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Abstract. This sequel to [7] focuses on the structure of the ring
Λ(G) of subquotients of the finite group G. We show that this ring
is isomorphic with the Grothendieck ring of the category of pure
(G,G)-bisets, which are bisets containing no isogations. We also
determine, over a field of characteristic zero, the Mackey functor
structure and the primitive idempotents of Λ(G). Main tool of this
determination is the marks of subquotients on each other.
Keywords: Ring of subquotients, mark morphism, pure biset,
primitive idempotents, orbit counting.

1. Introduction

In [7], we introduced the ring Λ(G) of subquotients of a finite group
G. As an abelian group, it is free on the set of conjugacy classes of
subquotients of G, where by a subquotient we mean a quotient of a
subgroup of G. More precisely, we define

Λ(G) =
∑

H/N¹GG

Z[H/N ]G

where the sum is over a set of representatives of the conjugacy classes of
subquotients of G. We turn this group to a ring by extending linearly
the following multiplication:

[H/N ]G · [K/M ]G =
∑

x∈H\G/K
xMN≤H∩xK

[H ∩ xK/xMN ]G.

The aim of the first part of this paper is to show that the ring
Λ(G) has a natural structure of a ◦-biset functor and there is a natural
morphism

link,G : Λ(G) → Rµk
(G)

from the functor Λ of subquotients to the functor Rµk
of the represen-

tation ring of Mackey functors, which is also a ◦-biset functor. Here a
◦-biset functor is defined like a biset functor except that the composi-
tion of bisets is given by another amalgamation product dual to the one
introduced by Bouc [2]. See [7] for details. Now the above morphism
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is defined as the linear extension of the following correspondence: Let
H/N be a subquotient of the group G. Then

link,G([H/N ]G) = IndG
H InfH

H/N DefH
H/N ResG

H BG

where BG denotes the Burnside Mackey functor for G.
This morphism, sharing certain properties with the linearization map

from the Burnside ring to the representation ring, is called the lineariza-
tion map. See [7] for details.

Aim of the present paper is to have a closer look at the ring structure
of the ring Λ(G) of subquotients of G. Our first result is to realize the
ring Λ(G) as a Grothendieck ring of the category of pure (G, G)-bisets.
We define a transitive pure (G,G)-biset as a transitive (G,G)-biset
(G×G

U
) where U = {(g, h) ∈ H×H| gN = hN} for some subgroups N £

H ≤ G. Then a pure (G,G)-biset is a biset each of whose (G, G)-orbits
are transitive pure (G,G)-bisets. With this definition Λ(G) becomes
the Grothendieck group of the category of pure (G,G)-bisets. To obtain
the ring structure, we show that there is a categorical product of pure
bisets, denoted by ?G, given by

(G×G

U

)
?G

(G×G

V

)
=

∑

x∈H\G/K
xMN≤H∩xK

( G×G

U ∗ xV

)
.

where both (G×G
U

) and (G×G
V

) are pure bisets and the subgroups N £H
and M £ K are the corresponding pairs of subgroups of G and

U ∗ V = {(g, h) ∈ G×G | ∃k ∈ G : (g, k) ∈ U, (k, h) ∈ V }.
This product gives the Grothendieck group a ring structure which co-
incides with the ring structure of Λ(G). See Section 2 for details.

There is a related construction by Bouc in [2]. Bouc considered the
category of (G,G)-bisets with the categorical product given by his ◦-
product. Then he considered the subring of the Grothendieck ring of
this category generated by transitive (G,G)-bisets of the form (G×G

U
)

where U = {(g, h) ∈ G × G : g ∈ X, gh−1 ∈ N}. Here N and X are
subgroups of G such that X normalizes N , not necessarily containing
N . It is easy to show that as an abelian group, the ring of subquotients
is the subgroup generated by those bisets with the condition that X
contains N . From this it is clear that the containment is strict.

