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Abstract. We survey fundamental notions and results in the study of
the lattice of computably enumerable vector spaces and its quotient lat-
tice modulo finite dimension. These lattices were introduced and first
studied by Metakides and Nerode in the late 1970s and later extensively
investigated by Downey, Remmel and others. First, we focus on the role
of the dependence algorithm, the effectiveness of the bases, and the Tur-
ing degree-theoretic complexity of the dependence relations. We present
a result on the undecidability of the theories of the above lattices. We
show the development of various notions of maximality for vector spaces,
and role they play in the study of lattice automorphisms and automor-
phism bases. We establish a new result about the role of supermaximal
spaces in the quotient lattice automorphism bases. Finally, we discuss
the problem of finding orbits of maximal spaces and the recent progress
on this topic.

1 Computable and Computably Enumerable
Vector Spaces

Computable model theory uses the tools of computability theory to inves-
tigate algorithmic content (effectiveness) of notions, theorems, and construc-
tions in classical mathematics (see [28]). Computably enumerable vector spaces
and computability-theoretic complexity of their bases were first considered by
Mal’tsev in [40] and Dekker in [4]. Modern study of these spaces including the
use of the priority method has been introduced by Metakides and Nerode in [43].
Computably enumerable vector spaces have been further investigated in com-
putable model theory (see Downey and Remmel [26] and Nerode and Remmel
[50]). For more recent developments in the study of effective vector spaces, see
[9,11]. Many of the results about vector spaces can be generalized to certain
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effective closure systems (see [26]). More recently, effective vector spaces have
been also studied in the context of reverse mathematics.

We will now introduce some definitions and state basic facts about com-
putable and c.e. vector spaces. As customary in model theory, for a structure A
we often use A to denote both the structure and its domain.

Definition 1. Let (F,+, ·) be a computable field and (V,+, ·,≡) a structure,
V ⊆ ω, with a partial computable binary operation + defined on V × V and
a partial computable binary operation · defined on F × V , and a congruence
relation ≡⊆ V × V such that the quotient structure V

≡ is a vector space over F
with vector addition induced by + and scalar multiplication induced by ·.

(i) The structure V
≡ is a c.e. vector space given by (V,+, ·,≡) if V is a c.e. set

and ≡ is a c.e. relation.
(ii) The structure V

≡ is a computable vector space given by (V,+, ·,≡) if V is
a c.e. set, ≡ is a c.e. relation, and the relation (V × V )− ≡ is also c.e.

(iii) The structure V
≡ is a normal vector space given by (V,+, ·,≡) if V is a c.e.

set and the relation ≡ is the equality, =.

We usually do not write the equality explicitly. Every vector space can be thought
of as a quotient space with the congruence relation being the equality. A normal
vector space (V,+, ·) has a c.e. set of vectors V , a partial computable vector
addition +, and a partial computable scalar multiplication ·. Furthermore, since
the equality is a computable binary relation on ω, both the equality on V and the
inequality on V are c.e. relations. Hence every normal vector space is computable.

Example 2. Let F be a computable field. Define

V∞ = {u ∈ Fω : (∃ns)(∀n ≥ ns)[u(n) = 0]}.

Then V∞ is a (normal) vector space with domain V∞ and pointwise operations
of vector addition and scalar multiplication of vectors. The set of vectors E =
{εi ∈ Fω : i ∈ ω}, where

εi(n) =
{

1 if n = i,
0 if n �= i,

forms a computable basis for V∞. We will call this basis a standard basis.

Thus, V∞ is an ℵ0-dimensional computable vector space. Its computable first-
order language is {+, {·f}f∈F }. It has a computable basis and hence a depen-
dence algorithm. Intuitively, a dependence algorithm is an effective procedure for
deciding whether a finite tuple of vectors is linearly dependent.

Lemma 3. Every c.e. basis of V ∞ is computable.
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Proof. Assume that B is a c.e. basis of V ∞. Let b0, b1, b2, . . . be a computable
enumeration of B. Let v ∈ V∞. We effectively find λi0 , . . . , λin−1 ∈ F −{0} such
that

v = λi0bi0 + · · · + λin−1bin−1 .

Then we have
v ∈ B ⇔ (n = 1 ∧ v = bi0).

�

For any set I ⊆ V∞, by cl(I) we denote the smallest (with respect to inclu-
sion) subspace of V ∞ containing I; that is, cl(I) is the linear span of I. A
subspace V of V∞ is c.e. if its domain V is a c.e. subset of V∞. The set of all
c.e. subspaces of V∞ is denoted by L(V ∞).

Example 4. Let W ∈ L(V ∞). Let the congruence relation ≡W on V ∞ be
defined by

x ≡W y ⇔ x − y ∈ W .

Clearly, ≡W is a c.e. relation because W is a c.e. set. Hence the quotient space
V ∞
W is a c.e. vector space. If W is computable, then V ∞

W is a computable vector
space.

Let V
≡ and V ′

≡′ be c.e. vector spaces, and let f : V
≡ → V ′

≡′ be a vector space
isomorphism. Then we say that f is computable if the relation

{(u, v) ∈ V × V ′ : f([u]≡) = [v]≡′}
is c.e.

Proposition 5. Every c.e. vector space V
≡ is computably isomorphic to V∞

W for
some W ∈ L(V ∞). If V

≡ is a computable vector space, then W is computable.

Proof. Let v0, v1, . . . be a computable enumeration of V . Define f : V∞ → V
≡

by (∀i)[f(εi) = [vi]≡] so that f is a linear function from V ∞ to V
≡ . Clearly, f is

onto. Let W =def ker(f) = {v ∈ V∞ : f(v) = [0]≡}. Then W is a c.e. subspace
of V ∞. If V

≡ is computable, then W is also computable. Let an isomorphism
g : V∞

W → V
≡ be defined by

g(v + W ) = [f(v)]≡.

Clearly, g is a computable isomorphism. �

Lemma 6. Every computable vector space V
≡ is computably isomorphic to a

normal vector space.

Proof. Let V
≡ be a computable vector space given by (V,+, ·,≡). Assume that

v0, v1, v2, . . . is a computable enumeration of V . Define W = {vi : (∀j < i)¬[vi ≡
vj ]}. The set W is a computable subset of V . Clearly, (W,+, ·,≡) is a normal
vector space. Let f : V

≡ → W be a linear function given by f([vn]≡) = vi,
where vi is the unique element in W such that vn ≡ vi. Then f is a computable
isomorphism. �
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We will now discuss the structure on L(V ∞). A lattice is a structure L in the
language {≤,∨,∧} such that ≤ is a partial order, and ∨ and ∧ are supremum
and infimum, respectively. If a lattice has the greatest element and the least
element, then they are denoted by 1 and 0, respectively. If L is a lattice with 1,
then a ∈ L is called a co-atom (dual atom) if

a < 1 ∧ (∀b ∈ L) [a < b ⇒ b = 1].

As usual, by E we denote the lattice of all c.e. subsets of ω.
Let U, V ∈L(V ∞). Then U ∩V is the subspace with domain U ∩V , and U +V

is the subspace with domain

U + V = {u + v : u ∈ U ∧ v ∈ V }.

By Y = U ⊕V we denote that Y = U +V and U ∩V = {0}. We write U ⊆ V if U
is a subspace of V . Consider the lattice (L(V ∞),⊆,∩,+, {0}, V ∞). The lattice
L(V∞) modulo finite dimension is denoted by L∗(V∞).

For A,B ∈ E we will use A =∗ B to denote that the symmetric difference
A � B is a finite set. Similarly, for U, V ∈ L(V∞) we write U =∗ V if there is
a finite-dimensional subspace W such that U + W = V + W . This means that
cl(U ∪ P ) = cl(V ∪ Q) for some finite sets of vectors P and Q. Hence E∗ =
(E/=∗) and L∗(V∞) = (L(V∞)/=∗). Clearly, each of the lattices E , E∗,L(V∞),
and L∗(V∞) has both 1 and 0.

The structure and automorphisms of L(V∞) and L∗(V∞) have been studied
extensively. The approach, in general, has been modelled upon the study of the
distributive lattices E and E∗ in computability theory. However, the study of
L(V∞) and L∗(V∞) follows a more geometric approach because these lattices
are modular and nondistributive. For more on lattice theory see [1].

