Introduction to theory of probability and statistics

Lecture 5.

Random variable and distribution of probability

prof. dr hab.inż. Katarzyna Zakrzewska Katedra Elektroniki, AGH
e-mail: zak@agh.edu.pl
http://home.agh.edu.pl/~zak

Outline:

. Concept of random variable

- Quantitative description of random variables
. Examples of probability distributions

AGH

The concept of random variable

Random variable is a function X, that attributes a real value x to a certain results of a random experiment.

$$
\begin{aligned}
& \Omega=\left\{e_{1}, e_{2}, \ldots\right\} \\
& X: \Omega \rightarrow R \\
& X\left(e_{i}\right)=x_{i} \in R
\end{aligned}
$$

Examples:

1) Coin toss: event 'head' takes a value of 1 ; event 'tails' - 0.
2) Products: event 'failure' - 0, well-performing - 1
3) Dice: '1' - 1, '2' - 2 etc....
4) Interval [a, b]- a choice of a point of a coordinate ' x ' is attributed a value, e.g. $\sin ^{2}(3 x+17)$ etc.

The concept of random variable

Random variable

Discrete

When the values of random variable X are isolated points on an number line

- Toss of a coin
- Transmission errors
- Faulty elements on a production line
- A number of connections coming in 5 minutes

Continuous
When the values of random variable cover all points of an interval

- Electrical current, I
- Temperature, T
- Pressure, p

Quantitative description of random variables

- Probability distributions and probability mass functions (for discrete random variables)
- Probability density functions (for continuous variables)
- Cumulative distribution function (distribution function for discrete and continuous variables)
- Characteristic quantities (expected value, variance, quantiles, etc.)

Distribution of random variable

AGH

Distribution of random variable (probability distribution for discrete variables) is a set of pairs (x_{i}, p_{i}) where x_{i} is a value of random variable X and p_{i} is a probability, that a random variable X will take a value x_{i}

Example 4.1

Probability mass function for a single toss of coin.
Event corresponding to heads is attributed $x_{1}=1$; tails means $x_{2}=0$.

$$
\begin{aligned}
& x_{1}=1 \quad p(X=1)=p\left(x_{1}\right)=\frac{1}{2} \\
& x_{2}=0 \quad p(X=0)=p\left(x_{2}\right)=\frac{1}{2}
\end{aligned}
$$

Distribution of random variable

AGH

Example 4.1 cont.

Probability mass function for a single toss of coin is given by a set of the following pairs:

Random variable when discrete entails probability distribution also discrete.

Probability density function

AGH

Probability function is introduced for continuous variables; it is related to probability in the following way:

$$
f(x) d x \equiv P(x \leq X<x+d x)
$$

Properties of probability density function:

$$
\text { 1. } f(x) \geq 0
$$

2. $f(x)$ is normalized $\int_{-\infty}^{+\infty} f(x) d x=1$
3. $f(x)$ has a measure of $1 / x$

Probability density function

AGH

Directly from a definition of probability density function $f(x)$ we get a formula of calculating the probability that the random variable will assume a value within an interval of $[\mathrm{a}, \mathrm{b}]$:

$$
P(a<X<b)=\int f(x) d x
$$

Question: what is a probability of $\mathrm{x}=\mathrm{a}^{\mathrm{x}}$ is incorrect!!!

Probability density function

AGH

Example 4.2

Let the continuous random variable X denote the current measured in a thin copper wire in mA. Assume that the range of X is $[0,20 \mathrm{~mA}]$, and assume that the probability density function of X is $f(x)=0,05$ for $0 \leq x \leq 20$. What is the probability that a current measured is less than 10 mA .

AGH

Quantitative description of random variables

- Cumulative distribution function (CDF) $F(x)$ is a probability of an event that the random variable X will assume a value smaller than or equal to x (at most x)

$$
F(x)=P(X \leq x)
$$

Example 4.1 cont.

