

1

Introduction to Iterators in C++

An iterator is an object (like a pointer) that points to an element inside the container.
We can use iterators to move through the contents of the container. They can be
visualised as something similar to a pointer pointing to some location and we can
access content at that particular location using them.
Iterators play a critical role in connecting algorithm with containers along with the
manipulation of data stored inside the containers. The most obvious form of iterator is a
pointer. A pointer can point to elements in an array, and can iterate through them using
the increment operator (++). But, all iterators do not have similar functionality as that of
pointers.

Depending upon the functionality of iterators they can be classified into five categories,
as shown in the diagram below with the outer one being the most powerful one and
consequently the inner one is the least powerful in terms of functionality.

Now each one of these iterators are not supported by all the containers in STL, different

containers support different iterators, like vectors support Random-access iterators, while lists

support bidirectional iterators. The whole list is as given below:

https://www.geeksforgeeks.org/random-access-iterators-in-cpp/
https://www.geeksforgeeks.org/bidirectional-iterators-in-cpp/

2

Types of iterators: Based upon the functionality of the iterators, they can be classified
into five major categories:

1. Input Iterators: They are the weakest of all the iterators and have very limited
functionality. They can only be used in a single-pass algorithms, i.e., those algorithms
which process the container sequentially such that no element is accessed more than
once.

2. Output Iterators: Just like input iterators, they are also very limited in their functionality
and can only be used in single-pass algorithm, but not for accessing elements, but for
being assigned elements.

3. Forward Iterator: They are higher in hierarachy than input and output iterators, and
contain all the features present in these two iterators. But, as the name suggests, they
also can only move in forward direction and that too one step at a time.

https://www.geeksforgeeks.org/input-iterators-in-cpp/
https://www.geeksforgeeks.org/output-iterators-cpp/
https://www.geeksforgeeks.org/input-iterators-in-cpp/
https://www.geeksforgeeks.org/forward-iterators-in-cpp/
https://www.geeksforgeeks.org/input-iterators-in-cpp/
https://www.geeksforgeeks.org/output-iterators-cpp/

3

4. Bidirectional Iterators: They have all the features of forward iterators along with the fact
that they overcome the drawback of forward iterators, as they can move in both the
directions, that is why their name is bidirectional.

5. Random-Access Iterators: They are the most powerful iterators. They are not limited to
moving sequentially, as their name suggests, they can randomly access any element

inside the container. They are the ones whose functionality is same as pointers.

The following diagram shows the difference in their functionality with respect to various
operations that they can perform.

Benefits of Iterators
There are certainly quite a few ways which show that iterators are extremely useful to
us and encourage us to use it profoundly. Some of the benefits of using iterators are as
listed below:

1. Convenience in programming: It is better to use iterators to iterate through the
contents of containers, as if we will not use an iterator and access elements using [
] operator, then we need to be always vary of the size of the container, whereas
with iterators we can simply use member function end() and iterate through the
contents without having to keep anything in mind.

// C++ program to demonstrate iterators

#include <iostream>
#include <vector>

https://www.geeksforgeeks.org/bidirectional-iterators-in-cpp/
https://www.geeksforgeeks.org/forward-iterators-in-cpp/
https://www.geeksforgeeks.org/forward-iterators-in-cpp/
https://www.geeksforgeeks.org/random-access-iterators-in-cpp/

4

using namespace std;
int main()
{
 // Declaring a vector
 vector<int> v = { 1, 2, 3 };

 // Declaring an iterator
 vector<int>::iterator i;

 int j;

 cout << "Without iterators = ";

 // Accessing the elements without using iterators
 for (j = 0; j < 3; ++j)
 {
 cout << v[j] << " ";
 }

 cout << "\nWith iterators = ";

 // Accessing the elements using iterators
 for (i = v.begin(); i != v.end(); ++i)
 {
 cout << *i << " ";
 }

 // Adding one more element to vector
 v.push_back(4);

 cout << "\nWithout iterators = ";

 // Accessing the elements without using iterators
 for (j = 0; j < 4; ++j)
 {
 cout << v[j] << " ";
 }

 cout << "\nWith iterators = ";

 // Accessing the elements using iterators
 for (i = v.begin(); i != v.end(); ++i)
 {
 cout << *i << " ";
 }

5

 return 0;
}
Output:

Without iterators = 1 2 3

With iterators = 1 2 3

Without iterators = 1 2 3 4

With iterators = 1 2 3 4

Explanation: As can be seen in the above code that without using iterators we need
to keep track of the total elements in the container. In the beginning there were only
three elements, but after one more element was inserted into it, accordingly the for
loop also had to be amended, but using iterators, both the time the for loop remained
the same. So, iterator eased our task.

