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Abstract

An Interface Velocity Consistency (IVC) condition for compressible flow computa-
tions on moving grid is presented, which relates the local interface velocity to the
time derivative of the portion of the cell volume pertaining to the interface itself,
thus allowing a consistent evaluation of the finite volume integrals of the fluxes
at cell interfaces. The IVC condition is demonstrated to be a sufficient condition
for fulfilling the well-known Geometric Conservation Law (GCL), which guarantees
that a uniform flow is correctly computed by the flow solver. Indeed, the IVC con-
dition generalizes the GCL to possibly nonuniform flows and it amounts to solve an
additional system of ODE for the interface velocities together with the ODE system
representing the space-discrete flow equations over moving domains. The flow solver
is presented in a general form by introducing a suitable transformation matrix that
allows for virtually any numerical flux to be readily available within the Arbitrary
Lagrangian Eulerian (ALE) framework. The correct treatment of boundary condi-
tions on dynamic meshes is also thoroughly detailed. A simple but effective approach
to mesh movement, based on a description of the grid elements as deformable bodies
is presented; the new grid at each time step is obtained as the solution of a con-
strained elastic continuum problem. A suitable treatment of boundary conditions
guarantees a high grid quality as the simulation progresses. Both two- and three-
dimensional cases are thoroughly studied and numerical simulations are presented
to investigate the accuracy of the present approach for different time discretization
techniques including Backward Differences Formulae (BDF) schemes with nonuni-
form time-step. Numerical results for a three-dimensional aeroelastic analysis of the
Agard 445.6 wing are found to agree fairly well with available experimental data.

Key words: Euler equations, Arbitrary Lagrangian Eulerian, Dynamic meshes,
Interface velocity, Geometric Conservation Law, Computational Aeroelasticity



1 Introduction

The interaction between a deformable structure and the fluid flowing around it
may possibly lead to instability phenomena, which are potentially dangerous
for the integrity of the structure itself [1]. For example, so-called flutter insta-
bilities may present themselves in airplane flight and strongly limit the flight
envelopes. In order to predict the behavior of complex aeronautic structures
in connection with diverse aerodynamic phenomena such as for example tran-
sonic range shock waves, high fidelity Computational Fluid Dynamics (CFD)
models must be adopted and coupled with the proper structural model of the
airplane itself. This branch of continuum mechanics—usually termed Com-
putational Aeroelasticity (CA)—is by definition highly interdisciplinary and
since the past two decades it has been a very active and fruitful research
area [2–4]. Indeed, computational aeroelasticity is not the only application
in which the flow equations are to be solved in a domain whose shape con-
tinuously varies with time due to the movement of the domain boundaries,
which in aeroelastic application are represented by the deformable surface of
the structure itself.

In moving domains, the standard Eulerian formulation of the flow equations is
to be dismissed in favor of the so-called Arbitrary Lagrangian–Eulerian (ALE)
approach, in which the control volumes are allowed to change their shape in
time [5]. Moreover, a suitable mesh movement strategy is to be adopted to pre-
serve the quality of the computational grid as the underlying geometry changes
its shape. Even in the case of prescribed boundary movement, namely, for un-
coupled fluid-structure problems, the computational burden can be enormous.

To reduce the computational costs, it is therefore mandatory to develop time-
accurate integration schemes for the flow equations in the ALE formulation.
However, the issue of preserving the time-accuracy in the ALE extension of
existing Eulerian codes has been investigated in details only recently [6–9]. In
this respect, Nobile [6] showed that a näıve extension of fixed-grid methods
to flows in moving domains does not preserve numerical accuracy and may
possibly lead to numerical instabilities. Therefore, care is to be taken in both
the evaluation of the local grid velocities and the definition of the geometric
quantities, which are necessary to compute the fluxes across a given portion of
the domain, which cannot be chosen independently [10]. Thomas and Lombard
[11] proposed to supply the discrete statement of the problem with the addi-
tional constraint of reproducing a uniform flow field exactly. This condition,
which is known as the Geometric Conservation Law (GCL), is demonstrated
to be sufficient to achieve a first order time accuracy, but it is neither neces-
sary nor sufficient for higher order accuracy [7]. At the same time, satisfying
the GCL is a necessary and sufficient condition to guarantee the nonlinear
stability of the integration scheme [12].
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Following Mavriplis and Yang [13], it is possible to argue that the GCL con-
dition is simply an additional conservation law, which should not be violated
to reduce the source of errors, and must be investigated when the time inte-
gration scheme is evaluated. In this report the idea of considering a additional
conservation laws for the geometric quantities is further expanded. However,
differently from previous studies, the present analysis is not limited to the
simple situation of uniform flow fields. To this purpose, a suitable Interface
Velocity Consistency (IVC) condition is introduced which links the velocity
at the interface between adjacent control volumes to the time derivatives of
the volume themselves and results in an additional conservation law for these
quantities, which is to be solved together with the flow equations. The time-
accuracy of the resulting schemes is thoroughly investigated in both the two-
and three-dimensional case for Backward Euler (BE) and the Backward Dif-
ferences Formulae (BDF) time integration schemes, including variable time
step discretizations, in two and three spatial dimensions.

The structure of the present report is as follows. In section 2, the flow solver
is presented, both for static and dynamic grid applications. The edge-based
node-centered finite volume scheme is written in a generalized form to allow
for virtually any numerical flux approximation to be easily translated into
the Arbitrary Lagrangian Eulerian (ALE) framework (section 2.3). In section
2.3.2, the procedure for imposing the boundary conditions for dynamic meshes
in a weak form is thoroughly detailed. The Interface Velocity Condition is dis-
cussed in section 3, where the coupled system made of the flow equations
together with the equations resulting from the IVC is given. In section 4, time
integration techniques are discussed, for both constant and variable time step
schemes. Section 5 gives some details on the elastic analogy strategy adopted to
move the grid. Two- and three-dimensional application are solved to demon-
strate the temporal accuracy of the proposed scheme in section 6. A fully
three-dimensional aeroelastic analysis of the Agard 455.6 wing is performed
in section 6.2, where numerical results are compared to available experimental
data. Final remarks are then given in section 7, together with a summary of
the obtained results.

2 Edge-based ALE solver for compressible inviscid flows

In the present section, the main features of the numerical scheme used in
the present study are described. For simplicity, the discrete form of the Euler
equations is presented first for a static triangulation, in which the shape and
position of the grid elements do not vary with time. In section 2.3, the treat-
ment is extended to dynamic meshes under the Arbitrary Lagrangian Eulerian
approach.
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Fig. 1. Edge associated with the finite volume interface ∂Cik = ∂Ci ∩∂Ck and metric
vector ηik (integrated normal) in two spatial dimensions. The two shaded regions
are the finite volumes Ci and Ck; dashed lines indicate the underlying triangulation.

2.1 Governing equations

The model describing the dynamic of a compressible inviscid fluid in three
spatial dimensions is provided by the well-known Euler equations, namely,

d

dt

∫

C
u +

∮

∂C
f(u) ·n = 0, ∀C ⊆ Ω, (1)

where u, u = (ρ, m, Et)T ∈ R
+ × R

4, is the vector unknown of the density
ρ, momentum vector m and total energy per unit volume Et. The solution
is sought for in the spatial domain Ω ∈ R

3, with boundary ∂Ω for all times
t ∈ R

+. System (1) is to be made complete by specifying suitable initial
boundary conditions, see e.g. [14]. In (1), f = (fx, fy, fz)

T ∈ R
5 ×R

3 is the flux
function defined as

f(u) =
(
m,

m ⊗ m

ρ
+ P (u) I,

[
Et + P (u)

] m

ρ

)T

, (2)

where I is the 3×3 identity matrix and P is the pressure. For a polytropic ideal
gas, namely, a perfect gas, one has P (T, ρ) = RTρ and e(T ) = RT/(γ − 1),
with T temperature and R = R/M , R universal gas constant and M molecular
weight. The constant γ = cP /cv is the ratio of the specific heat at constant
pressure and volume, respectively. Hence,P (u) = (γ − 1)(Et − 1

2
|m|2/ρ) in

all the present simulations, although the solver is capable of treating a more
general, i.e., nonideal, thermodynamic model. The vector n = (nx, ny, nz)

T is
the outward unit vector normal to the surface ∂C of C; the scalar product in
(1) is computed as f(u) ·n = fxnx + fyny + fznx.
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2.2 Edge-based finite volume solver

The discrete counterpart of the Euler equation (1) is obtained by selecting a
finite number of non overlapping volumes Ci ⊂ Ω, with boundary ∂Ci, such
that

⋃
i Ci ≡ Ω. In the present section, both the shape and the location of

the finite volumes Ci are assumed to not depend on time: the extension of
the present method to dynamic meshes, in which Ci = Ci(t), is dealt with in
section 2.3. According to the node-centered finite volume approach considered
here, each finite volume Ci surrounds a single node i of the triangulation of Ω,
so that

Vi
dui

dt
= −

∮

∂Ci

ni · f(u), ∀i ∈ K, (3)

where Vi is the volume of Ci, K is the set of all nodes of the triangulation
and ni denotes the outward normal with respect to the volume Ci, see Fig. 1.
The unknown u is approximated over Ci by its average value ui = ui(t). The
right hand side of (3) is now rearranged to put into evidence the boundary
contribution, namely,

∮

∂Ci

ni · f(u) =
∑

k∈Ki, 6=

∫

∂Cik

ni · f(u) +
∫

∂Ci∩∂Ω
ni · f(u), (4)

where Ki, 6= = {k ∈ K, k 6= i|∂Ci ∩ ∂Ck 6= ∅} is the set of the indexes k of the
finite volumes Ck sharing a portion of their boundary with Ci, Ci excluded. In
the finite volume jargon, the set ∂Ci∩∂Ck is often referred to as the cell interface
between the volumes Ci and Ck (Fig. 1). A suitable integrated numerical flux
Φik ∈ R

5, representing the flux across the cell interface ∂Ci ∩ ∂Ck, is now
introduced to give ∫

∂Cik

ni · f(u) ≃ Φik. (5)

A second-order scheme is obtained from the following centered approximation
[15],

ΦII
ik = ΦII(ui, uk, ηik) =

f(ui) + f(uk)

2
· ηik, (6)

where ηik is the integrated outward normal, namely,

ηik =
∫

∂Cik

ni.