CDF of coin toss:

$$
\begin{gathered}
F(x=0)=P(X \leq 0)=\frac{1}{2} \\
F(x=1)=P(X \leq 1)=1
\end{gathered}
$$

Properties of CDF

1. $0 \leq F(x) \leq 1$
2. $F(-\infty)=0$
3. $F(+\infty)=1$
4. $x \leq y \Rightarrow F(x) \leq F(y)$
non-decreasing function
5. $F(x)$ has no unit
6. $f(x)=\frac{d F(x)}{d x} \begin{aligned} & \begin{array}{l}\text { Relationship between cumulative } \\ \text { distribution function and probability } \\ \text { density (for continuous variable) }\end{array}\end{aligned}$

CDF of discrete variable

AGH

$$
F(x)=P(X \leq x)=\sum_{x_{i} \leq x} f\left(x_{i}\right)
$$

$f\left(x_{i}\right)$ - probability mass function

Example 4.3

Determine probability mass function of X from the following cumulative distribution function $F(x)$

$$
\begin{aligned}
& F(x)= 0 \text { for } x<-2 \\
& 0.2 \text { for }-2 \leq x<0 \\
& 0.7 \text { for } 0 \leq x<2 \\
& 1 \text { for } 2 \leq x
\end{aligned}
$$

From the plot, the only points to receive $f(x) \neq 0$ are $-2,0,2$.
$f(-2)=0.2-0=0.2 \quad f(0)=0.7-0.2=0.5 \quad f(2)=1.0-0.7=0.3$

CDF for continuous variable

AGH

$$
F(t)=P(X \leq t)=\int_{-\infty}^{t} f(x) d x
$$

Cumulative distribution function $F(t)$ of continuous variable is a nondecreasing continuous function and can be calculated as an area under density probability function $f(x)$ over an interval from - ∞ to t.

Numerical descriptors

Parameters of

Position

- Quantile (e.g. median, quartile)
. Mode
- Expected value (average)

Dispersion

- Variance (standard deviation)
- Range

Numerical descriptors

AGH

Quantile x_{q} represents a value of random variable for which the cumulative distribution function takes a value of q.

$$
F\left(x_{q}\right)=P\left(X \leq x_{q}\right)=\int_{-\infty}^{x_{q}} f(u) d u=q
$$

Median i.e. $\mathrm{x}_{0.5}$ is the most frequently used quantile.
In example 4.2 current $\mathrm{I}=10 \mathrm{~mA}$ is a median of distribution.

Example 4.4

For a discrete distribution : 19, 21, 21, 21, 22, 22, 23, 25, 26, 27 median is 22 (middle value or arithmetic average of two middle values)

Numerical descriptors

AGH

Mode represents the most frequently occurring value of random variable (x at which probability distribution attains a maximum)

Unimodal distribution has one mode (multimodal distributions more than one mode)

In example 4.4: $x_{k}=19,21,21,21,22,22,23,25,26,27$ mode equals to 21 (which appears 3 times, i.e., the most frequently)

Average value

Arithmetic average:

x_{i} - belongs to a set of n - elements

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

In example 4.4: $x_{i}=19,21,21,21,22,22,23,25,26,27$, the arithmetic average is 22.7

Arithmetic average

AGH

Many elements having the same value, we divide the set into classes containing n_{k} identical elements

Example 4.5

x_{k}	n_{k}	f_{k}
10.2	1	0.0357
12.3	4	0.1429
12.4	2	0.0714
13.4	8	0.2857
16.4	4	0.1429
17.5	3	0.1071
19.3	1	0.0357
21.4	2	0.0714
22.4	2	0.0714
25.2	1	0.0357
Sum	28	

$$
\bar{x}=\frac{\sum_{k=1}^{p} n_{k} x_{k}}{n}=\sum_{k=1}^{p} f_{k} x_{k}
$$

$$
\text { where: } f_{k}=\frac{n_{k}}{n}, p-n u m b e r \text { of classes }(p \leq n)
$$

Normalization condition $\quad \sum_{k} f_{k}=1$

$$
\begin{gathered}
\bar{x}=x_{1} \cdot f_{1}+x_{2} \cdot f_{2}+\ldots+x_{n} \cdot f_{n}= \\
=10.2 \cdot 0.04+12.3 \cdot 0.14+\ldots+25.2 \cdot 0.04 \\
\bar{x}=15.77
\end{gathered}
$$

AGH

Moments of distribution functions

Moment of the order k with respect to x_{0}

$$
\begin{aligned}
& m_{k}\left(x_{0}\right) \equiv \sum_{i}\left(x_{i}-x_{0}\right)^{k} p\left(x_{i}\right) \quad \text { for discrete variables } \\
& m_{k}\left(x_{0}\right) \equiv \int\left(x-x_{0}\right)^{k} f(x) d x \quad \text { for continuous variables }
\end{aligned}
$$

The most important are the moments calculated with respect to $x_{0}=0\left(m_{k}\right)$ and $X_{0}=m_{1}$ the first moment (m_{1} is called the expected value) - these are central moments μ_{k}.

