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Abstract 10 

Throughfall heterogeneity induced by the redistribution of precipitation in vegetation canopies has repeatedly been 11 

hypothesized to affect the variation of soil water content and runoff behavior, especially in forests. However, we 12 

are not aware of any observational study relating the spatial variation of soil water content directly to net 13 

precipitation to confirm modelling hypotheses. Here, we investigate whether throughfall patterns affect the spatial 14 

heterogeneity of soil water response in the main rooting zone. We assessed rainfall, throughfall and soil water 15 

contents (two depths: 7.5 cm and 27.5 cm) on a 1‐ha temperate mixed beech forest plot in Germany 2015 - 2016 16 

during the growing seasons in independent high‐resolution stratified random designs. Because throughfall and soil 17 

water content cannot be measured at the same location, we used kriging to derive the throughfall values at the 18 

locations where soil water content was measured. We first explore the spatial variation and temporal stability of 19 

throughfall and soil water patterns, and next evaluate the effects of input (throughfall), soil properties (field 20 

capacity and air capacity), and vegetation parameters (canopy cover and distance to the next tree) on soil water 21 

content and dynamics. 22 

Throughfall spatial patterns were related to canopy density. Although spatial auto-correlation decreased with 23 

increasing event sizes, temporally stable throughfall patterns emerged, leading to reoccurring high and lower 24 

input locations across precipitation events. A linear mixed effect model analysis showed, that soil water content 25 

patterns were only poorly linked to throughfall spatial patterns, and it was rather shaped by unidentified but time 26 

constant factors. 27 

Instead of soil water content itself, the patterns of its increase after rainfall corresponded more closely to 28 

throughfall patterns, in that more water was stored in the soil where throughfall was elevated. Furthermore, soil 29 

moisture patterns themselves enhanced or decreased water storage in the soil, and probably fast drainage and 30 

runoff components. Locations with low topsoil water content tended to store less of the input water, indicating 31 

preferential flow. In contrast in subsoil, locations with high water content stored less water. Also, distance to the 32 

next tree and air capacity modified how much water was retained in soil storage.  33 

In this comprehensive study we show that throughfall patterns imprint less on soil water contents and more on soil 34 

water dynamics shortly after rainfall events, therefore only partly confirming previous modelling with data. Our 35 

findings highlight at the same time systematic patterns of times and locations where the capacity to store water is 36 

reduced and water probably conducted quickly to greater depth. Our results indicate that not soil moisture patterns 37 

but rather percolation may depend on small scale spatial heterogeneity of canopy input patterns. 38 

 39 
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 2 

1. Introduction 43 

 44 

Over the past decades, there has been a raised interest on how water input at the soil surface is affected by 45 

vegetation canopies to understand and predict hydrological processes related to vegetation structure and land use 46 

change (Western et al., 2004; Savenije, 2004; Murray, 2014; Guswa et al., 2020; Oda et al., 2021). Due to 47 

interception losses, the water arriving below the canopy is a smaller amount compared to above (Horton, 1919 48 

and references therein; Carlyle-Moses and Gash, 2011) with implications for the soil water balance (Durocher, 49 

1990; Bouten et al., 1992; Schume et al., 2003; Klos et al., 2014; Metzger et al., 2017) and overall water budget 50 

at the catchment scale (Brown et al., 2005; Oda et al., 2021).  51 

 52 

Next to interception loss, the contact of precipitation with the vegetation canopy causes spatial redistribution of 53 

the incoming water. This leads to characteristic spatial heterogeneity of the dripping (thoughfall) and flowing 54 

(stemflow) below canopy precipitation, locally causing enhanced water input to the soil surface. For example, 55 

hotspots by dripping points (enhanced water flow from peculiarities in the canopy, Falkengren-Grerup, 1989; 56 

Keim et al., 2005; Staelens et al., 2006; Voss et al., 2016) and stemflow hotspots (Levia and Germer, 2015; 57 

Carlyle-Moses et al., 2018) are well-documented. The available research suggests that both throughfall patterns 58 

and stemflow spatial distributions are reoccurring (Keim et al., 2005; Staelens et al., 2006; Zimmermann et al., 59 

2008; Wullaert et al., 2009; Guswa and Spence, 2012; Metzger et al., 2017; Van Stan et al., 2020).  60 

 61 

The observed persistence of spatial patterns of below canopy precipitation has created a strong expectation that 62 

those affect patterns of soil water content (Schume et al., 2003; Wullaert et al., 2009; Rosenbaum et al., 2012; 63 

Zehe et al., 2010) and hotspots of percolation or preferential flow (Bouten et al., 1992; Schume et al., 2003; 64 

Blume et al., 2009; Bachmair et al., 2012) in forests soils. Yet, this is only partly confirmed with observations: 65 

For stemflow affected locations, soil moisture microsites have repeatedly been demonstrated (Pressland, 1976; 66 

Durocher, 1990; Liang et al., 2007; Germer, 2013; Metzger et al., 2021). Stemflow can create substantial 67 

funneling of water to the forest floor and water availability on the forest floor can be locally enhanced 10 to 100 68 

times (Levia and Germer, 2015; Carlyle-Moses et al., 2018; Metzger et al., 2021).  69 

 70 

While for stemflow the belowground consequences of input hotspots have been repeatedly confirmed, much less 71 

research is available about the role of the less pronounced, but still spatially persistent pattern of throughfall for 72 

soil water dynamics. Modelling suggested that throughfall patterns influence the root zone soil moisture pattern 73 

(Coenders-Gerrits et al., 2013; Guswa, 2012). However, soil moisture patterns are also influenced by several 74 

other factors creating substantial heterogeneity such as heterogeneity of soil properties, local micro-topography, 75 

litter thickness or root water uptake (Bouten et al., 1992; Schume et al., 2003; Schwärzel et al., 2009; Gerrits and 76 

Savenije, 2011; Rosenbaum et al., 2012; Liang et al., 2017; Molina et al., 2019), and those are typically not fully 77 

captured in virtual experiments. In contrast, observation studies found that throughfall and root zone soil 78 

moisture were not (Shachnovich et al., 2008; Rodrigues et al., 2022) or only occasionally (Metzger et al., 2017) 79 

or weakly (Molina et al., 2019) related. On the other hand, Klos et al. (2014) found a relation below the rooting 80 

zone by strategically sampling at high and low throughfall positions, and several authors found indirect evidence 81 

by interpreting the change of spatial variation in soil water content (Zehe et al., 2010; Rosenbaum et al., 2012; 82 

Metzger et al., 2017) after precipitation events.  83 
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 84 

In light of the substantial heterogeneity of other influencing factors, one of the reasons for the limited direct 85 

observational evidence of the effect of throughfall on soil water content maybe the lack of studies investigating 86 

the relation between below canopy precipitation and soil water patterns in a dedicated and coordinated fashion. 87 

The characterization of spatial patterns, such as those of throughfall, requires a large number of samplers 88 

