Depends on the
current PPS version

This property refers to the current PPS version as follows:

The first digits of the decimal representation indicate the
major version of the PPS version.
The next 3 digits of the property indicate the minor version of
the PPS version.
The lowest 3 digits of the property indicate the patch level of
the PPS version.

In PPS versions earlier than 2.0, this property is set to 0.

For example, the property is set to 2000000 in PPS version 2.0
and it is set to 0 in PPS 1.1 and PPS 1.2.

Dependencies

This module depends on the following modules:

dataaccess-localdb
jackson

PPS Performance Hints

The following chapter gives hints on how to achieve optimal performance using the promotion pricing service.

Creating of the Offers

For PPS version 1.0 and 2.0: Keep the offers small. During the price calculation, an OPP promotion is validated for consistency. This
is needed because of cache eviction. The time needed for this grows with the number of OPP promotions (not considering the assigned
business units/locations assigned to the offer version). An offer with thousands of assigned articles may lead to memory and runtime
issues. Try to split one large offer into several smaller ones.

Configuration properties defined in other modules with dependencies on this module may be used because if it is locally deployedNOT
in SAP Hybris Commerce this module is loaded at a later date when the other configuration properties are no longer visible.

 Compared to older PPS versions, the consistency check for theFor PPS version 3.0 and higher: Do not keep the offers too small.
entire OPP promotion is not required for the price calculation. Therefore, OPP promotions with many promotional rules (mapped from
offers with many offer terms) do not impact the performance of the price calculation. However, it is still recommended to make a trade-off
for the size of the offer:

If you maintain many small offers, the size of the offer is dominated by the list of assigned business units. Having the same list of
business units redundantly assigned to many promotions blows up the database and increases the resource consumption during
the replication of OPP promotions.
If you maintain only a few amount of large offers, the probability increases that these offers have to be updated and resent
regularly. In this situation, the replication of a small promotion would be better.

 Each of the product dimensions used within a DDF offer correlates toConsider restricting the set of product dimension types .used
a certain eligibility type within an OPP promotion:

"Product" dimension translates to eligibility type "Item"
"Product Hierarchy Node" dimension translates to eligibility type "Merchandise Category"
"Product Group" dimension translates to eligibility type "Merchandise Set"

Each of these eligibility types must be processed, leading to database calls and entries in caches, increased response time, and
memory consumption. In particular, item and merchandise set eligibilities have a big influence on performance. Since merchandise
set eligibilities offer superior flexibility compared to item eligibilities and merchandise category eligibilities, it might be an option to
always maintain offers for product groups. How you deactivate the processing of certain eligibilities is described in the SDK for the
promotion calculation engine.

Distributing of the Data

 This increases the performance of reading the data during outboundRestrict the filter criteria for the data as much as possible.
processing and avoids the expensive replication of data not needed on the receiver side.

. This delays the transfer of an active OPP promotion so that changes to it beforeConsider the usage of the filter "Lead time in days"
it actually becomes effective do not need to be transferred again. This reduces the amount of transferred data.

Client Side (Price Calculation)

Consider keeping regular prices that were calculated before and provide them with subsequent requests. Note that this has
consequences for the overall behavior - a regular price of a product in a basket would not change any more. Whether this is desired or
not is a business decision.
Provide only product hierarchy nodes on which it is possible to define promotions within your company. The PPS has to search
for eligibilities for each product hierarchy node provided.

 These cookies hold authentication-related information. If the received cookies are notAccept and send cookies of the central PPS.
sent back to the PPS, each request requires a complete authentication.

. Depending on the network and client CPU speed, this may lead to fasterConsider compression of the request sent to the PPS
end-to-end times. In the case of small shopping carts, the effect of this is limited.

 The PPS response is compressed by default. In the case of very fast networkConsider deactivation of the response compression.
connections, it may be faster to deactivate the response compression.

If an ABAP system is the PPS client, the last three settings can be configured for the corresponding RFC destination:

Client Side (Data Replication)

 When you replicate regular prices using parallel processing, the prices may be sent faster than they can beDo not flood the PPS.
processed on the receiver side. When you send large volumes of data this may lead to congestion of the Web server and connection
timeouts. Try to find a balance between the sender and receiver by setting the right number of parallel processes for outbound
processing.

Server Side

Common Rules

 This applies for reading regular prices as well as for finding eligibilities. TheSet the cache for named queries as large as possible.
more query results that can be cached, the less load will be put on the database.

 If you have to save memory and cannot set the cache sizes very high, it is important toKeep an eye on the ratio of the cache sizes.
have a realistic ratio of the sizes for regular price and OPP promotion reference cache. In most real-world scenarios, the ratio between
promotion references and regular prices is about 2:1. This should therefore also be the ratio of the cache sizes (cf. sap.dataaccess-c

 and).ommon.promocachespec sap.dataaccess-common.basepricecachespec
 The longer a query result may stay in the cache, the less often it hasSet the time to live of named query results as long as possible.

to be read again from the database. On the downside, emergency updates (due to wrong prices, for example) will take longer to become
effective since they will be seen only after the time to live within the cache has expired or if the information was evicted from the cache
due to memory shortage.
When using your own database connection pool, make sure the pool size is large enough. To be on the safe side, set the pool to
the same maximum number of threads that may be used by the Web application.

 The log levels "debug" or "trace" should be used only in exceptional cases if something does not work asSet the log level accordingly.
expected.

 UConsider using the bulk access to read regular prices . or eligibilities sing PPS version 2.0 or higher can mean a significant
performance improvement because the bulk access also considers the cache. With PPS version 3.0 or higher, the number of searches
supporting a bulk access has increased:

PPS 2.0 or higher: Regular sales prices. Controlled via configuration parameter sap.client-impl.basepricebulkaccessi
temthreshold
PPS 3.0 or higher: Item eligibilities. Controlled via configuration parameter sap.dataaccess-common.bulkitemelithresho
ld
PPS 3.0 or higher: Merchandise set eligibilities. Controlled via configuration parameter sap.dataaccess-common.bulkmerch
setelithreshold
PPS 3.0.14 or higher: Merchandise hierarchy node eligibilities. Controlled via configuration parameter sap.dataaccess-comm
on.bulkmerchgroupelithreshold

. This keeps the database access times lowRemove obsolete promotions and regular prices from the database on a regular basis
and reduces TCO.

Local-PPS-Specific

. This enables the use of optimized SQL statements.Set the target database platform in the JPA parameters

XSA-Based-PPS-Specific

 Unlike the Web application of the PPS, which maintains a thread pool internally, the application routerScale the application router.
always runs in a single thread. This may become a bottleneck if the load is increased. Therefore, use the command to providexs scale
enough instances of the application. As a starting point, choose 1 application router instance per 10 tomcat threads.

 .Log failed login attempts only As of with XSA version 1.0.88, it is possible to configure the audit log to create log entries for failed login
attempts only. This considerably reduces the amount of entries and improves performance under high load. Enabling the audit log to
consider only failed attempts is done in the MTAEXT file as follows:

- name: ppservice-webapp-central
 parameters:
 memory: 4096M
 properties:
 DISABLE_SUCCESSFUL_LOGIN_AUDIT_LOG: "true"

Database Side
 Proper indexes are crucial for fast access times. Since the choice of indexes heavily dependsCheck the database indexes regularly.

on the database platform and the content of the database tables, it is not possible to give precise recommendation here.
Example: When you use product groups (available with PPS 3.0) with a huge amount of product group entries, it is helpful to
create indexes in table for the item or the product hierarchy node identifiers.SAPPSMERCH_SET

 This may sound obvious but is often overlooked. Again, this depends greatly on the databaseSet the right configuration parameters.
platform used. Just as an example: if you are using MySQL, setting the option rewriteBatchedStatements=true will have a large impact
on IDoc inbound processing.

1.

PPS Logging and Tracing

PPS uses SLF4J for logging and tracing. SLF4J provides a facade for writing log messages making the application independent from the actual
logging framework. The logging implementation behind SLF4J a common choice of the runtime environment, for example, within SAPshould be
Hybris Commerce Log4J2 is used. In addition to the SAP created artifacts, PPS makes use of a variety of open source components relying on
different logging frameworks.

To enable consistent logging, you have to do the following:

Spring and the promotion calculation engine (cf. module calcengine-gk) rely on Jakarta Commons Logging (https://commons.apache.org/
). To enable logging via the implementation of SLF4J, jcl-over-slf4j is used.proper/commons-logging/

Google Guava relies on the logger provided via the Java JDK. To enable logging via the implementation of SLF4J, jul-over-slf4j is used.
EclipseLink comes with its own logging. To enable logging via the implementation of SLF4J, class

is used to redirect the output to SLF4J.com.sap.ppengine.dataaccess.common.util.impl.Slf4jSessionLogger

Further information about logging bridges can be found here: http://www.slf4j.org/legacy.html

PPS Authentication

Our application is authenticated in SAP HANA XS Advanced Model (XSA) using the application router. There are two methods of authentication
using an application router:

OAUTH2 authentication
BASIC authentication

The setup of both authentication methods is the same.
 authentication is always active. If you want to use authentication, you can activate this method additionally.OAUTH2 BASIC

For more information about the application router, see the SAP HANA Developer Guide for SAP HANA XS Advanced Model > Chapter 9:
Maintaining XS Advanced Application Routes and Destinations.
For more information about the XSA security concept, see SAP HANA Developer Guide for SAP HANA XS Advanced Model > Chapter 10:
Setting Up Security Artifacts.

Enabling XSA Authentication

This section describes how to enable XSA authentication in a Web application. It is assumed that you are using Maven as your build tool. If you
use another build tool, you have to adjust the corresponding steps accordingly.

The file of your Web application must define a and a that contains the scope Thiweb.xml <login-config> <security-constraint> Calculate.
s scope is needed to use the service and the URL patterns that are to be protected.

When writing own log messages, use SLF4J as well. This ensures a fast logging and consistent configuration, also for future
deployment options where a different logging implementation might be used.

Due to the delegation of commons-logging and the native Java logging API to SLF4J, these frameworks cannot be used as logging
implementation, since this would result in an infinite loop.

https://commons.apache.org/proper/commons-logging/
https://commons.apache.org/proper/commons-logging/
http://www.slf4j.org/legacy.html

1.

2.

web.xml

<login-config>
 <auth-method>XSUAA</auth-method>
 </login-config>
 <security-constraint>
 <display-name>SecurityConstraint</display-name>
 <web-resource-collection>
 <web-resource-name>WRCollection</web-resource-name>
 <url-pattern>/restapi/*</url-pattern>
 <url-pattern>/restapi</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Calculate</role-name>
 </auth-constraint>
 </security-constraint>

XSA applications are expected to have a Web part and a back-end part. The Web part contains all the UI stuff (static content) and also
the authentication and redirection task. The back-end part contains the business logic. Authentication and redirection is executed with the
application router, which is an XSA feature. As the PPS does not need a UI, our Web part consists only of the application router part.

The application router function is configured in a file called package.json. This file defines the start script and the version of the
application router. It is located in Maven module ppservice-approuter (Web folder).

package.json

{
 "name": "ppengine-approuter",
 "dependencies": {
 "approuter": "2.3.0"
 },
 "scripts": {
 "start": "node node_modules/approuter/approuter.js"
 }
}

To redirect incoming requests correctly, our application router needs routes to be defined in the file xs-app.json. This file is also
located in Maven module ppservice-approuter (Web folder).

You need at least version 1.6.3 to configure the application router function.

2.

3.

xs-app.json

{
 "routes": [
 {
 "source": "/restapi",
 "destination": "java",
 "authenticationType": "basic",
 "csrfProtection": false,
 "scope": "$XSAPPNAME.Calculate"
 },
 {
 "source": "^/(.*)",
 "localDir": "resources"
 }
]
}

In this example, the route to our is the most important. The name of the is . It needs to be aligned withrestapi destination java
the corresponding destination in the manifest file. The is set to . With this parameter you can, forauthenticationType basic
example, specify that basic authentication should also be supported). is disabled and the for our webapp iscsrfProtection scope
set.

Since the PPS does not need a UI, the file is just an empty HTML page. The is called after a successfulindex.html index.html
login (only in the case of authentication).OAUTH
This file is also located in Maven module (folder).ppservice-approuter web/resources

index.html

<!DOCTYPE HTML>
<html>
 <head>
 <title>ppservice-approuter</title>
 </head>
 <body>
 </body>
</html>

To deploy your application router and your Web application, you need to create the following files:

assembly.xml

<!-- Artifact: assembly @Copyright (c) 2016, SAP SE, Germany, All
rights
 reserved. -->
<assembly
 xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembl
y/1.1.3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-p
lugin/assembly/1.1.3 http://maven.apache.org/xsd/assembly-1.1.3.xsd">
 <id>mta</id>
 <formats>

3.

 <format>jar</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <files>
 <file>
 <source>./mtad.yaml</source>
 <outputDirectory>META-INF</outputDirectory>
 </file>
 <file>
 <source>./xs-security.json</source>
 <outputDirectory>.</outputDirectory>
 </file>
 </files>
 <fileSets>
 <fileSet>
 <directory>../ppservice-approuter/web</directory>
 <outputDirectory>web</outputDirectory>
 <excludes>
 <exclude>pom.xml</exclude>
 </excludes>
 </fileSet>
 </fileSets>
 <dependencySets>
 <dependencySet>
 <includes>

<include>com.sap.retail.ppservice:ppservice-webapp-central</include>
 </includes>
 <outputDirectory>/</outputDirectory>

<outputFileNameMapping>ppservice-webapp-central.war</outputFileNameMa
pping>
 </dependencySet>
 <dependencySet>
 <includes>
 <include>*:sources</include>
 </includes>
 <outputDirectory>src</outputDirectory>
 </dependencySet>
 <dependencySet>
 <includes>
 <include>*:javadoc</include>
 </includes>
 <outputDirectory>javadoc</outputDirectory>

3.

 </dependencySet>
 </dependencySets>
</assembly>

The file contains the linking of the different files that are needed for the deployment and the dependency to the webapp.assembly.xml

mtad.yaml

_schema-version: "2.0.0"
ID: com.sap.retail.ppservice.XSAC_OPP_PPS
version: 1.0.0
modules:
 - name: ppservice-approuter
 type: javascript.nodejs
 path: ./web
 requires:
 - name: ppServiceUaa
 - name: java
 group: destinations
 properties:
 name: java
 url: ~{url}
 forwardAuthToken: true

 - name: ppservice-webapp-central
 type: java.tomcat
 path: ppservice-webapp-central.war
 properties:
 JBP_CONFIG_RESOURCE_CONFIGURATION:
 JBP_CONFIG_JAVA_OPTS:
 provides:
 - name: java
 properties:
 url: "${default-url}"
 requires:
 - name: ppeHana
 - name: ppServiceUaa

resources:
 - name: ppeHana
 type: org.cloudfoundry.user-provided-service

 - name: ppServiceUaa
 type: com.sap.xs.uaa-space
 parameters:
 config_path: xs-security.json

The file contains both modules (approuter and webapp) and the resources (only services).mtad.yaml

3.

SL_MANIFEST.xml

<!--
Artifact: SL_MANIFEST
@Copyright (c) 2016, SAP SE, Germany, All rights reserved.
-->
<software-component-version formatVersion="1.0" schemaVersion="1.0">
 <software-component-version-key>
 <PPMS-ID>73554900100200005395</PPMS-ID>
 <name>XSAC_OPP_PPS</name> <!--change also in
mtad.yaml-->
 <version>1</version>
 <vendor>sap.com</vendor>
 </software-component-version-key>
 <caption>XSAC_OPP_PPS 1</caption>
 <sp>
 <sp-key>
 <name>SP000</name>
 <sp-level>000</sp-level>
 <vendor>sap.com</vendor>
 </sp-key>
 <patch-level>0</patch-level>
 <sp-caption>SP000 for XSAC_OPP_PPS 1</sp-caption>
 </sp>
 <runtime-type>XSART</runtime-type>
</software-component-version>

The file contains only some naming and version information.SL_MANIFEST.xml

sap-xsac-opp-pps pom.xml

<?xml version="1.0"?>
<!-- Artifact: pom @Copyright (c) 2016, SAP SE, Germany, All rights
reserved. -->
<project
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>xsac-pps-parent</artifactId>
 <version>1.0.0</version>
 </parent>
 <artifactId>sap-xsac-opp-pps</artifactId>
 <name>sap-xsac-opp-pps</name>
 <packaging>pom</packaging>
 <url>http://sap.com</url>
 <dependencies>
 <dependency>

3.

 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppservice-webapp-central</artifactId>
 <version>${project.version}</version>
 <type>war</type>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppservice-approuter</artifactId>
 <version>${project.version}</version>
 <type>pom</type>
 </dependency>
 <!-- Set dependency to Source JARs. Unfortunately they seem to
be not transitive -->
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-core</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-client-impl</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-dataaccess-interface</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-dataaccess-common</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-jackson</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-restapi</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-client-interface</artifactId>
 <version>${version.pps}</version>

3.

 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-psi-sap</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-core</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-dataaccess-sap</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>

 <!-- Set dependency to JavaDoc JARs. Unfortunately they seem
to be not transitive -->
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-core</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-client-impl</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-dataaccess-interface</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-dataaccess-common</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-jackson</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>

3.

 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-restapi</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-client-interface</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-psi-sap</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-core</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-dataaccess-sap</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>

 </dependencies>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptors>
 <descriptor>assembly.xml</descriptor>
 </descriptors>
 </configuration>
 <executions>
 <execution>
 <id>assemble-mta-archive</id>
 <phase>prepare-package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <archive>

<addMavenDescriptor>false</addMavenDescriptor>
 <manifest>

3.

<addDefaultImplementationEntries>false</addDefaultImplementationEntri
es>

<addDefaultSpecificationEntries>false</addDefaultSpecificationEntries>
 </manifest>
 <manifestSections>
 <manifestSection>
 <name>web/</name>
 <manifestEntries>

<Content-Type>text/directory</Content-Type>

<MTA-Module>ppservice-approuter</MTA-Module>
 </manifestEntries>
 </manifestSection>
 <manifestSection>

<name>ppservice-webapp-central.war</name>
 <manifestEntries>

<Content-Type>application/zip</Content-Type>

<MTA-Module>ppservice-webapp-central</MTA-Module>
 </manifestEntries>
 </manifestSection>
 <manifestSection>
 <name>xs-security.json</name>
 <manifestEntries>

<Content-Type>application/json</Content-Type>

<MTA-Resource>ppServiceUaa</MTA-Resource>
 </manifestEntries>
 </manifestSection>
 <manifestSection>

<name>META-INF/mtad.yaml</name>
 <manifestEntries>

<Content-Type>text/plain</Content-Type>
 </manifestEntries>
 </manifestSection>
 </manifestSections>
 </archive>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>${version.maven.antrun}</version>
 <executions>

3.

 <execution>
 <id>filter-metadata</id>
 <phase>none</phase>
 </execution>
 <execution>
 <id>copy-jar-to-mtar</id>
 <phase>package</phase>
 <goals>
 <goal>run</goal>
 </goals>
 <configuration>
 <target>
 <copy

file="${project.build.directory}/sap-xsac-opp-pps-${project.version}-
mta.jar"

tofile="${project.build.directory}/sap-xsac-opp-pps-${project.version
}.mtar" />
 </target>
 </configuration>
 </execution>
 <execution>
 <id>copy-SL_MANIFEST.XML</id>
 <phase>prepare-package</phase>
 <goals>
 <goal>run</goal>
 </goals>
 <configuration>
 <target>
 <copy
file="${basedir}/SL_MANIFEST.XML"
tofile="${project.build.directory}/SL_MANIFEST.XML" />
 </target>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>com.sap.lm.sl.alm.prod.assembler</groupId>

<artifactId>alm-prod-assembler-maven-plugin</artifactId>
 <version>${version.maven.alm.assembler}</version>
 <configuration>
 <mtaSourceDirs>
 <param>${project.build.directory}</param>
 </mtaSourceDirs>
 <targetDir>${project.build.directory}</targetDir>

<resultZip>${project.build.directory}/sap-xsac-opp-pps-${project.vers
ion}.zip</resultZip>
 <overwrite>true</overwrite>
 </configuration>

3.

 <executions>
 <execution>
 <id>create-SCA</id>
 <phase>package</phase>
 <goals>
 <goal>assemble</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <executions>
 <execution>
 <id>attach-distributions</id>
 <phase>verify</phase>
 <goals>
 <goal>attach-artifact</goal>
 </goals>
 <configuration>
 <artifacts>
 <artifact>

<file>${project.build.directory}/sap-xsac-opp-pps-${project.version}.
mtar</file>
 <type>mtar</type>

 </artifact>
 <artifact>

<file>${project.build.directory}/XSACOPPPPS${version.software.compone
nt}.ZIP</file>
 <type>zip</type>
 </artifact>
 </artifacts>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

3.

4.

</project>

The block in this pom file ensures the creation of the MTA and SCV files. All these files are located in Maven module <build> sap-xsac-o
 (directly under the root folder).pp-pps

A file is needed to define the , and of our application. This can be done with a file called scopes attributes role-templates xs-security.json
:. This file is also located directly under Maven module , and could look as followssap-xsac-opp-pps

xs-security.json

{
 "xsappname" : "ppservice-webapp-central",
 "scopes" : [{
 "name" : "$XSAPPNAME.Calculate",
 "description" : "calculate" }
],
 "role-templates": [{
 "name" : "PPE_ROLE_TEMPLATE",
 "description" : "PPE Role Template",
 "scope-references" : [
 "$XSAPPNAME.Calculate"
]
 }
]
}

In this example, one and one are defined. The scope is checked by the application router and in the file.role-template scope web.xml

Price and Promotion Repository

This chapter describes how the price and promotion repository () is PPR realized.

Overview

The effective sales price is calculated by the promotion pricing service. This service uses a promotion and provides ancalculation engine
interface (client API) to request a price calculation and an interface to read the data from the database (data access API). The data access API
reads price-relevant data in an ARTS-like format. Therefore, we can speak of price rules that calculate the effective sales price. The price rules
are maintained based on the DDF offer model that is currently included only in SAP Customer Activity Repository.

As the promotion needs the data delivered in an ARTS-like format, the DDF offer has to be translated into this ARTS-likecalculation engine
format and the translated price rule has to be stored in the OPP promotion.

The following sections give an overview of the modeling of an OPP promotion and the transformation of a DDF offer into an OPP promotion.

Modeling of OPP Promotions

In the OPP promotion, the entity represents the root entity. This entity consists of status information, validity, DDF offer ID, and others.Promotion
A language-dependent promotion description is assigned to each OPP promotion in the entity. At least one business unitPromotionText
is assigned in the entity. BusinessUnitAssignment Contains the DDF offer terms for product groups, the several items or product hierarchy
nodes assigned to the product groups are stored as subentity to the in the entity.Promotion MerchandiseSet

An OPP promotion can have one or more promotion derivation rules that are independent of each other. For the customer who triggers the
promotion, these promotion derivation rules represent the individual Therefore, each has one or morereward. PromotionPriceDerivationRule
triggers () and one . The is effective if all assignedPriceDerivationRuleEligibilities PriceDerivationRule PromotionPriceDerivationRule
triggers are fulfilled. The following triggers are supported:

Trigger Description

ItemPriceDerivationRuleEligibility Is triggered if the specified item (can also include the specified quantity or unit
of measurement) is in the
shopping cart.

MerchandiseHierarchyPriceDerivationRuleEligibility Is triggered if items from the specified merchandise group or article hierarchy
node are in the shopping cart.

The standard delivery supports two types of merchandise structures:

Retailer's Merchandise Category Hierarchy
Retailer's Article Hierarchy

TotalPurchaseMarketBasketPriceDerivationRuleEligibility Is triggered if the value of the shopping cart exceeds the specified threshold.

CouponPriceDerivationRuleEligibility Is triggered if the specified coupon number is recorded in a sale.

CustomerPriceDerivationRuleEligibility This entity associates a price derivation rule with a customer group.

The customer card is the only condition in the DDF offer that is supported for
the identification of a customer group. Therefore, the customer card type from
the DDF,

such as "Gold Card", is used as the customer group ID with OPP in the
standard delivery.

Individual card numbers are not supported.

ManualPriceDerivationRuleEligibility Is triggered if a manual promotion is coming from the client, for example, by
pressing a special key at the cash register.

The DDF incentive concept is used to specify the manual promotion in the
DDF offer.

For the incentive type , you can use , or Manual Promotions FreeText Yes N
 for .o Product is Required

If a product identifier is specified in the offer for the manual promotion, this
product identifier and the incentive class identifier represent the manual
promotion.
If there is no product identifier specified in the offer, the incentive type code of
the incentive and the incentive class identifier represent the manual

 promotion.

CombinationPriceDerivationRuleEligibility Is triggered the logical combination of its child triggers if (Logic AND, Logic
 is fulfilled.OR)

All eligibilities described above can be child eligibilities of this combination
eligibility.

This trigger can be used to create eligibility trees.

MerchandiseSetPriceDerivationRuleEligibility Is triggered if the specified item is in the product group that is modeled as the
merchandise set in the PPR.

The specified item is in the merchandise set and valid as a trigger for the
associated price derivation rule when:

The item itself or one of the product hierarchy node where the item is
assigned is included in the product group
and
The item or one of the product hierarchy node where the item is
assigned is not excluded in the product group

The standard delivery supports two types of merchandise structures:

Retailer's Merchandise Category Hierarchy
Retailer's Article Hierarchy

Exactly one , The following specific PriceDerivationRule representing the reward, is assigned to a .PromotionPriceDerivationRule PriceDerivat
 are supported:ionRules

Reward Description

ItemPriceDerivationRule Denotes discounts for the items on the trigger side.

MixAndMatchPriceDerivationRule Allows more complex discounting.

A refers to a set of MixAndMatchPriceDerivationRule MixAndMatchPriceDeriva
tionItems

that can be logically linked (AND/OR/ SET).

A specifies the MixAndMatchPriceDerivationItem PromotionalProduct

(either a single product or a merchandise hierarchy group) for which the discount is
to be applied,
and the discount as such.

ExternalActionPriceDerivationRule This kind of does not define a specific reward or discount, butPriceDerivationRule
it

contains information that is to be processed by the client of the promotion pricing
service (PPS).

The DDF incentives are used to provide information to the caller in a generic way.

The promotion pricing service returns the information about the external action to
the client.

An refers to a set of ExternalActionPriceDerivationRule ExternalActionRulePar
ameters

containing simple Key/Value pairs that can be interpreted by the caller.

In the standard shipment, the following language-independent attributes of an
incentive

are provided (if filled) as : ExternalActionRuleParameters

Product ID/free style ID
Incentive quantity
Incentive value
Incentive value adjustment

Additionally, the refers to a set of ExternalActionPriceDerivationRule ExternalAc
tionRuleTexts

containing the language-dependent texts for the external action.

In the standard shipment, the attribute Incentive Type description

is provided as ExternalActionRuleTexts.

ManualPriceDerivationRule This type of specifies the item discount on trigger side,PriceDerivationRule
or determines that the item discount comes from the client.

Keys and Foreign Keys

Unique identifiers (IDs) are generated for the promotion-related entities during the mapping. A new number range object is used for /ROP/PROID
this. Additionally, the identifier for the DDF offer is also in the entity. Promotion

Eligibilities can be modeled as condition trees. Therefore, all eligibility entities have also a and a ParentPriceDerivationRuleEligibilityID RootPri
 as a foreign key. In an eligibility tree, the refers to the key of the parentceDerivationRuleEligibilityID ParentPriceDerivationRuleEligibilityID

node and the to the key of the root node. If the condition for the is not aRootPriceDerivationRuleEligibilityID PromotionPriceDerivationRule
tree, the and the are identical to the ParentPriceDerivationRuleEligibilityID RootPriceDerivationRuleEligibilityID PriceDerivationRuleEligibi

.lityID

As the provides the association between the eligibilities and price derivation rule, the PromotionPriceDerivationRule PriceDerivationRuleEligi
 and the are foreign keys in this entity. For eligibility trees, the refers to the keybilityID PriceDerivationRuleID PriceDerivationRuleEligibilityID

of the root node.

Validity Period for the OPP Promotion

The validity period for an OPP promotion (and) is mapped EffectiveDate ExpiryDate from the DDF offer. This date is interpreted as the local time
of the client that is using the OPP promotion.

Database Tables

The OPP promotions are stored in the following database tables in SAP Customer Activity Repository:

/ROP/PROMOTION
A table for promotion-relevant header data. A promotion can have one or more promotion price derivation rules.
/ROP/PROMO_RULE
A table for promotion price derivation rules that provides the association between eligibility and price derivation rule to determine the price
modification.
/ROP/ELIGIBILITY
A table for all data that is relevant for the eligibilities of the promotion.
/ROP/PRICE_RULE
A table for price derivation rules that represent the reward for the customer at the point of sale.
/ROP/MAM_ITEM
A table for mix-and match price derivation items that specifies matching items that may be used to trigger the price derivation rule.
/ROP/PROMO_BU
A table for the business units for which the promotion is relevant.
/ROP/PROMO_TEXT
A table for the language-dependent texts of a promotion.
/ROP/EX_ACT_PARM
A table for the language-independent attributes of an external action.
/ROP/EX_ACT_TEXT
A table for the language-dependent texts of an external action.
/ROP/MERCH_SET
A table to store the entries of the merchandise sets (product groups) within the promotion.

All ABAP data elements referring to ABAP domain will be mapped to Java Long values in the promotion pricing service. In/ROP/LONG
addition, the database type BIGINT will be used by default . Therefore, values exceeding the range ofif the service is deployed locally
Java Long must be avoided.

This is particularly important when defining the number range intervals Furthermore, this isfor IDs of the promotion and other entities.
important for the control parameters and of a promotion price derivation rule as these parameters refer to thissequence resolution
domain. This means they with values outside of the Java Long range. The following tables show the difference incannot be provided
the value ranges:

Type From To

java.lang.Long 9,223,372,036,854,775,808 9,223,372,036,854,775,807

/ROP/LONG -9,999,999,999,999,999,999 9,999,999,999,999,999,999

Handling of Amounts

In the database tables of an ABAP system, amounts are stored in a special format. In this format, amounts always have 2 decimals, regardless of
whether this number of decimals is allowed for the corresponding currency of the stored amount. Consider the following examples (comma ','
used as thousands separator, dot '.' used as decimal mark):

Currency Decimals Amount Value stored on DB (using a CURR 19,5 field)

EUR (Euro) 2 1234.56€ 1,234.56000

JPY (Japanese Yen) 0 ¥1234 12.34000

BHD (Bahrain Dinar) 3 1234.567 BD 12,345.67000

The correct display of the amounts within the using ABAP application is usually achieved via conversion exits on the UI level - within the program
logic of ABAP application the database format is used. However, in the context of OPP, this storage of amounts has the following consequences if
currencies with other than 2 decimals are used:

Amounts sent via IDocs must be converted into an external format having the decimal mark at the correct position (for regular prices as
well as promotional entities).
Java applications directly accessing the database of the central Price and Promotion Repository must be aware of this format and must
perform a scaling of values prior to the calculation. How this is done is explained in the documentation of the PPS module
dataaccess-common.
ABAP applications receiving amounts in external format having the decimal place at the right position (either within IDocs or when
requesting the price calculation from a PPS) must convert between the ABAP internal representation of amount and the external format.
In particular, this is the case for the integration of the PPS based price calculation into the ERP sales order processing.

Note that local copies of the Price and Promotion Repository exclusively used by the Java based PPS store amounts in the "natural" format,
having the decimal place at the correct position. This is e.g. the case for the local PPS integrated into SAP Hybris Commerce.

The decimals of a currency are stored in an ABAP system in database table , containing only those currencies having not 2 decimals. TheTCURX
number of decimals also influences the rounding control data of an OPP promotion. By default discounts are to be rounded to the smallest
amount which can be expressed in the corresponding currency.

Transformation from DDF offers into OPP Promotion

Technical Information

The offer transformation transforms a DDF offer into an OPP promotion. This promotion is then saved in the . price and promotion repository This
transformation is performed automatically during the creation and update as well as during the preceding validation of a DDF offer.

During the validation of the offer it is checked if the offer can be transformed into an OPP promotion. This depends on the offer types and the
combination of offer features that are supported with OPP. The validation of the transformation of a DDF offer into an OPP promotion is triggered
if the status of the offer is switched to a status that is relevant for transformation. The following table shows which offer status translate to which
status of an OPP promotion.

DDF Offer Status OPP Promotion Status Comment

In Process Inactive OPP promotion will be written with this status only if it was previously in status "Active"

Recommended Inactive OPP promotion will be written with this status only if it was previously in status "Active"

Approved Active

Released Active

Cancelled Inactive OPP promotion will be written with this status only if it was previously in status "Active"

<Logically Deleted> Cancelled Actually not an offer status

The use of the offer statuses "Released" and "Cancelled" is controlled via a Customizing switch located in Customizing under Cross-Application

In this chapter, the term reflects the result of the offer classification as, for example, .offer classes simple discount offer

1.

2.

3.

. The name of the switch isComponents > Demand Data Foundation > Data Maintenance > Offer > Maintain Indicators for Offer Calculations
"Offer Status Management". For more information about offer status management, see the application help of SAP Promotion Management on
SAP Help Portal at > > > > > https://help.sap.com/viewer/p/CARAB <Version> Application Help SAP Promotion Management Promotion Planning

. The mapping of status values is independent of this Customizing switch. The class controls which values ofMaintain Offers /ROP/CL_CONFIG
the offer status are translated into status "Active" for an OPP promotion.

You can also manually transform DDF offers using program in SAP Customer Activity Repository. This program /ROP/R_OFFER_TRANSFORM
reads all DDF offers with the relevant status according to the selection criteria and validates and converts the DDF offers into OPP promotions.
Afterwards, it saves the OPP promotions in the SAP Customer Activity database for reuse. If an offer cannot be transformed, the other offers will
still be processed using resumable exceptions. The following classes and BAdIs are relevant for the transformation of DDF offers into OPP
promotions:

/ROP/CL_OFFER_MAPPER is the entry point for the offer transformation. It expects a list of DDF offers and returns a list of OPP
promotions. This class implements both the interface for the mapping and the validation of an offer.
The mapping logic is realized by calling a number of BAdIs that are contained in enhancement spot . These/ROP/OFFER_MAPPING
BAdIs offer (but do not enforce) a three-step process to :

Offer classification (mandatory)
The offer is analyzed and classified in this step. For example, Only BUY terms linked with OR.
This step results in an offer classification, an offer classification group, and information about whether a promotion recipe has to
be created. The corresponding BAdI is . OPP offers an implementation using the class /ROP/OFFER_CLASSIFIER /ROP/CL_OF

.FER_CLASSIFIER
Creation of a promotion recipe (optional)
A recipe can be created for a given classified offer in this step. A recipe is a structure () with/ROP/BL_PROMO_RECIPE_STY
detailed information about how to create the OPP promotions in step 3. The recipe determines the transformation from a
high-level perspective.
The following main instructions for the mapping are offered in the promotion recipe:

How many promotion rules are to be created
Which types of price rules are to be created
Which offer terms are to be used to create eligibility trees and how these trees are to be combined
Which offer terms are to be used to create mix-and-match items and how these items are to be combined

 The corresponding BAdI is . This BAdI has the classification group determined in step 1 as/ROP/PROMO_RECIPE_BUILDER a
filter. We offer one implementation using the class ./ROP/CL_PROMO_RECIPE_BUILDER
Building the promotion (mandatory)

the offer (and optionally the recipe determined in step 2) are used to create the promotion. If you are using theIn this step,
recipe, the implementation can be done in a generic and straightforward way. The corresponding BAdI /ROP/PROMO_BUILDER
has the classification group determined in step 1 as a filter. We offer one implementation using the class /ROP/CL_PROMO_BUI

.LDER
All three BAdIs have multiple implementations. In addition, the sequence in which the implementations are executed can be determined.
This is done by implementing the BAdI for all BAdIs of the three-step process and by offering an execution sequenceBADI_SORTER
number that is specified for each BAdI implementation. SAP implementations have the sequence number 0.
This means that you are free to add preprocessing (sequence number < 0) and postprocessing (sequence number > 0) steps for the SAP
implementations. These SAP implementations can be deactivated.

For more information about the offer transformation, see the corresponding BAdI documentation for enhancement spot /ROP/OFFER_MAPPING.

Change pointers can be created when DDF offers are transformed into OPP promotions. These change pointers are used during the delta
replication of the data replication framework (DRF). The change pointers are created using an implementation of the BAdI /ROP/PROMO_CHAN

 in enhancement spot . The standard SAP system offers an implementation of this BAdI using the class GE_POINTER /ROP/PROMOTION_DB /R
This class creates master data governance (MDG) change pointers based on the business object OP/CL_PROMO_OUT_MDG_CP. ROP_PROM

. You can use this BAdI to modify the pointer creation or implement your own pointer creation. If you do not want to use the DRF changeO
message, or if no MDG change pointers are to be created, you can deactivate the BAdI implementation.

For more information about change pointers for the OPP promotion outbound, see the corresponding BAdI documentation for enhancement spot /
ROP/PROMOTION_DB.

How We Transform DDF Offers into OPP Promotions

A DDF offer can have one or more BUY terms and no GET term. However, a BUY term in an offer is mandatory. A combination of BUY terms and
one or more GET terms is possible. GET or BUY terms are logically linked with AND or OR. If terms linked with OR means that at least one term
must match the basket and AND means that all terms must match the shopping cart (means all terms of the offer must be in the cart to get the

 A discount can be defined on the BUY side and on the GET side of an offer. The GET lines are relevant only if the BUY lines are filled.reward).
However, the discounts of the BUY side become effective even if the GET side has no entries. The prerequisites for getting a reward can also be
defined on the BUY side and on the GET side. Prerequisites are defined on the GET side if there are terms linked with AND on the GET side. To
get the discount, all the products defined in the GET terms have to be in the shopping cart. A DDF offer can also have one or more incentives.
These incentives can have the type and the type . The offers for all incentives supported by the OPP need to be linked withCondition Reward
AND.

The ARTS-like OPP promotion makes a distinction between triggers and rewards. The transformation of offers into OPP promotions means that

https://help.sap.com/viewer/p/CARAB

discounts granted on the offer BUY side are pulled to the ARTS reward side (). Prerequisites defined on the GET side havePriceDerivationRule
to be pulled from the GET (reward) side to the trigger side. Rewards that are independent of each other (such as a reward defined in BUY terms
linked with OR) lead to several .PromotionPriceDerivationRules

To simplify these complex transformation rules, several offer types are classified in offer classes. This classification is done in the BAdI /ROP/OFF
. Based on an offer class, a recipe can be built that contains the construction information to create a promotion. This recipe isER_CLASSIFIER

built in the BAdI /ROP/PROMO_RECIPE_BUILDER. Based on the offer class and the construction recipe, the mapping can be done in a generic
 These BAdIs are called during the validation andstraightforward way with the BAdI that builds the promotion. /ROP/PROMO_BUILDER

transformation of a DDF offer into an OPP promotion.

Transformation of Simple Discount Offers

A simple discount is an offer without get terms that can have one or multiple buy terms with a defined discount. If this offer type has multiple buy
terms, they are linked with Or and do not depend on each other. This offer type can be combined with incentives of class types Condition and
Reward.

This offer type is a separate offer class. The SAP recipe for this offer class defines that one is to be created forPromotionPriceDerivationRule
each BUY term, and the assigned to the are of type .PriceDerivationRules PromotionPriceDerivationRules ItemPriceDerivationRule

Examples

The following examples for simple discount offers and tables show how these offers are transformed into OPP promotions. The examples are
restricted to the most relevant database fields. Fields that are always filled with a default value are listed separately in the section .Default Values

Example 1: Buy one piece of product A for a discount of 10%, or buy three pieces of product B for a discount of 20%

This offer is translated to the following independent for one promotion per product:PromotionPriceDerivationRules

A rule that sets a discount for each product A in the shopping cart.
A rule that sets a discount for each three pieces of product B.
In this case, the customer has to purchase at least three pieces of product B (or multiples of three) to receive the discount. After the
multiple of three is reached the remaining items will be sold at the regular price.

The following table shows how this example is translated to the price and promotion repository:

Sequence & Resolution
The OPP promotion data model offers the fields sequence and resolution that control the behavior in the following cases:

Several OPP promotions related to the shopping cart are eligible for the same shopping cart.
Several OPP promotions related to the line items are eligible for the same line item.

In this case, the sequence number determines the order in which the promotion price derivation rules are applied. If the sequence
numbers are the same, only the promotion price derivation rule with the highest resolution number is applied. If the sequence number
and the resolution number are the same, a best price calculation is performed.

Note that there is a strict separation of line item-related price rules and transaction-related price rules. All line item-related price rules
are executed before all transaction-related, in other words the scope of the price rule can be seen as an additional sort criterion to the
sequence numbers.

The sequence and resolution are set in the standard shipment as follows:

The sequence of a promotion price derivation rule is the same as its ID.
Exception: If an offer consists of a BUY and a GET side, two promotion price derivation rules are created, both with the same
sequence.
The resolution of a promotion price derivation rule is set to . 0
Exception: If an offer consists of a BUY and a GET side, two promotion price derivation rules are created. The rule containing
only the terms of the BUY side has the resolution , the rule containing the BUY and GET side has the resolution .0 1

The sequence and resolution can be set for each promotion price derivation rule easily during creation of the promotion recipe.

Handling of regular price and EDLP
Everyday Low Price and do not define a discount. They are used to define a condition (eligibility) to get a reward.Regular Price

The indicator is set to and no is to be set.Enforce Multiple Yes Limit

ENTITY Field Mapping

Promotion

 PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

 ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
= 1IntervalQuantity

 = ACStatusCode

 ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = TPPriceModificationMethodCode
 = 10.000PriceModificationPercent

 = 00DiscountMethodCode

 PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 2
 = 2Sequence
 = 0Resolution

 ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTIThresholdTypeCode
 = 3ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 3IntervalQuantity

 ItemPriceDerivationRule = RBTypeCode
 = POPriceRuleContolCode

PriceModificationMethodCode = TP
 = 20.000PriceModifcationPercent

DiscountMethodCode = 00

Example 2: Buy for at least USD 50 and get a discount value of USD 10 for your shopping cart total

The prerequisite for the transaction is as on theMinimum spend amount modeled TotalPurchaseMarketBasketPriceDerivationRuleEligibility
eligibility side. The discount for the shopping cart is stored in the with a (ItemPriceDerivationRule PriceRuleControlCode SU Transaction

).Discount Calculated After Subtotal

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

TotalPurchaseMarketBasketPriceDerivationRuleEligibility TypeCode = TOTL
 = 50.000TransactionItemTotalRetailTriggerAmount

 = USD CurrencyCode

ItemPriceDerivationRule TypeCode = RB
 = SUPriceRuleControlCode

 = RTPriceModificationMethodCode
= 10.000PriceModificationAmount

DiscountMethodCode = 00

Example 3: Buy for at least USD 50 from merchandise category MC1 and get a discount of 10%

The indicator is set to and is to be set to 1.Enforce Multiple Yes Limit

The prerequisite for the merchandise category is modeled as Minimum spend amount MC1 MerchandiseHierarchyPriceDerivationRuleEligibili
on the eligibility side. The discount is stored in the with a (ty ItemPriceDerivationRule PriceRuleControlCode PO Item Discount Calculated

).After Each Item

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

MerchandiseHierarchyPriceDerivationRuleEligibility TypeCode = MSTR
= 1MerchandiseHierarchyGroupIDQualifier

 = MC1MerchandiseHierarchyGroupID
ThresholdTypeCode = AMTI
ThresholdAmount = 50.000
LimitAmount = 150.000
IntervalAmount = 50.000

 = USDCurrencyCode

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = TPPriceModificationMethodCode
= 10.000PriceModificationPercent

 = 00DiscountMethodCode

Example 4: Buy three products of product group 'Yoghurt' for a discount price of USD 1.33

 The product group 'Yoghurt' has the following components:

 - Merchandise groups MC1 and MC2
 - Item A and Item B are also included

This offer is translated to one PromotionPriceDerivationRule. As the threshold quantity is greater than one, the PromotionPriceDerivationRul
e is considered as only "Shopping Cart" relevant and the corresponding indicator (attribute) is set. ThenotConsideredInLineItemModeFlag
product group is modeled as an eligibility tree with the two merchandise categories and the two products as child eligibilities below the Combinati
onPriceDerivationRuleEligibility that uses the combination code (OR with total quantity)OR . The threshold quantity and the limit information is
also stored in the CombinationPriceDerivationRuleEligibility. The discount is stored in the ItemPriceDerivationRule with a PriceRuleControl
Code PO (Item Discount Calculated After Each Item). Information about the indicator is stored in the Regular Price Only ItemPriceDerivationRul

 (attribute).e noPreviousMonetaryDiscountAllowedFlag

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

= X NotConsideredInLineItemModeFlag

The indicator is set to and the is to be set to 3.Enforce Multiple Yes Limit

Merchandise Hierarchy
A merchandise hierarchy (DDF: product hierarchy) can be an article hierarchy or a merchandise category hierarchy. When replicated
from SAP ERP, an article hierarchy has an alphanumeric indicator that uniquely identifies the article hierarchy. The merchandise
category hierarchy has no such an indicator in SAP ERP. Therefore, the DDF default indicator for the merchandise category
hierarchy is . This value is also mapped to the price and promotion repository in the field an1 MerchandiseHierarchyGroupIDQualifier
d can be used to identify the merchandise category hierarchy. The identifier from SAP ERP is mapped to this field for article hierarchies.

 In this example the Customizing switch for using the enhanced product groups is inactive and so the inclusion of items and
merchandise hierarchy nodes is supported.

The product group 'Yoghurt' consists of a subset of assignments of two merchandise categories and two single products. The Enforce
 indicator is set to indicator is also be set and no is to be set.Multiple Yes, the Regular Price Only Limit

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = ORCombinationCode

 = QUTIThresholdTypeCode
 = 3ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 3IntervalQuantity

 = PCUomCode

MerchandiseHierarchyPriceDerivationRuleEligibility TypeCode = MSTR
= 1MerchandiseHierarchyGroupIDQualifier

 = MC1MerchandiseHierarchyGroupID
 = COMBThresholdTypeCode

MerchandiseHierarchyPriceDerivationRuleEligibility TypeCode = MSTR
= 1MerchandiseHierarchyGroupIDQualifier

 = MC2MerchandiseHierarchyGroupID
 = COMBThresholdTypeCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = PTPriceModificationMethodCode
= 1.33PriceModificationPercent

 = 00DiscountMethodCode
= XNoPreviousMonetaryDiscountAllowedFlag

Example 5: Buy three products of product group 'Yoghurt' for a discount price of USD 1.33

 The product group 'Yoghurt' has the following components:

 - Merchandise group MC1 is included

 - Merchandise group MC2 is excluded

 - Item A and Item B are also included

This offer is translated to one . As the threshold quantity is greater than one, the PromotionPriceDerivationRule PromotionPriceDerivationRul
considered as only "Shopping Cart" relevant and the corresponding indicator (attribute) is set. e is notConsideredInLineItemModeFlag

The product group is modeled as , which contains the threshold values and a reference to theMerchandiseSetPriceDerivationRuleEligibility
MerchandiseSet, which is a subentity to the The components of the product group (items and merchandise hierarchy nodes) arePromotion.
stored in the The consists of a root node with type code . Below this root node, there are the items andMerchandiseSet. MerchandiseSet OPR
merchandise groups modeled as child nodes. The for child nodes marks the node as included, the means theCombination '1' Combination '2'
child node is excluded in the product group. The discount is stored in the with a (ItemPriceDerivationRule PriceRuleControlCode PO Item

 The information about the indicator is stored in the (attribute Discount Calculated After Each Item) Regular Price Only ItemPriceDerivationRule n
).oPreviousMonetaryDiscountAllowedFlag

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion PromotionID = 1

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

= X NotConsideredInLineItemModeFlag

In this example the Customizing switch for using the enhanced product groups is active. The indicator is set to Enforce Multiple Yes, the
indicator is also be set and no is to be set.Regular Price Only Limit

MerchandiseSetPriceDerivationRuleEligibility TypeCode = MSET
 = QUTIThresholdTypeCode

 = 3ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 3IntervalQuantity
 = 123MerchandiseSetID

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = PTPriceModificationMethodCode
= 1.33PriceModificationPercent

 = 00DiscountMethodCode
= XNoPreviousMonetaryDiscountAllowedFlag

MerchandiseSet MerchandiseSetNodeID = 100
 MerchandiseSetID = 123

 = 100ParentMerchSetNodeID
 = 100RootMerchSetNodeID

 = 0Combination
 = OPRTypeCode
 = DFOperation

 = 1PromotionID

MerchandiseSet MerchandiseSetNodeID = 101
 MerchandiseSetID = 123

 ParentMerchSetNodeID = 100
 RootMerchSetNodeID = 100

 Combination = 1
 TypeCode = ITEM

 ItemID = A
 PromotionID = 1

MerchandiseSet MerchandiseSetNodeID = 102
 MerchandiseSetID = 123

 ParentMerchSetNodeID = 100
 RootMerchSetNodeID = 100

 Combination = 1
 TypeCode = ITEM

 ItemID = B
 PromotionID = 1

MerchandiseSet MerchandiseSetNodeID = 103
 MerchandiseSetID = 123

 ParentMerchSetNodeID = 100
 RootMerchSetNodeID = 100

 Combination = 1
 TypeCode = MSTR

 MerchandiseHierarchyGroupID = MC1
 MerchandiseHierarchyGroupIDQualifier = 1

 PromotionID = 1

MerchandiseSet MerchandiseSetNodeID = 104
 MerchandiseSetID = 123

 ParentMerchSetNodeID = 100
 RootMerchSetNodeID = 100

 Combination = 2
 TypeCode = MSTR

 MerchandiseHierarchyGroupID = MC2
 MerchandiseHierarchyGroupIDQualifier = 1

 PromotionID = 1

Transformation of Mix-and-Match Offers

A mix-and-match offer is an offer with buy terms that are linked with And or with get terms. It defines a combination of products and product
counts that results in a customer reward when purchased together.

This reward can affect prices of products that do not trigger this offer type, for example, buy item A and get items B, C or D at 50% off. Items B, C
and D get the reward and item A would be the trigger item. Items B, C and D are linked to the sale of item A. It is also possible to give a discount
on the products that are the trigger, for example, buy product A and B and get product A for a discount of 50%. In both cases, a mix-and-match

offer depends on the content of an entire transaction.

This offer type into three offer classes with different recipes for the promotion building:can be divided

An offer class for offers with buy terms that are linked with AND and without GET terms.
The recipe defines that only one is to be created for all BUY terms. Furthermore, it defines that the PromotionPriceDerivationRule Pric

assigned to the is of type and that all BUY termseDerivationRule PromotionPriceDerivationRule MixAndMatchPriceDerivationRule
are linked with AND on the eligibility side.
An offer class for offers with BUY and GET terms that are linked with AND.
The recipe defines that two are to be created. The first is definedPromotionPriceDerivationRules PromotionPriceDerivationRule
only for the reward on the buy side. Therefore, the assigned to the is of type PriceDerivationRule PromotionPriceDerivationRule MixA

 and all BUY terms with a discount are that are linked with AND. On the eligibilityndMatchPriceDerivationRule MixAndMatchItems
side all BUY terms are also linked with AND. The second is defined for the reward on the GET side.PromotionPriceDerivationRule
The assigned to the is of type and all GETPriceDerivationRule PromotionPriceDerivationRule MixAndMatchPriceDerivationRule
terms with a discount are that are linked with AND. On the eligibility side all BUY and all GET terms are linked withMixAndMatchItems
AND.
An offer class for offers with BUY and GET terms in which the BUY terms are linked with OR and the GET terms are linked with
AND. This means that each BUY term defines a reward, independent of the content of the entire transaction. The reward on the GET side
is given only if all products from the GET side are in the shopping cart and if at least one of the conditions from the buy side is fulfilled.
The recipe defines that one for each BUY term with a discount is to be created and that the PromotionPriceDerivationRule PriceDeriva

 assigned to the is of type Furthermore, a tionRules PromotionPriceDerivationRules ItemPriceDerivationRule. PromotionPriceDeriv
 for the GET terms is be created that refers to an eligibility tree in which all BUY terms are linked with OR and all GET termsationRule

are linked with AND. The linkage between BUY and GET terms is also AND. The assigned to the PriceDerivationRule PromotionPrice
is of type and all GET terms with a discount are linked withDerivationRule MixAndMatchPriceDerivationRule MixAndMatchItems

AND.

Examples

The following section contains some examples for mix-and-match offers and tables that show how these offers are transformed into OPP
promotions.

The mapping examples are restricted to the most relevant database fields. Fields that are always filled with a default value are listed separately.

Example 1: Buy one piece of product A for a discount price of USD 2,99 and buy one piece of product B for a discount of USD 2

The discount for the products is given in this offer only if the two products are purchased together.

This offer is translated to one . The two products are combined with AND as eligibilities and PromotionPriceDerivationRule MixAndMatchPrice
.DerivationItems

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
Sequence = 1
Resolution = 0

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
IntervalQuantity = 1

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 IntervalQuantity = 1

Regular Price and Everday Low Price
The discount types and do not define a discount. They are used to define a condition (eligibility)Everyday Low Price Regular Price only
to get a reward. They will be included in the eligibilities but no will be created for them. MixAndMatchItems

MixAndMatchPriceDerivationRule TypeCode = MM
 = &&CombinationCode

 = POPriceRuleControlCode
DiscountMethodCode = 00

MixAndMatchPriceDerivationItem TypeCode = IT
 = AItemID

 = PSPriceModificationMethodCode
= 2.99NewPriceAmount
 = 1 RequiredQuantity

MixAndMatchPriceDerivationItem TypeCode = IT
 = BItemID

 = RSPriceModificationMethodCode
 = 2.00PriceModificationAmount

 = 1 RequiredQuantity

Example 2: Buy one piece of product A for its regular price and buy one piece of product B for a discount of 10% and you will get one
piece of product A for free

The discount for product B is given in this offer only if at least one piece of product A is purchased. The reward for product A (one piece for free) is
given only if the customer buys at least two pieces of product A and one additional piece of product B.

This offer is translated to the following two independent with the same sequence number but differentPromotionPriceDerivationRules
resolution numbers:

The first rule is for the reward on the buy side. The two products are eligibilities and are combined with AND. The isPriceDerivationRule
of type and the discount for product B is provided as . MixAndMatchPriceDerivationRule MixAndMatchPriceDerivationItem
The second rule is for the reward on the get side. The two products from the BUY terms plus the product from the get side are eligibilities
and are combined with AND. The is of type and product B that has a discountPriceDerivationRule MixAndMatchPriceDerivationRule
on the BUY side and the GET reward for product A as . are provided MixAndMatchPriceDerivationItem

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

MixAndMatchPriceDerivationRule TypeCode = MM
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00 DiscountMethodCode

MixAndMatchPriceDerivationItem TypeCode = IT
 = BItemID

 = RPPriceModificationMethodCode
 = 10.000PriceModificationPercent

 = 1 RequiredQuantity

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 2
 = 1Sequence
 = 1Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

MixAndMatchPriceDerivationRule TypeCode = MM
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00 DiscountMethodCode

MixAndMatchPriceDerivationItem TypeCode = IT
 = AItemID

 = PSPriceModificationMethodCode
= 0.000NewPriceAmount
 = 1 RequiredQuantity

MixAndMatchPriceDerivationItem TypeCode = IT
 = BItemID

 = RPPriceModificationMethodCode
 = 10.000PriceModificationPercent

 = 1 RequiredQuantity

Example 3: Buy for at least USD 50 and you will get product A for free

The discount for product A is given in this offer only if the customer buys for at least USD 50.
This offer translates to one The transaction condition and the item condition are linked with AND as eligibilities PromotionPriceDerivationRule. .
The discount for product A is modeled as .MixAndMatchPriceDerivationItem

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

 PromotionPriceDerivationRule = 1PromotionPriceDerivationRuleID
 = 1Sequence
 = 0Resolution

 CombinationPriceDerivationRuleEligibility = COMBTypeCode
 = &&CombinationCode

 TotalPurchaseMarketBasketPriceDerivationRuleEligibility = TOTLTypeCode
= 50.000TransactionItemTotalRetailTriggerAmount

 = USD CurrencyCode

The Enforce Multiple flag is to be set to YES and the limit must be 1.

 ItemPriceDerivationRuleEligibility = ITEMTypeCode
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = LimitQuantity 1
 = 1 IntervalQuantity

 MixAndMatchPriceDerivationRule = MMTypeCode
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00DiscountMethodCode

 MixAndMatchPriceDerivationItem = ITTypeCode
 = AItemID

 = PSPriceModificationMethodCode
= 0,000NewPriceAmount
 = 1 RequiredQuantity

Example 4: Buy three products of product group 'Yoghurt' and get one product of product group 'Yoghurt' for free.
 The product group 'Yoghurt' has the following components:

 - Merchandise group MC1 is included

 - Merchandise group MC2 is excluded

 - Item A and Item B are also included

This offer is translated to one the Buy and the Get condition are linked with AND as eligibilities PromotionPriceDerivationRule, MerchandiseSe
, which contains the threshold values and a reference to the , which is a subentity to the tPriceDerivationRuleEligibility MerchandiseSet Promot

ion.

As the threshold quantity is greater than one, the is considered as only "Shopping Cart" relevant and thePromotionPriceDerivationRule
corresponding indicator (attribute) is set. notConsideredInLineItemModeFlag

The components of the product group (items and merchandise hierarchy nodes) are stored in the The consistMerchandiseSet. MerchandiseSet
s of a root node with type code . Below this root node are the items and merchandise groups modeled as child nodes. The foOPR Combination '1'
r child nodes marks the node as included, the means the child node is excluded in the product group. The discount is modeled as Combination '2'

. This contains again a reference to the the typeMixAndMatchPriceDerivationItem MixAndMatchPriceDerivationItem MerchandiseSet,
code for the item is (product group).PG

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion = 1PromotionID

PromotionPriceDerivationRule = 1PromotionPriceDerivationRuleID
 = 1Sequence
 = 0Resolution

= X NotConsideredInLineItemModeFlag

CombinationPriceDerivationRuleEligibility = COMBTypeCode
 = &&CombinationCode

MerchandiseSetPriceDerivationRuleEligibility = MSETTypeCode
 = QUTIThresholdTypeCode

 = 3ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 3IntervalQuantity
 = 123MerchandiseSetID

In this example the Customizing switch for using the enhanced product groups is active. The indicator is set to andEnforce Multiple Yes
no is to be set.Limit

MerchandiseSetPriceDerivationRuleEligibility = MSETTypeCode
 = QUTIThresholdTypeCode

 = 3ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 3IntervalQuantity
 = 123MerchandiseSetID

MixAndMatchPriceDerivationRule = MMTypeCode
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00DiscountMethodCode

MixAndMatchPriceDerivationItem = PGTypeCode
 = PSPriceModificationMethodCode

= 0,000NewPriceAmount
 = 1 RequiredQuantity
= 123MerchandiseSetID

MerchandiseSet = 100MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100ParentMerchSetNodeID
 = 100RootMerchSetNodeID

 = 0Combination
 = OPRTypeCode
 = DFOperation

 = 1PromotionID

MerchandiseSet = 101 MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100 ParentMerchSetNodeID
 = 100 RootMerchSetNodeID

 = 1 Combination
 = ITEM TypeCode

 = A ItemID
 = 1PromotionID

MerchandiseSet = 102 MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100 ParentMerchSetNodeID
 = 100 RootMerchSetNodeID

 = 1 Combination
 = ITEM TypeCode

 = B ItemID
 = 1PromotionID

MerchandiseSet = 103 MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100 ParentMerchSetNodeID
 = 100 RootMerchSetNodeID

 = 1 Combination
 = MSTR TypeCode

 = MC1 MerchandiseHierarchyGroupID
 = 1MerchandiseHierarchyGroupIDQualifier

 = 1PromotionID

MerchandiseSet = 104 MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100 ParentMerchSetNodeID
 = 100 RootMerchSetNodeID

 = 2 Combination
 = MSTR TypeCode

 = MC2 MerchandiseHierarchyGroupID
 = 1MerchandiseHierarchyGroupIDQualifier

 = 1PromotionID

Transformation of Packaged Offers

A packaged offer is a bundling of different items with individual sales prices. When brought together this bundle is sold at a fixed price. The
different items are specified as buy terms and linked with And. This offer type is a separate offer class.

Example: Buy two products of merchandise category MC1 and one piece of product A for a fixed total price of USD 24.99

The fixed total price for the products is given in this offer only if the specified products are purchased together.

This offer is translated to one . The buy terms are combined with AND as eligibilities, the set price is stored inPromotionPriceDerivationRule
the with a The package apportioned discount percentages thatItemPriceDerivationRule PriceModificationMethodCode ST (Total Set Price).
can be maintained during the offer maintenance are not considered.

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

MerchandiseHierarchyPriceDerivationRuleEligibility TypeCode = MSTR
= 1MerchandiseHierarchyGroupIDQualifier

 = MC1MerchandiseHierarchyGroupID
 = QUTIThresholdTypeCode

 = 2ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 2 IntervalQuantity

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = STPriceModificationMethodCode
= 24,99NewPriceAmount

 = 00DiscountMethodCode

Transformation of Offers with Incentives

Examples

Incentives can be combined with both simple discounts and mix-and-match offers. The following examples show how to transform offers with
incentives into OPP promotions:

Example 1: Mix-and-match offer with incentive category customer card

Pay with your gold card and buy one piece of product A for a discount price of USD 3.33, or buy product B for a discount of 10% and
get 50% off for two pieces of product C.

The discounts for the products A and B are given in this offer only if the customers pay with their gold card. The reward for the two pieces of
product C is given only if the customers buy at least two pieces of product C, one piece of product A, one piece of product B and additionally pay
with their gold card.