Expected value

Symbols: $\quad m_{1}, E(X), \mu, \bar{x}, \hat{x}$

$$
E(X)=\sum_{i} x_{i} p_{i} \quad \text { for discrete variables }
$$

$$
E(X) \equiv \int x f(x) d x \quad \text { for continuous variables }
$$

Properties of $E(X)$

AGH

$E(X)$ is a linear operator, i.e.:
1.

$$
E\left(\sum_{i} C_{i} X_{i}\right)=\sum_{i} C_{i} E\left(X_{i}\right)
$$

In a consequence:

$$
\begin{aligned}
& \mathrm{E}(\mathrm{C})=\mathrm{C} \\
& \mathrm{E}(\mathrm{CX})=\mathrm{CE}(\mathrm{X}) \\
& \mathrm{E}\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right)=\mathrm{E}\left(\mathrm{X}_{1}\right)+\mathrm{E}\left(\mathrm{X}_{2}\right)
\end{aligned}
$$

2. For independent variables $X_{1}, X_{2}, \ldots X_{n}$

$$
E\left(\prod_{i} X_{i}\right)=\prod_{i} E\left(X_{i}\right)
$$

Variables are independent when:

$$
f\left(X_{1}, X_{2}, \ldots, X_{n}\right)=f_{1}\left(X_{1}\right) f_{2}\left(X_{2}\right) \cdot \ldots \cdot f_{n}\left(X_{n}\right)
$$

Properties of $\mathbf{E}(\mathbf{X})$

AGH

3. For a function of $X ; Y=Y(X)$ the expected value $E(Y)$ can be found on the basis of distribution of variable X without necessity of looking for distribution of $f(y)$

$$
\begin{array}{ll}
E(Y)=\sum_{i} y\left(x_{i}\right) p_{i} & \text { for discrete variables } \\
E(Y) \equiv \int y(x) f(x) d x & \text { for continuous variables }
\end{array}
$$

Any moment $\mathrm{m}_{k}\left(\mathrm{X}_{0}\right)$ can be treated as an expected value of a function $Y(X)=\left(X-x_{0}\right)^{k}$

$$
m_{k}\left(x_{0}\right) \equiv \int\left(x-x_{0}\right)^{k} f(x) d x=E\left(\left(x-x_{0}\right)^{k}\right)
$$

Variance

VARIANCE (dispersion) symbols: $\sigma^{2}(\mathrm{X}), \operatorname{var}(\mathrm{X}), \mathrm{V}(\mathrm{X}), \mathrm{D}(\mathrm{X})$. Standard deviation $\sigma(x)$

$$
\sigma^{2}(X) \equiv \sum_{i} p_{i}\left(x_{i}-E(X)\right)^{2} \quad \text { for discrete variables }
$$

$\sigma^{2}(X) \equiv \int f(x)\left(x-E(X)^{2} d x \quad\right.$ for continuous variables
Variance (or the standard deviation) is a measure of scatter of random variables around the expected value.

$$
\sigma^{2}(X)=E\left(X^{2}\right)-E^{2}(X)
$$

Properties of $\boldsymbol{\sigma}^{\mathbf{2}}(\mathbf{X})$

AGH

Variance can be calculated using expected values only:
1.

$$
\sigma^{2}(X)=E\left(X^{2}\right)-E^{2}(X)
$$

In a consequence we get:

$$
\begin{gathered}
\sigma^{2}(\mathrm{C})=0 \\
\sigma^{2}(\mathrm{CX})=\mathrm{C}^{2} \sigma^{2}(\mathrm{X}) \\
\sigma^{2}\left(\mathrm{C}_{1} \mathrm{X}+\mathrm{C}_{2}\right)=\mathrm{C}_{1}{ }^{2} \sigma^{2}(\mathrm{X})
\end{gathered}
$$