(Kimmins, 1973; Lloyd and Marques, 1988; Zimmermann et al., 2010; Van Stan et al., 2020), and the same is 89 

true for below ground observations. Furthermore, a fundamental challenge is that soil water input and soil water 90 

content cannot be assessed at the same location, since the throughfall measurements disturb the infiltration into 91 

the soil. The objective of this study is therefore to compare the patterns of soil water content, soil properties and 92 

throughfall using a dedicated spatially highly resolved sampling design to reveal whether input, next tree 93 

distance or soil properties affect spatial variation in soil water content and soil water response. We used 94 

independent designs for above and below ground observations and applied kriging to derive the throughfall 95 

values at the locations where soil water content was measured.  The aims of the study were to a) to explore 96 

spatial heterogeneity and temporal stability of throughfall and soil water content and b) evaluate the influence of 97 

soil properties (field capacity and macroporosity), vegetation parameters (canopy cover, next tree distance) and 98 

input variation (throughfall) on the variation of soil water content and soil water content increase after 99 

precipitation. 100 

 101 

2. Methods 102 

 103 

2.1 Study area 104 

The study was carried out in the Hainich Critical Zone Exploratory (CZE Hainich, see Küsel et al. 2016), run by 105 

the Collaborative Research Centre “AquaDiva”. The site is located in Central Germany, in the Hainich National 106 

Park in an unmanaged beech dominated forest. Mean annual temperature are around 7.5 to 9.5 °C, depending on 107 

the position of the small mountain, and the and total annual precipitation drops from 900 to less than 600 mm from 108 

ridge to valley (Küsel et al., 2016). The monitoring site as well as measurements of precipitation and soil moisture 109 

has been described in Metzger et al. (2017), the important parts are repeated here for completeness. The site covers 110 

an area of 1 ha and is situated at 365 m a.s.l.. The study area contains of 581 tree individuals (diameter breast 111 

height ≥ 5 cm), representing a heterogeneous age structure. The soils in this area are dominatly luvisols (Schrumpf 112 

et al., 2014; Kohlhepp et al., 2017). The species assemblages consists of 70% European beech trees (Fagus 113 

sylvatica), as well as Sycamore maple (Acer pseudoplatanus), European ash (Fraxinus excelsior), European 114 

hornbeam (Carpinus betulus), Large-leafed linden (Tilia platyphyllos), Norway maple (Acer platanoides) and 115 

Scots elm (Ulmus glabra). The weathered bedrock is at 15 to 87 cm depth (median depth 37 cm). More details on 116 

the research site are given in Metzger et al. (2017).  117 

 118 

2.2 Precipitation measurements and processing 119 

The precipitation sampling follows the same procedure as given in Metzger et al. (2017). Gross precipitation (Pg) 120 

and throughfall (PTF) were measured manually using gauges on a per-event basis in spring 2014, 2015, 2016. The 121 

current analysis covers the period from June 18 to July 28 2015 and May 31 to July 14 2016. The installed 122 

throughfall collectors consist of circular funnels (diameter = 12 cm), the opening of which is placed about 37 cm 123 

above the ground surface. A table tennis ball is placed in the opening of the funnel to minimized evaporation. 124 
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Throughfall collectors were arranged in a stratified sampling design (Zimmermann et al., 2016). For this, the 1 ha 125 

plot was divided into 100 subplots each 10 m x 10 m (Figure 1) and equipped with two randomly located 126 

throughfall samplers. Of those, we selected 50 point randomly and added another sampler in direct vicinity (0.1 m 127 

distance) creating a “short transect”. Furthermore, to 25 randomly selected short transects we added four more 128 

samplers at 0.5, 1, 2, and 3 m from the first to form “long transects”. The direction of all transects was also 129 

randomly chosen. In total we sampled n = 350 throughfall positions.  130 

Sampling started 2 h after the end of rainfall by collecting the volume of all sampling containers using graduated 131 

cylinders. Gross precipitation was measured at an adjacent (distance 250 m) open grassland using five funnels of 132 

the same type as the throughfall collectors.  133 

 134 

Fig. 1: Experimental set‐up in the 1‐ha forest plot subdivided by a 10 m x 10 m grid yielding 100 subplots. 135 

Positions of the throughfall samplers (pink crosses) and 49 soil water content subplots (blue) measured in a 136 

stratified random design with transects (see material and methods for more details, Figure from Metzger et al., 137 

2017). 138 

 139 

To allow comparison of spatial pattern between events, we calculated a normalized spatial deviation of each 140 

measurement (δPTF,i) similarly to Vachaud et al. (1985). Since throughfall is not always normally distributed in 141 

space, we used the median ("#!") instead of the arithmetic mean for normalization, as already done by Zimmermann 142 

et al. (2008) and Wullert et al. (2009) as follows 143 

 144 

δ"!",$ =
"!",$ − "%#$

"%#$
 

 (1) 

where δPTF,i represents the normalized value of the spatially distributed measurements of throughfall (PTF,i) at 145 

locations i for a specific event, and "#!" the spatial median for that event. To investigate the temporal persistence 146 

of the spatial pattern of throughfall we derived temporal stability plots (Zimmermann et al., 2008; Wullaert et al., 147 

2009) by ranking the normalized throughfall from minimum to maximum. Additionally, we calculated Spearman 148 

rank correlation coefficients between observations of different events, where high correlations indicate strong 149 
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persistence (or temporal stability) of the throughfall pattern. We paired all events falling into a given rain event 150 

class according the Metzger et al. (2017): small: (Pg £ 3 mm); medium (3 mm  < Pg £ 10 mm), large (Pg > 10 mm). 151 

To relate the general precipitation and soil moisture conditions during the observation period to the average 152 

climate, we compared them with precipitation data from a nearby gauge (Mühlhausen‐ Windeberg, 20 km to the 153 

northeast) of the German Weather Service (DWD climate data centre, www.dwd.de/cdc, ID 5593).  154 

 155 

2.3 Soil water content measurements  156 

The soil water measurements were first described in Metzger et al. (2017). Volumetric soil water content was 157 

monitored using a wireless sensor network (SoilNet, Bogena et al. (2010)) equipped with SMT100 frequency 158 

domain sensors (Truebner GmbH, Neustadt, Germany). Overall 210 soil water content measurement points were 159 

distributed in a stratified random design in the blue subplots shown in Figure 1: Within each blue subplot, two 160 

sampling points were placed randomly. Additionally, to a subset of 24 randomly selected points, transects were 161 

added with three additional measurement points (at 0.1, 2.0, and 6.0 m from the position). Furthermore, 40 162 

locations were added as transects near tree stems. At each soil moisture measurement location, sensors were 163 

installed in two depth, e.g topsoil 7.5 cm and subsoil 27.5 cm depth. For this analysis we used the data collected 164 

during the throughfall measurement campaigns from June 18 to July 28 2015 and May 31 to July 14 2016. At each 165 

locations, we used soil moisture measurements an hour preceding the observed rain event (θpre,i) to characterize 166 

soil moisture and its pattern in the drained state and the maximum soil water content induced by the rain event 167 

(θpost,i) to characterize the post event state. We also assessed the soil water content response by calculating the 168 

change of soil water content (Δθi) for each event and each location with   169 

 170 

Δ'% = '&'(),% − '&*+,%   (2) 

where positive values of Δ'%  indicate water content increase. 171 

Equivalently to throughfall, we calculated the median soil water contents ($#%&', $#%()*) as well the relative 172 

deviations (δθpre,i, δθpost,i), indicating the spatial pattern of soil water content according to Equation 1. Using the 173 

normalized values of soil water content and throughfall next to the medians in the statistical models (see below) 174 

allowed us to differentiate between spatial patterns and temporal variation across events. 175 

 176 

2.4 Canopy and soil property measurements 177 

At the time of soil sensor installation, undisturbed soil samples were collected using metal ring cylinders with a 178 

volume of 100 cm3. The distance between the sensor position and the soil sample collection was approximately 179 

0.5 m. Soil properties were treated as if they were measured directly at the soil sensor location i. In order to 180 

determine field capacity (θFC,i), the samples were first saturated and next let drain in a sand box with a hanging 181 

water column imposing a pressure of −60 hPa for 72 hours and weighed. The soil cores were subsequently dried 182 

for 24 h at 105° C and weighed again to obtain the dry weight mdry,i. The volumetric water content at field 183 

capacity (θFC,i) was derived from the weight difference of the sample at -60 hPa and the dried one, while 184 

assuming a density of water of Dw = 1 g cm−3. Bulk density (Dbd,i) was calculated from soil dry weight and 185 

volume. Soil apparent porosity (φi) was calculated from the bulk density and assuming a constant density of the 186 

soil mineral component (Dm = 2.66 g cm−3) 187 
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(% = 1 − *,-,%*.
 