Proposition 7. The structure L(V ∞) is a modular nondistributive lattice.

Proof. To prove that the lattice L(V ∞) is modular, we will show that

U ⊆ V ⇒ [(W + U) ∩ V = (W ∩ V ) + U ].

Let U, V,W ∈ L(V ∞), where U ⊆ V . It is easy to see that then (W ∩ V ) + U ⊆
(W + U) ∩ V . Now, let v ∈ (W + U) ∩ V . Then v = w + u for some w ∈ W and
u ∈ U . Hence, w = v − u, so, since U ⊆ V , w ∈ V . Thus, w + u ∈ (W ∩ V ) + U ,
i.e., v ∈ (W ∩ V ) + U .

To show that L(V ∞) is not distributive, choose two (nonzero) independent
vectors, u and v. Consider the following three subspaces: cl({u}), cl({v}) and
cl({u + v}). Then

(cl({u}) + cl({v})) ∩ cl({u + v}) = cl({u + v}),

but
(cl({u}) ∩ cl({u + v})) + (cl({v}) ∩ cl({u + v})) = {0}.

�
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Let I0, I1, I2, . . . be a fixed effective enumeration of all c.e. independent sub-
sets of V∞. For e ∈ ω, let

Ve =def cl(Ie).

Hence, V0, V1, V2, . . . is a fixed effective enumeration of all c.e. subspaces of V∞.
For s ∈ ω, let Ve,s =def cl(Ie,s). Hence Ve =

⋃
s∈ω

Ve,s.

Proposition 8. Let V be a c.e. vector space. If V has a c.e. basis, then V has
a dependence algorithm.

Proof. Assume that V has a c.e. basis b0, b1, . . . Let u0, . . . , un−1 ∈ V . Effec-
tively find the least k ∈ ω and αij ∈ F , for i ∈ {0, . . . , n − 1} and j ∈
{0, . . . , k − 1}, such that ui =

k−1∑
j=0

αijbj . Form a matrix M = [αij ]n×k, and

algorithmically find the rank of M . Then u0, . . . , un−1 are linearly dependent iff
rank(M) < n. �

Theorem 9. Let V be a c.e. vector space. If V has a dependence algorithm,
then V has a computable basis.

Proof. If V is finite-dimensional, then every basis of V is computable. Therefore,
we assume that V is infinite-dimensional. Let b0, b1, b2, . . . be an effective enu-
meration of a c.e. basis of V . We will enumerate a computable basis a0, a1, a2, . . .
of V . As usual, assume that V ⊆ ω with the usual ordering <. Inductively, let
a0, . . . , a2n be defined such that

a0, . . . , a2n are linearly independent,
bn−1 ∈ cl({a0, . . . , a2n}), and
a0 < · · · < a2n.

We will now extend the sequence a0, . . . , a2n by defining a2n+1 and a2n+2. We
first effectively check whether bn ∈ cl({a0, . . . , a2n}).

If bn ∈ cl({a0, . . . , a2n}), then we choose the least two vectors b, d ∈ V such
that a2n < b < d, and a0, . . . , a2n, b, d are linearly independent. Let a2n+1 =def b
and a2n+2 =def d.

Assume that bn /∈ cl({a0, . . . , a2n}). Choose the least vector x ∈ V such
that x > max{a2n, a2n − bn} and a0, . . . , a2n, bn, x are linearly independent.
Such x exists because V is infinite-dimensional. Hence, bn + x > a2n and
a0, . . . , a2n, x, bn + x are linearly independent. We define a2n+1 and a2n+2 such
that {a2n+1, a2n+2} = {x, bn + x}.

If the underlying field for V∞ is infinite, then there is an easier way to obtain
a computable basis for V . Namely, we can choose k1, k2, . . . ∈ F such that
b0 < k1b1 < k2b2 < · · · . Then {b0, k1b1, k2b2, . . .} is a computable basis for V . �

Hence, if V ∈L(V∞), then V has a computable basis, as first established by
Dekker [4]. Metakides and Nerode further showed that V has a c.e. basis B such
that V ≡T B. As usual, we use ≤T for Turing reducibility and ≡T for Turing
equivalence of sets. The Turing degree of X is denoted by deg(X) = x, the nth
Turing jump of X by X(n), and x(n) = deg(X(n)). In particular, 0′ denotes the
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Turing degree of the halting set ∅′. The Turing degrees form an upper semilattice.
For more on computability theory see [56].

The result of classical mathematics that every independent set of vectors can
be extended to a basis of the whole vector space does not effectivize. That is,
some independent sets cannot be extended to c.e. independent sets by adding
infinitely many vectors.

Let J ⊆ V∞ be an independent set. The set J is called nonextendible if
dim V∞

cl(J) = ∞ and for every e ∈ ω:

J ⊆ Ie ⇒ |Ie − J | < ∞.

Otherwise, the independent set J is called extendible. Metakides and Nerode [43]
showed that there is a c.e. nonextendible independent subset J of V∞. We say
that a c.e. subspace V has a (fully) extendible basis if some c.e. basis of V can
be extended to a c.e. basis of V∞.

Theorem 10 (Metakides and Nerode [43]). Let V∞ be over any computable
field. Then there is a c.e. subspace space V of V∞ such that no basis of V is fully
extendible.

2 Dependence Relation and k-Dependence Relations

We have already considered a dependence algorithm. Now, we formally introduce
dependence relations. Let V ⊆V∞. The dependence relation over V, in symbols
D(V ), is defined by

D(V ) = {(u0, . . . , uk−1) : k ∈ ω ∧ u0, . . . , uk−1 ∈ V∞ ∧
(u0, . . . , uk−1 are linearly dependent over V )}.

Since for v ∈ V∞, we have v /∈ V iff v ∈ D(V ), it follows that

V ≤T D(V ).

Hence, if D(V ) is computable, then V is computable. The dependence degree of
V is the Turing degree of D(V ), deg(D(V )). A space V is called decidable if its
dependence degree is 0, that is, D(V ) is a computable set. Equivalently, V is
decidable if V∞

V has a dependence algorithm.

Proposition 11. Let V∞ be a vector space over a finite computable field F .
Then, for V ∈ L(V ∞), we have

V ≡T D(V ).

Proof. It is enough to show that D(V ) ≤T V . Let |F | = n. For any given
v0, . . . , vk−1 ∈ V , there are (nk −1) nontrivial linear combinations. To determine
whether v0, . . . , vk−1 are linearly dependent, list all nontrivial linear combina-
tions, and use oracle V to test whether any of them belongs to V . �
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Proposition 12. Let V,W be vector subspaces of V∞ such that V ⊆ W and
dim W

V < ∞.

(i) Then
D(W ) ≤T D(V ).

(ii) If, in addition, V,W ∈ L(V∞), then

D(V ) ≤T D(W ).

Proof. (i) Assume that dim W
V = k and let w0 + V, . . . , wk−1 + V be a basis for

W
V . Let u0, . . . , un−1 ∈ V∞.

We have
(u0, . . . , un−1) ∈ D(W ) iff

(∃α0, . . . , αn−1 ∈ F )(∃w ∈ W )[α0u0 + · · · + αn−1un−1 = w] iff

(∃α0, . . . , αn−1 ∈ F )(∃β0, . . . , βk−1 ∈ F )(∃v ∈ V )[α0u0 + · · · + αn−1un−1 =
β0w0 + · · · + βk−1wk−1 + v] iff

(u0, . . . , un−1, w0, . . . , wk−1) ∈ D(V ).

Hence D(W ) ≤T D(V ). �

Metakides and Nerode proved that if the (computable) field F for V∞ is
infinite then for an arbitrary c.e. Turing degree c, there is a computable vector
subspace V of V∞ such that

deg(D(V )) = c.

Proposition 8 can be easily generalized to quotient c.e. vector spaces. It can
also be relativized. Namely, we have the following proposition.

Proposition 13. Let V ∈ L(V∞).

(i) Then V∞
V has a dependence algorithm iff V∞

V has a c.e. basis.
(ii) Let C ⊆ ω. Then D(V ) ≤T C iff V∞

V has a basis that is computable in C.

