#### Alexey Shipunov

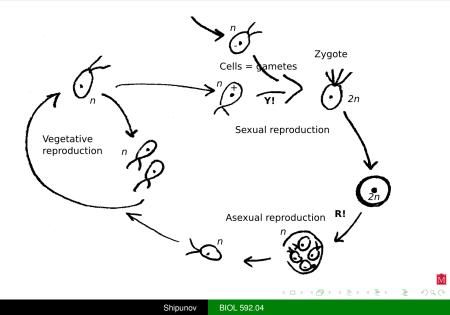
Minot State University

July 19, 2013

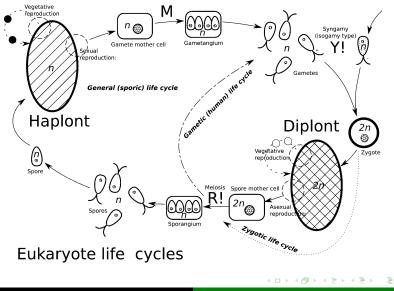
Shipunov BIOL 592.04

M

프 + + 프 +

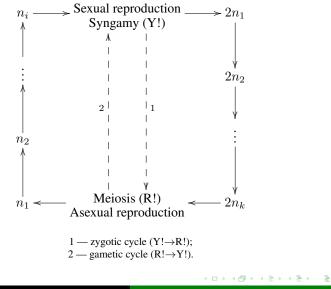

æ



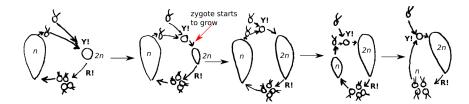





### Simple life cycle (unicellular protist)



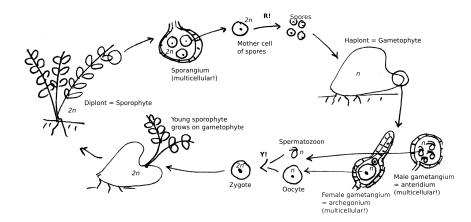

#### General life cycle




М

### Even more general life cycle

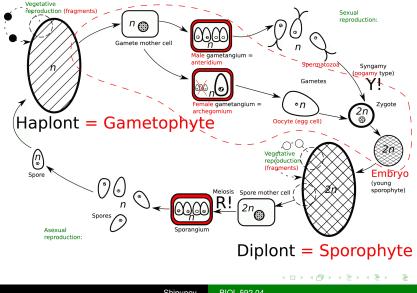



# Evolution of life cycles from zygotic to gametic

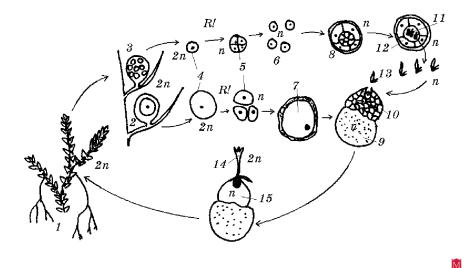


# Directions of life cycle evolution

- The simplest life cycle of unicellular organism is the alternation of syngamy (cell fusion) and meiosis
- Next stage is a zygotic cycle of many algae and fungi
- When zygote starts to divide without changing genotype, sporic life cycle arises
- Initial sporic cycle was probably with haplont dominance (mosses), then with equal generations
- Advanced sporic cycle is with diplont predominance (ferns and seed plants)
- Finally, gametic cycle of animals and some algae in the final step of life cycle evolution


## Life cycle of land plants from fern viewpoint



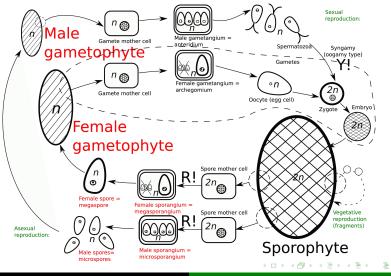

イロト イヨト イヨト イ

э

#### Life cycle of land plants: differences from general



# Heterosporic cycle from Selaginella viewpoint




Shipunov BIOL 592.04

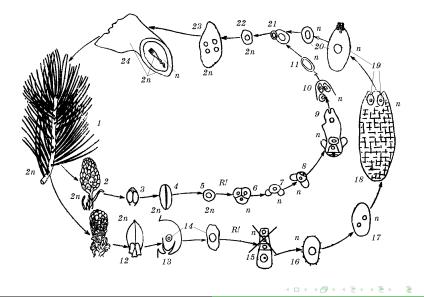
#### Heterosporic cycle from Selaginella viewpoint: labels

1 Sporophyte; 2 female sporangium; 3 male sporangium; 4 mother cells of male and female spores; 5 spores after meiosis; 6 male spores; 7 female spore; 8 male gametophyte; 9 female gametophyte; 10 archegonium (female sexual organ); 11 sperms; 12 anteridium (male sexual organ); 13 sperms in outer space; 14 young sporophyte (note it is located on female gametophyte as a "parazite"); 15 female gametophyte

# Heterosporic cycle: differences from generalized land plants cycle



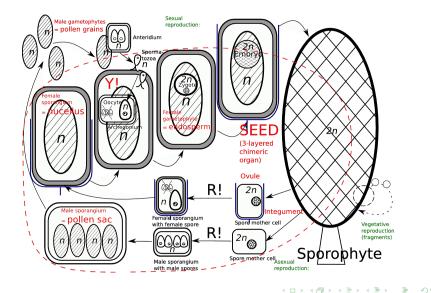
Shipunov


BIOL 592.04

# Origin of seed

- Seed is the result of enforced control of sporophyte over gametophyte
- **Dinosaur problem:** without control on the *r*-strategic gametophyte, *K*-strategic tree sporophyte cannot guarantee its reproduction
- Growing of gametophytes, syngamy (fertilization) and growing of daughter sporophyte—everything happens right on mother sporophyte
- Seed is a chimeric organ with three layers: (1) mother sporophyte tissue (integument + nucellus), (2) female gametophyte tissue (endosperm) and (3) daughter sporophyte (embryo)
- Biggest disadvantages of having seed are: (a) low probability of fertilization (pollination needed) and (b) overall slowness of cycle