This offer is translated to four independent :PromotionPriceDerivationRules

The first and the second rule are for the reward on the buy side, one for each BUY term. These two haPromotionPriceDerivationRules
ve different sequence numbers and the resolution number is 0. On the eligibility side, each BUY term results in an ItemPriceDerivationR

and is linked with AND with a . The assigned to the uleEligibility CustomerPriceDerivationRuleEligibility PriceDerivationRules Prom

The Enforce Multiple indicator must be set to Yes and no Limit is to be set.

The indicator is to be set to and no is to be set.Enforce Multiple Yes Limit

have the type otionPriceDerivationRules ItemPriceDerivationRule.
The third and the fourth are for the reward on the get side. The third cPromotionPriceDerivationRule PromotionPriceDerivationRule
ombined the first BUY term (product A) with the GET term and the customer card, this has the samePromotionPriceDerivationRule
sequence number as the first that contains only the discount from product A and the resolution numberPromotionPriceDerivationRule
is 1. The fourth combined the second BUY term (product B) with the GET term and the customer card,PromotionPriceDerivationRule
this has the same sequence number as the second that contains onlyPromotionPriceDerivationRule PromotionPriceDerivationRule
the discount from product B and resolution number is also 1.
Eligibility trees are built on the eligibility side. The is combined with the GET term and eachCustomerPriceDerivationRuleEligibility
with one of the BUY terms via AND linkage. The assigned to the has the type PriceDerivationRule PromotionPriceDerivationRules Mi

. The discount for the GET term is defined in the and via ANDxAndMatchPriceDerivationRule MixAndMatchPriceDerivationItem
linkage combined with one of the BUY terms (the same as defined in the eligibility tree).

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

CustomerPriceDerivationRuleEligibility TypeCode = CGRP
 = GOLDCustomerGroupID

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = PTPriceModificationMethodCode
 = 3.33NewPriceAmount

 = 00DiscountMethodCode

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 2
 = 2Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

CustomerPriceDerivationRuleEligibility TypeCode = CGRP
 = GOLDCustomerGroupID

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = TPPriceModificationMethodCode
 = 10.000PriceModificationPercent

 = 00 DiscountMethodCode

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 3
 = 1Sequence
 = 1Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

CustomerPriceDerivationRuleEligibility TypeCode = CGRP
 = GOLDCustomerGroupID

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = CItemID

 = QUTIThresholdTypeCode
 = 2ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 2 IntervalQuantity

ItemPriceDerivationRuleEligibility
TypeCode = ITEM

 = AItemID
 = QUTIThresholdTypeCode

 = 1ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 1 IntervalQuantity

MixAndMatchPriceDerivationRule TypeCode = MM
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00 DiscountMethodCode

MixAndMatchPriceDerivationItem TypeCode = IT
 = CItemID

 = RPPriceModificationMethodCode
= 50.000PriceModificationPercent

 = 2 RequiredQuantity

MixAndMatchPriceDerivationItem TypeCode = IT
 = AItemID

 = PSPriceModificationMethodCode
 = 3.33NewPriceAmount
 = 1 RequiredQuantity

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 4
 = 2Sequence
 = 1Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

CustomerPriceDerivationRuleEligibility TypeCode = CGRP
 = GOLDCustomerGroupID

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = CItemID

 = QUTIThresholdTypeCode
 = 2ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 2 IntervalQuantity

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

ThresholdTypeCode = QUTI
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

MixAndMatchPriceDerivationRule TypeCode = MM
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00 DiscountMethodCode

MixAndMatchPriceDerivationItem TypeCode = IT
 = CItemID

 = RPPriceModificationMethodCode
= 50.000PriceModificationPercent

 = 2 RequiredQuantity

MixAndMatchPriceDerivationItem TypeCode = IT
 = BItemID

 = RPPriceModificationMethodCode
= 10.000PriceModificationPercent

 = 1 RequiredQuantity

Example 2: Simple discount offer with incentive category Show Coupon

 0815 and buy one piece of product A for a discount of 10% or buy three pieces of product B for a discount price of Show coupon USD 1
0.

In this example, the coupon is a condition. This means that the customer has to show the corresponding coupon in order to be eligible for the
offer. Incentives are always linked with AND to its offer. So the offer in this example is translated to the following independent PromotionPriceDe

one for each product:rivationRules,

A rule that defines a discount for each product A that is in the shopping cart. On the eligibility side the prerequisite is modeled as Coupon

The indicator is to be set to and no is to be set.Enforce Multiple No Limit

 and linked with AND to the for product A. The linkage with AND isCouponPriceDerivationRule ItemPriceDerivationRuleEligibility
done via a . CombinationPriceDerivationRuleEligibility
In this rule, the prerequisite is linked with AND to the for product B. Even though theCoupon ItemPriceDerivationRuleEligibility
discount price in the offer is defined for three pieces of product B, the threshold quantity is always 1 in the becItemPriceDerivationRule
ause the indicator in the offer is set to . So this rule will not require the quantity criteria to be met. For any quantity inEnforce Multiple No
this example, the discount unit price will be USD 3.33 in the . (results from USD 10 divided by three pieces) ItemPriceDerivationRule

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

CouponPriceDerivationRuleEligibility TypeCode = COUP
 = 0815CouponNumber

 = 00ConsumptionTypeCode

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = RPPriceModificationMethodCode
 = 10.000PriceModificationPercent

 = 00DiscountMethodCode

 PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 2
 = 2Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

CouponPriceDerivationRuleEligibility TypeCode = COUP
 = 0815CouponNumber

 = 00ConsumptionTypeCode

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = PSPriceModificationMethodCode
= 3.33000NewPriceAmount

 = 00DiscountMethodCode

Example 3: Simple discount offer with incentive category Get Coupon as Reward

Buy one piece of product A for and 0815 as reward. Everyday Low Price Get coupon

The offer in this example is translated to one Product A with is the condition to get aPromotionPriceDerivationRule. Everyday Low Price
coupon as a reward. As does not define a discount, product A is used only on the eligibility side. Everyday Low Price The reward is modeled as It

 with a () and (emPriceDerivationRule PriceRuleControlCode PO Item Discount Calculated After Each Item DiscountMethodCode 04 A coupon
).is given to the customer instead of a discount

 The following table shows how this example is translated to the price and promotion repository:

The indicator is to be set to and no is to be set.Enforce Multiple Yes Limit

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = RTPriceModificationMethodCode
 = 0.01PriceModificationAmount

 = 04DiscountMethodCode
 = 0815CouponPrintOutID

 = 00CouponPrintoutRule
 = 0CouponValidityInDays

: Simple discount offer with incentive category Example 4 Get Points as Reward

When they show coupon 0815, the customer will get an extra 25 bonus points when they buy product A.

The offer in this example is translated to one . On the eligibility side, the prerequisite is linked with ANDPromotionPriceDerivationRule Coupon
to the for product A. The reward is modeled as with a ItemPriceDerivationRuleEligibility ItemPriceDerivationRule PriceRuleControlCode PO
() and is set ().Item Discount Calculated After Each Item RewardGrantedAsLoyaltyPoints X

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

CouponPriceDerivationRuleEligibility TypeCode = COUP
 = 0815CouponNumber

 = 00ConsumptionTypeCode

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = RTPriceModificationMethodCode
 = 25.000PriceModificationAmount

 = 00DiscountMethodCode
 = XRewardGrantedAsLoyaltyPoints

CalculationBase = 00

Example 5: Incentive category External Action

. Today you can get the shipping for product A for only USD 5

The indicator is to be set to and no is to be set.Enforce Multiple Yes Limit

The indicator is to be set to and no is to be set.Enforce Multiple Yes Limit

You have created incentive type for an incentive and you use the incentive value to maintain theDSHP - Discount Shipping External Action
special price for shipping.

The offer in this example is translated to one with a for product A. ThePromotionPriceDerivationRule ItemPriceDerivationRuleEligibility
reward is modeled as with type code (). The incentive type is mapped into the ExternalActionPriceDerivationRule EX External Action DSHP Ext

 The maintained incentive value and the incentive value adjustment are modeled as . TheernalActionID. ExternalActionRuleParameter
incentive type description is modeled as ExternalActionRuleText.

The following table shows how this example is translated to price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

ExternalActionPriceDerivationRule TypeCode = EX
 = SUPriceRuleControlCode

 = DSHPExternalActionID

ExternalActionRuleParameter ParameterID = SAP_INC_VALUE
 = 5.000Value

ExternalActionRuleParameter ParameterID = SAP_INC_VALUE_ADJUST
 = 5.000 Value

ExternalActionRuleText LanguageCode = EN
 = SAP_INC_TYPE_DESCRTextCode

 = 'Discount Shipping'Text

Example 6: Incentive category Manual Promotion as Reward

When buying product A: manually triggered discount is allowed.

You have created incentive class with incentive class type ' '. For this incentive class, you have also'31 - Manually triggered Discount' Reward
created incentive type ' ' with Incentive category 'Manual '. You use the product identifier as free text to identify the manualM2 Promotion
promotion.

The offer in this example is translated to one with a for the manualPromotionPriceDerivationRule ManualPriceDerivationRuleEligibility
promotion and a for product A as child eligibilities below the . ItemPriceDerivationRuleEligibility CombinationPriceDerivationRuleEligibility

On reward side, there is a with type code (). This price rule does not specify a discount, butManualPriceDerivationRule MA Manual Promotion
the discount can be specified by the client, for example, the cashier can specify the exact amount and type of the discount.

The following table shows how this example is translated to price and promotion repository:

Entity Field mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

Enforce Multiple indicator is to be set to Yes and no Limit is to be set.

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 ItemID = A

 ThresholdTypeCode = QUTI
 ThresholdQuantity = 1

 LimitQuantity = 9,999,999,999
 IntervalQuantity = 1

ManualPriceDerivationRuleEligibility TypeCode = MANU
 TriggerTCD = 31

 TriggerValue = Defect (Free text coming from the product identifier)

ManualPriceDerivationRule TypeCode = MA
 PriceRuleControlCode = PO

Example 7: Incentive category Manual Promotion as Condition

Get 10 % discount for your transaction when manual promotion is triggered and when a specified customer card is shown.

You have created incentive class with incentive class type ' '. For this incentive class, you have also'30 - Manual Trigger for discount' Condition
created incentive type ' ' with incentive category 'Manual '. You do not use the product identifier to identify the manual promotion, butM1 Promotion
the incentive class and the incentive type.

The offer in this example is translated to one On eligibility side the prerequisite is modeled asPromotionPriceDerivationRule. Customer Card
with a and linked with AND to the and to the CustomerPriceDerivationRuleEligibility ManualPriceDerivationRuleEligibility TotalPurchaseMa

. The linkage with AND is done via a . rketBasketPriceDerivationRuleEligibility CombinationPriceDerivationRuleEligibility

On reward side, there is a with type code RB (Simple Discount). This price rule specifies the 10 % discount for theItemPriceDerivationRule
transaction if the prerequisite 'GOLD card' is fulfilled and the manual trigger is coming from the client, for example, the cashier presses a 'Manual
Promotion' button on the point of sale).

The following table shows how this example is translated to price and promotion repository:

Entity Field mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

TotalPurchaseMarketBasketPriceDerivationRuleEligibility = TOTLTypeCode
= 0.000TransactionItemTotalRetailTriggerAmount

 = USD CurrencyCode

ManualPriceDerivationRuleEligibility TypeCode = MANU
 = 30 TriggerTCD

 = M1TriggerValue

CustomerPriceDerivationRuleEligibility TypeCode = CGRP
 = GOLDCustomerGroupID

ItemPriceDerivationRule TypeCode = RB
 = SUPriceRuleControlCode

 = TPPriceModificationMethodCode
= 10.000PriceModificationPercent

 = 00DiscountMethodCode

Default Values

Enforce Multiple indicator is to be set to Yes and the limit must be 1.

ItemPriceDerivationRule

RoundDestinationValue
This value defines the multiple of the lowest allowed digit according to the currency to which rounding takes place.
Example: If the currency is EUR, the value 5 means that the rounding should not be done down to single cents but to 5-cent multiples.
If the default value is , there is no further handling of the rounding result.1
RoundingMethodCode
The default value is ().00 Commercial Rounding
ConsiderPreviousPriceRules
This indicator controls whether the current price derivation rule is based on the result of formerly applied rules. If this indicator is false, the
rule is to be applied on the regular sales price. This indicator is relevant only if the is (priceRuleControlCode PO Item Discount

).Calculated After Each Item
The default value is true.
CalculationBaseSequence
This value defines the sequence value for . The resulting price is to be used as the calculation basePromotionPriceDerivationRule
for the current rule.
The default value is , which means that -1 none of the previous rules are considered and the regular price is used as the calculation base.
ChooseItemMethodCode
This code defines the sequence in which the items to be discounted are chosen in the case of a .MixAndMatchPriceDerivationRule
The default value is ()00 Determined by the Promotion Calculation Engine
CalculationBase
The default value is , which means that the total sales is the calculation base for this rule.00
DiscountMethodCode
The default value is , which means that the discount reduces the transaction total. 00
Exceptions:
If the has the type , this field is not mapped.PriceDerivationRule External Action
If a coupon is given to the customer instead of a discount, the value is .04
NoEffectOnSubsequentRules
The default value is false, except for coupons.

Fields Only Relevant for Coupons

The following fields are only relevant and filled if the customer gets coupons instead of a discount:

CouponPrintoutRule
The coupon printout rule defines the printout type that is to be given to the customer.
The default value is , which means that a coupon is to be printed on a separate document. 00
CouponValidityInDays
The default value for the validity period for printout coupons is , which means that the coupon has no validity limit.0
NoEffectOnSubsequentRules
The default value is true for coupons.

Fields Only Relevant for Loyalty Points

The following field is only relevant and filled if the customer gets loyalty points instead of a discount:

RewardGrantedAsLoyaltyPoints
The default value is true if the type of reward is loyalty points.

CouponPriceDerivationRule Eligibility

ConsumptionTypeCode
The default value is 00, which means that coupons are also consumed if is applied with a differentPromotionPriceDerivationRules
sequence.

PromotionPriceDerivationRule

Note
You can have promotions if the same coupon should trigger more than one . For example: IfPromotionPriceDerivationRule
they show a coupon, the customer gets a discount for a certain product and additional loyalty points.

This promotion only works with 02, which means 'Coupon Is Not Consumed'. In this case, you haveConsumptionTypeCode
to adapt the default value.

SaleReturnTypeCode();
This value specifies if the promotion rule can be used only for sales, for returns, or for both.
The default value is ().00 For Sales and Returns
Exclusive
Specifies if this promotion rule is an exclusive promotion rule.
The default value is false.
NotPrinted
If this indicator is true, the result of the promotion rule is to be suppressed.
The default value is false.

NotConsideredInLineItemModeFlag
Specifies if the promotion rule is applied to prices calculated by the promotion pricing service. It can be applied in the folllwing modes:

Item mode ()LineItem
If the promotion pricing service is called in this mode, the discount is calculated independently for each item. Promotion rules that
are not relevant on item level are not applied (for example, promotion rules on transaction level).
Shopping cart mode ()Basket
If the promotion pricing sevice is called in this mode, the discount is calculated for the total of the shopping cart considering all
promotion rules.

If this indicator is set, the promotion rule is only applied in shopping cart mode.
Per default, promotion price derivation rules are considered as only "Shopping Cart" relevant and the default value for this field is true, if
the following parameters are fulfilled:

It is not product-related, for example discounts-based on transaction level, product groups or product hierarchies
The offer type is mix-and-match
The product quantity is greater than one
The minimum spend amount is set
A coupon fulfills the condition

Replication of the Price and Promotion Repository

The OPP promotions and the regular prices can be replicated to an external system via IDocs. Enhancement segments have been designed so
that additional information can be added to the IDoc. For more information see the about the extensibility of the IDocs, section inOPP Extensibility
this guide.

Outbound Processing of IDocs via DRF

The data replication framework (DRF), a reuse component of SAP Business Suite, is used to replicate the OPP promotions and the regular prices
to other systems.

The following ways of replicating data are supported with the OPP:

Initial replication
Manual request
Change request

The initial replication is used to send all relevant data for a receiver by one single request. The initial load expects to have no data on the receiver
side.

The change request considers only objects that have to be sent compared to the previous (initial or delta) replication. Usually (but not always, see
promotion outbound processing) this includes objects that have changed since the last transfer and that match the specified filter criteria. If an
object is considered as transfer relevant, it is sent as a whole. There is no support for marking object internal changes. The initial and delta
request share a common filter, the static filter maintained in transaction DRFF.

The manual request allows the replication of specific data that can be filtered by adhoc specified filter criteria. There is no merge logic for the
static and manual filter. The manual request does not modify the list of objects that are marked as changed since the last initial or delta load.

DRF Configuration

There is no support for considering changes of static filters before a delta request. If you change the filter, relevant changes may not be
detected by the system.

Use the manual request to make urgent fixes only.

A configuration needs to be done before DRF can be used. SAP delivers outbound implementations and preconfigured settings for the outbound
implementations, such as predefined outbound parameters, filter objects, and business objects. Customizing needs to be enhanced for these
predelivered conditions only if you want to replicate your own business objects and create or enhance the outbound implementation.

The following custom settings are needed for the data replication:

The landscape definition (determines the technical settings for business systems)
The replication models (determines the data that is to be sent to a corresponding location)
The business object-specific settings (Application Link Enabling)

OPP Promotions

The outbound interface that is needed to send OPP promotions to external systems is based on IDocs. IDoc types and /ROP/PROMOTION01 /R
are provided for this. The following picture shows the structure for IDoc type OP/PROMOTION02 /ROP/PROMOTION02:

This structure reflects the database structure of the OPP promotion. The corresponding message type for the IDoc types is ./ROP/PROMOTION

As with the regular prices, the outbound is realized using the data replication framework (DRF). Different outbound implementations and filter
objects are offered for this.

As of CAR 3.0 FP2, the outbound of OPP promotions is supported in the following ways:

The business object-centric outbound as offered starting with CAR 2.0 FP3: The underlying principle of this option is to replicate the
business object structure of the OPP promotion as it is and to make no changes to the message content. The business system assigned
to the corresponding DRF replication model determines the receiver of the created IDocs.
The location-specific outbound: This is optimized for the supply store like receivers not interested in the whole content of the OPP
promotion - in particular with regards to the overall set of location assigned to that promotion. The business units assigned to the OPP
promotion determine the receivers of the created IDocs. Each receiver gets only a view to the OPP promotion, with only "his" location
assigned. In addition, OPP promotions that do not have the status "active" or are no longer relevant for the receiver of the IDoc are
transferred only in a truncated version containing only the header with CHANGE_INDICATOR set to 'D' and the assigned
location/business unit.

Outbound Implementation for Promotion-Centric Outbound Processing

The predefined outbound implementation for OPP promotions is . This implementation uses filter object . The filterROP_PROMO ROP_PROMO
execution time during change analysis is predefined in the data processing and you cannot change it when you configure a replication model. This
means that the filter is always applied after the change analysis. The outbound implementation class is Th /ROP/CL_PROMOTION_OUTBOUND.
is class implements interface . This outbound implementation has two predefined outbound parameters:IF_DRF_OUTBOUND

TASK_SIZE_PROCMSG
This parameter is relevant only if you execute data replication and have set the indicator to . The parameter sets theParallel Processing
maximum number of OPP promotions processed in each parallel package.
PACK_SIZE_BULK
This parameter sets the maximum number of OPP promotions processed for each IDoc. If you want to use the parallel processing, set
this parameter to a smaller value then parameter .TASK_SIZE_PROCMSG

In addition to these a specific OPP outbound parameter is given:

/ROP/GENERIC_ENH_MAP
This parameter enables DRF outbound for promotion to execute a generic mapping. In that case it must be set to "X". For more
information about this feature, see below under chapter "Generic Mapping of Customer Enhancement Segments".

Outbound Implementation for Location-Specific Outbound Procesing

The predefined outbound implementation for OPP promotions is . This implementation uses filter object containingROP_PRO_ST ROP_PRO_ST
two filters: the same filter as for the business object-centric outbound for determining the OPP promotions, and an additional filter for specifying
the target locations of the IDocs to be created. The filter execution time during change analysis is predefined in the data processing and you
cannot change it when you configure a replication model. This means that the filter is always applied after the change analysis. The outbound
implementation class is This class implements interface . The supported /ROP/CL_PROMO_STORE_OUTBOUND. IF_DRF_OUTBOUND
outbound parameters are the same as for the business object-centric outbound.

Filtering the OPP Promotions

Data filtering allows you to replicate specific OPP promotions. The following criteria can be used for filtering:

Field In Static Filter
/ROP/PROMO_DRF_FILTER_STY

In Manual Request Filter
/ROP/PROMO_DRF_MAN_FILTER_STY

Comment

Master data system

Sales organization List of single values only, no
exclusions

Distribution channel List of single values only, no
exclusions

Location hierarchy type

The implementation of the Promotion Outbound assumes that the combination of outbound implementation and assigned business
system is unique. This is a slightly different assumption than that made by DRF, which expects (and ensures) that the combination of
business object type and business system is unique. This does not make a difference for the standard delivery but it must be kept in
mind if you create your own outbound implementations based on the logic delivered by SAP.

Further differences between these two options are listed in the SAP application help.

Location hierarchy ID

Location hierarchy node ID

Location ID

Location type

Promotion ID

External ID of the promotion (the offer
ID)

Promotion type

Start of the validity period Daily granularity only

End of the validity period Daily granularity only

Lead time in days Single value only, no exclusion

Latest change date Daily granularity only

The filter class is for the business object-centric outbound and for the /ROP/CL_PROMOTION_FILTER /ROP/CL_PROMO_STORE_FILTER
location-specific outbound. Both classes implement interface . IF_DRF_FILTER

Controlling the Target Locations

This is relevant only for the location-specific outbound. The following criteria can be used to specify the target locations and therefore the set of
IDocs to be created:

Field In Static Filter
/ROP/PROMO_STO_FILTER_STY

In Manual Request Filter
/ROP/PROMO_STO_MAN_FILTER_STY

Comment

Target location
ID

Target location
type

Flag "Send Also
Deletions"

Only single values "Yes" or "No" allowed. If set to
"Yes", then both target location ID and target location
type must be specified.

The meaning of the "Send Also Deletions" flag is described in the system documentation for data element ./ROP/SEND_DELETIONS

Generic Mapping of Customer Enhancement Segments

When doing simple customer enhancements in the OPP data model by adding additional attributes so called customer includes (SAP CI) might be
implemented. Each OPP table contains such a possibility to add customer specific attributes. The DRF outbound for sending OPP promotions
offers a possibility to map these additional attributes to the corresponding enhancement segment of the IDoc type /ROP/PROMOTION01 or
/ROP/PROMOTION02 respectively in a generic way. Each IDoc segment of the OPP promotion IDoc types includes a correspondning
enhancement segment (see above) which structure is well defined. It contains 3 fields : One for the field group (filled with "SAP_CI" when generic
mapping is active) , a second one for the attribute name (generically filled with customer's attribute name) and a third one for the attribute value
(generically filled with the corresponding attribute value). From customer point of view these enhancement segments can be mapped by
implementing a BAdI or by activating a generic mapping that executes a 1:1 mapping from the additional attribute to the enhancement segment.
The generic mapping feature can be activated by a specific DRF outbound parameter called /ROP/GENERIC_ENH_MAP. (This OPP specific
parameter exists beside of the DRF standard parameters already mentioned above). When creating the DRF outbound replication model for OPP
Promotions this parameter must be maintained and set to "X". Doing this the generic mapping is activated. Nevertheless, a combination of this 1:1
mapping and a more complex mapping process implemnted by a BAdI is possible.

 In the following overview all types are listed that can be used for this generic mapping:

Character Container and Strings
Numerical Characters (n)
Long, Integer, Short, Byte

There are no filter criteria for the external action attributes as these attributes are only subordinated elements of the price rule. From a
business point of view, filtering by these fields is not relevant.

1.
2.

3.

4.

5.

6.

7.
8.

9.

Packed Number (p)
Float, Decfloat
Date
Time

There are following restrictions :

Internal tables
Referneces
Deep structures
RAW
RAWSTRING
Boxed Components
Strings longer than 255 characters

Transfer OPP Promotions Using the Global Object List

The following applies for the business object-centric outbound as well as the location-specific outbound.

During the initial and delta load, the filter criteria and the database table are evaluated to decide which OPP promotions/ROP/DRF_OBJLIST
have been changed and are to be replicated. This list serves the following purposes:

It detects that a formerly relevant and transferred OPP promotion is obsolete. This may happen if an attribute of an OPP promotion (such
as promotion type) is specified in the filter but its new value no longer matches the filter. This must be communicated to the
corresponding receiver.
It supports the filter criterion . This makes sure that an OPP promotion is not transferred unless it is close to its validation date.Lead Time
To keep track of these OPP promotions, it is necessary to observe OPP promotions that are to be valid soon so that they are sent via the
delta load even if there have been no changes. If not, only OPP promotions with unprocessed change pointers are to be considered.

In addition, MDG change pointers are created for the delta load when creating, updating, and deleting an OPP promotion.

The following logic is applied, depending on whether an OPP promotion matches filter criteria and its transfer status in the global object list:

Promotion Matches Complete
Filter Criteria

Promotion Matches Filter Criteria
Without Lead Time

Promotion Does Not Match
Filter Criteria

OPP promotion in global object list in
status TRANSFERRED

1 2 3

OPP promotion in global object list in
status PENDING

4 5 6

OPP promotion not in global object list 7 8 9

Cases 1 to 9 are described in detail below including the system reaction:

A promotion already transferred has changed --> transfer again. No change to the global object list.
A promotion already transferred is classified as not yet transfer relevant. This occurs if the start date of the promotion has been delayed.
The receivers must be informed about this change --> transfer again. No change to the global object list.
A promotion already transferred is not filter relevant any more, in other words it is now obsolete. This may happen if the filter criteria are
defined for an attribute that changed to a value not covered by the filter --> transfer the promotion as "obsolete" (CHANGE_INDICATOR
= 'D'). Remove it from the global object list.
A promotion with a pending transfer has reached its transfer due date. (Transfer due date = valid_from (of the promotion) MINUS "lead
time") --> if not in status "cancelled" send it, set its status in the global object list to TRANSFERRED. Cancelled promotions with a
pending transfer are removed from the global object list.
A promotion with a pending transfer has been changed but has not yet reached its transfer due date --> if it is not in status "cancelled", do
not transfer (yet) but update its transfer due date in the global object list (if valid_from has changed). The promotion will be considered
again in the next delta load. Status stays at PENDING. Cancelled promotions are not added to the global object list.
A promotion originally set as pending (to be transferred later) is not transfer relevant any more --> since it has not yet been transferred,
do not transfer it, and remove it from the global object list.
A promotion not examined before is transfer relevant now --> send it and include it in the global object list in status TRANSFERRED.
A promotion not examined before is considered as transfer relevant later --> do not transfer it yet but include it in the global object list in
status PENDING with the corresponding transfer due date.
A promotion not examined before is not considered as transfer relevant --> ignore.

If the corresponding promotion has the status 'CN' (Cancelled), no insert or update to the global object list takes place - instead the promotion is
removed from the global object list. This happens in the following cases: 1, 2, 4, 5, 7 and 8. The decision matrix for the initial load differs from that
of the delta load in the sense that rows 1 and 2 are not relevant since the global object list is cleared at the beginning of the initial load.

All replication modes (initial, delta, manual) update the global object list.

If no lead time is specified in the static filter, an "infinite" lead time is assumed. This means no promotion is set to pending. In other words, column
2 ("Promotion matches filter criteria without lead time") is not relevant.

The initial load expects that all data is cleared on the receiver side, in other words the receiver must not have any promotions in its database. The
initial load automatically clears the global object list for the corresponding outbound implementation and business systems. For the decision
matrix, the initial load corresponds to the row "promotion not in global object list". For the initial load, only promotions in status 'AC' (active) are
considered.

The delta load and manual request do not filter by the promotion status.

Location-Specific Outbound Processing Using the Global Object List

In the case of the location-specific outbound, the tracking of the replication status on business system level is not sufficient, it must take place on
the level of the individual target location. This status is stored in database table . Each record indicates that the/ROP/LOC_REPL_ST
corresponding OPP promotion is expected to be present as active on target location side. The link between the overall replication status and the
location-specific replication status is established using the field OBJ_GUID in both tables and ./ROP/DRF_OBJLIST /ROP/LOC_REPL_ST

The meaning of the overall replication status slightly changes for the location-specific outbound:

If a record is not present in then the promotion does not exist as active in any target location and hence no record/ROP/DRF_OBJLIST
exists for that promotion. The reverse conclusion is not possible./ROP/LOC_REPL_ST
If a record is in status T(ransferred) in then it was sent as active to at least one target locations. This does not/ROP/DRF_OBJLIST
necessarily mean that this is still the case.
The meaning of the status P(ending) does not change.

View provides an overview of the current replication status for each location./ROP/V_PREPSTAT

Cleanup of the Global Object List

In the case of an unchanged DRF replication model, the global object list is automatically managed by the promotion outbound processing and
kept in a consistent state. However, if a replication model is deleted, a business system for a replication model is removed, its content of the
global object list is not removed automatically. For this purpose, transaction can be used. This can be used for the/ROP/DEL_REPLSTAT
object-centric as well as the location-specific replication status.

Regular Prices

The outbound interface to send regular prices to external systems is also based on IDocs. For this reason, a new IDoc type /ROP/BASE_PRICE0
 has been created with the following structure:1

Obsolete or deleted?
The meaning of the field CHANGE_INDICATOR differs between the object-centric and location-specific outbound of OPP promotions:

Object-centric outbound: If a promotion is logically deleted, it is sent as a regular IDoc record with CHANGE_INDICATOR = 'I'.
Its promotion status is 'CN'. If a promotion is considered as obsolete for a certain receiver, it is sent as a "deletion" IDoc record
with CHANGE_INDICATOR = 'D'. Its promotion status is not changed.
Location-specific outbound: CHANGE_INDICATOR is set to 'D' as soon as the corresponding OPP promotion is no longer to
be evaluated by the receiver. This can be the case if is it not in status "active", if the corresponding target location is not
assigned to the OPP promotion, or if the target location is not contained in the filter for target locations.

Compared to the promotion IDoc, the regular price IDoc is . To prevent redundant data being sent, all items with the same regular pricequite flat
are grouped in several business units (locations) and all locations that are assigned to the corresponding items (items with the same regular

are assigned to the segment. This explains the following structure of the IDoc:price in the grouped locations) /ROP/E1_BASE_PRICE

Segments of segment type under one segment contain all business units (locations) /ROP/E1_BUSINESS_UNIT /ROP/E1_BASE_PRICE with a
 The advantage of this structure is that these locations have to be added only once to the IDoc. This applies to all items underunique item price.

the same segment. Therefore, the group for these locations is called . The price is a child/ROP/E1_BASE_PRICE reusable location group
segment of the item segment. This item segment only contains the item ID and the change indicator.

In addition to the new price IDoc type, there is a new message type ./ROP/BASE_PRICE

Outbound Implementation

The predefined outbound implementation for OPP promotions is . This implementation uses filter object . The filterROP_PRICE ROP_PRICE
execution time during change analysis is predefined in the data processing. You cannot choose when you configure a replication model.
Therefore, the filter time must be set to when you create the replication model. Furthermore, you cannot activate aFilter Before Change Analysis
replication model with a wrong filter time or execute an outbound implementation in transaction . The outbound implementation class isDRFOUT /

. This class implements interface . T is supported forROP/CL_BASE_PRICE_OUTBOUND IF_DRF_OUTBOUND he option for parallel processing
this outbound implementation.

The outbound implementation has the following predefined outbound parameters:

TASK_SIZE_PROCMSG
This parameter is relevant only if you execute the data replication using parallel processing. It sets the maximum number of products that
are processed for each parallel package. It must be greater than or equal to the PACK_SIZE_BULK parameter. This parameter value
does not define the number of regular prices per package.
If this parameter is set to 0, all products are processed in one package. This means that parallel processing is not possible.

PACK_SIZE_BULK
This parameter controls the number of products for which regular prices can be stored in a compressed format at the same time, and sets the
maximum number of products that are processed for each IDoc. If this parameter is not set, the default is 1.
If you increase this value, performance at runtime is improved since fewer IDocs need to be processed.

/ROP/PACK_SIZE_BULK
This parameter sets the maximum number of regular prices that are processed for each IDoc. This is an approximate value because
regular prices are assigned to different IDocs for each group of business unit with items and prices.
If this parameter is set to 0, it is not possible to restrict regular prices and it is only the number of products that determines the IDoc size.

Hint: Both parameters and restrict the size of an IDoc in a way that the IDocs are as small PACK_SIZE_BULK /ROP/PACK_SIZE_BULK
as possible.
Example 1: Assume = 500 and = 100000. The system reads all prices for 500PACK_SIZE_BULK /ROP/PACK_SIZE_BULK
products that are, for example, 500000. The system will create 5 IDocs and each IDoc will have 100000 prices.
Example 2: Assume = 50 and /ROP/PACK_SIZE_BULK = 100000. The system reads all prices for 50 products thatPACK_SIZE_BULK
are, for example, 50000. The system will create 1 IDoc and this IDoc will have 50000 prices.

/ROP/SEQ_READ_SIZE
This parameter sets the maximum number of products for which the regular prices are read in one select statement. In this way, you can
limit memory consumption for products with a large number of regular prices.

If this parameter is set to 0, all products of the corresponding package are read within one call.

/ROP/DAY_OFFSET_PAST

This parameter is only used if the selection of prices lying in the past is restricted with a valid-to date as filter criteria and if the entered
valid-to date is not far enough in the past.
During a delta replication, this parameter defines a time range in days that lies before the date of the last replication run. If the the
entered valid-to date is after the calculated date, the system subtracts this value from the last replication date and uses the calculated
date to construct the select-option for the valid-to date.
During an initial replication, a calculated date (current date minus the time range in days) is defined in this parameter. This date is used
automatically if the value entered in field is after the calculated date.End of Validity Period
In this way, you ensure that regular prices with a valid-to date in the specified past time range are also transferred.

If this parameter is not set, relevant regular prices might not be transferred. See SAP Note 2338714. In this case, the default is set to 30
days.

Data Filtering

Data filtering allows you to replicate specific prices. uses a complex filter. You need to distinguish betweenRegular price outbound filtering
manual request, initial, and delta load. The following table gives an overview of the filter attributes:

Field In Static Filter
/ROP/BASE_PRICE_DRF_FILTER_STY

In Manual Request Filter
/ROP/BASE_PRICE_MAN_FILTER_STY

Comment

Master data system

Sales organization List of single values only, no
exclusions

Distribution channel List of single values only, no
exclusions

Location hierarchy type code Necessary to uniquely identify a
location

Location hierarchy ID
(external)

Location hierarchy node ID
(external)

Location ID (external)

Location type code

Qualifier of merchandise
structure

Only for article hierarchy and
merchandise group

Identifier for merchandise
hierarchy node

Product identifier Only available for manual load

Classification information for
regular price

 Fixed values are provided

All the recommendations for parameter values given above are based on performance measurements. These can be changed
depending on the actual customer-specific runtime behavior and situation.

1.

2.

End of validity period Daily granularity only. Only one
filter criteria for inclusion allowed
with "is later than".

Date of latest change Daily granularity only

It is possible to maintain one or more single values for each criteria. For most of them it is also possible to maintain ranges (except of sales
organization and distribution channel). A combination is also possible for the filter criteria.

The filter criterion is provided only for delta and initial load. This parameter could be used to improve the runtime behaviorEnd of Validity Period
by reducing the data load. You can use this parameter to reduce the number of selected prices. You can also prevent the sending of obsolete
price records. The attribute is mandatory due to performance reasons. The price outboundClassification Information for Regular Price
implementation does not process only regular prices, it can also process other like and . Usuallyprice types Average Purchase Price Delivery Cost
only net or gross sales prices are chosen using this application.

The attribute is available only for the manual load. It has only a daily granularity. Therefore, several select options areDate of Latest Change
possible and will be interpreted as follows:

Equal: internally time interval 00:00:00 to 23:59:59 is applied because externally only a daily granularity is given
Greater Than: internally time is set to 23:59:59
Greater Equals Than: internally time is set to 00:00:00
Lower Than: internally time is set to 00:00:00
Lower Equals Than: internally time is set to 23:59:59
Between: internally for start date time 00:00:00 is used and for end date 23:59:59

The filter class is This class implements interface . /ROP/CL_BASE_PRICE_FILTER. IF_DRF_FILTER

The defined filter time can be configured when you create the replication model. However, you must set the filter time to Filter Before Change
. It is not possible to activate the DRF replication model with a filter criterion other than this one. So there is a preselection of the regularAnalysis

price objects before change analysis is started. This is done due to performance issues.

Handling of the Expected Data Volume

As we expect mass data in the price outbound, SAP implements a special logic for filtering and processing the price data.

To avoid memory issues for mass data, the data filtering does not provide all relevant item price attributes to be processed. Instead, the filter
provides the following information for the outbound implementation based on the selection criteria:

All product IDs (GUIDS)
All locations (GUIDS) if there is a restriction by the selection screen; if there is no restriction, no locations are passed.
All selection criteria as provided by the selection screen

This data is passed as "relevant objects" (import parameter) to the outbound implementation. There is one entry for CT_RELEVANT_OBJECTS
each product ID in this internal table and the selected locations and the selection criteria are given in the first entry. The tables and LOCATIONS

 are empty in all subsequent entries. The internal table has the structure .SELECT_OPTIONS /ROP/BASE_PRICE_PACKAGE_STY

If you start the outbound processing in manual or initial mode, the internal table contains all the products provided byCT_RELEVANT_OBJECTS
the filter. This information is passed to the major outbound process (class). Due to performance reasons,/ROP/CL_BASE_PRICE_OUTBOUND
the option for parallel processing can be used. During parallel processing the table contains the number of productsCT_RELEVANT_OBJECTS
specified with parameter for each call of the outbound implementation. The construction of these parallel packages isTASK_SIZE_PROCMSG
carried out in .IF_DRF_OUTBOUND~BUILD_PARALLEL_PACKAGE

The processing of takes place in the outbound implementation in the following main steps:CT_RELEVANT_OBJECTS

DRF method IF_DRF_OUTBOUND~READ_COMPLETE_DATA
To avoid memory problems, the prices are read in this method. Instead the data in is stored only in the not CT_RELEVANT_OBJETCS
instance variables , and .MT_PRODUCTS MT_LOCATIONS MT_SELECT_OPTIONS

Method IF_DRF_OUTBOUND~MAP_DATA2MESSAGE
This method is called from the DRF framework for each entry in . CT_RELEVANT_OBJECTS

The entries in (all products that were in before) are divided into logical packages with theMT_PRODUCTS CT_RELEVANT_OBJECTS
size given in parameter . When method is called for the first productPACK_SIZE_BULK IF_DRF_OUTBOUND~MAP_DATA2MESSAGE
of one of these logical packages, all prices are read for all products of this package. The prices for all products of this logical package are
not read within one select statement because this could generate memory issues. Instead, only the number of products defined in
parameter are read in one select statement. The result of the select statement is compressed before the next/ROP/SEQ_READ_SIZE
select statement is performed. One part of the compressed result is stored in the table and the second part, theLT_BASE_PRICE
reusable location groups, are collected by class . /ROP/CL_LOCATION_GROUP_HANDLER Using these two data sources, the instance
table is created that contains all pricing information.MT_BASE_PRICE_IDOC

2.

3.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

Even though the DRF framework calls this method sequentially for each product in , prices are read for allCT_RELEVANT_OBJECTS
products of the package when the first product is processed. If an error occurred during reading of the prices for a product, the exception

 is only raised when method is called for the entry inCX_DRF_PROCESS_MESSAGES IF_DRF_OUTBOUND~MAP_DATA2MESSAGE
 containing that erroneous product.CT_RELEVANT_OBJECTS

Method IF_DRF_OUTBOUND~SEND_MESSAGE
The data is mapped in this method from into the IDoc structure, and one or several IDocs are sent. The data isMT_BASE_PRICE_IDOC
split into several IDocs according to the parameter . /ROP/PACK_SIZE_BULK

If performing the delta load, an additional DRF interface method is called. The analysis of changes isANALYZE_CHANGES_BY_OTHERS
based on the time stamp provided in table . This is to select all relevant products and LAST_SALES_PRICE_CHANGE /DMF/PRODLOC
locations concerning all changed regular prices. The interface method also passes the relevant data to the methods above to map and build up
the IDoc segments. Since the whole delta process is not based on change pointers, it is not possible to apply the manual time selection Limit

.Changes Using Interval

OPP Extensibility

Modification-free extensibility is a major asset of SAP software. The following figure shows which parts of the overall OPP architecture are
relevant for extensibility. Further details on how the parts can be extended will be explained in the following sections.

The processing of DDF offers and regular prices including the inbound processing and persistence
The data model of the OPP promotion in the price and promotion repository in SAP Customer Activity Repository (ABAP)
The logic used to process OPP promotions and regular prices, in particular how DDF offers are transformed into OPP promotions
The outbound processing of OPP promotions and regular prices
Extending the PPS: general concepts (Java)
The data model of the OPP promotion and regular prices in the promotion calculation engine (Java)
The inbound processing of OPP promotions and regular prices for a local deployment
The data model and processing logic of OPP promotions in the promotion calculation engine of the promotion pricing service
The data model of the price calculation requests against the PPS
The creation and consumption of price calculation requests for PPS clients, in particular of the extension within SAPsapppspricing
Hybris Commerce

10.

Extensibility of Demand Data Foundation (DDF)

The existing concepts of SAP Customer Activity Repository are reused. There are no changes here. Mainly the following concepts are offered:

Data dictionary structures offer Customizing includes that can be used on the customer side. If a table or structure in the standard system
is enhanced with customer fields using a Customizing include, there is no need to modify the table and structure definitions of the
standard system. The customer fields are automatically inserted in the new delivered table or structure definition during an upgrade.
These enhancements cannot be lost during the upgrade. For more information about Customizing includes, see inCustomizing Includes
SAP Library on SAP Help Portal.
Business Add-Ins (BAdIs) are offered at various places, allowing the modification-free enhancement of business logic. For more
information, see the application help for SAP Customer Activity Repository in SAP Library on SAP Help Portal.

Extensibility of DDF Offer Inbound API

The offer master data is used to plan promotions or to schedule demand modeling and forecasting processes. DDF uses an inbound interface to
receive the offer master data through a Remote Function Call (RFC). For more information about this offer inbound API and the ways in which you
can enhance this interface, see in SAP Library on SAP Help Portal and read the documentation for enhancement spot Offer Master Data /DMF/C

 in the SAP Customer Activity Repository system.USTOMER_EXT_OFFER

Extensibility of DDF Regular Price Inbound API

The product location master data is used to determine the regular price for a product at a specific location in a given time frame. DDF uses an
inbound interface to receive the product location master data with a Remote Function Call (RFC). For more information about this regular price

and the ways in which you can enhance this interface, see in SAP Library on SAP Help Portal andinbound API Product Location Master Data
read the documentation for enhancement spot in the SAP Customer Activity Repository system./DMF/CUSTOMER_EXT_PRODLOC

Extensibility of the OPP Data Model (ABAP)

The concepts to enhance the OPP data model follow those of the Demand Data Foundation (DDF) offer. For example, in every database table the
Data Dictionary offers Customizing includes. Since the structures on which the application logic is based refer to the structure definition of the
database tables. Additional fields are immediately available within the business logic, for example, during the transformation of DDF offers into
OPP promotions.

The following database tables are relevant for the OPP promotion model:

/ROP/PROMOTION
Table for promotion-relevant header data. The for this table is Customizing include CI_ ROP_PROMOTION.
/ROP/PROMO_RULE
Table for promotion price derivation rules. The Customizing include for this table is CI_ ROP_PROMO_RULE.
/ ROP/ELIGIBILITY
Table for all data that is relevant for the eligibilities of the OPP promotion. The Customizing include for this table is CI_
ROP_ELIGIBILITY.
/ROP/PRICE_RULE
Table for price derivation rules. The Customizing include for this table is CI_ ROP_PRICE_RULE.
/ROP/MAM_ITEM
Table for mix-and-match price derivation items. The Customizing include for this table is CI_ ROP_MAM_ITEM.
/ROP/PROMO_BU
Table for the business units for which the promotion is relevant. The Customizing include for this table is CI_ ROP_PROMO_BU.
/ROP/PROMO_TEXT
Table for the language-dependent texts of a promotion. The Customizing include for this table is CI_ ROP_PROMO_TEXT.
/ROP/EX_ACT_PARM
Table for the parameters of a price derivation rule of type . The Customizing include for this table is external action CI_ROP_PROMO_EX

.T_ACTION_PARAM
/ROP/EX_ACT_TEXT
Table for the language-dependent texts of a price derivation rule of type . The Customizing include for this table is external action CI_ROP

._PROMO_EXT_ACTION_TEXT
(available as of CAR 3.0 FP02)/ROP/MERCH_SET

Table for the promotion relevant merchandise. In this table the product groups used in the DDF offer are stored. The Customizing include
for this table is CI_ROP_MERCH_SET.

Example:

This is applicable for the local deployment of the PPS as part of SAP Industry Package for SAP for Retail.only

https://help.sap.com/saphelp_nw70/helpdata/en/cf/21eb54446011d189700000e8322d00/content.htm
http://help.sap.com/saphelp_pmr810/helpdata/en/83/ad905117e0223ae10000000a44176d/content.htm?current_toc=%2Fen%2F76%2Fa05b5392e21f37e10000000a423f68%2Fplain.htm&frameset=%2Fen%2Fdd%2F1c9c51107dfc53e10000000a44538d%2Fframeset.htm&node_id=197
http://help.sap.com/saphelp_pmr810/helpdata/en/4b/7e9f517f472166e10000000a441470/content.htm?current_toc=%2Fen%2F76%2Fa05b5392e21f37e10000000a423f68%2Fplain.htm&frameset=%2Fen%2F83%2Fad905117e0223ae10000000a44176d%2Fframeset.htm&node_id=200

1.

2.
3.

4.

1.

2.

3.

This example applies only for OPP promotions not for regular prices. You can use the following steps to add a new field to an existing database
table via a Customizing include:

To add the upselling code to the OPP promotion header table, go to transaction and display the database table SE11 /ROP/PROMOTIO
.N

Double-click and create the structure of the data element.CI_ ROP_PROMOTION
Add the field to the structure. In this example, data type is used since the code should be a string with two ZZUP_SELL_TCD CHAR2
characters.
Activate the structure. The new field is available in database table and in the structures used by the business logic./ROP/PROMOTION

Extending SAP delivered ABAP domains

With the concept of domain appends, it is possible to extend the list of allowed values on customer side without any modifications. To avoid a
collision between SAP delivered and your own defined domain values, it is strongly recommended that they are in the reserved customer

:namespace

Custom domain values with alphanumeric type definition (for example,): Z* or Y*CHAR
Custom domain values with numeric or numerical text as type definition (for example or): 9*INT4 NUMC

To find out if new domain values are required, or if an existing domain value is suitable to cover your specific use case, check the the OPP
 and search for domains referenced by the OPP promotion data model.Functional Guide for the Promotion Calculation Engine

If a value is part of the standard shipment of an ABAP domain, it is not necessarily used in the standard mapping of DDF offers into OPP
promotions. There is no guaranteed support for this domain value within the PPS/PCE, for example:

The value of the domain is part of the standard shipment, but currently not used by the PPSUN /ROP/DB_MERCH_SET_OPERATION
(only is used) and therefore also not used in the standard mapping.DF
The value of the domain is part of the standard shipment, but not used in the standard mapping. However,01 /ROP/DB_DISC_METHOD
the PCE supports this value as described in the .OPP Functional Guide for the Promotion Calculation Engine

Extensibility of the OPP Business Logic (ABAP)

The business logic on the ABAP side is based on the general SAP Enhancement Framework, which uses enhancement spots for
customer-specific enhancements. This framework allows a modification-free adjustment of the application logic delivered by SAP. To keep the
upgrade effort as low as possible, SAP recommends you apply the following options for objects in the /ROP/ namespace:

Use the predefined enhancement spots via Business Add-Ins (BAdIs). They can be used to accommodate most of your specific
requirements that are not included in the standard delivery.

If this is not possible, use the applied factory/interface paradigm. Instances of SAP standard classes are centrally created in dedicated
factory classes. The classes containing business logic expose it via interfaces. Consumers of the business logic refer only to the
interfaces not to the concrete implementations. In addition, most classes are not final and have protected methods, allowing subclassing
and overriding specific methods. Compared to direct source code enhancements, this option offers a better defined signature for the
extension. You should be able to use thisRedefine the required factory classes to create subclasses of the SAP standard classes.
approach to cover the vast majority of your requirements.

Use implicit enhancement implementations, such as direct source code adjustments, only in very exceptional
cases. These implementations have the big disadvantage that there is no defined interface on which you can rely. Source code
enhancements may even refer to local variables. These enhancements should be needed only in order to adjust the SAP standard
factory classes with your customer-specific factories, in order to realize option two.

If you want to add fields to the SAP delivered types via CI includes, use the prefix for field names to avoid name collisions in futureZZ
versions.

If a BAdI is missing, or the existing BAdI does not support your specific use case, you can address your issue .here

SAP guarantees the upward compatibility of all BAdI interfaces. Release upgrades do not affect enhancement calls from within
the standard software nor the validity of calling interfaces.

Use this option only as long as no suitable BAdI is available to support your use case. SAP does not guarantee that classes or
interfaces remain stable across releases.

SAP strongly recommends you do not use this option outside of factory classes since this is the least stable way to extend

http://scn.sap.com/community/retail/blog/2016/04/18/promotion-pricing-in-sap-retail-omni-channel-commerce

3.

1.
2.

3.

4.

1.

2.
3.

4.
5.

6.

Example: Extending the OPP Business Logic (Options 2 and Option 3)

To change the transformation logic from offers into OPP promotions so that offers in the status are also to be considered (in theRecommended
standard shipment only offers in the status are to be considered), proceed as follows:Approved

Create a new class, as a subclass to .ZZCL_CONFIG /ROP/CL_CONFIG
In the constructor, add the following lines (option 2):

METHOD constructor.
 super->constructor().
 APPEND /dmf/cl_offer_status=>recommended TO mt_relevant_status. "
<- This is the actual enhancement
 ENDMETHOD.

Create a new factory class, such as , as a subclass to , redefine methodZZCL_COMMON_FAC /ROP/CL_COMMON_FAC /ROP/IF_CO
 as follows (option 2): MMON_FAC~GET_CONFIG

 METHOD /rop/if_common_fac~get_config.
 IF mo_config IS INITIAL.
 mo_config = NEW zzcl_config(). " <- New class!
 ENDIF.
 ro_config = mo_config.
 ENDMETHOD.

In method of class , make the following replacement (option 3):CLASS_CONSTRUCTOR /ROP/CL_COMMON_FAC

METHOD class_constructor.
 g_factory_name = 'ZZCL_COMMON_FAC'. " <- Your factory class!
 ENDMETHOD.

Extensibility of the Transformation from DDF Offer into OPP Promotion

As described in the section "Transformation from DDF Offers into OPP Promotions", the transformation logic is realized by calling a number of
BAdIs contained in enhancement spot These BAdIs may have multiple implementations and the sequence in which the/ROP/OFFER_MAPPING.
implementations are executed can be determined.

For more information, see the BAdI documentation for enhancement spot in the system./ROP/OFFER_MAPPING

 Example: Extending the Transformation from DDF Offer into OPP Promotion

A DDF offer has the field with an entered value. The value has to be mapped from the offer field to the new field ZZUP_SELL_TCD ZZUP_SELL_
 in the promotion header. A new BAdI implementation of needs to be created for this mapping. To create this BAdITCD /ROP/PROMO_BUILDER

implementation, proceed as follows:

In transaction , create a new enhancement implementation for spot , such as SE19 /ROP/OFFER_MAPPING Z_ROP_ CUSTOMER_MAP
PING_IMP.
Create a new BAdI implementation for /ROP/PROMO_BUILDER.
Choose a greater than , for example . In this way, you can guarantee a post-execution of the newsequence number 0 100
implementation.
Create a new class that implements the interface /ROP/IF_PROMO_BUILDER.
Implement the method of the BAdI. This implementation performs the customer-specific mapping. The signature ofBUILD_PROMOTION
the method provides all the information you need: (import parameter that includes all information about the offer) and IS_OFFER_BO CS

 (changing parameter that includes all the information about the mapped offer that is to be changed)._PROMOTION_BO
You can analyze and change the changing parameter accordingly. The following code snippet shows how the requirement mentioned
above can be fulfilled:

standard functions.

1.

2.
3.

4.

METHOD /rop/if_promo_builder~build_promotion.

cs_promotion-zzup_sell_tcd = is_ofr_bo-zzup_sell_code.

Extensibility of the IDoc Outbound Processing (ABAP)

The promotions as well as the regular prices can be replicated to an external system using IDocs. The promotions are replicated using IDoc /ROP
the regular prices are replicated using IDoc ./PROMOTION01 or (as of PPS 3.0), /ROP/PROMOTION02 /ROP/BASE_PRICE01

Both IDocs have dedicated extension segments to each IDoc subsegment. There are also several BAdIs to extend the logic that is used to
transfer the price rules via IDocs.

The BAdIs for the outbound of the OPP promotions are contained in enhancement spot /ROP/PROMO_OUTBOUND.

The BAdI can be used to change the IDoc control record of the basis IDoc or an extended type of it./ROP/IDOC_CONTROL
The BAdI can be used to change the IDoc content of the basis IDoc or an extended type. /ROP/IDOC_DATA
The BAdI can be used to change the mapping process within the promotion outbound procedure./ROP/MAP_OUTBOUND_DATA

The BAdIs for the outbound of the regular prices are contained in enhancement spot /ROP/BASE_PRICE_OUTBOUND.

The BAdI can be used to change the IDoc control record of the basic IDoc or an extended type/ROP/BASE_PRICE_IDOC_CONTROL
of it.
The BAdI can be used to change the IDoc content of the basic IDoc or an extended type. /ROP/BASE_PRICE_IDOC_DATA

For more information, see the BAdI documentation for enhancement spots and ./ROP/PROMO_OUTBOUND /ROP/BASE_PRICE_OUTBOUND

Example: Extending the IDoc Outbound

To enhance the IDoc /ROP/PROMOTION01 with the new field in database table you need to create aZZUP_SELL_TCD /ROP/PROMOTION,
new BAdI implementation of :/ROP/MAP_OUTBOUND_DATA

In transaction , create a new enhancement implementation for spot , such as SE19 /ROP/PROMO_OUTBOUND Z_ROP_ CUSTOMER_O
UTBOUND_IMP.
Create a new BAdI implementation for ./ROP/MAP_OUTBOUND_DATA
Implement the method of the BAdI. You can use this method to modify the mapping process when a promotion isMODIFY_MAPPING
mapped to the corresponding IDoc structure. The signature of the method provides all the information you need: (imporIS_PROMOTION
t parameter that includes all information about the promotion) and (changing parameter thatCT_PROMOTION_OUTBOUND_DATA
represent the IDoc data structure that is to be changed)
The following code snippet shows how the extension segment could be mapped:

It is not necessary to create your own implementation for the BAdIs /ROP/OFFER_CLASSIFIER and /ROP/PROMO_RECIPE_BUILDE
R.

4.

5.

METHOD /rop/if_map_outbound_data~modify_mapping.

DATA: ls_idoc TYPE edidd,
 ls_enhanc TYPE /rop/e1_promotion_enhanc.

 READ TABLE ct_promotion_outbound_data ASSIGNING
FIELD-SYMBOL(<fs_idoc>) WITH KEY segnam = '/ROP/E1_PROMOTION'.
 IF sy-subrc = 0.
 ls_enhanc-fldgrp = 'HEADER'.
 ls_enhanc-fldname = 'ZZUP_SELL_TCD'.
 ls_enhanc-fldval = is_promotion-zzup_sell_tcd.
 ENDIF.
 ls_idoc-segnam = '/ROP/E1_PROMOTION_ENH'.
 ls_idoc-sdata = ls_enhanc.
 INSERT ls_idoc INTO ct_promotion_outbound_data INDEX sy-tabix + 1.

As a result, the IDoc extension segment is filled as follows:/ROP/E1_PROMOTION_ENH

Field Name Field Content

FLDGRP HEADER

FLDNAME ZZUP_SELL_TCD

FLDVAL XY

Extensibility of the OPP Data Model (Java)

The specific use case determines what you need to do when you extend the predelivered entities. The following cases are described below:

An existing entity is to be enhanced for a field
A completely separate new entity is to be introduced
Attribute converters are to be added to existing fields
A new entity is to be added as a child entity to an existing entity (reachable via a relation, such as the texts for a promotion)
A new entity is to be added as a specialization of an existing entity (such as the different types of eligibilities)
The existing logic for equals() and hashCode() of a JPA entity is to be changed

Adding a Field to an Entity

If the existing entity is a subclass of , you can add a field to ancom.sap.ppengine.dataaccess.promotion.common.entities.AbstractEntityImpl
entity without any coding on the data access level. This is possible because OPP uses the concept of virtual access methods offered by
EclipseLink. For more information, see the documentation on the Eclipse website.

The additional mapping information is stored in a separate object relational mapping file (orm), for example, . This file must beppe-local-orm.xml
located on the classpath. To make this file known to the PPS, add the following line to the :ppe-local.properties file

Note the leading comma!!
sap.dataaccess-common.custmappingresources=,ppe-local-orm.xml

As of SAP CAR 3.0 FP03, CI include fields of the OPP promotion tables are automatically mapped to the corresponding IDoc extension
segments if the DRF outbound parameter is set to 'X'./ROP/GENERIC_ENH_MAP

It is possible to add several orm files separated by a comma.

 Using the example of the upsell type code of a promotion, the file needs to contain the following:ppe-local-orm.xml

Adding a single field to an existing entity

<entity-mappings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.eclipse.org/eclipselink/xsds/persistence/o
rm
 http://www.eclipse.org/eclipselink/xsds/eclipselink_orm_2_4.xsd"
 version="2.4">

 <!-- ... -->
 <entity

class="com.sap.ppengine.dataaccess.promotion.common.entities.PromotionImpl
">
 <attributes>
 <basic name="ZZUPSELLING_CODE" attribute-type="String" access="VIRTUAL">
 <column name="ZZUP_SELL_TCD" />
 <access-methods get-method="get" set-method="set" />
 </basic>
 </attributes>
 </entity>
</entity-mappings>

Assuming that the column has been added to table on the ABAP side, this is mapped to the new JPAZZUP_SELL_TCD /ROP/PROMOTION
entity attribute . Its content is stored in map inherited from . The access takes place via ZZUPSELLING_CODE extensions AbstractEntityImpl
get() method and set() method. The get() and set() method are already part of the corresponding entity interface in PPS module dataaccess-inter

.face

Adding a Separate Entry

After you define the new entity, you have to proceed with the standard approach. The new entity is made visible to the entity manager factory (in
other words it is added to the list of packages scanned by the entity manager factory for JPA entities or attribute converters) by adding its package
name to the Spring property . Assuming that the new entity is in packages sap.dataaccess-common.custpackagestoscan com.mycompany.m

 and , the property must have the following value:yentities1 com.mycompany.myentities2

... you saw the leading comma...?
sap.dataaccess-common.custpackagestoscan=,com.mycompany.myentities1,com.my
company.myentities2

Adding an Attribute Converter to an Existing Attribute

If writing the attribute converter, only the converter is made visible to the entity manager factory by adding its package name to the Spring
property . The attribute converter is added to the JPA entity attribute using , sap.dataaccess-common.custpackagestoscan ppe-local-orm.xml
as shown in the following example for the OPP promotion:

Adding an attribute converter to an existing field

<entity-mappings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.eclipse.org/eclipselink/xsds/persistence/o
rm
 http://www.eclipse.org/eclipselink/xsds/eclipselink_orm_2_4.xsd"
 version="2.4">

 <!-- ... -->
 <entity

class="com.sap.ppengine.dataaccess.promotion.common.entities.PromotionImpl
">
 <convert
 converter="com.mycompany.converters.MyNewConverter"
 attribute-name="someExistingAttribute"/>
 </entity>
</entity-mappings>

Adding a Subentity to an Existing Entity

You can create the JPA entity in the way you create a new entity. You can provide a relation from the new entity to predelivered entitiesseparate
via the standard JPA way (). If the relation from the existing entity to the new subentity is required, the existing entity must be@OneToMany
enhanced by this relation. In , this is done as shown in the following example in which a new subentity is added to the OPPppe-local-orm.xml
promotion. We assume that the new entity has SAP client as table column and the promotion ID as table column asMANDT PROMOTION_ID
attributes.

Adding a relation from an existing to a new entity

<entity-mappings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.eclipse.org/eclipselink/xsds/persistence/orm

 http://www.eclipse.org/eclipselink/xsds/eclipselink_orm_2_4.xsd"
 version="2.4">

 <!-- ... -->
 <entity

class="com.sap.ppengine.dataaccess.promotion.common.entities.PromotionImpl
">
 <attributes>
 <one-to-many name="myOwnEntities" access="VIRTUAL"
attribute-type="java.util.List"
 target-entity="com.mycompany.entities.MyOwnEntity">
 <join-column name="MANDT" referenced-column-name="MANDT" />
 <join-column name="PROMOTION_ID"
referenced-column-name="PROMOTION_ID" />
 </one-to-many>
 </attributes>
 </entity>

</entity-mappings>

Adding a Specialization to an Existing Entity

You can only add a specialization to an existing entry if the existing entity is prepared accordingly, as it is the case for the price derivation rule and
the price derivation rule eligibility. Inheritance is represented in the database via a dedicated column holding the discriminator determining the
specific type that is stored in the database table record. For the price derivation rule and th eligibilit this is the column e price derivation rule y, TYP

. The new entity is to be defined as shown in the following example of a new eligibility type:E_CODE

Adding another specializaton to an existing entity

package com.mycompany.entities;

@Entity
@DiscriminatorValue(value = "ABCD")
public class AbcdPriceDerivationRuleEligibilityImpl extends
 PriceDerivationRuleEligibilityImpl implements
 AbcdPriceDerivationRuleEligibility {

 // New fields may come here
}

In the example above, the new entity also implements a new interface AbcdPriceDerivationRuleEligibilityImpl AbcdPriceDerivationRuleEligi
. We recommend you extend the existing classes and interfaces to provide a clean interface to the promotion calculation engine:bility

PromotionService (add new access methods)
Optionally (add new access methods)NamedQueryService
This is needed if new search methods are required that use Spring caches. Then the method performing the to-be-cached access must
be external to the calling method within PromotionServiceImpl.
PromotionServiceImpl (also redefine the bean)sapPromotionService
Optionally (also redefine)NamedQueryServicelmpl sapNamedQueryService

The new entity is made visible to the entity manager factory by adding its package name to the Spring property sap.dataaccess-common.custp
ackagestoscan.