In Section 3, we look at the Mackey functor structure of the ring Λ(G)
where we show that Λ is induced from the restriction functor whose
evaluation at a subgroup H is free on the set of normal subgroups of
H. We also determine the simple summands of the semisimple Mackey
functor QΛ and give a decomposition over an arbitrary field.
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Next section, Section 4, deals with the ghost ring of the ring Λ(G)
and the mark homomorphism between them. The ghost ring of the
Burnside ring is defined as the ring of class functions, that is, functions
constant on the conjugacy classes of subgroups. Then the mark homo-
morphism is defined as the map from the Burnside ring to the ghost
ring which associates each G-set the function which takes the number
of fixed points of the action of the corresponding subgroup.

Similarly, we define the ghost ring Λ∗(G) of the ring of subquo-
tients as the ring of functions constant on the conjugacy classes of
subquotients. Then the (generalized) mark of a subquotient K/L on
the subquotient H/N is the number

mK/M,H/N := |{x ∈ G/H : K/L ≤ x(H/N)}|.
This extends the definition of the mark of a subgroup on another one.
We show that the table of generalized marks is lower triangular with
non-zero determinant. Moreover the associated mark morphism for
the ring Λ(G) is a ring homomorphism and in particular, it has a finite
cokernel which is described by the Fundamental Theorem, see Theorem
5.2.

Given a finite G-set X, the well known orbit counting lemma counts
the number of orbits of G on X using the (ordinary) marks. In Section
4, we prove a generalization of this result, see Theorem 4.7. More
precisely, we prove that given a subgroup H and a subquotient K/M
of G such that M ≤ H ≤ K, then the number of conjugates of H that
is contained in K and contains M is given by

|H|
|NG(H)|

∑

g∈NG(H)

m<g>H/H,K/M .

In the final two sections, we determine a formula for the primitive
idempotents of the algebra QΛ(G) and also determine the prime ideals
of the ring Λ(G). Our strategy in this section is to use the mark homo-
morphism (which is an isomorphism once we extend the coefficients to
Q) to find inverse images of primitive idempotents of the ghost ring.

Finally, at the end of the paper, we include two examples of table of
generalized marks (for the groups S3 and A4).

2. The category of Pure Bisets

2.1. In this section we introduce the category of pure bisets. For a
review of the terminology of bisets and for our notation, we refer to
[7, Section 3.1]. We only recall that given finite groups G and H and
a subgroup U of the direct product G × H, we denote the transitive
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(G,H)-biset with the point stabilizer U by (G×H
U

) and by Bouc’s de-
composition theorem, any such biset is equal to the product of five basic
bisets called induction, inflation, isogation, deflation and restriction. In
the notation of [7], we have

(G×H

U

)
= TinG

p1/k1
cφ
p1/k1,p2/k2

DesH
p2/k2

where p1 and p2 are the respective projections of U to G and H and
the subgroups k1 and k2 are given by

k1 = {g ∈ G : (g, 1) ∈ U} and k2 = {h ∈ H : (1, h) ∈ U}.
The isomorphism

φ : p2/k2 → p1/k1

is the one given by associating lk2 to mk1 where for a given element
l ∈ p2 we let mk1 be the unique element in p1/k1 be such that (m, l) ∈
U . Finally for groups H/N ¹ G and φ : G ∼= K, the bisets in the right
hand side of the above decomposition are the following compositions

TinG
H/N = IndG

H InfH
H/N , DesG

H/N = DefH
H/N ResG

H , cφ
G,K = isoφ

G,K

with the usual definitions of induction, inflation, deflation, restriction
and isomorphism bisets.

2.2. ?-Product of Bisets. There are two known way of defining
amalgamated products of bisets. The first one is the well-known amal-
gamation, denoted×G, which is defined as the quotient of the Cartesian
product by the G-action. The second one is the ◦-product introduced
by Bouc in [2], which we use in the first part of the paper in which we
also consider the dual of this product, written ◦∗. Nevertheless none
of these amalgamations is appropriate to amalgamate pure bisets, in-
troduced below. As a preparation to amalgamation of pure bisets, we
introduce, yet, another product of bisets as follows.