 (3) 

Air capacity (θAC,i, also called air-filled porosity) was then determined as  188 

'/0,% = 1 −	'10,%   (4) 

To characterize the canopy density, we counted the number of branches (canopy cover) above the throughfall 189 

samplers in 2014. This data was however not available for soil water measurement locations.  190 

  191 

2.5 Statistical Analysis 192 

All statistical analysis were processed with R 3.2.3 (Core Team 2016). For the geostatistical analysis (detailed 193 

below) we used the the packages geoR (Ribeiro Jr and Diggle, 2001), georob (Papritz and Schwierz, 2020) and 194 

gstat (Pebesma, 2004; Gräler et al., 2016). Linear mixed effects models were implemented using the package lme4 195 

(Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017). The variance explained by fixed and random factors 196 

(conditional R²) and by only fixed effects (marginal R², Nakagawa and Schielzeth (2013)) for the final model were 197 

calculated with the MuMIn package (Barton, 2020).  198 

 199 

2.5.1 Geostatistical estimation of throughfall 200 

Throughfall was estimated at the soil water content measurement locations by kriging. The overall procedure for 201 

obtaining the variograms closely follows Zimmermann et al. (2016) with some adaptations taken from Voss et al. 202 

(2016). Important steps and decisions of the exploratory data and geostatistical analysis are shown in Figure S1. 203 

 204 

1. Exploratory Analysis-Test for trends and underlying asymmetry. First, we determined the skewness using the 205 

octile skew. The octile skew of none of the throughfall events was larger than 0.2 or smaller -0.2 and we therefore 206 

did not transform the data. If a spatial trend existed (p ≤ 0.150), we used the residuals of the spatial regression 207 

model for the coordinates x and/or y instead of the real data in the following.  208 

 209 

2. Variogram estimation by the method-of-moments (MoM). We calculated the empirical throughfall variogram 210 

using both non-robust and robust estimators (Matheron, 1962; Cressie and Hawkins, 1980; Dowd, 1984; Genton, 211 

1998) using the sample.variogram function in the package georob in R. For throughfall we chose lags centered at 212 

0.125, 0.375 and 0.75, followed by a step size of 1 m up to 50 m). Next, we obtained a provisional variogram, 213 

which serves for spatial outlier detection in step 3. For this, we fitted three models to the experimental variogram 214 

(spherical, exponential and pure nugget) using fit.variogram.model function in the package gstat and chose the 215 

model with the lowest Residual Sum of Squares. Then we assessed the fitted model by leave-one-out cross 216 

validation. Based on this we calculated the normalized kriging error (Θi,) (Lark, 2000) and compared the 217 

variograms from all mentioned estimators using the estimator with a median of Θ nearest to 0.455 (Zimmermann 218 

et al., 2008).  219 

 220 

3. Identification and spatial outlier removal. Before final variogram estimation using residual maximum likelihood 221 

(REML) in step 4, outliers were removed based on kringing and cross validation using the provisional variagram 222 

obtained in step 2. For identifying a spatial outlier at location i we used the standardized error of cross validation 223 

εs,i (Bárdossy and Kundzewicz, 1990, Lark, 2002). To classify an outlier we used the Z-statistics. Sampled points 224 

with εs,i < -2.576 (α/2 = 0.005) were removed (Zimmermann et al., 2016).  225 
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 226 

4. Variogram estimation by residual maximum likelihood (REML). After outlier removal, we applied REML to fit 227 

the theoretical model including spatial trend if necessary, using the likfit function in the package geoR. We used 228 

the initial estimates from the provisional variogram (step 2) for the parameters sill, nugget and range. The range 229 

relates to the distance over which the observations are still spatially correlated. In the following, we will use the 230 

term correlation length to refer to the effective range, e.g. the distance at which the variogram approaches the sill 231 

to 95%. For example, a high effective range indicates a high spatial correlation between the throughfall collectors. 232 

We checked the reliability of the final model with the statistic Θi (see above).  233 

 234 

5. Kriging. Using the final variogram from step 4, we applied ordinary kriging to predict throughfall values at the 235 

soil water content measurement locations. Locations where the kriging variance exceeded 95% of the spatial 236 

variance were removed from further analysis. 237 

 238 

2.5.2 The coefficient of quartile variation (CQV) 239 

We used quantile based statistical metrics for descriptive statistics and correlation since throughfall and soil 240 

moisture patterns are commonly skewed (Famiglietti et al., 1998; Zimmermann and Zimmermann, 2014), and 241 

throughfall typically includes extreme values due to dripping points (Falkengren-Grerup, 1989; Keim et al., 2005; 242 

Staelens et al., 2006; Voss et al., 2016). For the coefficient of variation, we used the quartile variation coefficient 243 

(CQV) (Bonett, 2006) as alternative to the coefficient of variation: 244 

&'( = '3 − '1
'3 + '1 

  

where Q1 and Q3 represent first and third quartiles. Like the classical coefficient of variation, the CQV is 245 

dimensionless statistical measure that describes the relative degree of scattering of the sample. 246 

 247 

2.5.3 Linear mixed effects models calculation 248 

We applied linear mixed effect models (LME) with repeat-measurement structure to evaluate the influence of 249 

potential drivers explaining soil water content or soil water content increase. We present results on the following 250 

dependent variables: Spatial pattern of pre-event (δθpre), and post-event (δθpost) soil water content as well as soil 251 

water content increase (Δθ).  252 

The independent variables (fixed effects) for δθpre were: Gross precipitation (Pg), nearest tree distance (dtree), air 253 

capacity (θAC), field capacity (θFC), throughfall of the preceding event (PTFpre). The independent variables (fixed 254 

effects) for Δθ and δθpost were: Gross precipitation (Pg), spatial median of soil pre-event water content ($#%&'), 255 

spatial pattern of soil pre-event water content (δθpre), nearest tree distance (dtree), air capacity (θAC), field capacity 256 

(θFC), spatial median of throughfall ("#!") and spatial pattern of throughfall (δPTF).  Year, day of year and sensor 257 

position were implemented as random effects accounting for repeated measurements. To avoid model over-fitting 258 

it is important that there are no strong correlations between the explanatory variables (Graham, 2003). To detect 259 

multi-collinearity and to avoid potentially spurious models we calculated Spearman rank correlation coefficients 260 