Let V ∈ L(V∞). Then we say that V is a complemented element of L(V∞) if
there exists W ∈ L(V∞) such that V ⊕ W=V∞.

Theorem 14 (Metakides and Nerode [43]). Let V ∈ L(V∞). Then the following
conditions are equivalent.

(i) The space V is decidable.
(ii) Every c.e. basis of V is extendible to a computable basis of V∞.
(iii) The space V has a computable basis that is extendible to a computable
basis of V∞.
(iv) The space V is a complemented element in L(V∞).
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Proof. (i)⇒(ii) Let A be a c.e. basis for V . Assume that V is decidable. Thus V∞
V

has a dependence algorithm, and hence a c.e. basis. Let b0 +V, b1 +V, b2 +V, . . .
be a computable enumeration of a basis for V∞

V . Let B = {b0, b1, b2, . . .}. Then
A ∪ B is a c.e. basis, and hence a computable basis of V∞.

(ii)⇒(iii) Since V ∈ L(V∞), V has a computable basis. Let B be a computable
basis for V . Extend B to a computable basis for V∞.

(iii)⇒(iv) Assume that V has a computable basis B that is extendible to a
computable basis A for V∞. Let W = cl(A−B). Then W ∈ L(V∞), V ∪W=V∞
and V ∩ W={0}.

(iv)⇒(i) Assume that V,W ∈ L(V∞), where V ⊕W = V∞. Since W ∈ L(V∞),
W has a c.e. basis B. Then {b + V : b ∈ B} is a c.e. basis for V∞

V . Hence, V∞
V

has a dependence algorithm. �
The set of all decidable subspaces of V∞ is denoted by S(V∞). In the next

proposition we will establish that the structure (S(V∞),⊆,∩,+, {0}, V∞) is a
lower semilattice.

Proposition 15. Let V0, V1 ∈ S(V∞). Then V0 ∩ V1 ∈ S(V∞).

Proof. Let −→v = (v0, . . . , vn−1) ∈ (V∞)n for some n ∈ ω. We will present
an algorithm that decides whether −→v is dependent over V0 ∩ V1, equiva-
lently, whether cl(−→v ) ∩ (V0 ∩ V1) �= {0} (where cl(−→v ) =def cl(rng(−→v ))). If
cl(−→v ) ∩ V0 = {0} (that is,−→v is independent over V0), then −→v is independent
over V0 ∩ V1. Assume that cl(−→v ) ∩ V0 �= {0}. Now, we effectively compute a
basis B of cl(−→v ) ∩ V0 in the following way. We find the least z0 ∈ V0 − {0}
such that z0 ∈ cl(−→v ). Exchange z0 with the first appropriate vi. Now check
whether (v0, . . . , vi−1, z0, vi+1, . . . , vn−1) is independent over V0. If it is, we stop.
Otherwise, we look for the least z1 ∈ V0 ∩ cl(−→v ) such that z1 is independent of
z0 over V0. We continue until we find the basis B = {z0, . . . , zm−1}. Now, −→v is
dependent over V0 ∩ V1 iff B is dependent over V1. �
Theorem 16 (Ash and Downey [3]). Let U, V,W ∈ L(V∞) be such that
dim(U) = ∞ and U ⊕ V = W . Then there exists D ∈ S(V∞) such that
U ⊕ D = W .

As a corollary we obtain that if U ∈ S(V∞) and W ∈ L(V∞) are such that
dim(U) = ∞ and U ⊆ W , then there exists D ∈ S(V∞) such that U ⊕ D = W .
Furthermore, we have the following result.

Theorem 17 (Ash and Downey [3]). For every W ∈ L(V∞), there are D0,D1 ∈
S(V∞) such that D0 ⊕ D1 = W .

Let A,B ∈ L(V∞) be such that B ⊆ A and dim A
B = ∞. Kalantari defined

the space B to be a major subspace of A if for every e ∈ ω:

(Ve + A = V∞) ⇒ (Ve + B =∗ V∞).

Guichard defined the space B to a supermajor subspace of A if for every
e ∈ ω:

(Ve + A = V∞) ⇒ (Ve + B = V∞).
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Theorem 18 (Guichard [31]). Let A be a nondecidable c.e. subspace of V∞.
Then there is a supermajor subspace of A.

For any V ⊆ V∞ and k ≥ 1, let

Dk(V ) =def {(x0, . . . , xk−1) : x0, . . . , xk−1 are linearly dependent over V }.

The k−th dependence degree of V is the Turing degree of Dk(V ). Therefore,
D(V ) =def

⋃
k≥1

Dk(V ). We can easily establish the following facts.

(i) Uniformly in k, Dk(V ) ≤T D(V ).
(ii) Assume that dim(V∞

V ) = ∞. Then Dk(V ) ≤T Dk+1(V ).
(iii) If V ∈ L(V∞), then Dk(V ) is a c.e. set.

The next lemma will be used to establish the theorem that follows it.

Lemma 19 (Shore [54]). Assume that V is a finite-dimensional subspace of V∞.
Let k ∈ ω, and let the vectors v0, . . . , vk be linearly independent over V . Assume
that X is a finite set of tuples of vectors of length ≤ k such that every tuple from
X is independent over V . Then there are scalars λ0, . . . , λk such that every tuple
from X is still independent over cl(V ∪ {λ0v0 + · · · + λkvk}).

Theorem 20 (Shore [54]). Let the space V∞ be over an infinite (computable)
field. Assume that E1, E2, E3, . . . , E0 is a c.e. sequence of c.e. sets such that
Ek ≤T Ek+1 and Ek ≤T E0, uniformly in k. Then there is a c.e. subspace V
such that for every k ≥ 1,

Dk(V ) ≡T Ek ∧ D(V ) ≡T E0.

Let V be a computable vector space. Its computable automorphism group,
Aut0(V ), consists of all computable automorphisms of V . An automorphism f
of a vector space V is trivial if it maps every 1-dimensional subspace of V into
itself. That is, f = fα for some α ∈ F − {0} where

(∀v ∈ V )[fα(v) = αv].

Hence f also maps every subspace of V into itself. A computable vector space is
called computably rigid if its computable automorphism group is trivial. Morozov
[44] constructed a computable vector space V such that V∞

V is computably rigid.
We will now assume that the computable field F is infinite. In [44], Moro-

zov asked whether it is possible to obtain for every k ≥ 2, a computable vector
space V such that V∞

V is computably rigid, has the k-dependence algorithm
mod V , does not have the (k + 1)-dependence algorithm mod V , and its depen-
dence algorithm mod V has an arbitrary nonzero c.e. Turing degree. Clearly, if
deg(D(V )) = 0, then V∞

V has a computable basis, and hence the computable
automorphism group of V∞

V is nontrivial. We have the following lemma for the
nontrivial automorphisms of vector spaces.
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Lemma 21 (Dimitrov, Harizanov and Morozov [10]). Let ψ be a total function
such that ψ : V∞ → V∞. If ψ does not induce a trivial automorphism of V∞

V ,
then one of the following conditions hold:

(1) There exist u, v ∈ V∞ and α, β ∈ F such that

ψ(αu + βv) �=mod V αψ(u) + βψ(v),

(2) There exists w ∈ V∞ − V such that ψ(w) ∈ V ,
(3) There exists w ∈ V∞ − V such that the set {w,ψ(w)} is independent

mod V .

In [10], Morozov’s question was answered positively by establishing a more
general result.

Theorem 22 (Dimitrov, Harizanov and Morozov [10]). Let E0 be a noncom-
putable c.e. set, and let E1, E2, E3, . . . be a c.e. sequence of c.e. sets such that
E1 is computable, and

E1 ≤T · · · ≤T Ek ≤T Ek+1 ≤T · · · ≤T E0,

uniformly in k. Then there is a computable subspace V of V∞ such that V∞
V is

computably rigid, and for k ≥ 1,

Dk(V ) ≡T Ek ∧ D(V ) ≡T E0.