Using Own Logic for Equals() and HashCode() of a JPA Entity

You can use your own logic for equals () and hashcode () by replacing the Spring bean . For more information,sapJpaEqualsHashCodeHelper
see the description of PPS module . dataaccess-common

Extensibility of Client API (Java)

The extensibility of the client API is an and effective way to meet customer requirements. The underlying standard of the Association foreasy
Retail Technology Standards (ARTS) already offers a lot of functions. However, it does not provide an overall solution for customer-specific
requirements. Therefore, customers might have to extend the data model. Some of the extensions will be part of the ARTS standard in later
versions, others may be too customer-specific to be part of the ARTS standard.

An extension of the client API is not enough since the underlying promotion calculation engine also has to be extended to be able to process
extension data provided by the client API.
There are two types of possible extensions for the client API:

Extensibility of Enumerations

All type code enumerations contain the values needed for the corresponding fields that are determined by ARTS. However, these fields are of
type in the Java classes and you can, therefore, add String your custom values.

For any of the enumerations listed below, your custom values must match the following pattern (as defined in the XSD provided with the Client
: API) [0-9A-Za-z][0-9A-Za-z]*:[0-9A-Za-z]*. If not, the following problems can occur:

The value that you have added is the same as introduced later on in the standard delivery
A future XSD validation will reject the request

Entity Attribute/Element Possible Value

ARTSCommonHeaderType ActionCode Any value from ActionCommonDataTypeCodesEnumeration
or any other string matching the pattern above

ARTSCommonHeaderType MessageType Any value from MessageTypeCodeEnumeration
or any other string matching the pattern above

ResponseCommonData ResponseCode Any value from ResponseTypeCodeEnumeration
or any other string matching the pattern above

BusinessErrorCommonData Severity Any value from SeverityCodeEnumeration
or any other string matching the pattern above

BusinessUnitCommonData TypeCode Any value from BusinessUnitTypeCodeEnumeration
or any other string matching the pattern above

PriceCalculateBase TransactionType Any value from TransactionTypeEnumeration
or any other string matching the pattern above

LoyaltyRewardBase TypeCode Any value from LoyaltyRewardTypeCodeEnumeration
or any other string matching the pattern above

Use virtual attributes only?
It is possible to define JPA entities using only virtual attributes. If the entity is a specialization of an existing SAP entity, this approach
would makes it unnecessary to define a new IDoc type since all fields go to the extension segments of existing segments. However, the
use of virtual attributes is more resource intensive than the use of ordinary attributes of the corresponding Java class.

Therefore, we recommend you start with virtual attributes and switch to non-virtual attributes if resource consumption is noticeably
higher.

PointsCommonData Type Any value from PointsTypeCodeEnumeration
or any other string matching the pattern above

PriceDerivationRuleBase ApplicationType Any value from PriceDerivationApplicationTypeCodeEnumeration
or any other string matching the pattern above

PriceDerivationRuleEligibility Type Any value from DerivationRuleEligibilityTypeEnumeration
or any other string matching the pattern above

ItemBase ItemType Any value from RetailTransactionItemTypeEnumeration
or any other string matching the pattern above

RetailPriceModifierBase Amount Any value from RetailPriceModifierAmountActionEnumeration
or any other string matching the pattern above

RetailPriceModifierBase Percent Any value from RetailPriceModifierPercentActionEnumeration
or any other string matching the pattern above

AmountCommonData Currency Any value from CurrencyTypeCodeEnumeration
or any other string matching the pattern above

RoundingRuleType RoundingMethod Any value from RoundingMethodEnumeration
or any other string matching the pattern above

CalculationModeTypeCode CalculationMode Any value from CalculationModeEnumeration
or any other string matching the pattern above

Extensibility of Content with User-Defined Attributes / Elements

Well-defined points in the ARTS data model, so-called are provided. These attributes allow the extension of the client API attributes/elements any
with anything a customer wants to add.

OPP only supports because of problems with the Jackson XML/JSON parser. The following entities contain these extension points:any elements

Entity Object Type

LineItemChoiceDomainSpecific Object

SaleBase List<Object>

SaleForDeliveryBase List<Object>

SaleForPickupBase List<Object>

ReturnBase List<Object>

ReturnForDeliveryBase List<Object>

ReturnForPickupBase List<Object>

CustomerOrderForDeliveryBase List<Object>

CustomerOrderForPickupBase List<Object>

ItemDomainSpecific List<Object>

PriceDerivationRuleBase List<Object>

PriceDerivationRuleEligibility List<Object>

RetailPriceModifierDomainSpecific List<Object>

DiscountBase List<Object>

TenderCouponBase List<Object>

ARTSCommonHeaderType List<Object>

ExternalActionType List<Object>

LoyaltyAccountType List<Object>

LoyaltyRewardBase List<Object>

PriceCalculate List<Object>

PriceCalculateBase List<Object>

PriceCalculateResponse List<Object>

PromotionExternalTriggerType List<Object>

PromotionManualTriggerType List<Object>

PromotionPriceDerivationRuleReferenceType List<Object>

RoundingRuleType List<Object>

ShoppingBasketBase List<Object>

More information about the general ARTS extension concept of the XML schemas can be found .here

Restrictions

It is not possible to use XML attributes within any elements, for example:

Restrictions

<any>
 <SimpleExtension myAttribute='hello'>MyExtension</SimpleExtension>
</any>

Instead, you could use the following attributes:

Alternative

<any>
 <SimpleExtension>
 <myAttribute>hello</myAttribute>
 <data>MyExtension</data>
 </SimpleExtension>
</any>

Example: Enrich SaleForDelivery Entity with Address Information

A customer wants to enrich the entity with address information.SaleForDelivery

https://nrf.com/

Request excerpt

...
 <ShoppingBasket>
 <LineItem>
 <SequenceNumber>0</SequenceNumber>
 <MerchandiseHierarchy ID="ID1" >hier1</MerchandiseHierarchy>
 <SaleForDelivery ItemType="Stock" NonDiscountableFlag="false"
FixedPriceFlag="false">
 <TaxIncludedInPriceFlag>false</TaxIncludedInPriceFlag>
 <NonPieceGoodFlag>false</NonPieceGoodFlag>

<FrequentShopperPointsEligibilityFlag>false</FrequentShopperPointsEligibil
ityFlag>
 <DiscountTypeCode>2</DiscountTypeCode>
 <PriceTypeCode>00</PriceTypeCode>

<NotConsideredByPriceEngineFlag>false</NotConsideredByPriceEngineFlag>
 <ItemID>CHA2111012</ItemID>
 <Quantity Units="1" UnitOfMeasureCode="PCE">5</Quantity>
 <any>
 <Street>Neue Bahnhofstrasse 21</Street>
 <City>Sankt Ingbert</City>
 <PostalCode>66386</PostalCode>
 <Country>Deutschland</Country>
 </any>
 <any>
 <Street>Dietmar-Hopp-Allee 16</Street>
 <City>Walldorf</City>
 <PostalCode>69160</PostalCode>
 <Country>Deutschland</Country>
 </any>
 </SaleForDelivery>
 </LineItem>
 ...

This example shows that the line item has been enriched with two addresses.

To access this information from Java, you can use the following code snipplet as reference:

Access any information in Java

final List<Object> anyList =
priceCalculate.getPriceCalculateBody().get(0).getShoppingBasket().getLineI
tem().get(0).getSaleForDelivery().getAny();

for (int i = 0; i < anyList.size(); i++)
{
 //Do whatever you want with the address information
}

Extending the PPS Business Logic (Java)

In order to extend business logic on the customer side, it is crucial that the extended application offers an well-defined API that:

Has a clearly defined facade
Calls the extension at a defined point during the application logic
Is well documented
Is stable across releases
Does not require modification of the delivered code
Is easy to consume

In addition, it is necessary to write the customer extension in such a way that it is independent of its later runtime environment. In particular, this is
relevant for extensions of the promotion calculation engine, which can be used within the PPS as well as within a GK OmniPOS deployment. This
implies the following:

There must be one file structure of the Java project containing the customer extension
It must be possible to distribute and install the built customer artifact independently of the standard artifacts

For this purpose, the PPS and the contained promotion calculation engine (PCE) offer the following:

A plugin concept to allow customer extensions of the standard business logic
The guaranteed stability of certain artifacts

Plugin Concept

This is similar to the concept of the Business Add-Ins ("BAdI") offered by ABAP: The following figure illustrates its components and how it works:

This chapter is relevant as of PPS version 3.0.

The plugin concept is based on the Spring plugin framework (see). The Spring plugin frameworkhttps://github.com/spring-projects/spring-plugin
offers the interface This is the parent interface for all application-specific interfaces that provideorg.springframework.plugin.core.Plugin<S>.
extension hooks. The interface offers the type parameter <S>, which allows an implementation of this interface to tell for in which contextPlugin
the corresponding implementation shall be used. This is realized via the method, allowing a caller to filter implementations by asupports()
specific criterion. How to implement this is described below.

The PPS/PCE now offers interfaces extending , offering specific methods. These interfaces are called . Plugin interfacesPlugin Plugin interfaces
offer the extensibility for a certain aspect of the application logic. The meaning of the type parameter <S>, i.e. the filter criterion, depends on the
individual plugin interface. The interface is a special case, serving as the parent for all Plugin interfaces where a filter onNonFilterPlugin
implementation is not feasible or required. In the diagram above, two example plugin interfaces are shown:

Interface which enables the addition of further validations of the incoming Price Calculation request. This does notRequestValidation
offer the selection of individual plugin implementations based on a filter value. Therefore it extends .NoFilterPlugin
Interface which allows changing query parameters of JPA NamedQueries, setting query hints etc. This works perQueryAdjustment
query to be executed. Hence, the query name (of type) is a filter criterion. In the method, an implementation of thisString supports()
interface would compare the provided query name with the query name this implementation is intended for.

The implementation of a Plugin Interface is called . This consists of two parts:Plugin Implementation

The Java class implementing the Plugin Interface
The Spring Bean adding an instance of the Java class to the Spring Application Context.

Having the Plugin Implementations created, they must be somehow collected so that within the application all implementations of a plugin
interface can be called. This is done by the . During startup of the Spring Application Context, for a given Plugin Interface it looksPlugin Registry
for all Spring Beans implementing this interface. When calling theNo static wiring of the implementations to the Plugin Registry is needed.

https://github.com/spring-projects/spring-plugin

Plugin Implementations, the Plugin Registry offers the list of references to the corresponding Spring Beans. The Plugin Registry itself is an
ordinary Spring Bean as well. However, the Spring Plugin framework adds another XML namespace to the Spring XML file, making it easier to
define the registry. As a second possibility, the plugin implementations can be collected by the registry which itself is not exposed - instead the
collected implementations are exposed as a simple list which can be injected into the Spring bean calling the plugin.

The following example shows how a Plugin Registry and a Plugin Implementation is created. The Plugin Registry is added in a Spring XML of the
SAP delivered artifacts.

Defining a Plugin Registry in SAP Spring XML

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
 xmlns:util="http://www.springframework.org/schema/util"
xmlns:plugin="http://www.springframework.org/schema/plugin"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/plugin
http://www.springframework.org/schema/plugin/spring-plugin.xsd
 http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd">

 <!-- Option 1: Plugin registry for adjustment of named queries -->
 <alias name="sapDefaultQueryAdjustmentPluginRegistry"
alias="sapQueryAdjustmentPluginRegistry" />
 <plugin:registry id="sapDefaultQueryAdjustmentPluginRegistry"
 class="com.sap.ppengine.api.plugin.QueryAdjustment" />

 <!-- Option 2: Plugin collect plugin implementations as list -->
 <alias name="queryAdjustments" alias="queryAdjustmentImplsAsList" />
 <plugin:list id="queryAdjustmentImplsAsList"
 class="com.sap.ppengine.api.plugin.QueryAdjustment" />
</beans>

The non-PCE part of the PPS uses the registry approach, the PCE part uses the list approach. From an implementor's view this does not make a
difference though.

Calling the Plugins

Calling the Plugins - to be more precise: the relevant implementations of the corresponding Plugin Interfaces - is done via the helper class Plugin
. For a given Plugin Interface and Plugin Registry, it allows a simple invokation of the desired interface method for all relevantAccess

implementations. Some examples are shown below:

PPS Only
This section is only valid for the PPS and does not apply for the promotion calculation engine (PCE) that is part of it.

Calling Plugins via CallPlugins class

// Injected via Spring
PluginAccess pluginAccess;

// Call the validate() method of all implementations for plugin
RequestValidation expecting a checked exception
pluginAccess.callAll(ContextEnrichment.class, p ->
p.enrichContext(getContext(), priceCalculate));

// Call the validate() method of all implementations for plugin
RequestValidation expecting a checked exception
pluginAccess.callAllChecked(RequestValidation.class, p ->
p.validate(priceCalculate));

// Call the single implementation of a method with return parameter
Class<T> clazz = pluginAccess.callFunction(CustomEligibility.class,
eliType, p -> p.classForType());

Implementing a Plugin

A corresponding implementation on customer side is just a regular Spring Bean to be added to the Spring XML:

Defining a Plugin Implementation in Customer Spring XML

<bean id="myQueryAdjustment" class="com.customer.MyQueryAdjustmentImpl"/>

The corresponding Java class implements the Plugin Interface. In this example we want to adjust the query "findItemEligibilityIDsByItemID" after
any potential SAP implementation.

Currently, only Spring beans with scope "singleton" (which is the default scope) are supported for plugin implementations.

Customer class implementing a Plugin Interface

package com.customer;

import org.springframework.core.annotation.Order;
import com.sap.ppengine.client.dto.PriceCalculate;
import com.sap.ppengine.api.plugin.QueryAdjustment;
import com.sap.ppengine.client.impl.RequestValidationException;

// Note that order -10000000 to 10000000 is reserved for SAP
// ... but only multiples of 100
@Order(value = 10000001)
public class MyQueryAdjustmentImpl implements QueryAdjustment {

 @Override
 public boolean supports(final String queryName) {
 return "findItemEligibilityIDsByItemID".equals(queryName);
 }

 @Override
 public void adjustQuery(final Query query, final Context context) {
 // Do something
 }

 void adjustResult(final Query query, final Context context, final Object
result) {
 // Do something else
 }
}

Note that the implementation of a Plugin Interface is not only possible on customer side but done on SAP side as well. For example, the standard
request validation is an implementation of this Plugin Interface:

<alias name="sapDefaultCalculateRequestValidation"
alias="sapCalculateRequestValidation" />
<bean id="sapDefaultCalculateRequestValidation"
class="com.sap.ppengine.client.impl.RequestValidation30Impl">
 <property name="objectFactory" ref="sapClientApiDtoFactory" />
 <property name="maxNumberOfLineItems"
value="${sap.client-impl.maxnumberoflineitems}" />
 <property name="requestHelper" ref="sapClientApiHelper" />
</bean>

This raises the question in which sequence the implementations are called. The used Plugin Registry supports the sorting of Plugin
Implementations either via Java interface or via annotation .org.springframework.core.Ordered org.springframework.core.annotation.Order
The specified integer value determines the sort sequence of the implementations - negative values are allowed. To avoid collisions, it is strongly
recommended to use separate order values for each implementation of a certain Plugin Interface.

Reserved order values
Order values being multiples of 100 are reserved for the Plugin Implementations of the standard shipment. If you want to have your
Plugin Implementation executed between delivered implementations, use a value which is not a multiple of 100. In case you want to

If you want to replace an SAP implementation of a Plugin Interface, this is also possible using the PPS Module concept. In this case, define your
Spring bean with the same ID (and not just alias) as the SAP standard bean:

Replacing an SAP standard Plugin Implementation

<alias name="sapDefaultCalculateRequestValidation"
alias="sapCalculateRequestValidation" />
<bean id="sapDefaultCalculateRequestValidation"
class="com.customer.MyReplacingValidationImpl" />

To make sure this bean is taken instead of the SAP standard bean, your PPS module must depend on the PPS module where the SAP standard
bean was defined. In the example above this would be the module. This is specified in the (..)-ppe-module-metadata.xml file of yourclient-impl
module:

Defining the dependency to the PPS module of the bean to be replaced

<module xmlns="http://www.sap.com/ppengine/core/module"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.sap.com/ppengine/core/module
ppengine-module-0.2.xsd">
 <name name="custextension" vendor="customer" />
 <dependencies>
 <module name="client-impl" vendor="sap"/>
 </dependencies>
</module>

If you just define an additional Plugin Implementation, declaring such a dependency is not required.

In order to easily find the list of Plugin Interfaces offered for the PPS and the PCE, they are bundled at central places:

For the PPS this is the PPS module , which exists as of PPS 3.0api
For the PCE, this is module (which is not a PPS module). pricing-engine-api

Further details of the offered Plugin Interfaces are documented in the corresponding chapter of these modules.

Guaranteed Stability

As of PPS 3.0, dedicated objects of the standard shipment offer a guaranteed stability for future releases.

What does that mean? When referring to the stability of an artifact two degrees of stability must be distinguished:

The stability of an object towards the external callers / users of this object, in the following called . It is guaranteedConsumer stability
that the usage of the artifact does not lead to in future releases. Example: The artifact is a Java interface, the callercompile errors
invokes a method of this interface. The addition or removal of a method parameter would violate the caller stability contstraint for that
interface. On the other hand, replacing the type of a method parameter with a super type would not violate the caller stability.
The stability of an object towards extenders of this object, in the following called . This only applies for Java interfacesExtension stability

make sure your implementation is execute before or after any current or future implementation, use order values below -10,000,000 or
above 10,000,000.

Stability of SAP Spring Bean IDs
Although SAP tries to ensure compatibility, there is no guarantee that for a provided Plugin Interface the number of standard
implementations, the contained logic, the execution sequence or the IDs remain stable.

Often the PPS context is provided as a method parameter. This is done on purpose - you are encouraged to store data you need
throughout the application within a parameter of the PPS context. Note that this parameter can have any type - it is neither needed nor
good practice to define a new PPS context parameter for every piece of information you want to store.

and classes. It is guaranteed that an implementor or an interface or a subclass of a class will not have compile errors in future releases.
Example: The artifact is a Java class which has been extended. The extension uses a protected method. The removal or this method or
changing its signature would violate the extension stability contraint for the extended class. On the other hand, adding a method to a Java
interface using the Java 8 concept of (empty) default implementations is considered as uncritical, even if this leads to name collisions with
customer implementations.

Unforeseen requirements to change something may come, and this is also true for the guaranteed stability. It may turn out that an artifact
declared as (consumer or extension) stable must be changed in an incompatible way. In this situation, the following happens:

In release X, it is announced that a certain incompatible change is required. The change itself is not yet done though.
The change is also not done in releases X+1, X+2, X+3, X+4. However, during that time an alternative to the incompatible change will be
offered (e.g. a method to be called instead if the original method will be removed).
In release X+5 the incompatible change is performed.

Example:

Release number changes from 3.0.0 to 3.0.1: patch number changes no change of PPS release
Release number changes from 3.0.1 to 3.1.0: minor version number changes new PPS release
Release number changes from 3.1.0 to 4.0.0: major version number changes new PPS release

Documented Stability

The guaranteed stability applies for the following PPS modules:

dataaccess-interface: All contained artifacts are guaranteed to be consumer stable. Incompatible changes will be documented via
JavaDoc.
client-interface: All contained artifacts are guaranteed to be consumer stable. Incompatible changes will happen. Never. Changes to not
the expected way of using the client API will lead to new interface versions.
api: The degree of stability (caller / extension) is documented via the Java annotations and com.sap.ppengine.api.ConsumerStable co

. Incompatible changes are documented via JavaDoc and Java annotation m.sap.ppengine.api.ExtensionStable com.sap.ppengine.ap
.i.PlannedIncompatibleChange

Your Choices for Extending the PPS Java Side

With the introduction of the Plugin Interfaces, you have three options for extending the PPS business logic. SAP recommends to use them in the
following order of preference:

To be on the safe side and avoid name collisions, it is recommended to prefix customer specific methods and attributes, e.g. "zz" or
<customerName>.

Extension stability includes consumer stability since an extension can always act like an external caller.

In this context a "release" means a PPS release (i.e. the version number of the shipped JAR files), not the release of the software
component used to ship the PPS. Example: PPS 2.0.3 is contained in software component version 1.1.2. A new PPSXSAC_OPP_PPS
release means that either the major or minor release number changes.

This chapter does not apply for the Promotion Calculation Engine (PCE) of the PPS. For further information about the PCE, please
consult the SDK of the Promotion Calculation Engine (chapter "PCE Extensions")

In addition, PPS specific DB tables have guaranteed extension stability in the sense that the DB key will not change and no delivered
fields will be removed in any future release.

Implement the offered Plugin Interfaces. These are guaranteed to keep stable.
Use the PPS Module concept to replace SAP provided beans using a subclass of the Java class offered by SAP. Try to use as
few of the protected methods of the super class as possible in order to reduce the risk of an incompatible change.
Use Spring AOP in case option 2 is not feasible or requires the redefinition of too many beans. Depending on the kind of
change, this approach may be very robust (e.g. if you want to grab the methods of the call of a ConsumerStable interface) or
very risky. A general recommendation cannot be given here!

SAP Delivered Plugin Implementations

The following tables contains the Plugin Implementations of PPS Plugin Interfaces (excluding the PCE) which are part of the SAP standard
shipment. Implementations of the PCE Plugin Interfaces can be found in the SDK of the PCE.

Plugin Interface Plugin Implementation Class Order Plugin Implementation Bean Description

ContextEnrichment ContextFromRequestEnrichmentImpl 0 sapDefaultContextFromRequestEnrichment Enrich PPS
context with BU
Type etc

FeatureCheck FeatureCheckImpl 0 sapDefaultFeatureCheck Checks PCE
features from
config stored in
PPS context

PromotionServiceInitialization ItemPriceDerivationRuleEligibilityCacheAwareBulkAccessorImpl 0 sapDefaultItemEligibilityBulkAccessor Bulk access for
Item Eligibilities

MerchandiseSetEligibilityCacheAwareBulkAccessorImpl 1000 sapDefaultMSetEligibilityBulkAccessor Bulkd access
for
MerchandiseSet
Eligibilities

RequestAdjustment AddBasePricesToRequestImpl 0 sapDefaultAddBasePricesToRequest Read needed
regular prices
and write them
into request
forwared to
PCE

RequestValidation RequestValidationImpl 0 sapDefaultCalculateRequestValidation SAP standard
consistency
checks of
request

Structure of Your Extension Project

If you create an extension of the PPS, it may be the case that this extension shall also be used in a GK OmniPOS solution (at least the PCE
extension part of it). The extension concepts of the PPS and the PCE (in a non PPS context) are slightly different (see below). This needs to be
kept in mind when creating the extension. This chapter describes how to set up the file and folder structrure of a Java project which compiles to
one JAR which can be used by the PPS as well as by the PCE in an OmniPOS context. This documentation assumes that you use Eclipse. In the
simplest setup (shown below), the needed dependencies for compiling your extensions could be placed into the lib folder a separate Java project
with a build path dependency set. However, it is recommended to use a build management tool such as Apache Maven in order to have a cleaner
project setup. How to set up Maven dependencies to the provided JARs is described in the extensibility example "Promotions on Brand Level".
Regardless of how the dependencies are resolved, the basic structure of the source (or resource folders) of an extension project remains the
same.

First, you need to categorize your extension objects into the following categories:

Objects that shall only be used in a PPS context. As an example, extensions of the data access layer (incl. changes to the DB table
definition) of the PPS or of the mapping between SAP data access interfaces and PCE objects fall into that category.
Objects that shall be used in both a PPS and an OmniPOS context. These are extensions of the PCE itself.
Objects that shall only be used in an OmniPOS context.

In all cases, the extension of the business logic is done by defining customer specific Spring Beans which are searched for in dedicated XML files
when setting up the Spring Application Context.

For the PPS, the XML files must match the following pattern (as defined in the PPS module) in Spring resource syntax:core
PPS Module metadata are located in classpath*:META-INF/**/*-ppe-module-metadata.xml
PPS Spring Beans are located in classpath*:META-INF/**/*-ppe-module-spring.xml
Metadata and Bean definition files are located in the same folder.

For the PCE in an OmniPOS environment, further beans are searched for in classpath*:META-INF/**/*-pos-plugin-pce.xml

This leads to the following recommended file and folder structure, using some speaking prefixes. Note that this introduces the PPS module ppsex
.t

... which looks as follows in the IDE:

In order to make sure that your extension runs both in the PPS and in the OmniPOS environment, you also have to consider the version of the
Java Runtime Environment. The PPS runs on Java 8 or later. However, some versions of GK OmniPOS still run on Java 6. If this is the case for
you, you have to compile your extension for a Java 6 target runtime. if you are in doubt about the used Java runtime, please contact your GK
Software contact person.

Installing your Extensions

How to install your extensions depends on the hosting application and is described there. The common idea is to

Build the extension JAR once
Add the extension JAR to the classpath of the hosting application.

For the central XSA based PPS this is described in chapter . For the local PPS in SAPIntegrating Custom Extensions into the XSA Based PPS
Hybris Commerce this is described in the Adminstration Guide of SAP Hybris Commerce, integration package for SAP for Retail under Omnichan

.nel Promotion Pricing

Extensibility of the Promotion Calculation Engine (Java)

The extensibility of the promotion calculation engine is described in the that can be found on the productSDK of the Promotion Calculation Engine
page of SAP Customer Activity Repository.

If you do not intend to extend the OmniPOS based PCE you can simply follow the PPS module concept and directly add the PCE
extensions to the Spring XML of the PPS module.

In some cases it may be required to split up your PPS extension into several parts, i.e. several PPS Modules. This is the case when the
PPS Spring Application Context is a real hierarchy as it is the case for the local PPS within SAP Hybris Commerce. Do not introduce
dependencies to PPS modules which are not visible in the Spring Application Context, to which your PPS Module is added. In the
example of the local PPS wihin SAP Hybris Commerce, an extension to the idocinbond module must be loaded into the Web
Application Context as well.

1.

2.

Extensibility of the sapppspricing PPS Integration (Java)

The extensibility of the sapppspricing PPS integration is described in the Administrator Guide that can be found on the product page of SAP
Hybris Commerce, integration package for SAP for Retail.

Extensibility Examples

The collective SAP note contains references to examples showing how the extensibility concept can be used to implement certain2542001
requirements. It is planned to add further examples over time.

Integrating Custom Extensions into the XSA-Based-PPS

The only requirement for the use of a PPS module is that it is located on the classpath. In this case, the PPS Spring application context finds the
module automatically and loads the contained Spring beans. The XSA-based PPS is shipped as follows:

When you install the Software Component Archive on XSA, the Multi Target Archive is deployed. This archive contains an application router and
the Web application itself (provided as a Web archive). The Web application consists mainly of Java archives containing the actual business logic.

A JAR inside the folder of the Web application looks like the obvious place for custom logic extending the PPS. However, deployingWEB-INF/lib
such an extended PPS comprises the creation of a new Web archive replacing the SAP standard archive and the creation of a new Multi Target
Archive replacing the SAP standard shipment, which is not recommended. SAP is working on a clean way to add custom logic to a Web
application without breaking its integrity. This chapter describes only the currently recommended way of adding further modules to the PPS
shipped by SAP.

Setting Up the Development Environment

Extract the Multi Target Archive from the Software Component Archive shipped by SAP.

SAP does not require the use of a specific development environment (Build Tool, Source Code Management, Editor, and so on).
However, in order to be able to provide a concrete example Eclipse is used as use a moreIDE in the following description. You can
advanced setup, including the use of Maven and GIT, for example.

2.

3.
4.

5.

6.
7.

1.

2.
3.
4.
5.

Extract the following from the Multi Target Archive:
The Web archive (ppservice-webapp-central)
The source JARs
The Javadoc JARs

Extract the content of the folder of the Web archive.WEB-INF/lib
In your Eclipse workspace, create a new Java project, such as , create a folder and include all JARs of the fsapppslibs lib/ WEB-INF/lib
older of the Web application. Add the JARs to the build path of the Java project.

Add the following JARs to the folder. These JARs will be provided by the tomcat runtime container:lib/
slf4j-api 1.7.13 or higher (see)http://slf4j.org/download.html

Ensure that all JARs of the folder are exported to the build path.lib
Create the folder within , in which you move all source JARs of the multi target archive.sourcejars sapppslibs

As a result, your project should look as follows. Note that the list of JARs is not complete.

Creating Your Extension Projects

In the same Eclipse workspace, create your custom extension as a Java project.
In this example, one project contains one PPS module. However, it is also possible to have a 1:n relationship between projects and PPS
modules.
Add the project to the build path of your Java project.sapppslibs
Define your PPS module metadata and spring beans via the corresponding XML files in the folder.META-INF
Create your Java classes for extending the standard functions.
Build the JAR file.

As a result, your Eclipse project could look as follows:

This Java project is used to compile and (unit-)test your extensions.only

http://slf4j.org/download.html

1.

2.
3.

Adding Your Extension to the PPS

Once the JAR with your custom logic has been created, it needs to be placed on the classpath of the SAP standard PPS as follows:

Create a directory that is accessible by the XSA runtime. Restrict the access rights of that directory so that only trusted people are
allowed to access it. If you are unsure how to create this directory, contact your system administrator.
In this procedure, the path to this directory is ./usr/sap/hana/shared/XSA/customjars
Copy the JAR file into this directory and set the access rights accordingly.
Create an (Multi Target Archive Extension) file, for example , with the following content:MTAEXT myPPS.mtaext

_schema-version: "2.0.0"
ID: com.customer.retail.ppservice.XSAC_OPP_PPS
extends: com.sap.retail.ppservice.XSAC_OPP_PPS
modules:
some lines omitted
 - name: ppservice-webapp-central
 parameters:
 memory: 1024M
 properties:
 JBP_CONFIG_RESOURCE_CONFIGURATION: >
 ['tomcat/webapps/ROOT/WEB-INF/classes/ppe-schema-orm.xml':
 {'sap.dataaccess-common.schema':'<DB_SCHEMA>'},
 'tomcat/webapps/ROOT/META-INF/context.xml':
 {'ppeHana-service-name':'ppeHana',
 'custJarBasePath':'/usr/sap/hana/shared/XSA/customjars'}]
 JBP_CONFIG_JAVA_OPTS: >
 java_opts: -Dsap.dataaccess-common.db.client="<DB_CLIENT>"
 -Dsap.dataaccess-common.logSys=<LOGSYS>
 provides:
 - name: java

some lines omitted

Only the replacement of parameter is relevant. Choose the other settings according to your specific setup.custJarBasePath

4.

5.

(Re-)install the PPS as follows:

xs install XSACOPPPP<version>.ZIP -e myPPS.mtaext -o
ALLOW_SC_SAME_VERSION

If the content of the directory changes, restart the PPS:

xs restart ppservice-webapp-central

Extending the PPS-Based Price Calculation in SAP ERP and SAP S/4HANA Sales

Documents

Depending on the SAP ERP or SAP S/4HANA release, it is also possible to call the PPS from SAP ERP/SAP S/4HANA. In this context,
extensions are possible as well. This chapter describes the offered possibilities.

Extending via BAdIs

The enhancement spot offers several BAdIs to extend the PPS-based price calculation in SAP ERP sales documents. ForOPP_ENHANCE_SD
more information about implementing these BAdIs, see the system documentation. In Customizing, you can find these BAdIs under Logistics -

.General > Omnichannel Promotion Pricing (OPP) > Business Add-Ins (BAdIs)

Enriching with Further Article Hierarchy Nodes

By default, the implementation of BAdI adds up to three article hierarchy nodes toOPP_ENHANCE_BY_ARTHIER OPP_ENHANCE_REQUEST
the corresponding article via the following logic:

The maximum depth of the article hierarchy is determined from table . The entry with the highest value of WRF_MATGRP_TREE TREE_
 defines the article hierarchy depth.LEVEL

The enrichment is done for the maximum level and the two levels below. For example, the maximum level has value 08, the enrichment
searches for nodes with level 06, 07 and 08 having this article as leaf.
If the article hierarchy is not balanced, it can result in less than 3 article hierarchy nodes. For example, the considered article is assigned
to a hierarchy node on level 06, only this node is considered. Nodes on level 04 or 05 are not taken into account.

If this logic is not sufficent and more than the three lowest levels should be considered, do the following:

Create an append structure to DDIC structure .KOMP
Add the following fields to this append structure:

Field name x (x=4,5,...)NODE
Type WRF_STRUC_NODE2

The system automatically considers further article hierarchy nodes according to the logic described above.

Extending the SAP ERP/ SAP S/4HANA PPS Client

The PPS client in SAP ERP is responsible for the conversion between ABAP data objects (structures, internal tables, data elements) representing
the elements of the PPS client API and their XML representation as supported by the PPS. Morever, it takes care for the HTTP-based data
exchange. It is independent from the integration into SD processing and implemented by class . Technically, the ABAPCL_OPP_PPS_CLIENT
types processed by the SAP ERP PPS client are not simple Data Dictionary types, but proxy data types with a binding between the ABAP type
and the corresponding XSD type of the client API.

Therefore, it is not possible to simply enhance the ABAP part of the client API in order to add further information to an request or response. To
support extensibility, the generated ABAP proxy structures provide predefined extension segments that can be used to transport additional
Information to the PPS and back to the caller. Each of these extension segments has the field name and type which is aANY OPP_ANY_TAB
standard table of raw strings. The following picture shows the ABAP proxy editor with the top level elements of the data type corresponding to the
PPS request ():OPP_MESSAGE2

During runtime, these raw strings may contain XML fragments that are automatically mapped by the PPS into a generic data format so that it can
be processed by server side customer extensions. The structure of each XML fragment can be arbitrarily complex, so that also deep ABAP
structures or tables can be used. The mapping between the ABAP data structures and the XML fragment that is contained in the raw string is
offered by ABAP interface with the following 2 methods:IF_OPP_PPS_EXTENSION_HELPER

WRAP: This method transforms the provided ABAP data into the XML fragment
UNWRAP: This method transforms the provided raw string containing an XML fragment into the corresponding ABAP data object. The
target type of the ABAP data object must match the structure of the XML fragment.

The following ABAP program shows how to perform the wrapping and unwrapping for the extension segments:

1.
2.

3.

4.

Usage of IF_OPP_SD_EXTENSION_HELPER

&---
*& Report ZZ_DEMO_EXTENSION_HELPER
&---
REPORT ZZ_DEMO_EXTENSION_HELPER.
* Get instance of IF_OPP_PPS_EXTENSION_HELPER
DATA(go_helper) = cl_opp_core_factory=>get_factory(
)->get_pps_extension_helper().
* The PPS request
DATA gs_request TYPE opp_message2.
* Example ABAP data: An integer giving the final answer
DATA g_src_data TYPE i VALUE 42.
DATA g_tgt_data LIKE g_src_data.
* Wrap ABAP data into XML fragment
DATA(g_wrapped) = go_helper->wrap(g_src_data).
* Append XML fragment to extension segment of ARTS header
APPEND g_wrapped TO gs_request-artsheader-any.
* Do the PPS call etc. For reasons of simplicity we here just extract the
request data
* Unwrap XML fragment to ABAP format - note that the data type matches
go_helper->unwrap(EXPORTING i_xml_fragment = gs_request-artsheader-any[1
]
 IMPORTING ed_data = g_tgt_data).

IF g_src_data = g_tgt_data.
 WRITE 'It really works!'.
ENDIF.

From a technical perspective, the "identity" ABAP Simple Transformation is used to convert between ABAP and XML representation, hence the
possibilities and restrictions described in the ABAP keyword documentation for format "asXML" apply (see also http://help.sap.com/abapdocu_74

). The PPS is a Java-based application that does not know ABAP-specific concepts. This has some implications:0/en/abenabap_xslt_asxml.htm

Reference types should not be wrapped into XML fragments as the unwrapping may not be possible.
Hashed or sorted tables including sorted or hashed table Indexes should not be used because the PPS is not aware of the restrictions for
the structure of the corresponding XML representation.
The ABAP-specific handling of currencies with other than 2 decimal places is not supported. We recommend to use a string
representation of amounts for Transfer within XML ANY elements.
By default Java has no direct counterpart to the ABAP built-in types and decfloat16 . If is used ondecfloat34 java.math.BigDecimal
Java side, precision loss can occur while unwrapping.

Support for Mocking of the SAP ERP/ SAP S/4HANA PPS Client

It is possible to perform integration tests of PPS-based price calculation in the pricing of a sales document without having a running PPS. This is
done by replacing the class that is responsible for creating the PPS client.CL_OPP_CORE_FACTORY

This can be done as follows:

Create a subclass of class , for example, .CL_OPP_CORE_FACTORY ZZCL_OPP_MOCK_FACTORY
In this class redefine the method so that it returns a mocked version of the PPS client.IF_OPP_CORE_FACTORY~GET_PPS_CLIENT
This must be a subclass of class . CL_OPP_PPS_CLIENT
In the subclass of redefine the method so that the PPS call is mocked accordingCL_OPP_PPS_CLIENT IF_OPP_PPS_CLIENT~CALL
to your needs.

In the initial shipment of the SAP ERP PPS client, Client API version 2.0 is supported. This means, that all elements of version 2.0
have the corresponding ABAP proxies present. However, from an application side, only version 1.0 requests are supported.

http://help.sap.com/abapdocu_740/en/abenabap_xslt_asxml.htm
http://help.sap.com/abapdocu_740/en/abenabap_xslt_asxml.htm

4.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

Set the SET / GET parameter to the name of the class replacing , for example, OPP_CORE_FACTORY CL_OPP_CORE_FACTORY ZZ
.CL_OPP_MOCK_FACTORY

CARAB 2.0 FP02: OPP Extensibility

OPP Extensibility

Modification-free extensibility is a major asset of SAP software. The following figure shows which parts of the overall OPP architecture are
relevant for extensibility. Further details on how the parts can be extended will be explained in the following sections.

The processing of DDF offers and regular prices including the inbound processing and persistence
The data model of the OPP promotion in the price and promotion repository in SAP Customer Activity Repository (ABAP)
The logic used to process OPP promotions and regular prices, in particular how DDF offers are transformed into OPP promotions
The outbound processing of OPP promotions and regular prices
Extending the PPS: general concepts (Java)
The data model of the OPP promotion and regular prices in the promotion calculation engine (Java)
The inbound processing of OPP promotions and regular prices for a local deployment
The data model and processing logic of OPP promotions in the promotion calculation engine of the promotion pricing service
The data model of the price calculation requests against the PPS
The creation and consumption of price calculation requests for PPS clients, in particular of the extension within SAPsapppspricing
Hybris Commerce

Extensibility of Demand Data Foundation (DDF)

If in transaction the client role is set to 'P' (Productive), tSCC4 he mocking of the PPS client is not possible with this approach.

This is applicable for the local deployment of the PPS as part of SAP Industry Package for SAP for Retail.only

1.

2.
3.

4.

The existing concepts of SAP Customer Activity Repository are reused. There are no changes here. Mainly the following concepts are offered:

Data dictionary structures offer Customizing includes that can be used on the customer side. If a table or structure in the standard system
is enhanced with customer fields using a Customizing include, there is no need to modify the table and structure definitions of the
standard system. The customer fields are automatically inserted in the new delivered table or structure definition during an upgrade.
These enhancements cannot be lost during the upgrade. For more information about Customizing includes, see inCustomizing Includes
SAP Library on SAP Help Portal.
Business Add-Ins (BAdIs) are offered at various places, allowing the modification-free enhancement of business logic. For more
information, see the application help for SAP Customer Activity Repository in SAP Library on SAP Help Portal.

Extensibility of DDF Offer Inbound API

The offer master data is used to plan promotions or to schedule demand modeling and forecasting processes. DDF uses an inbound interface to
receive the offer master data through a Remote Function Call (RFC). For more information about this offer inbound API and the ways in which you
can enhance this interface, see in SAP Library on SAP Help Portal and read the documentation for enhancement spot Offer Master Data /DMF/C

 in the SAP Customer Activity Repository system.USTOMER_EXT_OFFER

Extensibility of DDF Regular Price Inbound API

The product location master data is used to determine the regular price for a product at a specific location in a given time frame. DDF uses an
inbound interface to receive the product location master data with a Remote Function Call (RFC). For more information about this regular price

and the ways in which you can enhance this interface, see in SAP Library on SAP Help Portal andinbound API Product Location Master Data
read the documentation for enhancement spot in the SAP Customer Activity Repository system./DMF/CUSTOMER_EXT_PRODLOC

Extensibility of the OPP Data Model (ABAP)

The concepts to enhance the OPP data model follow those of the Demand Data Foundation (DDF) offer. For example, in every database table the
Data Dictionary offers Customizing includes. Since the structures on which the application logic is based refer to the structure definition of the
database tables. Additional fields are immediately available within the business logic, for example, during the transformation of DDF offers into
OPP promotions.

The following database tables are relevant for the OPP promotion model:

/ROP/PROMOTION
Table for promotion-relevant header data. The for this table is Customizing include CI_ ROP_PROMOTION.
/ROP/PROMO_RULE
Table for promotion price derivation rules. The Customizing include for this table is CI_ ROP_PROMO_RULE.
/ ROP/ELIGIBILITY
Table for all data that is relevant for the eligibilities of the OPP promotion. The Customizing include for this table is CI_
ROP_ELIGIBILITY.
/ROP/PRICE_RULE
Table for price derivation rules. The Customizing include for this table is CI_ ROP_PRICE_RULE.
/ROP/MAM_ITEM
Table for mix-and-match price derivation items. The Customizing include for this table is CI_ ROP_MAM_ITEM.
/ROP/PROMO_BU
Table for the business units for which the promotion is relevant. The Customizing include for this table is CI_ ROP_PROMO_BU.
/ROP/PROMO_TEXT
Table for the language-dependent texts of a promotion. The Customizing include for this table is CI_ ROP_PROMO_TEXT.
/ROP/EX_ACT_PARM
Table for the parameters of a price derivation rule of type . The Customizing include for this table is external action CI_ROP_PROMO_EX

.T_ACTION_PARAM
/ROP/EX_ACT_TEXT
Table for the language-dependent texts of a price derivation rule of type . The Customizing include for this table is external action CI_ROP

._PROMO_EXT_ACTION_TEXT
(available as of CAR 3.0 FP02)/ROP/MERCH_SET

Table for the promotion relevant merchandise. In this table the product groups used in the DDF offer are stored. The Customizing include
for this table is CI_ROP_MERCH_SET.

Example:

This example applies only for OPP promotions not for regular prices. You can use the following steps to add a new field to an existing database
table via a Customizing include:

To add the upselling code to the OPP promotion header table, go to transaction and display the database table SE11 /ROP/PROMOTIO
.N

Double-click and create the structure of the data element.CI_ ROP_PROMOTION
Add the field to the structure. In this example, data type is used since the code should be a string with two ZZUP_SELL_TCD CHAR2
characters.

https://help.sap.com/saphelp_nw70/helpdata/en/cf/21eb54446011d189700000e8322d00/content.htm
http://help.sap.com/saphelp_pmr810/helpdata/en/83/ad905117e0223ae10000000a44176d/content.htm?current_toc=%2Fen%2F76%2Fa05b5392e21f37e10000000a423f68%2Fplain.htm&frameset=%2Fen%2Fdd%2F1c9c51107dfc53e10000000a44538d%2Fframeset.htm&node_id=197
http://help.sap.com/saphelp_pmr810/helpdata/en/4b/7e9f517f472166e10000000a441470/content.htm?current_toc=%2Fen%2F76%2Fa05b5392e21f37e10000000a423f68%2Fplain.htm&frameset=%2Fen%2F83%2Fad905117e0223ae10000000a44176d%2Fframeset.htm&node_id=200

4.

1.

2.

3.

1.
2.

Activate the structure. The new field is available in database table and in the structures used by the business logic./ROP/PROMOTION

Extending SAP delivered ABAP domains

With the concept of domain appends, it is possible to extend the list of allowed values on customer side without any modifications. To avoid a
collision between SAP delivered and your own defined domain values, it is strongly recommended that they are in the reserved customer

:namespace

Custom domain values with alphanumeric type definition (for example,): Z* or Y*CHAR
Custom domain values with numeric or numerical text as type definition (for example or): 9*INT4 NUMC

To find out if new domain values are required, or if an existing domain value is suitable to cover your specific use case, check the the OPP
 and search for domains referenced by the OPP promotion data model.Functional Guide for the Promotion Calculation Engine

If a value is part of the standard shipment of an ABAP domain, it is not necessarily used in the standard mapping of DDF offers into OPP
promotions. There is no guaranteed support for this domain value within the PPS/PCE, for example:

The value of the domain is part of the standard shipment, but currently not used by the PPSUN /ROP/DB_MERCH_SET_OPERATION
(only is used) and therefore also not used in the standard mapping.DF
The value of the domain is part of the standard shipment, but not used in the standard mapping. However,01 /ROP/DB_DISC_METHOD
the PCE supports this value as described in the .OPP Functional Guide for the Promotion Calculation Engine

Extensibility of the OPP Business Logic (ABAP)

The business logic on the ABAP side is based on the general SAP Enhancement Framework, which uses enhancement spots for
customer-specific enhancements. This framework allows a modification-free adjustment of the application logic delivered by SAP. To keep the
upgrade effort as low as possible, SAP recommends you apply the following options for objects in the /ROP/ namespace:

Use the predefined enhancement spots via Business Add-Ins (BAdIs). They can be used to accommodate most of your specific
requirements that are not included in the standard delivery.

If this is not possible, use the applied factory/interface paradigm. Instances of SAP standard classes are centrally created in dedicated
factory classes. The classes containing business logic expose it via interfaces. Consumers of the business logic refer only to the
interfaces not to the concrete implementations. In addition, most classes are not final and have protected methods, allowing subclassing
and overriding specific methods. Compared to direct source code enhancements, this option offers a better defined signature for the
extension. You should be able to use thisRedefine the required factory classes to create subclasses of the SAP standard classes.
approach to cover the vast majority of your requirements.

Use implicit enhancement implementations, such as direct source code adjustments, only in very exceptional
cases. These implementations have the big disadvantage that there is no defined interface on which you can rely. Source code
enhancements may even refer to local variables. These enhancements should be needed only in order to adjust the SAP standard
factory classes with your customer-specific factories, in order to realize option two.

Example: Extending the OPP Business Logic (Options 2 and Option 3)

To change the transformation logic from offers into OPP promotions so that offers in the status are also to be considered (in theRecommended
standard shipment only offers in the status are to be considered), proceed as follows:Approved

Create a new class, as a subclass to .ZZCL_CONFIG /ROP/CL_CONFIG
In the constructor, add the following lines (option 2):

If you want to add fields to the SAP delivered types via CI includes, use the prefix for field names to avoid name collisions in futureZZ
versions.

If a BAdI is missing, or the existing BAdI does not support your specific use case, you can address your issue .here

SAP guarantees the upward compatibility of all BAdI interfaces. Release upgrades do not affect enhancement calls from within
the standard software nor the validity of calling interfaces.

Use this option only as long as no suitable BAdI is available to support your use case. SAP does not guarantee that classes or
interfaces remain stable across releases.

SAP strongly recommends you do not use this option outside of factory classes since this is the least stable way to extend
standard functions.

http://scn.sap.com/community/retail/blog/2016/04/18/promotion-pricing-in-sap-retail-omni-channel-commerce

2.

3.

4.

1.

2.
3.

4.
5.

6.

METHOD constructor.
 super->constructor().
 APPEND /dmf/cl_offer_status=>recommended TO mt_relevant_status. "
<- This is the actual enhancement
 ENDMETHOD.

Create a new factory class, such as , as a subclass to , redefine methodZZCL_COMMON_FAC /ROP/CL_COMMON_FAC /ROP/IF_CO
 as follows (option 2): MMON_FAC~GET_CONFIG

 METHOD /rop/if_common_fac~get_config.
 IF mo_config IS INITIAL.
 mo_config = NEW zzcl_config(). " <- New class!
 ENDIF.
 ro_config = mo_config.
 ENDMETHOD.

In method of class , make the following replacement (option 3):CLASS_CONSTRUCTOR /ROP/CL_COMMON_FAC

METHOD class_constructor.
 g_factory_name = 'ZZCL_COMMON_FAC'. " <- Your factory class!
 ENDMETHOD.

Extensibility of the Transformation from DDF Offer into OPP Promotion

As described in the section "Transformation from DDF Offers into OPP Promotions", the transformation logic is realized by calling a number of
BAdIs contained in enhancement spot These BAdIs may have multiple implementations and the sequence in which the/ROP/OFFER_MAPPING.
implementations are executed can be determined.

For more information, see the BAdI documentation for enhancement spot in the system./ROP/OFFER_MAPPING

 Example: Extending the Transformation from DDF Offer into OPP Promotion

A DDF offer has the field with an entered value. The value has to be mapped from the offer field to the new field ZZUP_SELL_TCD ZZUP_SELL_
 in the promotion header. A new BAdI implementation of needs to be created for this mapping. To create this BAdITCD /ROP/PROMO_BUILDER

implementation, proceed as follows:

In transaction , create a new enhancement implementation for spot , such as SE19 /ROP/OFFER_MAPPING Z_ROP_ CUSTOMER_MAP
PING_IMP.
Create a new BAdI implementation for /ROP/PROMO_BUILDER.
Choose a greater than , for example . In this way, you can guarantee a post-execution of the newsequence number 0 100
implementation.
Create a new class that implements the interface /ROP/IF_PROMO_BUILDER.
Implement the method of the BAdI. This implementation performs the customer-specific mapping. The signature ofBUILD_PROMOTION
the method provides all the information you need: (import parameter that includes all information about the offer) and IS_OFFER_BO CS

 (changing parameter that includes all the information about the mapped offer that is to be changed)._PROMOTION_BO
You can analyze and change the changing parameter accordingly. The following code snippet shows how the requirement mentioned
above can be fulfilled:

METHOD /rop/if_promo_builder~build_promotion.

cs_promotion-zzup_sell_tcd = is_ofr_bo-zzup_sell_code.

It is not necessary to create your own implementation for the BAdIs /ROP/OFFER_CLASSIFIER and /ROP/PROMO_RECIPE_BUILDE

1.

2.
3.

4.

5.

Extensibility of the IDoc Outbound Processing (ABAP)

The promotions as well as the regular prices can be replicated to an external system using IDocs. The promotions are replicated using IDoc /ROP
the regular prices are replicated using IDoc ./PROMOTION01 or (as of PPS 3.0), /ROP/PROMOTION02 /ROP/BASE_PRICE01

Both IDocs have dedicated extension segments to each IDoc subsegment. There are also several BAdIs to extend the logic that is used to
transfer the price rules via IDocs.

The BAdIs for the outbound of the OPP promotions are contained in enhancement spot /ROP/PROMO_OUTBOUND.

The BAdI can be used to change the IDoc control record of the basis IDoc or an extended type of it./ROP/IDOC_CONTROL
The BAdI can be used to change the IDoc content of the basis IDoc or an extended type. /ROP/IDOC_DATA
The BAdI can be used to change the mapping process within the promotion outbound procedure./ROP/MAP_OUTBOUND_DATA

The BAdIs for the outbound of the regular prices are contained in enhancement spot /ROP/BASE_PRICE_OUTBOUND.

The BAdI can be used to change the IDoc control record of the basic IDoc or an extended type/ROP/BASE_PRICE_IDOC_CONTROL
of it.
The BAdI can be used to change the IDoc content of the basic IDoc or an extended type. /ROP/BASE_PRICE_IDOC_DATA

For more information, see the BAdI documentation for enhancement spots and ./ROP/PROMO_OUTBOUND /ROP/BASE_PRICE_OUTBOUND

Example: Extending the IDoc Outbound

To enhance the IDoc /ROP/PROMOTION01 with the new field in database table you need to create aZZUP_SELL_TCD /ROP/PROMOTION,
new BAdI implementation of :/ROP/MAP_OUTBOUND_DATA

In transaction , create a new enhancement implementation for spot , such as SE19 /ROP/PROMO_OUTBOUND Z_ROP_ CUSTOMER_O
UTBOUND_IMP.
Create a new BAdI implementation for ./ROP/MAP_OUTBOUND_DATA
Implement the method of the BAdI. You can use this method to modify the mapping process when a promotion isMODIFY_MAPPING
mapped to the corresponding IDoc structure. The signature of the method provides all the information you need: (imporIS_PROMOTION
t parameter that includes all information about the promotion) and (changing parameter thatCT_PROMOTION_OUTBOUND_DATA
represent the IDoc data structure that is to be changed)
The following code snippet shows how the extension segment could be mapped:

METHOD /rop/if_map_outbound_data~modify_mapping.

DATA: ls_idoc TYPE edidd,
 ls_enhanc TYPE /rop/e1_promotion_enhanc.

 READ TABLE ct_promotion_outbound_data ASSIGNING
FIELD-SYMBOL(<fs_idoc>) WITH KEY segnam = '/ROP/E1_PROMOTION'.
 IF sy-subrc = 0.
 ls_enhanc-fldgrp = 'HEADER'.
 ls_enhanc-fldname = 'ZZUP_SELL_TCD'.
 ls_enhanc-fldval = is_promotion-zzup_sell_tcd.
 ENDIF.
 ls_idoc-segnam = '/ROP/E1_PROMOTION_ENH'.
 ls_idoc-sdata = ls_enhanc.
 INSERT ls_idoc INTO ct_promotion_outbound_data INDEX sy-tabix + 1.

As a result, the IDoc extension segment is filled as follows:/ROP/E1_PROMOTION_ENH

Field Name Field Content

FLDGRP HEADER

R.

5.

FLDNAME ZZUP_SELL_TCD

FLDVAL XY

Extensibility of the OPP Data Model (Java)

The specific use case determines what you need to do when you extend the predelivered entities. The following cases are described below:

An existing entity is to be enhanced for a field
A completely separate new entity is to be introduced
Attribute converters are to be added to existing fields
A new entity is to be added as a child entity to an existing entity (reachable via a relation, such as the texts for a promotion)
A new entity is to be added as a specialization of an existing entity (such as the different types of eligibilities)
The existing logic for equals() and hashCode() of a JPA entity is to be changed

Adding a Field to an Entity

If the existing entity is a subclass of , you can add a field to ancom.sap.ppengine.dataaccess.promotion.common.entities.AbstractEntityImpl
entity without any coding on the data access level. This is possible because OPP uses the concept of virtual access methods offered by
EclipseLink. For more information, see the documentation on the Eclipse website.

The additional mapping information is stored in a separate object relational mapping file (orm), for example, . This file must beppe-local-orm.xml
located on the classpath. To make this file known to the PPS, add the following line to the :ppe-local.properties file

Note the leading comma!!
sap.dataaccess-common.custmappingresources=,ppe-local-orm.xml

 Using the example of the upsell type code of a promotion, the file needs to contain the following:ppe-local-orm.xml

As of SAP CAR 3.0 FP03, CI include fields of the OPP promotion tables are automatically mapped to the corresponding IDoc extension
segments if the DRF outbound parameter is set to 'X'./ROP/GENERIC_ENH_MAP

It is possible to add several orm files separated by a comma.

Adding a single field to an existing entity

<entity-mappings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.eclipse.org/eclipselink/xsds/persistence/o
rm
 http://www.eclipse.org/eclipselink/xsds/eclipselink_orm_2_4.xsd"
 version="2.4">

 <!-- ... -->
 <entity

class="com.sap.ppengine.dataaccess.promotion.common.entities.PromotionImpl
">
 <attributes>
 <basic name="ZZUPSELLING_CODE" attribute-type="String" access="VIRTUAL">
 <column name="ZZUP_SELL_TCD" />
 <access-methods get-method="get" set-method="set" />
 </basic>
 </attributes>
 </entity>
</entity-mappings>

Assuming that the column has been added to table on the ABAP side, this is mapped to the new JPAZZUP_SELL_TCD /ROP/PROMOTION
entity attribute . Its content is stored in map inherited from . The access takes place via ZZUPSELLING_CODE extensions AbstractEntityImpl
get() method and set() method. The get() and set() method are already part of the corresponding entity interface in PPS module dataaccess-inter

.face

Adding a Separate Entry

After you define the new entity, you have to proceed with the standard approach. The new entity is made visible to the entity manager factory (in
other words it is added to the list of packages scanned by the entity manager factory for JPA entities or attribute converters) by adding its package
name to the Spring property . Assuming that the new entity is in packages sap.dataaccess-common.custpackagestoscan com.mycompany.m

 and , the property must have the following value:yentities1 com.mycompany.myentities2

... you saw the leading comma...?
sap.dataaccess-common.custpackagestoscan=,com.mycompany.myentities1,com.my
company.myentities2

Adding an Attribute Converter to an Existing Attribute

If writing the attribute converter, only the converter is made visible to the entity manager factory by adding its package name to the Spring
property . The attribute converter is added to the JPA entity attribute using , sap.dataaccess-common.custpackagestoscan ppe-local-orm.xml
as shown in the following example for the OPP promotion:

Adding an attribute converter to an existing field

<entity-mappings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.eclipse.org/eclipselink/xsds/persistence/o
rm
 http://www.eclipse.org/eclipselink/xsds/eclipselink_orm_2_4.xsd"
 version="2.4">

 <!-- ... -->
 <entity

class="com.sap.ppengine.dataaccess.promotion.common.entities.PromotionImpl
">
 <convert
 converter="com.mycompany.converters.MyNewConverter"
 attribute-name="someExistingAttribute"/>
 </entity>
</entity-mappings>

Adding a Subentity to an Existing Entity

You can create the JPA entity in the way you create a new entity. You can provide a relation from the new entity to predelivered entitiesseparate
via the standard JPA way (). If the relation from the existing entity to the new subentity is required, the existing entity must be@OneToMany
enhanced by this relation. In , this is done as shown in the following example in which a new subentity is added to the OPPppe-local-orm.xml
promotion. We assume that the new entity has SAP client as table column and the promotion ID as table column asMANDT PROMOTION_ID
attributes.

Adding a relation from an existing to a new entity

<entity-mappings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.eclipse.org/eclipselink/xsds/persistence/orm

 http://www.eclipse.org/eclipselink/xsds/eclipselink_orm_2_4.xsd"
 version="2.4">

 <!-- ... -->
 <entity

class="com.sap.ppengine.dataaccess.promotion.common.entities.PromotionImpl
">
 <attributes>
 <one-to-many name="myOwnEntities" access="VIRTUAL"
attribute-type="java.util.List"
 target-entity="com.mycompany.entities.MyOwnEntity">
 <join-column name="MANDT" referenced-column-name="MANDT" />
 <join-column name="PROMOTION_ID"
referenced-column-name="PROMOTION_ID" />
 </one-to-many>
 </attributes>
 </entity>

</entity-mappings>

Adding a Specialization to an Existing Entity

You can only add a specialization to an existing entry if the existing entity is prepared accordingly, as it is the case for the price derivation rule and
the price derivation rule eligibility. Inheritance is represented in the database via a dedicated column holding the discriminator determining the
specific type that is stored in the database table record. For the price derivation rule and th eligibilit this is the column e price derivation rule y, TYP

. The new entity is to be defined as shown in the following example of a new eligibility type:E_CODE

Adding another specializaton to an existing entity

package com.mycompany.entities;

@Entity
@DiscriminatorValue(value = "ABCD")
public class AbcdPriceDerivationRuleEligibilityImpl extends
 PriceDerivationRuleEligibilityImpl implements
 AbcdPriceDerivationRuleEligibility {

 // New fields may come here
}

In the example above, the new entity also implements a new interface AbcdPriceDerivationRuleEligibilityImpl AbcdPriceDerivationRuleEligi
. We recommend you extend the existing classes and interfaces to provide a clean interface to the promotion calculation engine:bility

PromotionService (add new access methods)
Optionally (add new access methods)NamedQueryService
This is needed if new search methods are required that use Spring caches. Then the method performing the to-be-cached access must
be external to the calling method within PromotionServiceImpl.
PromotionServiceImpl (also redefine the bean)sapPromotionService
Optionally (also redefine)NamedQueryServicelmpl sapNamedQueryService

The new entity is made visible to the entity manager factory by adding its package name to the Spring property sap.dataaccess-common.custp
ackagestoscan.

Using Own Logic for Equals() and HashCode() of a JPA Entity

You can use your own logic for equals () and hashcode () by replacing the Spring bean . For more information,sapJpaEqualsHashCodeHelper
see the description of PPS module . dataaccess-common

Extensibility of Client API (Java)

The extensibility of the client API is an and effective way to meet customer requirements. The underlying standard of the Association foreasy
Retail Technology Standards (ARTS) already offers a lot of functions. However, it does not provide an overall solution for customer-specific
requirements. Therefore, customers might have to extend the data model. Some of the extensions will be part of the ARTS standard in later
versions, others may be too customer-specific to be part of the ARTS standard.

An extension of the client API is not enough since the underlying promotion calculation engine also has to be extended to be able to process
extension data provided by the client API.
There are two types of possible extensions for the client API:

Extensibility of Enumerations

All type code enumerations contain the values needed for the corresponding fields that are determined by ARTS. However, these fields are of
type in the Java classes and you can, therefore, add String your custom values.