2. Code reusability: Now consider if we make v a list in place of vector in the above
program and if we were not using iterators to access the elements and only using []
operator, then in that case this way of accessing was of no use for list (as they donot
support random-access iterators).

However, if we were using iterators for vectors to access the elements, then just changing the

vector to list in the declaration of the iterator would have served the purpose, without doing

anything else

So, iterators support reusability of code, as they can be used to access elements of any

container.

3. Dynamic processing of container: Iterators provide us the ability to dynamically add or

remove elements from the container as and when we want with ease.

// C++ program to demonstrate iterators

#include <iostream>

#include <vector>

using namespace std;

int main()

{

 // Declaring a vector

 vector<int> v = { 1, 2, 3 };

 // Declaring an iterator

 vector<int>::iterator i;

 int j;

 // Inserting element using iterators

 for (i = v.begin(); i != v.end(); ++i) {

 if (i == v.begin()) {

https://www.geeksforgeeks.org/random-access-iterators-in-cpp/

6

 i = v.insert(i, 5);

 // inserting 5 at the beginning of v

 }

 }

 // v contains 5 1 2 3

 // Deleting a element using iterators

 for (i = v.begin(); i != v.end(); ++i) {

 if (i == v.begin() + 1) {

 i = v.erase(i);

 // i now points to the element after the

 // deleted element

 }

 }

 // v contains 5 2 3

 // Accessing the elements using iterators

 for (i = v.begin(); i != v.end(); ++i) {

 cout << *i << " ";

 }

 return 0;

}

Output:

5 2 3

Explanation: As seen in the above code, we can easily and dynamically add and
remove elements from the container using iterator, however doing the same without
using them would have been very tedious as it would require shifting the elements every
time before insertion and after deletion.

Input Iterators in C++

After going through the template definition of various STL algorithms
like std::find, std::equal, std::count, you must have found their template definition
consisting of objects of type Input Iterator. So what are they and why are they used ?

Input iterators are one of the five main types of iterators present in C++ Standard
Library, others being Output iterators, Forward iterator, Bidirectional
iterator and Random – access iterators.

https://www.geeksforgeeks.org/stdfind-in-c/
https://www.geeksforgeeks.org/stdequal-in-cpp/
https://www.geeksforgeeks.org/std-count-cpp-stl/
https://www.geeksforgeeks.org/output-iterators-c/
https://www.geeksforgeeks.org/forward-iterators-in-cpp/
https://www.geeksforgeeks.org/bidirectional-iterators-in-cpp/
https://www.geeksforgeeks.org/bidirectional-iterators-in-cpp/
https://www.geeksforgeeks.org/random-access-iterators-in-cpp/

7

Input iterators are considered to be the weakest as well as the simplest among all the
iterators available, based upon their functionality and what can be achieved using them.
They are the iterators that can be used in sequential input operations, where each value
pointed by the iterator is read only once and then the iterator is incremented.

One important thing to be kept in mind is that forward, bidirectional and random-

access iterators are also valid input iterators, as shown in the iterator hierarchy above.

1. Usability: Input iterators can be used only with single-pass algorithms, i.e.,
algorithms in which we can go to all the locations in the range at most once, like
when we have to search or find any element in the range, we go through the
locations at most once.

2. Equality / Inequality Comparison: An input iterator can be compared for equality
with another iterator. Since, iterators point to some location, so the two iterators will
be equal only when they point to the same position, otherwise not.
So, the following two expressions are valid if A and B are input iterators:

A == B // Checking for equality

A != B // Checking for inequality

3. Dereferencing: An input iterator can be dereferenced, using the operator * and ->
as an rvalue to obtain the value stored at the position being pointed to by the
iterator.
So, the following two expressions are valid if A is an input iterator:

*A // Dereferencing using *

8

A -> m // Accessing a member element m

4. Incremental: An input iterator can be incremented, so that it refers to the next

element in sequence, using operator ++().
Note: The fact that we can use input iterators with increment operator doesn’t
mean that operator – -() can also be used with them. Remember, that input
iterators are unidirectional and can only move in the forward direction.
So, the following two expressions are valid if A is an input iterator:

A++ // Using post increment operator

++A // Using pre increment operator

5. Swappable: The value pointed to by these iterators can be exchanged or
swapped.

std::find: As we know this algorithm is used to find the presence of an element inside a

container. So, let us look at its internal working std::copy: As the name suggests, this

algorithm is used to copy a range into another range. Now, as far as accessing

elements are concerned, input iterators are fine, but as soon as we have to assign

elements in another container, then we cannot use these input iterators for this

purpose.