3 Maximal Vector Spaces

We now introduce the notion of a maximal vector space, which is analogous to
the notion of a maximal set in classical computability theory. Maximal sets have
been extensively studied within the lattice E of c.e. sets. Recall that an infinite
set C ⊆ ω is cohesive if for every c.e. set W , either W ∩ C or W ∩ C is finite. A
set M ⊆ ω is maximal if M is c.e. and M is cohesive. Equivalently, a set M ∈ E
is maximal if M is infinite and

(∀E ∈ E) [(M ⊆ E ∧ |E − M | = ∞) ⇒ (E =∗ ω)].

For X ∈ E as well as for X ∈ L(V∞) we will use [X] to denote the equivalence
class of X modulo the corresponding equivalence relation =∗. Hence [M ] is a co-
atom in E∗. A maximal set was first constructed by Friedberg. Soare established
that for any two maximal sets M1 and M2, there is an automorphism Φ of E
such that Φ(M1) = M2 (see [56]). A set B ⊆ ω is quasimaximal if it is the

intersection of finitely many maximal sets, B =
n⋂

i=1

Mi where Mi’s are maximal.

The number n is called the rank of B.

Definition 23. Let V ∈ L(V∞). The subspace V is maximal if dim(V∞
V ) = ∞

and for every c.e. space W such that V ⊆ W , we have that

dim(
V∞
W

) < ∞ ∨ dim(
W

V
) < ∞.
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Hence, a subspace V ∈ L(V∞) is maximal if its equivalence class [V ] is a co-
atom in L∗(V∞). Metakides and Nerode [43] showed that a maximal space can be
constructed by modifying the e-state construction of a maximal set. For v ∈ V∞
and e ∈ ω, the e-state of v is the following string in {0, 1}e+1: (V0(v), . . . , Ve(v)).
If a computable basis of V∞ is identified with the set ω, then maximal sets
generate maximal spaces.

Theorem 24 (Shore, see [43]). Let M be a maximal subset of a computable
basis B of V∞. Then M∗ is a maximal subspace of V∞.

There are stronger notions of maximality for vector spaces.

Definition 25. Let V ∈ L(V∞).

(i) The subspace V is supermaximal if dim(V∞
V ) = ∞ and for every c.e. space

W such that V ⊆ W , we have that

V∞ = W ∨ dim(
W

V
) < ∞.

(ii) The subspace V is strongly supermaximal if dim(V∞
V ) = ∞ and for every

c.e. set X contained in V∞ − V , there are a0, . . . , an−1 ∈ V∞ such that

X ⊆ cl(V ∪ {a0, . . . , an−1}).

Clearly, every supermaximal space is maximal. The existence of a supermax-
imal space was first established by Kalantari and Retzlaff [36].

Theorem 26 (Kalantari and Retzlaff [36]). There is a maximal space that is
not supermaximal.

Theorem 27 (Nerode and Remmel [49]). Let the space V∞ be over an infinite
field. Let k ≥ 1. Assume that E1, E2, E3, . . . , E0 is a c.e. sequence of c.e. sets
such that E0 is non-computable, Ek ≤T Ek+1 and Ek ≤T E0. Then there are
supermaximal non-automorphic subspaces V and W such that

D(V ) ≡T D(W ) ≡T E0 and

Dk(V ) ≡T Dk(W ) ≡T Ek.

Let V be a vector space with a basis J . Let v ∈ V . The support of v with
respect to J , in symbols suppJ(v), is the set of all vectors appearing in the linear
combination of vectors in J , which equals v.

Theorem 28 (Downey and Hird [19]). There is a strongly supermaximal vector
space.
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Proof. Let ε0, ε1, ε2, . . . be an effective enumeration of a computable basis for
V∞. At every stage s ≥ 0, we will have a finite set Js of linearly independent
vectors and an effective enumeration bs

0, b
s
1, b

s
2, . . . of a computable set of linearly

independent vectors such that Js ∪ {bs
0, b

s
1, b

s
2, . . .} is a basis for V∞. At the end

of the construction we will define J =
⋃

s≥0

Js and show that J is a basis of a

strongly supermaximal vector space V . That is, V =def cl(J). We will satisfy
the following requirements for every e ∈ ω,

Pe : (We ∩ cl(J) = ∅) ⇒ (We ⊆ cl(J ∪ {b0, . . . , be−1})),

Ne : be = lim
s→∞ bs

e exists.

The positive requirements Pe, e ∈ ω, ensure that the space V is supermaximal.
The negative requirements Ne, e ∈ ω, ensure that dim(V∞

V ) is infinite. The
priority ordering of the requirements is

P0, N0, P1, N1, . . .

We say that Pe requires attention at stage s + 1 if

We,s+1 ∩ Js = ∅, and

We,s+1 − cl(Js ∪ {bs
0, . . . , b

s
e−1}) �= ∅.

Construction of J .

Stage 0. Let J0 = ∅, and b0i = εi for i ∈ ω.
Stage s+1. If no positive requirement requires attention at stage s+1, define

Js+1 = Js and bs+1
i = bs

i .
Now assume that Pe is the first requirement that requires attention at s + 1.

Let v be the least element such that v ∈ We,s+1 and v /∈ cl(Js ∪ {bs
0, . . . , b

s
e−1}).

Let
Js+1 =def Js ∪ {v}.

Let j be the least number such that j ≥ e and

bs
j ∈ suppJs∪{bs0,bs1,...}(v).

That is,

v = a + ks
0b

s
0 + · · · + ks

e−1b
s
e−1 + ks

jb
s
j + ks

j+1b
s
j+1 + · · · ,

where a ∈ Js and ks
j �= 0. Define

bs+1
n =

{
bs
n if n < j;

bs
n+1 if n ≥ j.

End of construction. �
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Proposition 29 (Downey and Hird [19]). Every strongly supermaximal vector
space is supermaximal.

Proof. Assume that V is a strongly supermaximal space, which is not super-
maximal. Let a c.e. space W be such that V ⊆ W , V∞ �= W and dim(W

V ) is
infinite. Choose u ∈ V∞ − W , and let w0, w1, w2, . . . be an effective enumeration
of W . For every i ∈ ω, we have u+wi /∈ W , since u = (u+wi)−wi, and wi ∈ W
and u /∈ W . Let X =def {u, u + w0, u + w1, u + w2, . . .}. Thus,

X ⊆ V∞ − W ⊆ V∞ − V.

However,
W ⊆ cl(X).

Note that since X is a c.e. set and V is a strongly supermaximal space, there
are a0, . . . , an−1 ∈ V∞ such that

X ⊆ cl(V ∪ {a0, . . . , an−1}).

Hence
W ⊆ cl(V ∪ {a0, . . . , an−1}).

Clearly, this implies that

dim(
W

V
) ≤ dim(

cl(V ∪ {a0, . . . , an−1})
V

) ≤ n,

which contradicts the fact that dim(W
V ) is infinite. �

Theorem 30 (Hird [33]). There is a supermaximal space that is not strongly
supermaximal.

Hird [32] further introduced a computable model-theoretic notion of a quasi-
simple subset of a model. See [2,33] for the appropriate definition. This model-
theoretic quasi-simplicity translates as computability-theoretic simplicity in the
structure (ω,=). However, it turns out that a vector subspace of V∞ is quasi-
simple iff it is strongly supermaximal.

The following definition generalizes the notion of a supermaximal space
within the class of maximal subspaces of V∞.

Definition 31 (Kalantari and Retzlaff [36]). Let V ∈ L(V∞).

(i) The subspace V is called 0-thin if it is supermaximal.
(ii) Let k ∈ ω − {0}. The subspace V is called k-thin if dim(V∞

V ) = ∞, there
is a c.e. space U such that

dim(
V∞
U

) = k,

and for every c.e. space W such that V ⊆ W , we have that

dim(
V∞
W

) ≤ k ∨ dim(
W

V
) < ∞.