(ρ) for all pairs of predictors (Table S1). Before the analysis we removed one of a pair of highly correlated 261 

predictors: Gross precipitation (Pg, strong correlation with "#!") and field capacity (θFC, strong correlation with 262 

θAC). All predictor variables were normalized. To obtain the minimal adequate models for the response variables, 263 
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we started with the maximum model and removed stepwise all non-significant terms based on the Akaike 264 

Information Criterion (AIC). Main effects included in significant interactions were retained in the model.  265 

 266 

3. Results 267 

3.1 Precipitation, throughfall and soil water content pattern 268 

The summer rainfall (May to October) for the last 30 years (1986 – 2016) shows an average of 352 mm 269 

(Mühlhausen‐Windeberg). During the two summer periods of this study (2015 and 2016), the annual rainfall was 270 

below the long-term mean (276 and 303 mm, respectively). However, the summer 2015 were the third driest of 271 

the last 30 years (Metzger et al., 2017). The final winter months of 2014 were the driest and the hydrological year 272 

2014/2015 the second driest of the 30 years period. The hydrological year 2015/2016 and the final winter months 273 

of 2015 received average precipitation. 274 

Descriptive statistics of throughfall and soil water content (topsoil and subsoil) are given in Table 1. We observed 275 

14 rainfall events in 2015 and ten in 2016. The gross precipitation ranged between 1.6 and 35.2 mm, with three 276 

small, six medium and five large in 2015, and one medium and nine large events in 2016. For both years, soil 277 

water content increased with soil depth (Table 1). The soil water content increase (difference between post-event 278 

and pre-event soil water content; Δθ) was always higher in the topsoil compared to the subsoil. For smaller rainfall 279 

events, an increase in soil water content was mainly limited to the topsoil, and only following larger rainfall event, 280 

in both soil depths.  281 

3.2 Spatial pattern of throughfall 282 

The model parameters fitted to the semi-variograms in the separate steps indicated in Section 2.5.1 are shown in 283 

Table S2-4 and correlation lengths (effective range) of the final variograms (step 4, Table S4) are shown in Figure 284 

2. Throughfall correlation lengths decreased with increasing event size from on average 6.2 m for large events to 285 

7.5 m for medium and 9.5 m for small events. In comparison, canopy density correlation length was 7.5 m, i.e.  286 

similar to medium events. Throughfall and canopy density had a small nugget and a strong spatial dependence 287 

(nugget/sill ratio < 25%) for all events (Table S4). For both years, throughfall decreased significantly with 288 

increasing canopy density (Table S5), although most of the variance for spatial patterns of throughfall was related 289 

to unknown random effects. 290 

The spatial variation of throughfall (inter-quartile range) increased with event throughfall, but the coefficient of 291 

quartile variation (CQV), which normalizes by event size, decreased (Table 1). The high Spearman rank correlation 292 

coefficient indicates a strong similarity of the spatial distribution of throughfall between individual events of the 293 

same size class (Figure 3). Thus, throughfall produced persistent wet and dry spots, also confirmed by time stability 294 

plots (Figure S2). 295 

Soil water content spatial variation coefficients (CQV) decreased with increasing soil water content (expressed as 296 

the spatial mean) and consequently with increasing soil depth (Table 1, Figure S3). In the topsoil, the relation was 297 

more concave for post-event soil water content (Figure S3) compared to pre-event soil water content, indicating 298 

that the event response enhanced soil water content variation especially in drier (summer) conditions in topsoil. 299 

However, the by far highest CQV were observed for the increase in soil water content after rain (Δθ). 300 

  301 
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 304 

 305 

Fig. 2: Comparison of the correlation length, given as effective range, derived from the throughfall variogram 306 

calculated for small (Pg < 3 mm), medium (3 mm < Pg < 10 mm), large (Pg > 10 mm) events. 307 

 308 

 309 

 310 

 311 

 312 

Fig. 3: Temporal stability of the spatial throughfall patterns. Shown are the pairwise correlation coefficients 313 

(Spearman) between throughfall (normalized deviation from the plot median (δPTF)) from different precipitation 314 

events, grouped by event size class (small (n=11), medium (n=21), large (n=91) events. 315 

 316 

  317 
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 11 

The pairwise correlation coefficients indicating the temporal stability of the spatial patterns were high for pre-318 

event (drained) soil water content (θpre) both in topsoil (Figure 4a) and subsoil (Figure 4b) with ρ » 0.78. For post-319 

event soil water content (θpost) they were significantly lower in the topsoil (ρ = 0.70, Figure 4c) than subsoil 320 

(ρ = 0.77, Figure 4d) (Mann-Whitney-U Test: Z = -3.15, p = 0.002). In the topsoil they decreased with increasing 321 

event size, revealing patterns were less similar after large precipitation events (Figure 4a,c). In contrast, patterns 322 

in soil water content increase after rain events (Δθ) were much more weakly correlated with each other (Figure 323 

4e,f). However, the similarity of the patterns increased with event size especially in topsoil (Figure 4e), confirming 324 

reoccurring wetting patterns especially following larger events.  325 

 326 

 327 

Fig. 4: Temporal autocorrelation of spatial patterns of pre- and post-event soil water content and increase of soil 328 

water content after rainfall calculated as pairwise correlation coefficients (Spearman ρ) between all of the 329 

different precipitation events within the event size class (small (n = 3), medium (n = 21), large (n = 91). (top) 330 

pre-event soil water content ($pre); (middle) post-event soil water content ($post); (bottom) increase of soil water 331 

content (Δθi); (left) topsoil; (right) subsoil. The differences between the events were examined using the Duncan 332 

post hoc test of a one-way ANOVA. Letters on the top of bars indicate significant difference (p £ 0.05) between 333 

the groups. 334 
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3.3 Factors influencing soil water spatial distribution 335 

3.3.1 Soil water content  336 

In order to identify the basic drivers for the patterns of soil water content in the drained state (δθpre), we used mixed 337 

effects model selection. The resulting best models for top- and subsoil are given in Table 2. The variance explained 338 

by fixed effects (marginal R2) was low, whereas the variance explained by fixed and random effects together 339 

(conditional R2) was high. The model for the subsoil showed an even higher marginal R² compared to the topsoil, 340 

and a somewhat higher influence of fixed effects. The most important effect identified for topsoil and subsoil was 341 

air capacity, with lower soil water content (δθpre) related to locations of higher air capacity (Table 2). In the topsoil 342 

also the throughfall of the preceding precipitation event slightly affected the soil moisture pattern. The results for 343 

the soil water content itself in the drained state (θpre) are similar to those of δθpre, except that fixed effects explain 344 

even less variation (Table S6). 345 

Table 2: Factors affecting pre-event soil water content patterns (δθpre) in topsoil and subsoil. Results for the best 346 

linear mixed effects model. Significant effects are highlighted in bold.  347 

 348 

  topsoil  subsoil 

Explained variation    

R² Full model 0.818  0.822 

R²  Fixed 0.035  0.143 

R²  Random 0.783  0.679 
  t-value p-value  t-value p-value 

Fixed effects      
Air capacity, θAC  -2.5 0.013  -3.7 <0.001 
Throughfall of previous 
event, PTF, prev 

2.3 0.039  -1.5 0.161 

Tree distance, dtree -0.8 0.426  1.8 0.065 

Interactions      

PTF,prev  x  θAC - -  -2.7 0.007 
PTF, prev  x  dtree   -2.0 0.047  - - 
θAC  x  dtree - -  1.9 0.057 

 349 

The results of the best linear mixed effects model relating soil water content after a precipitation event to potential 350 

drivers is given in Table 3.  The spatial pattern of soil water content before the rain event (δθpre) was the major 351 

control on either absolute values of spatially distributed soil water content after the rain event (θpost, Table 3) or its 352 

spatial pattern (δθpost, Table S8). Other fixed (!"!", δP!",	&"#$%, θ&', d($%% ) and random effects explained only a very 353 

small part of the variation. 354 

  355 

https://doi.org/10.5194/hess-2022-418
Preprint. Discussion started: 6 January 2023
c© Author(s) 2023. CC BY 4.0 License.