// Definition of std::copy()

template
OutputIterator copy(InputIterator first, InputIterator last,
 OutputIterator result)
{
 while (first != last)
 *result++ = *first++;
 return result;
}

// Definition of std::find()

template
InputIterator find (InputIterator first, InputIterator last,
 const T& val)
{
 while (first!=last)
 {
 if (*first==val) return first;
 ++first;
 }
 return last;
}

Output Iterators in C++

Output iterators are considered to be the exact opposite of input iterators, as they perform the

opposite function of input iterators. They can be assigned values in a sequence, but cannot be

9

used to access values, unlike input iterators which do the reverse of accessing values and

cannot be assigned values. So, we can say that input and output iterators are complementary to

each other.

1. Usability: Just like input iterators, Output iterators can be used only with single-
pass algorithms, i.e., algorithms in which we can go to all the locations in the
range at most once, such that these locations can be dereferenced or assigned
value only once.

2. Equality / Inequality Comparison: Unlike input iterators, output iterators cannot
be compared for equality with another iterator.
So, the following two expressions are invalid if A and B are output iterators:

A == B // Invalid - Checking for equality

A != B // Invalid - Checking for inequality

3. Dereferencing: An input iterator can be dereferenced as an rvalue, using operator
* and ->, whereas an output iterator can be dereferenced as an lvalue to
provide the location to store the value.
So, the following two expressions are valid if A is an output iterator:

*A = 1 // Dereferencing using *

A -> m = 7 // Assigning a member element m

4. Incrementable: An output iterator can be incremented, so that it refers to the
next element in sequence, using operator ++().

So, the following two expressions are valid if A is an output iterator:

A++ // Using post increment operator

++A // Using pre increment operator

5. Swappable: The value pointed to by these iterators can be exchanged or
swapped.

std::move: As the name suggests, this algorithm is used to move elements in a
range into another range. Now, as far as accessing elements are concerned, input
iterators are fine, but as soon as we have to assign elements in another
container, then we cannot use these input iterators for this purpose, that is why
here using output iterators becomes a compulsion.

// Definition of std::move()
template
OutputIterator move (InputIterator first, InputIterator last,
 OutputIterator result)
{
 while (first!=last)
 {
 *result = std::move(*first);
 ++result;

10

 ++first;
 }
 return result;
}

Forward Iterators in C++

Forward iterators are considered to be the combination of input as well as output iterators. It

provides support to the functionality of both of them. It permits values to be both accessed and

modified.

std::replace: As we know this algorithm is used to replace all the elements in the range
which are equal to a particular value by a new value. So, let us look at its internal
working (Don’t go into detail just look where forward iterators can be used and where
they cannot be):

// Definition of std::replace()
template void replace(ForwardIterator first, ForwardIterator last,
 const T& old_value, const T& new_value)
{
 while (first != last) {
 if (*first == old_value) // L1
 *first = new_value; // L2
 ++first;
 }
}

Bidirectional Iterators in C++

Bidirectional iterators are iterators that can be used to access the sequence of elements in a

range in both directions (towards the end and towards the beginning). They are similar to

forward iterators, except that they can move in the backward direction also, unlike the forward

iterators, which can move only in the forward direction.

std::reverse_copy: As the name suggests, this algorithm is used to copy a range into
another range, but in reverse order. Now, as far as accessing elements and assigning
elements are concerned, forward iterators are fine, but as soon as we have to
decrement the iterator, then we cannot use these forward iterators for this purpose,
and that’s where bidirectional iterators come for our rescue.

// Definition of std::reverse_copy()

template
OutputIterator reverse_copy(BidirectionalIterator first,
 BidirectionalIterator last,

11

 OutputIterator result)
{
 while (first != last)
 *result++ = *--last;
 return result;
}

Here, we can see that we have declared last as a bidirectional iterator, as we cannot
decrement a forward iterator as done in case of last, so we cannot use it in this
scenario, and we have to declare it as a bidirectional iterator only.

Random-access Iterators in C++

Random-access iterators are iterators that can be used to access elements at an
arbitrary offset position relative to the element they point to, offering the same
functionality as pointers. Random-access iterators are the most complete iterators in
terms of functionality. All pointer types are also valid random-access iterators.

1. Usability: Random-access iterators can be used in multi-pass
algorithms, i.e., algorithm which involves processing the container
several times in various passes.