For any of the enumerations listed below, your custom values must match the following pattern (as defined in the XSD provided with the Client
: API) [0-9A-Za-z][0-9A-Za-z]*:[0-9A-Za-z]*. If not, the following problems can occur:

The value that you have added is the same as introduced later on in the standard delivery
A future XSD validation will reject the request

Entity Attribute/Element Possible Value

ARTSCommonHeaderType ActionCode Any value from ActionCommonDataTypeCodesEnumeration
or any other string matching the pattern above

ARTSCommonHeaderType MessageType Any value from MessageTypeCodeEnumeration
or any other string matching the pattern above

ResponseCommonData ResponseCode Any value from ResponseTypeCodeEnumeration
or any other string matching the pattern above

BusinessErrorCommonData Severity Any value from SeverityCodeEnumeration
or any other string matching the pattern above

BusinessUnitCommonData TypeCode Any value from BusinessUnitTypeCodeEnumeration
or any other string matching the pattern above

PriceCalculateBase TransactionType Any value from TransactionTypeEnumeration
or any other string matching the pattern above

LoyaltyRewardBase TypeCode Any value from LoyaltyRewardTypeCodeEnumeration
or any other string matching the pattern above

Use virtual attributes only?
It is possible to define JPA entities using only virtual attributes. If the entity is a specialization of an existing SAP entity, this approach
would makes it unnecessary to define a new IDoc type since all fields go to the extension segments of existing segments. However, the
use of virtual attributes is more resource intensive than the use of ordinary attributes of the corresponding Java class.

Therefore, we recommend you start with virtual attributes and switch to non-virtual attributes if resource consumption is noticeably
higher.

PointsCommonData Type Any value from PointsTypeCodeEnumeration
or any other string matching the pattern above

PriceDerivationRuleBase ApplicationType Any value from PriceDerivationApplicationTypeCodeEnumeration
or any other string matching the pattern above

PriceDerivationRuleEligibility Type Any value from DerivationRuleEligibilityTypeEnumeration
or any other string matching the pattern above

ItemBase ItemType Any value from RetailTransactionItemTypeEnumeration
or any other string matching the pattern above

RetailPriceModifierBase Amount Any value from RetailPriceModifierAmountActionEnumeration
or any other string matching the pattern above

RetailPriceModifierBase Percent Any value from RetailPriceModifierPercentActionEnumeration
or any other string matching the pattern above

AmountCommonData Currency Any value from CurrencyTypeCodeEnumeration
or any other string matching the pattern above

RoundingRuleType RoundingMethod Any value from RoundingMethodEnumeration
or any other string matching the pattern above

CalculationModeTypeCode CalculationMode Any value from CalculationModeEnumeration
or any other string matching the pattern above

Extensibility of Content with User-Defined Attributes / Elements

Well-defined points in the ARTS data model, so-called are provided. These attributes allow the extension of the client API attributes/elements any
with anything a customer wants to add.

OPP only supports because of problems with the Jackson XML/JSON parser. The following entities contain these extension points:any elements

Entity Object Type

LineItemChoiceDomainSpecific Object

SaleBase List<Object>

SaleForDeliveryBase List<Object>

SaleForPickupBase List<Object>

ReturnBase List<Object>

ReturnForDeliveryBase List<Object>

ReturnForPickupBase List<Object>

CustomerOrderForDeliveryBase List<Object>

CustomerOrderForPickupBase List<Object>

ItemDomainSpecific List<Object>

PriceDerivationRuleBase List<Object>

PriceDerivationRuleEligibility List<Object>

RetailPriceModifierDomainSpecific List<Object>

DiscountBase List<Object>

TenderCouponBase List<Object>

ARTSCommonHeaderType List<Object>

ExternalActionType List<Object>

LoyaltyAccountType List<Object>

LoyaltyRewardBase List<Object>

PriceCalculate List<Object>

PriceCalculateBase List<Object>

PriceCalculateResponse List<Object>

PromotionExternalTriggerType List<Object>

PromotionManualTriggerType List<Object>

PromotionPriceDerivationRuleReferenceType List<Object>

RoundingRuleType List<Object>

ShoppingBasketBase List<Object>

More information about the general ARTS extension concept of the XML schemas can be found .here

Restrictions

It is not possible to use XML attributes within any elements, for example:

Restrictions

<any>
 <SimpleExtension myAttribute='hello'>MyExtension</SimpleExtension>
</any>

Instead, you could use the following attributes:

Alternative

<any>
 <SimpleExtension>
 <myAttribute>hello</myAttribute>
 <data>MyExtension</data>
 </SimpleExtension>
</any>

Example: Enrich SaleForDelivery Entity with Address Information

A customer wants to enrich the entity with address information.SaleForDelivery

https://nrf.com/

Request excerpt

...
 <ShoppingBasket>
 <LineItem>
 <SequenceNumber>0</SequenceNumber>
 <MerchandiseHierarchy ID="ID1" >hier1</MerchandiseHierarchy>
 <SaleForDelivery ItemType="Stock" NonDiscountableFlag="false"
FixedPriceFlag="false">
 <TaxIncludedInPriceFlag>false</TaxIncludedInPriceFlag>
 <NonPieceGoodFlag>false</NonPieceGoodFlag>

<FrequentShopperPointsEligibilityFlag>false</FrequentShopperPointsEligibil
ityFlag>
 <DiscountTypeCode>2</DiscountTypeCode>
 <PriceTypeCode>00</PriceTypeCode>

<NotConsideredByPriceEngineFlag>false</NotConsideredByPriceEngineFlag>
 <ItemID>CHA2111012</ItemID>
 <Quantity Units="1" UnitOfMeasureCode="PCE">5</Quantity>
 <any>
 <Street>Neue Bahnhofstrasse 21</Street>
 <City>Sankt Ingbert</City>
 <PostalCode>66386</PostalCode>
 <Country>Deutschland</Country>
 </any>
 <any>
 <Street>Dietmar-Hopp-Allee 16</Street>
 <City>Walldorf</City>
 <PostalCode>69160</PostalCode>
 <Country>Deutschland</Country>
 </any>
 </SaleForDelivery>
 </LineItem>
 ...

This example shows that the line item has been enriched with two addresses.

To access this information from Java, you can use the following code snipplet as reference:

Access any information in Java

final List<Object> anyList =
priceCalculate.getPriceCalculateBody().get(0).getShoppingBasket().getLineI
tem().get(0).getSaleForDelivery().getAny();

for (int i = 0; i < anyList.size(); i++)
{
 //Do whatever you want with the address information
}

Extending the PPS Business Logic (Java)

In order to extend business logic on the customer side, it is crucial that the extended application offers an well-defined API that:

Has a clearly defined facade
Calls the extension at a defined point during the application logic
Is well documented
Is stable across releases
Does not require modification of the delivered code
Is easy to consume

In addition, it is necessary to write the customer extension in such a way that it is independent of its later runtime environment. In particular, this is
relevant for extensions of the promotion calculation engine, which can be used within the PPS as well as within a GK OmniPOS deployment. This
implies the following:

There must be one file structure of the Java project containing the customer extension
It must be possible to distribute and install the built customer artifact independently of the standard artifacts

For this purpose, the PPS and the contained promotion calculation engine (PCE) offer the following:

A plugin concept to allow customer extensions of the standard business logic
The guaranteed stability of certain artifacts

Plugin Concept

This is similar to the concept of the Business Add-Ins ("BAdI") offered by ABAP: The following figure illustrates its components and how it works:

This chapter is relevant as of PPS version 3.0.

The plugin concept is based on the Spring plugin framework (see). The Spring plugin frameworkhttps://github.com/spring-projects/spring-plugin
offers the interface This is the parent interface for all application-specific interfaces that provideorg.springframework.plugin.core.Plugin<S>.
extension hooks. The interface offers the type parameter <S>, which allows an implementation of this interface to tell for in which contextPlugin
the corresponding implementation shall be used. This is realized via the method, allowing a caller to filter implementations by asupports()
specific criterion. How to implement this is described below.

The PPS/PCE now offers interfaces extending , offering specific methods. These interfaces are called . Plugin interfacesPlugin Plugin interfaces
offer the extensibility for a certain aspect of the application logic. The meaning of the type parameter <S>, i.e. the filter criterion, depends on the
individual plugin interface. The interface is a special case, serving as the parent for all Plugin interfaces where a filter onNonFilterPlugin
implementation is not feasible or required. In the diagram above, two example plugin interfaces are shown:

Interface which enables the addition of further validations of the incoming Price Calculation request. This does notRequestValidation
offer the selection of individual plugin implementations based on a filter value. Therefore it extends .NoFilterPlugin
Interface which allows changing query parameters of JPA NamedQueries, setting query hints etc. This works perQueryAdjustment
query to be executed. Hence, the query name (of type) is a filter criterion. In the method, an implementation of thisString supports()
interface would compare the provided query name with the query name this implementation is intended for.

The implementation of a Plugin Interface is called . This consists of two parts:Plugin Implementation

The Java class implementing the Plugin Interface
The Spring Bean adding an instance of the Java class to the Spring Application Context.

Having the Plugin Implementations created, they must be somehow collected so that within the application all implementations of a plugin
interface can be called. This is done by the . During startup of the Spring Application Context, for a given Plugin Interface it looksPlugin Registry
for all Spring Beans implementing this interface. When calling theNo static wiring of the implementations to the Plugin Registry is needed.

https://github.com/spring-projects/spring-plugin

Plugin Implementations, the Plugin Registry offers the list of references to the corresponding Spring Beans. The Plugin Registry itself is an
ordinary Spring Bean as well. However, the Spring Plugin framework adds another XML namespace to the Spring XML file, making it easier to
define the registry. As a second possibility, the plugin implementations can be collected by the registry which itself is not exposed - instead the
collected implementations are exposed as a simple list which can be injected into the Spring bean calling the plugin.

The following example shows how a Plugin Registry and a Plugin Implementation is created. The Plugin Registry is added in a Spring XML of the
SAP delivered artifacts.

Defining a Plugin Registry in SAP Spring XML

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
 xmlns:util="http://www.springframework.org/schema/util"
xmlns:plugin="http://www.springframework.org/schema/plugin"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/plugin
http://www.springframework.org/schema/plugin/spring-plugin.xsd
 http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd">

 <!-- Option 1: Plugin registry for adjustment of named queries -->
 <alias name="sapDefaultQueryAdjustmentPluginRegistry"
alias="sapQueryAdjustmentPluginRegistry" />
 <plugin:registry id="sapDefaultQueryAdjustmentPluginRegistry"
 class="com.sap.ppengine.api.plugin.QueryAdjustment" />

 <!-- Option 2: Plugin collect plugin implementations as list -->
 <alias name="queryAdjustments" alias="queryAdjustmentImplsAsList" />
 <plugin:list id="queryAdjustmentImplsAsList"
 class="com.sap.ppengine.api.plugin.QueryAdjustment" />
</beans>

The non-PCE part of the PPS uses the registry approach, the PCE part uses the list approach. From an implementor's view this does not make a
difference though.

Calling the Plugins

Calling the Plugins - to be more precise: the relevant implementations of the corresponding Plugin Interfaces - is done via the helper class Plugin
. For a given Plugin Interface and Plugin Registry, it allows a simple invokation of the desired interface method for all relevantAccess

implementations. Some examples are shown below:

PPS Only
This section is only valid for the PPS and does not apply for the promotion calculation engine (PCE) that is part of it.

Calling Plugins via CallPlugins class

// Injected via Spring
PluginAccess pluginAccess;

// Call the validate() method of all implementations for plugin
RequestValidation expecting a checked exception
pluginAccess.callAll(ContextEnrichment.class, p ->
p.enrichContext(getContext(), priceCalculate));

// Call the validate() method of all implementations for plugin
RequestValidation expecting a checked exception
pluginAccess.callAllChecked(RequestValidation.class, p ->
p.validate(priceCalculate));

// Call the single implementation of a method with return parameter
Class<T> clazz = pluginAccess.callFunction(CustomEligibility.class,
eliType, p -> p.classForType());

Implementing a Plugin

A corresponding implementation on customer side is just a regular Spring Bean to be added to the Spring XML:

Defining a Plugin Implementation in Customer Spring XML

<bean id="myQueryAdjustment" class="com.customer.MyQueryAdjustmentImpl"/>

The corresponding Java class implements the Plugin Interface. In this example we want to adjust the query "findItemEligibilityIDsByItemID" after
any potential SAP implementation.

Currently, only Spring beans with scope "singleton" (which is the default scope) are supported for plugin implementations.

Customer class implementing a Plugin Interface

package com.customer;

import org.springframework.core.annotation.Order;
import com.sap.ppengine.client.dto.PriceCalculate;
import com.sap.ppengine.api.plugin.QueryAdjustment;
import com.sap.ppengine.client.impl.RequestValidationException;

// Note that order -10000000 to 10000000 is reserved for SAP
// ... but only multiples of 100
@Order(value = 10000001)
public class MyQueryAdjustmentImpl implements QueryAdjustment {

 @Override
 public boolean supports(final String queryName) {
 return "findItemEligibilityIDsByItemID".equals(queryName);
 }

 @Override
 public void adjustQuery(final Query query, final Context context) {
 // Do something
 }

 void adjustResult(final Query query, final Context context, final Object
result) {
 // Do something else
 }
}

Note that the implementation of a Plugin Interface is not only possible on customer side but done on SAP side as well. For example, the standard
request validation is an implementation of this Plugin Interface:

<alias name="sapDefaultCalculateRequestValidation"
alias="sapCalculateRequestValidation" />
<bean id="sapDefaultCalculateRequestValidation"
class="com.sap.ppengine.client.impl.RequestValidation30Impl">
 <property name="objectFactory" ref="sapClientApiDtoFactory" />
 <property name="maxNumberOfLineItems"
value="${sap.client-impl.maxnumberoflineitems}" />
 <property name="requestHelper" ref="sapClientApiHelper" />
</bean>

This raises the question in which sequence the implementations are called. The used Plugin Registry supports the sorting of Plugin
Implementations either via Java interface or via annotation .org.springframework.core.Ordered org.springframework.core.annotation.Order
The specified integer value determines the sort sequence of the implementations - negative values are allowed. To avoid collisions, it is strongly
recommended to use separate order values for each implementation of a certain Plugin Interface.

Reserved order values
Order values being multiples of 100 are reserved for the Plugin Implementations of the standard shipment. If you want to have your
Plugin Implementation executed between delivered implementations, use a value which is not a multiple of 100. In case you want to

If you want to replace an SAP implementation of a Plugin Interface, this is also possible using the PPS Module concept. In this case, define your
Spring bean with the same ID (and not just alias) as the SAP standard bean:

Replacing an SAP standard Plugin Implementation

<alias name="sapDefaultCalculateRequestValidation"
alias="sapCalculateRequestValidation" />
<bean id="sapDefaultCalculateRequestValidation"
class="com.customer.MyReplacingValidationImpl" />

To make sure this bean is taken instead of the SAP standard bean, your PPS module must depend on the PPS module where the SAP standard
bean was defined. In the example above this would be the module. This is specified in the (..)-ppe-module-metadata.xml file of yourclient-impl
module:

Defining the dependency to the PPS module of the bean to be replaced

<module xmlns="http://www.sap.com/ppengine/core/module"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.sap.com/ppengine/core/module
ppengine-module-0.2.xsd">
 <name name="custextension" vendor="customer" />
 <dependencies>
 <module name="client-impl" vendor="sap"/>
 </dependencies>
</module>

If you just define an additional Plugin Implementation, declaring such a dependency is not required.

In order to easily find the list of Plugin Interfaces offered for the PPS and the PCE, they are bundled at central places:

For the PPS this is the PPS module , which exists as of PPS 3.0api
For the PCE, this is module (which is not a PPS module). pricing-engine-api

Further details of the offered Plugin Interfaces are documented in the corresponding chapter of these modules.

Guaranteed Stability

As of PPS 3.0, dedicated objects of the standard shipment offer a guaranteed stability for future releases.

What does that mean? When referring to the stability of an artifact two degrees of stability must be distinguished:

The stability of an object towards the external callers / users of this object, in the following called . It is guaranteedConsumer stability
that the usage of the artifact does not lead to in future releases. Example: The artifact is a Java interface, the callercompile errors
invokes a method of this interface. The addition or removal of a method parameter would violate the caller stability contstraint for that
interface. On the other hand, replacing the type of a method parameter with a super type would not violate the caller stability.

make sure your implementation is execute before or after any current or future implementation, use order values below -10,000,000 or
above 10,000,000.

Stability of SAP Spring Bean IDs
Although SAP tries to ensure compatibility, there is no guarantee that for a provided Plugin Interface the number of standard
implementations, the contained logic, the execution sequence or the IDs remain stable.

Often the PPS context is provided as a method parameter. This is done on purpose - you are encouraged to store data you need
throughout the application within a parameter of the PPS context. Note that this parameter can have any type - it is neither needed nor
good practice to define a new PPS context parameter for every piece of information you want to store.

The stability of an object towards extenders of this object, in the following called . This only applies for Java interfacesExtension stability
and classes. It is guaranteed that an implementor or an interface or a subclass of a class will not have compile errors in future releases.
Example: The artifact is a Java class which has been extended. The extension uses a protected method. The removal or this method or
changing its signature would violate the extension stability contraint for the extended class. On the other hand, adding a method to a Java
interface using the Java 8 concept of (empty) default implementations is considered as uncritical, even if this leads to name collisions with
customer implementations.

Unforeseen requirements to change something may come, and this is also true for the guaranteed stability. It may turn out that an artifact
declared as (consumer or extension) stable must be changed in an incompatible way. In this situation, the following happens:

In release X, it is announced that a certain incompatible change is required. The change itself is not yet done though.
The change is also not done in releases X+1, X+2, X+3, X+4. However, during that time an alternative to the incompatible change will be
offered (e.g. a method to be called instead if the original method will be removed).
In release X+5 the incompatible change is performed.

Example:

Release number changes from 3.0.0 to 3.0.1: patch number changes no change of PPS release
Release number changes from 3.0.1 to 3.1.0: minor version number changes new PPS release
Release number changes from 3.1.0 to 4.0.0: major version number changes new PPS release

Documented Stability

The guaranteed stability applies for the following PPS modules:

dataaccess-interface: All contained artifacts are guaranteed to be consumer stable. Incompatible changes will be documented via
JavaDoc.
client-interface: All contained artifacts are guaranteed to be consumer stable. Incompatible changes will happen. Never. Changes to not
the expected way of using the client API will lead to new interface versions.
api: The degree of stability (caller / extension) is documented via the Java annotations and com.sap.ppengine.api.ConsumerStable co

. Incompatible changes are documented via JavaDoc and Java annotation m.sap.ppengine.api.ExtensionStable com.sap.ppengine.ap
.i.PlannedIncompatibleChange

Your Choices for Extending the PPS Java Side

With the introduction of the Plugin Interfaces, you have three options for extending the PPS business logic. SAP recommends to use them in the
following order of preference:

To be on the safe side and avoid name collisions, it is recommended to prefix customer specific methods and attributes, e.g. "zz" or
<customerName>.

Extension stability includes consumer stability since an extension can always act like an external caller.

In this context a "release" means a PPS release (i.e. the version number of the shipped JAR files), not the release of the software
component used to ship the PPS. Example: PPS 2.0.3 is contained in software component version 1.1.2. A new PPSXSAC_OPP_PPS
release means that either the major or minor release number changes.

This chapter does not apply for the Promotion Calculation Engine (PCE) of the PPS. For further information about the PCE, please
consult the SDK of the Promotion Calculation Engine (chapter "PCE Extensions")

In addition, PPS specific DB tables have guaranteed extension stability in the sense that the DB key will not change and no delivered
fields will be removed in any future release.

Implement the offered Plugin Interfaces. These are guaranteed to keep stable.
Use the PPS Module concept to replace SAP provided beans using a subclass of the Java class offered by SAP. Try to use as
few of the protected methods of the super class as possible in order to reduce the risk of an incompatible change.
Use Spring AOP in case option 2 is not feasible or requires the redefinition of too many beans. Depending on the kind of
change, this approach may be very robust (e.g. if you want to grab the methods of the call of a ConsumerStable interface) or
very risky. A general recommendation cannot be given here!

SAP Delivered Plugin Implementations

The following tables contains the Plugin Implementations of PPS Plugin Interfaces (excluding the PCE) which are part of the SAP standard
shipment. Implementations of the PCE Plugin Interfaces can be found in the SDK of the PCE.

Plugin Interface Plugin Implementation Class Order Plugin Implementation Bean Description

ContextEnrichment ContextFromRequestEnrichmentImpl 0 sapDefaultContextFromRequestEnrichment Enrich PPS
context with BU
Type etc

FeatureCheck FeatureCheckImpl 0 sapDefaultFeatureCheck Checks PCE
features from
config stored in
PPS context

PromotionServiceInitialization ItemPriceDerivationRuleEligibilityCacheAwareBulkAccessorImpl 0 sapDefaultItemEligibilityBulkAccessor Bulk access for
Item Eligibilities

MerchandiseSetEligibilityCacheAwareBulkAccessorImpl 1000 sapDefaultMSetEligibilityBulkAccessor Bulkd access
for
MerchandiseSet
Eligibilities

RequestAdjustment AddBasePricesToRequestImpl 0 sapDefaultAddBasePricesToRequest Read needed
regular prices
and write them
into request
forwared to
PCE

RequestValidation RequestValidationImpl 0 sapDefaultCalculateRequestValidation SAP standard
consistency
checks of
request

Structure of Your Extension Project

If you create an extension of the PPS, it may be the case that this extension shall also be used in a GK OmniPOS solution (at least the PCE
extension part of it). The extension concepts of the PPS and the PCE (in a non PPS context) are slightly different (see below). This needs to be
kept in mind when creating the extension. This chapter describes how to set up the file and folder structrure of a Java project which compiles to
one JAR which can be used by the PPS as well as by the PCE in an OmniPOS context. This documentation assumes that you use Eclipse. In the
simplest setup (shown below), the needed dependencies for compiling your extensions could be placed into the lib folder a separate Java project
with a build path dependency set. However, it is recommended to use a build management tool such as Apache Maven in order to have a cleaner
project setup. How to set up Maven dependencies to the provided JARs is described in the extensibility example "Promotions on Brand Level".
Regardless of how the dependencies are resolved, the basic structure of the source (or resource folders) of an extension project remains the
same.

First, you need to categorize your extension objects into the following categories:

Objects that shall only be used in a PPS context. As an example, extensions of the data access layer (incl. changes to the DB table
definition) of the PPS or of the mapping between SAP data access interfaces and PCE objects fall into that category.
Objects that shall be used in both a PPS and an OmniPOS context. These are extensions of the PCE itself.
Objects that shall only be used in an OmniPOS context.

In all cases, the extension of the business logic is done by defining customer specific Spring Beans which are searched for in dedicated XML files
when setting up the Spring Application Context.

For the PPS, the XML files must match the following pattern (as defined in the PPS module) in Spring resource syntax:core
PPS Module metadata are located in classpath*:META-INF/**/*-ppe-module-metadata.xml
PPS Spring Beans are located in classpath*:META-INF/**/*-ppe-module-spring.xml
Metadata and Bean definition files are located in the same folder.

For the PCE in an OmniPOS environment, further beans are searched for in classpath*:META-INF/**/*-pos-plugin-pce.xml

This leads to the following recommended file and folder structure, using some speaking prefixes. Note that this introduces the PPS module ppsex
.t

... which looks as follows in the IDE:

In order to make sure that your extension runs both in the PPS and in the OmniPOS environment, you also have to consider the version of the
Java Runtime Environment. The PPS runs on Java 8 or later. However, some versions of GK OmniPOS still run on Java 6. If this is the case for
you, you have to compile your extension for a Java 6 target runtime. if you are in doubt about the used Java runtime, please contact your GK
Software contact person.

Installing your Extensions

How to install your extensions depends on the hosting application and is described there. The common idea is to

Build the extension JAR once
Add the extension JAR to the classpath of the hosting application.

For the central XSA based PPS this is described in chapter . For the local PPS in SAPIntegrating Custom Extensions into the XSA Based PPS
Hybris Commerce this is described in the Adminstration Guide of SAP Hybris Commerce, integration package for SAP for Retail under Omnichan

.nel Promotion Pricing

Extensibility of the Promotion Calculation Engine (Java)

The extensibility of the promotion calculation engine is described in the that can be found on the productSDK of the Promotion Calculation Engine
page of SAP Customer Activity Repository.

If you do not intend to extend the OmniPOS based PCE you can simply follow the PPS module concept and directly add the PCE
extensions to the Spring XML of the PPS module.

In some cases it may be required to split up your PPS extension into several parts, i.e. several PPS Modules. This is the case when the
PPS Spring Application Context is a real hierarchy as it is the case for the local PPS within SAP Hybris Commerce. Do not introduce
dependencies to PPS modules which are not visible in the Spring Application Context, to which your PPS Module is added. In the
example of the local PPS wihin SAP Hybris Commerce, an extension to the idocinbond module must be loaded into the Web
Application Context as well.

1.
2.

Extensibility of the sapppspricing PPS Integration (Java)

The extensibility of the sapppspricing PPS integration is described in the Administrator Guide that can be found on the product page of SAP
Hybris Commerce, integration package for SAP for Retail.

Extensibility Examples

The collective SAP note contains references to examples showing how the extensibility concept can be used to implement certain2542001
requirements. It is planned to add further examples over time.

Integrating Custom Extensions into the XSA-Based-PPS

The only requirement for the use of a PPS module is that it is located on the classpath. In this case, the PPS Spring application context finds the
module automatically and loads the contained Spring beans. The XSA-based PPS is shipped as follows:

When you install the Software Component Archive on XSA, the Multi Target Archive is deployed. This archive contains an application router and
the Web application itself (provided as a Web archive). The Web application consists mainly of Java archives containing the actual business logic.

A JAR inside the folder of the Web application looks like the obvious place for custom logic extending the PPS. However, deployingWEB-INF/lib
such an extended PPS comprises the creation of a new Web archive replacing the SAP standard archive and the creation of a new Multi Target
Archive replacing the SAP standard shipment, which is not recommended. SAP is working on a clean way to add custom logic to a Web
application without breaking its integrity. This chapter describes only the currently recommended way of adding further modules to the PPS
shipped by SAP.

Setting Up the Development Environment

Extract the Multi Target Archive from the Software Component Archive shipped by SAP.
Extract the following from the Multi Target Archive:

The Web archive (ppservice-webapp-central)
The source JARs

SAP does not require the use of a specific development environment (Build Tool, Source Code Management, Editor, and so on).
However, in order to be able to provide a concrete example Eclipse is used as use a moreIDE in the following description. You can
advanced setup, including the use of Maven and GIT, for example.

2.

3.
4.

5.

6.
7.

1.

2.
3.
4.
5.

The Javadoc JARs
Extract the content of the folder of the Web archive.WEB-INF/lib
In your Eclipse workspace, create a new Java project, such as , create a folder and include all JARs of the fsapppslibs lib/ WEB-INF/lib
older of the Web application. Add the JARs to the build path of the Java project.

Add the following JARs to the folder. These JARs will be provided by the tomcat runtime container:lib/
slf4j-api 1.7.13 or higher (see)http://slf4j.org/download.html

Ensure that all JARs of the folder are exported to the build path.lib
Create the folder within , in which you move all source JARs of the multi target archive.sourcejars sapppslibs

As a result, your project should look as follows. Note that the list of JARs is not complete.

Creating Your Extension Projects

In the same Eclipse workspace, create your custom extension as a Java project.
In this example, one project contains one PPS module. However, it is also possible to have a 1:n relationship between projects and PPS
modules.
Add the project to the build path of your Java project.sapppslibs
Define your PPS module metadata and spring beans via the corresponding XML files in the folder.META-INF
Create your Java classes for extending the standard functions.
Build the JAR file.

As a result, your Eclipse project could look as follows:

This Java project is used to compile and (unit-)test your extensions.only

http://slf4j.org/download.html

1.

2.
3.

Adding Your Extension to the PPS

Once the JAR with your custom logic has been created, it needs to be placed on the classpath of the SAP standard PPS as follows:

Create a directory that is accessible by the XSA runtime. Restrict the access rights of that directory so that only trusted people are
allowed to access it. If you are unsure how to create this directory, contact your system administrator.
In this procedure, the path to this directory is ./usr/sap/hana/shared/XSA/customjars
Copy the JAR file into this directory and set the access rights accordingly.
Create an (Multi Target Archive Extension) file, for example , with the following content:MTAEXT myPPS.mtaext

_schema-version: "2.0.0"
ID: com.customer.retail.ppservice.XSAC_OPP_PPS
extends: com.sap.retail.ppservice.XSAC_OPP_PPS
modules:
some lines omitted
 - name: ppservice-webapp-central
 parameters:
 memory: 1024M
 properties:
 JBP_CONFIG_RESOURCE_CONFIGURATION: >
 ['tomcat/webapps/ROOT/WEB-INF/classes/ppe-schema-orm.xml':
 {'sap.dataaccess-common.schema':'<DB_SCHEMA>'},
 'tomcat/webapps/ROOT/META-INF/context.xml':
 {'ppeHana-service-name':'ppeHana',
 'custJarBasePath':'/usr/sap/hana/shared/XSA/customjars'}]
 JBP_CONFIG_JAVA_OPTS: >
 java_opts: -Dsap.dataaccess-common.db.client="<DB_CLIENT>"
 -Dsap.dataaccess-common.logSys=<LOGSYS>
 provides:
 - name: java

some lines omitted

Only the replacement of parameter is relevant. Choose the other settings according to your specific setup.custJarBasePath

4.

5.

(Re-)install the PPS as follows:

xs install XSACOPPPP<version>.ZIP -e myPPS.mtaext -o
ALLOW_SC_SAME_VERSION

If the content of the directory changes, restart the PPS:

xs restart ppservice-webapp-central

Extending the PPS-Based Price Calculation in SAP ERP and SAP S/4HANA Sales Documents

Depending on the SAP ERP or SAP S/4HANA release, it is also possible to call the PPS from SAP ERP/SAP S/4HANA. In this context,
extensions are possible as well. This chapter describes the offered possibilities.

Extending via BAdIs

The enhancement spot offers several BAdIs to extend the PPS-based price calculation in SAP ERP sales documents. ForOPP_ENHANCE_SD
more information about implementing these BAdIs, see the system documentation. In Customizing, you can find these BAdIs under Logistics -

.General > Omnichannel Promotion Pricing (OPP) > Business Add-Ins (BAdIs)

Enriching with Further Article Hierarchy Nodes

By default, the implementation of BAdI adds up to three article hierarchy nodes toOPP_ENHANCE_BY_ARTHIER OPP_ENHANCE_REQUEST
the corresponding article via the following logic:

The maximum depth of the article hierarchy is determined from table . The entry with the highest value of WRF_MATGRP_TREE TREE_
 defines the article hierarchy depth.LEVEL

The enrichment is done for the maximum level and the two levels below. For example, the maximum level has value 08, the enrichment
searches for nodes with level 06, 07 and 08 having this article as leaf.
If the article hierarchy is not balanced, it can result in less than 3 article hierarchy nodes. For example, the considered article is assigned
to a hierarchy node on level 06, only this node is considered. Nodes on level 04 or 05 are not taken into account.

If this logic is not sufficent and more than the three lowest levels should be considered, do the following:

Create an append structure to DDIC structure .KOMP
Add the following fields to this append structure:

Field name x (x=4,5,...)NODE
Type WRF_STRUC_NODE2

The system automatically considers further article hierarchy nodes according to the logic described above.

Extending the SAP ERP/ SAP S/4HANA PPS Client

The PPS client in SAP ERP is responsible for the conversion between ABAP data objects (structures, internal tables, data elements) representing
the elements of the PPS client API and their XML representation as supported by the PPS. Morever, it takes care for the HTTP-based data
exchange. It is independent from the integration into SD processing and implemented by class . Technically, the ABAPCL_OPP_PPS_CLIENT
types processed by the SAP ERP PPS client are not simple Data Dictionary types, but proxy data types with a binding between the ABAP type
and the corresponding XSD type of the client API.

Therefore, it is not possible to simply enhance the ABAP part of the client API in order to add further information to an request or response. To
support extensibility, the generated ABAP proxy structures provide predefined extension segments that can be used to transport additional
Information to the PPS and back to the caller. Each of these extension segments has the field name and type which is aANY OPP_ANY_TAB
standard table of raw strings. The following picture shows the ABAP proxy editor with the top level elements of the data type corresponding to the
PPS request ():OPP_MESSAGE2

During runtime, these raw strings may contain XML fragments that are automatically mapped by the PPS into a generic data format so that it can
be processed by server side customer extensions. The structure of each XML fragment can be arbitrarily complex, so that also deep ABAP
structures or tables can be used. The mapping between the ABAP data structures and the XML fragment that is contained in the raw string is
offered by ABAP interface with the following 2 methods:IF_OPP_PPS_EXTENSION_HELPER

WRAP: This method transforms the provided ABAP data into the XML fragment
UNWRAP: This method transforms the provided raw string containing an XML fragment into the corresponding ABAP data object. The
target type of the ABAP data object must match the structure of the XML fragment.

The following ABAP program shows how to perform the wrapping and unwrapping for the extension segments:

1.
2.

3.

Usage of IF_OPP_SD_EXTENSION_HELPER

&---
*& Report ZZ_DEMO_EXTENSION_HELPER
&---
REPORT ZZ_DEMO_EXTENSION_HELPER.
* Get instance of IF_OPP_PPS_EXTENSION_HELPER
DATA(go_helper) = cl_opp_core_factory=>get_factory(
)->get_pps_extension_helper().
* The PPS request
DATA gs_request TYPE opp_message2.
* Example ABAP data: An integer giving the final answer
DATA g_src_data TYPE i VALUE 42.
DATA g_tgt_data LIKE g_src_data.
* Wrap ABAP data into XML fragment
DATA(g_wrapped) = go_helper->wrap(g_src_data).
* Append XML fragment to extension segment of ARTS header
APPEND g_wrapped TO gs_request-artsheader-any.
* Do the PPS call etc. For reasons of simplicity we here just extract the
request data
* Unwrap XML fragment to ABAP format - note that the data type matches
go_helper->unwrap(EXPORTING i_xml_fragment = gs_request-artsheader-any[1
]
 IMPORTING ed_data = g_tgt_data).

IF g_src_data = g_tgt_data.
 WRITE 'It really works!'.
ENDIF.

From a technical perspective, the "identity" ABAP Simple Transformation is used to convert between ABAP and XML representation, hence the
possibilities and restrictions described in the ABAP keyword documentation for format "asXML" apply (see also http://help.sap.com/abapdocu_74

). The PPS is a Java-based application that does not know ABAP-specific concepts. This has some implications:0/en/abenabap_xslt_asxml.htm

Reference types should not be wrapped into XML fragments as the unwrapping may not be possible.
Hashed or sorted tables including sorted or hashed table Indexes should not be used because the PPS is not aware of the restrictions for
the structure of the corresponding XML representation.
The ABAP-specific handling of currencies with other than 2 decimal places is not supported. We recommend to use a string
representation of amounts for Transfer within XML ANY elements.
By default Java has no direct counterpart to the ABAP built-in types and decfloat16 . If is used ondecfloat34 java.math.BigDecimal
Java side, precision loss can occur while unwrapping.

Support for Mocking of the SAP ERP/ SAP S/4HANA PPS Client

It is possible to perform integration tests of PPS-based price calculation in the pricing of a sales document without having a running PPS. This is
done by replacing the class that is responsible for creating the PPS client.CL_OPP_CORE_FACTORY

This can be done as follows:

Create a subclass of class , for example, .CL_OPP_CORE_FACTORY ZZCL_OPP_MOCK_FACTORY
In this class redefine the method so that it returns a mocked version of the PPS client.IF_OPP_CORE_FACTORY~GET_PPS_CLIENT
This must be a subclass of class . CL_OPP_PPS_CLIENT
In the subclass of redefine the method so that the PPS call is mocked accordingCL_OPP_PPS_CLIENT IF_OPP_PPS_CLIENT~CALL

In the initial shipment of the SAP ERP PPS client, Client API version 2.0 is supported. This means, that all elements of version 2.0
have the corresponding ABAP proxies present. However, from an application side, only version 1.0 requests are supported.

http://help.sap.com/abapdocu_740/en/abenabap_xslt_asxml.htm
http://help.sap.com/abapdocu_740/en/abenabap_xslt_asxml.htm

3.

4.
to your needs.
Set the SET / GET parameter to the name of the class replacing , for example, OPP_CORE_FACTORY CL_OPP_CORE_FACTORY ZZ

.CL_OPP_MOCK_FACTORY

CARAB 2.0 FP02: Technical Guide Price and Promotion Repository

Price and Promotion Repository

This chapter describes how the price and promotion repository () is PPR realized.

Overview

The effective sales price is calculated by the promotion pricing service. This service uses a promotion and provides ancalculation engine
interface (client API) to request a price calculation and an interface to read the data from the database (data access API). The data access API
reads price-relevant data in an ARTS-like format. Therefore, we can speak of price rules that calculate the effective sales price. The price rules
are maintained based on the DDF offer model that is currently included only in SAP Customer Activity Repository.

As the promotion needs the data delivered in an ARTS-like format, the DDF offer has to be translated into this ARTS-likecalculation engine
format and the translated price rule has to be stored in the OPP promotion.

The following sections give an overview of the modeling of an OPP promotion and the transformation of a DDF offer into an OPP promotion.

Modeling of OPP Promotions

In the OPP promotion, the entity represents the root entity. This entity consists of status information, validity, DDF offer ID, and others.Promotion
A language-dependent promotion description is assigned to each OPP promotion in the entity. At least one business unitPromotionText
is assigned in the entity. BusinessUnitAssignment Contains the DDF offer terms for product groups, the several items or product hierarchy
nodes assigned to the product groups are stored as subentity to the in the entity.Promotion MerchandiseSet

An OPP promotion can have one or more promotion derivation rules that are independent of each other. For the customer who triggers the
promotion, these promotion derivation rules represent the individual Therefore, each has one or morereward. PromotionPriceDerivationRule
triggers () and one . The is effective if all assignedPriceDerivationRuleEligibilities PriceDerivationRule PromotionPriceDerivationRule
triggers are fulfilled. The following triggers are supported:

Trigger Description

ItemPriceDerivationRuleEligibility Is triggered if the specified item (can also include the specified quantity or unit
of measurement) is in the
shopping cart.

MerchandiseHierarchyPriceDerivationRuleEligibility Is triggered if items from the specified merchandise group or article hierarchy
node are in the shopping cart.

The standard delivery supports two types of merchandise structures:

Retailer's Merchandise Category Hierarchy
Retailer's Article Hierarchy

TotalPurchaseMarketBasketPriceDerivationRuleEligibility Is triggered if the value of the shopping cart exceeds the specified threshold.

CouponPriceDerivationRuleEligibility Is triggered if the specified coupon number is recorded in a sale.

If in transaction the client role is set to 'P' (Productive), tSCC4 he mocking of the PPS client is not possible with this approach.

CustomerPriceDerivationRuleEligibility This entity associates a price derivation rule with a customer group.

The customer card is the only condition in the DDF offer that is supported for
the identification of a customer group. Therefore, the customer card type from
the DDF,

such as "Gold Card", is used as the customer group ID with OPP in the
standard delivery.

Individual card numbers are not supported.

ManualPriceDerivationRuleEligibility Is triggered if a manual promotion is coming from the client, for example, by
pressing a special key at the cash register.

The DDF incentive concept is used to specify the manual promotion in the
DDF offer.

For the incentive type , you can use , or Manual Promotions FreeText Yes N
 for .o Product is Required

If a product identifier is specified in the offer for the manual promotion, this
product identifier and the incentive class identifier represent the manual
promotion.
If there is no product identifier specified in the offer, the incentive type code of
the incentive and the incentive class identifier represent the manual

 promotion.

CombinationPriceDerivationRuleEligibility Is triggered the logical combination of its child triggers if (Logic AND, Logic
 is fulfilled.OR)

All eligibilities described above can be child eligibilities of this combination
eligibility.

This trigger can be used to create eligibility trees.

MerchandiseSetPriceDerivationRuleEligibility Is triggered if the specified item is in the product group that is modeled as the
merchandise set in the PPR.

The specified item is in the merchandise set and valid as a trigger for the
associated price derivation rule when:

The item itself or one of the product hierarchy node where the item is
assigned is included in the product group
and
The item or one of the product hierarchy node where the item is
assigned is not excluded in the product group

The standard delivery supports two types of merchandise structures:

Retailer's Merchandise Category Hierarchy
Retailer's Article Hierarchy

Exactly one , The following specific PriceDerivationRule representing the reward, is assigned to a .PromotionPriceDerivationRule PriceDerivat
 are supported:ionRules

Reward Description

ItemPriceDerivationRule Denotes discounts for the items on the trigger side.

MixAndMatchPriceDerivationRule Allows more complex discounting.

A refers to a set of MixAndMatchPriceDerivationRule MixAndMatchPriceDeriva
tionItems

that can be logically linked (AND/OR/ SET).

A specifies the MixAndMatchPriceDerivationItem PromotionalProduct

(either a single product or a merchandise hierarchy group) for which the discount is
to be applied,
and the discount as such.

ExternalActionPriceDerivationRule This kind of does not define a specific reward or discount, butPriceDerivationRule
it

contains information that is to be processed by the client of the promotion pricing
service (PPS).

The DDF incentives are used to provide information to the caller in a generic way.

The promotion pricing service returns the information about the external action to
the client.

An refers to a set of ExternalActionPriceDerivationRule ExternalActionRulePar
ameters

containing simple Key/Value pairs that can be interpreted by the caller.

In the standard shipment, the following language-independent attributes of an
incentive

are provided (if filled) as : ExternalActionRuleParameters

Product ID/free style ID
Incentive quantity
Incentive value
Incentive value adjustment

Additionally, the refers to a set of ExternalActionPriceDerivationRule ExternalAc
tionRuleTexts

containing the language-dependent texts for the external action.

In the standard shipment, the attribute Incentive Type description

is provided as ExternalActionRuleTexts.

ManualPriceDerivationRule This type of specifies the item discount on trigger side,PriceDerivationRule
or determines that the item discount comes from the client.

Keys and Foreign Keys

Unique identifiers (IDs) are generated for the promotion-related entities during the mapping. A new number range object is used for /ROP/PROID
this. Additionally, the identifier for the DDF offer is also in the entity. Promotion

Eligibilities can be modeled as condition trees. Therefore, all eligibility entities have also a and a ParentPriceDerivationRuleEligibilityID RootPri
 as a foreign key. In an eligibility tree, the refers to the key of the parentceDerivationRuleEligibilityID ParentPriceDerivationRuleEligibilityID

node and the to the key of the root node. If the condition for the is not aRootPriceDerivationRuleEligibilityID PromotionPriceDerivationRule
tree, the and the are identical to the ParentPriceDerivationRuleEligibilityID RootPriceDerivationRuleEligibilityID PriceDerivationRuleEligibi

.lityID

As the provides the association between the eligibilities and price derivation rule, the PromotionPriceDerivationRule PriceDerivationRuleEligi
 and the are foreign keys in this entity. For eligibility trees, the refers to the keybilityID PriceDerivationRuleID PriceDerivationRuleEligibilityID

of the root node.

All ABAP data elements referring to ABAP domain will be mapped to Java Long values in the promotion pricing service. In/ROP/LONG
addition, the database type BIGINT will be used by default . Therefore, values exceeding the range ofif the service is deployed locally
Java Long must be avoided.

This is particularly important when defining the number range intervals Furthermore, this isfor IDs of the promotion and other entities.
important for the control parameters and of a promotion price derivation rule as these parameters refer to thissequence resolution
domain. This means they with values outside of the Java Long range. The following tables show the difference incannot be provided
the value ranges:

Type From To

java.lang.Long 9,223,372,036,854,775,808 9,223,372,036,854,775,807

/ROP/LONG -9,999,999,999,999,999,999 9,999,999,999,999,999,999

Validity Period for the OPP Promotion

The validity period for an OPP promotion (and) is mapped EffectiveDate ExpiryDate from the DDF offer. This date is interpreted as the local time
of the client that is using the OPP promotion.

Database Tables

The OPP promotions are stored in the following database tables in SAP Customer Activity Repository:

/ROP/PROMOTION
A table for promotion-relevant header data. A promotion can have one or more promotion price derivation rules.
/ROP/PROMO_RULE
A table for promotion price derivation rules that provides the association between eligibility and price derivation rule to determine the price
modification.
/ROP/ELIGIBILITY
A table for all data that is relevant for the eligibilities of the promotion.
/ROP/PRICE_RULE
A table for price derivation rules that represent the reward for the customer at the point of sale.
/ROP/MAM_ITEM
A table for mix-and match price derivation items that specifies matching items that may be used to trigger the price derivation rule.
/ROP/PROMO_BU
A table for the business units for which the promotion is relevant.
/ROP/PROMO_TEXT
A table for the language-dependent texts of a promotion.
/ROP/EX_ACT_PARM
A table for the language-independent attributes of an external action.
/ROP/EX_ACT_TEXT
A table for the language-dependent texts of an external action.
/ROP/MERCH_SET
A table to store the entries of the merchandise sets (product groups) within the promotion.

Handling of Amounts

In the database tables of an ABAP system, amounts are stored in a special format. In this format, amounts always have 2 decimals, regardless of
whether this number of decimals is allowed for the corresponding currency of the stored amount. Consider the following examples (comma ','
used as thousands separator, dot '.' used as decimal mark):

Currency Decimals Amount Value stored on DB (using a CURR 19,5 field)

EUR (Euro) 2 1234.56€ 1,234.56000

JPY (Japanese Yen) 0 ¥1234 12.34000

BHD (Bahrain Dinar) 3 1234.567 BD 12,345.67000

The correct display of the amounts within the using ABAP application is usually achieved via conversion exits on the UI level - within the program
logic of ABAP application the database format is used. However, in the context of OPP, this storage of amounts has the following consequences if
currencies with other than 2 decimals are used:

Amounts sent via IDocs must be converted into an external format having the decimal mark at the correct position (for regular prices as
well as promotional entities).
Java applications directly accessing the database of the central Price and Promotion Repository must be aware of this format and must
perform a scaling of values prior to the calculation. How this is done is explained in the documentation of the PPS module
dataaccess-common.
ABAP applications receiving amounts in external format having the decimal place at the right position (either within IDocs or when
requesting the price calculation from a PPS) must convert between the ABAP internal representation of amount and the external format.
In particular, this is the case for the integration of the PPS based price calculation into the ERP sales order processing.

Note that local copies of the Price and Promotion Repository exclusively used by the Java based PPS store amounts in the "natural" format,
having the decimal place at the correct position. This is e.g. the case for the local PPS integrated into SAP Hybris Commerce.

The decimals of a currency are stored in an ABAP system in database table , containing only those currencies having not 2 decimals. TheTCURX
number of decimals also influences the rounding control data of an OPP promotion. By default discounts are to be rounded to the smallest
amount which can be expressed in the corresponding currency.

1.

2.

3.

Transformation from DDF offers into OPP Promotion

Technical Information

The offer transformation transforms a DDF offer into an OPP promotion. This promotion is then saved in the . price and promotion repository This
transformation is performed automatically during the creation and update as well as during the preceding validation of a DDF offer.

During the validation of the offer it is checked if the offer can be transformed into an OPP promotion. This depends on the offer types and the
combination of offer features that are supported with OPP. The validation of the transformation of a DDF offer into an OPP promotion is triggered
if the status of the offer is switched to a status that is relevant for transformation. The following table shows which offer status translate to which
status of an OPP promotion.

DDF Offer Status OPP Promotion Status Comment

In Process Inactive OPP promotion will be written with this status only if it was previously in status "Active"

Recommended Inactive OPP promotion will be written with this status only if it was previously in status "Active"

Approved Active

Released Active

Cancelled Inactive OPP promotion will be written with this status only if it was previously in status "Active"

<Logically Deleted> Cancelled Actually not an offer status

The use of the offer statuses "Released" and "Cancelled" is controlled via a Customizing switch located in Customizing under Cross-Application
. The name of the switch isComponents > Demand Data Foundation > Data Maintenance > Offer > Maintain Indicators for Offer Calculations

"Offer Status Management". For more information about offer status management, see the application help of SAP Promotion Management on
SAP Help Portal at > > > > > https://help.sap.com/viewer/p/CARAB <Version> Application Help SAP Promotion Management Promotion Planning

. The mapping of status values is independent of this Customizing switch. The class controls which values ofMaintain Offers /ROP/CL_CONFIG
the offer status are translated into status "Active" for an OPP promotion.

You can also manually transform DDF offers using program in SAP Customer Activity Repository. This program /ROP/R_OFFER_TRANSFORM
reads all DDF offers with the relevant status according to the selection criteria and validates and converts the DDF offers into OPP promotions.
Afterwards, it saves the OPP promotions in the SAP Customer Activity database for reuse. If an offer cannot be transformed, the other offers will
still be processed using resumable exceptions. The following classes and BAdIs are relevant for the transformation of DDF offers into OPP
promotions:

/ROP/CL_OFFER_MAPPER is the entry point for the offer transformation. It expects a list of DDF offers and returns a list of OPP
promotions. This class implements both the interface for the mapping and the validation of an offer.
The mapping logic is realized by calling a number of BAdIs that are contained in enhancement spot . These/ROP/OFFER_MAPPING
BAdIs offer (but do not enforce) a three-step process to :

Offer classification (mandatory)
The offer is analyzed and classified in this step. For example, Only BUY terms linked with OR.
This step results in an offer classification, an offer classification group, and information about whether a promotion recipe has to
be created. The corresponding BAdI is . OPP offers an implementation using the class /ROP/OFFER_CLASSIFIER /ROP/CL_OF

.FER_CLASSIFIER
Creation of a promotion recipe (optional)
A recipe can be created for a given classified offer in this step. A recipe is a structure () with/ROP/BL_PROMO_RECIPE_STY
detailed information about how to create the OPP promotions in step 3. The recipe determines the transformation from a
high-level perspective.
The following main instructions for the mapping are offered in the promotion recipe:

How many promotion rules are to be created
Which types of price rules are to be created
Which offer terms are to be used to create eligibility trees and how these trees are to be combined
Which offer terms are to be used to create mix-and-match items and how these items are to be combined

 The corresponding BAdI is . This BAdI has the classification group determined in step 1 as/ROP/PROMO_RECIPE_BUILDER a
filter. We offer one implementation using the class ./ROP/CL_PROMO_RECIPE_BUILDER
Building the promotion (mandatory)

the offer (and optionally the recipe determined in step 2) are used to create the promotion. If you are using theIn this step,
recipe, the implementation can be done in a generic and straightforward way. The corresponding BAdI /ROP/PROMO_BUILDER
has the classification group determined in step 1 as a filter. We offer one implementation using the class /ROP/CL_PROMO_BUI

.LDER
All three BAdIs have multiple implementations. In addition, the sequence in which the implementations are executed can be determined.
This is done by implementing the BAdI for all BAdIs of the three-step process and by offering an execution sequenceBADI_SORTER

In this chapter, the term reflects the result of the offer classification as, for example, .offer classes simple discount offer

https://help.sap.com/viewer/p/CARAB

number that is specified for each BAdI implementation. SAP implementations have the sequence number 0.
This means that you are free to add preprocessing (sequence number < 0) and postprocessing (sequence number > 0) steps for the SAP
implementations. These SAP implementations can be deactivated.

For more information about the offer transformation, see the corresponding BAdI documentation for enhancement spot /ROP/OFFER_MAPPING.

Change pointers can be created when DDF offers are transformed into OPP promotions. These change pointers are used during the delta
replication of the data replication framework (DRF). The change pointers are created using an implementation of the BAdI /ROP/PROMO_CHAN

 in enhancement spot . The standard SAP system offers an implementation of this BAdI using the class GE_POINTER /ROP/PROMOTION_DB /R
This class creates master data governance (MDG) change pointers based on the business object OP/CL_PROMO_OUT_MDG_CP. ROP_PROM

. You can use this BAdI to modify the pointer creation or implement your own pointer creation. If you do not want to use the DRF changeO
message, or if no MDG change pointers are to be created, you can deactivate the BAdI implementation.

For more information about change pointers for the OPP promotion outbound, see the corresponding BAdI documentation for enhancement spot /
ROP/PROMOTION_DB.

How We Transform DDF Offers into OPP Promotions

A DDF offer can have one or more BUY terms and no GET term. However, a BUY term in an offer is mandatory. A combination of BUY terms and
one or more GET terms is possible. GET or BUY terms are logically linked with AND or OR. If terms linked with OR means that at least one term
must match the basket and AND means that all terms must match the shopping cart (means all terms of the offer must be in the cart to get the

 A discount can be defined on the BUY side and on the GET side of an offer. The GET lines are relevant only if the BUY lines are filled.reward).
However, the discounts of the BUY side become effective even if the GET side has no entries. The prerequisites for getting a reward can also be
defined on the BUY side and on the GET side. Prerequisites are defined on the GET side if there are terms linked with AND on the GET side. To
get the discount, all the products defined in the GET terms have to be in the shopping cart. A DDF offer can also have one or more incentives.
These incentives can have the type and the type . The offers for all incentives supported by the OPP need to be linked withCondition Reward
AND.

The ARTS-like OPP promotion makes a distinction between triggers and rewards. The transformation of offers into OPP promotions means that
discounts granted on the offer BUY side are pulled to the ARTS reward side (). Prerequisites defined on the GET side havePriceDerivationRule
to be pulled from the GET (reward) side to the trigger side. Rewards that are independent of each other (such as a reward defined in BUY terms
linked with OR) lead to several .PromotionPriceDerivationRules

To simplify these complex transformation rules, several offer types are classified in offer classes. This classification is done in the BAdI /ROP/OFF
. Based on an offer class, a recipe can be built that contains the construction information to create a promotion. This recipe isER_CLASSIFIER

built in the BAdI /ROP/PROMO_RECIPE_BUILDER. Based on the offer class and the construction recipe, the mapping can be done in a generic
 These BAdIs are called during the validation andstraightforward way with the BAdI that builds the promotion. /ROP/PROMO_BUILDER

transformation of a DDF offer into an OPP promotion.

Transformation of Simple Discount Offers

Sequence & Resolution
The OPP promotion data model offers the fields sequence and resolution that control the behavior in the following cases:

Several OPP promotions related to the shopping cart are eligible for the same shopping cart.
Several OPP promotions related to the line items are eligible for the same line item.

In this case, the sequence number determines the order in which the promotion price derivation rules are applied. If the sequence
numbers are the same, only the promotion price derivation rule with the highest resolution number is applied. If the sequence number
and the resolution number are the same, a best price calculation is performed.

Note that there is a strict separation of line item-related price rules and transaction-related price rules. All line item-related price rules
are executed before all transaction-related, in other words the scope of the price rule can be seen as an additional sort criterion to the
sequence numbers.

The sequence and resolution are set in the standard shipment as follows:

The sequence of a promotion price derivation rule is the same as its ID.
Exception: If an offer consists of a BUY and a GET side, two promotion price derivation rules are created, both with the same
sequence.
The resolution of a promotion price derivation rule is set to . 0
Exception: If an offer consists of a BUY and a GET side, two promotion price derivation rules are created. The rule containing
only the terms of the BUY side has the resolution , the rule containing the BUY and GET side has the resolution .0 1

The sequence and resolution can be set for each promotion price derivation rule easily during creation of the promotion recipe.

A simple discount is an offer without get terms that can have one or multiple buy terms with a defined discount. If this offer type has multiple buy
terms, they are linked with Or and do not depend on each other. This offer type can be combined with incentives of class types Condition and
Reward.

This offer type is a separate offer class. The SAP recipe for this offer class defines that one is to be created forPromotionPriceDerivationRule
each BUY term, and the assigned to the are of type .PriceDerivationRules PromotionPriceDerivationRules ItemPriceDerivationRule

Examples

The following examples for simple discount offers and tables show how these offers are transformed into OPP promotions. The examples are
restricted to the most relevant database fields. Fields that are always filled with a default value are listed separately in the section .Default Values

Example 1: Buy one piece of product A for a discount of 10%, or buy three pieces of product B for a discount of 20%

This offer is translated to the following independent for one promotion per product:PromotionPriceDerivationRules

A rule that sets a discount for each product A in the shopping cart.
A rule that sets a discount for each three pieces of product B.
In this case, the customer has to purchase at least three pieces of product B (or multiples of three) to receive the discount. After the
multiple of three is reached the remaining items will be sold at the regular price.

The following table shows how this example is translated to the price and promotion repository:

ENTITY Field Mapping

Promotion

 PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

 ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
= 1IntervalQuantity

 = ACStatusCode

 ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = TPPriceModificationMethodCode
 = 10.000PriceModificationPercent

 = 00DiscountMethodCode

 PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 2
 = 2Sequence
 = 0Resolution

 ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTIThresholdTypeCode
 = 3ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 3IntervalQuantity

 ItemPriceDerivationRule = RBTypeCode
 = POPriceRuleContolCode

PriceModificationMethodCode = TP
 = 20.000PriceModifcationPercent

DiscountMethodCode = 00

Handling of regular price and EDLP
Everyday Low Price and do not define a discount. They are used to define a condition (eligibility) to get a reward.Regular Price

The indicator is set to and no is to be set.Enforce Multiple Yes Limit

Example 2: Buy for at least USD 50 and get a discount value of USD 10 for your shopping cart total

The prerequisite for the transaction is as on theMinimum spend amount modeled TotalPurchaseMarketBasketPriceDerivationRuleEligibility
eligibility side. The discount for the shopping cart is stored in the with a (ItemPriceDerivationRule PriceRuleControlCode SU Transaction

).Discount Calculated After Subtotal

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

TotalPurchaseMarketBasketPriceDerivationRuleEligibility TypeCode = TOTL
 = 50.000TransactionItemTotalRetailTriggerAmount

 = USD CurrencyCode

ItemPriceDerivationRule TypeCode = RB
 = SUPriceRuleControlCode

 = RTPriceModificationMethodCode
= 10.000PriceModificationAmount

DiscountMethodCode = 00

Example 3: Buy for at least USD 50 from merchandise category MC1 and get a discount of 10%

The prerequisite for the merchandise category is modeled as Minimum spend amount MC1 MerchandiseHierarchyPriceDerivationRuleEligibili
on the eligibility side. The discount is stored in the with a (ty ItemPriceDerivationRule PriceRuleControlCode PO Item Discount Calculated

).After Each Item

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

MerchandiseHierarchyPriceDerivationRuleEligibility TypeCode = MSTR
= 1MerchandiseHierarchyGroupIDQualifier

 = MC1MerchandiseHierarchyGroupID
ThresholdTypeCode = AMTI
ThresholdAmount = 50.000
LimitAmount = 150.000
IntervalAmount = 50.000

 = USDCurrencyCode

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = TPPriceModificationMethodCode
= 10.000PriceModificationPercent

 = 00DiscountMethodCode

Example 4: Buy three products of product group 'Yoghurt' for a discount price of USD 1.33

The indicator is set to and is to be set to 1.Enforce Multiple Yes Limit

The indicator is set to and the is to be set to 3.Enforce Multiple Yes Limit

Merchandise Hierarchy
A merchandise hierarchy (DDF: product hierarchy) can be an article hierarchy or a merchandise category hierarchy. When replicated
from SAP ERP, an article hierarchy has an alphanumeric indicator that uniquely identifies the article hierarchy. The merchandise
category hierarchy has no such an indicator in SAP ERP. Therefore, the DDF default indicator for the merchandise category
hierarchy is . This value is also mapped to the price and promotion repository in the field an1 MerchandiseHierarchyGroupIDQualifier
d can be used to identify the merchandise category hierarchy. The identifier from SAP ERP is mapped to this field for article hierarchies.

 The product group 'Yoghurt' has the following components:

 - Merchandise groups MC1 and MC2
 - Item A and Item B are also included

This offer is translated to one PromotionPriceDerivationRule. As the threshold quantity is greater than one, the PromotionPriceDerivationRul
e is considered as only "Shopping Cart" relevant and the corresponding indicator (attribute) is set. ThenotConsideredInLineItemModeFlag
product group is modeled as an eligibility tree with the two merchandise categories and the two products as child eligibilities below the Combinati
onPriceDerivationRuleEligibility that uses the combination code (OR with total quantity)OR . The threshold quantity and the limit information is
also stored in the CombinationPriceDerivationRuleEligibility. The discount is stored in the ItemPriceDerivationRule with a PriceRuleControl
Code PO (Item Discount Calculated After Each Item). Information about the indicator is stored in the Regular Price Only ItemPriceDerivationRul

 (attribute).e noPreviousMonetaryDiscountAllowedFlag

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

= X NotConsideredInLineItemModeFlag

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = ORCombinationCode

 = QUTIThresholdTypeCode
 = 3ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 3IntervalQuantity

 = PCUomCode

MerchandiseHierarchyPriceDerivationRuleEligibility TypeCode = MSTR
= 1MerchandiseHierarchyGroupIDQualifier

 = MC1MerchandiseHierarchyGroupID
 = COMBThresholdTypeCode

MerchandiseHierarchyPriceDerivationRuleEligibility TypeCode = MSTR
= 1MerchandiseHierarchyGroupIDQualifier

 = MC2MerchandiseHierarchyGroupID
 = COMBThresholdTypeCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = PTPriceModificationMethodCode
= 1.33PriceModificationPercent

 = 00DiscountMethodCode
= XNoPreviousMonetaryDiscountAllowedFlag

Example 5: Buy three products of product group 'Yoghurt' for a discount price of USD 1.33

 The product group 'Yoghurt' has the following components:

 - Merchandise group MC1 is included

 - Merchandise group MC2 is excluded

 - Item A and Item B are also included

 In this example the Customizing switch for using the enhanced product groups is inactive and so the inclusion of items and
merchandise hierarchy nodes is supported.