Under the centered approximation (6), system (3) reads

Vi
dui

dt
=

∑

k∈Ki, 6=

f(ui) + f(uk)

2
· ηik + Φ∂

i , (7)

where Φ∂
i ∈ R

5,

Φ∂
i =

∫

∂Ci∩∂Ω
ni · f(u), (8)
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represents the contribution of the boundary integral, to be detailed in section
2.2.1.

It is well known, see e.g. [15], that the use of the above second-order integrated
numerical flux may lead to the appearance of spurious oscillations in advection
dominated flows and in particular near discontinuities of the flow variables;
in this case, the following first-order upwind approximation due to Roe [16],
namely,

ΦI
ik =

f(ui) + f(uk)

2
· ηik −

1

2
|Ã| (uk − ui), (9)

is to be preferred, where Ã, Ã ∈ R
5, is the Roe matrix. |Ã| = R̃|Λ̃|L̃, with

R̃ and L̃ matrices of the right and left eigenvectors of Ã, respectively, and
|Λ̃ = diag (|λ̃1|, . . . , |λ̃5|) where λ̃p, p = 1, . . . , 5, are the eigenvalues of Ã. The
Roe matrix can be obtained as the Jacobian matrix A = ∂f(u)/∂u of the
flux function evaluated in the Roe-averaged state ũ, ũ = ũ(ui, uk) times the
integrated normal, namely, Ã = A(ũ) ·ηik.

Following [17], a high-resolution expression for the integrated numerical flux
is now obtained by resorting to the Total Variation Diminishing (TVD) ap-
proach, in which the second order approximation ΦII

ik is replaced by its first
order counterpart ΦI

ik near flow discontinuities; the switch is controlled by a
suitable flux limiter Υ, Υ = diag (Υ1, . . . , Υ5). The resulting high-resolution
integrated numerical flux reads

ΦHR
ik = ΦI

ik + Υ
[
ΦII

ik − ΦI
ik

]
= ΦII

ik +
1

2
R̃|Λ̃| (w̃ − ṽ), (10)

where ṽ = L̃ (uk − ui) and w̃ = Υ L̃ (uk − ui). By substituting the expression of
the limiter of [17], the p-th component of the vector of the limited characteristic
jumps w̃ reads

w̃(p) =
ṽ(p)|q̃(p)| + |ṽ(p)|q̃(p)

|ṽ(p)| + |q̃(p)| + ǫ
,

where ǫ is a small positive parameter introduced here to avoid division by zero
of a zero quantity (ǫ = 10−12 here) and where the p-th component of the
vector of “upwind” jumps q̃ is given by

q̃(p) =





L̃(p)(uk⋆ − uk) if λ̃p > 0,

L̃(p)(ui − ui⋆) if λ̃p ≤ 0.

In the above definition, the nodes i⋆ and k⋆ are the extension nodes belonging
to edge i-k of the triangulation and L̃(p) is the p-th row of matrix L̃. Note the
the above high-resolution version of the scheme requires the definition of an
extended edge data structure that includes also the extension nodes i⋆ and k⋆,
that are needed in the evaluation of the limiter function Υ. Following [18], the
extension nodes belong to the two edges best aligned with i-k, see Fig. 2.
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i k

i⋆ k⋆

Fig. 2. Extended edge structure i⋆-i-k-k⋆ for high-resolution.

The computer implementation of the finite volume scheme described above is
straightforward and very efficient, see e.g. [19]. All computations are performed
only over the edges of the mesh: edges are present in one-, two- and three-
dimensional grids and therefore the extension to different spatial dimension
requires only few modifications to the code, that are limited to the definition
of the vector unknown and to the associated flux function.

2.2.1 Boundary conditions

The evaluation of the boundary integral (8) is now detailed. According to
the piecewise constant representation of the unknown in the finite volume
framework, u = ui over the boundary portion ∂Ci ∩ Ω and therefore

Φ∂
i =

∫

∂Ci∩∂Ω
f(u) ·ni ≃ f(ui) ·

∫

∂Ci∩∂Ω
ni = f(ui) · ξi,

where the definition of the integrated boundary normal ξi,

ξi =
∫

∂Ci∩∂Ω
ni

has been introduced.

Slip boundary conditions at solid surfaces and far-field boundary conditions
are enforced here in a weak form, namely, by evaluating the boundary flux in
a suitable boundary state variable u as follows

Φ∂
i = f(ui) · ξi, (11)

where the boundary state u = u(ui, ai), is a function of the boundary value
ui of the unknown and of the boundary data ai. For example, slip boundary
conditions are imposed by choosing

ui = us(ui, ni)

=
(
ρi, mi − (mi · ni)ni, E

t
i − |mi · ni|2/(2ρi)

)T
,

(12)
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Fig. 3. Definition of the finite volume C1 (shaded region) from the underlying tri-
angulation in two spatial dimensions. The nodes of the triangulation are indicated
with the symbol •; the grid elements are indicated by dashed lines. a) Node 1 be-
longs to the interior of the computational domain Ω. b) Node 1 lies on the boundary
of Ω, here represented by the segments 2–1 and 1–5. The medians of the triangle
(1, 2, 3) and of the quadrilateral element (1, 6, 7, 2) are also indicated with dotted
lines, cf. Fig. 3.

with ni = ξi/|ξi| nodal averaged normal unit vector. In other words, ui is equal
to ui minus the component of the momentum vector normal to the surface.

The boundary state ui at the far-field is computed via characteristic recon-
struction from the nodal state vector ui and the far-field state u∞ as follows
[20]

ui = uf(ui, u∞, ni) = ui + Rn

i Nn

i Ln

i

[
u∞ − ui

]
, (13)

where Rn

i and Ln

i are the matrices of the right and left eigenvectors of An

i =
A(ui) ·ni ∈ R

5 × R
5, with A = ∂f(u)/∂u, respectively, and where Nn

i is the

diagonal matrix diag
(

min (λn

p , 0)
)
, p = 1, . . . , 5, with λn

p the p-th eigenvalue
of An

i . Note that the expression above simplifies to ui = ui for λn

p < 0 ∀p,
namely, for a supersonic outflow boundary, and to ui = u∞ for λn

p > 0 ∀p
(supersonic inflow).

2.2.2 Node-centered finite volumes and metric vectors

In the present section, the expression for the volumes (area in two spatial
dimensions) Vi and the metric quantities ηik and ξi, are given in terms of
geometrical entities defined over the underlying triangulation of the domain
Ω. The latter is possibly a so-called hybrid triangulation, namely, it could be
made of elements of different types. For example, in two spatial dimensions,
the grid elements can be either triangles or quadrilaterals, whereas in the
more variegated three-dimensional case, one can have tetrahedra, prisms with
triangular basis, pyramids or hexahedra.
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For simplicity, the two-dimensional case is considered first. With reference to
Fig. 3, the finite volume Ci is first split into the subsets Ci,e = Ci ∩ Ωe, where
Ωe is the e-th element of the triangulation, so that Ci =

⋃
e∈Ei

Ci ∩Ωe, with Ei

the set of the elements sharing node i. The set Ei is often referred to as the
element bubble of node i. Over each subset Ci,e, the boundary ∂Ci,e = ∂Ci ∩Ωe

is made of the two segments connecting the center of gravity xe of the element
to the midpoints xik of the two edges from node i, as shown in Fig. 4. The
elemental contribution ηik,e, see Fig. 4a, is therefore computed as

ηik,e =
∫

∂Cik,e

ni = (xik − xe) × ẑ, (14)

where ẑ is the unit vector normal to the plane x-y. The metric vector ηik is
then computed as

ηik =
∑

e∈Ei

ηik,e. (15)

Similarly, for the boundary metric vector ξi, ξi =
∑

e∂∈E∂
i

ξi,e∂ , where E∂
i is the

set of the boundary elements having node i in common, one has

ξi,e∂ =
∫

∂Ci,e

ni = (xe∂ − xi) × ẑ. (16)

Note that in two spatial dimensions the boundary elements are the edges of
the domain elements themselves, so that the center of gravity of the e∂-th
boundary element is the midpoint of the segment of the e-th element which
lies on the boundary, as shown in Fig. 4b. The contribution Vi,e of element e
to the volume of Ci (area in the present two-dimensional case) is given by sum
of the the area of the two triangles having as vertices node i, xe and each of
the two midpoints xik, see Fig. 4, or, in terms of edge contributions

Vi =
∑

e∈Ei

Vi,e =
∑

e∈Ei

∑

k∈Ki, 6=

Vik,e ,

where

Vik,e =
1

2
(xe − xi) ·

∫

∂Cik,e

ni =
1

2
(xe − xi) ·ηik,e , (17)

In three spatial dimensions, see Fig. 5, the boundary ∂Ci of Ci is the union of
triangular faces which are defined as follows. As in the two-dimensional case,
the definition is given for the elemental subsets Ci,e = Ci∩Ωe. For each element
e and for each edge ik belonging to e, a triangular facet is defined for each
face f of the element which includes edge ik. These triangles have vertices
(xe, xf , xik), with xf center of gravity of the f -th face. The integrated normal
ηik is computed as the sum of the contributions pertaining to each triangles
∂Cik,ef as ηik =