Let G,H and K be finite groups and U be a subgroup of G×H and
V be a subgroup of H×K. We define the ?-product of the (G,H)-biset
(G×H

U
) and the (H, K)-biset (H×K

V
) by

(G×H

U

)
?H

(H ×K

V

)
:=

⊔

x∈p2(U)\H/p1(V )
xk1(V )k2(U)≤xp1(V )∩p2(U)

(G×K

U ∗ xV

)

which is clearly a (G,K)-biset. It is easy to check that the ?-product
is associative. We define the ?-product of two arbitrary bisets by ex-
tending linearly the ?-product of transitive bisets.
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2.3. It is evident from the definition that the above decomposition
formula still holds with the ?-product. Therefore we will continue to
decompose transitive bisets into products of basic ones as above. When
there is no ambiguity, we shall use expressions like TinG

H/NDesG
H/N in-

stead of TinG
H/N ?H/N DesG

H/N .

2.4. Pure Bisets. Assume the above notation. Suppose G = H.
Then we call the biset (G×G

U
) a (transitive) pure (G,G)-biset1 if we

have

(p1(U), k1(U)) = (p2(U), k2(U)).

Then a (G,G)-biset is called pure if and only if any (G,G)-orbit of this
biset is a transitive pure (G,G)-biset.

In terms of basic bisets, (G×G
U

) is a pure (G,G)-biset if and only if
the equality (G×G

U

)
= TinG

H/N DesG
H/N

holds, where we put (H,N) := (p1(U), k1(U)) = (p2(U), k2(U)). Also
if (G×G

U
) is a pure biset, we call the subgroup U of G × G a pure

subgroup. It is clear from this identification that there is a bijective
correspondence between

(1) the pure subgroups of G×G and
(2) the subquotients of G

given by associating a pure subgroup U to the subquotient p1(U)/k1(U).
For the inverse correspondence, given a subquotient H/N of G, we de-
fine the corresponding pure subgroup U by

U = {(g, h) ∈ H ×H | gN = hN}
2.5. Notation. Given a pure subgroup U of G × G, we denote the
transitive pure (G,G)-biset with point stabilizer equal to U by

(p1(U)/k1(U))G.

and its isomorphism class by

[p1(U)/k1(U)]G.

The following proposition is self-evident.

2.6. Proposition. There is a bijective correspondence between

(1) The isomorphism classes [G×G
U

] of transitive pure (G,G)-bisets,
(2) the conjugacy classes [U ] of pure subgroups of G×G,
(3) the conjugacy classes [H/N ] of subquotients of G.

1The terminology is introduced by Ergün Yalçın in an algebra seminar.
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2.7. A categorical product of pure bisets. Let U and V be two
pure subgroups of G×G with the corresponding subquotients H/N and
K/M in G. Then we define the categorical product of pure (G,G)-bisets
by the ?-product of these biset, which amounts to

(G×G

U

)
?G

(G×G

V

)
=

⊔

x∈H\G/K
xMN≤xK∩H

( G×G

U ∗ xV

)
.

Now this definition claims that for any index x of the above sum,
the subgroup U ∗ xV is also a pure subgroup, which shows that the ?-
product of bisets restricts to a product of pure (G,G)-bisets. To justify
the claim, recall that by definition,

U ∗ xV = {(g, h) ∈ G×G | ∃k ∈ G : (g, k) ∈ U, (k, h) ∈ xV }.
Straightforward calculations show that the equalities

p1(U ∗ xV )/k1(U ∗ xV ) = H/N u x(K/M)

and

p2(U ∗ xV )/k2(U ∗ xV ) = x(K/M) uH/N

hold. Here given subquotients H/N and K/M of G, we define

H/N uK/M :=
(H ∩K)N

(H ∩M)N

which we call the intersection of the subquotients H/N and K/M .
Note that, in general, this intersection is not commutative but by
Zassenhaus’ Butterfly Lemma, we have an isomorphism H/NuK/M ∼=
K/M u H/N . Now we need to show that under the condition that
xMN ≤ H ∩ xK, the intersection commutes which follows from the
following calculations.