 
 

Ta
bl

e 
3:

 F
ac

to
rs

 in
flu

en
ci

ng
 s

oi
l w

at
er

 c
on

te
nt

 a
fte

r a
 p

re
ci

pi
ta

tio
n 

ev
en

t (
θ p
os
t).

 R
es

ul
ts

 fo
r t

he
 b

es
t l

in
ea

r m
ix

ed
 e

ff
ec

ts
 m

od
el

 in
cl

ud
in

g 
al

l d
at

a 
(le

ft 
co

lu
m

ns
) a

nd
 g

ro
up

ed
 b

y 

ev
en

t s
iz

e 
(s

m
al

l, 
m

ed
iu

m
 a

nd
 la

rg
e,

 ri
gh

t c
ol

um
ns

). 
Si

gn
ifi

ca
nt

 e
ff

ec
ts

 a
re

 sh
ow

n 
in

 b
ol

d 
an

d 
ef

fe
ct

s t
ha

t w
er

e 
si

gn
ifi

ca
nt

 in
 b

ot
h 

so
il 

de
pt

h 
(b

as
ed

 o
n 

al
l e

ve
nt

s)
 a

re
 h

ig
hl

ig
ht

ed
 

in
 g

re
y.

 V
ar

ia
bl

es
 a

re
 sc

al
ed

 su
ch

 th
at

 th
e 

t-v
al

ue
 in

di
ca

te
s t

he
 e

ff
ec

t s
tre

ng
th

. P
se

ud
o 

R
² v

al
ue

s a
re

 g
iv

en
 se

pa
ra

te
ly

 fo
r f

ix
ed

 a
nd

 ra
nd

om
 e

ff
ec

ts
. 

 
to

ps
oi

l 
 

su
bs

oi
l 

 
 

Al
l e

ve
nt

s 
Sm

al
l e

ve
nt

s 
M

ed
iu

m
 e

ve
nt

s 
La

rg
e 

ev
en

t 
Al

l e
ve

nt
s 

Sm
al

l e
ve

nt
s 

M
ed

iu
m

 e
ve

nt
s 

La
rg

e 
ev

en
ts

 
 

Fu
ll m

od
el

 R
² 

0.
90

 
0.

99
 

0.
96

 
 0

.8
3 

0.
89

 
0.

86
 

  0
.9

2 
0.

92
 

 
Fi

xe
d 

ef
fe

ct
s 

R2
 

0.
87

 
0.

99
 

0.
96

 
 0

.7
6 

0.
88

 
0.

86
 

  0
.9

2 
0.

91
 

 
Ra

nd
om

 e
ffe

ct
s 

R2
 

0.
03

 
 

0.
00

 
 

0.
00

 
 

0.
07

 
 

0.
00

 
 

0.
00

 
 

0.
00

 
 

   
   

  0
.0

1 
 

 

  
t-v

al
ue

 
p-

va
lu

e 
t-v

al
ue

 
p-

va
lu

e 
t-v

al
ue

 
p-

va
lu

e 
t-v

al
ue

 
p-

va
lu

e 
t-v

al
ue

 
p-

va
lu

e 
t-v

al
ue

 
p-

va
lu

e 
t-v

al
ue

 
p-

va
lu

e 
t-v

al
ue

 
p-

va
lu

e 
 

Fi
xe

d 
ef

fe
ct

s 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

M
ed

ia
n 

ev
en

t t
hr

ou
gh

fa
ll, 
'( !

" 
2.

2 
0.

03
5 

4.
1 

<0
.0

01
 

2.
8 

0.
00

7 
1.

2 
0.

23
8 

-0
.6

 
0.

49
4 

- 
- 

-3
.0

 
0.

00
3 

-1
.6

 
0.

14
1 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
Sp

at
ia

l t
hr

ou
gh

fa
ll p

at
te

rn
, 

δP
TF

,i 
1.

8 
0.

07
2 

- 
- 

2.
0 

0.
05

1 
1.

9 
0.

06
2 

3.
0 

0.
00

3 
- 

- 
0.

8 
0.

40
8 

3.
0 

0.
00

3 
 

In
itia

l m
ed

ia
n 

so
il w

at
er

 
co

nt
en

t, 
)( #

$%
  

-1
.7

 
0.

10
6 

-4
.0

 
<0

.0
01

 
-2

.3
 

0.
03

8 
-2

.5
 

0.
02

4 
-1

.4
 

0.
18

4 
- 

- 
-1

.2
 

0.
21

1 
0.

6 
0.

58
2 

 

Sp
at

ia
l p

at
te

rn
 o

f i
ni

tia
l s

oi
l 

wa
te

r c
on

te
nt

, δ
θ p

re
,i  

76
.4

 
<0

.0
01

 
20

0.
0 

<0
.0

01
 

97
.2

 
<0

.0
01

 
39

.2
 

<0
.0

01
 

98
.4

 
<0

.0
01

 
41

.4
 

<0
.0

01
 

79
.2

 
<0

.0
01

 
59

.7
 

<0
.0

01
 

 

Tr
ee

 D
ist

an
ce

, d
tre

e 
1.

8 
0.

08
1 

- 
- 

- 
- 

0.
9 

0.
39

4 
- 

- 
- 

- 
- 

- 
0.

7 
0.

49
8 

 
Ai

r c
ap

ac
ity

, θ
AC

,i 
- 

- 
- 

- 
-2

.5
 

0.
01

3 
- 

- 
-2

.1
 

0.
04

2 
- 

- 
- 

- 
-2

.2
 

0.
03

5 
 

In
te

ra
ct

io
ns

 
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
 

'( !
" 

x 
 δ

P T
F,

i 
2.

3 
0.

01
9 

- 
- 

- 
- 

- 
- 

2.
0 

0.
04

8 
- 

- 
2.

0 
0.

04
3 

- 
- 

 
'( !

" 
 x

 d
tre

e,
i  

-1
.5

 
0.

12
9 

- 
- 

- 
- 

-2
.4

 
0.

01
5 

- 
- 

- 
- 

- 
- 

-2
.2

 
0.

02
6 

 
'( !

" 
 x

 )( &
'(

  
- 

- 
- 

- 
- 

 - 
- 

- 
- 

-  
- 

-  
- 

-  
- 

-  
 

'( !
" 

 x
 δ
θ p

re
,i 

-9
.7

 
<0

.0
01

 
-2

.5
 

0.
01

1 
- 

- 
-2

.2
 

0.
02

7 
-2

.1
 

0.
03

2 
- 

- 
-5

.7
 

<0
.0

01
 

-2
.6

 
0.