∑
e∈Ei∩Ek

∑
f∈Fik,e

ηik,ef , where Fik,e is the set of the faces of
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ξ1,e∂
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(b)

Fig. 4. Definition of the finite volume from the underlying triangulation in two
spatial dimensions. The nodes of the triangulation are indicated with the symbol •,
the barycenter xik and xe of the edges and of the element, respectively, are indicated
with �. a) The portion of the perimeter of the finite volume C1 pertaining to the
triangular element e with nodes (1, 2, 3) is made of the two segments (x12,xe) and
(xe,x13). The contribution to the area of the finite volume is given by the sum of the
area of the two triangles (x1,x12,xe) and (x1,x13,xe). b) Elemental contributions
for triangular element lying on the domain boundary.

element e sharing edge ik and

ηik,ef =
∫

∂Cik,ef

ni =
1

2
(xf − xe) × (xik − xe). (18)

The boundary metric vector ξi is computed as ξi =
∑

e∂∈E∂
i

∑
f∂∈F

i,e∂
ξi,e∂f∂ ,

where F∂
i,e∂ is the set of faces of the boundary element e∂ sharing node i and

where

ξi,e∂f∂ =
∫

∂Ci,ef

ni =
1

2
(xf∂ − xe∂) × (xi − xe∂). (19)

The contribution Vi,e of element e to the volume of Ci is split again in contri-
butions pertaining to each face and to each edge as follows, see Fig. 5,

Vi =
∑

e∈Ei

Vi,e =
∑

e∈Ei

∑

k∈Ki, 6=

∑

f∈Fik,e

Vik,ef ,

where Vik,ef is the volume of the tetrahedra (xi, xe, xf , xik), namely,

Vik,ef =
1

3
(xe − xi) ·

∫

∂Cik,ef

ni =
1

3
(xe − xi) ·ηik,ef . (20)

All the definitions given above—in both two and three spatial dimensions—are
applicable to elements of any kind, i.e., to any given hybrid triangulation made
of e.g. triangles and quadrilaterals (2D) and prisms, pyramids and hexahedra
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(a)

1
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4

x12

xf124

xf123

xe

(b)

Fig. 5. Definition of the finite volume from the underlying triangulation in three
spatial dimensions. The nodes of the triangulation are indicated with the symbol •,
the barycenter xe, xf and xg of the edges, of the element faces and of the element,
respectively, are indicated with �. a) The portion of the finite volume boundary
∂Ci pertaining to the tetrahedron e with nodes (1, 2, 3, 4) is given by the six shaded
triangles. The contribution to the volume is the sum of the volumes of the six
tetrahedra obtained by connecting each of the six shaded triangles with vertex 1.
Note that differently from the two-dimensional case, the shaded regions indicate
the finite volume boundary and not its internal volume. b) Contribution of edge 12
only. The portion of the surface of the finite volume 1 pertaining to the tetrahedron
1234 and to the edge 12 is made of the two shaded triangles (x12,xf123

,xe) and
(x12,xf124

,xe). The contribution to the volume of C1 is given by the sum of the
volume of the two tetrahedron (x1,x12,xf123

,xe) and (x1,x12,xf124
,xe).

(3D) and guarantee that each finite volume is closed, namely,

∑

k∈Ki, 6=

ηik = 0 on domain nodes,

∑

k∈Ki, 6=

ηik + ξi = 0 on boundary nodes.

To conclude, we notice in passing that Selmin [19] and Selmin and Formaggia
[21] proved that a centered finite volume discretization built according to the
above prescriptions is equivalent to a linear finite element approach in the case
of two-dimensional grids of triangles or three-dimensional grids of tetrahedra,
but for the boundary terms.
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2.3 Arbitrary Lagrangian Eulerian extension

In the present section, the finite volume scheme is extended to deal with
possibly moving grid elements, under the well-known Arbitrary Lagrangian
Eulerian (ALE) approach [22,23]. To this purpose, the Euler equations (1) are
now rewritten for a moving control volume C = C(t) as follows

d

dt

∫

C(t)
u +

∮

∂C(t)

[
f(u) − u v

]
·n = 0, ∀C(t) ⊆ Ω(t), (21)

where −u v is the ALE additional flux due to the cell boundary movement,
namely,

u v =
(
ρv, m ⊗ v, Etv

)T

,

with v = v(x, t) local velocity of the control volume. Note that the outward
normal unit vector n appearing in (21) is a function of space and time as well.

An even more compact expression for (21) can be obtained by introducing the
following 5 × 5 matrix,

T(v) =




1 0 0 0 0

−vx 1 0 0 0

−vy 0 1 0 0

−vz 0 0 1 0

1
2
|v|2 −vx −vy −vz 1




(22)

where vx, vy, vz are the x, y and z component of the velocity v, respectively,
which allows to compute the state vector u in a local reference frame moving
with velocity v. Note that det (T) = 1 and therefore T−1 is always defined;
moreover, T−1(v) = T(−v). The following splitting of the ALE flux function
fALE(u, v) is now introduced, cf. definition (2),

fALE(u, v) = f(u) − u v = u

[
m

ρ
− v

]
+ p(u),

where p(u) ∈ R
5 × R

3, p(u) = (0, P (u)I, P (u) m/ρ)T, is the contribution to
the flux function (2) due to the action of the pressure only. According to the as-
sumption of local thermodynamic equilibrium, the pressure P does not depend
on the local value of the velocity and therefore P (u) ≡ P (T(v) u), ∀v ∈ R

3.
By recalling definition (22) of the transformation matrix T, one easily obtains
p(u) = T−1(v) p(T(v) u), ∀v ∈ R

3. Then, by multiplying the term u [m

ρ
− v]

of the ALE flux function by the identity matrix T−1T and by substituting the
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above relation, one immediately obtains

fALE(u, v) = f(u) − u v = T−1(v) f(T(v) u),

namely, the ALE flux function is T−1(v) times the flux (2) evaluated at the
state u in the local reference frame moving at the velocity v. The ALE formu-
lation of the Euler equations (21) finally reads

d

dt

∫

C(t)
u +

∮

∂C(t)
T−1(v) f(T(v) u) ·n = 0, ∀C(t) ⊆ Ω(t). (23)

Note that matrix T reduces to the 5 × 5 identity matrix at v = 0, namely,
when the control volume is not moving, and therefore f(T(v) u) ≡ f(u) and
the Euler equations (1) for static control volumes are recovered. To conclude,
it is remarkable that the ALE formulation is obtained as a two step trans-
formation from the Eulerian (fixed volume) point of view to the Lagrangian
one and then back into the absolute (Eulerian) reference frame via the reverse
transformation T−1(v).

2.3.1 Finite volume discretization and Interface Velocity Consistency

The finite volume discretization of (23), is now derived. First, the surface
integral in (23) is split into domain and boundary contributions as follows

∮

∂C(t)
T−1(v) f(T(v) u) ·n =

∑

k∈Ki, 6=

∫

∂Cik

T−1(v) f(T(v) u) ·ni

+
∫

∂Ci∩∂Ω
T−1(v) f(T(v) u) ·ni.

Considering now a centered approximation at the cell interfaces, the domain
contributions read

∫

∂Cik

T−1(v) f(T(v) u) ·ni =
∫

∂Cik

[
f(u) − u v

]
·ni ,

≃ f(ui) + f(uk)

2
·

∫

∂Cik

ni −
ui + uk

2

∫

∂Cik

v ·ni ,

=

[
f(ui) + f(uk)

2
− ui + uk

2
νik

]
· ηik ,

where νik is the average interface velocity, which satisfies the following inter-
face velocity consistency (IVC) condition

νik · ηik =
∫

∂Cik

v · ni. (24)

13



After rearranging the relations above, one finally obtains

∫

∂Cik

T−1(v) f(T(v) u) ·ni ≃
1

2
[f(ui) + f(uk) − (ui + uk)νik] · ηik ,

=
1

2
T−1

ik [f(Tikui) + f(Tikuk)] ·ηik ,

where Tik = T(νik). Correspondingly, the boundary contribution to the surface
integral reads

∫

∂Ci∩∂Ω
T−1(v) f(T(v) u) ·ni =

∫

∂Ci∩∂Ω

[
f(u) − u v

]
· ni ,

≃ f(ui) ·

∫

∂Cik

ni − ui

∫

∂Cik

v · ni ,

= [f(ui) − ui νik] · ξi = T−1
i f(Ti ui) · ξi ,

(25)

where Ti = T(νi), with νi average interface velocity of the i-th boundary node,
namely,

νi · ξi =
∫

∂Ci∩∂Ω
v · ni , (26)

Under the centered finite volume approximation considered so far, the spatially
discrete form of (23) reads

d

dt
[Vi ui] +

∑

k∈Ki, 6=

T−1
ik

f(Tikui) + f(Tikuk)

2
·ηik + T−1

i f(Ti ui) · ξi = 0. (27)

For a general, namely, not centered approximation of the numerical fluxes, one
has

d

dt
[Vi ui] +

∑

k∈Ki, 6=

T−1
ik Φ(Tik ui, Tik uk, ηik) + T−1

i Φ∂(Ti ui, ξi) = 0, (28)

The above relations are formally equivalent to those obtained in the previous
section in the case of static meshes; the integrated numerical flux is evaluated
here in a transformed state T(v) u and then transformed back into the ab-
solute reference frame via the reverse transformation T−1(v). Thanks to the
general form of the ALE flux function presented here, the inclusion of differ-
ent approximations for the flux function already available for static meshes
is very simple. Note also that the following relation exists between the Roe
intermediate state ũ computed using the transformed variable T(v) u and that
obtained from the state vector u,

ũ(Tik ui, Tik uk) = Tik ũ(ui, uk)

thanks to Galilean invariance of the Euler equation, see e.g. [14]. Naturally,
due care is exercised to avoid computations of null terms due to T sparsity in
the coded perations.
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2.3.2 Boundary conditions

The evaluation of the boundary integral (25) and the imposition of slip and
far-field boundary conditions for system (23) in the case of dynamic meshes
are now discussed.