イロト イポト イヨト イヨト

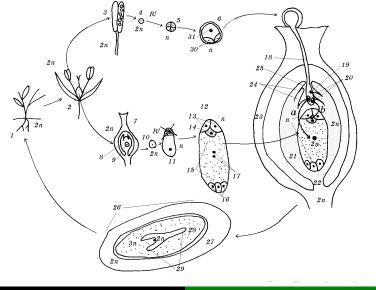

### Life cycle of seed plants from the pine tree viewpoint



# Life cycle of seed plants from the pine tree viewpoint: labels

1 Sporophyte; 2 male cone; 3 sporophyll (leaf bearing sporangia); 4 male sporangium (anther); 5 mother cell of male spores: 6 male spores after meiosis: 7 male spore with two floating sacs; 8 male gametophyte (pollen) with two floating sacs: 9 pollen tube: 10 tip of pollen tube with two spermatia (immotile sperms) and nucleus of tube cell; 11 spermation; 12 female sporophyll; 13 ovule (female sporangium); 14 mother cell of female spores; 15 female spore after meiosis; 16 female spore; 17 young endosperm<sub>1</sub> (female gametophyte); 18 mature endosperm<sub>1</sub> (female gametophyte); 19 archegonia (female sexual organs); 20 egg cell inside archegonium; 21 fertilization; 22 zygote; 23 young embryo; 24 seed = seed coat (2n) + endosperm<sub>1</sub> (n) + embryo (2n)

#### Life cycle of seed plants: differences from heterosporic

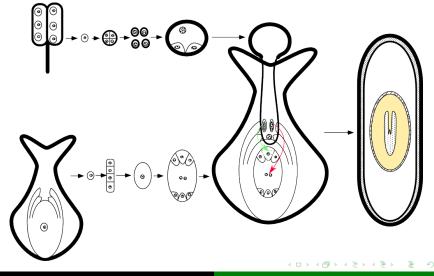



Shipunov BIOL 592.04

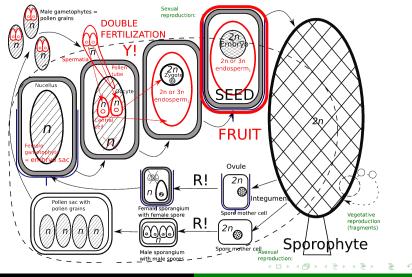
## Life cycle of angiospems: differences

- Reduction of gametophyte: 3-celled pollen and 7-celled embryo sac
- No archegonia and anteridia
- Spermatia (immotile sperm cells), pollen tube
- Double fertilization:
  - Sperm₁ (n) + Egg cell (n) = Zygote (2n) → Embryo (young sporophyte)
  - Sperm<sub>2</sub> (n) + Central cell (2n) = Mother cell of endosperm<sub>2</sub> (3n)
- New endosperm<sub>2</sub> (literally, it is a second embryo; in other seed plants, endosperm<sub>1</sub> is a female gametophyte)
- Cupule (pistil) and fruit
- In general, angiosperms have accelerated life cycle needed for fast-growing herbs

#### Life cycle of angiosperms




Shipunov BIOL 592.04


# Life cycle of angiosperms: labels

1 sporophyte; 2 flower; 3 anther (male sporangium); 4 mother cell of male spores; 5 meiosis; 6 pollen (male gametophyte); 7 pistil; 8 ovule (female sporangium); 9 mother cell of female spores; 10 mother cell of female spores; 11 female spore; 12 embryo sac (female gametophyte); 13 synergides; 14 egg cell; 15 central cell; 16 antipodes; 17 central nuclei; 18 pollen tube; 19 tube cell; 20 sperms; 21 nucellus (wall of female sporangium); 22 chalasa (receptacle of the ovule); 23 pistil wall; 24 integuments (ovule entrance lobes); 25 micropyle (ovule entrance); 26 fruit; 27 pericarp (fruit flesh, from pistil wall); 28 endosperm<sub>2</sub>; 29 embryo (young sporophyte)

# Life cycle of angiosperms: relations between structures



# Life cycle of angiosperms: differences from more primitive seed plants



Shipunov

BIOL 592.04

#### Life cycle of angiosperms: sources of optimization

- Reduction of everything, especially of haploid stages
- Signal role of second embryo (source of endosperm<sub>2</sub>)
- Well-developed pollination

#### Summary

- Sporophyte is a diplont of plants; gametophyte is a haplont
- Land plants have: (1) multicellular sporangia and gametangia, (2) vegetative reproduction via fragments, (3) oogamy and also (4) embryo—young sporophyte growing on gametophyte
- Mosses have sporic cycle with gametophyte predominance whereas ferns and seed plants—with sporophyte predominance
- Heterosporic plants have two kinds of spores: female (megaspores) and male (microspores)
- Seed plants have compact life cycle where almost all stages happen on mother sporophyte
- Angiosperms accelerated seed plant life cycle using (a) reduction, (b) signaling second embryo and (c) sophisticated pollination