H/N u x(K/M) =
(H ∩ xK)N

(H ∩ xM)N

=
H ∩ xK

xMN

=
(H ∩ xK)xM

(K ∩N)xM

= x(K/M) uH/N

Therefore we have proved the following theorem.
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2.8. Theorem. (Mackey Formula) The ?-product of (G, G)-bisets re-
stricts to a well-defined product on the full subcategory of pure (G, G)-
bisets. Moreover given pure subgroups U and V of G × G with corre-
sponding subquotients H/N and K/M we have

(H/N)G ?G (K/M)G =
⊔

x∈H\G/K
xMN≤xK∩H

(H ∩ xK/xMN)G.

2.9. Remark. Decomposing the above pure (G,G)-bisets as (H/N)G =
TinG

H/NDesG
H/N and (K/M)G = TinG

K/MDesG
K/M , one can rewrite the

Mackey formula in the following form

TinG
H/NDesG

H/N?GTinG
K/MDesG

K/M =
⊔

x∈H\G/K
xMN≤xK∩H

TinG
H∩xK/xMNDesG

H∩xK/xMN .

2.10. Now we define the category PG of pure (G, G)-bisets as the cat-
egory where

• the objects of PG are the pure (G,G)-bisets.
• The set of morphisms between two pure (G,G)-bisets is the set

of (G,G)-biset morphisms and
• the composition is given by composition of maps.

From the above discussion, we obtain a bifunctor

? ?G ? : PG × PG → PG

which is associative, up to a natural isomorphism, with a left and right
identity being the object [G/1]G. Therefore the category PG of pure
(G,G)-bisets is a symmetric monoidal category with the unit object
the pure (G,G)-biset [G/1]G.

2.11. The Grothendieck ring of PG. We denote by BP(G) the
Grothendieck ring of the category PG of pure (G,G)-bisets with respect
to disjoint unions and the categorical product of pure bisets.

More precisely we define BP(G) as the quotient of the free abelian
group on the set of isomorphism classes of pure (G,G)-bisets, by the
subgroup generated by all the elements of the form [X tY ]− [X]− [Y ],
where X and Y are (finite) pure (G,G)-bisets, and [X] denotes the
isomorphism class of X. The product on BP(G) is defined by [X][Y ] =
[X ?G Y ].

Clearly the ring BP(G) is an associative commutative ring with unity
[G×G
∆(G)

] where ∆(G) is the diagonal inclusion of G in G × G, that is,

∆(G) = {(g, g) ∈ G × G | g ∈ G}. Note that the subquotient corre-
sponding to this pure subgroup is G/1. Now the following proposition,
although self-evident, is stated for convenience.
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2.12. Proposition. The Grothendieck ring BP(G) of pure (G,G)-
bisets is isomorphic with the ring Λ(G) of subquotients of G via the
ring isomorphism

ι : BP(G) → Λ(G),
[G×G

U

]
7→ [p1(U)/k1(U)]G.

2.13. Remark. From the above proposition, it is clear that the Burn-
side ring B(G) of G can be identified with the subring of Λ(G) gener-
ated as an abelian group by the left and right free pure (G,G)-bisets.

3. Mackey functor structure

3.1. Poset of subquotients. We recall our notation from [7]. Let
G be a finite group. A subquotient of G is a pair (H∗, H∗) where
H∗ E H∗ ≤ G. We write the pair (H∗, H∗) as H and denote the
subquotient relation by H ¹ G. Here, and afterwards, we regard the
group G as the subquotient (G, 1). When it is more convenient, we
write (H, N) and H/N instead of (H∗, H∗) and H.