2. For independent variables $X_{1}, X_{2}, \ldots X_{n}$

$$
\sigma^{2}\left(\sum_{i} C_{i} X_{i}\right)=\sum_{i} C_{i}^{2} \sigma^{2}(X)
$$

UNIFORM DISTRIBUTION

AGH

$$
\begin{gathered}
f(x)=\frac{1}{b-a} \quad \mu=E X=\frac{a+b}{2} \quad \sigma^{2}=\frac{(b-a)^{2}}{12} \\
a \leq x \leq b
\end{gathered}
$$

Czebyszew inequality

AGH

Interpretation of variance results from Czebyszew theorem:

$$
P(|X-E(X)| \geq a . \sigma(X)) \leq \frac{1}{a^{2}}
$$

Theorem:

Probability of the random variable X to be shifted from the expected value $E(X)$ by a-times standard deviation is smaller or equal to $1 / a^{2}$

This theorem is valid for all distributions that have a variance and the expected value. Number a is any positive real value.

AGH

Variance as a measure of data scatter

Big scatter of data

Smaller scatter of data

Range as a measure of scatter

AGH

RANGE $=x_{\max }{ }^{-} x_{\text {min }}$

AGH

Practical ways of calculating

variance

Variance of n-element sample:

$$
\begin{aligned}
s^{2}= & \frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \quad s^{2}=\frac{1}{n-1}\left[\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}\right] \\
& \bar{x}-\text { average }
\end{aligned}
$$

Variance of N -element population :

$$
\begin{array}{r}
\sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2} \\
\mu-\text { expected value }
\end{array}
$$

Practical ways of calculating standard deviation

Standard deviation of sample (or: standard uncertainty):

$$
s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Standard deviation (population):

$$
\sigma=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}
$$

Examples of probability distributions - discrete variables

AGH
Two-point distribution (zero-one), e.g. coin toss, head = failure $x=0$, tail $=$ success $x=1, p$ - probability of success, its distribution:

x_{i}	0	1
p_{i}	$1-p$	p

Binomial (Bernoulli)

$$
p_{k}=\binom{n}{k} \cdot p^{k}(1-p)^{n-k}, k=0,1, \ldots, n
$$

where $0<p<1 ; X=\{0,1,2, \ldots k\} k-$ number of successes when n-times sampled with replacement

For $k=1$ two-point distribution

Binomial distribution assumptions

Random experiment consists of n Bernoulli trials:

1. Each trial is independent of others.
2. Each trial can have only two results: ,,success" and ,,failure" (binary!).
3. Probability of success \boldsymbol{p} is constant.

Probability p_{k} of an event that random variable X will be equal to the number of k-successes at n trials.

$$
p_{k}=\binom{n}{k} \cdot p^{k}(1-p)^{n-k}, k=0,1, \ldots, n
$$

Pascal's triangle

$$
\text { Symbol } \quad\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

$$
\begin{aligned}
& n=0 \quad\binom{0}{0}=1 \quad(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k} \\
& n=1 \quad\binom{1}{0}=1 \quad\binom{1}{1}=1 \\
& n=2 \\
& \binom{2}{0}=1 \\
& \binom{2}{1}=2 \quad\binom{2}{2}=1
\end{aligned}
$$

Pascal's triangle

AGH

Bernoulli distribution

Example 4.6

Probability that in a company the daily use of water will not exceed a certain level is $p=3 / 4$. We monitor a use of water for 6 days.
Calculate a probability the daily use of water will not exceed the set-up limit in $0,1,2, \ldots, 6$ consecutive days, respectively.