01
0 

 
'( !

" 
 x

 θ
AC

,i 
- 

- 
- 

- 
- 

 - 
- 

- 
- 

-  
- 

-  
- 

-  
- 

-  
 

θ A
C

,i x
  δ

P T
F,

i  
- 

- 
- 

- 
- 

-  
- 

- 
-3

.4
 

<0
.0

01
 

- 
- 

- 
- 

-3
.7

 
<0

.0
01

 
 

θ A
C

,i x
 d

tre
e  

- 
- 

- 
- 

2.
3 

0.
02

1 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
 

θ A
C

,i x
 δ
θ p

re
,i 

- 
- 

- 
- 

- 
- 

- 
- 

2.
9 

0.
00

3 
- 

- 
- 

- 
3.

6 
<0

.0
01

 
 

)( #
$%

 x
 δ

P T
F,

i 
-2

.0
 

0.
01

9 
- 

- 
- 

-  
- 

- 
-2

.8
 

0.
00

4 
- 

- 
- 

- 
- 

- 
 

)( #
$%
	+	

d t
re

e 
- 

- 
- 

- 
2.

2 
0.

02
5 

 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
 

)( #
$%

 x
  δ
θ p

re
,i 

3.
2 

0.
00

2 
- 

- 
- 

- 
3.

5 
<0

.0
01

 
- 

- 
- 

- 
1.

7 
0.

08
2 

-3
.6

 
<0

.0
01

 
 

δθ
pr

e,
i x

 δ
P T

F,
i 

-2
.0

 
0.

01
9 

- 
- 

- 
-  

- 
- 

-2
.8

 
0.

00
4 

- 
- 

- 
- 

- 
- 

 

13

https://doi.org/10.5194/hess-2022-418
Preprint. Discussion started: 6 January 2023
c© Author(s) 2023. CC BY 4.0 License.



 14 

3.3.2 Soil water response (Δθ) 358 

The models for explaining the soil water content increase (Δθ), i.e. how much water was locally stored in the soil 359 

after rain, are shown in Table 4. In general, a detectable (> 1%) change of Δθi was limited to large rainfall events 360 

(Table 1). The spatial patterns responded to several drivers (fixed effects) in the final model. There, the variance 361 

explained by fixed effects (marginal R2) was generally higher for subsoil compared to topsoil, it typically increased 362 

with event size and was highest for the models including all event sizes (Table 4). In the following we therefore 363 

focus on the effects emerging from those latter models, that is the ones including all events, while the results for 364 

the individual event size classes are used only for more detailed interpretation. The grey shaded lines highlight the 365 

significant relations that occurred both in top- and subsoil. 366 

Overall, local soil water content increase (Δθ) depended not only on event median throughfall ("#!"), but also on 367 

the spatial pattern of throughfall (δPTF) and spatial patterns of initial or pre-event soil moisture (δθpre). Nearly all 368 

main effects are also included in interactions, meaning that likely a third variable influenced the relationship 369 

between an independent and dependent variable. For example, locally elevated throughfall enhanced the soil water 370 

increase (Table 4), but more so with increasing event size (interaction !"!" x  δP!"  , visualized in Figure 5 a and b).  371 

Spatial patterns of pre-event (or initial or drained) soil water content (δθpre) notably affected top- and subsoil 372 

differently, making it the only factor yielding opposite effects on soil water content increase in different soil depths. 373 

In topsoil, drier locations stored less water per event than moister spots (positive t-value), whereas in subsoil, the 374 

opposite was the case (negative t-value). The influence of pre-event soil moisture patterns increased with event 375 

size (interaction !")* x  δθpre,). Note that the slope of the interaction (represented by the sign of the t-value) changes 376 

with overall soil water conditions consistently in both depths (Table 4, interaction &"#$% x  δθpre, visualized in Figure 377 

6a): Locally drier soil increased soil water storage in wet, but decreased it in dry times. 378 

Additional factors affecting the soil water response in top soil were related to the distance to the next tree. Locations 379 

near trees reacted stronger to event precipitation than those further away (interactions !"!"  x dtree), but only in 380 

overall moister soil conditions (Table 4, interaction &"#$%	*	dtree). In the subsoil higher air capacity (θAC), 381 

representing the higher macropore volume, dampened the soil water response (Table 4, negative t-value), and more 382 

so when or where throughfall was high (interactions !"!"  x θAC and θAC x  δPTF) as well as in drier locations 383 

(interaction θAC x δθpre). 384 

  385 
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 389 

Fig. 5: Influence of the spatial pattern of throughfall (δPTF) and on the soil water content response (Δθ), grouped 390 

by the event size (given as mean of throughfall, !"!") for (left) topsoil and (right) subsoil. Note that all values are 391 

z-scaled, and therefore centered around zero. For example, the red line highlights events of below average 392 

throughfall (small events). There, the spatial pattern of soil water content response depends little on that of 393 

throughfall (small events). A stronger influence is seen for the above average (larger) events marked in green. 394 

 395 

 396 

Fig 6. Interaction between the local soil water response to rain event (Δθ) and the local pre-event soil water 397 

content pattern (δθpre) grouped by the pre-event spatial average soil moisture conditions (spatial median soil 398 

water content, &"#$%) for (left) topsoil and (right) subsoil. For example, the green line shows that in overall moist 399 

conditions (e.g. early spring), soil water content increase is dampened in moister locations (high values of δθpre) 400 

and more so on the subsoil. Dampening also takes place in drier locations in dry summer conditions in topsoil 401 

(red line). Note: grouping according to soil water content (&"#$%) was done separately for topsoil and subsoil, 402 

while absolute values in subsoil water content are always higher than in topsoil. Therefore, the shift in slopes 403 

from positive to negative with soil moisture conditions is not only within but also between soil depth. 404 

  405 
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4. Discussion 406 

4.1 Strengths and weaknesses of the approach 407 

In this analysis we used extensive spatial data of canopy cover, throughfall and soil water content in order to assess 408 

the role of canopy processes on below-ground soil water response to precipitation. For this, we meassured 409 

precipitation and soil water content at different locations in order to avoid disturbance of soil water dynamics by 410 

the precipitation measurement and providing independent random measurement designs. To be able to relate 411 

observations at different locations, we used geostatistical methods to predict throughfall values at locations where 412 

soil water content was measured. Because the throughfall prediction can be based on an extensive dataset of 350 413 

points, it allows reliable variogram estimations (Voss et al., 2016). Throughfall showed strong spatial 414 

autocorrelation which was reflected by nugget-to-still ratios much lower than 25% for all event sizes (Table S3). 415 

However, spatial correlation patterns depended on event size in that the correlation length decreased with 416 

increasing event rainfall. This decreased in larger events the range within which throughfall could be predicted 417 

and increased the number of locations with high kriging variance, that were removed from the analysis. As a result, 418 

this decreased the sample size for large compared to small and medium sized events. Regardless, for all sampled 419 

events, we could still rely on datasets of 59 points on average. Additionally, kriging predictions tend to be smoother 420 

compared to the actual data. However, the predicted values show approximately the same median and spatial 421 

variance as the measured data, indicating that the real variation was still maintained after the prediction procedure. 422 

Unfortunately, there is no perfect way to relate measurements obtained at different locations to each other. 423 