The computation of the boundary value ui satisfying the slip boundary con-
dition is easily achieved by recalling that, in the case of moving boundary,
the slip conditions requires that the component of the fluid velocity normal
to the boundary is equal to the boundary velocity along the normal direction.
In other words, the normal component of the fluid velocity is to be zero when
evaluated in a reference frame that is moving at the velocity v of the boundary
itself. Therefore, slip boundary conditions are imposed via the same function
us defined in (12) as ui = us(Ti ui, ni). Similarly, the value of u at the far-field
boundary is immediately computed as ui = uf(Ti ui, Ti u∞, ni).

3 The Interface Velocity Consistency condition

The introduction of suitable average interface velocities defined in (24) and
(26), namely,

νik(t) ·ηik(t) =
∫

∂Cik(t)
v(s, t) ·ni(s, t). (29)

and
νi(t) · ξi(t) =

∫

∂Ci(t)∩∂Ω
v(s, t) ·ni(s, t) , (30)

where s is the boundary coordinate and where ηik(t) and ξi(t) are defined in
section 2.2.2, is key to the finite volume discretization presented above. In the
present section, an explicit expression of the average interface velocities νik(t)
and νi(t) is derived in both two- and three-dimensional cases. The coupled
system consiting of the flow equations and of the IVC condition is given at
the end of the present section.

3.1 Two-dimensional case

In two-dimensional problems, since grid edges remain rectilinear during the
grid movement, one easily obtains

∫

∂Cik

v ·n =
∑

e∈Ei∩Ek

∫

∂Cik,e

v ·ni =
∑

e∈Ei∩Ek

vi + ve

2
·

∫

∂Cik,e

ni =
∑

e∈Ei∩Ek

vi + ve

2
·ηik,e ,

where vi and ve are the velocities of node i and of the barycenter of the e-
th element, respectively, and where the fact that the interface normal n is
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constant on the interface portion Cik,e has been accounted for. Note that the
definition (29) imposes a constraint on the component of νik parallel to ηik

only. Hence, νik is chosen to be parallel to ηik itself and reads

νik(t) =
ηik(t)

|ηik(t)|
∑

e∈Ei∩Ek

vi(t) + ve(t)

2
·ηik,e(t). (31)

Similarly, the average interface velocity νi(t) associated with a boundary node
i reads

νi(t) =
ξi(t)

|ξi(t)|
∑

e∂∈E∂
i

vi(t) + v∂
e (t)

2
· ξi,e∂(t), (32)

where v∂
e is the velocity of the barycenter of the boundary element (segment

in 2D) e∂.

3.2 Three-dimensional case

Moving now to the three-dimensional case, by definition (see section 2.2.2),
each portion Cik,ef of the finite volume boundary is a triangle, thus it always
remains plane during movements, and therefore

∫

∂Cik

v ·ni =
∑

e∈Ei∩Ek

∑

f∈Fik,e

∫

∂Cik,ef

v ·ni =
∑

e∈Ei∩Ek

∑

f∈Fik,e

vi + ve + vf

3
·

∫

∂Cik,ef

n

=
∑

e∈Ei∩Ek

∑

f∈Fik,e

vi + ve + vf

3
·ηik,ef ,

where vf is the velocity of barycenter of the f -th element face. Therefore,
νik(t) reads

νik(t) =
ηik(t)

|ηik(t)|
∑

e∈Ei∩Ek

∑

f∈Fik,e

vi(t) + ve(t) + vf (t)

3
· ηik,e(t), (33)

and the average interface velocity νi(t) associated with a boundary node i
reads

νi(t) =
ξi(t)

|ξi(t)|
∑

e∂∈E∂
i

∑

f∂∈F∂

ik,e∂

vi(t) + ve∂(t) + vf∂ (t)

3
· ξi,e∂f∂(t) (34)

3.3 The flow equations and the IVC condition

The expressions of the average interface and boundary velocity satisfying the
IVC conditions derived in the previous section are now used to complete sys-
tem (27) expressing the conservation of mass, momentum and total energy in
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the ALE framework, to give






d

dt
[Vi ui] =

∑

k∈Ki, 6=

Ψ(ui, uk, νik, ηik), +Ψ∂(ui, νi, ξi),

νik ·ηik =
∫

∂Cik

v ·ni,

νi · ξi =
∫

∂Ci∩∂Ω
v · ni,

(35)

where the shorthands Ψ(ui, uk, νik, ηik) = −T−1(νik) Φ(T(νik) ui, T(νik) uk, ηik)
and Ψ∂((ui, νi, ξi) = −T−1(νi)Φ

∂(T(νi) ui, ξi) have been introduced. System
(35) is a system of Differential Algebraic Equations (DAE) consisting in Ndof =
N × (d + 2) Ordinary Differential Equations (ODE), with Ndof total number
of degrees of freedom, N total number of grid points and d = 1, 2, 3 number
of spatial dimensions, and Nik + Ni,∂ algebraic relations, with Nik and Ni,∂

number of grid edges and of boundary nodes, respectively. Note that the al-
gebraic equations for the interface velocities νik and νi are not coupled to
the ODE fluid dynamics subsystem, provided that the coordinates of the grid
nodes are known. As a consequence, in this case the system (35) can be re-
duced to simple ODEs by substitution. This is not the case for example in
fluid-structure interaction problems in which the node velocity is obtained by
solving the structural problem with loads from the flow field, thus resulting
in a coupled system representing the structural, the fluid dynamics and the
mesh deformation problem as well. Moreover, the coupled form of system (35)
is preferred here to stress the existence of a consistency constraint on the in-
terface velocities which leads to an additional system of algebraic (or ODE,
cf. system (38)) to be solved together with the ODE system describing the
flow dynamics.

The interface velocities are linked to the derivative of the volume Vi in time
by the following relation

dVi

dt
=

∮

∂Ci

v · ni =
∑

k∈Ki, 6=

∫

∂Cik

v ·ni +
∫

∂Ci∩∂Ω
v ·ni =

∑

k∈Ki, 6=

dVi,ik

dt
+

dVi,∂

dt
,

where the following definitions have been introduced

dVi,ik

dt
=

∫

∂Cik

v · ni = νik ·ηik (36)

dVi,∂

dt
=

∫

∂Ci∩∂Ω
v ·ni = νi · ξi (37)

which allows to recast system (35) as a system of Ndof + Nik + Ni,∂ ODE as
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follows 




d

dt
[Vi ui] =

∑

k∈Ki, 6=

Ψ(ui, uk, νik, ηik) + Ψ∂(ui, νi, ξi),

dVi,ik

dt
= νik · ηik ,

dVi,∂

dt
= νi · ξi ,

(38)

which can be integrated in time by means of standard integration techniques,
as detailed in section 4. Note that the quantities defined in (36) and (37),
which sum up to the derivative in time of the volume Vi, are not related to
the edge contributions Vik defined in section 2.2.2. Differently from system
(35), the grid velocity v is not longer present in system (38) and therefore
no consistency problem arises in the fulfillment of the volume conservation
constraint

dVi

dt
=

∮

∂Ci

v · ni,

as it is often the case in other approaches due to the different discrete repre-
sentation of the finite volume and of the grid velocities.

4 Time integration

In the present section, time integration of system (38) is detailed according
to the Backward Euler (BE) and the Backward Differences Formulae (BDF)
schemes. The method is also extended to a general multi-step scheme in section
4.2. The relationship between the IVC and the GCL conditions is discussed
at the end of the present section.

4.1 Backward Euler scheme

The Backward Euler (BE) time discrete counterpart of system (38) is easily
obtained as





V n+1
i un+1

i − V n
i un

i =
[ ∑

k∈Ki, 6=

Ψ(un+1
i , un+1

k , νn+1
ik , ηn+1

ik )

+ Ψ∂(un+1
i , νn+1

i , ξn+1
i )

]
∆tn

V n+1
i,ik − V n

i,ik = νn+1
ik ·ηn+1

ik ∆tn

V n+1
i,∂ − V n

i,∂ = νn+1
i · ξn+1

i ∆tn

(39)
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∆An
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tn

tn+1

Fig. 6. Area swept by the interface ∂Cik,e pertaining to edge i-k and to the e-th
element from time level tn to tn+1.

where all quantities are assumed to be known at time level n and the grid-
dependent quantities V n+1

i , V n+1
i,ik , V n+1

i,∂ , ηn+1
ik and ξn+1

i are computed from the
(known) positions of the grid nodes at time level n+1. System (39) is therefore
a nonlinear system of Ndof +Nik +Ni,∂ DOE in the Ndof flow variables ui, and
the Nik + Ni,∂ average interface velocities νik and νi. Note that the following
relation holds

V n+1
i − V n

i =
∑

k∈Ki, 6=

[
V n+1

i,ik − V n
i,ik

]
+ V n+1

i,∂ − V n
i,∂,

where the expressions of the contributions V n+1
i,ik − V n

i,ik and V n+1
i,∂ − V n

i,∂ in
terms of the coordinates of the grid nodes still remains to be derived. The
nonlinear system for the fluid variables u at time level n + 1 is solved here by
means of a modified Newton method, in which the Jacobian of the integrated
flux function is approximated by that of the first-order scheme (9), and by
resorting to a dual time-stepping technique [24], to improve the conditioning
number of the Jacobian matrix.

