

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Projekt "Budování excelentního vědeckého týmu pro experimentální a numerické modelování v mechanice tekutin a termodynamice"

Registrační číslo projektu: CZ.1.07/2.3.00/20.0139

Zpráva ze stáže na Univerzitě v Drážďanech

Zpráva ze stáže realizované v rámci projektu

Ing.Jan Barák

2013

Studijní pobyt: Technische Universität Dresden, Německo

Jan Barák, 21.10.2013 až 20.12.2013

Tento studijní pobyt měl za cíl navázat na předchozí třítýdenní pobyt na stejném pracovišti v prosinci 2012. Cílem bylo navázat kontakt a spolupráci s místními specialisty na proudění v mechanice tekutin. Cílem dlouhodobějšího pobytu v roce 2013 bylo prohloubení spolupráce a tvorba odborného článku o kondenzaci vlhkého vzduchu. Výsledky výzkumu byly představeny při přednášce v anglickém jazyce pro celou katedru dne 17.12.2013. Zároveň byl vytvořen společný článek, který byl poslán na konferenci Interational Conference on Fluid Mechanics, Heat Transfer and Thermodynamics do Dubaje, kde byl také na konci ledna 2014 prezentován zhruba dvacetičlennému mezinárodnímu publiku. Během celého pobytu byla s místními odborníky konzultována odborná témata z oblasti proudění tekutin, kdy mi zároveň bylo z jejich strany umožněno nahlédnout na jejich způsob práce a využívání nejen teoretických, ale i praktických poznatků.

	CFD M	Aodeling of C	Condensation in Heat Excha	angers
<u>Overview</u>	Conden	sation	Improved model	Flow in heated room
Duration o	f stay at 7	ГUD:		
Arri	val:	21.10.20	13	
Dep	arture:	20.12.20	13	
Sup	ervisor:	PD DrIn	ng. Habil. Jörg Stiller	
Content of	presenta	tion:		
1.	Condensatio	n in Heat Exe	changer Using CFD	
2.	Improved m	odel of conde	ensation	
3.	Flow in heat	ed room		

	CFD Modeling of Condensation in Heat Exchangers					
Overview	Condensation	Improved model	Flow in heated room			
Conc	Condensation of Moist Air in Heat Exchanger Using CFD					
1. Introduct	tion					
	Goal is to reduce energy c Literature research	onsumption for room cooling	g			
2. Test Cas	e Summary of most importa	int parameters				
	Simple-geometry channel Volume and mass fraction Different setting were test Grid independence test Analytical determination	was used of phases were computed ed of condensate				
3. Experime	ent					
	Description Data have been recorded Amount of condensate wa	s measured				
4. Numeric	al Model					
	Only space between two r No solid-fluid interface Simple boundary conditio Comparison of results	ibs was considered ns were used				
5. Conclusi	ion					

CFD Modeling of Condensation in Heat Exchangers					
Overview <u>Conc</u>	<u>lensation</u>	Improved model Flow in heated room			
	Calculation model	Condensa	te (kg·s ⁻¹)	Conde	ensate (g·h ⁻¹)
Different models	к-е	9,103	·10 ⁻⁷		3,277
test	κ-ε EARSM	9,093·10 ⁻⁷		3,273	
	RNG ĸ-ε	8,586-10-7		3,091	
κ-ω		1,138-10-6		4,097	
Comparison of results For 234 ribs					
			Value	Unit	Comparison
	Need 1	Experiment	264,163	g·h ⁻¹	100 %
		CFX	766,836	g·h ⁻¹	290 %
More accurate model must be created for more suitable res				l must be able results	

	CFD Model	ing of Condensati	on in Heat Exchangers	
Overview	Condensation Improved model			Flow in heated room
Comparison of	results			
mass flow inlet	7.944e	-05 [kg s^-1]		
mass flow out	et -7.883e	-05 [kg s^-1]		
lost weight	6.193e	-07 [kg s^-1])7 [kg s^-1] 1 rib	
whole convect	or 1.449e	-04 [kg s^-1]	234 ribs grams per seco	nd
	5.217e	+02 [kg s^-1]	234 ribs grams per hour	
Experiment	264,163	Grams per hour	Real value	100 %
Num. model no.1	766,863	Grams per hour	From diploma t	hesis 290 %
This model	521.7	Grams per ho	Ir Fined BC	197 %
	- ,			

Institut für Strömungsmechanik, Professur für Strömungsmechanik

Vortrag

CFD Modeling of Condensation in Heat Exchangers

Dipl.-Ing. Jan Barák

Technische Universität Liberec

The talk summarizes recent work on better understanding and improving convective heat exchangers at TU Liberec and concludes the internship of the speaker at the Chair of Fluid Mechanics at TU Dresden.

1) Condensation of moist air in a heat exchanger: test case, experiment description, numerical model, comparison of results

2) Flow in a heated room with consideration of cooled walls: introduction, numerical model, different boundary conditions

3) Outlook: Measures for improving the numerical model

Termin: **17. Dezember 2013, 13 Uhr** Ort: **ZEU 150A**