However, the combination of a large sample size of throughfall and variogram estimation by residual maximum 424 

likelihood (REML) seems to be a suitable way forward for interpolating the aboveground data to the belowground 425 

locations (Lark, 2000; Voss et al., 2016). Altogether, this provides a good basis to comparing above- and 426 

belowground measurements.  427 

In our analysis we quantified only throughfall input and omit the role of stemflow, which may play a role in 428 

locations near stems. Extrapolating stemflow input to soil moisture locations entails more prediction steps 429 

compared to throughfall. Spatial variation of stemflow depends on the one hand on species, tree and canopy size, 430 

neighborhood and individual morphology of the trees (Bellot and Escarre, 1998; Fan et al., 2015b; Levia et al., 431 

2014; Levia and Germer, 2015; Van Stan et al., 2016; Metzger et al., 2019; Magliano et al., 2019) and on the other 432 

hand on precipitation intensity and soil conditions determining the infiltration area  (Herwitz, 1986; Carlyle-Moses 433 

et al., 2018; Metzger et al., 2021). Such a prediction would not only introduce a great deal of uncertainty, but also 434 

deviate from the main purpose of this study, which is to evaluate the role of throughfall heterogeneity. Therefore, 435 

in the model analysis, microsites near stems were accounted for by including distance to the stem as fixed effect 436 

in the model. This takes into account to some extent the potential influence of stemflow in the interpretation.   437 

4.2 General patterns of throughfall (temporal and spatial) 438 

In agreement with previous studies, throughfall patterns of large events show lower coefficients of variation 439 

compared to smaller ones (Aussenac, 1970; Loustau et al., 1992; Llorens et al., 1997; Su et al., 2019; Metzger et 440 

al., 2017; Carlyle-Moses, 2004; Staelens et al., 2008; Van Stan et al., 2020). Several other studies have suggested 441 

that throughfall spatial variation depend next to canopy characteristics also on precipitation amount (Loustau et 442 

al., 1992; Carlyle-Moses, 2004; Keim et al., 2005; Park and Cameron, 2008; Hsueh et al., 2016; Zimmermann et 443 

al., 2009). Similarly, at our site for all event size classes, canopy cover was a significant driver of throughfall 444 

spatial distribution, although a small one compared to the random effects. The correlation length (effective range) 445 

of throughfall decreased with increasing event size and corresponded for medium events roughly to that of canopy 446 
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cover. The change of spatial pattern with event size illustrates that not only canopy storage per se, but also other 447 

processes like turbulence, wind shadows, the arrangement of canopy gaps, or the formation of canopy dripping 448 

points can add persistent spatial organization to below-canopy precipitation (Carlyle-Moses, 2004; Keim et al., 449 

2005; Park and Cameron, 2008; Staelens et al., 2008; Zimmermann et al., 2008; Wullaert et al., 2009; Li et al., 450 

2016; Van Stan et al., 2020). In other words, not only canopy density, but also other canopy features probably 451 

affect throughfall distribution (Park and Cameron, 2008; Zimmermann et al., 2009). Overall, and despite the slight 452 

changes in throughfall correlation lengths for different events size classes, throughfall patterns were temporally 453 

stable, indicating the existence of permanent hot and cold spots of throughfall, and those were consistent across 454 

small, medium and large events. This is in line with several previous studies stating temporal stability of 455 

throughfall patterns (Keim et al., 2005; Staelens et al., 2006; Wullaert et al., 2009; Zimmermann et al., 2009; 456 

Fathizadeh et al., 2014; Fan et al., 2015b; Metzger et al., 2017; Molina et al., 2019; Zhu et al., 2021; Rodrigues et 457 

al., 2022) even over several years (Wullaert et al., 2009; Rodrigues et al., 2022), although phenology and canopy 458 

development have also been observed to deteriorate spatial stability (Zimmermann et al., 2008; Fathizadeh et al., 459 

2014). Furthermore, although spatial variation coefficients are smaller in large compared to small events, absolute 460 

values vary much more in large events such that they have arguably a higher potential to induce spatial patterns in 461 

soil water content or dynamics. 462 

4.3 General soil water content patterns and potential drivers  463 

Mean soil water contents were generally lower in the topsoil compared to the subsoil. At our site, the shallow soil 464 

is underlain by undulating weathered calcareous bedrock (Kohlhepp et al., 2017) of low hydraulic conductivity, 465 

and may locally be broken through by tree roots. While the topsoil is well-drained (i.e. saturated to field capacity 466 

in winter and much lower in summer), the deeper and finer textured soil layer (Metzger et al., 2021) is influenced 467 

by the much less conductive regolith and generally moister soil water content which very occasionally exceeds 468 

field capacity in winter (Metzger et al., 2017). 469 

Much in agreement with previous studies in humid regions (Brocca et al., 2007; Korres et al., 2015; Rosenbaum 470 

et al., 2012; Metzger et al., 2017), spatial variation of soil water content increased in both top- and subsoil in drier 471 

summer soil conditions. In an earlier study at the same site a strong but short-lived increase of spatial variation of 472 

topsoil water content in summer was related to precipitation events (Metzger et al., 2017). Regardless, we found 473 

that the main controlling factor of post-event soil water content was the spatial pattern of pre-event soil water 474 

content, while average throughfall and spatial pattern of throughfall, tree distance and air capacity were additional, 475 

but much less important drivers. In other words, while soil water content variation increases strongly after events, 476 

this variation can only in very limited fashion be traced back to input patterns. This may in part be due to the small 477 

inputs of water compared to the overall soil water storage, leading to a strong memory effect of the pre-event soil 478 

water conditions on the post event patterns. Furthermore, preferential flow already taking place during the event 479 

itself can blur the throughfall pattern within the soil storage (see below).  480 

Soil water content spatial patterns in drained state in turn were strongly driven by random effects. Those are factors 481 

that were not described by the measurements, but are temporally stable. Those so called local soil conditions are 482 

potentially related to soil hydraulic properties, root water uptake and microtopography (Famiglietti et al., 1998; 483 

Vereecken et al., 2007; Fan et al., 2015a). The mixed-effects models confirm, although with a very week influence, 484 

that locations of higher air capacity (higher macroporosity) were drier in both depths, confirming the role of water 485 

retention on soil water patterns (Metzger et al., 2017) at this site. Also, throughfall patterns of the previous event 486 
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slightly affected topsoil pre-event soil water content. Thus, an imprint of the throughfall pattern was carried over 487 

to the next pre-event soil conditions, but this is barely detectable and negligible compared to the other sources of 488 

variation in soil water content in drained state.  489 

 490 

4.4 Drivers of soil water response (Δθ) to rainfall 491 

In contrast to the absolute values of soil water contents discussed above, the local soil water response (i.e. increase 492 

of soil water content following rainfall events), was clearly driven by the spatial throughfall pattern both in top- 493 

and subsoil. Since we tested the effect of the spatial pattern (δPTF) separately from the absolute values of event 494 

throughfall ("#+,), we are able to demonstrate the influence of spatial throughfall specifically. Among all drivers 495 

tested, the influence of spatial throughfall variation was the most consistent, appeared in both observed soil depths, 496 

and was more pronounced for larger events. In other words, spatial patterns of throughfall were the most prominent 497 

driver of soil wetting. 498 

Measurements ascertaining that soil water content response relates to canopy drainage are comparatively rare. 499 