The product group 'Yoghurt' consists of a subset of assignments of two merchandise categories and two single products. The Enforce
 indicator is set to indicator is also be set and no is to be set.Multiple Yes, the Regular Price Only Limit

This offer is translated to one . As the threshold quantity is greater than one, the PromotionPriceDerivationRule PromotionPriceDerivationRul
considered as only "Shopping Cart" relevant and the corresponding indicator (attribute) is set. e is notConsideredInLineItemModeFlag

The product group is modeled as , which contains the threshold values and a reference to theMerchandiseSetPriceDerivationRuleEligibility
MerchandiseSet, which is a subentity to the The components of the product group (items and merchandise hierarchy nodes) arePromotion.
stored in the The consists of a root node with type code . Below this root node, there are the items andMerchandiseSet. MerchandiseSet OPR
merchandise groups modeled as child nodes. The for child nodes marks the node as included, the means theCombination '1' Combination '2'
child node is excluded in the product group. The discount is stored in the with a (ItemPriceDerivationRule PriceRuleControlCode PO Item

 The information about the indicator is stored in the (attribute Discount Calculated After Each Item) Regular Price Only ItemPriceDerivationRule n
).oPreviousMonetaryDiscountAllowedFlag

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion PromotionID = 1

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

= X NotConsideredInLineItemModeFlag

MerchandiseSetPriceDerivationRuleEligibility TypeCode = MSET
 = QUTIThresholdTypeCode

 = 3ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 3IntervalQuantity
 = 123MerchandiseSetID

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = PTPriceModificationMethodCode
= 1.33PriceModificationPercent

 = 00DiscountMethodCode
= XNoPreviousMonetaryDiscountAllowedFlag

MerchandiseSet MerchandiseSetNodeID = 100
 MerchandiseSetID = 123

 = 100ParentMerchSetNodeID
 = 100RootMerchSetNodeID

 = 0Combination
 = OPRTypeCode
 = DFOperation

 = 1PromotionID

MerchandiseSet MerchandiseSetNodeID = 101
 MerchandiseSetID = 123

 ParentMerchSetNodeID = 100
 RootMerchSetNodeID = 100

 Combination = 1
 TypeCode = ITEM

 ItemID = A
 PromotionID = 1

MerchandiseSet MerchandiseSetNodeID = 102
 MerchandiseSetID = 123

 ParentMerchSetNodeID = 100
 RootMerchSetNodeID = 100

 Combination = 1
 TypeCode = ITEM

 ItemID = B
 PromotionID = 1

In this example the Customizing switch for using the enhanced product groups is active. The indicator is set to Enforce Multiple Yes, the
indicator is also be set and no is to be set.Regular Price Only Limit

MerchandiseSet MerchandiseSetNodeID = 103
 MerchandiseSetID = 123

 ParentMerchSetNodeID = 100
 RootMerchSetNodeID = 100

 Combination = 1
 TypeCode = MSTR

 MerchandiseHierarchyGroupID = MC1
 MerchandiseHierarchyGroupIDQualifier = 1

 PromotionID = 1

MerchandiseSet MerchandiseSetNodeID = 104
 MerchandiseSetID = 123

 ParentMerchSetNodeID = 100
 RootMerchSetNodeID = 100

 Combination = 2
 TypeCode = MSTR

 MerchandiseHierarchyGroupID = MC2
 MerchandiseHierarchyGroupIDQualifier = 1

 PromotionID = 1

Transformation of Mix-and-Match Offers

A mix-and-match offer is an offer with buy terms that are linked with And or with get terms. It defines a combination of products and product
counts that results in a customer reward when purchased together.

This reward can affect prices of products that do not trigger this offer type, for example, buy item A and get items B, C or D at 50% off. Items B, C
and D get the reward and item A would be the trigger item. Items B, C and D are linked to the sale of item A. It is also possible to give a discount
on the products that are the trigger, for example, buy product A and B and get product A for a discount of 50%. In both cases, a mix-and-match
offer depends on the content of an entire transaction.

This offer type into three offer classes with different recipes for the promotion building:can be divided

An offer class for offers with buy terms that are linked with AND and without GET terms.
The recipe defines that only one is to be created for all BUY terms. Furthermore, it defines that the PromotionPriceDerivationRule Pric

assigned to the is of type and that all BUY termseDerivationRule PromotionPriceDerivationRule MixAndMatchPriceDerivationRule
are linked with AND on the eligibility side.
An offer class for offers with BUY and GET terms that are linked with AND.
The recipe defines that two are to be created. The first is definedPromotionPriceDerivationRules PromotionPriceDerivationRule
only for the reward on the buy side. Therefore, the assigned to the is of type PriceDerivationRule PromotionPriceDerivationRule MixA

 and all BUY terms with a discount are that are linked with AND. On the eligibilityndMatchPriceDerivationRule MixAndMatchItems
side all BUY terms are also linked with AND. The second is defined for the reward on the GET side.PromotionPriceDerivationRule
The assigned to the is of type and all GETPriceDerivationRule PromotionPriceDerivationRule MixAndMatchPriceDerivationRule
terms with a discount are that are linked with AND. On the eligibility side all BUY and all GET terms are linked withMixAndMatchItems
AND.
An offer class for offers with BUY and GET terms in which the BUY terms are linked with OR and the GET terms are linked with
AND. This means that each BUY term defines a reward, independent of the content of the entire transaction. The reward on the GET side
is given only if all products from the GET side are in the shopping cart and if at least one of the conditions from the buy side is fulfilled.
The recipe defines that one for each BUY term with a discount is to be created and that the PromotionPriceDerivationRule PriceDeriva

 assigned to the is of type Furthermore, a tionRules PromotionPriceDerivationRules ItemPriceDerivationRule. PromotionPriceDeriv
 for the GET terms is be created that refers to an eligibility tree in which all BUY terms are linked with OR and all GET termsationRule

are linked with AND. The linkage between BUY and GET terms is also AND. The assigned to the PriceDerivationRule PromotionPrice
is of type and all GET terms with a discount are linked withDerivationRule MixAndMatchPriceDerivationRule MixAndMatchItems

AND.

Examples

The following section contains some examples for mix-and-match offers and tables that show how these offers are transformed into OPP
promotions.

The mapping examples are restricted to the most relevant database fields. Fields that are always filled with a default value are listed separately.

Example 1: Buy one piece of product A for a discount price of USD 2,99 and buy one piece of product B for a discount of USD 2

Regular Price and Everday Low Price
The discount types and do not define a discount. They are used to define a condition (eligibility)Everyday Low Price Regular Price only
to get a reward. They will be included in the eligibilities but no will be created for them. MixAndMatchItems

The discount for the products is given in this offer only if the two products are purchased together.

This offer is translated to one . The two products are combined with AND as eligibilities and PromotionPriceDerivationRule MixAndMatchPrice
.DerivationItems

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
Sequence = 1
Resolution = 0

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
IntervalQuantity = 1

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 IntervalQuantity = 1

MixAndMatchPriceDerivationRule TypeCode = MM
 = &&CombinationCode

 = POPriceRuleControlCode
DiscountMethodCode = 00

MixAndMatchPriceDerivationItem TypeCode = IT
 = AItemID

 = PSPriceModificationMethodCode
= 2.99NewPriceAmount
 = 1 RequiredQuantity

MixAndMatchPriceDerivationItem TypeCode = IT
 = BItemID

 = RSPriceModificationMethodCode
 = 2.00PriceModificationAmount

 = 1 RequiredQuantity

Example 2: Buy one piece of product A for its regular price and buy one piece of product B for a discount of 10% and you will get one
piece of product A for free

The discount for product B is given in this offer only if at least one piece of product A is purchased. The reward for product A (one piece for free) is
given only if the customer buys at least two pieces of product A and one additional piece of product B.

This offer is translated to the following two independent with the same sequence number but differentPromotionPriceDerivationRules
resolution numbers:

The first rule is for the reward on the buy side. The two products are eligibilities and are combined with AND. The isPriceDerivationRule
of type and the discount for product B is provided as . MixAndMatchPriceDerivationRule MixAndMatchPriceDerivationItem
The second rule is for the reward on the get side. The two products from the BUY terms plus the product from the get side are eligibilities
and are combined with AND. The is of type and product B that has a discountPriceDerivationRule MixAndMatchPriceDerivationRule
on the BUY side and the GET reward for product A as . are provided MixAndMatchPriceDerivationItem

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

MixAndMatchPriceDerivationRule TypeCode = MM
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00 DiscountMethodCode

MixAndMatchPriceDerivationItem TypeCode = IT
 = BItemID

 = RPPriceModificationMethodCode
 = 10.000PriceModificationPercent

 = 1 RequiredQuantity

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 2
 = 1Sequence
 = 1Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

MixAndMatchPriceDerivationRule TypeCode = MM
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00 DiscountMethodCode

MixAndMatchPriceDerivationItem TypeCode = IT
 = AItemID

 = PSPriceModificationMethodCode
= 0.000NewPriceAmount
 = 1 RequiredQuantity

MixAndMatchPriceDerivationItem TypeCode = IT
 = BItemID

 = RPPriceModificationMethodCode
 = 10.000PriceModificationPercent

 = 1 RequiredQuantity

Example 3: Buy for at least USD 50 and you will get product A for free

The discount for product A is given in this offer only if the customer buys for at least USD 50.
This offer translates to one The transaction condition and the item condition are linked with AND as eligibilities PromotionPriceDerivationRule. .
The discount for product A is modeled as .MixAndMatchPriceDerivationItem

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

 PromotionPriceDerivationRule = 1PromotionPriceDerivationRuleID
 = 1Sequence
 = 0Resolution

 CombinationPriceDerivationRuleEligibility = COMBTypeCode
 = &&CombinationCode

 TotalPurchaseMarketBasketPriceDerivationRuleEligibility = TOTLTypeCode
= 50.000TransactionItemTotalRetailTriggerAmount

 = USD CurrencyCode

 ItemPriceDerivationRuleEligibility = ITEMTypeCode
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = LimitQuantity 1
 = 1 IntervalQuantity

 MixAndMatchPriceDerivationRule = MMTypeCode
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00DiscountMethodCode

 MixAndMatchPriceDerivationItem = ITTypeCode
 = AItemID

 = PSPriceModificationMethodCode
= 0,000NewPriceAmount
 = 1 RequiredQuantity

Example 4: Buy three products of product group 'Yoghurt' and get one product of product group 'Yoghurt' for free.
 The product group 'Yoghurt' has the following components:

 - Merchandise group MC1 is included

 - Merchandise group MC2 is excluded

 - Item A and Item B are also included

This offer is translated to one the Buy and the Get condition are linked with AND as eligibilities PromotionPriceDerivationRule, MerchandiseSe
, which contains the threshold values and a reference to the , which is a subentity to the tPriceDerivationRuleEligibility MerchandiseSet Promot

ion.

As the threshold quantity is greater than one, the is considered as only "Shopping Cart" relevant and thePromotionPriceDerivationRule
corresponding indicator (attribute) is set. notConsideredInLineItemModeFlag

The components of the product group (items and merchandise hierarchy nodes) are stored in the The consistMerchandiseSet. MerchandiseSet
s of a root node with type code . Below this root node are the items and merchandise groups modeled as child nodes. The foOPR Combination '1'
r child nodes marks the node as included, the means the child node is excluded in the product group. The discount is modeled as Combination '2'

. This contains again a reference to the the typeMixAndMatchPriceDerivationItem MixAndMatchPriceDerivationItem MerchandiseSet,
code for the item is (product group).PG

The Enforce Multiple flag is to be set to YES and the limit must be 1.

In this example the Customizing switch for using the enhanced product groups is active. The indicator is set to andEnforce Multiple Yes
no is to be set.Limit

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion = 1PromotionID

PromotionPriceDerivationRule = 1PromotionPriceDerivationRuleID
 = 1Sequence
 = 0Resolution

= X NotConsideredInLineItemModeFlag

CombinationPriceDerivationRuleEligibility = COMBTypeCode
 = &&CombinationCode

MerchandiseSetPriceDerivationRuleEligibility = MSETTypeCode
 = QUTIThresholdTypeCode

 = 3ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 3IntervalQuantity
 = 123MerchandiseSetID

MerchandiseSetPriceDerivationRuleEligibility = MSETTypeCode
 = QUTIThresholdTypeCode

 = 3ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 3IntervalQuantity
 = 123MerchandiseSetID

MixAndMatchPriceDerivationRule = MMTypeCode
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00DiscountMethodCode

MixAndMatchPriceDerivationItem = PGTypeCode
 = PSPriceModificationMethodCode

= 0,000NewPriceAmount
 = 1 RequiredQuantity
= 123MerchandiseSetID

MerchandiseSet = 100MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100ParentMerchSetNodeID
 = 100RootMerchSetNodeID

 = 0Combination
 = OPRTypeCode
 = DFOperation

 = 1PromotionID

MerchandiseSet = 101 MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100 ParentMerchSetNodeID
 = 100 RootMerchSetNodeID

 = 1 Combination
 = ITEM TypeCode

 = A ItemID
 = 1PromotionID

MerchandiseSet = 102 MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100 ParentMerchSetNodeID
 = 100 RootMerchSetNodeID

 = 1 Combination
 = ITEM TypeCode

 = B ItemID
 = 1PromotionID

MerchandiseSet = 103 MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100 ParentMerchSetNodeID
 = 100 RootMerchSetNodeID

 = 1 Combination
 = MSTR TypeCode

 = MC1 MerchandiseHierarchyGroupID
 = 1MerchandiseHierarchyGroupIDQualifier

 = 1PromotionID

MerchandiseSet = 104 MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100 ParentMerchSetNodeID
 = 100 RootMerchSetNodeID

 = 2 Combination
 = MSTR TypeCode

 = MC2 MerchandiseHierarchyGroupID
 = 1MerchandiseHierarchyGroupIDQualifier

 = 1PromotionID

Transformation of Packaged Offers

A packaged offer is a bundling of different items with individual sales prices. When brought together this bundle is sold at a fixed price. The
different items are specified as buy terms and linked with And. This offer type is a separate offer class.

Example: Buy two products of merchandise category MC1 and one piece of product A for a fixed total price of USD 24.99

The fixed total price for the products is given in this offer only if the specified products are purchased together.

This offer is translated to one . The buy terms are combined with AND as eligibilities, the set price is stored inPromotionPriceDerivationRule
the with a The package apportioned discount percentages thatItemPriceDerivationRule PriceModificationMethodCode ST (Total Set Price).
can be maintained during the offer maintenance are not considered.

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

MerchandiseHierarchyPriceDerivationRuleEligibility TypeCode = MSTR
= 1MerchandiseHierarchyGroupIDQualifier

 = MC1MerchandiseHierarchyGroupID
 = QUTIThresholdTypeCode

 = 2ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 2 IntervalQuantity

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = STPriceModificationMethodCode
= 24,99NewPriceAmount

 = 00DiscountMethodCode

Transformation of Offers with Incentives

The Enforce Multiple indicator must be set to Yes and no Limit is to be set.

Examples

Incentives can be combined with both simple discounts and mix-and-match offers. The following examples show how to transform offers with
incentives into OPP promotions:

Example 1: Mix-and-match offer with incentive category customer card

Pay with your gold card and buy one piece of product A for a discount price of USD 3.33, or buy product B for a discount of 10% and
get 50% off for two pieces of product C.

The discounts for the products A and B are given in this offer only if the customers pay with their gold card. The reward for the two pieces of
product C is given only if the customers buy at least two pieces of product C, one piece of product A, one piece of product B and additionally pay
with their gold card.

This offer is translated to four independent :PromotionPriceDerivationRules

The first and the second rule are for the reward on the buy side, one for each BUY term. These two haPromotionPriceDerivationRules
ve different sequence numbers and the resolution number is 0. On the eligibility side, each BUY term results in an ItemPriceDerivationR

and is linked with AND with a . The assigned to the uleEligibility CustomerPriceDerivationRuleEligibility PriceDerivationRules Prom
have the type otionPriceDerivationRules ItemPriceDerivationRule.

The third and the fourth are for the reward on the get side. The third cPromotionPriceDerivationRule PromotionPriceDerivationRule
ombined the first BUY term (product A) with the GET term and the customer card, this has the samePromotionPriceDerivationRule
sequence number as the first that contains only the discount from product A and the resolution numberPromotionPriceDerivationRule
is 1. The fourth combined the second BUY term (product B) with the GET term and the customer card,PromotionPriceDerivationRule
this has the same sequence number as the second that contains onlyPromotionPriceDerivationRule PromotionPriceDerivationRule
the discount from product B and resolution number is also 1.
Eligibility trees are built on the eligibility side. The is combined with the GET term and eachCustomerPriceDerivationRuleEligibility
with one of the BUY terms via AND linkage. The assigned to the has the type PriceDerivationRule PromotionPriceDerivationRules Mi

. The discount for the GET term is defined in the and via ANDxAndMatchPriceDerivationRule MixAndMatchPriceDerivationItem
linkage combined with one of the BUY terms (the same as defined in the eligibility tree).

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

CustomerPriceDerivationRuleEligibility TypeCode = CGRP
 = GOLDCustomerGroupID

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = PTPriceModificationMethodCode
 = 3.33NewPriceAmount

 = 00DiscountMethodCode

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 2
 = 2Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

CustomerPriceDerivationRuleEligibility TypeCode = CGRP
 = GOLDCustomerGroupID

The indicator is to be set to and no is to be set.Enforce Multiple Yes Limit

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = TPPriceModificationMethodCode
 = 10.000PriceModificationPercent

 = 00 DiscountMethodCode

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 3
 = 1Sequence
 = 1Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

CustomerPriceDerivationRuleEligibility TypeCode = CGRP
 = GOLDCustomerGroupID

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = CItemID

 = QUTIThresholdTypeCode
 = 2ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 2 IntervalQuantity

ItemPriceDerivationRuleEligibility
TypeCode = ITEM

 = AItemID
 = QUTIThresholdTypeCode

 = 1ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 1 IntervalQuantity

MixAndMatchPriceDerivationRule TypeCode = MM
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00 DiscountMethodCode

MixAndMatchPriceDerivationItem TypeCode = IT
 = CItemID

 = RPPriceModificationMethodCode
= 50.000PriceModificationPercent

 = 2 RequiredQuantity

MixAndMatchPriceDerivationItem TypeCode = IT
 = AItemID

 = PSPriceModificationMethodCode
 = 3.33NewPriceAmount
 = 1 RequiredQuantity

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 4
 = 2Sequence
 = 1Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

CustomerPriceDerivationRuleEligibility TypeCode = CGRP
 = GOLDCustomerGroupID

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = CItemID

 = QUTIThresholdTypeCode
 = 2ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 2 IntervalQuantity

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

ThresholdTypeCode = QUTI
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1 IntervalQuantity

MixAndMatchPriceDerivationRule TypeCode = MM
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00 DiscountMethodCode

MixAndMatchPriceDerivationItem TypeCode = IT
 = CItemID

 = RPPriceModificationMethodCode
= 50.000PriceModificationPercent

 = 2 RequiredQuantity

MixAndMatchPriceDerivationItem TypeCode = IT
 = BItemID

 = RPPriceModificationMethodCode
= 10.000PriceModificationPercent

 = 1 RequiredQuantity

Example 2: Simple discount offer with incentive category Show Coupon

 0815 and buy one piece of product A for a discount of 10% or buy three pieces of product B for a discount price of Show coupon USD 1
0.

In this example, the coupon is a condition. This means that the customer has to show the corresponding coupon in order to be eligible for the
offer. Incentives are always linked with AND to its offer. So the offer in this example is translated to the following independent PromotionPriceDe

one for each product:rivationRules,

A rule that defines a discount for each product A that is in the shopping cart. On the eligibility side the prerequisite is modeled as Coupon
 and linked with AND to the for product A. The linkage with AND isCouponPriceDerivationRule ItemPriceDerivationRuleEligibility

done via a . CombinationPriceDerivationRuleEligibility
In this rule, the prerequisite is linked with AND to the for product B. Even though theCoupon ItemPriceDerivationRuleEligibility
discount price in the offer is defined for three pieces of product B, the threshold quantity is always 1 in the becItemPriceDerivationRule
ause the indicator in the offer is set to . So this rule will not require the quantity criteria to be met. For any quantity inEnforce Multiple No
this example, the discount unit price will be USD 3.33 in the . (results from USD 10 divided by three pieces) ItemPriceDerivationRule

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

CouponPriceDerivationRuleEligibility TypeCode = COUP
 = 0815CouponNumber

 = 00ConsumptionTypeCode

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = RPPriceModificationMethodCode
 = 10.000PriceModificationPercent

 = 00DiscountMethodCode

 PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 2
 = 2Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

The indicator is to be set to and no is to be set.Enforce Multiple No Limit

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

 = QUTThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

CouponPriceDerivationRuleEligibility TypeCode = COUP
 = 0815CouponNumber

 = 00ConsumptionTypeCode

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = PSPriceModificationMethodCode
= 3.33000NewPriceAmount

 = 00DiscountMethodCode

Example 3: Simple discount offer with incentive category Get Coupon as Reward

Buy one piece of product A for and 0815 as reward. Everyday Low Price Get coupon

The offer in this example is translated to one Product A with is the condition to get aPromotionPriceDerivationRule. Everyday Low Price
coupon as a reward. As does not define a discount, product A is used only on the eligibility side. Everyday Low Price The reward is modeled as It

 with a () and (emPriceDerivationRule PriceRuleControlCode PO Item Discount Calculated After Each Item DiscountMethodCode 04 A coupon
).is given to the customer instead of a discount

 The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = RTPriceModificationMethodCode
 = 0.01PriceModificationAmount

 = 04DiscountMethodCode
 = 0815CouponPrintOutID

 = 00CouponPrintoutRule
 = 0CouponValidityInDays

: Simple discount offer with incentive category Example 4 Get Points as Reward

When they show coupon 0815, the customer will get an extra 25 bonus points when they buy product A.

The offer in this example is translated to one . On the eligibility side, the prerequisite is linked with ANDPromotionPriceDerivationRule Coupon
to the for product A. The reward is modeled as with a ItemPriceDerivationRuleEligibility ItemPriceDerivationRule PriceRuleControlCode PO
() and is set ().Item Discount Calculated After Each Item RewardGrantedAsLoyaltyPoints X

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

The indicator is to be set to and no is to be set.Enforce Multiple Yes Limit

The indicator is to be set to and no is to be set.Enforce Multiple Yes Limit

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

CouponPriceDerivationRuleEligibility TypeCode = COUP
 = 0815CouponNumber

 = 00ConsumptionTypeCode

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = RTPriceModificationMethodCode
 = 25.000PriceModificationAmount

 = 00DiscountMethodCode
 = XRewardGrantedAsLoyaltyPoints

CalculationBase = 00

Example 5: Incentive category External Action

. Today you can get the shipping for product A for only USD 5

You have created incentive type for an incentive and you use the incentive value to maintain theDSHP - Discount Shipping External Action
special price for shipping.

The offer in this example is translated to one with a for product A. ThePromotionPriceDerivationRule ItemPriceDerivationRuleEligibility
reward is modeled as with type code (). The incentive type is mapped into the ExternalActionPriceDerivationRule EX External Action DSHP Ext

 The maintained incentive value and the incentive value adjustment are modeled as . TheernalActionID. ExternalActionRuleParameter
incentive type description is modeled as ExternalActionRuleText.

The following table shows how this example is translated to price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

 = QUTIThresholdTypeCode
 = 1ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 1IntervalQuantity

ExternalActionPriceDerivationRule TypeCode = EX
 = SUPriceRuleControlCode

 = DSHPExternalActionID

ExternalActionRuleParameter ParameterID = SAP_INC_VALUE
 = 5.000Value

ExternalActionRuleParameter ParameterID = SAP_INC_VALUE_ADJUST
 = 5.000 Value

ExternalActionRuleText LanguageCode = EN
 = SAP_INC_TYPE_DESCRTextCode

 = 'Discount Shipping'Text

Example 6: Incentive category Manual Promotion as Reward

The indicator is to be set to and no is to be set.Enforce Multiple Yes Limit

When buying product A: manually triggered discount is allowed.

You have created incentive class with incentive class type ' '. For this incentive class, you have also'31 - Manually triggered Discount' Reward
created incentive type ' ' with Incentive category 'Manual '. You use the product identifier as free text to identify the manualM2 Promotion
promotion.

The offer in this example is translated to one with a for the manualPromotionPriceDerivationRule ManualPriceDerivationRuleEligibility
promotion and a for product A as child eligibilities below the . ItemPriceDerivationRuleEligibility CombinationPriceDerivationRuleEligibility

On reward side, there is a with type code (). This price rule does not specify a discount, butManualPriceDerivationRule MA Manual Promotion
the discount can be specified by the client, for example, the cashier can specify the exact amount and type of the discount.

The following table shows how this example is translated to price and promotion repository:

Entity Field mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 ItemID = A

 ThresholdTypeCode = QUTI
 ThresholdQuantity = 1

 LimitQuantity = 9,999,999,999
 IntervalQuantity = 1

ManualPriceDerivationRuleEligibility TypeCode = MANU
 TriggerTCD = 31

 TriggerValue = Defect (Free text coming from the product identifier)

ManualPriceDerivationRule TypeCode = MA
 PriceRuleControlCode = PO

Example 7: Incentive category Manual Promotion as Condition

Get 10 % discount for your transaction when manual promotion is triggered and when a specified customer card is shown.

You have created incentive class with incentive class type ' '. For this incentive class, you have also'30 - Manual Trigger for discount' Condition
created incentive type ' ' with incentive category 'Manual '. You do not use the product identifier to identify the manual promotion, butM1 Promotion
the incentive class and the incentive type.

The offer in this example is translated to one On eligibility side the prerequisite is modeled asPromotionPriceDerivationRule. Customer Card
with a and linked with AND to the and to the CustomerPriceDerivationRuleEligibility ManualPriceDerivationRuleEligibility TotalPurchaseMa

. The linkage with AND is done via a . rketBasketPriceDerivationRuleEligibility CombinationPriceDerivationRuleEligibility

On reward side, there is a with type code RB (Simple Discount). This price rule specifies the 10 % discount for theItemPriceDerivationRule
transaction if the prerequisite 'GOLD card' is fulfilled and the manual trigger is coming from the client, for example, the cashier presses a 'Manual
Promotion' button on the point of sale).

The following table shows how this example is translated to price and promotion repository:

Entity Field mapping

Promotion

Enforce Multiple indicator is to be set to Yes and no Limit is to be set.

Enforce Multiple indicator is to be set to Yes and the limit must be 1.

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = &&CombinationCode

TotalPurchaseMarketBasketPriceDerivationRuleEligibility = TOTLTypeCode
= 0.000TransactionItemTotalRetailTriggerAmount

 = USD CurrencyCode

ManualPriceDerivationRuleEligibility TypeCode = MANU
 = 30 TriggerTCD

 = M1TriggerValue

CustomerPriceDerivationRuleEligibility TypeCode = CGRP
 = GOLDCustomerGroupID

ItemPriceDerivationRule TypeCode = RB
 = SUPriceRuleControlCode

 = TPPriceModificationMethodCode
= 10.000PriceModificationPercent

 = 00DiscountMethodCode

Default Values

ItemPriceDerivationRule

RoundDestinationValue
This value defines the multiple of the lowest allowed digit according to the currency to which rounding takes place.
Example: If the currency is EUR, the value 5 means that the rounding should not be done down to single cents but to 5-cent multiples.
If the default value is , there is no further handling of the rounding result.1
RoundingMethodCode
The default value is ().00 Commercial Rounding
ConsiderPreviousPriceRules
This indicator controls whether the current price derivation rule is based on the result of formerly applied rules. If this indicator is false, the
rule is to be applied on the regular sales price. This indicator is relevant only if the is (priceRuleControlCode PO Item Discount

).Calculated After Each Item
The default value is true.
CalculationBaseSequence
This value defines the sequence value for . The resulting price is to be used as the calculation basePromotionPriceDerivationRule
for the current rule.
The default value is , which means that -1 none of the previous rules are considered and the regular price is used as the calculation base.
ChooseItemMethodCode
This code defines the sequence in which the items to be discounted are chosen in the case of a .MixAndMatchPriceDerivationRule
The default value is ()00 Determined by the Promotion Calculation Engine
CalculationBase
The default value is , which means that the total sales is the calculation base for this rule.00
DiscountMethodCode
The default value is , which means that the discount reduces the transaction total. 00
Exceptions:
If the has the type , this field is not mapped.PriceDerivationRule External Action
If a coupon is given to the customer instead of a discount, the value is .04
NoEffectOnSubsequentRules
The default value is false, except for coupons.

Fields Only Relevant for Coupons

The following fields are only relevant and filled if the customer gets coupons instead of a discount:

CouponPrintoutRule
The coupon printout rule defines the printout type that is to be given to the customer.
The default value is , which means that a coupon is to be printed on a separate document. 00
CouponValidityInDays
The default value for the validity period for printout coupons is , which means that the coupon has no validity limit.0
NoEffectOnSubsequentRules
The default value is true for coupons.

Fields Only Relevant for Loyalty Points

The following field is only relevant and filled if the customer gets loyalty points instead of a discount:

RewardGrantedAsLoyaltyPoints
The default value is true if the type of reward is loyalty points.

CouponPriceDerivationRule Eligibility

ConsumptionTypeCode
The default value is 00, which means that coupons are also consumed if is applied with a differentPromotionPriceDerivationRules
sequence.

PromotionPriceDerivationRule

SaleReturnTypeCode();
This value specifies if the promotion rule can be used only for sales, for returns, or for both.
The default value is ().00 For Sales and Returns
Exclusive
Specifies if this promotion rule is an exclusive promotion rule.
The default value is false.
NotPrinted
If this indicator is true, the result of the promotion rule is to be suppressed.
The default value is false.

NotConsideredInLineItemModeFlag
Specifies if the promotion rule is applied to prices calculated by the promotion pricing service. It can be applied in the folllwing modes:

Item mode ()LineItem
If the promotion pricing service is called in this mode, the discount is calculated independently for each item. Promotion rules that
are not relevant on item level are not applied (for example, promotion rules on transaction level).
Shopping cart mode ()Basket
If the promotion pricing sevice is called in this mode, the discount is calculated for the total of the shopping cart considering all
promotion rules.

If this indicator is set, the promotion rule is only applied in shopping cart mode.
Per default, promotion price derivation rules are considered as only "Shopping Cart" relevant and the default value for this field is true, if
the following parameters are fulfilled:

It is not product-related, for example discounts-based on transaction level, product groups or product hierarchies
The offer type is mix-and-match
The product quantity is greater than one
The minimum spend amount is set
A coupon fulfills the condition

Replication of the Price and Promotion Repository

The OPP promotions and the regular prices can be replicated to an external system via IDocs. Enhancement segments have been designed so
that additional information can be added to the IDoc. For more information see the about the extensibility of the IDocs, section inOPP Extensibility
this guide.

Outbound Processing of IDocs via DRF

The data replication framework (DRF), a reuse component of SAP Business Suite, is used to replicate the OPP promotions and the regular prices
to other systems.

The following ways of replicating data are supported with the OPP:

Initial replication
Manual request

Note
You can have promotions if the same coupon should trigger more than one . For example: IfPromotionPriceDerivationRule
they show a coupon, the customer gets a discount for a certain product and additional loyalty points.

This promotion only works with 02, which means 'Coupon Is Not Consumed'. In this case, you haveConsumptionTypeCode
to adapt the default value.

Change request

The initial replication is used to send all relevant data for a receiver by one single request. The initial load expects to have no data on the receiver
side.

The change request considers only objects that have to be sent compared to the previous (initial or delta) replication. Usually (but not always, see
promotion outbound processing) this includes objects that have changed since the last transfer and that match the specified filter criteria. If an
object is considered as transfer relevant, it is sent as a whole. There is no support for marking object internal changes. The initial and delta
request share a common filter, the static filter maintained in transaction DRFF.

The manual request allows the replication of specific data that can be filtered by adhoc specified filter criteria. There is no merge logic for the
static and manual filter. The manual request does not modify the list of objects that are marked as changed since the last initial or delta load.

DRF Configuration

A configuration needs to be done before DRF can be used. SAP delivers outbound implementations and preconfigured settings for the outbound
implementations, such as predefined outbound parameters, filter objects, and business objects. Customizing needs to be enhanced for these
predelivered conditions only if you want to replicate your own business objects and create or enhance the outbound implementation.

The following custom settings are needed for the data replication:

The landscape definition (determines the technical settings for business systems)
The replication models (determines the data that is to be sent to a corresponding location)
The business object-specific settings (Application Link Enabling)

OPP Promotions

The outbound interface that is needed to send OPP promotions to external systems is based on IDocs. IDoc types and /ROP/PROMOTION01 /R
are provided for this. The following picture shows the structure for IDoc type OP/PROMOTION02 /ROP/PROMOTION02:

There is no support for considering changes of static filters before a delta request. If you change the filter, relevant changes may not be
detected by the system.

Use the manual request to make urgent fixes only.

This structure reflects the database structure of the OPP promotion. The corresponding message type for the IDoc types is ./ROP/PROMOTION

As with the regular prices, the outbound is realized using the data replication framework (DRF). Different outbound implementations and filter
objects are offered for this.

As of CAR 3.0 FP2, the outbound of OPP promotions is supported in the following ways:

The business object-centric outbound as offered starting with CAR 2.0 FP3: The underlying principle of this option is to replicate the
business object structure of the OPP promotion as it is and to make no changes to the message content. The business system assigned
to the corresponding DRF replication model determines the receiver of the created IDocs.
The location-specific outbound: This is optimized for the supply store like receivers not interested in the whole content of the OPP
promotion - in particular with regards to the overall set of location assigned to that promotion. The business units assigned to the OPP
promotion determine the receivers of the created IDocs. Each receiver gets only a view to the OPP promotion, with only "his" location
assigned. In addition, OPP promotions that do not have the status "active" or are no longer relevant for the receiver of the IDoc are
transferred only in a truncated version containing only the header with CHANGE_INDICATOR set to 'D' and the assigned
location/business unit.

Outbound Implementation for Promotion-Centric Outbound Processing

The predefined outbound implementation for OPP promotions is . This implementation uses filter object . The filterROP_PROMO ROP_PROMO
execution time during change analysis is predefined in the data processing and you cannot change it when you configure a replication model. This
means that the filter is always applied after the change analysis. The outbound implementation class is Th /ROP/CL_PROMOTION_OUTBOUND.
is class implements interface . This outbound implementation has two predefined outbound parameters:IF_DRF_OUTBOUND

TASK_SIZE_PROCMSG
This parameter is relevant only if you execute data replication and have set the indicator to . The parameter sets theParallel Processing
maximum number of OPP promotions processed in each parallel package.
PACK_SIZE_BULK
This parameter sets the maximum number of OPP promotions processed for each IDoc. If you want to use the parallel processing, set
this parameter to a smaller value then parameter .TASK_SIZE_PROCMSG

In addition to these a specific OPP outbound parameter is given:

/ROP/GENERIC_ENH_MAP
This parameter enables DRF outbound for promotion to execute a generic mapping. In that case it must be set to "X". For more
information about this feature, see below under chapter "Generic Mapping of Customer Enhancement Segments".

Outbound Implementation for Location-Specific Outbound Procesing

The predefined outbound implementation for OPP promotions is . This implementation uses filter object containingROP_PRO_ST ROP_PRO_ST
two filters: the same filter as for the business object-centric outbound for determining the OPP promotions, and an additional filter for specifying
the target locations of the IDocs to be created. The filter execution time during change analysis is predefined in the data processing and you
cannot change it when you configure a replication model. This means that the filter is always applied after the change analysis. The outbound
implementation class is This class implements interface . The supported /ROP/CL_PROMO_STORE_OUTBOUND. IF_DRF_OUTBOUND
outbound parameters are the same as for the business object-centric outbound.

Filtering the OPP Promotions

Data filtering allows you to replicate specific OPP promotions. The following criteria can be used for filtering:

Field In Static Filter
/ROP/PROMO_DRF_FILTER_STY

In Manual Request Filter
/ROP/PROMO_DRF_MAN_FILTER_STY

Comment

Master data system

Sales organization List of single values only, no
exclusions

Distribution channel List of single values only, no
exclusions

Location hierarchy type

Location hierarchy ID

The implementation of the Promotion Outbound assumes that the combination of outbound implementation and assigned business
system is unique. This is a slightly different assumption than that made by DRF, which expects (and ensures) that the combination of
business object type and business system is unique. This does not make a difference for the standard delivery but it must be kept in
mind if you create your own outbound implementations based on the logic delivered by SAP.

Further differences between these two options are listed in the SAP application help.

Location hierarchy node ID

Location ID

Location type

Promotion ID

External ID of the promotion (the offer
ID)

Promotion type

Start of the validity period Daily granularity only

End of the validity period Daily granularity only

Lead time in days Single value only, no exclusion

Latest change date Daily granularity only

The filter class is for the business object-centric outbound and for the /ROP/CL_PROMOTION_FILTER /ROP/CL_PROMO_STORE_FILTER
location-specific outbound. Both classes implement interface . IF_DRF_FILTER

Controlling the Target Locations

This is relevant only for the location-specific outbound. The following criteria can be used to specify the target locations and therefore the set of
IDocs to be created:

Field In Static Filter
/ROP/PROMO_STO_FILTER_STY

In Manual Request Filter
/ROP/PROMO_STO_MAN_FILTER_STY

Comment

Target location
ID

Target location
type

Flag "Send Also
Deletions"

Only single values "Yes" or "No" allowed. If set to
"Yes", then both target location ID and target location
type must be specified.

The meaning of the "Send Also Deletions" flag is described in the system documentation for data element ./ROP/SEND_DELETIONS

Generic Mapping of Customer Enhancement Segments

When doing simple customer enhancements in the OPP data model by adding additional attributes so called customer includes (SAP CI) might be
implemented. Each OPP table contains such a possibility to add customer specific attributes. The DRF outbound for sending OPP promotions
offers a possibility to map these additional attributes to the corresponding enhancement segment of the IDoc type /ROP/PROMOTION01 or
/ROP/PROMOTION02 respectively in a generic way. Each IDoc segment of the OPP promotion IDoc types includes a correspondning
enhancement segment (see above) which structure is well defined. It contains 3 fields : One for the field group (filled with "SAP_CI" when generic
mapping is active) , a second one for the attribute name (generically filled with customer's attribute name) and a third one for the attribute value
(generically filled with the corresponding attribute value). From customer point of view these enhancement segments can be mapped by
implementing a BAdI or by activating a generic mapping that executes a 1:1 mapping from the additional attribute to the enhancement segment.
The generic mapping feature can be activated by a specific DRF outbound parameter called /ROP/GENERIC_ENH_MAP. (This OPP specific
parameter exists beside of the DRF standard parameters already mentioned above). When creating the DRF outbound replication model for OPP
Promotions this parameter must be maintained and set to "X". Doing this the generic mapping is activated. Nevertheless, a combination of this 1:1
mapping and a more complex mapping process implemnted by a BAdI is possible.

 In the following overview all types are listed that can be used for this generic mapping:

Character Container and Strings
Numerical Characters (n)
Long, Integer, Short, Byte
Packed Number (p)
Float, Decfloat

There are no filter criteria for the external action attributes as these attributes are only subordinated elements of the price rule. From a
business point of view, filtering by these fields is not relevant.

1.
2.

3.

4.

5.

6.

7.
8.

9.

Date
Time

There are following restrictions :

Internal tables
Referneces
Deep structures
RAW
RAWSTRING
Boxed Components
Strings longer than 255 characters

Transfer OPP Promotions Using the Global Object List

The following applies for the business object-centric outbound as well as the location-specific outbound.

During the initial and delta load, the filter criteria and the database table are evaluated to decide which OPP promotions/ROP/DRF_OBJLIST
have been changed and are to be replicated. This list serves the following purposes:

It detects that a formerly relevant and transferred OPP promotion is obsolete. This may happen if an attribute of an OPP promotion (such
as promotion type) is specified in the filter but its new value no longer matches the filter. This must be communicated to the
corresponding receiver.
It supports the filter criterion . This makes sure that an OPP promotion is not transferred unless it is close to its validation date.Lead Time
To keep track of these OPP promotions, it is necessary to observe OPP promotions that are to be valid soon so that they are sent via the
delta load even if there have been no changes. If not, only OPP promotions with unprocessed change pointers are to be considered.

In addition, MDG change pointers are created for the delta load when creating, updating, and deleting an OPP promotion.

The following logic is applied, depending on whether an OPP promotion matches filter criteria and its transfer status in the global object list:

Promotion Matches Complete
Filter Criteria

Promotion Matches Filter Criteria
Without Lead Time

Promotion Does Not Match
Filter Criteria

OPP promotion in global object list in
status TRANSFERRED

1 2 3

OPP promotion in global object list in
status PENDING

4 5 6

OPP promotion not in global object list 7 8 9

Cases 1 to 9 are described in detail below including the system reaction:

A promotion already transferred has changed --> transfer again. No change to the global object list.
A promotion already transferred is classified as not yet transfer relevant. This occurs if the start date of the promotion has been delayed.
The receivers must be informed about this change --> transfer again. No change to the global object list.
A promotion already transferred is not filter relevant any more, in other words it is now obsolete. This may happen if the filter criteria are
defined for an attribute that changed to a value not covered by the filter --> transfer the promotion as "obsolete" (CHANGE_INDICATOR
= 'D'). Remove it from the global object list.
A promotion with a pending transfer has reached its transfer due date. (Transfer due date = valid_from (of the promotion) MINUS "lead
time") --> if not in status "cancelled" send it, set its status in the global object list to TRANSFERRED. Cancelled promotions with a
pending transfer are removed from the global object list.
A promotion with a pending transfer has been changed but has not yet reached its transfer due date --> if it is not in status "cancelled", do
not transfer (yet) but update its transfer due date in the global object list (if valid_from has changed). The promotion will be considered
again in the next delta load. Status stays at PENDING. Cancelled promotions are not added to the global object list.
A promotion originally set as pending (to be transferred later) is not transfer relevant any more --> since it has not yet been transferred,
do not transfer it, and remove it from the global object list.
A promotion not examined before is transfer relevant now --> send it and include it in the global object list in status TRANSFERRED.
A promotion not examined before is considered as transfer relevant later --> do not transfer it yet but include it in the global object list in
status PENDING with the corresponding transfer due date.
A promotion not examined before is not considered as transfer relevant --> ignore.

If the corresponding promotion has the status 'CN' (Cancelled), no insert or update to the global object list takes place - instead the promotion is
removed from the global object list. This happens in the following cases: 1, 2, 4, 5, 7 and 8. The decision matrix for the initial load differs from that
of the delta load in the sense that rows 1 and 2 are not relevant since the global object list is cleared at the beginning of the initial load.

All replication modes (initial, delta, manual) update the global object list.

If no lead time is specified in the static filter, an "infinite" lead time is assumed. This means no promotion is set to pending. In other words, column
2 ("Promotion matches filter criteria without lead time") is not relevant.

The initial load expects that all data is cleared on the receiver side, in other words the receiver must not have any promotions in its database. The

initial load automatically clears the global object list for the corresponding outbound implementation and business systems. For the decision
matrix, the initial load corresponds to the row "promotion not in global object list". For the initial load, only promotions in status 'AC' (active) are
considered.

The delta load and manual request do not filter by the promotion status.

Location-Specific Outbound Processing Using the Global Object List

In the case of the location-specific outbound, the tracking of the replication status on business system level is not sufficient, it must take place on
the level of the individual target location. This status is stored in database table . Each record indicates that the/ROP/LOC_REPL_ST
corresponding OPP promotion is expected to be present as active on target location side. The link between the overall replication status and the
location-specific replication status is established using the field OBJ_GUID in both tables and ./ROP/DRF_OBJLIST /ROP/LOC_REPL_ST

The meaning of the overall replication status slightly changes for the location-specific outbound:

If a record is not present in then the promotion does not exist as active in any target location and hence no record/ROP/DRF_OBJLIST
exists for that promotion. The reverse conclusion is not possible./ROP/LOC_REPL_ST
If a record is in status T(ransferred) in then it was sent as active to at least one target locations. This does not/ROP/DRF_OBJLIST
necessarily mean that this is still the case.
The meaning of the status P(ending) does not change.

View provides an overview of the current replication status for each location./ROP/V_PREPSTAT

Cleanup of the Global Object List

In the case of an unchanged DRF replication model, the global object list is automatically managed by the promotion outbound processing and
kept in a consistent state. However, if a replication model is deleted, a business system for a replication model is removed, its content of the
global object list is not removed automatically. For this purpose, transaction can be used. This can be used for the/ROP/DEL_REPLSTAT
object-centric as well as the location-specific replication status.

Regular Prices

The outbound interface to send regular prices to external systems is also based on IDocs. For this reason, a new IDoc type /ROP/BASE_PRICE0
 has been created with the following structure:1

Obsolete or deleted?
The meaning of the field CHANGE_INDICATOR differs between the object-centric and location-specific outbound of OPP promotions:

Object-centric outbound: If a promotion is logically deleted, it is sent as a regular IDoc record with CHANGE_INDICATOR = 'I'.
Its promotion status is 'CN'. If a promotion is considered as obsolete for a certain receiver, it is sent as a "deletion" IDoc record
with CHANGE_INDICATOR = 'D'. Its promotion status is not changed.
Location-specific outbound: CHANGE_INDICATOR is set to 'D' as soon as the corresponding OPP promotion is no longer to
be evaluated by the receiver. This can be the case if is it not in status "active", if the corresponding target location is not
assigned to the OPP promotion, or if the target location is not contained in the filter for target locations.

Compared to the promotion IDoc, the regular price IDoc is . To prevent redundant data being sent, all items with the same regular pricequite flat
are grouped in several business units (locations) and all locations that are assigned to the corresponding items (items with the same regular

are assigned to the segment. This explains the following structure of the IDoc:price in the grouped locations) /ROP/E1_BASE_PRICE

Segments of segment type under one segment contain all business units (locations) /ROP/E1_BUSINESS_UNIT /ROP/E1_BASE_PRICE with a
 The advantage of this structure is that these locations have to be added only once to the IDoc. This applies to all items underunique item price.

the same segment. Therefore, the group for these locations is called . The price is a child/ROP/E1_BASE_PRICE reusable location group
segment of the item segment. This item segment only contains the item ID and the change indicator.

In addition to the new price IDoc type, there is a new message type ./ROP/BASE_PRICE

Outbound Implementation

The predefined outbound implementation for OPP promotions is . This implementation uses filter object . The filterROP_PRICE ROP_PRICE
execution time during change analysis is predefined in the data processing. You cannot choose when you configure a replication model.
Therefore, the filter time must be set to when you create the replication model. Furthermore, you cannot activate aFilter Before Change Analysis
replication model with a wrong filter time or execute an outbound implementation in transaction . The outbound implementation class isDRFOUT /

. This class implements interface . T is supported forROP/CL_BASE_PRICE_OUTBOUND IF_DRF_OUTBOUND he option for parallel processing
this outbound implementation.

The outbound implementation has the following predefined outbound parameters:

TASK_SIZE_PROCMSG
This parameter is relevant only if you execute the data replication using parallel processing. It sets the maximum number of products that
are processed for each parallel package. It must be greater than or equal to the PACK_SIZE_BULK parameter. This parameter value
does not define the number of regular prices per package.
If this parameter is set to 0, all products are processed in one package. This means that parallel processing is not possible.

PACK_SIZE_BULK
This parameter controls the number of products for which regular prices can be stored in a compressed format at the same time, and sets the
maximum number of products that are processed for each IDoc. If this parameter is not set, the default is 1.
If you increase this value, performance at runtime is improved since fewer IDocs need to be processed.

/ROP/PACK_SIZE_BULK
This parameter sets the maximum number of regular prices that are processed for each IDoc. This is an approximate value because
regular prices are assigned to different IDocs for each group of business unit with items and prices.
If this parameter is set to 0, it is not possible to restrict regular prices and it is only the number of products that determines the IDoc size.

Hint: Both parameters and restrict the size of an IDoc in a way that the IDocs are as small PACK_SIZE_BULK /ROP/PACK_SIZE_BULK
as possible.
Example 1: Assume = 500 and = 100000. The system reads all prices for 500PACK_SIZE_BULK /ROP/PACK_SIZE_BULK
products that are, for example, 500000. The system will create 5 IDocs and each IDoc will have 100000 prices.
Example 2: Assume = 50 and /ROP/PACK_SIZE_BULK = 100000. The system reads all prices for 50 products thatPACK_SIZE_BULK
are, for example, 50000. The system will create 1 IDoc and this IDoc will have 50000 prices.

/ROP/SEQ_READ_SIZE
This parameter sets the maximum number of products for which the regular prices are read in one select statement. In this way, you can
limit memory consumption for products with a large number of regular prices.

If this parameter is set to 0, all products of the corresponding package are read within one call.

/ROP/DAY_OFFSET_PAST

This parameter is only used if the selection of prices lying in the past is restricted with a valid-to date as filter criteria and if the entered
valid-to date is not far enough in the past.
During a delta replication, this parameter defines a time range in days that lies before the date of the last replication run. If the the
entered valid-to date is after the calculated date, the system subtracts this value from the last replication date and uses the calculated
date to construct the select-option for the valid-to date.
During an initial replication, a calculated date (current date minus the time range in days) is defined in this parameter. This date is used
automatically if the value entered in field is after the calculated date.End of Validity Period
In this way, you ensure that regular prices with a valid-to date in the specified past time range are also transferred.

If this parameter is not set, relevant regular prices might not be transferred. See SAP Note 2338714. In this case, the default is set to 30
days.

Data Filtering

Data filtering allows you to replicate specific prices. uses a complex filter. You need to distinguish betweenRegular price outbound filtering
manual request, initial, and delta load. The following table gives an overview of the filter attributes:

Field In Static Filter
/ROP/BASE_PRICE_DRF_FILTER_STY

In Manual Request Filter
/ROP/BASE_PRICE_MAN_FILTER_STY

Comment

Master data system

Sales organization List of single values only, no
exclusions

Distribution channel List of single values only, no
exclusions

Location hierarchy type code Necessary to uniquely identify a
location

Location hierarchy ID
(external)

Location hierarchy node ID
(external)

Location ID (external)

Location type code

Qualifier of merchandise
structure

Only for article hierarchy and
merchandise group

Identifier for merchandise
hierarchy node

Product identifier Only available for manual load

Classification information for
regular price

 Fixed values are provided

All the recommendations for parameter values given above are based on performance measurements. These can be changed
depending on the actual customer-specific runtime behavior and situation.

1.

2.

End of validity period Daily granularity only. Only one
filter criteria for inclusion allowed
with "is later than".

Date of latest change Daily granularity only

It is possible to maintain one or more single values for each criteria. For most of them it is also possible to maintain ranges (except of sales
organization and distribution channel). A combination is also possible for the filter criteria.

The filter criterion is provided only for delta and initial load. This parameter could be used to improve the runtime behaviorEnd of Validity Period
by reducing the data load. You can use this parameter to reduce the number of selected prices. You can also prevent the sending of obsolete
price records. The attribute is mandatory due to performance reasons. The price outboundClassification Information for Regular Price
implementation does not process only regular prices, it can also process other like and . Usuallyprice types Average Purchase Price Delivery Cost
only net or gross sales prices are chosen using this application.

The attribute is available only for the manual load. It has only a daily granularity. Therefore, several select options areDate of Latest Change
possible and will be interpreted as follows:

Equal: internally time interval 00:00:00 to 23:59:59 is applied because externally only a daily granularity is given
Greater Than: internally time is set to 23:59:59
Greater Equals Than: internally time is set to 00:00:00
Lower Than: internally time is set to 00:00:00
Lower Equals Than: internally time is set to 23:59:59
Between: internally for start date time 00:00:00 is used and for end date 23:59:59

The filter class is This class implements interface . /ROP/CL_BASE_PRICE_FILTER. IF_DRF_FILTER

The defined filter time can be configured when you create the replication model. However, you must set the filter time to Filter Before Change
. It is not possible to activate the DRF replication model with a filter criterion other than this one. So there is a preselection of the regularAnalysis

price objects before change analysis is started. This is done due to performance issues.

Handling of the Expected Data Volume

As we expect mass data in the price outbound, SAP implements a special logic for filtering and processing the price data.

To avoid memory issues for mass data, the data filtering does not provide all relevant item price attributes to be processed. Instead, the filter
provides the following information for the outbound implementation based on the selection criteria:

All product IDs (GUIDS)
All locations (GUIDS) if there is a restriction by the selection screen; if there is no restriction, no locations are passed.
All selection criteria as provided by the selection screen

This data is passed as "relevant objects" (import parameter) to the outbound implementation. There is one entry for CT_RELEVANT_OBJECTS
each product ID in this internal table and the selected locations and the selection criteria are given in the first entry. The tables and LOCATIONS

 are empty in all subsequent entries. The internal table has the structure .SELECT_OPTIONS /ROP/BASE_PRICE_PACKAGE_STY

If you start the outbound processing in manual or initial mode, the internal table contains all the products provided byCT_RELEVANT_OBJECTS
the filter. This information is passed to the major outbound process (class). Due to performance reasons,/ROP/CL_BASE_PRICE_OUTBOUND
the option for parallel processing can be used. During parallel processing the table contains the number of productsCT_RELEVANT_OBJECTS
specified with parameter for each call of the outbound implementation. The construction of these parallel packages isTASK_SIZE_PROCMSG
carried out in .IF_DRF_OUTBOUND~BUILD_PARALLEL_PACKAGE

The processing of takes place in the outbound implementation in the following main steps:CT_RELEVANT_OBJECTS

DRF method IF_DRF_OUTBOUND~READ_COMPLETE_DATA
To avoid memory problems, the prices are read in this method. Instead the data in is stored only in the not CT_RELEVANT_OBJETCS
instance variables , and .MT_PRODUCTS MT_LOCATIONS MT_SELECT_OPTIONS

Method IF_DRF_OUTBOUND~MAP_DATA2MESSAGE
This method is called from the DRF framework for each entry in . CT_RELEVANT_OBJECTS

The entries in (all products that were in before) are divided into logical packages with theMT_PRODUCTS CT_RELEVANT_OBJECTS
size given in parameter . When method is called for the first productPACK_SIZE_BULK IF_DRF_OUTBOUND~MAP_DATA2MESSAGE
of one of these logical packages, all prices are read for all products of this package. The prices for all products of this logical package are
not read within one select statement because this could generate memory issues. Instead, only the number of products defined in
parameter are read in one select statement. The result of the select statement is compressed before the next/ROP/SEQ_READ_SIZE
select statement is performed. One part of the compressed result is stored in the table and the second part, theLT_BASE_PRICE
reusable location groups, are collected by class . /ROP/CL_LOCATION_GROUP_HANDLER Using these two data sources, the instance
table is created that contains all pricing information.MT_BASE_PRICE_IDOC

2.

3.

Even though the DRF framework calls this method sequentially for each product in , prices are read for allCT_RELEVANT_OBJECTS
products of the package when the first product is processed. If an error occurred during reading of the prices for a product, the exception

 is only raised when method is called for the entry inCX_DRF_PROCESS_MESSAGES IF_DRF_OUTBOUND~MAP_DATA2MESSAGE
 containing that erroneous product.CT_RELEVANT_OBJECTS

Method IF_DRF_OUTBOUND~SEND_MESSAGE
The data is mapped in this method from into the IDoc structure, and one or several IDocs are sent. The data isMT_BASE_PRICE_IDOC
split into several IDocs according to the parameter . /ROP/PACK_SIZE_BULK

If performing the delta load, an additional DRF interface method is called. The analysis of changes isANALYZE_CHANGES_BY_OTHERS
based on the time stamp provided in table . This is to select all relevant products and LAST_SALES_PRICE_CHANGE /DMF/PRODLOC
locations concerning all changed regular prices. The interface method also passes the relevant data to the methods above to map and build up
the IDoc segments. Since the whole delta process is not based on change pointers, it is not possible to apply the manual time selection Limit

.Changes Using Interval

CARAB 2.0 FP02: Technical Guide Promotion Pricing Service

Promotion Pricing Service

This chapter describes the promotion pricing service (PPS), in particular its concepts and its structure. The figure below shows the inner structure
of the PPS in more detail and the data flow of a price calculation request:

The PPS is an application that exposes an API based on the ARTS Pricing Service Interface 1.0. The structure of the requests is defined in the
client API layer. The requests are forwarded to the client API implementation layer where the regular prices are determined using the data access
API. Next, the request is forwarded to the promotion calculation engine that calculates discounts, and so on. The data access API is used again to
read data from the persistence. The implementation based on JPA) calls the underlying database in which the regularJava Persistence API (
prices and OPP promotions are stored. PPS core functions are available throughout the application. Spring framework is used extensively to
assemble the different parts and configure the PPS.

Open Source Dependencies of the PPS

The PPS uses various open-source libraries. For more information about these libraries, see the corresponding documentation listed below:

Spring framework for dependency injection, transaction management, cache abstraction, and so on
EclipseLink as a JPA implementation
FasterXML Jackson for unmarshaling/marshaling HTTP requests (such as IDoc inbound processing)
Woodstox as a Stax XML API implementation
SLF4J as a logging facade
Google Guava as a general purpose toolkit and, in particular, as a cache implementation (for named queries)
Various parts of Apache Commons as a general purpose toolkit:

commons-lang
commons-lang3
commons-logging
commons-collections3

Joda Time an alternative for Java date and time classesas
....

The following table provides an overview of the open-source libraries used for each PPS release. These are either contained in the shipment itself
or are expected on the classpath to be provided by the hosting application (such as SAP Hybris Commerce). Additional IPR libraries are required
for IDoc inbound processing.

PPS Release Commonly Used Libraries Additional IPR Libraries Comment

1.0 aopalliance-1.0.jar
commons-collections-3.2.1.jar
commons-lang-2.6.jar
commons-lang3-3.4.jar
commons-logging-1.2.jar
guava-18.0.jar
jackson-annotations-2.6.0.jar
jackson-core-2.6.4.jar
jackson-databind-2.6.4.jar
jackson-dataformat-xml-2.6.4.jar
jackson-module-jaxb-annotations-2.6.4.jar
javax.json-1.0.4.jar
javax.persistence-2.1.0.jar

.rs-api-2.0.1.jarjavax.ws
jcl-over-slf4j-1.7.13.jar
joda-time-2.9.1.jar
jul-to-slf4j-1.7.13.jar
log4j-api-2.3.jar
org.eclipse.persistence.antlr-2.6.1.jar
org.eclipse.persistence.asm-2.6.1.jar
org.eclipse.persistence.core-2.6.1.jar
org.eclipse.persistence.jpa-2.6.1.jar
org.eclipse.persistence.jpa.jpql-2.6.1.jar
slf4j-api-1.7.13.jar
spring-aop-4.1.9.RELEASE.jar
spring-beans-4.1.9.RELEASE.jar
spring-context-4.1.9.RELEASE.jar
spring-context-support-4.1.9.RELEASE.jar
spring-core-4.1.9.RELEASE.jar
spring-expression-4.1.9.RELEASE.jar
spring-jdbc-4.1.9.RELEASE.jar
spring-orm-4.1.9.RELEASE.jar
spring-tx-4.1.9.RELEASE.jar
spring-web-4.1.9.RELEASE.jar
spring-webmvc-4.1.9.RELEASE.jar
stax-api-1.0-2.jar
stax2-api-3.1.4.jar
woodstox-core-asl-4.4.1.jar

spring-integration-core-4.1.2.RELEASE.jar
spring-integration-http-4.1.2.RELEASE.jar
spring-integration-xml-4.1.2.RELEASE.jar
spring-messaging-4.1.4.RELEASE.jar
spring-xml-2.2.0.RELEASE.jar

Contained in IPR 2.1

http://javax.ws

1.1 aopalliance-1.0.jar
commons-collections-3.2.2.jar
commons-lang-2.6.jar
commons-lang3-3.4.jar
commons-logging-1.2.jar
guava-18.0.jar
jackson-annotations-2.6.0.jar
jackson-core-2.6.4.jar
jackson-databind-2.6.4.jar
jackson-dataformat-xml-2.6.4.jar
jackson-module-jaxb-annotations-2.6.4.jar
javax.json-1.0.4.jar
javax.persistence-2.1.0.jar

.rs-api-2.0.1.jarjavax.ws
jcl-over-slf4j-1.7.13.jar
joda-time-2.9.1.jar
jul-to-slf4j-1.7.13.jar
org.eclipse.persistence.antlr-2.6.1.jar
org.eclipse.persistence.asm-2.6.1.jar
org.eclipse.persistence.core-2.6.1.jar
org.eclipse.persistence.jpa-2.6.1.jar
org.eclipse.persistence.jpa.jpql-2.6.1.jar
spring-aop-4.2.7.RELEASE.jar
spring-beans-4.2.7.RELEASE.jar
spring-context-4.2.7.RELEASE.jar
spring-context-support-4.2.7.RELEASE.jar
spring-core-4.2.7.RELEASE.jar
spring-expression-4.2.7.RELEASE.jar
spring-jdbc-4.2.7.RELEASE.jar
spring-orm-4.2.7.RELEASE.jar
spring-oxm-4.2.7.RELEASE.jar
spring-tx-4.2.7.RELEASE.jar
spring-web-4.2.7.RELEASE.jar
spring-webmvc-4.2.7.RELEASE.jar
stax-api-1.0-2.jar
stax2-api-3.1.4.jar
woodstox-core-asl-4.4.1.jar

spring-integration-core-4.2.8.RELEASE.jar
spring-integration-http-4.2.8.RELEASE.jar
spring-integration-xml-4.2.8.RELEASE.jar
spring-messaging-4.2.6.RELEASE.jar
spring-xml-2.2.2.RELEASE.jar

Contained in IPR 2.2, CAR 3.0 FP0

1.2 commons-collections-3.2.1.jar
commons-lang-2.6.jar
commons-lang3-3.4.jar
commons-logging-1.2.jar
guava-18.0.jar
jackson-annotations-2.6.0.jar
jackson-core-2.6.4.jar
jackson-databind-2.6.4.jar
jackson-dataformat-xml-2.6.4.jar
jackson-module-jaxb-annotations-2.6.4.jar
javax.json-1.0.4.jar
javax.persistence-2.1.0.jar

.rs-api-2.0.1.jarjavax.ws
jcl-over-slf4j-1.7.13.jar
joda-time-2.9.1.jar
jul-to-slf4j-1.7.13.jar
log4j-api-2.3.jar
org.eclipse.persistence.antlr-2.6.1.jar
org.eclipse.persistence.asm-2.6.1.jar
org.eclipse.persistence.core-2.6.1.jar
org.eclipse.persistence.jpa-2.6.1.jar
org.eclipse.persistence.jpa.jpql-2.6.1.jar
slf4j-api-1.7.13.jar
spring-aop-4.3.3.RELEASE.jar
spring-beans-4.3.3.RELEASE.jar
spring-context-4.3.3.RELEASE.jar
spring-context-support-4.3.3.RELEASE.jar
spring-core-4.3.3.RELEASE.jar
spring-expression-4.3.3.RELEASE.jar
spring-jdbc-4.3.3.RELEASE.jar
spring-orm-4.3.3.RELEASE.jar
spring-oxm-4.3.3.RELEASE.jar
spring-tx-4.3.3.RELEASE.jar
spring-web-4.3.3.RELEASE.jar
spring-webmvc-4.3.3.RELEASE.jar
stax-api-1.0-2.jar
stax2-api-3.1.4.jar
woodstox-core-asl-4.4.1.jar

spring-integration-core-4.3.2.RELEASE.jar
spring-integration-http-4.3.2.RELEASE.jar
spring-integration-xml-4.3.2.RELEASE.jar
spring-messaging-4.3.3.RELEASE.jar
spring-xml-2.3.0.RELEASE.jar

Contained in IPR 2.3

http://javax.ws
http://javax.ws

2.0 commons-collections-3.2.2.jar
commons-lang-2.6.jar
commons-lang3-3.5.jar
commons-logging-1.2.jar
guava-21.0.jar
jackson-annotations-2.6.0.jar
jackson-core-2.6.7.jar
jackson-databind-2.6.7.jar
jackson-dataformat-xml-2.6.7.jar
jackson-jaxrs-base-2.6.7.jar
jackson-jaxrs-json-provider-2.6.7.jar
jackson-module-jaxb-annotations-2.6.7.jar
javax.json-1.0.4.jar
javax.persistence-2.1.0.jar

.rs-api-2.0.1.jarjavax.ws
jcl-over-slf4j-1.7.21.jar
joda-time-2.9.1.jar
jperf-1.0.3.jar
jul-to-slf4j-1.7.21.jar
org.eclipse.persistence.antlr-2.6.4.jar
org.eclipse.persistence.asm-2.6.4.jar
org.eclipse.persistence.core-2.6.4.jar
org.eclipse.persistence.jpa-2.6.4.jar
org.eclipse.persistence.jpa.jpql-2.6.4.jar
spring-aop-4.3.3.RELEASE.jar
spring-beans-4.3.3.RELEASE.jar
spring-context-4.3.3.RELEASE.jar
spring-context-support-4.3.3.RELEASE.jar
spring-core-4.3.3.RELEASE.jar
spring-expression-4.3.3.RELEASE.jar
spring-jdbc-4.3.3.RELEASE.jar
spring-orm-4.3.3.RELEASE.jar
spring-oxm-4.3.3.RELEASE.jar
spring-tx-4.3.3.RELEASE.jar
spring-web-4.3.3.RELEASE.jar
spring-webmvc-4.3.3.RELEASE.jar
stax-api-1.0-2.jar
stax2-api-3.1.4.jar
woodstox-core-asl-4.4.1.jar

spring-integration-core-4.3.2.RELEASE.jar
spring-integration-http-4.3.2.RELEASE.jar
spring-integration-xml-4.3.2.RELEASE.jar
spring-messaging-4.3.3.RELEASE.jar
spring-xml-2.3.0.RELEASE.jar

Contained in IPR 2.4, CAR 3.0 FP1

http://javax.ws

1.