Kalantari and Retzlaff [36] showed that k-thin spaces exist for all k.
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4 Undecidability of the First-Order Theories of L(V∞)
and L∗(V∞)

The structure of L∗(V∞) is not as well-understood as that of E∗. Both L(V∞) and
L∗(V∞) are modular nondistributive lattices. This means that the “diamond”
lattice M5 can be embedded in L(V∞) and L∗(V∞), while the “pentagon” lattice
N5 cannot. The lattice L(V∞) has both atoms and co-atoms. More generally, if
V is a finite k-dimensional subspace of V∞, then the lattice of subspaces of V is
an initial segment of the lattice L(V∞) and so it has the structure of the lattice
L(k, F ) of all subspaces of any k-dimensional vector space over the field F. Also,
if V ∈ L(V∞) is such that dim(V∞

V ) = k, then the principal filter L(V, ↑) of V in
L(V∞) is also isomorphic to L(k, F ). These finite-rank initial and final segments
collapse to the least and the greatest elements in L∗(V∞), respectively. We know
that the lattice L∗(V∞) has co-atoms but does not have atoms. Remmel [52] and
Downey [21] showed that every Σ3

0 Boolean algebra is isomorphic to L∗(V, ↑) for
some V ∈ L(V∞). Downey conjectured that every bounded Σ3

0 modular lattice
is a filter in L∗(V∞). Nerode and Smith established the following key structural
result about L∗(V∞).

Theorem 32 (Nerode and Smith [51]). Every finite distributive lattice is a filter
in L∗(V∞).

The proof is based on an interesting combinatorial construction, which uses
Birkhoff’s characterization of finite distributive lattices. The construction has
requirements similar to those used in the construction of a supermaximal space.
The following undecidability results are the main corollaries of the theorem.

Theorem 33 (Nerode and Smith [51]).

(i) The first-order theory of L∗(V∞) is undecidable.
(ii) The first-order theory of L(V∞) is undecidable.

The first result (i) is a corollary of Theorem32, and an earlier result by
Ershov and Taitslin, which establishes that the theory of distributive lattices
is computably inseparable from the set of sentences refutable in some finite
distributive lattices. Note that V ∈ L(V∞) is finite-dimensional if and only if
every W ⊆ V is complemented in L(V∞). The second result (ii) then follows
from (i) using the definability of ⊆∗ in L(V∞). Later, Galminas and Rosenthal
[29] established that the theory of L(V∞) has the same logical complexity as
the first-order number theory. The question whether ∀∃-theory of L∗(V∞) is
decidable is still open.

In [21], Downey introduced the following important notion.

Definition 34 (Downey [21]). A c.e. set A has the lifting property if A is
coinfinite and for every c.e. strong array {Dg(x) : x ∈ ω}, for almost all x,∣∣Dg(x) − A

∣∣ ≤ 1.
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Downey used the lifting property to obtain undecidability results for a large
class of lattices of c.e. structures, including L∗(V∞). The lifting property guar-
antees the “lifting” of principal filters under the closure operation. We will
state these results of Downey only for L∗(V∞). In particular, let B is a com-
putable basis of V∞ and let A ⊆ B have the lifting property. If we identify B
with ω, then E∗(A, ↑) ∼= L∗(cl(A), ↑). Recall that a set A ⊆ ω is semi-low if
{e : We ∩ A �= ∅} ≤T ∅′.

Theorem 35 (Downey [24]). There exists a c.e. set A with the lifting property
such that A is semi-low.

The undecidabilty results in [21,24] are then obtained using an earlier result
by Soare that for such A we have that E∗(A, ↑) is effectively isomorphic to E∗.
Therefore, it follows that the first-order theory of L∗(V∞) is undecidable.

In [21], Downey also established that every Σ3
0 Boolean algebra is isomorphic

to a principal filter for a large class of lattices of c.e. structures. This result
stated only for L∗(V∞) is the following.

Theorem 36 (Downey [21]). Let B be a Σ3
0 Boolean algebra. Then exists a c.e.

set A with the lifting property such that E∗(A, ↑) ∼= B.

Corollary 37 (Downey [21]). Every Σ3
0 Boolean algebra is a filter in L∗(V∞).

5 The Co-atoms Form an Automorphism Basis for
L∗(V∞)

Recall that for X ∈ E (or X ∈ L(V∞)), we use [X] to denote the equivalence
class of X modulo the corresponding equivalence relation =∗. If S and T are
arbitrary sets of vectors, then

dim(S mod T ) =def dim(
cl(S ∪ T )

cl(T )
).

By M∗ and R∗ we denote the classes of maximal and computable sets modulo
=∗, respectively. Clearly, the computable, as well as the maximal sets are closed
under =∗. Note that M∗ can also be described as the set of the co-atoms in
E∗, while R∗ is the set of the complemented elements of E∗. Nerode asked the
following questions.

(1) Is every automorphism of E∗ uniquely determined by its action on R∗?
(2) Does every automorphism of R∗ extend to an automorphism of E∗ ?

In [54], Shore answered the first question positively and the second question
negatively. In particular, he established the following results.

Proposition 38 (Shore [54]). Assume that Φ1 and Φ2 are automorphisms
of E∗.
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(i) If Φ1 and Φ2 agree on the low sets, then Φ1 = Φ2.
(ii) If Φ1 and Φ2 agree on M∗, then Φ1 = Φ2.
(iii) If Φ1 and Φ2 agree on R∗, then Φ1 = Φ2.

For (i) Shore used Sacks splitting theorem that every c.e. set is the union of
two disjoint low sets (see Theorem 3.2 in [56]). Then the proof of (ii) uses (i)
and results from Lachlan [38], while the proof of (iii) uses (ii).

Theorem 39 (Shore [54]). Let C∗ be any nontrivial class of c.e. sets (i.e., none
of ∅, {0}, {N}), modulo finite sets, closed under computable isomorphism. If Φ1

and Φ2 agree on C∗, then Φ1 = Φ2.

The proof of Theorem39 uses Proposition 38 (iii). In a later paper, Shore
proved that nowhere simple sets generate E , thus improving Theorem39.

It is natural to ask which natural classes of c.e. vector spaces form automor-
phism bases in the lattices L(V∞) and L∗(V∞). Currently, we do not know of
any analogue of Proposition 38 (i) for the lattices L(V∞) or L∗(V∞). Ash and
Downey established an analogue of Proposition 38 (iii) for the lattice L(V∞) (see
Corollary 40 below). The result easily extends to L∗(V∞) and we will later give
a short proof of this fact. We will also give a direct proof of an analogue of
Proposition 38 (ii) for L∗(V∞) (see Theorem 44 below). An analogue of Theorem
39 for L(V∞) has been given by Nerode and Remmel in [48]. An analogue of
Theorem 39 for L∗(V∞) has been given by Downey and Remmel in [27]. The
following result follows immediately from Theorem17.

Corollary 40. (i) The lattice L(V∞) is generated, under ⊕, by the decidable
subspaces of V∞.
(ii) Each automorphism of L(V∞) is uniquely determined by its action on the
decidable subspaces.

It is known that this result of Ash and Downey extends to L∗(V∞) as follows.
(a) The lattice L∗(V∞) is generated, under ∨, by the equivalence classes of

the decidable subspaces of V∞.
(b) Every automorphism of L∗(V∞) is uniquely determined by its action on

the complemented elements of L∗(V∞).
Before we give proofs for these statements we will establish the following

result.

Proposition 41. If V,W ∈ L(V∞) are such that [V ] = [W ], then

D(V ) ≡T D(W ).

Proof. Suppose that A = {a1, . . . , ap} and B = {b1, . . . , bq} are sets of vectors
that are independent modulo V and W , respectively, such that cl(V ∪ A) =
cl(W ∪ B). We claim that

D(V ) ≡T D(cl(V ∪ A)) = D(cl(W ∪ B)) ≡T D(W ).
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We will only prove D(V ) ≡T D(cl(V ∪ A)). (The proof that D(cl(W ∪ B)) ≡T

D(W ) is identical.)
To prove that D(V ) ≤T D(cl(V ∪ A)), fix arbitrary x1, . . . , xn ∈ V∞ and use

oracle D(cl(V ∪ A)) to decide whether (x1, . . . , xn) ∈ D(cl(V ∪ A)).
Case (1). Let (x1, . . . , xn) /∈ D(cl(V ∪ A)). Clearly, (x1, ..., xn) /∈ D(V ).
Case (2). Let (x1, . . . , xn) ∈ D(cl(V ∪A)). Suppose that I1 is a computable basis
of V. (Recall that such a basis exists.) Using oracle D(cl(V ∪A)), we construct a
D(cl(V ∪ A))-computable basis I2 of (V∞ mod cl(V ∪ A)). Then I1 ∪ A ∪ I2 is a
D(cl(V ∪A))-computable basis of V∞. Representing each element in the sequence
x1, . . . , xn as a linear combination in the basis I1 ∪ A ∪ I2 and using standard
linear algebra we can decide whether the set {x1, . . . , xn} ∪ I1 is dependent.
Therefore, D(V ) ≤T D(cl(V ∪ A)).