Data:

$$
p=\frac{3}{4} \quad q=\frac{1}{4} \quad N=6 \quad k=0,1, \ldots, 6
$$

Bernoulli distribution

$$
\begin{array}{ll}
k=0 & P(k=0)=\binom{6}{0} \cdot\left(\frac{3}{4}\right)^{0} \cdot\left(\frac{1}{4}\right)^{6} \\
k=1 & P(k=1)=\binom{6}{1} \cdot\left(\frac{3}{4}\right)^{1} \cdot\left(\frac{1}{4}\right)^{5} \\
k=2 & P(k=2)=\binom{6}{2} \cdot\left(\frac{3}{4}\right)^{2} \cdot\left(\frac{1}{4}\right)^{4} \\
k=3 & P(k=3)=\binom{6}{3} \cdot\left(\frac{3}{4}\right)^{3} \cdot\left(\frac{1}{4}\right)^{3} \\
k=4 & P(k=5)=\binom{6}{5} \cdot\left(\frac{3}{4}\right)^{5} \cdot\left(\frac{1}{4}\right)^{1} \\
k=5 & P(k=6)=\binom{6}{6} \cdot\left(\frac{3}{4}\right)^{6} \cdot\left(\frac{1}{4}\right)^{0}
\end{array}
$$

AGH

$$
\begin{array}{ll}
k=0 & P(0)=1 \cdot 1 \cdot \frac{1}{4^{6}} \cong 0.00024 \\
k=1 & P(1)=6 \cdot \frac{3}{4} \cdot \frac{1}{4^{5}}=\frac{6 \cdot 3}{4^{6}}=18 \cdot P(0) \cong 0.004 \\
k=2 & P(2)=15 \cdot\left(\frac{3}{4}\right)^{2} \cdot \frac{1}{4^{4}}=\frac{15 \cdot 9}{4^{6}}=135 \cdot P(0) \cong 0.033 \\
k=3 & P(3)=20 \cdot\left(\frac{3}{4}\right)^{3} \cdot \frac{1}{4^{3}}=\frac{20 \cdot 9 \cdot 3}{4^{6}}=540 \cdot P(0) \cong 0.132 \\
k=4 & P(4)=15 \cdot\left(\frac{3}{4}\right)^{4} \cdot \frac{1}{4^{2}}=\frac{15 \cdot 9 \cdot 9}{4^{6}}=1215 \cdot P(0) \cong 0.297 \\
k=5 & P(5)=6 \cdot\left(\frac{3}{4}\right)^{5} \cdot \frac{1}{4^{1}}=\frac{6 \cdot 9 \cdot 9 \cdot 3}{4^{6}}=1458 \cdot P(0) \cong 0.356 \\
k=6 & P(6)=1 \cdot\left(\frac{3}{4}\right)^{6} \cdot \frac{1}{4^{0}}=\frac{9 \cdot 9 \cdot 9}{4^{6}}=729 \cdot P(0) \cong 0.178
\end{array}
$$

Bernoulli distribution

AGH

Maximum for $\mathrm{k}=5$

Bernoulli distribution

AGH

Expected value

$$
E(X)=\mu=n p
$$

Variance

$$
V(X)=\sigma^{2}=n p(1-p)
$$

Errors in transmission

AGH

Example 4.7

Digital channel of information transfer is prone to errors in single bits. Assume that the probability of single bit error is $\mathrm{p}=0.1$

Consecutive errors in transmissions are independent. Let X denote the random variable, of values equal to the number of bits in error, in a sequence of 4 bits.

E - bit error, O - no error
OEOE corresponds to $X=2$; for EEOO $-X=2$ (order does not matter)

Errors in transmission

AGH

Example 4.7 cd

For $\mathrm{X}=2$ we get the following results:
\{EEOO, EOEO, EOOE, OEEO, OEOE, OOEE\}

What is a probability of $P(X=2)$, i.e., two bits will be sent with error?

Events are independent, thus
$P(E E O O)=P(E) P(E) P(O) P(O)=(0.1)^{2}(0.9)^{2}=0.0081$
Events are mutually exhaustive and have the same probability, hence
$P(X=2)=6 P(E E O O)=6(0.1)^{2}(0.9)^{2}=6(0.0081)=0.0486$

Errors in transmission

Example 4.7 continued

$$
\binom{4}{2}=\frac{4!}{(2)!2!}=6
$$

Therefore, $\mathrm{P}(\mathrm{X}=2)=6(0.1)^{2}(0.9)^{2}$ is given by Bernoulli distribution

$$
P(X=x)=\binom{4}{x} \cdot p^{x}(1-p)^{4-x}, x=0,1,2,3,4, p=0.1
$$

$$
\begin{aligned}
& P(X=0)=0,6561 \\
& P(X=1)=0,2916 \\
& P(X=2)=0,0486 \\
& P(X=3)=0,0036 \\
& P(X=4)=0,0001
\end{aligned}
$$