3.0 commons-collections-3.2.2.jar
commons-lang-2.6.jar
commons-lang3-3.5.jar
commons-logging-1.2.jar
guava-21.0.jar
jackson-annotations-2.8.0.jar
jackson-core-2.8.9.jar
jackson-databind-2.8.9.jar
jackson-dataformat-xml-2.8.9.jar
jackson-jaxrs-base-2.8.9.jar
jackson-jaxrs-json-provider-2.8.9.jar
jackson-module-jaxb-annotations-2.8.9.jar
javax.json-1.0.4.jar
javax.persistence-2.1.1.jar

.rs-api-2.0.1.jarjavax.ws
jcl-over-slf4j-1.7.21.jar
joda-time-2.9.1.jar
jperf-1.0.3.jar
jul-to-slf4j-1.7.21.jar
org.eclipse.persistence.antlr-2.6.4.jar
org.eclipse.persistence.asm-2.6.4.jar
org.eclipse.persistence.core-2.6.4.jar
org.eclipse.persistence.jpa-2.6.4.jar
org.eclipse.persistence.jpa.jpql-2.6.4.jar
spring-aop-4.3.3.RELEASE.jar
spring-beans-4.3.3.RELEASE.jar
spring-context-4.3.3.RELEASE.jar
spring-context-support-4.3.3.RELEASE.jar
spring-core-4.3.3.RELEASE.jar
spring-expression-4.3.3.RELEASE.jar
spring-jdbc-4.3.3.RELEASE.jar
spring-orm-4.3.3.RELEASE.jar
spring-oxm-4.3.3.RELEASE.jar
spring-plugin-core-1.2.0.RELEASE.jar
spring-plugin-metadata-1.2.0.RELEASE.jar
spring-tx-4.3.3.RELEASE.jar
spring-web-4.3.3.RELEASE.jar
spring-webmvc-4.3.3.RELEASE.jar
stax-api-1.0-2.jar
stax2-api-3.1.4.jar
woodstox-core-asl-4.4.1.jar

spring-integration-core-4.3.2.RELEASE.jar
spring-integration-http-4.3.2.RELEASE.jar
spring-integration-xml-4.3.2.RELEASE.jar
spring-messaging-4.3.3.RELEASE.jar
spring-xml-2.3.0.RELEASE.jar

Contained in CAR 3.0 FP2

PPS Module Concept

The business logic of the PPS is implemented by Spring beans. To support extensibility, the PPS comes with its own lightweight module concept
that uses Spring concepts. A PPS module is just a set of Spring beans, which are added to the application context during its initialization. From a
business perspective, a PPS module should contain Spring beans that are used to implement a - potentially large - functional block.

A PPS module, such as M1, can have dependencies to other PPS modules, such as M2 and M3. In this case, the beans of module M1 are added
to the Spring application context after the beans of modules M2 and M3. In this way, the M1 beans could hide or redefine the M2 or M3 beans. If
you want to enhance business logic in a customer project, the corresponding Spring bean (in module sapABC, for example) can be hidden by a
customer-specific bean. This can be done without modification of the standard shipment by adding a further module (custXYZ, for example) that
depends on the module sapABC. A new bean with the same bean alias (see below) can be created in this module.

A PPS module is defined as follows.

Create the file on the PPS classpath. The following example shows theMETA-INF/<moduleName>-ppe-module-metadata.xml
structure of this file type:

http://javax.ws

1.

2.
3.

Module declaration

<module xmlns="http://www.sap.com/ppengine/core/module"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.sap.com/ppengine/core/module
ppengine-module-0.2.xsd">
 <name name="client-impl" vendor="sap" />
 <dependencies>
 <module name="dataaccess-interface" vendor="sap"/>
 <module name="client-interface" vendor="sap"/>
 <module name="core" vendor="sap"/>
 </dependencies>
</module>

The combination of the name with the vendor name is the PPS module name. This module depends on three furtherclient-impl
modules: , client-interface, and , all with the vendor "sap". The purpose of the vendor attribute is to avoid namecore dataaccess-interface
collisions. Modules delivered by SAP have the vendor "sap".
To enable schema validation, place the file ppengine-module-0.2.xsd in the same folder as the module metadata file.
Create an XML file with the name in the same folder as the metadata file. This(META-INF/)<moduleName>-ppe-module-spring.xml
contains the Spring beans. Below is an excerpt from the SAP bean definitions:

3.

Spring beans of a module

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-4.1.xsd
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.1.xsd
 http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-4.1.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-4.1.xsd">

 <context:property-placeholder

location="classpath:/META-INF/client-impl-ppe-module.properties"
 ignore-unresolvable="true" />

 <!-- Validator for a price calculation request -->
 <alias name="sapDefaultCalculateRequestValidator"
alias="sapCalculateRequestValidator" />
 <bean id="sapDefaultCalculateRequestValidator"
class="com.sap.ppengine.client.impl.RequestValidatorImpl">
 <property name="objectFactory" ref="sapClientApiDtoFactory" />
 </bean>

 <!-- Further beans below -->

</beans>

When the PPS is started, the PPS classpath is scanned for all modules. All the modules that are found are loaded automatically in the correct
order.

A third, optional, part of a PPS module is a Java .properties file that holds default values for Spring properties used during the definition of the
Spring beans. By convention, this is located in the same folder as the metadata and resource file of the module and has the name META-INF/<m

. It is loaded via the tag in the corresponding resource file. DefaultsoduleName>-ppe-module.properties <context:property-placeholder>
stored in this file can either be changed using one dedicated file on the Java classpath or by setting Java environmentppe-local.properties
properties.

The PPS offers the following modules (dependencies are represented by arrows):

It is not possible to redefine the property values set in the .properties file of one module within the .properties file of another module.

In addition, if modules are added to the PPS application context in several steps, it is not possible to access the configuration properties
of loaded modules during the addition of further modules. For example, if the PPS module idocinbound is added to a PPS application
context that is already being used (as is the case for a local PPS within SAP Hybris Commerce), only the configuration properties of the
module idocinbound may be used.

Defining and Overriding Beans

By default, a Spring bean offered in the standard shipment is defined and used as follows:

The modules and are part of SAP Hybris Commerce, integration package for SAP for Retail.dataaccess-localdb idocinbound

The modules and are part of the central promotion pricing service, which is part of SAP Customer Activityrestapi dataaccess-ddf
Repository.

Specifying ID and alias of a Spring bean

<alias name="sapDefaultClientApiDtoFactory" alias="sapClientApiDtoFactory"
/>
<bean id="sapDefaultClientApiDtoFactory"
class="com.sap.ppengine.client.dto.ObjectFactory" />

<alias name="sapDefaultClientApiHelper" alias="sapClientApiHelper" />
<bean name="sapDefaultClientApiHelper"
class="com.sap.ppengine.client.util.RequestHelperImpl">
 <property name="objectFactory" ref="sapClientApiDtoFactory" />
</bean>

Each bean has a unique ID (here specified in the name attribute). If the bean is to be enhanced using subclassing within your project, the ID of
the original bean must be specified in the parent attribute of your bean. In addition, if the reference to the defined bean is to be injected into
another bean, it is not usually necessary to specify the name/ID; instead, the bean with the corresponding "purpose" should be taken (be it
delivered by SAP or created at the customer side). The "purpose" of a bean is represented by its Spring bean "alias". The majority of SAP beans
have an additional alias. References to other beans usually make use of the bean alias. In the above example, the bean
sapDefaultClientApiHelper uses the bean with the alias sapClientApiDtoFactory. In the standard shipment, this alias is provided by the bean
sapDefaultClientApiDtoFactory. If this bean is to be replaced by a customer-specific bean, this could appear as follows:

Subclassing a bean

<!-- Hide old alias -->
<alias name="myClientApiHelper" alias="sapClientApiHelper" />
<!-- Define new bean subclassing existing one -->
<bean name="myClientApiHelper" parent="sapDefaultClientApiHelper"
class="com.mycompany.MyHelper" />

Note that technically it is also possible to completely hide a bean by choosing the same name (and not only the same alias). However, this is not
usually recommended as this approach can lead to inconsistent class hierarchies if the parent attribute is used elsewhere in the bean definition.

The ID and alias of a bean provided by SAP always starts with "sap". The only exceptions are beans with a "magic name" expected by
Spring, such as "cacheManager".

Subclassing SAP beans offers a very flexible way to extend the application logic. However, it cannot be guaranteed that the SAP
classes will be changed in a compatible way . In other words, a method signature may change over time, making theonly over time
subclass syntactically incorrect. The probability that an SAP object will be changed in an incompatible way increases from first to last
entry in the following list:

Spring bean ID/alias
Java interface (methods may, however, be added)
Signature of public method of a Java class
Signature of protected method of a Java class
Protected attribute of a Java class

When you redefine a Spring bean, SAP recommends the following:

Let your custom class inherit from the SAP class. This makes sure that interface methods added by SAP are implemented.
Define the Spring bean of the SAP class as the parent bean to your replacement Spring bean. This makes sure that additional
bean properties added by SAP are set.
Set the alias of your Spring bean to the alias of the parent (SAP) bean.
If easily possible, reimplement the corresponding interface method(s).
Otherwise (code duplication needed), consider redefining protected methods as well.

PPS Context

The PPS context () offers a global container for arbitrary information that must be accessible at very differentcom.sap.ppengine.core.Context
places of the application/call stack. The main use case for the PPS context is to store information that does not change for most customer
installations during the time in which a price calculation request is processed. However, it can also be used as temporary global storage. Putting

 this information into the container leads to simpler methods with less parameters. Therefore, it is similar to the container offered by the javax.serv
 interface, but let.ServletContext can also be used outside of a servlet environment.

.The PPS context is provided by a separate class implementing com.sap.ppengine.core.ContextProvider An implementation of the PPS
context provider () is offered that holds separate contexts for each thread. Thiscom.sap.ppengine.core.impl.ThreadLocalContextProviderImpl
allows the easy of further PPS context initializers using a dedicated interface . The PPS context is used to store plug-in ContextInitializer
and modify parameters within a request scope, assuming that context parameters are written and read within the same thread.

The following information is usually constant in the standard shipment:

The SAP client (parameter)SAP_CLIENT
The logical system for which external IDs are defined (parameter)SAP_LOGSYS
The configuration of the promotion calculation engine (parameter)SAP_CALCENGINE_CONFIG

In addition, the following parameters are stored in the PPS context:

The business unit type
The requested language if provided

In addition to the parameters mentioned above, it is possible to store further data in the context.

The class contains all the context parameters used in the standard shipment.com.sap.ppengine.core.ContextParameters

For more information, see the documentation for the PPS Module Core in this guide.

PPS Module api

As of CAR 3.0 FP2, this module provides the public API for extensions of the PPS.

Overview

As described in the chapter that explains the PPS extensibility concept, the PPS provides stable extension points via Java plugin interfaces to be
implemented on the customer side. The PPS module api provides these interfaces as well as the registry of all implementations found at runtime.
PPS Java types referenced by the plugin interfaces (except for types from the PPS module dataaccess-interface and client-interface) are
contained in this module as well - some (such as the interface for the PPS context) were moved from other modules into this module as well.

The annotations indicating the degree of stability of a Java object are also located here:

@ExtensionStable - indicates that the annotated type can be extended safely on the customer side
@ConsumerStable- indicates that the annotated type can be called safely on the customer side
@PlannedIncompatibleChange- indicates if an incompatible change is planned for the annotated type; will be used for types annotated
with or @ExtensionStable @ConsumerStable

Beans

ID Alias Description

sapDefaultContextEnrichmentPluginRegistry sapContextEnrichmentPluginRegistry Plugin registry of the ContextEn
 interface richment

Context parameters that are provided by SAP have the prefix . SAP_

Starting with PPS 2.0, context parameters that are taken from the incoming request and do not need defaulting may also bedirectly
offered as properties accessed using setter and getter methods. As an example, the requested language has been migrated from the
parameter to a regular attribute of the context.SAP_LANGUAGE

sapDefaultRequestAdjustmentPluginRegistry sapRequestAdjustmentPluginRegistry Plugin registry of the RequestA
 interfacedjustment

sapDefaultResponseAdjustmentPluginRegistry sapResponseAdjustmentPluginRegistry Plugin registry of the Response
 interfaceAdjustment

sapDefaultRequestValidationPluginRegistry sapRequestValidationPluginRegistry Plugin registry of the RequestV
 interfacealidation

sapDefaultQueryAdjustmentPluginRegistry sapQueryAdjustmentPluginRegistry Plugin registry of the QueryAdj
 interfaceustment

sapDefaultCustomEligibilityPluginRegistry sapCustomEligibilityPluginRegistry Plugin registry of the CustomEli
 interfacegibility

sapDefaultCustomPriceRulePluginRegistry sapCustomPriceRulePluginRegistry Plugin registry of the CustomPr
 interfaceiceRule

sapDefaultPromotionServiceInitializationPluginRegistry sapPromotionServiceInitializationPluginRegistry Plugin registry of the Promotion
 interfaceServiceInitialization

sapDefaultFeatureCheckPluginRegistry sapFeatureCheckPluginRegistry Plugin registry of the FeatureCh
 interfaceeck

sapDefaultIDocInboundProcessingPluginRegistry sapIDocInboundProcessingPluginRegistry Plugin registry of the IdocInb
 interfaceoundProcessing

sapDefaultPluginAccess sapPluginAccess Provides access to the PPS
plugin interfaces via the
corresponding plugin registries;
PCE plugins are not accessible

sapDefaultNonUniqueBasePriceHandlingPluginRegistry sapNonUniqueBasePriceHandlingPluginRegistry Plugin registry of the NonUniqu
 interfaceeBasePriceHandling

Required Beans

This list contains only the additional beans to be provided if all dependencies of this module are resolved.

ID/Alias Comment

Configuration Properties

Name Description Default
Value

Comment

sap.client-impl.nonUniqueBasePriceHandling.strategy This property refers to the interface. ItNonUniqueBasePriceHandling
enables you to switch the activated strategy based on the implemented
interface method. By implementing these methods, you can implement a
specific logic for processing non-unique regular prices. This Plugin is always
called if a non-unique regular price is found. In this way, a specific logic can
be implemented to process this situation.

SAP00 see SAP
Note
2627591

Dependencies

This module depends on the following PPS modules:

dataaccess-interface
client-interface

PPS Module client-interface

This module provides the API of the PPS exposed to its clients. It contains the data transfer objects (DTOs) and the interface to trigger a price

1.

2.
3.

a.
b.

c.

calculation.

Overview

This module is the outermost facade of the PPS. A client requesting a price calculation must be aware of the artifacts contained in this module. It
does not contain any logic besides simple helpers to facilitate the creation of a price calculation request and evaluation of the corresponding
response. If you want to call a central PPS, place at least this JAR onto the classpath of your client application.

For more information about the client API, see the documentation for the OPP client API:

Information about a central scenario is available on SAP Help Portal at https://help.sap.com/viewer/p/CARAB > > <Version> Developmen
 > t Client API for Omnichannel Promotion Pricing

Information about a scenario with SAP Hybris Commerce is available on SAP Help Portal at https://help.sap.com/viewer/p/IPR > <Versio
 > > n> Development Client API for Omnichannel Promotion Pricing

Extensibility via Elementsany

As also described in the client API documentation, the request structure for the price calculation as well as the response structure offer extension
points via elements having no fixed structure. These allow arbitrary additional information to be transferred between the PPS and its client. Toany
ensure that these elements can be used in the same way for local and central deployments of the PPS, the way in which extensionany
information is stored must be clearly defined.

The internal storage of an any element is a List<Object> (the only exception is the any element in LineItemChoiceDomainSpecific.java where it is
only a simple object (Object)), as can be seen in the DTO for the ARTSHeader:

any-element in the ARTS Header DTO

public class ARTSCommonHeaderType {
 // ...
 @XmlAnyElement(lax = true)
 protected List<Object> any;
 // ...
}

What is the internal representation of the any elements and their content?

Each any element in an XML message or entry in the corresponding array of a JSON message corresponds to one entry in the List<Obj
.ect>

Each entry in the List, in other words the content of the any elements, is always a .Map<String,Object>
The value part of the Map entry can have the following types:

If the value corresponds to an elementary element in the XML/JSON message, this is a .String
If the value corresponds to a structured element in the XML/JSON message, this is a . The data definitionMap<String,Object>
of the value part is recursively defined applying rule 3.
If the value corresponds to an XML list/JSON array, this is a . The element type of the list is recursively definedList<Object>
applying rule 3.

This is illustrated in the following example. The following is an excerpt of a request, showing only the ARTS header:

The DTOs of the client interface are generated and use subclasses. SAP does not guarantee that the class hierarchy will remain stable
over time. Therefore, we strongly recommended that you do create subclasses of these DTOs on the customer side in casenot
additional information is transported. Instead, use the predefined extension points via elements realized as a List<Object>.any

The internal storage documented here is determined by the use of FasterXML Jackson. It uses the same XML (where elements areany
effectively unwrapped lists) and JSON-based messages (where elements are expected to be arrays) and should therefore also beany
used for local deployments where Jackson is not used.

https://help.sap.com/viewer/p/CARAB
https://help.sap.com/viewer/p/IPR

ARTS Header with any-elements - XML

<PriceCalculate xmlns="http://www.sap.com/IXRetail/namespace/"
InternalMajorVersion="1" InternalMinorVersion="0">
<ARTSHeader ActionCode="Calculate" MessageType="Request">
 <MessageID>9a89f2edfd1e413ea147e334b9c2ed4b</MessageID>
 <DateTime>2250-01-13T04:48:30.427-05:00</DateTime>
 <BusinessUnit TypeCode="RetailStore">FC01</BusinessUnit>
 <any>Hello</any>
 <any>
 <foo>bar</foo>
 </any>
 <any>
 <baz>17</baz>
 <ext1>true</ext1>
 </any>
 <any>
 <top>
 <field1>value1</field1>
 <myNode>
 <field2>value2</field2>
 </myNode>
 </top>
 </any>
 <any>
 <ele>one</ele>
 <ele>two</ele>
 <ele>
 <a>b
 </ele>
 </any>
</ARTSHeader>

This is equivalent to the following JSON format:

ARTS Header with any-elements - JSON

{
 "ARTSHeader":
 {
 "MessageID":
 {
 "value":"9a89f2edfd1e413ea147e334b9c2ed4b"
 },
 "DateTime":
 [{
 "value":"2250-01-13T04:48:30.427-05:00"
 }],
 "BusinessUnit":
 [{
 "value":"FC01",
 "TypeCode":"RetailStore"
 }],
 "ActionCode":"Calculate",
 "MessageType":"Request",
 "any":[
 "Hello",
 { "foo":"bar"},
 {"baz":"17", "ext1" : "true"},
 {"top": {
 "field1":"value1",
 "mynode": { "field2":"value2"}}},
 {"ele" : ["one","two",{"a" : "b"}]}
]
 },

This leads to the following internal representation:

The attribute of the DTO is a list of length 5.any ARTSCommonHeaderType
List entry 0 is "Hello"
List entry 1 is a Map with size 1.

This contains the entry
"foo" = "bar"

List entry 2 is a Map with size 2.
This contains the entries

"baz" = "17"
"ext1" = "true"

List entry 3 is a Map with size 1.
This contains the entry

"top" = <A Map with size 2>.
This contains the entries

"field1" = "value1"
"myNode" = <A Map with size 1>

This contains the entry
"field2" = "value2"

List entry 4 is a Map with size 1.
This contains the entry

"ele" = <A List with size 3>
This contains the entries

"one"
"two"
<A Map with size 1>

This contains the entry
"a" = "b"

If you extend the PPS, you can base your coding on these rules when you process incoming requests. If you want to enhance the response to the
client, you have to fill the attributes of the DTOs accordingly. Vice versa, if you extend a client of the PPS, you have to fill the DTOs of theany
request sent to the PPS accordingly but you can rely on these rules when you process the response.

Beans

ID Alias Description

sapDefaultClientApiDtoFactory sapClientApiDtoFactory Factory for creating the DTOs of the client API

sapDefaultClientApiHelper sapClientApiHelper Helper class to create a request skeleton, and so on

Configuration Properties

None

Dependencies

None

PPS Module core

This module provides basic functions that are used in the PPS.

Overview

The core module offers the following functions:

PPS application context supporting PPS modules
PPS context
Debug/profiling support

As described in the overview, the PPS offers a lightweight module concept based on Spring application contexts that support modification-free
extensibility. The classes enabling modularization via a PPS-specific application context are located here.

PPS Application Context

The following figure shows the most important classes that contribute to the PPS application contexts and how they interact:

ModuleEnabledXmlApplicationContext is the central class. This is a special Spring that supports aAbstractXmlApplicationContext
distributed definition of Spring beans in separate files without a central file that explicitly includes the other resource files. Each file corresponds to

a PPS module that has its metadata (name, dependencies to other modules) defined in a separate metadata file. By evaluating the defined
dependencies, you can also control the order in which these beans are added to the Spring application context. The order in which Spring beans
are added to an application context defines the beans that replace formerly added beans, allowing modification-free extensibility. The Spring
application context that is represented by this class is also called the main PPS application context.

ModuleLoaderHelper locates the Spring bean definitions and module metadata, evaluates module dependencies, sorts the Spring bean
definitions and modules according to their dependencies, and adds the Spring beans according to this sort sequence to the Spring application
context. This class scans the classpath for the following file pairs located in the same directory :

Spring bean definitions as an XML file following the resource pattern classpath*:META-INF/**/*-ppe-module-spring.xml
Module metadata definitions as an XML file following the resource pattern classpath*:META-INF/**/*-ppe-module-metadata.xml

The following two options are available for the creation of the main PPS application context:

Using the class . This class does the following:ApplicationContextProviderImpl
It offers a method that allows each caller to access the main PPS application context. To do so, it calls getContext()
internally the constructor of the . ModuleEnabledXmlApplicationContext
This option is sufficient if no external initialization of the main PPS application is required because, for example, all required
Spring configuration properties are set.
It internally holds a reference to this application context once the main PPS application context has been created. In this way,
subsequent calls of the method are very fast and the same application context is returned. There may be only onegetContext()
instance of a main PPS application context per classloader.

Using the class , it is easier to control the creation of the ApplicationContextCreatingBeanImpl ModuleEnabledXmlApplicationConte
. This class implements the Spring interface . If this class is defined as a Spring bean, the methoxt InitializingBean afterPropertiesSet()

d is called automatically by the Spring framework during the implementation of this interface. The following happens within this method:
The main PPS application context is created.
All injected Spring implementations are executed before the application context is refreshed. ApplicationContextInitializer Thes

 In particular, it is easy to set Spring configuratione initializers allow further initialization of the main PPS application context.
properties during runtime via the class . This is helpful if, for example, you are running the PPS as aPropertySourceAdderImpl
local deployment within a hosting application.
Finally, the main PPS application context is refreshed and registered in the class ,ApplicationContextProviderImpl
which makes it available in the application.

The main PPS application context is well suited if an application wants to call the PPS internally. Therefore, the logic to execute the price and
promotion calculation should be located within this application context. However, it is not possible to have only this application context for the
following reasons:

Exposing servlets, such as the IDoc inbound, requires a web application. Spring requires a web application context as the root application
context of a web application.
The PPS relies on several open-source libraries. If these libraries are on the same classpath as a hosting application, this may lead to
side effects. For example, if you use Jackson XML processes and the corresponding library is on the classpath, Spring automatically
gives Jackson preference over the Jaxb2-based XML processes for the commonly used . Since Jaxb2 and Jackson areRestTemplate
not 100% compatible with each other, this may lead to issues.

Therefore, a that extends is offered in addition to the ModuleEnabledWebApplicationContext XmlWebApplicationContext ModuleEnabledX
. This class does the following:mlApplicationContext

After creation, this automatically tries to make itself the child of an existing usincontext ModuleEnabledXmlApplicationContext
g the class . Therefore, all PPS modules located in the main PPS application context areApplicationContextProviderImpl
available in the Web application context.
It scans the classpath of the corresponding Web application for PPS modules using the . Modules that areModuleLoaderHelper
not yet available in the main PPS application context will be added to the Web application context. Since the classpath of a Web
application may be larger than the classpath of the main PPS application context, the issues mentioned above (first bullet point)
are avoided.

The Web application context needed for a Spring-based Web application must be loaded by a that is registered in theServletContextListener
web.xml of the corresponding Web application. The implementation that creates the is the class ModuleEnabledWebApplicationContext PPSW

. Once the servlet context is initialized, it automatically creates the PPS Web application context and stores in itebAppContextLoaderListener
the servlet context attribute .SAP_PPS_WEBAPPCONTEXT

Make the name of the servlet context attribute known to the following Spring :DispatcherServlet

A module located in the Web application context cannot be dependent only on a module located in the main PPS application context.

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <display-name>Price and Promotion Engine WebApp (central)</display-name>
 <!-- One dispatcher servlet for price calculation requests as well as iDoc

 inbound processing -->
 <servlet>
 <servlet-name>Dispatcher</servlet-name>

<servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-
class>
 <init-param>
 <!-- Name of the servlet context attribute holding the PPS web app
context -->
 <param-name>contextAttribute</param-name>
 <param-value>SAP_PPS_WEBAPPCONTEXT</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Dispatcher</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
 <!-- Create & initialize PPS web app context on startup -->
 <listener>

<listener-class>com.sap.ppengine.core.spring.impl.PPSWebAppContextLoaderLi
stener</listener-class>
 </listener>
</web-app>

The class is offered as a convenience class and possible root class for applications that access to the main PPSPPSContextAware need
application context. Regardless of how the subclass has been created (either explicitly or by a runtime container, such as another Spring
application context), it offers internal access to the main PPS application context.

PPS Context

The PPS context (that is more related to a Spring servlet context than to a Spring application context) serves as a container that can be used to
store data during request processing. This container . Typically, these values should be constant. can be seen by all parts of the application
However, it is also possible to modify parameters that are stored in this context. For example, the requested language is information provided by
the price calculation request. This information is not known by the promotion calculation engine. However, it is relevant for the underlying data
access layer. This information can be extracted from the price calculation request using the PPS context and can be used later when reading
promotional data.

The PPS context also allows (and requires) an initialization at the beginning of request processing. This resets all of its values to a defined initial
state.

The following figure shows the main components of PPS context handling:

The is the container that holds the information on which the application works. It is implemented by the class , which doesContext ContextImpl
not contain additional logic besides the pure storage of data. To access the , the application requests it from a that isContext ContextProvider
offered as a Spring bean. This Spring bean can be injected into the corresponding application bean. As of now, there is only one implementation
of the , the . This stores the in a variable. Therefore, thisContextProvider ThreadLocalContextProviderImpl Context ThreadLocal
implementation relies on the assumption that the processing of one request is realized by one Thread (which may be reused later on).

The initialization of the by the is delegated to a list of instances. These are not injected into the Context ContextProvider ContextInitializer Con
. Instead, the searches in the current Spring application context for all Spring beans that implement the textProvider ContextProvider ContextIni

 interface. This interface extends the Spring interface and therefore allows you to control the order in which the tializer Ordered ContextInitializer
 are processed. The following two implementations of are offered that share common attributes and logic in the abstract s ContextInitializer Abstr

 class:actContextInitializerImpl

The class writes all the entries of the (that can be injected to this class) into the PPS ByImmutableValuesContextInitializerImpl Map C
.ontext

The following excerpt shows how a Spring bean that uses this class could look:

<!-- Data access relevant initialization parameters of PPS context -->
 <alias name="sapDefaultDbContextInitializer"
alias="sapDbContextInitializer" />
 <bean id="sapDefaultDbContextInitializer"
class="com.sap.ppengine.core.impl.ByImmutableValuesContextInitializer
Impl">
 <property name="initValues">
 <map>
 <entry key="SAP_CLIENT" value="${sap.dataaccess-common.db.client}"
/>
 <entry key="SAP_LOGSYS" value="${sap.dataaccess-common.logSys}" />
 <entry key="SAP_BUTYPE"
value="${sap.dataaccess-common.defaultBuType}" />
 </map>
 </property>
 </bean>

The class ByBeanNameContextInitializerImpl writes the reference to a bean into the PPS context. This bean is specified by its bean
name. This class should be used if the class of the references instance is not immutable, for example, a that might have Map
been changed in previous request processing. As shown in the following example, changes can be undone using prototype scoped

This class should be used if the values of the map entries are immutable, for example , , and so on.only String Integer

beans:

<!-- Calc engine relevant initialization parameters of PPS context -->
 <alias name="sapDefaultCalcEngineContextInitializer"
alias="sapCalcEngineContextInitializer" />
 <bean id="sapDefaultCalcEngineContextInitializer"
 class="com.sap.ppengine.core.impl.ByBeanNameContextInitializerImpl">
 <property name="paramName" value="SAP_CALCENGINE_CONFIG"></property>
 <property name="beanName" value="sapCalcEngineConfigCopy" />
 </bean>
 <!-- Prototype scoped bean! -->
 <alias name="sapDefaultCalcEngineConfigCopy"
alias="sapCalcEngineConfigCopy" />
 <bean id="sapDefaultCalcEngineConfigCopy"
factory-method="toProperties"
 scope="prototype" class="org.apache.commons.collections.MapUtils">
 <constructor-arg>
 <ref bean="sapCalcEngineConfig" />
 </constructor-arg>
 </bean>

Beans

ID Alias Description

sapDefaultTimeResolutionReducer sapTimeResolutionReducer Reduces the resolution of a . With this time stamps
implementation, the resolution is reduced to a day-level.
This is used ONLY when regular prices are read. Adjust
this bean if another resolution of regular price or OPP
promotion validities is required.

sapDefaultStringifier sapStringifier Helps to create a string representation of a Java class if
it does not offer a suitable toString() method. Used for
creating debug messages, and so on.

sapDefaultTimerFactory sapTimerFactory Factory to create a timer to measure the duration of a
price calculation. If the configuration parameter sap.core

 is set to true, a timer is.requesttimer
created that stores measurements in a conThreadLocal
tainer. Otherwise, a dummy implementation that records
no measurements is created.

sapDefaultThreadLocalTimer sapThreadLocalTimer Timer created by the . sapTimerFactory

sapDefaultContextProvider sapContextProvider Bean that offers a PPS . The bean isContext
implemented by default by a ThreadLocalContextProvi

.derImpl

sapDefaultEliCacheKeyGenerator sapEliCacheKeyGenerator Key generator used by Spring Cache abstraction.
Intended for the eligibility references except for those
referring to MerchandiseSet Eligibilities. Moved from the
dataccess-common PPS module into this module as of
PPS 3.0.

sapDefaultMerchSetEliCacheKeyGenerator sapMerchSetEliCacheKeyGenerator Key generator used by Spring Cache abstraction.
Intended for the eligibility references to MerchandiseSet
Eligibilities. Introduced with PPS 3.0.

sapDefaultPriceCacheKeyGenerator sapPriceCacheKeyGenerator Key generator used by Spring Cache abstraction.
Intended for the regular prices. Moved from the
dataccess-common PPS module into this module as of
PPS 3.0.

sapDefaultSystemProperties sapSystemProperties Java system properties exposed as a Spring bean.
Introduced with PPS 3.0.

sapDefaultPPSProperties sapPPSProperties Content of the ppe-local.properties merged with Java
system properties as a Spring bean. System properties
have precedence over the content of the
ppe-local.properties file entries. Introduced with PPS 3.0.

Configuration Properties

Name Description Default Value Comment

sap.core.ppsconfiglocation Location of the PPS
configuration file in
Spring resource
syntax

classpath:/ppe-local.properties Since this property specifies the name of the configuration file, it
cannot be specified in the configuration file itself. It must be set
externally, for example, via a Java environment variable.

sap.core.requesttimer Switch to activate the
request timer

false The request timer can be used to measure how long the processing of
a price calculation request takes, broken down to certain parts of the
process. Note that only server-side processing time without
marshaling/unmarshaling is considered.

Dependencies

This module depends on the following modules:

api (starting with PPS 3.0)

PPS Module dataaccess-interface

This module provides the abstraction layer for the read-only persistence services and the data retrieved by them.

Overview

The main purpose of this module is to shield the implementation details of the data access to other modules. It only offers interfaces and classes
containing constants. Together with the module client-interface it offers the touch points between the promotion calculation engine and the rest of
the PPS.

The following figure shows the most important objects in this module. The interface offers a generic field extension to theAbstractEntity
promotion-related entities. For more information about the entities and services, see the Javadocs.

http://classpath/ppe-local.properties

Beans

None

Configuration Properties

None

Dependencies

Although they are logically part of the key, the SAP client and the logical system are not part of the exposed entities. They are provided
via the PPS context.

None

PPS Module jackson

This module provides a uniform configuration for a server and possible clients for the JSON- and XML-based message exchange.

Overview

The PPS uses Jackson for the conversion between request/response payload and its internal representation as Java classes. It is recommended
that the PPS client does the same. In addition, to enable a smooth integration between the PPS and its possible clients, it is necessary to have
the same data format, even using Jackson on both sides. This means that the conversion of the corresponding converters is the same on the
server and client side. This includes the following aspects:

Consideration of JAXB annotations in the Java classes for the DTOs
Date format (yyyy-MM-dd'T'HH:mm:ss.SSS)
(No) pretty printing
Handling of empty and null value fields (to be ignored)
Setting the time zone (to the corresponding default time zone). This is important because otherwise Jackson assumes that UTC is the
time zone of the request, which usually differs from the JVM time zone. Since the date and time of the price calculation request calls is
assumed to be in the local time zone of the PPS client and the price and promotion information is also stored in this schema, for example,
without time zones, it is not necessary to convert the date and time. This is achieved by the following:

Setting the converter time zone to the JVM time zone (no automatic Jackson internal conversion)
Not expecting time zone information, at least for the price validity dates in the payload

Configuring Jackson (Client Side)

Jackson is configured by declaring Spring beans. This is relevant on the server side as well as on the client side. Although technically not
required, we recommend that you place this module (more precisely, the JAR containing this module) on the classpath of the PPS clients to allow
for easy reuse. If this is the case, the configuration may look as follows (assuming the PPS client uses Spring as well):

JSON configuration on PPS client side

<alias name="myDefaultJacksonJsonConverter" alias="myJacksonJsonConverter"
/>
 <bean id="myDefaultJacksonJsonConverter"
factory-bean="myJacksonJsonConverterBuilder"
 factory-method="build" />
 <alias name="myDefaultJacksonJsonConverterBuilder"
alias="myJacksonJsonConverterBuilder" />
 <bean id="myDefaultJacksonJsonConverterBuilder"
class="com.sap.ppengine.jackson.JacksonJsonConverterBuilder" />

The resulting bean implements and can be easily used in, for example, a Spring assuming HttpMessageConverter RestTemplate (myJack
 has been injected as a dependency):sonJsonConverter

Although the configuration-relevant classes of the JSON- and XML-based message exchange are located here, the configuration itself
does not take place. This must be done explicitly in addition.

protected RestTemplate getRestTemplate()
 {
 final HttpMessageConverter<?> converter = getHttpMessageConverter();
 RestTemplate restTemplate = new
RestTemplate(Collections.<HttpMessageConverter<?>>
singletonList(converter));
 return restTemplate;
 }

Request Logging

For debugging purposes, it is helpful to trace the incoming requests with their payload on the server side. This is enabled using the class Reques
. The requests are traced if its log level is set to TRACE. This class must be registered as a filter in :tToSlf4JLoggger web.xml

Although this module declares a Maven dependency to jackson-dataformat-xml, this dependency is not required if only the data format
JSON is used.

Registering the request logger in web.xml

<!-- Filter to enable logging of ingoing requests via SLF4J - log level
 of filter class must be set to TRACE to become effective -->
 <filter>
 <filter-name>sapRequestLogger</filter-name>

<filter-class>com.sap.ppengine.web.filter.RequestToSlf4JLogger</filter-cla
ss>
 <init-param>
 <param-name>maxPayloadLength</param-name>
 <param-value>10000</param-value>
 </init-param>
 <init-param>
 <param-name>includePayload</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>includeQueryString</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>beforeMessagePrefix</param-name>
 <param-value>REQUEST BEFORE PROCESSING---></param-value>
 </init-param>
 <init-param>
 <param-name>afterMessagePrefix</param-name>
 <param-value>REQUEST AFTER PROCESSING---></param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>sapRequestLogger</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

Beans

ID Alias Description

Configuration Properties

None

Dependencies

None

PPS Module restapi

This module exposes the price calculation as a RESTful service.

Overview

The price calculation is exposed as a RESTful service. Both XML as well as JSON format is supported. In both cases, the JAXB annotations of
the client API DTOs are considered. The conversion between JSON/XML and the Java DTOs is done using FasterXML Jackson. The REST
service is exposed using the relative path It is realized using Spring MVC. The restapi is only a thin wrapper around the actual/restapi.
calculation logic. It delegates the calculation call to the corresponding PricingPromotionService instance and receives the response from it.

If exceptions are thrown during the processing of a price calculation request, these are not propagated back to the sender of the request. Instead
they are recorded in the application log for security reasons.

The following HTTP response codes are possible:

200 (OK): This is returned if the price and promotion calculation was successful.
400 (Bad Request): This is returned if the request validation detected an error.
401 (Unauthorized): Authentication data is missing or incorrect.
403 (Forbidden): The authorization required to perform the calculation is missing for the authenticated user.
500 (Internal Server Error): This is returned if an unexpected error occurs.

Known Issues

FasterXML Jackson is used for mapping between the JSON/XML format used by external clients and the internal representation as Java classes.
As of now, this library has the following known issues:

Under some circumstances, attributes marked as optional are treated as mandatory. This is particularly true for the
BusinessUnitTypeCode.

: Always specify the BusinessUnitTypeCode in the request.Workaround
The elements of unwrapped lists with an XML payload must be co-located within the corresponding parent node, in other words no other
element may be in between. For example, the following payload leads to the mapping of only part of the elements:

Illegal unwrapped list

<LineItem>
 <MerchandiseHierarchy ID="ID1" >hier1</MerchandiseHierarchy>
 <SequenceNumber>0</SequenceNumber>
 <MerchandiseHierarchy ID="ID2" >hier2</MerchandiseHierarchy>
</LineItem>

Workaround: Create the request accordingly.

Beans

ID Alias Description

sapDefaultPriceCalculateController sapPriceCalculateController Spring MVC controller that accepts the price calculation
requests via HTTP POST

sapDefaultJacksonJsonConverterBuilder sapJacksonJsonConverterBuilder Factory bean: Builder for the org.springframework.http.conv
 that takes care of the conversionerter.HttpMessageConverter

between the message/request body in JSON format and the
internal representation as Java classes

sapDefaultJacksonJsonConverter sapJacksonJsonConverter HttpMessageConverter built by
sapJacksonJsonConverterBuilder

Codes 401 and 403 are relevant if the REST service is secured by authorization checks. These are not part of this PPS module.only

1.

2.

sapDefaultJacksonXmlConverterBuilder sapJacksonXmlConverterBuilder HTTPMessageConverter built using the bean
sapJacksonXmlConverter

sapDefaultJacksonXmlConverter sapJacksonXmlConverter Factory for that uses Jackson toHTTPMessageConverter
convert from and to XML messages using a well-defined
configuration; JAXB annotations are considered

Configuration Properties

None

Dependencies

This module depends on the following modules:

client-impl
jackson

PPS Module client-impl

This module provides the implementation of the client API for calculating sales prices and promotions.

Overview

The PPS calculates a shopping cart as follows:

It determines the regular prices.
This step is optional since the regular prices can also be provided by the client.
It applies the relevant promotions based on the regular prices.

The first step is performed in this module. The regular prices are determined for all the items in the shopping cart for which prices have not been
provided by the consumer of the service. Before this is done, the price calculation request is validated. This price validation checks if all the fields
needed for the look-up of regular prices are filled.

The promotion calculation itself is delegated to a delegate that is referenced as another Spring bean.

The following figure shows the most important components of the module. Note that the class client-impl DummyPricingPromotionServiceImpl
is not used productively, it is just used as a stub if the promotion calculation engine is not available in a test environment.

Request Validation

This section describes the request validation in the layer. There are also other validations inside the promotion calculation engine. Forclient-impl
a complete list of the possible error codes, Thesee the documentation for the OPP client API for your local or central promotion pricing service.
request validation on the layer fails in at least one of the following cases:client-impl

InternalMajorVersion is missing in the request
Invalid InternalMajorVersion and/or InternalMinorVersion
There is no in the calculation requestARTSHeader
Unsupported in actionCode ARTSHeader
Unsupported messageType in ARTSHeader
The and fields are together in the calculation request (for PPS requests as ofRequestedLanguage RequestedMultiLanguage client
API version 2.0)
Wrong number of element in the calculation request (only one supported)PriceCalculateBody
DateTime is missing in PriceCalculateBody
Invalid BusinessUnit
BusinessUnit is longer than 60 characters (for PPS requests as of client API version 2.0)
Invalid number of in the calculation request (only one supported)BusinessUnits
There is no t in the calculation requestShoppingBaske
Invalid number of quantity elements in the calculation request (only one per line item supported)
There is no in the calculation requestLineItem
The number of line items exceeds the defined threshold
Invalid ItemID
ItemID is longer than 60 characters (for PPS requests as of client API version 2.0)
Invalid number of in the calculation request (only one per line item supported)ItemIDs
Invalid UnitOfMeasure
RegularSalesUnitPrice is missing although is set to FixedPriceFlag true
Invalid number of regular prices retrieved for a LineItem

More than two different merchandise group hierarchy identifier qualifiers for a request (depends if merchandise sets are
enabled)

Once an error is detected, t errors are not collected. In the case of a validation error, the response code is set to he validation stops and REJECT
. In addition, the of the response is filled with a element that describes the error using an SAP error code.ED ARTSHeader BusinessError

Documentation for the SAP error codes can be found in the Javadoc for the class com.sap.ppengine.client.impl.PriceCalculateConstants.

If all validations are successful and the regular prices (if needed) have been read, the request is forwarded to the promotion calculation engine for
further processing (applies the relevant promotions).

Single vs Bulk Access for Regular Prices

A main task of this module is to determine the regular prices of items if they have not yet been provided by the consumer of the service. This is
done using the of the module. , pricesBasePriceService dataaccess-interface To achieve the best performance and ensure consistent results
that have been determined for the corresponding shopping cart in former price calculation requests should be remembered on the client side and
sent as part of the next request (with set). As a result, a regular price should not have been determined yet for only a very limitedfixedPriceFlag
number of items (ideally only one). The price for the remaining item can be determined by a single price look-up that is cached in the data access
layer. Therefore, it is also possible that the regular priceHowever, this is not automatically ensured but determined by the consumer of the PPS.
has to be determined for several items (in some cases all items). In this case, a single look-up for each article is not feasible if the corresponding
prices are not within the cache.

Therefore, the following strategy is applied:

If the number of regular prices to be determined is below a fixed threshold, a single access is done for each price, considering application
built-in caches.

 If the number of regular prices to be determined is greater than or equal to the set threshold, one bulk access is performed. With PPS
1.0, this access bypassed the cache for regular prices. As of PPS 2.0, this access also considers and updates prices that are not
provided by the client but are already in the cache.

The threshold for the number of items without provided prices can be specified using configuration property sap.client-impl.basepricebulkacces
.sitemthreshold

Handling of Business Unit Type

The business unit type is externally provided information within the . Its handling differs from the business unit ID. This is due to aARTSHeader
difference in the data model of the promotion calculation engine and the corresponding data model of a DDF location:

In the case of the DDF location, the location has an external compound key consisting of the location ID and the location type code.
In the case of the ARTS data model, the business unit type is a simple attribute of the business unit. Therefore, the business unit type is
not considered within the promotion calculation engine. The engine does not supply the information about the business unit type when it
requests data from the data access layer.

To provide the business unit type to the data access layer, which needs it to access the database tables, this information is stored for the
corresponding price calculation request within the PPS context as the parameter . This is done within the module.SAP_BUTYPE client-impl

Beans

ID Alias Description

sapDefaultCalculateRequestValidator sapCalculateRequestValidator Validator for a price calculation request

For more information, see Request Validation.

sapDefaultBasePriceReader sapBasePriceReader Reader for regular prices

sapDefaultPricingPromotionService sapPricingPromotionService The main entry point of the PPS on Java level. This delegates
the work internally to the validation, the reading of regular
prices, and the calculation of promotions.

sapDummyPricingPromotionService sapDelegatePricingPromotionService Dummy implementation for the promotion calculation. The
bean with this alias is to be replaced by the "real"
implementation, as described in .PPS Module calcengine-gk

Due to the restrictions of the existing interface, the set of prices may be larger than needed.

Required Beans

This list contains only those additional beans to be provided if all the dependencies of this module are resolved.

ID/Alias Comment

sapBasePriceService Reads the regular prices

sapPromotionService Reads the promotions

sapTransactionManager Manages the (read) transactions

(sapDelegatePricingPromotionService) Does the real promotion calculation; by default a stub is used doing nothing

Configuration Properties

Name Description Default
Value

Comment

sap.client-impl.basepricebulkaccessitemthreshold Minimum number of line items
without prices leading to a bulk
access instead of single read
accesses

10 A bulk access to prices is done if the number of items
without prices provided by the client is greater than or
equal to this threshold. Setting this property to 0 will
always lead to a bulk access.

sap.client-impl.maxnumberoflineitems Maximum number of line items
that may be within a price
calculation request

200 Set to 0 if you do not want to set a threshold.

sap.client-impl.maxcalculationretries Maximum number of price
calculation retries

 10 A price calculation retry takes place when invalid cache
entries are detected. In this case, the invalid entries are
evicted from the cache and the whole calculation is
restarted.

Dependencies

This module depends on the following modules:

core
client-interface
dataaccess-interface

PPS Module calcengine-gk

This module provides the promotion calculation engine.

Overview

The PPS application context is not known by the promotion calculation engine. Its internal functions are described in the technical documentation
for the promotion calculation engine (SDK Promotion Calculation Engine) This module serves only as a wrapper to include the promotion.
calculation engine in the PPS application context. In addition, it contains the default settings of the configuration parameters for the promotion
calculation engine.

Beans

ID Alias Description

sapDefaultCalcEngineConfig sapCalcEngineConfig Default configuration for the promotion calculation engine as
Java Properties. No write access from the application.

sapDefaultCalcEngineConfigMap sapContextParametersEngine Maps the wrapping of the default configuration so that the
whole properties are stored in one map entry for value SAP

. This entry is automatically added_CALCENGINE_CONFIG
to the default PPS context.
This bean has prototype scope.

sapDefaultCalcEngineContextInitializer sapCalcEngineContextInitializer Initializer for the PPS context that fills the promotion
calculation engine configuration parameters.

pricingPromotionService sapDelegatePricingPromotionService This is the main bean for performing the promotion
calculation. Here it is wired to the delegate that is defaulted
to a dummy implementation by the module.client-impl

sapDefaultFeatureCheck sapFeatureCheck This is the bean that checks if special features of the PPS
are active (for example, offers on product groups).

(sapPromotionService) promotionServiceSAP The existing alias is also offered as sapPromotionService
, which represents the dataaccesspromotionServiceSAP

service required by the promotion calculation engine.

<many more> <many more> The promotion calculation engine consists of many more
Spring beans that are available on SAP Help Portal at https:

 //help.sap.com/viewer/p/CARAB > > <Version> Developmen
 > .t SDK Promotion Calculation Engine

Default Settings and Properties

The promotion calculation engine supports a lot of configuration properties that are set to default values in the PPS standard delivery. The use of
product groups via merchandise sets was introduced with PPS 3.0 and is not active by default. The corresponding property merchandiseSetsEn

 must be set to to use this feature. Each property of the promotion calculation engine can be set either as JVM environment propertyabled true
specified via the option (in the case of central deployment using XSA) or as local property located in the . The-D ppe-local.properties file
complete list of PCE config properties and is described in the SDK Promotion Calculation Engine on SAP Help Portal at https://help.sap.com/view

 > > > . er/p/CARAB <Version> Development SDK Promotion Calculaion Engine

Required Beans

This list contains only those additional beans to be provided if all the dependencies of this module are resolved.

ID/Alias Comment

sapPromotionService Reads the promotions

sapTransactionManager Manages the (read) transactions

Configuration Properties

Name Description Default value Comment

sap.calcengine-gk.configpropslocation Location of the default
promotion calculation
engine configuration
properties in Spring
resource syntax

classpath:META-INF/calcengine-gk-config.properties The list of configuration properties is
part of the promotion calculation
engine documentation that is

 available on SAP Help Portal at https
://help.sap.com/viewer/p/CARAB > <

 > > Version> Development SDK
Promotion Calculation Engine.

Dependencies

The default values of the configuration properties differ from the description in the OPP Functional Guide for the Promotion Calculation
. The functional guide describes the defaullt values for properties that are not set via the file specified with Engine sap.calcengine-gk.c

.onfigpropslocation

https://help.sap.com/viewer/p/CARAB
https://help.sap.com/viewer/p/CARAB
https://help.sap.com/viewer/p/CARAB
https://help.sap.com/viewer/p/CARAB
https://help.sap.com/viewer/p/CARAB
https://help.sap.com/viewer/p/CARAB

This module depends on the following PPS modules:

client-impl
dataaccess-interface (transitive dependency as of PPS 3.0)

PPS Module dataaccess-common

This module provides the implementation of the data access layer, independent of the underlying database.

Overview

The module is the main module that is needed to provide access to the persistence (OPP promotions and regular prices).dataaccess-common
It provides the implementations of the entity interfaces and of the interfaces to access the entities offered via the module .dataaccess-interface
The implementation is based on Java Persistence API (JPA) 2.1. is used as the JPA provider. The dataaccess-common moduleEclipseLink
contains database-independent information and, for example, to isolate database specifics so that enhancements ofmodule dataaccess-localdb
the database access can be reused on different databases. These common artifacts are stored in , whereas dataaccess-common dataaccess-lo

 contains artifacts specific to a local, row-oriented relational database.caldb

Regular Price

The regular price is modeled as JPA entity . It is accessed using the class . The regular price is held at theBasePriceImpl BasePriceServiceImpl
level of and .Article ID/Unit of Measure Code/Price Class (Net/Gross)/Business Unit/Business Unit Type/SAP Client/Logical System Valid From

Promotional Information

The promotion is stored in several entities located in the package . The root JPAcom.sap.ppengine.dataaccess.promotion.common.entities
entity is . The class hierarchy follows the interface hierarchy shown in the section . Promotional informationPromotionImpl dataaccess-interface
is accessed using .PromotionServiceImpl

Object-Related Mapping Using Spring

The following Spring enhancements are used for object-related mapping:

The class is used as the entity manager factory. Thisorg.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean
allows an easy configuration using Spring properties instead of having to maintain a persistence.xml file. In addition, it also supports the
easy configuration of JPA properties by reusing existing Spring concepts, such as maps stored as properties files. Setting the list of
packages to scan for JPA entities can be just a matter of Spring property configuration.
The class enables automatic injection of an entityorg.springframework.orm.jpa.support.PersistenceAnnotationBeanPostProcessor
manager using the annotation . In addition, Spring automatically provides a thread-safe entity manager so that @PersistenceContext
concurrent requests can be handled without further precautions.
The class implements JPA transaction handling.org.springframework.orm.jpa.JpaTransactionManager

Multi-Step JPA Resource Mapping

The aim of the data access is to have the JPA entities independent of the underlying database. This will become important if several deployment
options are offered. This module provides the entity implementations, making some abstractions from specific database table design details, such
as indexes. These specifics are added using the module .dataaccess-localdb

Since JPA entities are subject to extensibility, the following strategy is used for their definition:

The properties of a JPA entity expected to be common to all deployment options are specified via annotations as an integral part of the
Java class for the JPA entity.
Properties specific to one standard deployment option, such as local Java DB, are added by XML file-based mapping (),orm.xml
potentially overruling annotations on class level. For example, specific attribute converters or database indexes may be added in this
way.
Properties specific to a specific (customer) installation are expected in the file . In particular, this may contain theppe-schema-orm.xml
database schema if not yet specified in the database connection URL. In the case of a local deployment, this file is not relevant.
Properties specific to customer extensions are expected in additional orm files that are specified using the configuration property sap.dat

.aaccess-common.custmappingresources

Multi-Step JPA Property Definition

http://www.eclipse.org/eclipselink/

The JPA properties, such as the configuration properties for the JPA provider, are treated in a similar way as the definition of JPA entities. They
are expected in the following three files:

A file for JPA properties independent of the deployment (SAP owned)
A file for JPA properties dependent on the deployment (SAP owned)
A file for customer-specific configuration (empty in SAP shipment)

These files are specified using Spring configuration properties (see below). If a parameter appears in more than one file, the standard Spring logic
is executed to merge properties using the tag.<util:properties>

Support of JPA Entity Extensions

The entities provided by SAP support the addition of fields to existing JPA entities without replacing or extending the corresponding Java classes.
This is achieved using the concept of virtual properties offered by . Technically, additional attributes or relations of the JPA entity areEclipseLink
stored in a map that can be accessed by dedicated set- and get-methods. Both the attribute name and the property that it is a virtual attribute are
specified externally in an file. Therefore, you can use customer-specific mapping files, such as .orm.xml ppe-local-orm.xml

Consider the following example that introduces the attribute as another database column .zzUpSellingCode ZZUP_SELL_TCD

Adding a virtual attribute via ppe-local-orm.xml

<entity-mappings
 xmlns="http://www.eclipse.org/eclipselink/xsds/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.eclipse.org/eclipselink/xsds/persistence/o
rm
 http://www.eclipse.org/eclipselink/xsds/eclipselink_orm_2_4.xsd"
 version="2.4">

 <!-- ... -->
 <entity

class="com.sap.ppengine.dataaccess.promotion.common.entities.PromotionImpl
">
 <attributes>
 <!-- Attribute name is zzUpSellingCode, type is String. Access is
virtual -->
 <basic name="zzUpSellingCode " attribute-type="String" access="VIRTUAL">
 <!-- This maps to ordinary column name -->
 <column name="ZZUP_SELL_TCD" />
 <!-- Name of setter and getter method for this attribute -->
 <access-methods get-method="get" set-method="set" />
 </basic>
 </attributes>
 </entity>
</entity-mappings>

The virtual attributes are inherited by the common base class .AbstractEntityImpl

This attribute is an ordinary column in the database. For example, you can define database indexes on it, as for any other column.
Furthermore, it is possible to use the virtual attribute like any other attribute in named queries, and so on.

How you add this column to the database depends on the deployment scenario. The PPS takes care of the creation of this column in a
. In a central deployment that runs on an ABAP-owned database, the field must belocal deployment (such as in SAP Hybris Commerce)

created explicitly using the ABAP Data Dictionary (SE11). This is controlled in the corresponding deployment specific modules, such as
dataaccess-localdb or dataaccess-ddf.

http://www.eclipse.org/eclipselink/documentation/2.6/solutions/extensible001.htm

More examples of how to extend entities using this concept are given in the chapter .OPP Extensibility

equals() and hashCode() for JPA Entities

The and methods are used in many places in a Java application. By default, the provided JPA entities implement theequals() hashCode()
following behavior:

Two entities are equal if they have the same type and if they have equal keys.
Two entity keys are equal if they have the same type and all their components are equal.
The hashCode of a JPA entity is the hashCode of its key.
The hashCode of a JPA entity (compound) key is calculated from the hashCodes of its components.

However, you might want to have a different logic in these methods. Since there are no plans to replace the provided SAP JPA entities on the
customer side, not even using subclasses, it is not possible to reimplement the standard logic by overriding the methods within a subclass of the
corresponding entity. To allow extensions of the standard logic, these methods are implemented as follows:

Each JPA entity inheriting from has a (shared) static attribute "helper" of the type . Within AbstractEntityImpl EqualsHashCodeHelper Abstract
, the and methods simply delegate the work to this helper. Since the helper attribute is not managed by JPA, it isEntityImpl equals() hashCode()

determined using the class if not yet set. This is a wrapper that gets the PPS Spring application context andEqualsHashCodeHelperProvider
retrieves the Spring bean with the fixed name . In the default shipment this is a class of type sapJpaEqualsHashCodeHelper KeyBasedEqualsH

.ashCodeHelperImpl

Therefore, the and logic can be redefined by replacing a Spring bean. equals() hashCode()

Caching

Regular prices and OPP promotion have to be cached in order to achieve good performance. During the processing of a price calculation request,
the number of accesses to information about regular prices and OPP promotions can be high. To avoid cross-system communication and to free
the database server from additional load, caching is done in the application (for each Spring application context).

The following requirements were considered for the caching strategy:

It must use well-proven, fast technology.
It must provide consistent results during the processing of one price calculation request. This is particularly relevant for the promotion as
a complex object stored in many entries of several database tables.
It must be easily configurable to support installation-specific needs.
It should be possible to replace the cache provider.