To prove that D(cl(V ∪ A)) ≤T D(V ), we will use oracle D(V ) to decide
whether (x1, . . . , xn) ∈ D(cl(V ∪A)). We check whether (x1, . . . , xn, a1, . . . , ap) ∈
D(V ). If the answer is positive, then (x1, . . . , xn) ∈ D(cl(V ∪ A)). Otherwise,
(x1, . . . , xn) /∈ D(cl(V ∪ A)). Therefore, D(cl(V ∪ A)) ≤T D(V ). �

We will use the following notation for the co-atoms and the complemented
elements in L∗(V∞).

M∗ = {[M ] : M is a maximal subspace of V∞}
S∗(V∞) = {[D] : D is a decidable subspace of V∞}

Note that S∗(V∞) is well-defined by Proposition 41. It is immediate that if M1 is
a maximal subspace of V∞ and M1 =∗ M2, then the space M2 is also maximal.
Therefore, M∗ is also well-defined.

Corollary 42

(i) L∗(V∞) is generated, under ∨, by S∗(V∞).
(ii) Each automorphism of L∗(V∞) is uniquely determined by its action on

S∗(V∞).

Proof. (i) Let [V ] ∈ L∗(V∞). By Corollary 17, there are decidable spaces
D1,D2 ∈ L(V∞) such that V = D1 ⊕ D2. Then [V ] = [D1] ∨ [D2]. �

An analogue of Theorem39 has been given by Nerode and Remmel in [48]
and by Downey and Remmel in [27]. The result by Downey and Remmel for the
lattice L∗(V∞) is as follows.

Theorem 43 (Downey and Remmel [27]). Let C∗ be any nontrivial class of
elements of L∗(V∞) (i.e., none of ∅, {[0]}, {[V∞]}, {[0] , [V∞]}), which is closed
under automorphisms of L∗(V∞) that are generated by invertible computable
linear transformations. Then, if Φ is an automorphism of L∗(V∞) such that
Φ �C∗= id �C∗ , then Φ �L∗(V∞)= id.

Proof. Suppose that Φ �L∗(V∞) �= id, and let [D] ∈ S∗(V∞) be such that
Φ ([D]) �= [D]. Since Φ ([D]) is complemented, without loss of generality, assume
that D1 ∈ Φ([D]) and dim(D1 mod D) = ∞.
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Let A be a computable basis of D. Extend A to a computable basis A∪B∪C
of V∞ such that B ⊆ D1 is an infinite independent set modulo D, and C is a
c.e. set. Let [V ] ∈ C∗ be such that [V ] �= [0] and [V ] �= [V∞]. Then V has an
infinite-dimensional subspace R such that [R] ∈ S∗(V∞). Let S1 be a computable
basis of R, and let S2 be a computable independent set such that S1 ∪ S2 is a
basis of V∞. Let f be the computable invertible linear transformation such that
f(S1) = A ∪ C and f(S2) = B. Let [W ] = [f(V )] and note that [W ] ∈ C∗, so
Φ([W ]) = [W ] .

Then S1 ⊆ V and hence [cl(f(S1))] = [cl(A ∪ C)] ≤ [W ] . Thus,

[V∞] = [cl(A ∪ C)] ∨ [cl(B)] ≤ [W ] ∨ [cl(B)] ,

and so
Φ−1([W ]) ∨ Φ−1([cl(B)]) = [V∞].

However, Φ−1([cl(B)]) ≤ Φ−1([D1]) = [D] = [cl(A)] ≤ [cl(A ∪ C)] ≤ [W ], and
so

[W ] ∨ Φ−1([cl(B)]) = [W ].

This implies that [W ] �= Φ−1([W ]), which is a contradiction. �

The analogue of Proposition 38 (ii) for L∗(V∞) follows from Downey and
Remmel’s result. It will also follow from the following theorem, where we con-
struct a certain supermaximal space.

Theorem 44. Let Φ1 and Φ2 be automorphisms of the lattice L∗(V∞) such that
for some [W ] ∈ L∗(V∞) we have

Φ1([W ]) �= Φ2([W ]).

Then there is a supermaximal space M such that Φ−1
1 ([M ]) �= Φ−1

2 ([M ]).

Proof. By Corollary 42 (ii), there is a decidable space D such that Φ1([D]) �=
Φ2([D]). Note that Φ1([V∞]) = [V∞] = Φ2([V∞]) since every automorphism of
L∗(V∞) fixes its greatest element. Therefore, [D] �= [V∞] . Suppose that U, V ∈
L(V∞) are such that

[U ] = Φ1([D]) �= Φ2([D]) = [V ] .

Assume also that dim(V mod U) = ∞. We will construct a supermaximal
space M such that Φ−1

1 ([M ]) �= Φ−1
2 ([M ]). The space M will be such that

U ⊆ M , dim(M mod U) = ∞, and dim(V mod M) = ∞ (see Fig. 1). �

In the language of lattices {≤,∨,∧} these conditions are:
[U ] � [M ] (U ⊆ M , and [U ] �= [M ] since dim(M mod U) = ∞), and
[V ] � [M ] (because dim(V mod M) = ∞).
Before we proceed with the construction of M we will prove that these

requirements guarantee that

Φ−1
1 ([M ]) �= Φ−1

2 ([M ]).

To see this, note that in the lattice L∗(V∞) we have:



384 R.D. Dimitrov and V. Harizanov

[V∞]

[U ] [V ]

[M ][M ]

Fig. 1. Assume [V ] = Φ2([D]) is not in the lower cone of [U ] = Φ1([D]) in L∗(V∞). We
construct a maximal space M such that [M ] is in the upper cone of [U ] while avoiding
the upper cone of [V ]. Note that we do not require that [V] avoids the upper cone of
[U] despite our choice to draw it this way in the diagram.

(i) [M ] ∨ [V ] = [V∞] since [M ] is a co-atom in L∗(V∞) and [V ] � [M ],

(ii) Φ−1
2 ([M ]) ∨ Φ−1

2 ([V ]) = Φ−1
2 ([M ] ∨ [V ]) = Φ−1

2 ([V∞]) = [V∞] ,

(iii) Φ−1
1 ([M ]) ∨ Φ−1

1 ([U ]) = Φ−1
1 ([M ] ∨ [U ]) = Φ−1

1 ([M ]) since [U ] � [M ],

(iv) Φ−1
2 ([M ]) ∨ Φ−1

2 ([V ]) �= Φ−1
1 ([M ]) ∨ Φ−1

1 ([U ]) by (ii) and (iii).
By substituting Φ−1

2 ([V ]) = [D] and Φ−1
1 ([U ]) = [D] in (iv) we obtain:

(v) Φ−1
2 ([M ]) ∨ [D] �= Φ−1

1 ([M ]) ∨ [D], and therefore,

(vi) Φ−1
1 ([M ]) �= Φ−1

2 ([M ]).

We will now construct a supermaximal space the M. Note that both [U ] and [V ]
are complemented in L∗(V∞) because they are images of the complemented [D]
under the automorphisms Φ1,Φ2, respectively. Therefore, U and V are decidable
spaces. We can find computable bases A,B, and C of V,U , and (V∞ mod U),
respectively. Let A = {a0, a1, . . .}, B = {b0, b1, . . .}, and C = {c0, c1, . . .} be
fixed computable enumerations of these bases. We can regard C as a computable
subset of V∞. Thus, B ∪C is a computable basis of V∞, which extends the basis
B of U . A space M will be constructed in stages. By Ms we will denote the
approximation of M at the end of stage s.