4.1.1 Two spatial dimensions

In two spatial dimensions, the difference V n+1
i,ik −V n

i,ik can be expressed in terms
of elemental contributions as follows

∆V n
i,ik = V n+1

i,ik − V n
i,ik =

∑

e∈Ei∩Ek

∆V n
i,ik,e, (40)

where, with reference to Fig. 6 and 7, ∆V n
i,ik,e is the area swept by the portion

∂Cik,e of the finite volume interface ∂Ci pertaining to the edge i-k and to the
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Fig. 7. The interface ∂Cik,e is in fact the segment (xik,xe). The velocities vik and ve

of points xik and xe, respectively, are assumed to be constant over tn < t < tn+1.

e-th element, see section 2.2.2. From definition (36), one immediately obtains,

∆V n
i,ik,e =

∫ tn+1

tn

∫

∂Cik,e(t)
v ·ni =

∫ tn+1

tn

vik(t) + ve(t)

2
·ηik,e(t) , (41)

By assuming now that the velocities vik and ve remain constant during the
time step [25,9], an expression for ηik,e(t) is easily obtained from (14) and by
noticing that under the aforementioned assumption of constant vik and ve for
tn < t < tn+1 one has

xik(t) ≃ xn
ik + vn

ik(t − tn), with vn
ik =

xn+1
ik − xn

ik

∆tn

xe(t) ≃ xn
e + vn

e (t − tn) with vn
e =

xn+1
e − xn

e

∆tn

and therefore from (14)

ηik,e(t) = (xik(t) − xe(t)) × ẑ

= (xn
ik − xn

e ) × ẑ + (vn
ik − vn

e ) × ẑ (t − tn)

= (xn
ik − xn

e ) × ẑ +
[
xn+1

ik − xn+1
e − (xn

ik − xn
e )

]
× ẑ

t − tn

∆n

Namely, ηik,e(t) is a linear function of time, or

ηik,e(t) = ηn
ik,e + (ηn+1

ik,e − ηn
ik,e)

t − tn

∆tn
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By substituting the expression above into (41) and integrating over ∆tn, one
has

∆V n
i,ik,e ≃ (vn

ik + vn
e ) · (ηn

ik,e + ηn+1
ik,e )

∆tn

4

The average interface velocity νn+1
ik satisfying the IVC condition (29) is there-

fore computed as

νn+1
ik =

1

4

ηn+1
ik

|ηn+1
ik |2

∑

e∈Ei∩Ek

(vn
ik + vn

e ) · (ηn
ik,e + ηn+1

ik,e ). (42)

A similar procedure is followed to determine the average boundary velocity
νi, to give

∆V n
i,∂,e =

∫ tn+1

tn

∫

∂Ci,e(t)∩Ω(t)
v · ni =

∫ tn+1

tn

vi(t) + ve(t)

2
· ξi,e(t) , (43)

and hence

νn+1
i =

1

4

ξn+1
i

|ξn+1
i |2

∑

e∈Ei∩∂Ω

(vn
i + vn

e ) · (ξn
i,e + ξn+1

i,e ) , (44)

Note that expressions (42) and (44) requires to know only the nodes’ coordi-
nates at time level n and n + 1.

A different result is obtained by assuming that the grid velocity is a linear
function of time in the interval tn < t < tn+1. In this case, grid coordinates
are approximated over tn < t < tn+1 by the parabola

x(t) =
vn+1 − vn

2

(t − tn)2

∆tn
+ vn(t − tn) + xn

where the grid velocities at time tn and tn+1 read

vn = −xn+1 − 4xn+ 1

2 + 3xn

∆tn
and vn+1 =

3xn+1 − 4xn+ 1

2 + xn

∆tn

respectively. The elemental contribution to the metric vector ηik is therefore
a parabolic function as well, namely,

ηik,e(t) =
1

2

[
(vn+1

ik − vn+1
e ) − (vn

ik − vn
e )

]
× ẑ

(t − tn)2

∆tn

+ (vn
ik − vn

e ) × ẑ (t − tn) + (xn
ik − xn

e ),

whose evaluation requires to known the nodes’ coordinates at time level tn,
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Fig. 8. Volume ∆V n
ik,ef swept from time tn to tn+1 by the interface portion ∂Cik,ef ,

namely, by the triangle (xik,xe,xf ), pertaining to edge i-k, to the e-th element and
to the f -th face of e, under the assumption that the velocity of points xik,xe and
xf is constant over ∆tn.

tn+1/2 and tn+1, which immediately gives

∆Vi,ik,e =
∫ tn+1

tn

∫

∂Cik,e

v ·n =
[
(vn+1

ik + vn+1
e ) ·ηn+1

ik,e + 2(v
n+ 1

2

ik + v
n+ 1

2
e ) ·η

n+ 1

2

ik,e

+(vn
ik + vn

e ) ·ηn
ik,e

]∆tn

12
(45)

where, from definition (14),

ηn
ik,e = (xn

ik − xn
e ) × ẑ, η

n+1/2
ik,e = (x

n+1/2
ik − xn+1/2

e ) × ẑ

and ηn+1
ik,e = (xn+1

ik − xn+1
e ) × ẑ

and where vn+1/2 = (xn+1 − xn)/∆tn. The average interfaces velocities νn+1
ik

and νn+1
i are therefore computed as follows

νn+1
ik =

1

12

ηn+1
ik

|ηn+1
ik |2

∑

e∈Ei∩Ek

[
(vn+1

ik + vn+1
e ) ·ηn+1

ik,e (46)

+ 2(v
n+ 1

2

ik + v
n+ 1

2
e ) ·η

n+ 1

2

ik,e + (vn
ik + vn

e ) ·ηn
ik,e

]
,

νn+1
i =

1

12

ξn+1
i

|ξn+1
i |2

∑

e∈Ei∩∂Ω

[
(vn+1

i + vn+1
e ) · ξn+1

i,e (47)

+ 2(v
n+ 1

2

i + v
n+ 1

2
e ) · ξ

n+ 1

2

i,e + (vn
i + vn

e ) · ξn
i,e

]
,

where the derivation of the last expression, similar to that presented above, has
been omitted for conciseness. The influence on the overall accuracy of using
either the linear or the parabolic approximations for the node coordinates
presented above is investigated in section 6.1.
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4.1.2 Three-spatial dimensions

Considering now the three-dimensional case, the difference V n+1
ik − V n

ik is ex-
pressed in terms of element/face contributions as follows

∆V n
i,ik = V n+1

i,ik − V n
i,ik =

∑

e∈Ei∩Ek

∑

f∈Fik,e

∆V n
i,ik,ef ,

where, with reference to Fig. 8, ∆V n
i,ik,ef is the area swept by the portion

∂Cik,ef , namely, by the triangle with vertices (xik, xe, xf), of the finite volume
interface ∂Ci pertaining to the edge i-k, to the e-th element and to the f -th
face of e, see section 2.2.2. As in the two-dimensional case, each contribution
∆V n

i,ik,ef is now written as the integral of the local velocity v over the triangle
∂Cik,ef from time level tn to tn+1 as follows

∫ tn+1

tn

∫

∂Cik,ef

v ·n =
vn

ik + vn
e + vn

f

3
·

∫ tn+1

tn
ηik,ef(t), (48)

where the grid velocity has been assumed to be constant during the time
step. An explicit expression for ηik,ef(t) is now computed from the following
expressions for the coordinates of the vertices

xik(t) = xn
ik + vn

ik(t − tn),

xe(t) = xn
e + vn

e (t − tn),

xf(t) = xn
f + vn

f (t − tn),

valid for tn < t < tn+1 and under the assumption of constant velocities over
∆tn, and from definition (18) as follows

ηik,ef(t) =
1

2
[xf(t) − xe(t)] × [xik(t) − xe(t)]

=
1

2
[xn

f − xn
e + (vn

f − vn
e )(t − tn)] × [xn

ik − xn
e + (vn

ik − vn
e )(t − tn)]

=
1

2

{
(xn

f − xn
e ) × (xn

ik − xn
e )

+
[
(xn

f − xn
e ) × (xn+1

ik − xn+1
e ) + (xn+1

f − xn+1
e ) × (xn

ik − xn
e )

− 2(xn
f − xn
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e )
] t − tn

∆tn

+
[
(xn+1

f − xn+1
e ) × (xn+1

ik − xn+1
e )

+ (xn
f − xn

e ) × (xn+1
ik − xn+1

e ) + (xn+1
f − xn+1

e ) × (xn
ik − xn

e )

+ (xn
f − xn

e ) × (xn
ik − xn

e )
] (

t − tn

∆tn

)2 }

Differently from the two-dimensional case, where ηik,e(t) is a linear function of
time, in the three-spatial dimension ηik,ef is found to be a parabolic function

23



of t, or

ηik,ef(t) =
1

2

(
ηn+1

ik,ef − 2η
n+ 1

2

ik,ef + ηn
ik,ef

) (
t − tn

∆tn

)2

−
(
ηn+1

ik,ef − 4η
n+ 1

2

ik,ef + 3ηn
ik,ef

) t − tn

∆tn
+ ηn

ik,ef

where tn+ 1

2 = tn + ∆tn

2
and η

n+1/2
ik,ef = ηik,ef(t

n+1/2). Note that the evaluation

of η
n+1/2
ik,ef , namely,

η
n+ 1

2

ik,ef =
1

4
(xn+1

f − xn+1
e ) × (xn+1

ik − xn+1
e )

+
3

4
(xn+1

f − xn+1
e ) × (xn

ik − xn
e ) +

3

4
(xn

f − xn
e ) × (xn+1

ik − xn+1
e )

− 1

4
(xn

f − xn
e ) × (xn

ik − xn
e )

does not require to compute any intermediate value for the grid nodes’ coor-
dinates, namely, its expression involves only nodes’ coordinates at time n and
n+1. Substituting the above expression into (48) and integrating in time one
obtains