2. Equality / Inequality Comparison: A Random-access iterator can be
compared for equality with another iterator. Since, iterators point to some
location, so the two iterators will be equal only when they point to the
same position, otherwise not.
So, the following two expressions are valid if A and B are Random-access
iterators:

A == B // Checking for equality

A != B // Checking for inequality

3. Dereferencing: A random-access iterator can be dereferenced both as
a rvalue as well as a lvalue.

// C++ program to demonstrate Random-access iterator
#include<iostream>
#include<vector>
using namespace std;
int main()
{
 vector<int>v1 = {10, 20, 30, 40, 50};

 // Declaring an iterator
 vector<int>::iterator i1;

 for (i1=v1.begin();i1!=v1.end();++i1)
 {
 // Assigning values to locations pointed by iterator

12

 *i1 = 7;
 }

 for (i1=v1.begin();i1!=v1.end();++i1)
 {
 // Accessing values at locations pointed by iterator
 cout << (*i1) << " ";
 }

 return 0;
}

Output:

7 7 7 7 7

So, as we can see here we can both access as well as assign value to the
iterator, therefore the iterator is a random-access iterator.

4. Incrementable: A Random-access iterator can be incremented, so that
it refers to the next element in sequence, using operator ++(), as seen in
the previous code, where i1 was incremented in the for loop.

So, the following two expressions are valid if A is a random-access
iterator:

A++ // Using post increment operator

++A // Using pre increment operator

5. Decrementable: Just like we can use operator ++() with Random-access
iterators for incrementing them, we can also decrement them.

// C++ program to demonstrate Random-access iterator
#include<iostream>
#include<vector>
using namespace std;
int main()
{
 vector<int>v1 = {1, 2, 3, 4, 5};

 // Declaring an iterator
 vector<int>::iterator i1;

 // Accessing the elements from end using decrement
 // operator
 for (i1=v1.end()-1;i1!=v1.begin()-1;--i1)
 {

 cout << (*i1) << " ";

13

 }
 return 0;
}

Output:

5 4 3 2 1

Since, we are starting from the end of the vector and then moving towards the
beginning by decrementing the pointer, which shows that decrement operator
can be used with such iterators.

6. Relational Operators: Although, Bidirectional iterators cannot be used
with relational operators like , =,but random-access iterators being
higher in hierarchy support all these relational operators.

If A and B are Random-access iterators, then

A == B // Allowed

A <= B // Allowed

7. Arithmetic Operators: Similar to relational operators, they also can be
used with arithmetic operators like +, – and so on. This means that
Random-access iterators can move in both the direction, and that too
randomly.

If A and B are Random-access iterators, then

A + 1 // Allowed

B - 2 // Allowed

// C++ program to demonstrate Random-access iterator
#include<iostream>
#include<vector>
using namespace std;
int main()
{
 vector<int>v1 = {1, 2, 3, 4, 5};

 // Declaring first iterator
 vector<int>::iterator i1;

 // Declaring second iterator
 vector<int>::iterator i2;

 // i1 points to the beginning of the list
 i1 = v1.begin();

14

 // i2 points to the end of the list
 i2 = v1.end();

 // Applying relational operator to them
 if (i1 < i2)
 {
 cout << "Yes";
 }

 // Applying arithmetic operator to them
 int count = i2 - i1;

 cout << "\ncount = " << count;
 return 0;
}

Output:

Yes

count = 5

Here, since i1 is pointing to beginning and i2 is pointing to end , so i2 will be
greater than i1 and also difference between them will be the total distance
between them.

8. Use of offset dereference operator ([]): Random-access iterators
support offset dereference operator ([]), which is used for random-
access.

If A is a Random-access iterator, then

A[3] // Allowed

// C++ program to demonstrate Random-access iterator
#include<iostream>
#include<vector>
using namespace std;
int main()
{
 vector<int>v1 = {1, 2, 3, 4, 5};
 int i;

 // Accessing elements using offset dereference
 // operator []
 for(i=0;i<5;++i)
 {
 cout << v1[i] << " ";
 }

15

 return 0;
}

Output

1 2 3 4 5

9. Swappable: The value pointed to by these iterators can be exchanged or

swapped.

std::random_shuffle: As we know this algorithm is used to randomly shuffle
all the elements present in a container. So, let us look at its internal working
(Donot go into detail just look where random-access iterators can be used):

// Definition of std::random_shuffle()

template
void random_shuffle(RandomAccessIterator first,
 RandomAccessIterator last,
 RandomNumberGenerator& gen)
{
 iterator_traits::difference_type i, n;
 n = (last - first);
 for (i=n-1; i>0; --i)
 {
 swap (first[i],first[gen(i+1)]);
 }
}

