Spectral Analysis

Spectral analysis is a means of investigating signal's spectral content.
It is used in: optics, speech, sonar, radar, medicine, seizmology, chemistry, radioastronomy, etc.

There are

- nonparametric (classic) and
- parametric (modern)
methods.

Spectral Analysis (cont.)

Power Spectral Density (PSD) of Random Signals

Let $\{x(n)\}$ be a wide-sense stationary random signal:

$$
\mathrm{E}\{x(n)\}=0, \quad r(k)=\mathrm{E}\left\{x(n) x^{*}(n-k)\right\}
$$

First definition of PSD:

$$
\begin{aligned}
P\left(e^{j \omega}\right) & =\sum_{k=-\infty}^{\infty} r(k) e^{-j \omega k} \\
r(k) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} P\left(e^{j \omega}\right) e^{j \omega k} d \omega
\end{aligned}
$$

Second definition of PSD:

$$
P\left(e^{j \omega}\right)=\lim _{N \rightarrow \infty} \mathrm{E}\left\{\frac{1}{N}\left|\sum_{n=0}^{N-1} x(n) e^{-j \omega n}\right|^{2}\right\}
$$

Power averaged over frequency:

$$
r(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} P\left(e^{j \omega}\right) d \omega
$$

Remark: Since $r(k)$ is discrete, $P\left(e^{j \omega}\right)$ is periodic, with period $2 \pi(\omega)$ or $1(f)$.

Power Spectral Density of Random Signals (cont.)

Result (without proof): First and second definitions of PSD are equivalent if

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=-N+1}^{N-1}|k \| r(k)|=0
$$

and also if

$$
\sum_{k=-\infty}^{\infty}|r(k)|<\infty
$$

That is, $r(k)$ must decay sufficiently fast!

Nonparametric Methods: Periodogram and Correlogram Periodogram (from the second definition of PSD):

$$
\widehat{P}_{P}\left(e^{j \omega}\right)=\frac{1}{N}\left|\sum_{n=0}^{N-1} x(n) e^{-j \omega n}\right|^{2}
$$

Correlogram (from the first definition of PSD):

$$
\widehat{P}_{C}\left(e^{j \omega}\right)=\sum_{k=-N+1}^{N-1} \widehat{r}(k) e^{-j \omega k}
$$

where we can use either unbiased or biased estimates of $r(k)$: Unbiased estimate:

$$
\widehat{r}(k)= \begin{cases}\frac{1}{N-k} \sum_{i=k}^{N-1} x(i) x^{*}(i-k), & k \geq 0 \\ \hat{r}^{*}(-k), & k<0\end{cases}
$$

Biased estimate:

$$
\widehat{r}(k)= \begin{cases}\frac{1}{N} \sum_{i=k}^{N-1} x(i) x^{*}(i-k), & k \geq 0 \\ \widehat{r}^{*}(-k), & k<0\end{cases}
$$

The biased estimate is more reliable than the unbiased one, because it assigns lower weights to the poorer estimates of long correlation lags.

Correlogram

The biased estimate is asymptotically unbiased:

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \mathrm{E}\{\widehat{r}(k)\} & =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=k}^{N-1} \mathrm{E}\left\{x(i) x^{*}(i-k)\right\} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=k}^{N-1} r(k) \\
& =\lim _{N \rightarrow \infty} \frac{N-k}{N} r(k)=r(k) .
\end{aligned}
$$

Proposition. Correlogram computed through the biased estimate of $r(k)$ coincides with periodogram.

Proof. Consider the auxiliary signal

$$
y(m)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} x(k) \epsilon(m-k)
$$

where $\{x(k)\}$ are considered to be fixed constants and $\{\epsilon(k)\}$ is a unitvariance white noise:

$$
r_{\epsilon}(m-l)=\mathrm{E}\left\{\epsilon(m) \epsilon^{*}(l)\right\}=\delta(m-l)
$$

$y(m)$ can be viewed as the output of the filter with transfer function

$$
X\left(e^{j \omega}\right)=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} x(k) e^{-j \omega k}
$$