Metzger et al. (2017) already reported for the same site, but a smaller dataset, that soil water content increase 500 

correlated with event spatial throughfall patterns in larger rainfall events. Molina et al., (2019) found with highly 501 

temporally resolved soil moisture measurements a weak relationship between the average pattern of throughfall 502 

and that of soil water content response in the topsoil of a Mediterranean oak dominated forest plot, but not in a 503 

pine plot. Notably, Klos et al. (2014) in a tropical rain forests showed that locations of high and low soil water 504 

content below the main rooting zone corresponded to the end members of high and low throughfall, while soil 505 

water content was more homogenous above and below this depth. They concluded from additional modelling that 506 

preferential flow may have contributed to bypassing the main rooting zone. On the other hand, several studies, 507 

such as Raat et al. (2002), Shachnovich and Berliner, (2008), and more recently Zhu et al. (2021) with temporally 508 

less highly resolved soil water content measurements (incidentally all in coniferous forests) did not find relations 509 

between the spatial patterns of soil water content and throughfall. All authors report that throughfall patterns were 510 

pronounced and stable in time and suspect the forests floor hindered the transmission to soil water patterns. An 511 

additional explanation could be that the effect of spatial net precipitation patterns on soil water content were so 512 

short-lived (Metzger et al., 2017) due to preferential flow that they were not observed by infrequent hand 513 

measurements. Altogether stronger soil water response at locations with above average throughfall indicates that 514 

throughfall hot spots and also cold spots (Levia and Frost, 2006; Van Stan et al., 2020; Zimmermann et al., 2009) 515 

translated into soil water dynamics, despite them going almost unnoticed in the soil water content pattern (see 516 

above).  517 

Next to the throughfall pattern, soil water response after large rainfall events depended in both depths also on the 518 

pattern of pre-event soil water content. Notably, the slope of the relationship changes direction, making it the only 519 

factor that shows opposite effects in the top- and subsoil. This can be attributed to its inter-dependence on soil 520 

water content, and the difference in moisture between the two measurement depths. Especially in dry (summer) 521 

conditions, wetter topsoil locations took up more of the arriving precipitation water, whereas drier locations 522 

remained dry. This is a strong indication of preferential flow in dry soil, where e.g. hydrophobic conditions, cracks 523 

and low hydraulic conductivity of the matrix can enhance preferential flow (Hillel, 1998; Nimmo, 2021; Beven 524 

and Germann, 2013). On the other hand, the dampened water response in the wetter subsoil, could be due to 525 

enhanced hydraulic conductivity and less free pore space (Vereecken et al., 2007; Hagen et al., 2020). Only in 526 
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intermediate soil water contents the spatial distribution of soil water contents had no influence on the spatial 527 

drainage behavior. 528 

Soil water response depended additionally also on the distance to the nearest tree in the topsoil and soil 529 

properties (air capacity) in the subsoil. The enhanced moistening of soils near stems is likely related to stemflow 530 

production (Metzger et al., 2019), which was not accounted for as input. Stemflow production generally 531 

increases with event size (Levia and Germer, 2015; Metzger et al., 2019), explaining the interaction in the 532 

model. The additional modification by soil water conditions can be explained by the systematically lower soil 533 

water contents near tree trunks at the same site (Metzger et al., 2017, 2021), due to lower soil water retention and 534 

likely enhanced drainage there.  535 

Taken together, our data strongly suggest that additionally to spatial distribution of throughfall, the spatial pattern 536 

in drainage behavior affects the local soil water response to rainfall. In that, both dry and wet locations can, water 537 

supply permitting, act as percolation hotspots, depending on the overall soil conditions. Bypass flow in forests has 538 

been repeatedly observed (e.g. Schume et al., 2003; Schwärzel et al., 2009; Bachmair et al., 2012; Blume et al., 539 

2009; Demand et al., 2019) especially in dry summer conditions (Schume et al., 2003; Bachmair et al., 2012; 540 

Demand et al., 2019). Spatial variation of infiltration water supply and intensity, such as is the case for below 541 

canopy precipitation (Keim and Link, 2018), has been suggested as a potential cause for initiating finger flow 542 

(Nimmo, 2021), which is promoted by dry soil conditions. Also, hydrophobicity has been suggested to contribute 543 

to maintaining recurring finger flow paths (Blume et al., 2009). Next to this, macropore flow along biopores  544 

(Lange et al., 2009; Nespoulous et al., 2019) and soil cracks (Schume et al., 2003) can be enhanced in dry forest 545 

soil conditions due to soil shrinking (Baram et al., 2012). While both finger flow and macropore flow may have 546 

contributed to the observed patterns in soil water response, macropore flow more than finger flow could explain 547 

enhanced matter export (Lehmann et al., 2021) as well as fast response following strong storms observed in the 548 

shallow aquifers of the AquaDiva Critical Zone Observatory (Lehmann and Totsche, 2020).   549 

Overall, our results confirm that the effect of throughfall on soil water content is weak, but stronger on the soil 550 

water response. This contrasts with previous modelling (Coenders-Gerrits et al., 2013) that did not account for 551 

preferential flow. With the effect of the throughfall pattern on the soil water response also depending on local 552 

conditions related to hydraulic properties, its fate is much more likely to be found in the drainage fluxes, next to 553 

the storage. The further destiny of the net precipitation pattern arguably depends on the deeper subsurface 554 

hydrogeological setting. We deduce however, that net precipitation hotspots have a strong chance of producing 555 

patterns of preferential flow below the main rooting zone, which is in line with previous work (Klos et al., 2014), 556 

and backs earlier hypotheses (Bouten et al., 1992; Schume et al., 2003). 557 

5. Conclusion 558 

In this study, we collected an extensive dataset to investigate the effect of throughfall spatial heterogeneity on 559 

the soil water response and checked which other factors (pre-event soil water content, macroporosity, tree 560 

distance) modified the result. We first confirmed that throughfall patterns were stable in time and found that they 561 

related to the vegetation canopy density, although additional and partly unknown factors strongly affected 562 

throughfall distribution. We found that post event soil water content per se did have a very weak relation to 563 

throughfall, although the variation of soil water content clearly increased in the aftermath of rain events. The 564 

post-event soil water content pattern was overwhelmingly determined by the strong memory effect of the soil 565 

water storage and only slightly affected by soil properties, like macroporosity. In contrast, the soil water 566 

response showed a clear relation with the throughfall input pattern. In other words, our setup allowed us to 567 
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confirm experimentally that throughfall patterns do imprint on soil water content dynamics, at least shortly after 568 

rain events. However, we also identified locations where soil water response was dampened, likely due to 569 

enhanced fast drainage. Those locations could be either very dry locations likely promoting preferential flow, 570 

especially in the topsoil, or wet locations, promoting faster release of the incoming water. Our results 571 

demonstrate that throughfall spatial patterns leave a stronger imprint on soil water dynamics than on soil water 572 

content directly, and explain why aboveground influence on soil hydrology has been so difficult to lay open in 573 

the past. Our results are in line with previous research and contribute a more general process understanding of 574 

the below ground consequences of precipitation redistribution by forests. Most importantly, our results strongly 575 

suggest that throughfall patterns induce fast soil water flow with repeating spatial patterns. Those patterns would 576 

therefore already be triggered within the canopy. 577 
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