At every stage s, the set Bs will be a computable basis for Ms. At stage
0, we will let B0 = B (and, therefore, M0 = U). At stage s > 0, we will
enumerate at most one vector v /∈ Ms−1 into Bs, and then let Ms = cl(Bs).
Hence dim(Ms mod M0) < ∞ and, therefore, Ms will be a decidable space,
uniformly in s, for every s ≥ 0.

Recall that Ve is the e-th c.e. subspace of V∞. In the construction of M we
will satisfy the following requirements for every e ≥ 0:

Re : If dim((Ve ∨ M) mod M) = ∞, then Ve ∨ M = V∞.

Every Re will be satisfied by satisfying the following sub-requirements for every
k ≥ 0:

R〈e,k〉 : If dim((Ve ∨ M) mod M) = ∞, then ck ∈ Ve ∨ M.
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We will also satisfy the following negative requirements for every e ≥ 0:

Ne : dim(V mod M) > e.

Note that the satisfaction of R〈e,k〉 and Ne for each e, k ≥ 0 will guarantee
that M is a supermaximal subspace of V∞ with the desired properties. To see
this, note that if M ⊆ Ve1 and dim(Ve1 mod M) = ∞ for some e1 ∈ ω, then
Ve1 = Ve ∨ M for some e ∈ ω. By construction, B ⊆ U ⊆ M ⊆ Ve1 . The
satisfaction of the requirements R〈e,k〉 for all e, k ≥ 0 will guarantee that C ⊆ Ve1 .
Since cl(B ∪ C) = V∞, we conclude that Ve1 = V∞.

At stage s, each requirement Ne will place a marker Γe on the first element
an ∈ A such that

dim({a0, . . . , an} mod Ms) = e + 1.

For all e, k ≥ 0 the requirements Nm for m ≤ 〈e, k〉 will have higher prior-
ity than the requirement R〈e,k〉. The requirement R〈e,k〉 will respect the higher
priority requirements Nm by not allowing markers Γ0, . . . ,Γm to be moved.

The requirement R〈e,k〉 requires attention at stage s + 1 if:

(1) R〈e,k〉 has not been satisfied, and

(2) there is y ∈ V s
e with y ≤ s such that the following conditions are satisfied:

(i) y + ck /∈ Ms,
(ii) if anj

is the element of A marked by the marker Γj at stage s, then

dim({an0 , . . . , an〈e,k〉} mod Ms) =

dim({an0 , . . . , an〈e,k〉} mod cl(Ms ∪ {y + ck})).

If such y exists, then we say that R〈e,k〉 requires attention via y at stage s + 1.
Construction
Stage 0. Let B0 = B and M0 = cl(B0). For each i ≥ 0, place the marker Γi

on the first element an ∈ A such that

dim({a0, . . . , an} mod M0) = i + 1.

Stage s + 1. Check if some requirement R〈e1,k1〉, where 〈e1, k1〉 ≤ s + 1,
requires attention at stage s+1. If there is no such requirement, let Bs+1 = Bs,
Ms+1 = cl(Bs+1), and go to the next stage. Otherwise, let 〈e, k〉 be the least
such that R〈e,k〉 requires attention, and let y be the least such that R〈e,k〉 requires
attention via y at stage s + 1. Let x =def y + ck. Then

(a) let Ms+1 = cl(Bs+1),
(b) for every i ≥ 0 place the marker Γi on the first element an ∈ A such that

dim({a0, . . . , an} mod Ms+1) = i + 1.

We say that R〈e,k〉 received attention. Note that the condition above can be
checked effectively since Ms+1 is a decidable space. Note also that, because of
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the condition (2)(ii), only the markers Γ〈e,k〉+1,Γ〈e,k〉+2, . . . are moved from the
elements they marked at the previous stage.

End of Construction

In the following lemmas we will prove that the space M is supermaximal.
Lemma 46 will imply that dim(V mod M) = ∞. Hence [M ] avoids the upper
cone of [V ] and, therefore, dim(V∞ mod M) = ∞. Lemma 47 will imply that if
dim((Ve ∨ M) mod M) = ∞, then Ve ∨ M = V∞.

Lemma 45. Each requirement R〈e,k〉 receives attention at most once.

Proof. If R〈e,k〉 receives attention at stage s + 1 via y ∈ V s
e , then x = y + ck is

enumerated into Ms+1. Then ck = (y + ck) − y ∈ Ms+1 ∨ V s+1
e , and, therefore,

R〈e,k〉 will be satisfied at stage s + 1 and will not require attention at any later
stage. �

Lemma 46. Each marker Γm moves finitely often.

Proof. Let s be a stage such that no R〈e,k〉 for 〈e, k〉 ≤ m requires attention
after stage s. Then the construction guarantees that Γm will not be moved after
s. �

Lemma 47. Each requirement R〈e,k〉 is satisfied.

Proof. Suppose that 〈e, k〉 is the least number such that R〈e,k〉 is not satisfied.
That means that dim((Ve ∨ M) mod M) = ∞, but ck /∈ M ∨ Ve. Suppose that
s is the least stage such that no R〈e1,k1〉 for 〈e1, k1〉 < 〈e, k〉 requires attention
after s. This means that no marker Γj for j ≤ 〈e, k〉 is moved after stage s.
Suppose that anj

is the element marked by the marker Γj for j = 0, . . . , 〈e, k〉.
Since dim((Ve ∨ M) mod M) = ∞, we also have

dim((Ve ∨ M) mod cl(M ∪ {an0 , . . . , an〈e,k〉 , ck})) = ∞.

Therefore, there are a stage s1 > s and y ∈ V s1
e such that

y /∈ cl(Ms1 ∪ {an0 , . . . , an〈e,k〉 , ck}).

Then y + ck /∈ cl(Ms1 ∪ {an0 , . . . , an〈e,k〉}). The requirement R〈e,k〉 will receive
attention via y at stage s1, and will then remain satisfied. �

6 Automorphisms of the Lattices of Vector Spaces

The study of automorphisms of structures of importance in computable model
theory connects computability theory with classical group theory. Let d be a
Turing degree. For an infinite computable structure A, we define Autd(A) to be
the set of all automorphisms of A, which are computable in d. The set Autd(A)
forms a group under composition and it is a subgroup of the group Aut(A)
of all automorphisms of A. It is natural to ask questions about computability-
theoretic properties of this group and its subgroups. When the structure A is
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ω with equality, then its automorphism group Aut(A) is usually denoted by
Sym(ω), the symmetric group of ω. Hence we have

Symd(ω) = {f ∈ Sym(ω) : deg(f) ≤ d}.

Lachlan showed that there are 2ℵ0 automorphisms of E∗. Every automor-
phism of E induces an automorphism of E∗. Every computable permutation of
ω induces an automorphism of E , and hence of E∗. Every automorphism of E∗ is
induced by some permutation of ω, which is not necessarily computable. Hence,
since every automorphism of E∗ is induced by some automorphism of E , there
are 2ℵ0 automorphisms of E .

By L we denote the lattice of all subspaces of V∞. For a Turing degree d, by
Ld(V∞) we denote the following sublattice of L:

Ld(V∞) = {V ∈ L : V is d-computably enumerable}.

Note that L0(V∞) is the same as L(V∞). The problem of finding the number of
automorphisms of L∗(V∞) is still open. However, Guichard [30] established that
there are countably many automorphisms of L(V∞) by showing that each com-
putable automorphism is generated by a 1 − 1 and onto computable semilinear
transformation of V∞.

Recall that a pair (μ, σ) is a semilinear transformation of V∞ if μ : V∞ → V∞
and σ is an automorphism of F such that

μ(αu + βv) = σ(α)μ(u) + σ(β)μ(v)

for every u, v ∈ V∞ and every α, β ∈ F . By GSLd we will denote the group of 1−1
and onto semilinear transformations (μ, σ) such that deg(μ) ≤ d and deg(σ) ≤ d.
Thus, Guichard proved that every element of Aut(L0(V∞)) is generated by an
element of GSL0. It is easy to show that this result can be relativized to an
arbitrary Turing degree d.