The following figure illustrates how regular prices and OPP promotions are cached on the server side. The ItemPriceDerivationRuleEligibiltyCa
 that handles the bulk access of is introduced with PPS 3.0.cheAwareBulkAccessorImpl ItemPriceDerivationRuleEligibilities

The following three types of caches are used:

The EclipseLink level 1 cache that is simply the persistence context bound to the transaction Tcreated for each price calculation request.
he persistence context is attached to the entity manager.
The EclipseLink level 2 cache that holds the JPA entities of a complete OPP promotion (apart from assigned business units because they
are not needed to calculate the OPP promotions once it is known that they are relevant). This is attached to the entity manager factory
that exists once in a PPS application context.
Caches holding the results of named queries. These are defined using Spring cache abstraction (see http://docs.spring.io/spring/docs/cur

). In the standard shipment, Google Guava Cache (see rent/spring-framework-reference/html/cache.html https://github.com/google/guava/
) is used as an implementation. Two separate cache regions are offered:wiki/CachesExplained

A cache region to hold the results of a single price lookup
A cache region to hold the results of search queries for eligibilities based on information about the corresponding shopping cart

Caching Regular Prices

Single record look-up results are cached using Spring cache abstraction. This is done by adding the corresponding annotation:

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/cache.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/cache.html
https://github.com/google/guava/wiki/CachesExplained
https://github.com/google/guava/wiki/CachesExplained

Caching the result of single price look-up

public class BasePriceServiceImpl implements BasePriceService {

 @Cacheable(value = DefaultCacheSettings.CACHE_REGION_BASEPRICE)
 public List<BasePrice> getBasePriceForProduct(final String itemId,
 final String businessUnitId, final String businessUnitType,
 final boolean isNet, final String uomCode, final Timestamp
timestamp) {
 // ...
 }

This leads to the creation of a Spring-managed proxy class () during the creation of the application context. This classBasePriceServiceProxy
delegates the price look-ups to the cache manager. The logic of the class is called only if a cached entry cannot be found.BasePriceServiceImpl
Likewise, the result of the price look-up is automatically placed into the Spring-managed cache in the event of a cache miss. The cache
implementations (for example, the classes responsible for offering and updating the cache) are defined using Spring beans:

Defining caches in Spring

 <!-- Cache for regular prices - aware of the underlying cache provider -->
 <alias name="sapDefaultBasePriceCache" alias="sapBasePriceCache" />
 <bean id="sapDefaultBasePriceCache"
class="org.springframework.cache.guava.GuavaCache">
 <constructor-arg
 value="#{T(com.sap.ppengine.dataaccess.promotion.common.entities.Defaul
tCacheSettings).CACHE_REGION_BASEPRICE}" />
 <constructor-arg>
 <bean factory-bean="sapBasePriceCacheBuilder" factory-method="build" />
 </constructor-arg>
 </bean>

 <!-- Cache for eligibility references - omitted here -->

 <!-- Cache for named queries. Currently all named queries share a common
result cache -->
 <bean id="cacheManager"
 class="com.sap.ppengine.core.spring.impl.SwitchableCacheManager">
 <constructor-arg value="${sap.dataaccess-common.cachenamedqueries}" />
 <property name="caches">
 <set>
 <ref bean="sapBasePriceCache" />
 <ref bean="sapEligibilityCache" />
 </set>
 </property>
 </bean>
 <!-- Builder for cache of promotional information omitted here -->

 <!-- Builder for cache of base prices: Create google guava cache with
dedicated
 spec -->
 <alias name="sapDefaultBasePriceCacheBuilder"
alias="sapBasePriceCacheBuilder" />
 <bean id="sapDefaultBasePriceCacheBuilder"
class="com.google.common.cache.CacheBuilder"
 factory-method="from">
 <constructor-arg value="${sap.dataaccess-common.basepricecachespec}" />
 </bean>

The result of a price look-up is not a managed entity. Inconsistencies between several calls within one price calculation request are avoided by
reading each price only once. This is ensured by the class .BasePriceReaderImpl

Caching Promotional Information

The caching of promotional information is more complex than the caching of regular prices, since different parts of the OPP promotion are

Bulk accesses for regular prices are also offered. However, the behavior slightly differs between the PPS releases: With PPS 1.0, the
query completely bypasses the cache for regular prices. As of PPS 2.0, the database query contains those products/uom codesonly
that are not yet in the cache. In addition, the query result is added to the cache, leading to faster processing in the event of cache
misses and therefore more robust behavior.

retrieved by the promotion calculation engine in several steps. Once one part of the OPP promotion is read, it must be ensured that the other
parts of the OPP promotion are consistent. At the beginning, a search is made for OPP promotions with the requested eligibilities. Although the
class PromotionServiceImpl offers methods to find the corresponding eligibilities, it simply delegates the work to the class
NamedQueryServiceImpl, which is located behind the NamedQueryServiceProxy. Therefore, the same approach is applied as for reading the
regular prices. With this approach, the result of this search is stored in the eligibility query cache. This is configured via Spring cache abstraction
and implemented by Google Guava, as for the regular price cache. However, only a very limited amount of information is read in this case, not the
full eligibility.
All the OPP promotions for the eligibilities found are read by key (apart from the assigned business units). The assumption is that if an eligibility is
found for an OPP promotion, the OPP promotion will become effective soon. This means not necessarily within this price calculation request but
in one of the following ones if all eligibilities for the OPP promotion are met. Two caches become effective when the OPP promotion is read:

The JPA L2 cache managed automatically by the JPA provider. Its content is shared by several price calculation requests. If the
promotion to be read is already in the L2 cache, the database is not accessed. In the case of a database access, the L2 cache is updated
automatically.
The JPA L1 cache/persistence context that is valid for the current price calculation request. The persistence context is automatically filled
by the entity manager when OPP promotions and their subentities are read and guarantees unique objects per key. This cache is used to
serve further requests related to the corresponding OPP promotions in the current request, such as reading . The PriceDerivationRules
L1 cache ensures that during request processing an OPP promotion does not change within a request. However, it does not ensure that
this constant OPP promotion as such is consistent.

Since the results of the eligibility search and the OPP promotions are stored in different caches and due to the possibility of cache eviction in the
L2 cache, it must be ensured that data inconsistencies are detected and resolved. This is done by storing the time stamp of the last write access
to any part of the OPP promotion both on promotion level, such as in the L1 and L2 cache, and eligibility level, such as in the query cache. This
time stamp is introduced by the class , which is a super class to all promotional entities except for ChangeAwareEntity BusinessUnitAssignmen

.tImpl

The following logic is implemented:

Case
#

Description Action

1 The time stamp of the eligibility is more recent than the time stamp of the OPP
promotion (in cache) or the time stamps of OPP promotion subentities are inconsistent.

The promotion is read again from the
database

2 The OPP promotion referred to by the eligibility does not exist or is not active (any
more).

Eligibility is skipped

3 The time stamp of the eligibility is the same or older than the time stamp of the OPP
promotion.

Eligibility of the OPP promotion is returned
if it still exists and has the expected type

The action for may look wrong if the time stamp differs, since the returned eligibility might not have the requested content any more.case #3
However, existing eligibilities are not reused when a DDF offer is transformed into an OPP promotion. Instead, new eligibilities with new keys are
created. Therefore, existing eligibilities are not updated.

Activating the JPA L2 cache for the OPP promotion is done explicitly because the shared cache mode is set to by default:ENABLE_SELECTIVE

sap.dataaccess-common.sharedcachemode=ENABLE_SELECTIVE

All promotional entities except for the business unit assignment are defined as cacheable, using the default settings. The excerpt below shows
how this is done for the promotion header:

Making PromotionImpl cacheable

@Entity
@Table(name = DBTables.PROMOTION)
@Cacheable
@Cache
public class PromotionImpl extends ChangeAwareEntity implements Promotion {
 // the attributes etc.
}

It is not usually necessary to make changes here. However, it is possible to change the settings of the L2 cache by setting the corresponding JPA
properties (see Spring property):sap.dataaccess-common.custjpapropertieslocation

Adjust cache settings in the JPA properties file

Default cache type & size
eclipselink.cache.type.default=SoftWeak
eclipselink.cache.size.default=1000
Do it differently for promotion header - just as an example!
eclipselink.cache.type.com.sap.ppengine.dataaccess.promotion.common.entiti
es.PromotionImpl=Soft
eclipselink.cache.size.com.sap.ppengine.dataaccess.promotion.common.entiti
es.PromotionImpl=10000

Cache Keys

The following keys are used for the various objects stored in the Spring-managed cache:

Regular price: Business Unit ID, Business Unit Type Code, Timestamp, Unit Of Measure Code, Item ID, Net Flag
Common to all eligibility references: Business Unit ID, Business Unit Type Code, Timestamp, Status Code, Lineitem Mode, Identification
of Eligibility Type (currently: name of cached method). Note that the business unit type code is only cached from PPS 3.0.
In addition for TotalPurchaseMarketBasket Eligibility: ./.
In addition for Coupon Eligibility: Coupon ID
In addition for Customer Group Eligibility: Customer Group ID
In addition for Item Eligibility: Item ID, Unit Of Measure Code
In addition for Merchandise Hierarchy Eligibility: Node ID, Node ID Qualifier
In addition for the Manual Eligibility: Trigger Type, Trigger Value
In addition for Merchandise Set Eligibility: Item ID - and not the list of assigned merchandise hierarchy nodes(!). It is assumed that the
PPS clients have access to the same master data and provide identical hierarchy node assignments in the price calculation request.
In addition for the OtherEligibility extension: Eligibility Type, additional parameters

If you want to adjust the cache key, you can replace the standard Spring beans for cache key generation. For example, in a custom key generator
it would be possible to access additional information stored in the PPS context, such as the logical system.

Prefetch of Price Derivation Rule Eligibility References

As of PPS version 3.0, you can prefetch eligibility references. Depending on the number of line items in the price calculation cart, it may make
sense to prefetch (via a bulk access) certain eligibility references at the very beginning of the price calculation. If the eligibility reference cache is
not completely filled, this avoids many single selects, leading to improved performance. In particular, this helps for eligibilities that are based on
the individual item ID, such as the Item eligibilities and the eligibilities. For other eligibility types, such as the MerchandiseSet MerchandiseHiera

 or the , the number of possible distinct values across several requests (in other words, the number of differentrchy CouponEligibility
Merchandise Hierarchy nodes or coupon IDs) is much lower, leading to a much faster population of the caches. Therefore, such eligibilities are
not considered.

However, the bulk selection is not as specific as the corresponding single selects. For the Item eligibilities, many different UOM codes reduce the
selectiveness of the database queries. For eligibilities, the individual assignment of an item to merchandise hierarchy nodesMerchandiseSet
gets lost. In rare cases, this can lead to a deterioration in performance. Therefore, this optimization can be turned on or off using a threshold. The
threshold for this prefetch is defined by the configuration property for Item eligibilities and sap.dataaccess-common.bulkitemelithreshold sap.

for eligibilities. When this threshold is reached, the corresponding eligibilitiesdataaccess-common.bulkmerchsetelithreshold MerchandiseSet
that are not already cached are read with one database query (for each type).
Afterwards, the results are added to the cache in a way that they can be retrieved using single access from the cache later on during price
calculation.

In addition to the threshold configuration property, this prefetch also needs the property to besap.dataaccess-common.cachenamedqueries
set to true.

The bulk access of eligibility references is realized as separate plugin implementations for plugin interface com.sap.ppengine.api.plugin.Promo
.tionServiceInitialization

 The is created by Spring in order to handle transactions automatically.PromotionServiceProxy

The following values are not part of the cache key since they are expected to be constant for each PPS installation: SAP Client, Logical
System.

Support of Weaving

As of PPS version 2.0, weaving is supported. The EclipseLink feature of weaving the JPA entities (load-time waving) leads to an improved
 performance, for example, by reading the promotional entities in a more efficient manner from the database. This approach performs the weaving

of entities during startup of the application. As a consequence, possible customer extensions automatically benefit from weaving and it is not
 necessary to recompile JARs. Weaving is enabled using the Spring profile . This must be set as an environment variable when thesapweaving

corresponding (Web) application is started:

Enabling weaving

-Dspring.profiles.active=sapweaving

Load-time weaving has some requirements of the runtime environment. This environment is prepared by the Spring class org.springframework.
. This automatically checks whether the classloader supports load-time weaving andcontext.weaving.DefaultContextLoadTimeWeaver

supports recent versions of Tomcat 8 or later (necessary for the XSA-based PPS).

As a result of the introduction of weaving, how the promotional entities are read has changed with PPS version 2.0. In PPS version 1.0, the
promotion for the corresponding eligibility was read using the fetch type . In PPS version 2.0, the fetch type is used.EAGER LAZY

For more information about weaving, see .http://www.eclipse.org/eclipselink/documentation/2.6/solutions/testingjpa004.htm

Support for Read-Only Transactions

As of PPS version 2.0, promotional information can also be read in a read-only mode. In this mode, no change tracking of the JPA entities is
done. This results in an optimized resource consumption. Consequently, no changes to the read JPA entities are saved to the database once the
transaction is committed. The request of a read-only transaction is controlled using a dedicated attribute of the PPS context. This is set to TRUE
in the case of a price calculation request.

Depending on the cache isolation set for the corresponding entities, read-only transactions may have no "working copy" of the entity in the
persistence context during the price calculation. This can lead to consistency issues in the case of concurrent read and write operations on the
same entity. If you create custom subentities of an OPP promotion, they must fulfill the following constraint:

The following subentities of an OPP promotion are not considered as critical:

The promotion texts (because they do not contain information that influences the price itself)
The assigned business units (because they are not taken into account once a promotion is considered as relevant and because they
contain only key fields)

There is no change of system behavior for regular prices. They are not cached in the JPA L2 cache.

Code Conversion

Following SAP standards, , and refer in the database to the SAP internal code lists. This is also true for the encoding ofamounts quantities texts
the business unit type. The following values are allowed for the database representation of these codes:

Code Same Table Field/ABAP Domain

Language T002-SPRAS

The following issues are known to occur with weaving:

If weaving is enabled, all weaving features are activated . As a result, potentially existing constructors or fieldby default
initializers of JPA entities (that are not recommended) are no longer called. If this leads to issues, it is possible to selectively
disable specific weaving features by setting the corresponding JPA properties. For instance, setting eclipselink.weaving.

can help to reduce these types of issues.internal=false
In general, weaving supports the extension of JPA entities using virtual access methods. However, according to the
EclipseLink documentation, weaving is not supported when virtual access methods are used with mappings.OneToOne
Load-time weaving of a JPA entity takes place when the corresponding Java class is loaded. If it has been loaded before
load-time weaving is activated (for example, within a JUnit test), it cannot be woven anymore. As a result, NoSuchMethodErro

.exceptions due to incomplete weaving will be thrown, causing the application to stop workingr

The subentities of an OPP promotion must be immutable objects if they are critical to the correct price calculation. If a new version of an
OPP promotion is created, the subentities must be new objects with new keys replacing the subentities of the former version.

http://www.eclipse.org/eclipselink/documentation/2.6/solutions/testingjpa004.htm

Currency and Decimals TCURC-WAERS, TCURX-CURRDEC

Unit of Measure T006-MSEHI

Business Unit Type Domain /DMF/LOCATION_TYPE_CODE

This schema is not generally known to an external client. Therefore, the PPS works from the client API down to the JPA entities with the ISO
schema of these codes. Since there is no ISO representation for the business unit type, the ARTS schema is used. The translation between the
database representation and the JPA entity representation is realized using JPA implementations. However, it might beAttributeConverter
desirable to configure this mapping, particularly in view of the unit of measure codes. The following figure shows how to configure this mapping for
unit codes:

The class is a JPA attribute converter. The lifecycle of an AttributeConverter is now managed by the JPADelegatingUnitCodeConverter
provider not by Spring. In particular, only a default constructor is supported and does not offer further configuration. Therefore, this converter
simply delegates the actual work to a Spring bean with a fixed alias. The Spring bean is retrieved using the class ApplicationContextProviderIm

. This delegate bean also implements but has the full support of Spring offerings, such as configuration parameters,pl AttributeConverter
support of properties files, and so on. Hence, the code mapping can be specified using a properties file whose location can be specified by a
Spring configuration property.

At first sight, it might look surprising that the attribute converter does not simply access the content of the corresponding customizing tables and
instead reads the content of a properties file, leading to double maintenance if additional unit codes are introduced. However, reading another
database table within an attribute converter again requires access to a JPA entity manager, making the implementation of the attribute converter
much more difficult and its performance likely worse.

Handling of Currencies and Amounts

As described in the section under in this guide, amounts need special handling if they referHandling of Amounts Price and Promotion Repository
to a currency that does not have two decimals and if they are stored in a database table owned by an ABAP system. This is the case for the
central XSA-based PPS that directly accesses the database tables of the central price and promotion repository. Special handling comprises a
scaling of the amounts before they are used by the PPS, depending on the number of currency decimals:

Currency Decimals Scaling Factor Database Value > Application-Visible Value

0 100

1 10

2 1

3 0.1

4 0.01

5 0.001

In addition, the SAP internal schema for currency codes has to be converted into the ISO schema. This is achieved by a JPA attribute converter
similar to the one described for unit codes. In this case, however, one database column (the currency code containing the SAP currency code) is
converted to a tuple of values (the ISO code and the scaling factor). This conversion uses two properties files:

The properties file containing the mapping between SAP and ISO currency codes. The location of this file is read from the configuration
property sap.dataaccess-common.currencycodeslocation.
The properties file containing the decimals <> 2 for SAP codes. The content of this file depends on the deployment scenario and is used
to calculate the scaling factor. No scaling of amounts is needed for a local deployment so this file can be empty. The location of this file is
read from the configuration property sap.dataaccess-common.currencydecimalslocation.

This information is stored in the class . The following table shows the mapping of database --> JPA entity using someCurrencyWithScale
hypothetical examples:

SAP
Currency

ISO
Currency

Currency
Decimals

CurrencyWithScale Comment

EU EUR <not maintained> currencyCode=EUR
scale=1

SAP code EU would actually be EUR.

BD BHD 3 currencyCode=BHD
scale=0.1

Bahrain dinar stored in the central PPR. SAP code would actually be BHD.

BD BHD <not maintained> currencyCode=BHD
scale=1

Bahrain dinar stored in a local copy of the central PPR. SAP code would
actually be BHD.

YEN JPY 0 currencyCode=JPY
scale=100

Japanese yen stored in the central PPR. SAP code would actually be JPY.

YEN JPY <not maintained> currencyCode=JPY
scale=1

Japanese yen stored in a local copy of the central PPR. SAP code would
actually be JPY.

The scaling itself is done when the data is accessed from the database. Instead, this is performed in the getter method of the correspondingnot
amount field of the JPA entity.

The reverse mapping from JPA entities to database values is simpler since this can happen only in a local PPS - the central PPS never writes
data to the database. Since the local PPS receives data always in the "natural" format (either within the IDoc inbound or within the price
calculation), a scaling of amounts is not needed. Therefore, when a currency code is set within the application, the scaling factor can simply be
set to one. Consequently, the conversion of to the SAP currency code simply converts the ISO to the SAP currency code.CurrencyWithScale

Handling Product IDs

The product ID with SAP CAR has a length of 60 characters. In addition, a conversion exit is called when products are imported from external
systems, which adds leading zeros to numeric product IDs. This has the following consequence, taking SAP Hybris Commerce as an example of
a PPS client:

The SAP ERP material number of an article has the internal representation 000000001234567890.
When this article is replicated to the SAP Hybris Commerce catalog, its ID (hybris: code) has the same value: 000000001234567890.
When this article is replicated to SAP CAR via the Data Replication Framework to the DDF data model, the external product ID has the
following value: 001234567890.
When regular prices and OPP promotions are replicated to external systems (including a locally deployed PPS), the external product ID
of the DDF data model is taken, in other words 001234567890.
When a price calculation is requested, the internal ID is expected. Hence, a hybris client sends the number 000000001234567890.
No such ID exists in the database.

The following is done to overcome this:

A JPA implementation (class) isAttributeConverter com.sap.ppengine.dataaccess.converter.common.InternalProductIDConverter
offered that translates between the client side (used in JPA entity) and the database side representation of a product ID,
This becomes effective only if the corresponding ID is numeric.
When the JPA entity is converted to the database representation, leading zeros are added up to a length of 60 characters.
When the database is converted to the JPA entity representation, the prefix of the ID is removed so that the result has a fixed number of
digits that is configurable via property .sap.dataaccess-common.fixednumberofplacesinproductid
If this parameter is zero, all leading zeros are removed, not considering a fixed length.

Handling of Language-Specific Information

The client API for price calculation allows the specification of a requested language in which language-dependent information (promotion
descriptions, external action price rule texts) is returned to the caller. This information is stored in the PPS context (bean) andsapContext
evaluated once the corresponding parent object, such as the Promotion or the , is requested. If language codes areExternalActionPriceRule
specified and the resulting set of language-dependent information differs from the original set, the caller gets a detached copy of the parent object
for each method call. This copy contains only the requested information.

SAP Client and Logical System

An SAP client and logical system must be specified in order to uniquely identify which information is to be retrieved from the database. This is
particularly true when regular prices are read with a given external product and business unit (location) ID. However, this information is not
provided externally as part of the request for the price calculation. Therefore, this information must be provided via Spring configuration
properties. They are stored in the PPS context that is globally visible with request processing via the bean .sapContext

Beans

ID Alias Description

sapDefaultPersistenceAnnotationBeanPostProcessor sapPersistenceAnnotationBeanPostProcessor Spring postprocessor enabling
automatic transaction management
via annotation

@Transactional

sapDefaultJpaProperties sapJpaProperties Properties bean holding the JPA
properties

Refers to configuration properties:

sap.dataaccess-common.
defaultjpapropertieslocation
sap.dataaccess-common.
jpapropertieslocation
sap.dataaccess-common.
custjpapropertieslocation

sapDefaultEntityManagerFactory sapEntityManagerFactory Spring-based entity manager
factory, configurable via properties
instead of a single persistence.xml
file

sapDefaultTransactionManager sapTransactionManager Spring-based transaction manager

sapDefaultJpaDialect sapJpaDialect Spring JPA Dialect "Eclipselink" to
be used for transaction manager

sapDefaultJpaVendorAdapter sapJpaVendorAdapter Registers EclipseLink as a JPA
provider

sapAbstractPersistenceService ./. Base class for all persistence
services

sapDefaultPromotionService sapPromotionService Central service for accessing
promotional information from
database

sapDefaultNamedQueryService sapNamedQueryService Service for reading promotional
information from database via
named queries. Used by sapPromot

.ionService

Requesting and returning language-specific information is supported as of PPS version 2.0.

If you need to support several values for a logical system, SAP clients or business unit types for each installation, you also need to
adjust the cache key generators since this information is not considered to be part of the cache key for named queries by default.

sapDefaultBasePriceService sapBasePriceService Central service for accessing regular
price information from database

sapDefaultDbContextInitializer sapDbContextInitializer Initializer of the PPS context adding
parameters relevant for accessing
the database (client, business unit
type, logical system)

sapDefaultLanguageCodes sapLanguageCodes Default mapping to translate
between SAP and ISO language
codes

sapDefaultCurrencyCodes sapCurrencyCodes Default mapping to translate
between SAP and ISO currency
codes

sapDefaultUnitCodes sapUnitCodes Default mapping to
translate between SAP and ISO unit
of measure codes

sapDefaultCurrencyDecimals sapCurrencyDecimals Default decimals of SAP currencies

sapDefaultCurrencyMappingFactory sapCurrencyMappingFactory Default factory to create mapping
from SAP currency codes to tuple
<ISO code + scaling factor>. Uses
beans sapDefaultCurrencyCodes
and sapDefaultCurrencyDecimals.

sapDefaultCurrencyCodesWithScale sapCurrencyCodesWithScale Default mapping between SAP
currency codes and
CurrencyWithDecimals. Created by
the bean
sapCurrencyMappingFactory.

sapDefaultBusinessUnitLocationTypes sapBusinessUnitLocationTypes Default mapping file to translate
between SAP and ARTS business
unit type codes

sapDefaultLanguageCodeConverter sapLanguageCodeConverter Converter between SAP and ISO
language codes accessing the
mapping file

Called by corresponding JPA
attribute converter

sapDefaultCurrencyCodeConverter sapCurrencyCodeConverter Converter between SAP and ISO
currency codes accessing the
mapping file

Called by corresponding JPA
attribute converter. Only to be used
if scaling of amounts is not needed.

sapDefaultCurrencyWithScaleConverter sapCurrencyWithScaleConverter Converter between SAP currency
and CurrencyWithDecimals. Uses
sapCurrencyCodesWithScale.

sapDefaultUnitCodeConverter sapUnitCodeConverter Converter between SAP and ISO
unit of measure codes accessing the
mapping file

Called by corresponding JPA
attribute converter

sapDefaultBusinessUnitLocationTypeConverter sapBusinessUnitLocationTypeConverter Converter between SAP and ARTS
business unit type codes accessing
the mapping file

Called by corresponding JPA
attribute converter

sapDefaultInternalProductIDConverter sapInternalProductIDConverter Converter between SAP CAR
internal representation of numeric
product IDs and their (internal)
representation used by the PPS
client

cacheManager ./. Spring cache manager introducing
caches for promotional information
(OPP promotion eligibilities) and
single accesses for regular prices

sapDefaultPromoCacheBuilder sapPromoCacheBuilder Cache builder for storing OPP
promotion eligibility keys using
Google Guava as cache
implementation

sapDefaultBasePriceCacheBuilder sapBasePriceCacheBuilder Cache builder for regular prices
using Google Guava as cache
implementation

sapDefaultEligibilityCache sapEligibilityCache Spring wrapper for the cache for
regular prices
Before PPS 2.0 this was an
anonymous Spring bean

sapDefaultBasePriceCache sapBasePriceCache Spring wrapper for the cache for
promotional information (eligibility
references)

Before PPS 2.0 this was an
anonymous Spring bean

sapDefaultEliCacheKeyGenerator sapEliCacheKeyGenerator Enhancement of the default Spring
 cache key generator considering the

name of the method in addition to
the provided arguments.

Necessary if different read methods
 have the same arguments but

should provide different results.

sapDefaultPriceCacheKeyGenerator sapPriceCacheKeyGenerator Cache key generator used when
caching regular prices.

sapDefaultItemEligibilityBulkAccessor sapItemEligibilityBulkAccessor Default implementation for the item
price derivation rule eligibility bulk
access (as of PPS 3.0)

sapDefaultMSetEligibilityBulkAccessor sapMSetEligibilityBulkAccessor Default implementation for the
MerchandiseSet price derivation rule
eligibility bulk access (as of PPS 3.0)

sapDefaultJpaEqualsHashCodeHelper sapJpaEqualsHashCodeHelper Default implementation of aequals()
nd for JPA entitieshashCode()

sapDefaultLoadTimeWeaver sapLoadTimeWeaver If weaving is active (as of PPS 2.0):
provides Environment for
EclipseLink weaving

As of PPS verison 3.0, this
bean is contained in the
core module.

As of PPS version 3.0, this
bean is contained in the
core module.

sapDefaultSelectionIntervalCreator sapSelectionIntervalCreator As of PPS 2.0:

Converter of a provided time stamp
for price calculation into an interval.
This is used for searching eligibilities
only.
In order to be found, the
corresponding promotion must
intersect with this interval.
By default, the whole day of the
given time stamp is considered as
an interval.

See also bean
sapTimeResolutionReducer in the
core module.

 2017-30-03 12:34:56 isExample:
converted into interval
2017-30-03 00:00:00 (inclusive)
until 2017-03-31 00:00:00
(exclusive)

Required Beans

ID/Alias Comment

sapDataSource Provides database connection

Configuration Properties

Name Description Default Value Comment

sap.dataaccess-common.persistenceunitname Name of the JPA
persistence unit to
be used for reading
and writing OPP
promotion and
regular price
information

SAPDefaultPU

sap.dataaccess-common.sharedcachemode Defines the JPA
entities for which a
JPA Level2 cache
is to be used

ENABLE_
SELECTIVE

Explicit enablement of caching
per entity

sap.dataaccess-common.defaultjpapropertieslocation Location of the
default JPA
properties (to be
used independent
of the underlying
database) in Spring
resource syntax

classpath:
META-INF/defaultjpaprops.
properties

sap.dataaccess-common.weavingdefaultjpapropertieslocation Location of the
default JPA
properties (to be
used independent
of the underlying
database) in Spring
resource syntax.
Used if weaving is
active.

classpath:
META-INF/
weavingdefaultjpaprops.
properties

Weaving available with PPS 2.0
or later

sap.dataaccess-common.custjpapropertieslocation Location of
customer-specific
JPA properties in
Spring resource
syntax

classpath:
META-INF/
empty.properties

Example value:

classpath:

METAINF/myjpapros.properties

sap.dataaccess-common.packagestoscan Comma-separated
list of package
names to be
scanned for JPA
entities or attribute
converters

com.sap.ppengine.
dataaccess.
promotion.common.entities,
com.sap.ppengine.
dataaccess.
converter.common,
com.sap.ppengine.
dataaccess.baseprice.
common.entities

Should not be changed

sap.dataaccess-common.custpackagestoscan Comma-separated
list of additional
package names to
be scanned for JPA
entities or attribute
converters

<empty> Example value:

,com.mycompany.myentities

(note the leading comma)

sap.dataaccess-common.mappingresources Comma-separated
list of mapping
resource files
overruling/adding to
annotations defined
in the classes for
the JPA entities.
Must be on the
Java classpath.

META-INF/orm.
xml,ppe-schema-orm.xml

Should not be changed

sap.dataaccess-common.custmappingresources Comma-separated
list of maadditional
pping resource file
intended for
customer-specific
extensions

<empty> Example value:

 ,ppe-local-orm.xml

(note the leading comma)

sap.dataaccess-common.cachenamedqueries Switch for caching
the result of named
queries

true Set this to false, if you always
want to access updated regular
prices and OPP promotions.

Disabling the L2 cache for OPP
promotions should not be
needed.

sap.dataaccess-common.promocachespec Cache specification
of the cache for
promotional
information read via
named queries as
defined by Google
Guava

maximumSize = 10000,
expireAfterAccess = 10m,
expireAfterWrite = 20m

Only relevant if

sap.dataaccess-common.

cachenamedqueries = true

sap.dataaccess-common.basepricecachespec Cache specification
of the cache for
single records of
regular prices read
via named queries
as defined by
Google Guava

maximumSize = 10000,
expireAfterAccess = 10m,
expireAfterWrite = 20m

Only relevant if

sap.dataaccess-common.

cachenamedqueries = true

sap.dataaccess-common.currencycodeslocation Location of the
mapping file to
translate between
SAP currency
codes in the
database and ISO
codes used within
JPA entities. Spring
resource syntax is
used.

classpath:META-INF/
currencycodes.properties

sap.dataaccess-common.unitcodeslocation Location of the
mapping file to
translate between
SAP unit codes in
the database and
ISO codes used
within JPA entities.
Spring resource
syntax is used.

classpath:META-INF/
unitcodes.properties

sap.dataaccess-common.languagecodeslocation Location of the
mapping file to
translate between
SAP language
codes in the
database and ISO
codes used within
JPA entities. Spring
resource syntax is
used.

classpath:META-INF/
languagecodes.properties

sap.dataaccess-common.businessunitlocationtypelocation Location of the
mapping file to
translate between
SAP encoding of
business unit types
(same values as
location types of
SAP CAR) codes in
the database and
ARTS codes used
within JPA entities.
Spring resource
syntax is used.

classpath:METAINF/
businessunitlocationtype.
properties

sap.dataaccess-common.currencydecimalslocation Location of the
properties file
containing the
number of decimals
for SAP currency
codes. Only codes
for currencies that
do not have two
decimals are
expected in this file.

Not set Set in dataaccess-ddf or
dataaccess-localdb

sap.dataaccess-common.fixednumberofplacesinproductid Number of digits of
a numerical product
ID including leading
zeros as provided
and expected by
the consumer of the
PPS

18 Length of the SAP ERP material
number is 18

sap.dataaccess-common.db.client SAP client to use
when accessing the
database

./. To be set for each installation

sap.dataaccess-common.logSys Logical system to
use then accessing
information having
compound key
(external ID +
logical system),
such as the SAP
CAR anProductID
d LocationID

./. To be set for each installation

sap.dataaccess-common.defaultBuType Default business
unit type to use
when reading
regular prices and
promotional
eligibilities

RetailStore

sap.dataaccess-common.partitionSizeSqlInStatement Maximum number
of list entries when
using IN operator in
SQL statements

100 Used, for example, during
inbound processing of regular
prices

sap.dataaccess-common.bulkitemelithreshold Threshold for
numbers of line
items deciding if an
item eligibility
prefetch (bulk
access) is
executed.
Note: The overall
number of line
items (without
coupons, and so
on) is compared
against this
threshold - not only
the number of items
for which the
ItemEligibility
reference is still
missing in the
cache.

10 Only relevant if

sap.dataaccess-common.

cachenamedqueries = true

Bulk access for Item Eligibilities
available with PPS 3.0 or later

sap.dataaccess-common.bulkmerchsetelithreshold Threshold for
numbers of line
items deciding if a
Merchandise Set
Eligibility prefetch
(bulk access) is
executed.
Note: The overall
number of line
items (without
coupons, and so
on) is compared
against this
threshold - not only
the number of items
for which the
MerchandiseSet
Eligibility reference
is still missing in the
cache.

10 Only relevant if

sap.dataaccess-common.

cachenamedqueries = true

Bulk access for MerchandiseSet
Eligibilities available with PPS 3.0
or later

sap.dataaccess-common.bulkmerchgroupelithreshold Threshold for
numbers of
merchandise
hierarchy nodes
deciding if a
Merchandise Group
Eligibility prefetch
(bulk access) is
executed.
Note: The overall
number of
merchandise
hierarchy nodes is
compared against
this threshold - not
only the number of
nodes for which the
Merchandise Group
Eligibility reference
is still missing in the
cache.

5 Only relevant if

sap.dataaccess-common.

cachenamedqueries = true

Bulk access for Merchandise
Group Eligibilities available with
PPS 3.0.14 or later

sap.dataaccess-common.overwritewitholderdata Switch controlling
the behavior when
importing OPP
promotions. If set to
true, the imported
promotion replaces
the existing
promotion on the
database,
regardless of the
value of the chang

 attributeedOn
(indicating when
this version of the
promotion was
created). If set to
false, the received
promotion is only
written to the
database if it has
been changed more
recently than the
promotion on the
database.

true If the promotions are sent or
received in the wrong order, the
most recent data are used.

It is not possible to resend an old
IDoc to revert an unwanted
change of a promotion, since the
contained promotion will be
ignored due to its changedOn
value.

Available as of PPS version
3.0.17

Dependencies

This module depends on the following modules:

core
dataaccess-interface (transitive dependency of core since PPS 3.0)

PPS Module dataaccess-ddf

This module provides the specifics for the data access against the SAP HANA database of the SAP Customer Activity Repository system.

Overview

As mentioned in the documentation for the module , the JPA entities should not depend on the specifics of the underlyingdataaccess-common
database or system that provides the database table. In the case of the central PPS, the database tables are defined using the data dictionary of
the SAP Customer Activity Repository system running on an SAP HANA database. This has the following consequences:

No changes are made to the database schema using JPA - SAP Customer Activity Repository is the leading system. This is done by
simply not setting the JPA property .eclipselink.ddl-generation
The format for time stamps in the database is different from the usual format in a Java environment.
The format for Boolean values in the database is different from the usual format in a Java environment.
Running against an SAP HANA database, the JDBC database driver is determined.

Furthermore, the is provided over JNDI when running on SAP HANA XS Advanced.javax.sql.DataSource

This module configures the data access accordingly.

Attribute Converters

The conversion between database values and the attributes of JPA entities is realized using an implementation of javax.persistence.AttributeC
. They are declared in the file on the Java classpath.onverter META-INF/orm.xml

Boolean Values

In ABAP, there is no dedicated basic type for Boolean values. Instead, this information is usually stored in a character array of length 1 with the

following values:

ABAP Boolean

'X' TRUE

'' FALSE

This mapping is implemented by the class located in the module com.sap.ppengine.dataaccess.converter.common.AbapBooleanConverter
.dataaccess-common

Time Stamps

In ABAP, time stamps are stored in a packed decimal number. The following time stamps are known:

A time stamp down to second level (see the domain TZNTSTMPS)
A time stamp down to sub-microsecond level (see the domain TZNTSTMPL)

Only the time stamp with a precision on seconds-level is supported. On the Java side, is usually taken to store time stamps.java.sql.Timestamp
The mapping between ABAP and Java is done as follows:

ABAP value Year Month Day Hour Minute Second Nanoseconds

YYYYMMDDHHMMSS YYYY MM DD HH MM SS 0

 This mapping is implemented by the class located in thecom.sap.ppengine.dataaccess.converter.common.AbapTimestampConverter
module .dataaccess-common

Beans

ID Alias Description

sapDefaultDataSource sapDataSource Factory bean for the data source looking up JNDI for property java:comp/env/jdbc/DefaultDB

sapDefaultDataSource sapDataSource Implementation of the data source reading Spring configuration properties (see below). Only used
if the Spring profile is active, replacing the JNDI variant.development

This option is not meant for productive use.

Configuration Properties

Name Description Default Value Comment

sap.dataaccess-common.currencydecimalslocation Location of the properties file
containing the number of
decimals for SAP currency
codes. Only codes for currencies
that do not have two decimals
are expected in this file.

classpath:/META-INF/currencydecimals.properties Contains a
copy of
TCURX

sap.dataaccess-common.db.driverClassName Name of the JDBC database
driver

com.sap.db.jdbc.Driver Might be
changed in
a test
environment

sap.dataaccess-common.db.url URL of the database connection ./. To be set in
a test
environment

sap.dataaccess-common.db.userName Database user ./. To be set in
a test
environment

sap.dataaccess-common.db.passWord Password of the database user ./. To be set in
a test
environment

http://classpath/META-INF/currencydecimals.properties

Dependencies

This module depends on the following modules:

dataaccess-common

PPS Module dataaccess-localdb

This module the specifics for the access to a local database that is only accessed via JPA.provides

Overview

As mentioned in the documentation for the module , the JPA entities should not depend on the specifics of the underlyingdataaccess-common
database or system that provides the database table. If the PPS is deployed locally in another hosting application, such as in SAP Hybris
Commerce, the following specialties of this module have to be considered:

The default name of the database tables with the prefix can lead to issues. Therefore, the prefix is replaced with the prefix /ROP/ /ROP/ S
 for all PPS database tables.APPS

Additional (named) queries and database fields are needed for the inbound of promotional information. In particular, this is a version field
for JPA optimistic locking on promotion header level.
Additional indexes typically needed in (row store) relational databases are needed in order to speed up the process of reading data.
The database tables are created via JPA.
If you use an Oracle database, the standard logic to set the lengths of character-like columns is not sufficient because it specifies the
length in bytes instead of characters. To overcome this, SAP provides an adjusted implementation
of org.eclipse.persistence.platform.database.DatabasePlatform. This is automatically checked during startup of the application context.

The adjustments are done in the file .first three orm.xml

Indexes

The following table shows the database indexes that are added to the indexes automatically created due to the foreign key relationships that are
defined in the JPA entities:

Table Index Fields Unique?

SAPPSPROMOTION SAP_BYFROMDATE EFFECTIVE_DATE No

SAPPSELIGIBILITY SAP_BYITEMID ITEM_ID
EFFECTIVE_DATE

No

SAPPSELIGIBILITY SAP_BYNODEID NODE_ID
EFFECTIVE_DATE

No

SAPPSELIGIBILITY SAP_BYTYPECODE TYPE_CODE
EFFECTIVE_DATE

No

Beans

This module does not provide a as required by the module. It is expected that this isjavax.sql.DataSource dataaccess-common
provided by the hosting application.

The list of database indexes is most likely incomplete for your specific needs. The index that is used if an SQL query is executed
depends on the database used and on the amount of data in the corresponding tables. We strongly recommend that you review the
database indexes for your specific needs.

When product groups (available with PPS 3.0) are used with a huge amount of product group entries, it could be very helpful to create
indexes in table for the item or the product hierarchy node identifiers.SAPPSMERCH_SET

ID Alias Description

sapDefaultForeignKeyRemover sapForeignKeyRemover Contains functionality to execute the native SQL query specified via configuration
property . Used to remove asap.dataacess-localdb.fkremovalquery
problematic foreign key constraint from the database. Note that this bean itself
does not actively execute the query by itself.

sapDefaultValidationQueries sapValidationQueries Map of known JDBC drivers and appropriate validation queries for the
corresponding DBMS

sapAbstractDataSourceFactory Abstract base class and bean for factories of DataSources supporting connection
pooling with automatic determination of the correct validation query. Can be used
by the hosting application where the type of (pooling) DataSource is known. As
an example, in newer releases, the local PPS within the sapppspricing extension
uses a DataSource created by a child of this class.

sapOracleConsistencyChecks Performs automatic checks during startup of the application context if you use an
Oracle database. Checks if the SAP provided database platform class is
configured in the JPA properties of the entity manager factory.

Required Beans

The following table contains the additional beans that are to be provided if all the dependencies of this module are resolved:

ID/Alias Comment

sapDataSource Provides the database access

Configuration Properties

Name Description Default Value Comment

sap.dataaccess-common.jpapropertieslocation Location of the
JPA properties for
a local
deployment

classpath:/META-INF/

dataaccess-localdb-jpaprops.properties

Should usually not be changed -
see property sap.dataaccesscom
mon.custjpapropertieslocation

sap.dataaccess-localdb.connectionpool.initialsize Initial size of a
connection pool
if used to access
the database via
an own
connection pool

10 Not used in module

sap.dataaccess-localdb.connectionpool.maxsize Maximum size of
a connection pool
if used to access
the database via
an own
connection pool

50 Not used in module

sap.dataaccess-localdb.connectionpool.validationQuery Validation query
used by the
connection pool to
check if the
corresponding
connection is still
usable

select 1 from
INFORMATION_SCHEMA.SYSTEM_US
ERS

Works for HSQLDB, which is the
Hybris default.

Other queries are:

Oracle - select 1 from dual
DB2 - select 1 from
sysibm.sysdummy1
mysql - select 1
MS SQL server - select 1
Postgresql - select 1
Derby - select 1
H2 - select 1

sap.dataaccess-common.currencydecimalslocation Location of the
properties file
containing the
number of
decimals for SAP
currency codes.
Only codes for
currencies that do
not have two
decimals are
expected in this
file.

classpath:/META-INF/empty.properties Java-owned database tables
store amounts in their natural
format

sap.dataacess-localdb.fkremovalquery Native SQL query
which deletes the
foreign key
constraint for the
parent eligibilities
of a given
eligibility record.
This constraint
may cause issues
during IDoc
inbound
processing if the
used DBMS does
not use deferred
foreign key
checks. The
syntax of this
query and the
name of the
foreign key
constraint is
DBMS-specific.

To reduce the risk of data
corruption caused by a wrong
SQL query, it must have a certain
format. See class RemoveForeig

 in case of an issue.nKeyImpl

Dependencies

This module depends on the following modules:

dataaccess-common

PPS Module idocinbound

If you do not set the validation query correctly, the application may not start.

You only have to set the valdiation query if one of the following preconditions is met:

You are using a PPS with patch levels lower than:
PPS 3.0.3
PPS 2.0.5
PPS 1.2.7
PPS 1.1.8
PPS 1.0.14

You are using a PPS with a higher patch level than in the list above, but the JDBC driver class is not in the list of known
drivers. If the driver class is known, the validation query can be determined automatically using a factory bean having bean sap

 as parent bean.AbstractDataSourceFactory

The same patch levels as mentioned above are also required for the foreign key removal query to take effect.

http://classpath/META-INF/currencydecimals.properties

1.
2.

a.
b.

3.

4.

5.

This module provides the implementation IDoc inbound processing for OPP promotions and regular prices.

Overview

If the PPS is deployed locally, for example the PPS is embedded in SAP Hybris Commerce, it accesses its own locally stored data. The module id
 provides the possibility to receive IDocs holding regular prices and OPP promotions and to update this information on the localocinbound

database. These IDocs are usually created by the SAP Customer Activity Repository system that contains the central price and promotion
repository (PPR). The IDoc inbound supports the following IDoc types and the corresponding message types:

Regular prices can be processed using IDoc type (message type)/ROP/BASE_PRICE01 /ROP/BASE_PRICE
OPP promotions can be processed using IDoc type (message type)/ROP/PROMOTION01 /ROP/PROMOTION

These IDocs can be processed only with an XML payload.

The IDoc inbound processing processes the incoming requests synchronously. No staging of requests is executed. Furthermore, only very basic
consistency checks of the IDoc content are performed.

Spring Integration Process Definition

The inbound processing is realized based on . The following figure shows the process flow:Spring Integration

In detail, the following is done:

The IDoc inbound processing is triggered via an HTTP POST request to the context path ./idocinbound
The incoming request is handled by a Spring Integration (). This integration ishttp-inbound-channel-adapter sapIdocInboundGateway
connected to the following Spring Integration channels:

The propagates the request to the next processing stage. sapIdocInboundRequestChannel
The propagates error messages to the corresponding error handler.sapIdocInboundErrorChannel

The request forwarded by is received by , which is a Spring Integration sapIdocInboundAdapter sapIdocToStringTransformer object-t
. Its output, a plain string, is propagated via the channel .o-string-transformer sapIdocInboundStringRequestChannel

At the other end of this channel, a Spring Integration () receives this string.unmarshalling-transfomer sapIdocUnmarshallTransformer
This is a wrapper delegating the actual unmarshaling of the string to a more structured Java class to the that is ansapIdocUnmarshaller
ordinary Spring bean.
This Spring bean of type uses Jackson from FasterXML to convert the string into a Java . Each map entryXmlToMapUnmarshaller Map
represents one element of the XML payload. In addition, it also supports unwrapped lists in the XML document, for example, payloads in

http://projects.spring.io/spring-integration/

5.

6.
7.

8.
a.

b.

9.

10.

a.

b.

c.
d.

11.

which one XML element is contained on the same level several times together with other XML elements. With this approach, it is not
necessary to provide Java classes (usually created by XSD via XJC) for each IDoc type to be processed.
The resulting map is propagated via the channel to the next stage.sapIdocInboundUnmarshalledChannel
This stage is a Spring Integration looking at the IDoc type that is stored in the IDoc control header. Based on the content of thisrouter
field, the name of the channel that forwards the message to the next stage is determined dynamically. The name of the channel follows
the schema is .sapIdocTypeChannel_{idocType}
The following two channels exist in the standard implementation:

sapIdocTypeChannel_/ROP/PROMOTION01 for IDoc type and . This is/ROP/PROMOTION01 /ROP/PROMOTION02
connected to the Spring , delegating the actual work to an ordinaryservice-activator sapPromotionInboundServiceActivator
Spring bean with the name .sapPromotionInboundProcessor
sapIdocTypeChannel_/ROP/BASE_SALES_PRICE01 for IDoc type . This is connected to the Spring /ROP/BASE_PRICE01 se

, delegating the actual work to an ordinary Spring bean with the name rvice-activator sapBasePriceInboundServiceActivator
.sapBasePriceInboundProcessor

If an exception is thrown during the inbound processing, this is automatically wrapped into a message forwarded via the channel sapIdoc
 to the Spring Integration transformer .InboundErrorChannel sapIdocErrorTransformer

The spring integration transformer delegates the actual work to , an ordinary Spring bean. ThissapIdocInboundExceptionTransformer
Spring bean implements the following logic:

If the error message refers to an exception of type issued during the mapping from the IllegalIdocContentExceptionindicating
IDoc to the database format, the HTTP response must have the error code 400 ().Bad Request
In the case of an during posting of the received data, the HTTP response must have the error codeOptimisticLockException
409 ().Conflict
In the case of another exception, the HTTP response must have the error code 500 ().Internal Server Error
In any other cases, the HTTP response will have the error code 200 (), which is the default return code of the HTTP inboundOK
adapter (actually not part of error handling).

The error response is sent via the channel to the Spring Integration sapIdocInboundTransformedErrorChannel object-to-string-trans
. This Spring Integration converts it into a string that is returned to the caller.formersapIdocErrorToStringTransformer

Processing the IDoc Data

After the xml file has been converted into a Java , the converted IDoc content can be mapped to the corresponding entities.Map<String,Object>
This happens in an Inbound-Processor that is implemented by the class or reBasePriceInboundProcessorImpl PromoInboundProcessorImpl
spectively. The inbound processor does the following:

It calls the corresponding mapper to the JPA entities.
It triggers the posting to the database.

Conversion of the IDoc Payload to the Expected Java Types

As the payload in the received IDocs is converted into a Java , you need to convert each field of the content in the JavaMap<String,Object>
types that are expected by the JPA entities. The class is provided for this purpose.EntityTypeConversionHelper

The following Java types are supported by default:

String
BigDecimal
long
Timestamp
int
Character
byte

In addition, the following data is supported and requires special handling:

Unit Of Measure Code: Expected ISO code is verified to determine whether it can be mapped to database format.
Currency Code: Expected ISO code is verified to determine whether it can be mapped to database format.
Language Code: Expected ISO code is verified to determine whether it can be mapped to database format.
Business Unit Type Code: Expected SAP code (corresponding to the DDF location type code) is converted to the corresponding ARTS
format.
Boolean: Expected ABAP format ('X' or '') is converted into a Java Boolean.
Product ID: Expected database format is converted into the format of the JPA entity. This may be different for numeric product IDs. For
more information, see the documentation for the module .dataaccess-common

Regardless of the target JPA entity type, the mapping follows two strategies:

For known JPA entities the received IDoc segments are only processed for the fields of the target entity. This means that if the received
IDoc segment contains unexpected additional fields, they are simply ignored.
In addition, the content of extension segments (name/value pairs) are mapped to the extension maps of the target JPA entity if the JPA
metamodel contains a field with the corresponding name. If the field is not known in the JPA metamodel, it is ignored.

Mapping Regular Prices

Regular prices are mapped by the class , which implements the interface . The regular price entity thatBasePriceMapperImpl BasePriceMapper
needs to be mapped to is , which implements the interface . For more information about the regular price entity, see theBasePriceImpl BasePrice
documentation for the modules and . ppengine-dataaccess-common ppengine-dataaccess-interface

Mapping OPP Promotions

OPP promotions are mapped by the class (that implements the interface Promotion) and its subclasses that represent all thePromotionImpl
entities needed to replicate the runtime model in SAP Customer Activity Repository.
For more information about promotion entities, see the documentation for the modules and ppengine-dataaccess-common ppengine-dataacce

.ss-interface

Posting to the Database

After the mapping process, the JPA entities need to be posted to the database.

Regular Prices

The posting of regular prices must ensure that no overlapping prices exist. Since information about price deletions is not transferred, it has to be
done on the receiver side as follows:

For the corresponding list of business units within a top-level IDoc price segment, the existing prices are read for each product, uom,
price classification, business unit type, and logical system. This is done for all prices with an effective date that is at least the earliest
effective date of the transferred prices.
These prices are compared to the mapping result as follows:

Prices not yet existing are inserted in the database
Prices that existed before are updated in the database if at least one attribute has been changed
Prices that exist in the database that are not part of the received IDoc are removed

The data access for regular sales prices is delegated to the bean .sapBasePriceService

OPP Promotions

The data access for OPP promotions is delegated to the bean .sapPromotionService

Posting of the OPP promotions is either a or a from a JPA perspective point of view. To optimize performance, a merge is executedmerge persist
only if there is already a version for the corresponding promotion ID. Otherwise a persist is done. Physical deletion of an OPP promotion is not
done during IDoc inbound processing.

As of PPS version 2.0, the PPS version is checked against the current PPS version (reflected by the promotion IDoc content-attribute M
).IN_PPS_RELEASE

The current PPS must be able to process the corresponding promotion. This is assumed to be the case if the PPS version of the
promotion is lower than or equal to the version of the local PPS. If this precondition is not fulfilled, the IDoc is rejected. The current PPS
version is stored as a configuration property (). sap.idocinbound.currentppsrelease

OPP promotions marked as obsolete that are not relevant anymore for the receiver of the IDoc, are treated as OPPfor example,
promotions that have been logically deleted on the sender side.

The inbound processing of regular prices relies on the constraint that for a given transfer session all prices for a given combination of
product ID, unit of measure code, price classification, business unit type, and logical system are in the same IDoc. If not, this can result
in inconsistent data.

A top level IDoc segment that contains a lot of business unit IDs reading the existing prices can lead to oversized SQL statements. The
size of these statements can be controlled by the configuration parameter thasap.dataaccess-common.partitionSizeSqlInStatement
t controls the number of business unit IDs that can be part of one SQL statement. If the total number of business units exceeds this
limit, the system automatically reads the data in smaller chunks.

For more information about this configuration parameter, see the documentation for the module .dataaccess-commonin

Beans

ID Alias Description

sapIdocInboundGateway ./. Spring Integration HTTP inbound gateway
receiving IDocs and sending confirmation
responses

sapIdocErrorTransformer Spring Integration Transformer
transforming exceptions created during
request processing into HTTP responses.
Delegates work to the bean sapIdocInbo

 and sends theundExceptionConverter
result to sapIdocErrorToStringTransfor

.mer

sapDefaultIdocInboundExceptionConverter sapIdocInboundExceptionConverter Actual implementation of the exception
conversion. Hides the stack trace from the
response and sets the HTTP response
code depending on the exception type

sapIdocErrorToStringTransformer Spring Integration Transformer creating a
string representation of the converted
error response

sapIdocInboundRequestChannel Spring Integration Channel transporting
the originally received payload of the
HTTP request

sapIdocInboundErrorChannel Spring Integration Channel connecting sa
 and pIdocInboundGateway sapIdocErro

rTransformer

sapIdocInboundTransformedErrorChannel Spring Integration Channel connecting sa
 and pIdocErrorTransformer sapIdocErr

orToStringTransformer

sapIdocToStringTransformer Spring Integration Transformer creating a
string representation of the received IDoc
body payload

sapIdocInboundStringRequestChannel Spring Integration Channel connecting sa
 and pIdocToStringTransformer sapIdoc

UnmarshallTransformer

sapIdocUnmarshallTransformer Spring Integration Unmarshalling
Transformer transforming the string
payload into a format consumable by the
application logic. Delegates work to sapId

.ocUnmarshaller

sapDefaultIdocUnmarshaller sapIdocUnmarshaller Unmarshaller using Jackson to create a
generic representation of the IDoc payload
as a Map<String,Object>

sapIdocInboundUnmarshalledChannel Spring Integration Channel connecting sa
 and pIdocUnmarshallTransformer sapId

ocTypeRouter

sapIdocTypeRouter Spring Integration Router looking at the
IDoc type as stored in the IDoc control
header to decide to which channel the
message shall be forwarded. Channel
name is defined as sapIdocTypeChannel

._<idocType>

sapIdocTypeChannel_/ROP/BASE_PRICE01 Spring Integration Channel connecting sa
 and pIdocTypeRouter sapBasePriceInb

. Intended for IDocoundServiceActivator
type ./ROP/BASE_PRICE01

sapIdocTypeChannel_/ROP/PROMOTION01 Spring Integration Channel connecting sa
 and pIdocTypeRouter sapPromotionInb

. Intended for IDocoundServiceActivator
type ./ROP/PROMOTION01

sapBasePriceInboundServiceActivator Spring Integration Service Activator
receiving representation of a regular price
IDoc, delegating work to sapDefaultBase
PriceInboundProcessor

sapPromotionInboundServiceActivator Spring Integration Service Activator
receiving representation of an OPP
promotion IDoc, delegating work to sapDe
faultPromotionInboundProcessor

sapDefaultEntityTypeConversionHelper sapEntityTypeConversionHelper Helper to read information from the
Map<String,Object> representation of an
IDoc and returning it in the expected java
type

sapDefaultEntityPromoMapper sapEntityPromoMapper Helper to map the complete content of an
OPP promotion IDoc representation as
Map<String,Object> into the
corresponding JPA entities

sapDefaultEntityBasePriceMapper sapEntityBasePriceMapper Helper to map the complete content
regular price IDoc representation as
Map<String,Object> into the
corresponding JPA entities

sapDefaultExtensionMapper sapExtensionMapper Generic mapper of the extension
segments of the OPP promotion IDoc to
the corresponding attributes of the target
JPA entities

sapDefaultPromotionInboundProcessor sapPromotionInboundProcessor Main entry point into the application logic
for inbound processing of OPP promotion
IDocs. Delegates work to mapping helper
and updates the database.

sapDefaultBasePriceInboundProcessor sapBasePriceInboundProcessor Main entry point into the application logic
for inbound processing of regular price
IDocs. Delegates work to mapping helper
and updates the database.

sapDefaultIdocInboundCommon sapIdocInboundCommon Parent bean for all IDoc inbound related
functions, holding commonly used
dependencies.

sapInboundPersistenceAnnotationBeanPostProcessor sapInboundAnnotationBeanPostProcessor Bean post processor that enables the
support of the @Persistence annotation
for a threadsafe . This isEntityManager
required for the generic mapping of IDoc
extension segments.

Note that a Spring Bean of the same type
also exists in the dataaccess-common

However, in a deployment withmodule.
Hybris, the PPS application context is
created in 2 steps and the postprocessor
in the is nodataaccess-common module
longer considered when creating the
second level of the application context
(containing the).idocinbound module

sapDefaultFKRemovalExecutor Bean that automatically executes the
native query for foreign key removal as
offered via bean sapForeignKeyRemove
. The query is executed during ther

initialization of the PPS application context
(as part of the PPS application context in
which the isidocinbound module
located).

Required Beans

The following table contains the additional beans to be provided if all dependencies of this module are resolved:

ID / Alias Comment

sapDataSource Provides the database access

Configuration Properties

The following properties are used by this module:

Name Description Default Value Comment

sap.idocinbound.currentppsrelease Reference to the current
version of the PPS

Depends on the
current PPS version

This property refers to the current PPS version as follows:

The first digits of the decimal representation indicate the
major version of the PPS version.
The next 3 digits of the property indicate the minor version of
the PPS version.
The lowest 3 digits of the property indicate the patch level of
the PPS version.

In PPS versions earlier than 2.0, this property is set to 0.

For example, the property is set to 2000000 in PPS version 2.0
and it is set to 0 in PPS 1.1 and PPS 1.2.

Dependencies

This module depends on the following modules:

dataaccess-localdb
jackson

PPS Performance Hints

The following chapter gives hints on how to achieve optimal performance using the promotion pricing service.

Creating of the Offers

For PPS version 1.0 and 2.0: Keep the offers small. During the price calculation, an OPP promotion is validated for consistency. This
is needed because of cache eviction. The time needed for this grows with the number of OPP promotions (not considering the assigned
business units/locations assigned to the offer version). An offer with thousands of assigned articles may lead to memory and runtime
issues. Try to split one large offer into several smaller ones.

Configuration properties defined in other modules with dependencies on this module may be used because if it is locally deployedNOT
in SAP Hybris Commerce this module is loaded at a later date when the other configuration properties are no longer visible.

 Compared to older PPS versions, the consistency check for theFor PPS version 3.0 and higher: Do not keep the offers too small.
entire OPP promotion is not required for the price calculation. Therefore, OPP promotions with many promotional rules (mapped from
offers with many offer terms) do not impact the performance of the price calculation. However, it is still recommended to make a trade-off
for the size of the offer:

If you maintain many small offers, the size of the offer is dominated by the list of assigned business units. Having the same list of
business units redundantly assigned to many promotions blows up the database and increases the resource consumption during
the replication of OPP promotions.
If you maintain only a few amount of large offers, the probability increases that these offers have to be updated and resent
regularly. In this situation, the replication of a small promotion would be better.

 Each of the product dimensions used within a DDF offer correlates toConsider restricting the set of product dimension types .used
a certain eligibility type within an OPP promotion:

"Product" dimension translates to eligibility type "Item"
"Product Hierarchy Node" dimension translates to eligibility type "Merchandise Category"
"Product Group" dimension translates to eligibility type "Merchandise Set"

Each of these eligibility types must be processed, leading to database calls and entries in caches, increased response time, and
memory consumption. In particular, item and merchandise set eligibilities have a big influence on performance. Since merchandise
set eligibilities offer superior flexibility compared to item eligibilities and merchandise category eligibilities, it might be an option to
always maintain offers for product groups. How you deactivate the processing of certain eligibilities is described in the SDK for the
promotion calculation engine.

Distributing of the Data

 This increases the performance of reading the data during outboundRestrict the filter criteria for the data as much as possible.
processing and avoids the expensive replication of data not needed on the receiver side.

. This delays the transfer of an active OPP promotion so that changes to it beforeConsider the usage of the filter "Lead time in days"
it actually becomes effective do not need to be transferred again. This reduces the amount of transferred data.

Client Side (Price Calculation)

Consider keeping regular prices that were calculated before and provide them with subsequent requests. Note that this has
consequences for the overall behavior - a regular price of a product in a basket would not change any more. Whether this is desired or
not is a business decision.
Provide only product hierarchy nodes on which it is possible to define promotions within your company. The PPS has to search
for eligibilities for each product hierarchy node provided.

 These cookies hold authentication-related information. If the received cookies are notAccept and send cookies of the central PPS.
sent back to the PPS, each request requires a complete authentication.

. Depending on the network and client CPU speed, this may lead to fasterConsider compression of the request sent to the PPS
end-to-end times. In the case of small shopping carts, the effect of this is limited.

 The PPS response is compressed by default. In the case of very fast networkConsider deactivation of the response compression.
connections, it may be faster to deactivate the response compression.

If an ABAP system is the PPS client, the last three settings can be configured for the corresponding RFC destination:

Client Side (Data Replication)

 When you replicate regular prices using parallel processing, the prices may be sent faster than they can beDo not flood the PPS.
processed on the receiver side. When you send large volumes of data this may lead to congestion of the Web server and connection
timeouts. Try to find a balance between the sender and receiver by setting the right number of parallel processes for outbound

processing.

Server Side

Common Rules

 This applies for reading regular prices as well as for finding eligibilities. TheSet the cache for named queries as large as possible.
more query results that can be cached, the less load will be put on the database.

 If you have to save memory and cannot set the cache sizes very high, it is important toKeep an eye on the ratio of the cache sizes.
have a realistic ratio of the sizes for regular price and OPP promotion reference cache. In most real-world scenarios, the ratio between
promotion references and regular prices is about 2:1. This should therefore also be the ratio of the cache sizes (cf. sap.dataaccess-c

 and).ommon.promocachespec sap.dataaccess-common.basepricecachespec
 The longer a query result may stay in the cache, the less often it hasSet the time to live of named query results as long as possible.

to be read again from the database. On the downside, emergency updates (due to wrong prices, for example) will take longer to become
effective since they will be seen only after the time to live within the cache has expired or if the information was evicted from the cache
due to memory shortage.
When using your own database connection pool, make sure the pool size is large enough. To be on the safe side, set the pool to
the same maximum number of threads that may be used by the Web application.

 The log levels "debug" or "trace" should be used only in exceptional cases if something does not work asSet the log level accordingly.
expected.

 UConsider using the bulk access to read regular prices . or eligibilities sing PPS version 2.0 or higher can mean a significant
performance improvement because the bulk access also considers the cache. With PPS version 3.0 or higher, the number of searches
supporting a bulk access has increased:

PPS 2.0 or higher: Regular sales prices. Controlled via configuration parameter sap.client-impl.basepricebulkaccessi
temthreshold
PPS 3.0 or higher: Item eligibilities. Controlled via configuration parameter sap.dataaccess-common.bulkitemelithresho
ld
PPS 3.0 or higher: Merchandise set eligibilities. Controlled via configuration parameter sap.dataaccess-common.bulkmerch
setelithreshold
PPS 3.0.14 or higher: Merchandise hierarchy node eligibilities. Controlled via configuration parameter sap.dataaccess-comm
on.bulkmerchgroupelithreshold

. This keeps the database access times lowRemove obsolete promotions and regular prices from the database on a regular basis
and reduces TCO.

Local-PPS-Specific

. This enables the use of optimized SQL statements.Set the target database platform in the JPA parameters

XSA-Based-PPS-Specific

 Unlike the Web application of the PPS, which maintains a thread pool internally, the application routerScale the application router.
always runs in a single thread. This may become a bottleneck if the load is increased. Therefore, use the command to providexs scale
enough instances of the application. As a starting point, choose 1 application router instance per 10 tomcat threads.