Relationship between filter input and output PSD's:

$$
\begin{aligned}
P_{y}\left(e^{j \omega}\right) & =\left|X\left(e^{j \omega}\right)\right|^{2} P_{\epsilon}\left(e^{j \omega}\right)=\left|X\left(e^{j \omega}\right)\right|^{2} \sum_{k=-\infty}^{\infty} r_{\epsilon}(k) e^{-j \omega k} \\
& =\left|X\left(e^{j \omega}\right)\right|^{2} \sum_{k=-\infty}^{\infty} \delta(k) e^{-j \omega k}=\left|X\left(e^{j \omega}\right)\right|^{2} \\
& =\frac{1}{N}\left|\sum_{n=0}^{N-1} x(n) e^{-j \omega n}\right|^{2}=\widehat{P}_{P}\left(e^{j \omega}\right) .
\end{aligned}
$$

Now, we need to prove that $P_{y}\left(e^{j \omega}\right)=\widehat{P}_{C}\left(e^{j \omega}\right)$.

Observe that

$$
\begin{aligned}
& r_{y}(k)=\mathrm{E}\left\{y(m) y^{*}(m-k)\right\} \\
& =\frac{1}{N} \mathrm{E}\left\{\left[\sum_{p=0}^{N-1} x(p) \epsilon(m-p)\right]\left[\sum_{s=0}^{N-1} x^{*}(s) \epsilon^{*}(m-k-s)\right]\right\} \\
& =\frac{1}{N} \sum_{p=0}^{N-1} \sum_{s=0}^{N-1} x(p) x^{*}(s) \mathrm{E}\left\{\epsilon(m-p) \epsilon^{*}(m-k-s)\right\} \\
& =\frac{1}{N} \sum_{p=0}^{N-1} \sum_{s=0}^{N-1} x(p) x^{*}(s) \delta(p-k-s) \\
& =\frac{1}{N} \sum_{p=k}^{N-1} x(p) x^{*}(p-k)= \begin{cases}\widehat{r}_{x}(k), & 0 \leq k \leq N-1, \\
0, & k \geq N .\end{cases}
\end{aligned}
$$

Inserting the last result in the first definition of PSD, we obtain

$$
\begin{aligned}
P_{y}\left(e^{j \omega}\right) & =\sum_{k=-\infty}^{\infty} r_{y}(k) e^{-j \omega k} \\
& =\sum_{k=-N+1}^{N-1} \widehat{r}_{x}(k) e^{-j \omega k}=\widehat{P}_{C}\left(e^{j \omega}\right)
\end{aligned}
$$

Matlab Example

$$
x(n)=A \exp \left(j 2 \pi f_{s} n+\phi\right)+\epsilon(n)
$$

where

- $f_{s}=0.3$ - discrete-time signal frequency
- ϵ - zero-mean unit-variance complex Gaussian noise
- ϕ - random phase uniformly distributed in $[0,2 \pi]$.

Periodogram: $A=1, N=100$

Periodogram: $A=1, N=1000$

Periodogram: $A=1, N=10000$

Periodogram: $A=0.1, N=100$

Periodogram: $A=0.1, N=1000$

Periodogram: $A=0.1, N=10000$

Statistical Analysis of Periodogram

First, consider periodogram's bias:

$$
\mathrm{E}\left\{\widehat{P}_{P}\left(e^{j \omega}\right)\right\}=\mathrm{E}\left\{\widehat{P}_{C}\left(e^{j \omega}\right)\right\}=\sum_{k=-N+1}^{N-1} \mathrm{E}\{\widehat{r}(k)\} e^{-j \omega k}
$$

For the biased $\widehat{r}(k)$, we obtain

$$
\mathrm{E}\{\widehat{r}(k)\}=\left(1-\frac{k}{N}\right) r(k), \quad k \geq 0
$$

and

$$
\mathrm{E}\{\widehat{r}(k)\}=\mathrm{E}\left\{\widehat{r}^{*}(-k)\right\}=\left(1+\frac{k}{N}\right) r(k), \quad k<0 .
$$

Hence

$$
\begin{aligned}
\mathrm{E}\left\{\widehat{P}_{P}\left(e^{j \omega}\right)\right\} & =\sum_{k=-N+1}^{N-1} \mathrm{E}\{\widehat{r}(k)\} e^{-j \omega k} \\
& =\sum_{k=-N+1}^{N-1}\left(1-\frac{|k|}{N}\right) r(k) e^{-j \omega k} \\
& =\sum_{k=-\infty}^{\infty} w_{\mathrm{B}}(k) r(k) e^{-j \omega k}
\end{aligned}
$$

where $w_{\mathrm{B}}(k)$ is a Bartlett (triangular) window:

$$
w_{\mathrm{B}}(k)= \begin{cases}1-\frac{|k|}{N}, & -N+1 \leq k \leq N-1, \\ 0, & \text { otherwise. }\end{cases}
$$

Statistical Analysis of Periodogram (cont.)