∆V n
i,ik,ef = (vn

ik + vn
e + vn

f ) ·

(
ηn+1

ik,ef + 4η
n+ 1

2

ik,ef + ηn
ik,ef

)∆tn

18
. (49)

It is now possible to provide an expression for the average interface velocity
satisfying the IVC condition (29) as

νn+1
ik =

1

18

ηn+1
ik

|ηn+1
ik |2

∑

e∈Ei∩Ek

∑

f∈Fik,e

(vn
ik +vn

e +vn
f ) ·

(
ηn+1

ik,ef +4η
n+ 1

2

ik,ef +ηn
ik,ef

)
. (50)

A similar procedure leads to the following definition of the average boundary
velocity, in which

∆V n
i,∂,ef = (vn

i + vn
e + vn

f ) ·

(
ξn+1

i,ef + 4ξ
n+ 1

2

ik,ef + ξn
i,ef

)∆tn

18
, (51)

and hence

νn+1
i =

1

18

ξn+1
i

|ξn+1
i |2

∑

e∈E∂
i

∑

f∈Fi,e

(vn
ik + vn

e + vn
f ) ·

(
ξn+1

i,ef + 4ξ
n+ 1

2

i,ef + ξn
i,ef

)
. (52)

4.2 BDF and multistep schemes with variable time-step

In the present section, the expressions of the average interface veloctities
νik and νi satisfying the IVC condition for a Backward Differences Formu-
lae (BDF) scheme and for a Multistage (MS) scheme are now derived. For a
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nonlinear ODE dy/dx = f(x, y), the second-order BDF scheme with variable
time step reads

a−1y
n+1 + a0y

n + a1y
n−1 = f(xn+1, yn+1) ∆tn, (53)

where the coefficients ai are

a−1 =
1 + 2βn

1 + βn
, a0 = −(1 + βn), a1 =

(βn)2

1 + βn
, with βn =

∆tn

∆tn−1
.

For convenience, the BDF scheme is now recast in terms of time differences
∆yn+1 = yn+1 − yn as follows

α−1∆yn + α0∆yn−1 = f(xn+1, yn+1) ∆tn, (54)

with α−1 =
1 + 2βn

1 + βn
and α0 = − (βn)2

1 + βn
.

The fully discrete form of (38) therefore reads





α−1∆[V n
i un

i ] − α0∆[V n−1
i un−1

i ] =

[
∑

k∈Ki, 6=

Ψ(un+1
i , un+1

k , νn+1
ik , ηn+1

ik )

+ Ψ∂(un+1
i , νn+1

i , ξn+1
i )

]
∆tn

α−1∆V n
i,ik − α0∆V n−1

i,ik = νn+1
ik ·ηn+1

ik ∆tn

α−1∆V n1
i,∂ − α0∆V n−1

i,∂ = νn+1
i · ξn+1

i ∆tn

(55)

Therefore, one has

νn+1
ik =

1

∆tn

(
α−1∆V n

i,ik − α0∆V n−1
i,ik

) ηn+1
ik

|ηn+1
ik |2

νn+1
i =

1

∆tn

(
α−1∆V n

i,∂ − α0∆V n−1
i,∂

) ξn+1
i

|ξn+1
i |2

(56)

where the values of ∆V n
i,ik and ∆V n−1

i,ik are computed from relations (41) and
(49) in two and three spatial dimensions, respectively, and where ∆V n

i,∂ and

∆V n−1
i,∂ are computed from relations (43) and (51). The above definition of

the interface velocity allows for the IVC condition to be identically satisfied
and, differently from other approaches [26], does not require to modify the
coefficients α of the BDF scheme, thus preserving the time accuracy.

In fact, the definitions above can be extended to allow for the use of a generic
Multistep (MS) scheme a follows. To this purpose, a MS scheme for the model
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ODE dx(t)/dt = f(t) for the scalar unknown x = x(t), namely

p∑

l=−1

alx
n−l = ∆tn

r∑

h=q

bhf(xn−h),

with p > 0, q ≥ −1 and p ≥ q, is now considered. Note that a−1 6= 0 and that
bq 6= 0. If q = −1, the scheme is implicit. For a MS scheme to be consistent,
the coefficients al and bh must satisfy the following conditions

p∑

l=−1

al = 0, and
p∑

l=−1

lal +
r∑

h=−q

bh = 0,

which allow for the MS scheme to be recast in the following form

p−1∑

l=−1

αl∆xn−l = ∆tn
r∑

h=−q

bhf(xn−h),

where αl =
∑l

j=−1 aj . The average interface velocities at time level n − q
satisfying the IVC condition for a MS scheme are therefore computed as

ν
n−q
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1

∆tn
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αl∆V n−l
i,ik − ∆tn
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ik · ηn−h

ik



 ηn+1
ik
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ik |2

ν
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∆tn
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i,∂ − ∆tn

r∑

h=1−q

bhν
n−h
i · ξn−h

ik



 ξn+1
i

|ξn+1
i |2

(57)

4.3 The IVC condition and the Geometric Conservation Law (GCL)

Starting from the original statement of Thomas and Lombard [11], many au-
thors recognized the importance of the so-called Geometric Conservation Law
(GCL) in solving dynamic mesh problem in general and fluid-structure inter-
actions in particular. Strictly speaking, the GCL is a constraint on the discrete
form of the flow equations which states that the numerical scheme is to be ca-
pable of reproducing a uniform flow over a moving mesh without introducing
any numerical disturbances. The GCL has been found to be critical especially
in aeroelastic computations and aeroelastic solver which do not satisfy the
GCL have been shown to compute flutter conditions incorrectly [27].

The interplay of the GCL and time-accuracy has been investigated by many
authors [27–29,13]; in particular, in [30], the GCL is proved to be a sufficient
condition for achieving first-order time accuracy. In [29] the GCL is demon-
strated to be not necessary for high-order time accuracy and high-order time
accurate numerical schemes that do not fulfill the GCL have been devised. In
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[13] the relation between time-accuracy and the GCL is further investigated
and the GCL is enforced in time-accurate numerical scheme to preserve the
non-linear stability of the time integration scheme [31]. More recently, in [32],
the rôle of the GCL in devising time-accurate numerical schemes on dynamic
meshes is studied in the framework of edge-based solvers for compressible
flows.

In the present edge-based finite volume approach, the GCL condition for the
BE scheme, namely, cf. (39)

V n+1
i un+1

i − V n
i un

i

=
[ ∑

k∈Ki, 6=

Ψ(un+1
i , un+1

k , νn+1
ik , ηn+1

ik ) + Ψ∂(un+1
i , νn+1

i , ξn+1
i )

]
∆tn

is obtained by imposing that the numerical scheme computes a uniform flow,
namely, ui = const. ∀i ∈ K, exactly. Hence

V n+1
i − V n

i =
[ ∑

k∈Ki, 6=

νn+1
ik · ηn+1

ik + νn+1
i · ξn+1

i

]
∆tn,

which is easily verified to be an identity provided that the interface velocities
satisfy the IVC conditions (42), (44) and (50), (52) in two and three spatial
dimensions, respectively, see section 4.1. The GCL is fulfilled by all the IVC-
compliant time integration schemes considered in the present work. In the fact,
the discrete system implementing the IVC condition ensures that the discrete
counterpart of the conservation equation

dVi

dt
=

∮

∂Ci

v · ni,

is computed in a way that is consistent with the time integration scheme used
in the flow solver. As a result, the IVC condition introduced here is a sufficient
condition for the numerical scheme to satisfy the GCL. Remarkably enough,
as noted in section 3, the IVC condition generalizes the GCL to possibly non
uniform flows and simplifies to the GCL itself in the case of uniform flows.

The above can be further clarified by resorting to the following one-dimensional
example. A finite volume Ci (a segment, in the present one-dimensional case),
bounded by two interfaces (points) located at xa and xb, respectively, with
xa < xb, is considered. Both coordinates xa and xb are independent functions
of time. Note that the outward normal na and nb at xa and xb, respectively,
are scalar quantities in one spatial dimension and that na = −1 and nb = 1.
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Therefore, the mass conservation law for the considered finite volume reads

d

dt

∫ xb(t)

xa(t)
ρ(x, t) dx = ρ(xa(t), t)

[
w(xa(t), t) − v(xa(t), t)

]

− ρ(xb(t), t)
[
w(xb(t), t) − v(xb(t), t)

]
, (58)

where w is the local fluid velocity. The interface velocities va(t) = v(xa(t), t)
and vb(t) = v(xb(t), t) are now computed according to the prescriptions of the
GCL and the IVC as follows. More precisely, we are interested in evaluating
the consequences of substituting the actual interface velocities va(t) and vb(t)
with the velocities ṽa(t) and ṽb(t) computed by imposing either the GCL or
the IVC.

The interface velocities ṽGCL

a (t) and ṽGCL

b (t) fulfilling the GCL conditions can
be easily computed by evaluating the mass conservation law for a flow with
constant density and constant fluid velocity, namely, in an uniform flow. In
this case, one has

dVi

dt
≡ d

dt

∫ xb(t)

xa(t)
dx = ṽGCL

b (t) − ṽGCL

a (t),

therefore, the GCL reduces to the following condition

ṽGCL

b (t) − ṽGCL

a (t) = vb(t) − va(t), (59)

which identifies a one-parameter family of interface velocities. The interface
velocities ṽIVC

a (t) and ṽIVC

b (t) satisfying the IVC are instead computed from
definition (29) as follows

ṽIVC

a (t) = va(t) and ṽIVC

b (t) = vb(t), (60)

and are univocally determined by imposing the IVC only. It is to be noted that
the interface velocities (60) computed via the IVC satisfy the GCL condition
(59). Conversely, within the one-parameter family of solutions identified by
the GCL condition (59), only one pair of interface velocities fulfills the IVC.