Theorem 48. Every Φ ∈ Aut(Ld(V∞)) is generated by some (μ, σ) ∈ GSLd.
Moreover, if Φ is also generated by some other (μ1, σ1) ∈ GSLd, then there is
γ ∈ F such that

(∀v ∈ V∞) [μ(v) = γμ1(v)].

Proof. Note that each automorphism Φ of Ld(V∞) acts on the one-dimensional
subspaces of V∞ and hence generates a unique automorphism Φ of L. By the
fundamental theorem of projective geometry applied to the lattice L, since Φ is in
Aut(L), it follows that it is generated by a semilinear transformation (μ, σ). Note
that (μ, σ) also generates Φ. We will now show that deg(μ) ≤ d and deg(σ) ≤ d.

Let α0, α1, α2, . . . be a fixed computable enumeration of the elements of the
field F. Assume that v0, v1, v2, ... is a computable enumeration of a computable
basis of V∞. Define the following computable subspaces of V∞:

U1 = cl({v0, v2, v4, . . .}),
U2 = cl({v1, v3, v5, . . .}),
U3 = cl({v0 + v1, v2 + v3, v4 + v5, . . .}),
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U4 = cl({v1 + v2, v3 + v4, v5 + v6, . . .}),
U5 = cl({v0 + α0v1, v2 + α1v3, v4 + α2v5, . . .}).

Suppose that Φ(Ui) = Yi for i = 1, . . . , 5, and note that Yi ∈ Ld(V∞) since
Ui ∈ Ld(V∞).

To prove that deg(μ) ≤ d, suppose that μ(v0) = w0 for some fixed w0.
Assume inductively that μ(v2i) = w2i has been found d-computably. To find
d-computably μ(v2i+1), we let w2i+1 be the least y ∈ Y2 such that w2i + y ∈ Y3.
Then we have μ(v2i+1) = w2i+1. Next, to find d-computably μ(v2i+2), we let
w2i+2 be the least y ∈ Y1 such that w2i+1 + y ∈ Y4. Then we have μ(v2i+2) =
w2i+2.

Finally, to find d-computably σ(α
i
), we look for the least w ∈ Y5 and β ∈ F

such that w = w2i + βw2i+1 and note that σ(α
i
) = β. It is not difficult to

prove that if our choice for μ(v0) is a scalar multiple of the original w0, namely,
μ(v0) = γw0, then μ(vi) = γwi for every i ≥ 1. �

The Turing degree spectrum of a countable structure A is

DgSp(A) = {deg(B) : B ∼= A},

where deg(B) is the Turing degree of the atomic diagram of B. Knight [37] proved
that the degree spectrum of any structure is either a singleton or is upward
closed. Jockusch and Richter (see [53]) defined the degree of the isomorphism
type of a structure, if it exists, to be the least Turing degree in its Turing degree
spectrum. Morozov [47] established that the degree of the isomorphism type of
the group Symd(ω) is d′′.

Theorem 49 (Dimitrov, Harizanov and Morozov [12]). The degree of the iso-
morphisms type of the group GSLd is d′′.

In 1998, Downey and Remmel [26] raised the question of finding meaningful
orbits in L∗(V∞). Recently, Dimitrov and Harizanov [9] gave a necessary and
sufficient condition for quasimaximal vector spaces with extendible bases to be
in the same orbit of L∗(V∞). The condition is stated in terms of m-degrees.

Unlike for the principal filters in E∗ determined by quasimaximal sets of
a fixed rank, there are several possibilities for the principal filters in L∗(V∞)
determined by the closures of quasimaximal subsets of a computable basis. More
precisely, Dimitrov [5,6] gave a description of all possible isomorphism types of
L∗(cl(B), ↑) when B is a quasimaximal subset of rank n of any computable basis
of V∞. He proved that L∗(cl(B), ↑) is isomorphic to either:

(1) Boolean algebra Bn (which has 2n elements),

(2) the lattice L(n,
∏
C

F ) of all subspaces of an n -dimensional vector space over

a certain extension
∏
C

F of the underlying field F , or

(3) a finite product of structures from the previous two cases.
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Note that the Boolean algebra Bn in (1) can also be viewed as a product of n
copies of the Boolean algebra B1. The extensions

∏
C

F of F mentioned in (2) are

cohesive powers (see the definition below) of the field F over various cohesive
sets C. Using the results in [11] it follows that these principal filters fall into
infinitely many non-isomorphic classes, even when the filters are isomorphic to
the lattices of subspaces of the vector spaces of the same dimension. Cohesive
power is related to the versions of effective ultraproducts previously used by
Hirschfeld, Wheeler, and McLaughlin [34,35,41,42] in their study of models of
various fragments of arithmetic. As usual, we will denote the equality of partial
functions by �.

Definition 50. Let A be a computable structure with domain A in a computable
language S, and let C ⊆ ω be a cohesive set. The cohesive power of A over C,
denoted by

∏
C

A, is a structure B for S with domain B defined as follows.

(1) The set B is D/(=C), where D = {ϕ | ϕ : ω → A is a partial computable
function, and C ⊆∗ dom(ϕ)}.
For ϕ1, ϕ2 ∈ D, we have

ϕ1 =C ϕ2 iff C ⊆∗ {x : ϕ1(x) ↓= ϕ2(x) ↓}.

The equivalence class of ϕ with respect to =C will be denoted by [ϕ]C , or
simply by [ϕ] (when the reference to C is clear from the context).

(2) If f ∈ S is an n-ary function symbol, then fB is an n-ary function on
B such that for every [ϕ1], . . . , [ϕn] ∈ B, we have fB([ϕ1], . . . , [ϕn]) = [ϕ],
where for every x ∈ ω,

ϕ(x) � fA(ϕ1(x), . . . , ϕn(x)).

If P ∈ S is an m-ary predicate symbol, then PB is an m-ary relation on B
such that for every [ϕ1], . . . , [ϕm] ∈ B,

PB([ϕ1], . . . , [ϕm]) iff C ⊆∗ {x ∈ ω | PA(ϕ1(x), . . . , ϕm(x))}.

If c ∈ S is a constant symbol, then cB is the equivalence class of the (total)
computable function on A with constant value cA.

In the context of c.e. vector spaces, the most interesting cases occur when
F is finite or F = Q. For finite F , we have

∏
C

F ∼= F . Various results about

the cohesive powers of Q have been established in [7,11]. These results, together
with the above classification of the possible isomorphism types of L∗(cl(B), ↑),
were used in the proof of the result discussed in the next paragraph.

To state the theorem, we introduced the notion of an m-degree type of a qua-

simaximal set E =
n⋂

i=1

Mi of rank n, denoted by type(E). This notion captures

the number and the m-degrees of the maximal sets Mi’s. For i = 1, 2, let Ei ⊆ Ai
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be a quasimaximal subset of a computable basis Ai. Dimitrov and Harizanov [9]
proved that, assuming that the field is Q, there is an automorphism Φ of L∗(V∞)
such that Φ([E1]) = [E2] if and only if typeA1(E1) = typeA2(E2). Since maximal
sets are also quasimaximal, we have the following corollary.

Theorem 51 (Dimitrov and Harizanov [9]). Assume that the underlying field
is Q. Let M1 and M2 be maximal subsets of computable bases B1 and B2 of V∞,
respectively. Then the following are equivalent:

(1) There is an automorphism Φ of L∗(V∞) such that

Φ([M1]) = [M2],

(2) degm(M1) = degm(M2).

In some cases, it is also possible to connect the embeddability of the sub-
groups with Turing degree complexity. Morozov showed that the correspondence
d → Symd(ω) can be used to substitute Turing reducibility with group-theoretic
embedding. More precisely, Morozov [45] established that for every pair d, s of
Turing degrees, we have

(Symd(ω) ↪→ Syms(ω)) ⇔ (d ≤ s).

It follows from this result that d = s if and only if Symd(ω) ∼= Syms(ω). In [12],
we established a similar result for the subgroups of the group of automorphisms
of the lattice of the subspaces of V∞.

Theorem 52 (Dimitrov, Harizanov and Morozov [12]). For any pair of Turing
degrees d, s we have

(Aut(Ld(V∞)) ↪→ Aut(Ls(V∞))) ⇔ d ≤ s.
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