The last equations mean

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \mathrm{E}\left\{\widehat{P}_{P}\left(e^{j \omega}\right)\right\} & =\lim _{N \rightarrow \infty} \sum_{k=-N+1}^{N-1} \mathrm{E}\{\widehat{r}(k)\} e^{-j \omega k} \\
& =\sum_{k=-\infty}^{\infty} r(k) e^{-j \omega k}=P\left(e^{j \omega}\right) \Longrightarrow
\end{aligned}
$$

periodogram is asymptotically unbiased estimator of PSD. For finite N, notice that

$$
\mathrm{E}\left\{\widehat{P}_{P}\left(e^{j \omega}\right)\right\}=\operatorname{DTFT}\left\{w_{\mathrm{B}}(k) r(k)\right\} \quad \Longrightarrow
$$

and, hence

$$
\mathrm{E}\left\{\widehat{P}_{P}\left(e^{j \omega}\right)\right\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} P\left(e^{j \nu}\right) W_{\mathrm{B}}\left(e^{j \omega-\nu}\right) d \nu
$$

$$
\begin{gathered}
P\left(e^{j \omega}\right)=\operatorname{DTFT}\{r(k)\}, \quad W_{\mathrm{B}}\left(e^{j \omega}\right)=\operatorname{DTFT}\left\{w_{\mathrm{B}}(k)\right\} . \\
W_{\mathrm{B}}\left(e^{j \omega}\right)=\frac{1}{N}\left[\frac{\sin (\omega N / 2)}{\sin (\omega / 2)}\right]^{2}
\end{gathered}
$$

Statistical Analysis of Periodogram (cont.)

Remarks:

- Frequency resolution of periodogram is approximately equal to $1 / N$, because the -3 dB mainlobe width W_{B} in frequency f is $\approx 1 / N$.
- The mainlobe smears or smoothes the estimated spectrum,
- Sidelobes transfer power from the frequency bands that concentrate most of the power to bands that contain less or no power. This effect is called leakage.

Statistical Analysis of Periodogram (cont.)

Now, consider periodogram variance.
Assumption: $x(n)$ is zero-mean circular complex Gaussian white noise:

$$
\begin{aligned}
& \mathrm{E}\{\operatorname{Re}[x(n)] \operatorname{Re}[x(k)]\}=\frac{\sigma^{2}}{2} \delta(n-k), \\
& \mathrm{E}\{\operatorname{Im}[x(n)] \operatorname{Im}[x(k)]\}=\frac{\sigma^{2}}{2} \delta(n-k), \\
& \mathrm{E}\{\operatorname{Re}[x(n)] \operatorname{Im}[x(k)]\}=0,
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
\mathrm{E}\left\{x(n) x^{*}(k)\right\} & =\sigma^{2} \delta(n-k), \\
\mathrm{E}\{x(n) x(k)\} & =0 .
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left\{\widehat{P}_{P}\left(e^{j \omega}\right)\right\} & =\sum_{k=-N+1}^{N-1}\left(1-\frac{|k|}{N}\right) r(k) e^{-j \omega k} \\
& =\sum_{k=-N+1}^{N-1}\left(1-\frac{|k|}{N}\right) \sigma^{2} \delta(k) e^{-j \omega k} \\
& =\sigma^{2}=P\left(e^{j \omega}\right)
\end{aligned}
$$