The group G acts on the set of its subquotients by conjugation. We
write H ¹G G to mean that H is taken up to G-conjugacy. Note that
we always consider H as the quotient group H∗/H∗. Therefore, for
example, what we mean by up to G-conjugation is that the subgroup
H∗ is taken up to G-conjugacy and the normal subgroup H∗ of H∗ is
taken up to NG(H)-conjugacy.

The relation ¹ extends to a partial order on the set of all subquo-
tients of G in the following way. Let J and H be two subquotients of G.
Then we write J ¹ H if and only if H∗ ≤ J∗ and H∗ ≥ J∗. In this case
the pair (J∗/H∗, J∗/H∗) is a subquotient of H. The poset structure is
compatible with the G-action, that is, the set of subquotients of G is
a G-poset.

Also we say that two subquotients H and K of G are isomorphic if
and only if they are isomorphic as groups, that is, if H∗/H∗ ∼= K∗/K∗.
In this case, write H ¹∗ G to mean that H runs over a set of represen-
tatives of isomorphism classes of subquotients of G, or we simply say
that H is taken up to isomorphism.

3.2. Relations with subgroups. In this subsection, we will con-
sider the maps between the rings of subquotients for the subgroups of
G. There are three classical maps to consider, namely induction map,
restriction map and conjugation map.
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3.2.1. Induction map. Let X ≤ Y be subgroups of G. Let H/N be a
subquotient of X. Then clearly the subquotient H/N embeds in to the
over group Y in a natural way. We still denote the embedding of H/N
to Y by H/N . This induces a map on the set of conjugacy classes of
subquotients and by linear extension, we obtain a map

IndY
X : Λ(X) → Λ(Y )

which we call induction. More precisely we have

IndY
X([H/N ]X) = [H/N ]Y .

Note that, clearly, induction is a map of abelian groups and not a map
of rings. It is also clear that the induction map is transitive.

3.2.2. Restriction map. Let X ≤ Y still be subgroups of G. Let K/M
be a subquotient of Y . As in the case of the product, there are several
options for the map going from the ring Λ(Y ) to Λ(X) and we shall
chose the one that is appropriate for the rest of the paper. We define
the restriction map

ResY
X : Λ(Y ) → Λ(X)

by the formula

ResY
X([K/M ]Y ) =

∑

x∈X\Y/K
xM≤X

[X ∩ xK/xM ]X .

We shall prove in Section 3.4 that the restriction map, as defined above,
is a map of rings and is transitive.

3.2.3. Conjugation map. Let X still be a subgroup of G and g ∈ G.
The conjugation map

cg
H : Λ(X) → Λ(gX)

is defined as the map induced by the conjugation action of G on the
set of its subquotients. Precisely, we define the conjugation map as

cg
X([K/M ]X) := [gK/gM ]gX .

This map is also transitive and is a map of rings.

3.3. Mackey Structure. The groups Λ(H) as H runs over the set
of subgroups of G together with the above three maps is a Mackey
functor for G. Moreover the ring structure is compatible with the
Mackey structure, that is, the functor Λ is actually a Green functor.
This follows either by direct calculations or by the identification of the
next section. In this part, we review the theory of Mackey functors.
Details can be found in [12], [1] and [5].
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A Mackey functor for the finite group G over a commutative ring k
is a quadruple (M, t, c, r) where M is a family of k-modules consisting
of a k-module M(H) for each subgroup H of G. The triple (t, c, r) is
a triple of families of maps between these k-modules and are subject
to a number of relations, including the Mackey relation, see [12]. More
precisely, for each pair K ≤ H of subgroups of G, we have a transfer
map tHK : M(K) → M(H) and a restriction map rH

K : M(H) → M(K)
and for an element g and a subgroup H of G, a conjugation map cg

H :
M(H) → M(gH). It is well-known that Mackey functors are modules
over the Mackey algebra µk(G), see [12]. It is the quotient of the free
algebra on the set of above morphisms by the ideal generated by the
relations between these maps.