As expected, both choices (59) and (60) are feasible, that is, do not introduce
any approximation, if substituted into the mass conservation law (58) in the
case of a uniform steady flow, namely, in the case ρ(x, t) ≡ ρ0 and w ≡
w0, where both ρ0 and w0 are constant. In order to elucidate the differences
between the choices (59) and (60), the mass conservation law (58) is now
specialized to a steady but nonuniform flow, for which ρ(x, t) = ρ(x) = ρ0 +
x(ρ1 − ρ0)/L and w(x, t) = ρ0w0/ρ(x), where ρ1 is a constant and L is the
length of the domain. Substituting these definitions into (58) immediately
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gives

ρ0

[
vb(t) − va(t)

]
+

ρ1 − ρ0

L

[
xb(t)vb(t) − xa(t)va(t)

]

= ρ0

[
ṽb(t) − ṽa(t)

]
+

ρ1 − ρ0

L

[
xb(t)ṽb(t) − xa(t)ṽa(t)

]
,

where ṽa(t) and ṽb(t) indicate the modified interface velocities satifying either
the GCL or the IVC. The equation above is identically satisfied if ṽa(t) and
ṽb(t) are computed according to definitions (60), that is, according to the IVC.
This is not the case for interfaces velocities fullfilling the GCL, cf. relation (59).
To quantify the error introduced by a GCL-compliant scheme that does not
fulfill the IVC, the very simple situation in which the control volume translates
at constant velocity is now studied. The density and fluid velocity profile are
the same considered above. The mass conservation law (58) for va = vb = v0

reads

d

dt

∫ xb(t)

xa(t)
ρ(x, t) dx = l(ρ1 − ρ0)v0,

where l = (xb(t)−xa(t))/L = constant. The interface velocities va(t) and vb(t)
in (58) are now replaced by the velocities ṽa(t) and ṽb(t) computed using the
GCL. These are chosen as

ṽ = αva(t) = αv0 and ṽb(t) = vb(t) + (α − 1)va(t) = αv0,

where α ∈ R, which are immediately verified to satisfy the GCL (59). Note
that for α = 1 the interface velocities defined above fulfill also the IVC (60).
Substituting ṽa(t) and ṽb(t) into (58) gives

d

dt

∫ xb(t)

xa(t)
ρ(x, t) dx = l(ρ1 − ρ0)v0 + (α − 1)l(ρ1 − ρ0)v0,

where the second term on the right hand side represents the error introduced
by substituting the exact interface velocities with their GCL-compliant coun-
terpart. This error cancels only if α = 1, namely, if the IVC (60) is also
satisfied.

Admittely, choice (60) for the interface velocities is indeed the most obvi-
ous one and numerous numerical scheme on dynamic meshes enforce already
the IVC at each interface, although the GCL condition (59) only is explicitly
imposed. Moreover, as noticed above, the latter is not sufficient to uniquely
determine the interface velocities. The present study is a first attempt to pro-
vide a formal definition of the IVC and to clarify how currently used methods,
that implicitly impose the IVC, are suitable also for nonuniform flows.
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5 Mesh movement

In the present section, the mesh movement strategy is briefly described. The
boundary of the new (deformed) mesh is to be conformal to the new boundaries
of the domain and, at the same time, the overall quality of the mesh elements
in the inner domain must be preserved to reduce numerical errors.

The mesh movement is performed in two steps. First, the displacement of
each boundary node of the fluid mesh is obatined by either solving the cou-
pled structural problems or from a given movement law; then, the position of
the inner nodes is modified accordingly. The first step is usually not trivial
because the mesh used for the structure and the one used for representing
the boundary of the flow field are generally different, so an interface scheme
must be defined to exchange information between the two grids. In the present
work, a conservative interfacing procedure based on the Moving Least Square
(MLS) method is used [33].

The displacement of internal nodes can be obtained using different strategies.
These can be gathered in two classes: interpolation methods [34,35], mainly
used for structured meshes, and those based on some form of elastic analogy,
which are more suitable for unstructured meshes. Batina [36] introduced the
elastic analogy by representing each side of the grid as a spring with a nonlinear
stiffness proportional to the edge length. To avoid the occurrence of invalid
elements with negative volumes, Degand and Farhat [37] introduced additional
torsional springs at each vertex. Given its complexity, the mesh movement
step may require a nonnegligible computational effort to the point that it may
become one of the most time-consuming tasks in the computation [37].

Therefore, the envisaged deformation scheme must fulfill the following require-
ments: a) Robustness: the scheme must handle significant boundary displace-
ments and be capable of producing valid grids (all elements with positive vol-
ume) with an acceptable quality especially in the areas where low numerical
errors are sought for, i.e. near the wall boundaries. b) Computational efficiency.
c) Easy of use; the user intervention on the algorithm is to be minimal.

The grid deformation algorithm presented here extends to idea of the elastic
analogy by representing each element as a deformable body and moves from
the discussion presented in [38]. Differently from the spring analogy, such a
choice avoids element breakthrough also in the case of large deformations.
To reduce the computational burden, a simple linear constitutive law is used,
namely, in three spatial dimensions one has σ = {σxx, σyy, σzz, σxy, σyz, σzx}T ,
and ε = {εxx, εyy, εzz, εxy, εyz, εzx}T , as

σ = Dε,
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where the D matrix is equal to

D =
E

(1 + ν)(1 − 2ν)




1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0 1 − 2ν 0 0

0 0 0 0 1 − 2ν 0

0 0 0 0 0 1 − 2ν




,

where E is the Young elastic modulus and ν is the Poisson coefficient. When
two dimensional grids are investigated, the analogy with the plane strain elas-
tic model is used; the stress and strain vectors become σ = {σxx, σyy, σxy}T ,
and ε = {εxx, εyy, εxy}T , and the D matrix equal to

D =
E

(1 + ν)(1 − 2ν)




1 − ν ν 0

ν 1 − ν 0

0 0 1 − 2ν




.

The correct grid deformation is achieved adopting a local Young modulus
proportional to the minimal dimension of each element following a simple law

Ee =
1

min
i,k ∈ Ke

‖xi − xk‖β
, (61)

where Ke is the set of all nodes belonging to the e-th element. In this way the
small elements close to wall boundaries are more stiff, so they tend to move
rigidly with the walls, leaving the burden to absorb the global deformations on
the larger elements, usually located far from the boundaries. The coefficient β
can be used to control the mesh deformation behavior, increasing the stiffness
ratio between small and large elements. A Poisson coefficient ν ∈ [0; 0.35]
is chosen in order to avoid bad numerical conditioning of the problem. The
mesh deformation problem is then solved by measn of a standard finite element
approach. The wall boundary displacements are imposed simply as Dirichlet
boundary conditions for the elastic mesh problem. Further improvements can
be obtained through the adoption of anysotropic continua.

The effectiveness of the proposed strategy is shown in Fig. 9(b), where a two-
dimensional unstructured mesh around the NACA 0012 airfoil is deformed
to adapt it to a one chord plunge. The variable stiffness produces an almost
rigid displacement for the small triangles near the airfoil walls, with a visible
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(a) Non-deformed grid (b) One chord airfoil plunge

(c) 20 deg. airfoil pitch (d) Pitch and plunge linear combina-
tion

Fig. 9. Grid deformation for a NACA 0012 airfoil.

distortion only near the grid external boundary, where larger numerical errors
may be acceptable. A similar behavior is found for the airfoil pitch, Fig. 9(c).

Furthermore, the linearity of the equations describing the mesh movement
problems allows for a further reduction of the computational time, since the
global mesh deformation can be represented as a superposition of basic de-
formed grids computed in advance. An example is shown in Fig. 9(d), where
the two movement of pitch and plunge are linearly combined. Large saving
are obtained when three dimensional cases are solved, using as basic elements
for the superposition the deformed meshes associated with structural normal
modes [1]. Of course, the superposition approach should be applied only when
small structural displacements are considered, which is usually the case when
aircraft aeroelastic stability is under investigation.

The quality of the deformed mesh can be further improved by allowing the
displacement of the far field boundaries. In this way it is possible to achieve
the required mesh deformation without large element distortions. Figure 10
shows the three-dimensional grid around the AGARD 445.6 wing, which is
considered as a test case in the following section. The left side shows the non-
deformed grid with the shaded far field boundary. The right side shows the
deformed wing surface grid and the corresponding deformation of the external
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(a) (b)

Fig. 10. Three-dimensional mesh aroound the AGARD 445.6 wing. a) Undeformed
far-field boundary. b) The far-field boundary is allowed to move to imporve the
mesh quality.

Fig. 11. Detail of the computational grid on the surface of the AGARD 445.6 wing
(cf. Fig. 10) for a deformable far-field boundary.

boundaries. In this case large deformations can be achieved easily, as shown
in Fig. 11.
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6 Numerical results

Numerical simulations are now performed to investigate the influence of the
IVC on the overall scheme stability and time accuracy.

The BDF2 and BDF3 time integration schemes have been implemented and
compared for two-dimensional computations of a NACA0012 pitching airfoil.
For the three-dimensional case a full aeroelastic stability analysis is performed
for the Agard 445.6 wing in the subsonic, transonic and supersonic regimes.