 .Log failed login attempts only As of with XSA version 1.0.88, it is possible to configure the audit log to create log entries for failed login
attempts only. This considerably reduces the amount of entries and improves performance under high load. Enabling the audit log to
consider only failed attempts is done in the MTAEXT file as follows:

- name: ppservice-webapp-central
 parameters:
 memory: 4096M
 properties:
 DISABLE_SUCCESSFUL_LOGIN_AUDIT_LOG: "true"

Database Side
 Proper indexes are crucial for fast access times. Since the choice of indexes heavily dependsCheck the database indexes regularly.

on the database platform and the content of the database tables, it is not possible to give precise recommendation here.
Example: When you use product groups (available with PPS 3.0) with a huge amount of product group entries, it is helpful to
create indexes in table for the item or the product hierarchy node identifiers.SAPPSMERCH_SET

 This may sound obvious but is often overlooked. Again, this depends greatly on the databaseSet the right configuration parameters.
platform used. Just as an example: if you are using MySQL, setting the option rewriteBatchedStatements=true will have a large impact

1.

on IDoc inbound processing.

PPS Logging and Tracing

PPS uses SLF4J for logging and tracing. SLF4J provides a facade for writing log messages making the application independent from the actual
logging framework. The logging implementation behind SLF4J a common choice of the runtime environment, for example, within SAPshould be
Hybris Commerce Log4J2 is used. In addition to the SAP created artifacts, PPS makes use of a variety of open source components relying on
different logging frameworks.

To enable consistent logging, you have to do the following:

Spring and the promotion calculation engine (cf. module calcengine-gk) rely on Jakarta Commons Logging (https://commons.apache.org/
). To enable logging via the implementation of SLF4J, jcl-over-slf4j is used.proper/commons-logging/

Google Guava relies on the logger provided via the Java JDK. To enable logging via the implementation of SLF4J, jul-over-slf4j is used.
EclipseLink comes with its own logging. To enable logging via the implementation of SLF4J, class

is used to redirect the output to SLF4J.com.sap.ppengine.dataaccess.common.util.impl.Slf4jSessionLogger

Further information about logging bridges can be found here: http://www.slf4j.org/legacy.html

PPS Authentication

Our application is authenticated in SAP HANA XS Advanced Model (XSA) using the application router. There are two methods of authentication
using an application router:

OAUTH2 authentication
BASIC authentication

The setup of both authentication methods is the same.
 authentication is always active. If you want to use authentication, you can activate this method additionally.OAUTH2 BASIC

For more information about the application router, see the SAP HANA Developer Guide for SAP HANA XS Advanced Model > Chapter 9:
Maintaining XS Advanced Application Routes and Destinations.
For more information about the XSA security concept, see SAP HANA Developer Guide for SAP HANA XS Advanced Model > Chapter 10:
Setting Up Security Artifacts.

Enabling XSA Authentication

This section describes how to enable XSA authentication in a Web application. It is assumed that you are using Maven as your build tool. If you
use another build tool, you have to adjust the corresponding steps accordingly.

The file of your Web application must define a and a that contains the scope Thiweb.xml <login-config> <security-constraint> Calculate.
s scope is needed to use the service and the URL patterns that are to be protected.

When writing own log messages, use SLF4J as well. This ensures a fast logging and consistent configuration, also for future
deployment options where a different logging implementation might be used.

Due to the delegation of commons-logging and the native Java logging API to SLF4J, these frameworks cannot be used as logging
implementation, since this would result in an infinite loop.

https://commons.apache.org/proper/commons-logging/
https://commons.apache.org/proper/commons-logging/
http://www.slf4j.org/legacy.html

1.

2.

web.xml

<login-config>
 <auth-method>XSUAA</auth-method>
 </login-config>
 <security-constraint>
 <display-name>SecurityConstraint</display-name>
 <web-resource-collection>
 <web-resource-name>WRCollection</web-resource-name>
 <url-pattern>/restapi/*</url-pattern>
 <url-pattern>/restapi</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Calculate</role-name>
 </auth-constraint>
 </security-constraint>

XSA applications are expected to have a Web part and a back-end part. The Web part contains all the UI stuff (static content) and also
the authentication and redirection task. The back-end part contains the business logic. Authentication and redirection is executed with the
application router, which is an XSA feature. As the PPS does not need a UI, our Web part consists only of the application router part.

The application router function is configured in a file called package.json. This file defines the start script and the version of the
application router. It is located in Maven module ppservice-approuter (Web folder).

package.json

{
 "name": "ppengine-approuter",
 "dependencies": {
 "approuter": "2.3.0"
 },
 "scripts": {
 "start": "node node_modules/approuter/approuter.js"
 }
}

To redirect incoming requests correctly, our application router needs routes to be defined in the file xs-app.json. This file is also
located in Maven module ppservice-approuter (Web folder).

You need at least version 1.6.3 to configure the application router function.

2.

3.

xs-app.json

{
 "routes": [
 {
 "source": "/restapi",
 "destination": "java",
 "authenticationType": "basic",
 "csrfProtection": false,
 "scope": "$XSAPPNAME.Calculate"
 },
 {
 "source": "^/(.*)",
 "localDir": "resources"
 }
]
}

In this example, the route to our is the most important. The name of the is . It needs to be aligned withrestapi destination java
the corresponding destination in the manifest file. The is set to . With this parameter you can, forauthenticationType basic
example, specify that basic authentication should also be supported). is disabled and the for our webapp iscsrfProtection scope
set.

Since the PPS does not need a UI, the file is just an empty HTML page. The is called after a successfulindex.html index.html
login (only in the case of authentication).OAUTH
This file is also located in Maven module (folder).ppservice-approuter web/resources

index.html

<!DOCTYPE HTML>
<html>
 <head>
 <title>ppservice-approuter</title>
 </head>
 <body>
 </body>
</html>

To deploy your application router and your Web application, you need to create the following files:

assembly.xml

<!-- Artifact: assembly @Copyright (c) 2016, SAP SE, Germany, All
rights
 reserved. -->
<assembly
 xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembl
y/1.1.3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-p
lugin/assembly/1.1.3 http://maven.apache.org/xsd/assembly-1.1.3.xsd">
 <id>mta</id>
 <formats>

3.

 <format>jar</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <files>
 <file>
 <source>./mtad.yaml</source>
 <outputDirectory>META-INF</outputDirectory>
 </file>
 <file>
 <source>./xs-security.json</source>
 <outputDirectory>.</outputDirectory>
 </file>
 </files>
 <fileSets>
 <fileSet>
 <directory>../ppservice-approuter/web</directory>
 <outputDirectory>web</outputDirectory>
 <excludes>
 <exclude>pom.xml</exclude>
 </excludes>
 </fileSet>
 </fileSets>
 <dependencySets>
 <dependencySet>
 <includes>

<include>com.sap.retail.ppservice:ppservice-webapp-central</include>
 </includes>
 <outputDirectory>/</outputDirectory>

<outputFileNameMapping>ppservice-webapp-central.war</outputFileNameMa
pping>
 </dependencySet>
 <dependencySet>
 <includes>
 <include>*:sources</include>
 </includes>
 <outputDirectory>src</outputDirectory>
 </dependencySet>
 <dependencySet>
 <includes>
 <include>*:javadoc</include>
 </includes>
 <outputDirectory>javadoc</outputDirectory>

3.

 </dependencySet>
 </dependencySets>
</assembly>

The file contains the linking of the different files that are needed for the deployment and the dependency to the webapp.assembly.xml

mtad.yaml

_schema-version: "2.0.0"
ID: com.sap.retail.ppservice.XSAC_OPP_PPS
version: 1.0.0
modules:
 - name: ppservice-approuter
 type: javascript.nodejs
 path: ./web
 requires:
 - name: ppServiceUaa
 - name: java
 group: destinations
 properties:
 name: java
 url: ~{url}
 forwardAuthToken: true

 - name: ppservice-webapp-central
 type: java.tomcat
 path: ppservice-webapp-central.war
 properties:
 JBP_CONFIG_RESOURCE_CONFIGURATION:
 JBP_CONFIG_JAVA_OPTS:
 provides:
 - name: java
 properties:
 url: "${default-url}"
 requires:
 - name: ppeHana
 - name: ppServiceUaa

resources:
 - name: ppeHana
 type: org.cloudfoundry.user-provided-service

 - name: ppServiceUaa
 type: com.sap.xs.uaa-space
 parameters:
 config_path: xs-security.json

The file contains both modules (approuter and webapp) and the resources (only services).mtad.yaml

3.

SL_MANIFEST.xml

<!--
Artifact: SL_MANIFEST
@Copyright (c) 2016, SAP SE, Germany, All rights reserved.
-->
<software-component-version formatVersion="1.0" schemaVersion="1.0">
 <software-component-version-key>
 <PPMS-ID>73554900100200005395</PPMS-ID>
 <name>XSAC_OPP_PPS</name> <!--change also in
mtad.yaml-->
 <version>1</version>
 <vendor>sap.com</vendor>
 </software-component-version-key>
 <caption>XSAC_OPP_PPS 1</caption>
 <sp>
 <sp-key>
 <name>SP000</name>
 <sp-level>000</sp-level>
 <vendor>sap.com</vendor>
 </sp-key>
 <patch-level>0</patch-level>
 <sp-caption>SP000 for XSAC_OPP_PPS 1</sp-caption>
 </sp>
 <runtime-type>XSART</runtime-type>
</software-component-version>

The file contains only some naming and version information.SL_MANIFEST.xml

sap-xsac-opp-pps pom.xml

<?xml version="1.0"?>
<!-- Artifact: pom @Copyright (c) 2016, SAP SE, Germany, All rights
reserved. -->
<project
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>xsac-pps-parent</artifactId>
 <version>1.0.0</version>
 </parent>
 <artifactId>sap-xsac-opp-pps</artifactId>
 <name>sap-xsac-opp-pps</name>
 <packaging>pom</packaging>
 <url>http://sap.com</url>
 <dependencies>
 <dependency>

3.

 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppservice-webapp-central</artifactId>
 <version>${project.version}</version>
 <type>war</type>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppservice-approuter</artifactId>
 <version>${project.version}</version>
 <type>pom</type>
 </dependency>
 <!-- Set dependency to Source JARs. Unfortunately they seem to
be not transitive -->
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-core</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-client-impl</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-dataaccess-interface</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-dataaccess-common</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-jackson</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-restapi</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-client-interface</artifactId>
 <version>${version.pps}</version>

3.

 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-psi-sap</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-core</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-dataaccess-sap</artifactId>
 <version>${version.pps}</version>
 <classifier>sources</classifier>
 </dependency>

 <!-- Set dependency to JavaDoc JARs. Unfortunately they seem
to be not transitive -->
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-core</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-client-impl</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-dataaccess-interface</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-dataaccess-common</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-jackson</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>

3.

 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-restapi</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>ppengine-client-interface</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-psi-sap</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-core</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>
 <dependency>
 <groupId>com.sap.retail.ppservice</groupId>
 <artifactId>pricing-engine-dataaccess-sap</artifactId>
 <version>${version.pps}</version>
 <classifier>javadoc</classifier>
 </dependency>

 </dependencies>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <configuration>
 <descriptors>
 <descriptor>assembly.xml</descriptor>
 </descriptors>
 </configuration>
 <executions>
 <execution>
 <id>assemble-mta-archive</id>
 <phase>prepare-package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <archive>

<addMavenDescriptor>false</addMavenDescriptor>
 <manifest>

3.

<addDefaultImplementationEntries>false</addDefaultImplementationEntri
es>

<addDefaultSpecificationEntries>false</addDefaultSpecificationEntries>
 </manifest>
 <manifestSections>
 <manifestSection>
 <name>web/</name>
 <manifestEntries>

<Content-Type>text/directory</Content-Type>

<MTA-Module>ppservice-approuter</MTA-Module>
 </manifestEntries>
 </manifestSection>
 <manifestSection>

<name>ppservice-webapp-central.war</name>
 <manifestEntries>

<Content-Type>application/zip</Content-Type>

<MTA-Module>ppservice-webapp-central</MTA-Module>
 </manifestEntries>
 </manifestSection>
 <manifestSection>
 <name>xs-security.json</name>
 <manifestEntries>

<Content-Type>application/json</Content-Type>

<MTA-Resource>ppServiceUaa</MTA-Resource>
 </manifestEntries>
 </manifestSection>
 <manifestSection>

<name>META-INF/mtad.yaml</name>
 <manifestEntries>

<Content-Type>text/plain</Content-Type>
 </manifestEntries>
 </manifestSection>
 </manifestSections>
 </archive>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>${version.maven.antrun}</version>
 <executions>

3.

 <execution>
 <id>filter-metadata</id>
 <phase>none</phase>
 </execution>
 <execution>
 <id>copy-jar-to-mtar</id>
 <phase>package</phase>
 <goals>
 <goal>run</goal>
 </goals>
 <configuration>
 <target>
 <copy

file="${project.build.directory}/sap-xsac-opp-pps-${project.version}-
mta.jar"

tofile="${project.build.directory}/sap-xsac-opp-pps-${project.version
}.mtar" />
 </target>
 </configuration>
 </execution>
 <execution>
 <id>copy-SL_MANIFEST.XML</id>
 <phase>prepare-package</phase>
 <goals>
 <goal>run</goal>
 </goals>
 <configuration>
 <target>
 <copy
file="${basedir}/SL_MANIFEST.XML"
tofile="${project.build.directory}/SL_MANIFEST.XML" />
 </target>
 </configuration>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>com.sap.lm.sl.alm.prod.assembler</groupId>

<artifactId>alm-prod-assembler-maven-plugin</artifactId>
 <version>${version.maven.alm.assembler}</version>
 <configuration>
 <mtaSourceDirs>
 <param>${project.build.directory}</param>
 </mtaSourceDirs>
 <targetDir>${project.build.directory}</targetDir>

<resultZip>${project.build.directory}/sap-xsac-opp-pps-${project.vers
ion}.zip</resultZip>
 <overwrite>true</overwrite>
 </configuration>

3.

 <executions>
 <execution>
 <id>create-SCA</id>
 <phase>package</phase>
 <goals>
 <goal>assemble</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <executions>
 <execution>
 <id>attach-distributions</id>
 <phase>verify</phase>
 <goals>
 <goal>attach-artifact</goal>
 </goals>
 <configuration>
 <artifacts>
 <artifact>

<file>${project.build.directory}/sap-xsac-opp-pps-${project.version}.
mtar</file>
 <type>mtar</type>

 </artifact>
 <artifact>

<file>${project.build.directory}/XSACOPPPPS${version.software.compone
nt}.ZIP</file>
 <type>zip</type>
 </artifact>
 </artifacts>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

3.

4.

</project>

The block in this pom file ensures the creation of the MTA and SCV files. All these files are located in Maven module <build> sap-xsac-o
 (directly under the root folder).pp-pps

A file is needed to define the , and of our application. This can be done with a file called scopes attributes role-templates xs-security.json
:. This file is also located directly under Maven module , and could look as followssap-xsac-opp-pps

xs-security.json

{
 "xsappname" : "ppservice-webapp-central",
 "scopes" : [{
 "name" : "$XSAPPNAME.Calculate",
 "description" : "calculate" }
],
 "role-templates": [{
 "name" : "PPE_ROLE_TEMPLATE",
 "description" : "PPE Role Template",
 "scope-references" : [
 "$XSAPPNAME.Calculate"
]
 }
]
}

In this example, one and one are defined. The scope is checked by the application router and in the file.role-template scope web.xml

Subpages for Development & Extension Guide CARAB2.0 FP02

Mapping examples For Mix and Match Offers (new with CARAB 2.0 FP02)

Example 4: Buy three products of product group 'Yoghurt' and get one product of product group 'Yoghurt' for free.
 The product group 'Yoghurt' has the following components:

 - Merchandise group MC1 is included

 - Merchandise group MC2 is excluded

 - Item A and Item B are also included

This offer is translated to one the Buy and the Get condition are linked with AND as eligibilities PromotionPriceDerivationRule, MerchandiseSe
, which contains the threshold values and a reference to the , which is a subentity to the tPriceDerivationRuleEligibility MerchandiseSet Promot

ion.

As the threshold quantity is greater than one, the is considered as only "Shopping Cart" relevant and thePromotionPriceDerivationRule
corresponding indicator (attribute) is set. notConsideredInLineItemModeFlag

In this example the Customizing switch for using the enhanced product groups is active. The indicator is set to andEnforce Multiple Yes
no is to be set.Limit

The components of the product group (items and merchandise hierarchy nodes) are stored in the The consistMerchandiseSet. MerchandiseSet
s of a root node with type code . Below this root node are the items and merchandise groups modeled as child nodes. The foOPR Combination '1'
r child nodes marks the node as included, the means the child node is excluded in the product group. The discount is modeled as Combination '2'

. This contains again a reference to the the typeMixAndMatchPriceDerivationItem MixAndMatchPriceDerivationItem MerchandiseSet,
code for the item is (product group).PG

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion = 1PromotionID

PromotionPriceDerivationRule = 1PromotionPriceDerivationRuleID
 = 1Sequence
 = 0Resolution

= X NotConsideredInLineItemModeFlag

CombinationPriceDerivationRuleEligibility = COMBTypeCode
 = &&CombinationCode

MerchandiseSetPriceDerivationRuleEligibility = MSETTypeCode
 = QUTIThresholdTypeCode

 = 3ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 3IntervalQuantity
 = 123MerchandiseSetID

MerchandiseSetPriceDerivationRuleEligibility = MSETTypeCode
 = QUTIThresholdTypeCode

 = 3ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 3IntervalQuantity
 = 123MerchandiseSetID

MixAndMatchPriceDerivationRule = MMTypeCode
 = &&CombinationCode

 = POPriceRuleControlCode
 = 00DiscountMethodCode

MixAndMatchPriceDerivationItem = PGTypeCode
 = PSPriceModificationMethodCode

= 0,000NewPriceAmount
 = 1 RequiredQuantity
= 123MerchandiseSetID

MerchandiseSet = 100MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100ParentMerchSetNodeID
 = 100RootMerchSetNodeID

 = 0Combination
 = OPRTypeCode
 = DFOperation

 = 1PromotionID

MerchandiseSet = 101 MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100 ParentMerchSetNodeID
 = 100 RootMerchSetNodeID

 = 1 Combination
 = ITEM TypeCode

 = A ItemID
 = 1PromotionID

MerchandiseSet = 102 MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100 ParentMerchSetNodeID
 = 100 RootMerchSetNodeID

 = 1 Combination
 = ITEM TypeCode

 = B ItemID
 = 1PromotionID

MerchandiseSet = 103 MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100 ParentMerchSetNodeID
 = 100 RootMerchSetNodeID

 = 1 Combination
 = MSTR TypeCode

 = MC1 MerchandiseHierarchyGroupID
 = 1MerchandiseHierarchyGroupIDQualifier

 = 1PromotionID

MerchandiseSet = 104 MerchandiseSetNodeID
 = 123 MerchandiseSetID

 = 100 ParentMerchSetNodeID
 = 100 RootMerchSetNodeID

 = 2 Combination
 = MSTR TypeCode

 = MC2 MerchandiseHierarchyGroupID
 = 1MerchandiseHierarchyGroupIDQualifier

 = 1PromotionID

Mapping examples For Simple Discount Offers (modified with CARAB 2.0 FP02)

Example 4: Buy three products of product group 'Yoghurt' for a discount price of USD 1.33

 The product group 'Yoghurt' has the following components:

 - Merchandise groups MC1 and MC2
 - Item A and Item B are also included

This offer is translated to one PromotionPriceDerivationRule. As the threshold quantity is greater than one, the PromotionPriceDerivationRul
e is considered as only "Shopping Cart" relevant and the corresponding indicator (attribute) is set. ThenotConsideredInLineItemModeFlag
product group is modeled as an eligibility tree with the two merchandise categories and the two products as child eligibilities below the Combinati
onPriceDerivationRuleEligibility that uses the combination code (OR with total quantity)OR . The threshold quantity and the limit information is
also stored in the CombinationPriceDerivationRuleEligibility. The discount is stored in the ItemPriceDerivationRule with a PriceRuleControl
Code PO (Item Discount Calculated After Each Item). Information about the indicator is stored in the Regular Price Only ItemPriceDerivationRul

 (attribute).e noPreviousMonetaryDiscountAllowedFlag

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

= X NotConsideredInLineItemModeFlag

CombinationPriceDerivationRuleEligibility TypeCode = COMB
 = ORCombinationCode

 = QUTIThresholdTypeCode
 = 3ThresholdQuantity

 = 9,999,999,999LimitQuantity
 = 3IntervalQuantity

 = PCUomCode

MerchandiseHierarchyPriceDerivationRuleEligibility TypeCode = MSTR
= 1MerchandiseHierarchyGroupIDQualifier

 = MC1MerchandiseHierarchyGroupID
 = COMBThresholdTypeCode

 In this example the Customizing switch for using the enhanced product groups is inactive and so the inclusion of items and
merchandise hierarchy nodes is supported.

The product group 'Yoghurt' consists of a subset of assignments of two merchandise categories and two single products. The Enforce
 indicator is set to indicator is also be set and no is to be set.Multiple Yes, the Regular Price Only Limit

MerchandiseHierarchyPriceDerivationRuleEligibility TypeCode = MSTR
= 1MerchandiseHierarchyGroupIDQualifier

 = MC2MerchandiseHierarchyGroupID
 = COMBThresholdTypeCode

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = AItemID

ItemPriceDerivationRuleEligibility TypeCode = ITEM
 = BItemID

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = PTPriceModificationMethodCode
= 1.33PriceModificationPercent

 = 00DiscountMethodCode
= XNoPreviousMonetaryDiscountAllowedFlag

Example 5: Buy three products of product group 'Yoghurt' for a discount price of USD 1.33

 The product group 'Yoghurt' has the following components:

 - Merchandise group MC1 is included

 - Merchandise group MC2 is excluded

 - Item A and Item B are also included

This offer is translated to one . As the threshold quantity is greater than one, the PromotionPriceDerivationRule PromotionPriceDerivationRul
considered as only "Shopping Cart" relevant and the corresponding indicator (attribute) is set. e is notConsideredInLineItemModeFlag

The product group is modeled as , which contains the threshold values and a reference to theMerchandiseSetPriceDerivationRuleEligibility
MerchandiseSet, which is a subentity to the The components of the product group (items and merchandise hierarchy nodes) arePromotion.
stored in the The consists of a root node with type code . Below this root node, there are the items andMerchandiseSet. MerchandiseSet OPR
merchandise groups modeled as child nodes. The for child nodes marks the node as included, the means theCombination '1' Combination '2'
child node is excluded in the product group. The discount is stored in the with a (ItemPriceDerivationRule PriceRuleControlCode PO Item

 The information about the indicator is stored in the (attribute Discount Calculated After Each Item) Regular Price Only ItemPriceDerivationRule n
).oPreviousMonetaryDiscountAllowedFlag

The following table shows how this example is translated to the price and promotion repository:

Entity Field Mapping

Promotion PromotionID = 1

PromotionPriceDerivationRule PromotionPriceDerivationRuleID = 1
 = 1Sequence
 = 0Resolution

= X NotConsideredInLineItemModeFlag

MerchandiseSetPriceDerivationRuleEligibility TypeCode = MSET
 = QUTIThresholdTypeCode

 = 3ThresholdQuantity
 = 9,999,999,999LimitQuantity

 = 3IntervalQuantity
 = 123MerchandiseSetID

ItemPriceDerivationRule TypeCode = RB
 = POPriceRuleControlCode

 = PTPriceModificationMethodCode
= 1.33PriceModificationPercent

 = 00DiscountMethodCode
= XNoPreviousMonetaryDiscountAllowedFlag

In this example the Customizing switch for using the enhanced product groups is active. The indicator is set to Enforce Multiple Yes, the
indicator is also be set and no is to be set.Regular Price Only Limit

MerchandiseSet MerchandiseSetNodeID = 100
 MerchandiseSetID = 123

 = 100ParentMerchSetNodeID
 = 100RootMerchSetNodeID

 = 0Combination
 = OPRTypeCode
 = DFOperation

 = 1PromotionID

MerchandiseSet MerchandiseSetNodeID = 101
 MerchandiseSetID = 123

 ParentMerchSetNodeID = 100
 RootMerchSetNodeID = 100

 Combination = 1
 TypeCode = ITEM

 ItemID = A
 PromotionID = 1

MerchandiseSet MerchandiseSetNodeID = 102
 MerchandiseSetID = 123

 ParentMerchSetNodeID = 100
 RootMerchSetNodeID = 100

 Combination = 1
 TypeCode = ITEM

 ItemID = B
 PromotionID = 1

MerchandiseSet MerchandiseSetNodeID = 103
 MerchandiseSetID = 123

 ParentMerchSetNodeID = 100
 RootMerchSetNodeID = 100

 Combination = 1
 TypeCode = MSTR

 MerchandiseHierarchyGroupID = MC1
 MerchandiseHierarchyGroupIDQualifier = 1

 PromotionID = 1

MerchandiseSet MerchandiseSetNodeID = 104
 MerchandiseSetID = 123

 ParentMerchSetNodeID = 100
 RootMerchSetNodeID = 100

 Combination = 2
 TypeCode = MSTR

 MerchandiseHierarchyGroupID = MC2
 MerchandiseHierarchyGroupIDQualifier = 1

 PromotionID = 1

OPP Promotions - Modified for CARAB 2.0 FP02

OPP Promotions

The outbound interface that is needed to send OPP promotions to external systems is based on IDocs. IDoc types and /ROP/PROMOTION01 /R
are provided for this. The following picture shows the structure for IDoc type OP/PROMOTION02 /ROP/PROMOTION02:

This structure reflects the database structure of the OPP promotion. The corresponding message type for the IDoc types is ./ROP/PROMOTION

As with the regular prices, the outbound is realized using the data replication framework (DRF). Different outbound implementations and filter
objects are offered for this.

As of CAR 3.0 FP2, the outbound of OPP promotions is supported in the following ways:

The business object-centric outbound as offered starting with CAR 2.0 FP3: The underlying principle of this option is to replicate the
business object structure of the OPP promotion as it is and to make no changes to the message content. The business system assigned
to the corresponding DRF replication model determines the receiver of the created IDocs.
The location-specific outbound: This is optimized for the supply store like receivers not interested in the whole content of the OPP
promotion - in particular with regards to the overall set of location assigned to that promotion. The business units assigned to the OPP
promotion determine the receivers of the created IDocs. Each receiver gets only a view to the OPP promotion, with only "his" location
assigned. In addition, OPP promotions that do not have the status "active" or are no longer relevant for the receiver of the IDoc are
transferred only in a truncated version containing only the header with CHANGE_INDICATOR set to 'D' and the assigned
location/business unit.

Outbound Implementation for Promotion-Centric Outbound Processing

The predefined outbound implementation for OPP promotions is . This implementation uses filter object . The filterROP_PROMO ROP_PROMO
execution time during change analysis is predefined in the data processing and you cannot change it when you configure a replication model. This
means that the filter is always applied after the change analysis. The outbound implementation class is Th /ROP/CL_PROMOTION_OUTBOUND.
is class implements interface . This outbound implementation has two predefined outbound parameters:IF_DRF_OUTBOUND

TASK_SIZE_PROCMSG
This parameter is relevant only if you execute data replication and have set the indicator to . The parameter sets theParallel Processing
maximum number of OPP promotions processed in each parallel package.
PACK_SIZE_BULK
This parameter sets the maximum number of OPP promotions processed for each IDoc. If you want to use the parallel processing, set
this parameter to a smaller value then parameter .TASK_SIZE_PROCMSG

In addition to these a specific OPP outbound parameter is given:

/ROP/GENERIC_ENH_MAP
This parameter enables DRF outbound for promotion to execute a generic mapping. In that case it must be set to "X". For more
information about this feature, see below under chapter "Generic Mapping of Customer Enhancement Segments".

Outbound Implementation for Location-Specific Outbound Procesing

The predefined outbound implementation for OPP promotions is . This implementation uses filter object containingROP_PRO_ST ROP_PRO_ST
two filters: the same filter as for the business object-centric outbound for determining the OPP promotions, and an additional filter for specifying
the target locations of the IDocs to be created. The filter execution time during change analysis is predefined in the data processing and you
cannot change it when you configure a replication model. This means that the filter is always applied after the change analysis. The outbound
implementation class is This class implements interface . The supported /ROP/CL_PROMO_STORE_OUTBOUND. IF_DRF_OUTBOUND
outbound parameters are the same as for the business object-centric outbound.

Filtering the OPP Promotions

Data filtering allows you to replicate specific OPP promotions. The following criteria can be used for filtering:

Field In Static Filter
/ROP/PROMO_DRF_FILTER_STY

In Manual Request Filter
/ROP/PROMO_DRF_MAN_FILTER_STY

Comment

Master data system

Sales organization List of single values only, no
exclusions

Distribution channel List of single values only, no
exclusions

Location hierarchy type

Location hierarchy ID

Location hierarchy node ID

The implementation of the Promotion Outbound assumes that the combination of outbound implementation and assigned business
system is unique. This is a slightly different assumption than that made by DRF, which expects (and ensures) that the combination of
business object type and business system is unique. This does not make a difference for the standard delivery but it must be kept in
mind if you create your own outbound implementations based on the logic delivered by SAP.

Further differences between these two options are listed in the SAP application help.

Location ID

Location type

Promotion ID

External ID of the promotion (the offer
ID)

Promotion type

Start of the validity period Daily granularity only

End of the validity period Daily granularity only

Lead time in days Single value only, no exclusion

Latest change date Daily granularity only

The filter class is for the business object-centric outbound and for the /ROP/CL_PROMOTION_FILTER /ROP/CL_PROMO_STORE_FILTER
location-specific outbound. Both classes implement interface . IF_DRF_FILTER

Controlling the Target Locations

This is relevant only for the location-specific outbound. The following criteria can be used to specify the target locations and therefore the set of
IDocs to be created:

Field In Static Filter
/ROP/PROMO_STO_FILTER_STY

In Manual Request Filter
/ROP/PROMO_STO_MAN_FILTER_STY

Comment

Target location
ID

Target location
type

Flag "Send Also
Deletions"

Only single values "Yes" or "No" allowed. If set to
"Yes", then both target location ID and target location
type must be specified.

The meaning of the "Send Also Deletions" flag is described in the system documentation for data element ./ROP/SEND_DELETIONS

Generic Mapping of Customer Enhancement Segments

When doing simple customer enhancements in the OPP data model by adding additional attributes so called customer includes (SAP CI) might be
implemented. Each OPP table contains such a possibility to add customer specific attributes. The DRF outbound for sending OPP promotions
offers a possibility to map these additional attributes to the corresponding enhancement segment of the IDoc type /ROP/PROMOTION01 or
/ROP/PROMOTION02 respectively in a generic way. Each IDoc segment of the OPP promotion IDoc types includes a correspondning
enhancement segment (see above) which structure is well defined. It contains 3 fields : One for the field group (filled with "SAP_CI" when generic
mapping is active) , a second one for the attribute name (generically filled with customer's attribute name) and a third one for the attribute value
(generically filled with the corresponding attribute value). From customer point of view these enhancement segments can be mapped by
implementing a BAdI or by activating a generic mapping that executes a 1:1 mapping from the additional attribute to the enhancement segment.
The generic mapping feature can be activated by a specific DRF outbound parameter called /ROP/GENERIC_ENH_MAP. (This OPP specific
parameter exists beside of the DRF standard parameters already mentioned above). When creating the DRF outbound replication model for OPP
Promotions this parameter must be maintained and set to "X". Doing this the generic mapping is activated. Nevertheless, a combination of this 1:1
mapping and a more complex mapping process implemnted by a BAdI is possible.

 In the following overview all types are listed that can be used for this generic mapping:

Character Container and Strings
Numerical Characters (n)
Long, Integer, Short, Byte
Packed Number (p)
Float, Decfloat
Date
Time

There are following restrictions :

There are no filter criteria for the external action attributes as these attributes are only subordinated elements of the price rule. From a
business point of view, filtering by these fields is not relevant.

1.
2.

3.

4.

5.

6.

7.
8.

9.

Internal tables
Referneces
Deep structures
RAW
RAWSTRING
Boxed Components
Strings longer than 255 characters

Transfer OPP Promotions Using the Global Object List

The following applies for the business object-centric outbound as well as the location-specific outbound.

During the initial and delta load, the filter criteria and the database table are evaluated to decide which OPP promotions/ROP/DRF_OBJLIST
have been changed and are to be replicated. This list serves the following purposes:

It detects that a formerly relevant and transferred OPP promotion is obsolete. This may happen if an attribute of an OPP promotion (such
as promotion type) is specified in the filter but its new value no longer matches the filter. This must be communicated to the
corresponding receiver.
It supports the filter criterion . This makes sure that an OPP promotion is not transferred unless it is close to its validation date.Lead Time
To keep track of these OPP promotions, it is necessary to observe OPP promotions that are to be valid soon so that they are sent via the
delta load even if there have been no changes. If not, only OPP promotions with unprocessed change pointers are to be considered.

In addition, MDG change pointers are created for the delta load when creating, updating, and deleting an OPP promotion.

The following logic is applied, depending on whether an OPP promotion matches filter criteria and its transfer status in the global object list:

Promotion Matches Complete
Filter Criteria

Promotion Matches Filter Criteria
Without Lead Time

Promotion Does Not Match
Filter Criteria

OPP promotion in global object list in
status TRANSFERRED

1 2 3

OPP promotion in global object list in
status PENDING

4 5 6

OPP promotion not in global object list 7 8 9

Cases 1 to 9 are described in detail below including the system reaction:

A promotion already transferred has changed --> transfer again. No change to the global object list.
A promotion already transferred is classified as not yet transfer relevant. This occurs if the start date of the promotion has been delayed.
The receivers must be informed about this change --> transfer again. No change to the global object list.
A promotion already transferred is not filter relevant any more, in other words it is now obsolete. This may happen if the filter criteria are
defined for an attribute that changed to a value not covered by the filter --> transfer the promotion as "obsolete" (CHANGE_INDICATOR
= 'D'). Remove it from the global object list.
A promotion with a pending transfer has reached its transfer due date. (Transfer due date = valid_from (of the promotion) MINUS "lead
time") --> if not in status "cancelled" send it, set its status in the global object list to TRANSFERRED. Cancelled promotions with a
pending transfer are removed from the global object list.
A promotion with a pending transfer has been changed but has not yet reached its transfer due date --> if it is not in status "cancelled", do
not transfer (yet) but update its transfer due date in the global object list (if valid_from has changed). The promotion will be considered
again in the next delta load. Status stays at PENDING. Cancelled promotions are not added to the global object list.
A promotion originally set as pending (to be transferred later) is not transfer relevant any more --> since it has not yet been transferred,
do not transfer it, and remove it from the global object list.
A promotion not examined before is transfer relevant now --> send it and include it in the global object list in status TRANSFERRED.
A promotion not examined before is considered as transfer relevant later --> do not transfer it yet but include it in the global object list in
status PENDING with the corresponding transfer due date.
A promotion not examined before is not considered as transfer relevant --> ignore.

If the corresponding promotion has the status 'CN' (Cancelled), no insert or update to the global object list takes place - instead the promotion is
removed from the global object list. This happens in the following cases: 1, 2, 4, 5, 7 and 8. The decision matrix for the initial load differs from that
of the delta load in the sense that rows 1 and 2 are not relevant since the global object list is cleared at the beginning of the initial load.

All replication modes (initial, delta, manual) update the global object list.

If no lead time is specified in the static filter, an "infinite" lead time is assumed. This means no promotion is set to pending. In other words, column
2 ("Promotion matches filter criteria without lead time") is not relevant.

The initial load expects that all data is cleared on the receiver side, in other words the receiver must not have any promotions in its database. The
initial load automatically clears the global object list for the corresponding outbound implementation and business systems. For the decision
matrix, the initial load corresponds to the row "promotion not in global object list". For the initial load, only promotions in status 'AC' (active) are
considered.

The delta load and manual request do not filter by the promotion status.

1.

Location-Specific Outbound Processing Using the Global Object List

In the case of the location-specific outbound, the tracking of the replication status on business system level is not sufficient, it must take place on
the level of the individual target location. This status is stored in database table . Each record indicates that the/ROP/LOC_REPL_ST
corresponding OPP promotion is expected to be present as active on target location side. The link between the overall replication status and the
location-specific replication status is established using the field OBJ_GUID in both tables and ./ROP/DRF_OBJLIST /ROP/LOC_REPL_ST

The meaning of the overall replication status slightly changes for the location-specific outbound:

If a record is not present in then the promotion does not exist as active in any target location and hence no record/ROP/DRF_OBJLIST
exists for that promotion. The reverse conclusion is not possible./ROP/LOC_REPL_ST
If a record is in status T(ransferred) in then it was sent as active to at least one target locations. This does not/ROP/DRF_OBJLIST
necessarily mean that this is still the case.
The meaning of the status P(ending) does not change.

View provides an overview of the current replication status for each location./ROP/V_PREPSTAT

Cleanup of the Global Object List

In the case of an unchanged DRF replication model, the global object list is automatically managed by the promotion outbound processing and
kept in a consistent state. However, if a replication model is deleted, a business system for a replication model is removed, its content of the
global object list is not removed automatically. For this purpose, transaction can be used. This can be used for the/ROP/DEL_REPLSTAT
object-centric as well as the location-specific replication status.

PPS Module Concept CARAB 2.0 FP02

PPS Module Concept

The business logic of the PPS is implemented by Spring beans. To support extensibility, the PPS comes with its own lightweight module concept
that uses Spring concepts. A PPS module is just a set of Spring beans, which are added to the application context during its initialization. From a
business perspective, a PPS module should contain Spring beans that are used to implement a - potentially large - functional block.

A PPS module, such as M1, can have dependencies to other PPS modules, such as M2 and M3. In this case, the beans of module M1 are added
to the Spring application context after the beans of modules M2 and M3. In this way, the M1 beans could hide or redefine the M2 or M3 beans. If
you want to enhance business logic in a customer project, the corresponding Spring bean (in module sapABC, for example) can be hidden by a
customer-specific bean. This can be done without modification of the standard shipment by adding a further module (custXYZ, for example) that
depends on the module sapABC. A new bean with the same bean alias (see below) can be created in this module.

A PPS module is defined as follows.

Create the file on the PPS classpath. The following example shows theMETA-INF/<moduleName>-ppe-module-metadata.xml
structure of this file type:

Obsolete or deleted?
The meaning of the field CHANGE_INDICATOR differs between the object-centric and location-specific outbound of OPP promotions:

Object-centric outbound: If a promotion is logically deleted, it is sent as a regular IDoc record with CHANGE_INDICATOR = 'I'.
Its promotion status is 'CN'. If a promotion is considered as obsolete for a certain receiver, it is sent as a "deletion" IDoc record
with CHANGE_INDICATOR = 'D'. Its promotion status is not changed.
Location-specific outbound: CHANGE_INDICATOR is set to 'D' as soon as the corresponding OPP promotion is no longer to
be evaluated by the receiver. This can be the case if is it not in status "active", if the corresponding target location is not
assigned to the OPP promotion, or if the target location is not contained in the filter for target locations.

1.

2.
3.

Module declaration

<module xmlns="http://www.sap.com/ppengine/core/module"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.sap.com/ppengine/core/module
ppengine-module-0.2.xsd">
 <name name="client-impl" vendor="sap" />
 <dependencies>
 <module name="dataaccess-interface" vendor="sap"/>
 <module name="client-interface" vendor="sap"/>
 <module name="core" vendor="sap"/>
 </dependencies>
</module>

The combination of the name with the vendor name is the PPS module name. This module depends on three furtherclient-impl
modules: , client-interface, and , all with the vendor "sap". The purpose of the vendor attribute is to avoid namecore dataaccess-interface
collisions. Modules delivered by SAP have the vendor "sap".
To enable schema validation, place the file ppengine-module-0.2.xsd in the same folder as the module metadata file.
Create an XML file with the name in the same folder as the metadata file. This(META-INF/)<moduleName>-ppe-module-spring.xml
contains the Spring beans. Below is an excerpt from the SAP bean definitions:

3.

Spring beans of a module

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="http://www.springframework.org/schema/mvc
http://www.springframework.org/schema/mvc/spring-mvc-4.1.xsd
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-4.1.xsd
 http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-4.1.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-4.1.xsd">

 <context:property-placeholder

location="classpath:/META-INF/client-impl-ppe-module.properties"
 ignore-unresolvable="true" />

 <!-- Validator for a price calculation request -->
 <alias name="sapDefaultCalculateRequestValidator"
alias="sapCalculateRequestValidator" />
 <bean id="sapDefaultCalculateRequestValidator"
class="com.sap.ppengine.client.impl.RequestValidatorImpl">
 <property name="objectFactory" ref="sapClientApiDtoFactory" />
 </bean>

 <!-- Further beans below -->

</beans>

When the PPS is started, the PPS classpath is scanned for all modules. All the modules that are found are loaded automatically in the correct
order.

A third, optional, part of a PPS module is a Java .properties file that holds default values for Spring properties used during the definition of the
Spring beans. By convention, this is located in the same folder as the metadata and resource file of the module and has the name META-INF/<m

. It is loaded via the tag in the corresponding resource file. DefaultsoduleName>-ppe-module.properties <context:property-placeholder>
stored in this file can either be changed using one dedicated file on the Java classpath or by setting Java environmentppe-local.properties
properties.

The PPS offers the following modules (dependencies are represented by arrows):

It is not possible to redefine the property values set in the .properties file of one module within the .properties file of another module.

In addition, if modules are added to the PPS application context in several steps, it is not possible to access the configuration properties
of loaded modules during the addition of further modules. For example, if the PPS module idocinbound is added to a PPS application
context that is already being used (as is the case for a local PPS within SAP Hybris Commerce), only the configuration properties of the
module idocinbound may be used.

Defining and Overriding Beans

By default, a Spring bean offered in the standard shipment is defined and used as follows:

The modules and are part of SAP Hybris Commerce, integration package for SAP for Retail.dataaccess-localdb idocinbound

The modules and are part of the central promotion pricing service, which is part of SAP Customer Activityrestapi dataaccess-ddf
Repository.

Specifying ID and alias of a Spring bean

<alias name="sapDefaultClientApiDtoFactory" alias="sapClientApiDtoFactory"
/>
<bean id="sapDefaultClientApiDtoFactory"
class="com.sap.ppengine.client.dto.ObjectFactory" />

<alias name="sapDefaultClientApiHelper" alias="sapClientApiHelper" />
<bean name="sapDefaultClientApiHelper"
class="com.sap.ppengine.client.util.RequestHelperImpl">
 <property name="objectFactory" ref="sapClientApiDtoFactory" />
</bean>

Each bean has a unique ID (here specified in the name attribute). If the bean is to be enhanced using subclassing within your project, the ID of
the original bean must be specified in the parent attribute of your bean. In addition, if the reference to the defined bean is to be injected into
another bean, it is not usually necessary to specify the name/ID; instead, the bean with the corresponding "purpose" should be taken (be it
delivered by SAP or created at the customer side). The "purpose" of a bean is represented by its Spring bean "alias". The majority of SAP beans
have an additional alias. References to other beans usually make use of the bean alias. In the above example, the bean
sapDefaultClientApiHelper uses the bean with the alias sapClientApiDtoFactory. In the standard shipment, this alias is provided by the bean
sapDefaultClientApiDtoFactory. If this bean is to be replaced by a customer-specific bean, this could appear as follows:

Subclassing a bean

<!-- Hide old alias -->
<alias name="myClientApiHelper" alias="sapClientApiHelper" />
<!-- Define new bean subclassing existing one -->
<bean name="myClientApiHelper" parent="sapDefaultClientApiHelper"
class="com.mycompany.MyHelper" />

Note that technically it is also possible to completely hide a bean by choosing the same name (and not only the same alias). However, this is not
usually recommended as this approach can lead to inconsistent class hierarchies if the parent attribute is used elsewhere in the bean definition.

Price and Promotion Repository CARAB 2.0 FP02

The ID and alias of a bean provided by SAP always starts with "sap". The only exceptions are beans with a "magic name" expected by
Spring, such as "cacheManager".

Subclassing SAP beans offers a very flexible way to extend the application logic. However, it cannot be guaranteed that the SAP
classes will be changed in a compatible way . In other words, a method signature may change over time, making theonly over time
subclass syntactically incorrect. The probability that an SAP object will be changed in an incompatible way increases from first to last
entry in the following list:

Spring bean ID/alias
Java interface (methods may, however, be added)
Signature of public method of a Java class
Signature of protected method of a Java class
Protected attribute of a Java class

When you redefine a Spring bean, SAP recommends the following:

Let your custom class inherit from the SAP class. This makes sure that interface methods added by SAP are implemented.
Define the Spring bean of the SAP class as the parent bean to your replacement Spring bean. This makes sure that additional
bean properties added by SAP are set.
Set the alias of your Spring bean to the alias of the parent (SAP) bean.
If easily possible, reimplement the corresponding interface method(s).
Otherwise (code duplication needed), consider redefining protected methods as well.

Price and Promotion Repository

This chapter describes how the price and promotion repository () is PPR realized.

Overview

The effective sales price is calculated by the promotion pricing service. This service uses a promotion and provides ancalculation engine
interface (client API) to request a price calculation and an interface to read the data from the database (data access API). The data access API
reads price-relevant data in an ARTS-like format. Therefore, we can speak of price rules that calculate the effective sales price. The price rules
are maintained based on the DDF offer model that is currently included only in SAP Customer Activity Repository.

As the promotion needs the data delivered in an ARTS-like format, the DDF offer has to be translated into this ARTS-likecalculation engine
format and the translated price rule has to be stored in the OPP promotion.

The following sections give an overview of the modeling of an OPP promotion and the transformation of a DDF offer into an OPP promotion.

Modeling of OPP Promotions

In the OPP promotion, the entity represents the root entity. This entity consists of status information, validity, DDF offer ID, and others.Promotion
A language-dependent promotion description is assigned to each OPP promotion in the entity. At least one business unitPromotionText
is assigned in the entity. BusinessUnitAssignment Contains the DDF offer terms for product groups, the several items or product hierarchy
nodes assigned to the product groups are stored as subentity to the in the entity.Promotion MerchandiseSet

An OPP promotion can have one or more promotion derivation rules that are independent of each other. For the customer who triggers the
promotion, these promotion derivation rules represent the individual Therefore, each has one or morereward. PromotionPriceDerivationRule
triggers () and one . The is effective if all assignedPriceDerivationRuleEligibilities PriceDerivationRule PromotionPriceDerivationRule
triggers are fulfilled. The following triggers are supported:

Trigger Description

ItemPriceDerivationRuleEligibility Is triggered if the specified item (can also include the specified quantity or unit
of measurement) is in the
shopping cart.

MerchandiseHierarchyPriceDerivationRuleEligibility Is triggered if items from the specified merchandise group or article hierarchy
node are in the shopping cart.

The standard delivery supports two types of merchandise structures:

Retailer's Merchandise Category Hierarchy
Retailer's Article Hierarchy

TotalPurchaseMarketBasketPriceDerivationRuleEligibility Is triggered if the value of the shopping cart exceeds the specified threshold.

CouponPriceDerivationRuleEligibility Is triggered if the specified coupon number is recorded in a sale.

CustomerPriceDerivationRuleEligibility This entity associates a price derivation rule with a customer group.

The customer card is the only condition in the DDF offer that is supported for
the identification of a customer group. Therefore, the customer card type from
the DDF,

such as "Gold Card", is used as the customer group ID with OPP in the
standard delivery.

Individual card numbers are not supported.

ManualPriceDerivationRuleEligibility Is triggered if a manual promotion is coming from the client, for example, by
pressing a special key at the cash register.

The DDF incentive concept is used to specify the manual promotion in the
DDF offer.

For the incentive type , you can use , or Manual Promotions FreeText Yes N
 for .o Product is Required

If a product identifier is specified in the offer for the manual promotion, this
product identifier and the incentive class identifier represent the manual
promotion.
If there is no product identifier specified in the offer, the incentive type code of
the incentive and the incentive class identifier represent the manual

 promotion.

CombinationPriceDerivationRuleEligibility Is triggered the logical combination of its child triggers if (Logic AND, Logic
 is fulfilled.OR)

All eligibilities described above can be child eligibilities of this combination
eligibility.

This trigger can be used to create eligibility trees.

MerchandiseSetPriceDerivationRuleEligibility Is triggered if the specified item is in the product group that is modeled as the
merchandise set in the PPR.

The specified item is in the merchandise set and valid as a trigger for the
associated price derivation rule when:

The item itself or one of the product hierarchy node where the item is
assigned is included in the product group
and
The item or one of the product hierarchy node where the item is
assigned is not excluded in the product group

The standard delivery supports two types of merchandise structures:

Retailer's Merchandise Category Hierarchy
Retailer's Article Hierarchy

Exactly one , The following specific PriceDerivationRule representing the reward, is assigned to a .PromotionPriceDerivationRule PriceDerivat
 are supported:ionRules

Reward Description

ItemPriceDerivationRule Denotes discounts for the items on the trigger side.

MixAndMatchPriceDerivationRule Allows more complex discounting.

A refers to a set of MixAndMatchPriceDerivationRule MixAndMatchPriceDeriva
tionItems

that can be logically linked (AND/OR/ SET).

A specifies the MixAndMatchPriceDerivationItem PromotionalProduct

(either a single product or a merchandise hierarchy group) for which the discount is
to be applied,
and the discount as such.

ExternalActionPriceDerivationRule This kind of does not define a specific reward or discount, butPriceDerivationRule
it

contains information that is to be processed by the client of the promotion pricing
service (PPS).

The DDF incentives are used to provide information to the caller in a generic way.

The promotion pricing service returns the information about the external action to
the client.

An refers to a set of ExternalActionPriceDerivationRule ExternalActionRulePar
ameters

containing simple Key/Value pairs that can be interpreted by the caller.

In the standard shipment, the following language-independent attributes of an
incentive

are provided (if filled) as : ExternalActionRuleParameters

Product ID/free style ID
Incentive quantity
Incentive value
Incentive value adjustment

Additionally, the refers to a set of ExternalActionPriceDerivationRule ExternalAc
tionRuleTexts

containing the language-dependent texts for the external action.

In the standard shipment, the attribute Incentive Type description

is provided as ExternalActionRuleTexts.

ManualPriceDerivationRule This type of specifies the item discount on trigger side,PriceDerivationRule
or determines that the item discount comes from the client.

Keys and Foreign Keys

Unique identifiers (IDs) are generated for the promotion-related entities during the mapping. A new number range object is used for /ROP/PROID
this. Additionally, the identifier for the DDF offer is also in the entity. Promotion

Eligibilities can be modeled as condition trees. Therefore, all eligibility entities have also a and a ParentPriceDerivationRuleEligibilityID RootPri
 as a foreign key. In an eligibility tree, the refers to the key of the parentceDerivationRuleEligibilityID ParentPriceDerivationRuleEligibilityID

node and the to the key of the root node. If the condition for the is not aRootPriceDerivationRuleEligibilityID PromotionPriceDerivationRule
tree, the and the are identical to the ParentPriceDerivationRuleEligibilityID RootPriceDerivationRuleEligibilityID PriceDerivationRuleEligibi

.lityID

As the provides the association between the eligibilities and price derivation rule, the PromotionPriceDerivationRule PriceDerivationRuleEligi
 and the are foreign keys in this entity. For eligibility trees, the refers to the keybilityID PriceDerivationRuleID PriceDerivationRuleEligibilityID

of the root node.

All ABAP data elements referring to ABAP domain will be mapped to Java Long values in the promotion pricing service. In/ROP/LONG
addition, the database type BIGINT will be used by default . Therefore, values exceeding the range ofif the service is deployed locally
Java Long must be avoided.

This is particularly important when defining the number range intervals Furthermore, this isfor IDs of the promotion and other entities.
important for the control parameters and of a promotion price derivation rule as these parameters refer to thissequence resolution
domain. This means they with values outside of the Java Long range. The following tables show the difference incannot be provided
the value ranges:

Type From To

java.lang.Long 9,223,372,036,854,775,808 9,223,372,036,854,775,807

/ROP/LONG -9,999,999,999,999,999,999 9,999,999,999,999,999,999

Validity Period for the OPP Promotion

The validity period for an OPP promotion (and) is mapped EffectiveDate ExpiryDate from the DDF offer. This date is interpreted as the local time
of the client that is using the OPP promotion.

Database Tables

The OPP promotions are stored in the following database tables in SAP Customer Activity Repository:

/ROP/PROMOTION
A table for promotion-relevant header data. A promotion can have one or more promotion price derivation rules.
/ROP/PROMO_RULE
A table for promotion price derivation rules that provides the association between eligibility and price derivation rule to determine the price
modification.
/ROP/ELIGIBILITY
A table for all data that is relevant for the eligibilities of the promotion.
/ROP/PRICE_RULE
A table for price derivation rules that represent the reward for the customer at the point of sale.
/ROP/MAM_ITEM
A table for mix-and match price derivation items that specifies matching items that may be used to trigger the price derivation rule.
/ROP/PROMO_BU
A table for the business units for which the promotion is relevant.
/ROP/PROMO_TEXT
A table for the language-dependent texts of a promotion.
/ROP/EX_ACT_PARM
A table for the language-independent attributes of an external action.
/ROP/EX_ACT_TEXT
A table for the language-dependent texts of an external action.
/ROP/MERCH_SET
A table to store the entries of the merchandise sets (product groups) within the promotion.

Handling of Amounts

In the database tables of an ABAP system, amounts are stored in a special format. In this format, amounts always have 2 decimals, regardless of
whether this number of decimals is allowed for the corresponding currency of the stored amount. Consider the following examples (comma ','
used as thousands separator, dot '.' used as decimal mark):

Currency Decimals Amount Value stored on DB (using a CURR 19,5 field)

EUR (Euro) 2 1234.56€ 1,234.56000

JPY (Japanese Yen) 0 ¥1234 12.34000

BHD (Bahrain Dinar) 3 1234.567 BD 12,345.67000

The correct display of the amounts within the using ABAP application is usually achieved via conversion exits on the UI level - within the program
logic of ABAP application the database format is used. However, in the context of OPP, this storage of amounts has the following consequences if
currencies with other than 2 decimals are used:

Amounts sent via IDocs must be converted into an external format having the decimal mark at the correct position (for regular prices as
well as promotional entities).
Java applications directly accessing the database of the central Price and Promotion Repository must be aware of this format and must
perform a scaling of values prior to the calculation. How this is done is explained in the documentation of the PPS module
dataaccess-common.
ABAP applications receiving amounts in external format having the decimal place at the right position (either within IDocs or when
requesting the price calculation from a PPS) must convert between the ABAP internal representation of amount and the external format.
In particular, this is the case for the integration of the PPS based price calculation into the ERP sales order processing.

Note that local copies of the Price and Promotion Repository exclusively used by the Java based PPS store amounts in the "natural" format,
having the decimal place at the correct position. This is e.g. the case for the local PPS integrated into SAP Hybris Commerce.

The decimals of a currency are stored in an ABAP system in database table , containing only those currencies having not 2 decimals. TheTCURX
number of decimals also influences the rounding control data of an OPP promotion. By default discounts are to be rounded to the smallest
amount which can be expressed in the corresponding currency.

Technical Details (modified for CARAB 2.0 FP02)

1.

2.

3.

Transformation from DDF offers into OPP Promotion

Technical Information

The offer transformation transforms a DDF offer into an OPP promotion. This promotion is then saved in the . price and promotion repository This
transformation is performed automatically during the creation and update as well as during the preceding validation of a DDF offer.

During the validation of the offer it is checked if the offer can be transformed into an OPP promotion. This depends on the offer types and the
combination of offer features that are supported with OPP. The validation of the transformation of a DDF offer into an OPP promotion is triggered
if the status of the offer is switched to a status that is relevant for transformation. The following table shows which offer status translate to which
status of an OPP promotion.

DDF Offer Status OPP Promotion Status Comment

In Process Inactive OPP promotion will be written with this status only if it was previously in status "Active"

Recommended Inactive OPP promotion will be written with this status only if it was previously in status "Active"

Approved Active

Released Active

Cancelled Inactive OPP promotion will be written with this status only if it was previously in status "Active"

<Logically Deleted> Cancelled Actually not an offer status

The use of the offer statuses "Released" and "Cancelled" is controlled via a Customizing switch located in Customizing under Cross-Application
. The name of the switch isComponents > Demand Data Foundation > Data Maintenance > Offer > Maintain Indicators for Offer Calculations

"Offer Status Management". For more information about offer status management, see the application help of SAP Promotion Management on
SAP Help Portal at > > > > > https://help.sap.com/viewer/p/CARAB <Version> Application Help SAP Promotion Management Promotion Planning

. The mapping of status values is independent of this Customizing switch. The class controls which values ofMaintain Offers /ROP/CL_CONFIG
the offer status are translated into status "Active" for an OPP promotion.

You can also manually transform DDF offers using program in SAP Customer Activity Repository. This program /ROP/R_OFFER_TRANSFORM
reads all DDF offers with the relevant status according to the selection criteria and validates and converts the DDF offers into OPP promotions.
Afterwards, it saves the OPP promotions in the SAP Customer Activity database for reuse. If an offer cannot be transformed, the other offers will
still be processed using resumable exceptions. The following classes and BAdIs are relevant for the transformation of DDF offers into OPP
promotions:

/ROP/CL_OFFER_MAPPER is the entry point for the offer transformation. It expects a list of DDF offers and returns a list of OPP
promotions. This class implements both the interface for the mapping and the validation of an offer.
The mapping logic is realized by calling a number of BAdIs that are contained in enhancement spot . These/ROP/OFFER_MAPPING
BAdIs offer (but do not enforce) a three-step process to :

Offer classification (mandatory)
The offer is analyzed and classified in this step. For example, Only BUY terms linked with OR.
This step results in an offer classification, an offer classification group, and information about whether a promotion recipe has to
be created. The corresponding BAdI is . OPP offers an implementation using the class /ROP/OFFER_CLASSIFIER /ROP/CL_OF

.FER_CLASSIFIER
Creation of a promotion recipe (optional)
A recipe can be created for a given classified offer in this step. A recipe is a structure () with/ROP/BL_PROMO_RECIPE_STY
detailed information about how to create the OPP promotions in step 3. The recipe determines the transformation from a
high-level perspective.
The following main instructions for the mapping are offered in the promotion recipe:

How many promotion rules are to be created
Which types of price rules are to be created
Which offer terms are to be used to create eligibility trees and how these trees are to be combined
Which offer terms are to be used to create mix-and-match items and how these items are to be combined

 The corresponding BAdI is . This BAdI has the classification group determined in step 1 as/ROP/PROMO_RECIPE_BUILDER a
filter. We offer one implementation using the class ./ROP/CL_PROMO_RECIPE_BUILDER
Building the promotion (mandatory)

the offer (and optionally the recipe determined in step 2) are used to create the promotion. If you are using theIn this step,
recipe, the implementation can be done in a generic and straightforward way. The corresponding BAdI /ROP/PROMO_BUILDER
has the classification group determined in step 1 as a filter. We offer one implementation using the class /ROP/CL_PROMO_BUI

.LDER
All three BAdIs have multiple implementations. In addition, the sequence in which the implementations are executed can be determined.
This is done by implementing the BAdI for all BAdIs of the three-step process and by offering an execution sequenceBADI_SORTER

In this chapter, the term reflects the result of the offer classification as, for example, .offer classes simple discount offer

https://help.sap.com/viewer/p/CARAB

number that is specified for each BAdI implementation. SAP implementations have the sequence number 0.
This means that you are free to add preprocessing (sequence number < 0) and postprocessing (sequence number > 0) steps for the SAP
implementations. These SAP implementations can be deactivated.

For more information about the offer transformation, see the corresponding BAdI documentation for enhancement spot /ROP/OFFER_MAPPING.

Change pointers can be created when DDF offers are transformed into OPP promotions. These change pointers are used during the delta
replication of the data replication framework (DRF). The change pointers are created using an implementation of the BAdI /ROP/PROMO_CHAN

 in enhancement spot . The standard SAP system offers an implementation of this BAdI using the class GE_POINTER /ROP/PROMOTION_DB /R
This class creates master data governance (MDG) change pointers based on the business object OP/CL_PROMO_OUT_MDG_CP. ROP_PROM

. You can use this BAdI to modify the pointer creation or implement your own pointer creation. If you do not want to use the DRF changeO
message, or if no MDG change pointers are to be created, you can deactivate the BAdI implementation.

For more information about change pointers for the OPP promotion outbound, see the corresponding BAdI documentation for enhancement spot /
ROP/PROMOTION_DB.

www.sap.com/contactsap

© 2016 SAP SE or an SAP affiliate company. All rights reserved.

No part of this publication may be reproduced or transmitted in any

form or for any purpose without the express permission of SAP SE

or an SAP affiliate company.

SAP and other SAP products and services mentioned herein as well

as their respective logos are trademarks or registered trademarks of

SAP SE (or an SAP affiliate company) in Germany and other

countries. All other product and service names mentioned are the

trademarks of their respective companies. Please see http://www.

sap.com/corporate-en/legal/copyright/index.epx#trademark for

additional trademark information and notices.

Material Number:

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

	OPP-040419-1323-6.pdf
	Development and Extension Guide for SAP CARAB 2.0 FP02
	CARAB 2.0 FP02: OPP Extensibility
	CARAB 2.0 FP02: Technical Guide Price and Promotion Repository
	CARAB 2.0 FP02: Technical Guide Promotion Pricing Service
	Subpages for Development & Extension Guide CARAB2.0 FP02
	Mapping examples For Mix and Match Offers (new with CARAB 2.0 FP02)
	Mapping examples For Simple Discount Offers (modified with CARAB 2.0 FP02)
	OPP Promotions - Modified for CARAB 2.0 FP02
	PPS Module Concept CARAB 2.0 FP02
	Price and Promotion Repository CARAB 2.0 FP02
	Technical Details (modified for CARAB 2.0 FP02)