Poisson's distribution

We introduce a parameter $\lambda=p n(E(X)=\lambda)$

$$
P(X=x)=\binom{n}{x} \cdot p^{x}(1-p)^{n-x}=\binom{n}{x}\left(\frac{\lambda}{n}\right)^{x}\left(1-\frac{\lambda}{n}\right)^{n-x}
$$

Let us assume that n increases while p decreases, but $\lambda=\mathrm{pn}$ remains constant. Bernoulli distribution changes to Poisson's distribution.

$$
\lim _{n \rightarrow \infty} P(X=x)=\lim _{n \rightarrow \infty}\binom{n}{x}\left(\frac{\lambda}{n}\right)^{x}\left(1-\frac{\lambda}{n}\right)^{n-x}=\frac{e^{-\lambda} \lambda^{x}}{x!}
$$

Poisson's distribution

It is one of the rare cases where expected value equals to variance:

$$
E(X)=n p=\lambda
$$

Why?

$$
V(X)=\sigma^{2}=\lim _{n \rightarrow \infty, p \rightarrow 0}\left(n p-n p^{2}\right)=n p=\lambda
$$

AGH

Poisson's distribution

(x - integer, infinite; $x \geq 0$) For big n Bernoulli distribution resembles Poisson's distribution

Normal distribution (Gaussian)

AGH

The most widely used model for the distribution of random variable is a normal distribution.
Central limit theorem formulated in 1733 by De Moivre
Whenever a random experiment is replicated, the random variable that equals the average (or total) result over the replicas tends to have a normal distribution as the number of replicas becomes large.

Normal distribution (Gaussian)

AGH
A random variable X with probability density function $f(x)$:

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{\left(x-\mu^{2}\right.}{2 \sigma^{2}}\right], \text { where }-\infty<x<+\infty
$$

is a normal random variable with two parameters:

$$
-\infty<\mu<+\infty, \quad \sigma>1
$$

We can show that $E(X)=\mu$ and $V(X)=\sigma^{2}$

Notation $N(\mu, \sigma)$ is used to denote this distribution

Normal distribution (Gaussian)

AGH

Expected value, maximum of density probability (mode) and median overlap ($x=\mu$). Symmetric curve (Gaussian curve is bell shaped).

Variance is a measure of the width of distribution. At $x=+\sigma$ and $x=-\sigma$ there are the inflection points of $\mathrm{N}(0, \sigma)$.

Normal distribution (Gaussian)

AGH

Is used in experimental physics and describes distribution of random errors. Standard deviation σ is a measure of random uncertainty. Measurements with larger σ correspond to bigger scatter of data around the average value and thus have less precision.

Standard normal distribution

AGH

A normal random variable Z with probability density $N(z)$:

$$
N(z)=\frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{z^{2}}{2}\right] \text {, where }-\infty<z<+\infty
$$

is called a standard normal random variable

$$
\mathrm{N}(0,1) \quad E(Z)=0, \quad V(Z)=1
$$

Definition of standard normal variable

$$
Z=\frac{X-\mu}{\sigma}
$$

Standard normal distribution

AGH

Advantages of standardization:

- Tables of values of probability density and CDF can be constructed for $N(0,1)$. A new variable of the $N(\mu, \sigma)$ distribution can be created by a simple transformation $\mathrm{X}=\sigma^{*} \mathrm{Z}+\mu$
- By standardization we shift all original random variables to the region close to zero and we rescale the x-axis. The unit changes to standard deviation. Therefore, we can compare different distribution.

Calculations of probability (Gaussian distribution)

AGH

$$
\begin{aligned}
& \mathrm{P}(\mu-\sigma<X<\mu+\sigma)=0,6827 \text { (about } 2 / 3 \text { of results) } \\
& \mathrm{P}(\mu-2 \sigma<X<\mu+2 \sigma)=0,9545 \\
& \mathrm{P}(\mu-2 \sigma<X<\mu+2 \sigma)=0,9973 \text { (almost all) }
\end{aligned}
$$