6.1 Pitching airfoil

The first investigation on the numerical properties of the proposed scheme are
performed in the case of a NACA 0012 pitching airfoil. The computational
domain is represented by an unstructured mesh of triangles with 4686 nodes;
the far-filed boundary is a circle with radius equal to 20 chords. The angle of
attack of the simulated airfoil is prescribed as a sinusoidal function of time with
a mean value of 0.016◦ and amplitude of 2.51◦, with a reduced frequency k =
ωc/2v∞ = 0.1589, where c is the airfoil chord, ω the frequency and v∞ the flow
velocity. A reference solution is computed by performing a time integration
with a very small time step, using 512 steps per period; the relative errors are
computed as the L2 norm of the difference between the reference solution and
the approximated one. In Figs. 12–13 the values of lift coefficient Cℓ for BDF2
and BDF3 schemes are compared with the reference solutions at two different
asymptotic Mach numbers. For large time steps, namely, ∆τ = tv∞/c = 0.128,
the BDF3 scheme is found to be more accurate than BDF2. A more refined
time discretization, ∆τ = 0.03125, shows no significant differences between
the two schemes. Fig. 14 plots the L2 norm of the relative error as a function
of the time step ∆τ on a logarithmic scale for several Mach numbers. The
BDF2 exhibit a curve slope equal to 1.8, that is close to the expected value,
while for the BDF3 scheme the average slope is equal to 2.7, up to a relative
error of about 10−5. Convergence rapidly degrades for even smaller time step;
however, from fixed grid computations on unsteady problems, the flattening of
the convergence curve at lower time steps is believed to be related to the (first-
order) implementation of the boundary condition in the Eulerian code and
not to the ALE formulation itself. A similar error analysis has been performed
using a parabolic interpolation in time of the node positions, namely, using
expressions (45) for the interface and boundary velocities. The adoption of
the parabolic interpolation is not found to produce significant improvements
with respect to the linear one, as it can be appreciated in Fig. 14.

Figs. 15 compares a uniform time step solution with the corresponding variable
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Fig. 12. Lift coefficient as a function of the angle of attack for Mach = 0.55. BDF2
and BDF3 solutions obtained using 8 steps (a) and 32 steps (b) per period.

variable time step solution obtained from the BDF3 scheme and using the
same number of time steps, In the variable step case the time step amplitude
is chosen as a function of the slope variation of the input signal, namely the
motion law imposed to the airfoil, assuming a negligible delay between the
input and the aerodynamics response. This assumption can be considered
valid if the reduced frequency k is small enough, as it is the case here with
k = 0.016. For higher reduced frequencies a more effective strategy for the
choice of the time step needs to be implemented. The error analysis performed
on the variable time step scheme gives a relative L2 error of 3.96×10−5, while
the fixed step scheme resulted in an error of 4.67 × 10−5.

6.2 Flutter analysis of the Agard 445.6 wing

The occurence of strong nonlinearities in the flow field, such as for example
shock waves or flow separation, requires for the adoption of CFD methods
for aeroelastic stability assessment in the transonic regime. However, it can be
observed that while the steady flow fields is highly nonlinear, the same does not
hold for the unsteady loads which influences the aeroelastic stability. The latter
can be often considered with an high level of accuracy as linear [39,40]. In any
case, nonlinearities in the flow equations require to study the stability of each
flight configuration independently. To speed up the analysis, especially when
a large number of configurations needs to be tested, a linearized model of the
unsteady aerodynamic forces is extracted from CFD solutions by evaluating
the aerodynamic response to relevant modal deformations of the structure,
without the need of performing a fully coupled nonlinear analysis for each test
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Fig. 13. Lift coefficient as a function of the angle of attack for Mach = 0.755. BDF2
and BDF3 solutions obtained using 8 steps (a) and 32 steps (b) per period.

condition. The result of the linearisation is a Reduced Order Model (ROM) for
aerodynamic unsteady forces. It is therefore possible to use CFD–ALE time
marching solutions as a sort of “numerical experiments” for the extraction of
the dynamics of the flow field. To this purpose it is necessary to run a set
of specified simulation with imposed wall boundary movements, choosing a
simple excitation method which requires a reasonable computational cost but
permits a good identification of the principal dynamics of aerodynamic forces
Fa. The details of the procedure adopted here for the identification of state
space linear ROM can be found in Cavagna, Quaranta and Mantegazza [41].

A linear modal representation of the structure is used, as it is usually done in
classic aeroelastic analysis [1]. In this case, the classical flutter problem can be
stated as follows: find the dynamic pressure q which gives rise to unstable free
movements for a given (linear) elastic structure represented in modal form as

Mq̈ + Cq̇ + Kq =
1

2
ρu2Fa(q, Mach), (62)

where M , C, K are respectively the modal mass, damping and stiffness matri-
ces, and Fa are the generalized aerodynamic forces associated with each mode.
Note that by coupling the identified dynamic system with Equation (62), the
flutter problem becomes a standard eigenvalue problem [42].

As an application to the CA scheme outlined above, the Agard 445.6 de-
formable wing test case is now considered. Experimental results for the wind
tunnel tests can be found in the report [43]. The tested wing presents a clear
drop of the flutter velocity in transonic flow conditions, so it has been taken
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Fig. 14. Comparison of BDF2 and BDF3 convergence curves for different Mach
numbers, namely, 0.55 (a), 0.755 (b) and 1.114 (c). d) Comparison between the
linear and parabolic mesh node positions for the BDF3 scheme and for Mach number
0.755.

by many authors as the reference case to assess the quality of the transonic
flutter prediction [44–46]. For numerical flutter computations only the first
two modes are taken into account, where the first is a bending mode while
the second is a torsional one (cf. Fig. 16), as they are deemed sufficient to
predict the onset of flutter instability. A three-dimensional tetrahedral fluid
mesh, containing 22 014 nodes is used as the aerodynamic grid. The input sig-
nal given to the aerodynamic system, represented by the modal deformation

37



τ

C
l

0 200 400
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

variable time step
fixed time step
reference solution

Fig. 15. Comparison between fixed and variable time-step BDF3 solutions.

amplitude imposed to the boundary of fluid grid, is of the form:

qi =





A∞,i(1 − cos (kτ))/2, for τ <
π

kmax

A∞,i, for τ ≥ π

kmax

where kmax is the highest reduced frequency of interest and A∞,i is the ampli-
tude of the i-th mode (A∞,i ≃ 0.01 here). Fig. 16 shows the maximum defor-
mations reached during the simulation and corresponding Mach contours for
the first and second modes. The results of the simulation with imposed wall
boundary movements along the first and the second mode are summarized in
Figs. 17 and 18, where the real and imaginary part of the frequency response
matrix of the generalized aerodynamic forces are shown. The plot illustrates
the large differences in the coefficient trends at different mach number. These
results are then used to compute the flutter onset point.

Flutter analysis are performed for several Mach numbers, namely in the sub-
sonic, transonic and supersonic regimes. The result of the numerical analysis
are summarized in Fig. 19 and Table 6.2. The plot shows the flutter index,
defined as

If =
vf

c ωa
√

µ
,

where vf is the flutter velocity, c is half of the wing chord at the root, ωa

is the frequency of the torsional mode and µ is the mass ratio, i.e. the ratio
between the structural mass and the mass of the equivalent volume of fluid at
reference density. The agreement with experimental results for subsonic and
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Mach ρ [kg/m3] vf [m/s] If

BDF3 Exp. BDF3 Exp.

0.678 0.208 226.46 231.37 0.408 0.417

0.901 0.099 290.78 296.76 0.363 0.370

0.960 0.063 306.24 309.08 0.306 0.308

1.072 0.056 430.64 344.81 0.399 0.320

1.140 0.078 535.56 364.42 0.592 0.403

Table 1
Numerical and experimental flutter results.

transonic flows is good, with a clear evidence of the flutter dip phenomenon
at Mach 0.96. For supersonic cases the error on the flutter index is higher.
However, the matching for supersonic cases is a challenging problem, and
similar results have been obtained by other researches [45–47], To test the
effect of moving the far-field boundaries, two transient simulation have been
performed with a sinusoidal variation of the wing nodes position along the first
mode of vibration; in the first one the far field nodes are kept fixed, while in
the second one they are allowed to move freely following the grid deformation.
Fig. 20 shows the lift coefficient Cℓ vs. non dimensional time τ for the two
cases showing that the movement of the far-field boundary, while limiting the
element distortions, does not affect the solution.

The relative L2 norm of the difference between the two solutions at the end
of the simulation, when the undeformed conditions is reached again, reads
||∆u||L2

/ ||u||L2
= (1.06, 1.09, 1.40, 1.02, 0.96)× 10−5.

(a) (b)

Fig. 16. First (a) and second (b) modal deformations and relative Mach contours
with Mach = 0.96.
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Fig. 17. Real part of the frequency response matrix of the generalized aerodynamic
forces for several Mach numbers for the AGARD 445.6 test case.
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7 Conclusions

A general representation of the advective fluxes for the ALE formulation has
been given, which provides a simple way to extend virtually any spatial dis-
cretization scheme from fixed to moving grids. Moreover, the transformation
matrix defined by (22) allows for the correct imposition of boundary conditions
on moving solid walls and on the far field, thus resulting in more flexibility for
the grid deformation strategy.

A novel compatibility condition relating the velocity at the interface between
adjacent control volumes to the time derivatives of the volume themselves is
introduced. The Interface Velocity Consistency condition amounts to write an
additional conservation law for these quantities, which is to be solved together
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with the flow equations, and it represents an extension of the well-known
Geometric Conservation Law to the case of nonuniform flow fields.

Numerical results for a two-dimensional test case confirm the accuracy of the
present approach for different time integration schemes including variable time
step size. The simulations are only slightly affected by the chosen interpolation
law for the grid velocity. As a consequence, a linear interpolation of nodes
positions is sufficient to achieve the designed time accuracy, allowing a more
efficient algorithm for advancing in time. Three-dimensional flutter analysis
for a standard test case are in good agreement with available experimental
results.

The extension of the conservation laws system (21) to the case of viscous flows
will be straightforward as the viscous fluxes do not depend on the deformation
velocity of the mesh but depend only on mesh configuration at a given time.
As a result, all the relevant features underlined in the present report can be
easily extended to viscous flow models.
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