For our zero-mean circular white $x(n)$:

$$
\begin{aligned}
& \mathrm{E}\left\{x(k) x^{*}(l) x(m) x^{*}(n)\right\} \quad=\mathrm{E}\left\{x(k) x^{*}(l)\right\} \mathrm{E}\left\{x(m) x^{*}(n)\right\} \\
&+\mathrm{E}\left\{x(k) x^{*}(n)\right\} \mathrm{E}\left\{x(m) x^{*}(l)\right\} \\
&=\sigma^{4}[\delta(k-l) \delta(m-n)+\delta(k-n) \delta(m-l)]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{E}\left\{\widehat{P}_{P}\left(e^{j \omega_{1}}\right) \widehat{P}_{P}\left(e^{j \omega_{2}}\right)\right\} \\
= & \mathrm{E}\{\underbrace{\frac{1}{N}\left(\sum_{k=0}^{N-1} x(k) e^{-j \omega_{1} k}\right)\left(\sum_{l=0}^{N-1} x^{*}(l) e^{j \omega_{1} l}\right)}_{\widehat{P}_{P}\left(e^{j \omega_{1}}\right)} \\
\times & \underbrace{\frac{1}{N}\left(\sum_{m=0}^{N-1} x(m) e^{-j \omega_{2} m}\right)\left(\sum_{n=0}^{N-1} x^{*}(n) e^{j \omega_{2} n}\right)}_{\widehat{P}_{P}\left(e^{j \omega_{2}}\right)}\} .
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{E}\left\{\widehat{P}_{P}\left(e^{j \omega_{1}}\right) \widehat{P}_{P}\left(e^{j \omega_{2}}\right)\right\}=\frac{1}{N^{2}} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} \\
& \mathrm{E}\left\{x(k) x^{*}(l) x(m) x^{*}(n)\right\} e^{-j \omega_{1}(k-l)} e^{-j \omega_{2}(m-n)} \\
&= \frac{\sigma^{4}}{N^{2}} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1}[\delta(k-l) \delta(m-n) \\
&+\delta(k-n) \delta(m-l)] e^{-j \omega_{1}(k-l)} e^{-j \omega_{2}(m-n)} \\
&= \sigma^{4}+\frac{\sigma^{4}}{N^{2}} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} e^{-j\left(\omega_{1}-\omega_{2}\right)(k-l)} \\
&= \sigma^{4}+\frac{\sigma^{4}}{N^{2}} \sum_{k=0}^{N-1} e^{-j\left(\omega_{1}-\omega_{2}\right) k} \sum_{l=0}^{N-1} e^{j\left(\omega_{1}-\omega_{2}\right) l} \\
&= \sigma^{4}+\frac{\sigma^{4}}{N^{2}}\left[\frac{1-e^{-j N\left(\omega_{1}-\omega_{2}\right)}}{1-e^{-j\left(\omega_{1}-\omega_{2}\right)}}\right]\left[\frac{1-e^{j N\left(\omega_{1}-\omega_{2}\right)}}{1-e^{j\left(\omega_{1}-\omega_{2}\right)}}\right]
\end{aligned}
$$

EE 524, \# 8

$$
=\sigma^{4}+\frac{\sigma^{4}}{N^{2}}\left\{\frac{\sin \left[\left(\omega_{1}-\omega_{2}\right) N / 2\right]}{\sin \left[\left(\omega_{1}-\omega_{2}\right) / 2\right]}\right\}^{2}
$$

Statistical Analysis of Periodogram (cont.)

$\lim _{N \rightarrow \infty} \mathrm{E}\left\{\widehat{P}_{P}\left(e^{j \omega_{1}}\right) \widehat{P}_{P}\left(e^{j \omega_{2}}\right)\right\}=P\left(e^{j \omega_{1}}\right) P\left(e^{j \omega_{2}}\right)+P^{2}\left(e^{j \omega_{1}}\right) \delta\left(\omega_{1}-\omega_{2}\right) \Rightarrow$

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \mathrm{E}\left\{\left[\widehat{P}_{P}\left(e^{j \omega_{1}}\right)-P\left(e^{j \omega_{1}}\right)\right]\left[\widehat{P}_{P}\left(e^{j \omega_{2}}\right)-P\left(e^{j \omega_{2}}\right)\right]\right\} \\
& = \begin{cases}P^{2}\left(e^{j \omega_{1}}\right), & \omega_{1}=\omega_{2}, \\
0, & \omega_{1} \neq \omega_{2} .\end{cases}
\end{aligned}
$$

The variance of periodogram cannot be reduced by taking longer observation interval $(N \rightarrow \infty)$. Thus, periodogram is a poor estimate of the PSD $P\left(e^{j \omega}\right)$!

Refined Periodogram- and Correlogram-based Methods

Refined periodogram Bartlett's method (8.2.4 in Hayes):

Based on dividing the original sequence into $L=N / M$ nonoverlapping sequences of length M, computing periodogram for each subsequence, and averaging the result:

$$
\widehat{P}_{\mathrm{B}}\left(e^{j \omega}\right)=\frac{1}{L} \sum_{l=1}^{L} \widehat{P}_{l}\left(e^{j \omega}\right), \quad \widehat{P}_{l}\left(e^{j \omega}\right)=\frac{1}{M}\left|\sum_{n=0}^{M-1} x_{l}(n) e^{-j \omega n}\right|^{2}
$$

Further Refinements of periodogram (Welch's method, 8.2.5 in Hayes):

Welch's method refines the Bartlett's periodogram by:

- using overlapping subsequences,
- windowing of each subsequence.

Continue Matlab Example
 Convemtional Periodogram: $A=0.1, N=10000$

Averaged Periodogram: $A=0.1, N=10000, M=1000$

Welch Periodogram: $A=0.1, N=10000, M=1000$ with 2/3 Overlap and Hamming Window

Refined Correlogram (Blackman-Tukey method, 8.2.6 in Hayes):

- $\widehat{r}(k)$ is a poor estimate of higher lags k. Hence, truncate it (use $M \ll N$ points).
- Use some lag window:

$$
\widehat{P}_{\mathrm{BT}}\left(e^{j \omega}\right)=\sum_{k=-M+1}^{M-1} w(k) \widehat{r}(k) e^{-j \omega k} .
$$

Hence

$$
\widehat{P}_{\mathrm{BT}}\left(e^{j \omega}\right)=\frac{1}{2 \pi} \int_{=\pi}^{\pi} W\left(e^{j(\omega-\nu)}\right) \widehat{P}_{\mathrm{P}}\left(e^{j(\omega-\nu)}\right) d \nu,
$$

i.e. frequency smoothing of the periodogram.

High-resolution Nonparametric Methods (8.3 in Hayes)

Consider FIR filter with the impulse response
$h^{*}(0), \ldots, h^{*}(N-1)$ and the output is

$$
y(k)=\sum_{n=0}^{N-1} h^{*}(n) x(k-n)=\boldsymbol{h}^{H} \boldsymbol{x}(k) .
$$

The output power:

$$
\begin{aligned}
\mathrm{E}\left\{|y(k)|^{2}\right\} & =\mathrm{E}\left\{\left|\boldsymbol{h}^{H} \boldsymbol{x}(k)\right|^{2}\right\} \\
& =\boldsymbol{h}^{H} \mathrm{E}\left\{\boldsymbol{x}(k) \boldsymbol{x}^{H}(k)\right\} \boldsymbol{h} \\
& =\boldsymbol{h}^{H} \boldsymbol{R} \boldsymbol{h} .
\end{aligned}
$$

Filter frequency response

$$
H\left(e^{j \omega}\right)=\sum_{n=0}^{N-1} h^{*}(n) e^{-j \omega n}=\boldsymbol{h}^{H} \boldsymbol{a}(\omega)
$$

where

$$
\boldsymbol{a}(\omega)=\left[\begin{array}{c}
1 \\
e^{-j \omega} \\
\vdots \\
e^{-j(N-1) \omega}
\end{array}\right]
$$

High-resolution Nonparametric Methods: Capon

The key idea of the Capon method: let us "steer" our filter towards a particular frequency ω and try to reject the signals at all remaining frequencies:

$$
\begin{gathered}
\min _{\boldsymbol{h}} \mathrm{E}\left\{|y(k)|^{2}\right\} \quad \text { subject to } H\left(e^{j \omega}\right)=1 \quad \Longrightarrow \\
\min _{\boldsymbol{h}} \boldsymbol{h}^{H} R \boldsymbol{h} \quad \text { subject to } \quad \boldsymbol{h}^{H} \boldsymbol{a}(\omega)=1 . \\
Q(\boldsymbol{h})=\boldsymbol{h}^{H} R \boldsymbol{h}+\lambda\left[1-\boldsymbol{h}^{H} \boldsymbol{a}(\omega)\right]+\lambda^{*}\left[1-\boldsymbol{a}(\omega)^{H} \boldsymbol{h}\right] \Longrightarrow \\
\nabla Q=R \boldsymbol{h}-\lambda \boldsymbol{a}(\omega)=0 \quad \Longrightarrow \boldsymbol{h}_{\mathrm{opt}}=\lambda R^{-1} \boldsymbol{a}(\omega)
\end{gathered}
$$

note similarity with the Yule-Walker equations!

Substituting back into the constraint equation $\boldsymbol{h}^{H} \boldsymbol{a}(\omega)=1$, we obtain

$$
\boldsymbol{h}^{H} \boldsymbol{a}(\omega)=\lambda^{*} \boldsymbol{a}^{H}(\omega) R^{-1} \boldsymbol{a}(\omega)=1 \Longrightarrow \lambda=\frac{1}{\boldsymbol{a}^{H}(\omega) R^{-1} \boldsymbol{a}(\omega)} .
$$

Hence, the analytic solution is given by

$$
\boldsymbol{h}_{\mathrm{opt}}=\frac{1}{\boldsymbol{a}^{H}(\omega) R^{-1} \boldsymbol{a}(\omega)} R^{-1} \boldsymbol{a}(\omega) .
$$

High-resolution Nonparametric Methods: Capon (cont.)

$$
\begin{aligned}
P_{\mathrm{CAPON}}\left(e^{j \omega}\right) & =\left.\mathrm{E}\left\{|y(k)|^{2}\right\}\right|_{\boldsymbol{h}=\boldsymbol{h}_{\mathrm{opt}}} \\
& =\boldsymbol{h}_{\mathrm{opt}}^{H} R \boldsymbol{h}_{\mathrm{opt}} \\
& =\frac{\boldsymbol{a}^{H}(\omega) R^{-1} R R^{-1} \boldsymbol{a}(\omega)}{\left[\boldsymbol{a}^{H}(\omega) R^{-1} \boldsymbol{a}(\omega)\right]^{2}} \\
& =\frac{1}{\boldsymbol{a}^{H}(\omega) R^{-1} \boldsymbol{a}(\omega)}
\end{aligned}
$$

This spectrum is still impractical because it includes the true covariance matrix R. Take its sample estimate

$$
\widehat{P}_{\mathrm{CAPON}}\left(e^{j \omega}\right)=\frac{1}{\boldsymbol{a}^{H}(\omega) \widehat{R}^{-1} \boldsymbol{a}(\omega)}
$$

AR Spectral Estimation

Idea: Find the complex AR coefficients of the process and substitute them to the AR spectrum:

$$
P_{\mathrm{AR}}=\frac{\sigma^{2}}{\left|A\left(e^{j \omega}\right)\right|^{2}}=\frac{\sigma^{2}}{\left|\boldsymbol{c}^{H} \boldsymbol{a}(\omega)\right|^{2}}
$$

where $\boldsymbol{c}=\left[1, a_{1}, \ldots, a_{N-1}\right]^{H}$. Recall that, according to the Yule-Walker equations:

$$
\boldsymbol{c}=\sigma^{2} R^{-1} \boldsymbol{e}_{1}
$$

where $\boldsymbol{e}_{1}=[1,0,0, \ldots, 0]^{T}$. Hence, omitting σ^{2} :

$$
P_{\mathrm{AR}}(\omega)=\frac{1}{\left|\boldsymbol{a}^{H}(\omega) R^{-1} \boldsymbol{e}_{1}\right|^{2}}
$$

Maximum entropy spectral estimation: given covariance function measured at N lags, extrapolate it out of the measurement interval by
maximizing the entropy of the random process. Entropy of a Gaussian process can be written as (Burg):

$$
\mathcal{H}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \ln P\left(e^{j \omega}\right) d \omega
$$

Burg's method: $\max \mathcal{H}$ subject to

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} P\left(e^{j \omega}\right) e^{j \omega n} d \omega=\widehat{r}(n), \quad n=0,1, \ldots, N-1
$$

This was shown to give the AR spectral estimate!

Digression: Entropy

Let the sample space for a dicrete RV x be x_{1}, \ldots, x_{n}. The entropy $H(x)$ is proportional to

$$
H(x) \sim-\sum_{i=1}^{n} p\left(x_{i}\right) \ln p\left(x_{i}\right)
$$

where $p\left(x_{i}\right)=\operatorname{Prob}\left(x=x_{i}\right)$: For continuous RV

$$
H(x) \sim-\int_{-\infty}^{\infty} f_{x}(x) \ln f_{x}(x) d x
$$

where $f_{x}(x)$ is the pdf of x.