Simple modules of the Mackey algebra are determined by Thévenaz
and Webb in [11]. The simples are parameterized by pairs (H, V ) where
H ≤ G taken up to conjugation and V is a simple kNG(H)/H-module
taken up to isomorphism. Here NG(H) denoted the normalizer of H in
G. In this case, the corresponding simple Mackey functor is denoted
by SH,V .

One way of studying the structure of Mackey functors is to consider
functors with less structure, that is, to consider modules over certain
subalgebras of the Mackey algebra. Classical way of obtaining sub-
algebras is to consider Mackey algebras for subgroups. This is done
by Thévenaz and Webb in [11] and [12]. Another way of obtaining
functors with less structure is to forget some of the maps, see [1],[3],
[5]. Here we consider three other subalgebras, namely the conjugation
algebra γk(G) generated by conjugation maps, the restriction algebra
ρk(G) generated by restriction and conjugation maps and finally its
opposite, the transfer algebra τk(G) which is generated by transfer and
conjugation maps. The modules of these algebras are called conjuga-
tion functors, restriction functors and transfer functors, respectively,
see [1] and [5].

In [1], Boltje introduced two plus constructions relating these func-
tors to Mackey functors. In [5], it is shown that one of them which as-
sociates a Mackey functor to an arbitrary restriction functor and which
is denoted by −+ is naturally equivalent to the induction functor ρmod
→ µmod. On the other hand, the other one which associates a Mackey
functor to an arbitrary conjugation functor and which is denoted by
−+ is naturally equivalent to the composition of the inflation functor

γmod → τmod with the coinduction functor τmod → µmod. Moreover
for any restriction functor D, the associated mark homomorphism be-
tween the plus constructions can be obtained naturally in this context.
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The explicit descriptions of these functors and the mark morphism can
be found in [1].

In particular, when D is the constant restriction functor, the induced
Mackey functor indµ

ρD is isomorphic to the Burnside ring functor and
the above mark morphism coincides with the usual mark homomor-
phism for the Burnside ring. Next we show that it is possible to realize
the functor of the ring of subquotients in a similar way. This pro-
vides another nice way of identifying the ring Λ(G) and leads to the
description of the primitive idempotents.

3.4. An identification. Our next aim is to describe a restriction
functor T for G such that the induced Mackey functor Indµ

ρ T is iso-
morphic with the functor kΛ of subquotients for G over k. Using this
identification, it is easier to prove that the associated mark morphism
is a ring homomorphism, which we discuss in the next section. We also
use this to determine the inverse of this map over a field of character-
istic zero.

We define, for each subgroup H of G, the abelian group T (H) by

T (H) =
⊕
N£H

Z[N ]H .

In other words, T (H) is the free abelian group on the set of normal
subgroups of H. The conjugation maps are given by conjugating the
subgroups, that is, if g ∈ G then the conjugation map is given by
cg
H([N ]H) = [gN ]gH . Also for a pair K ≤ H of subgroups of G, the

restriction map is given by inclusion, that is,

rH
K : T (H) → T (K), [N ]H 7→ bN ≤ Kc[N ]K .

Here the notation bN ≤ Kc is the boolean operator which is equal to
1 when the inside proposition holds and zero otherwise. Clearly with
these definitions, T is a restriction functor. Moreover for any subgroup
H of G, the abelian group T (H) is a commutative, associative ring
with the multiplication given by

[N ]H · [M ]H = [NM ]H .

Note also that the basis element [1]H corresponding to the trivial sub-
group is the unit of the ring T (H). Moreover the restriction maps and
the conjugation maps are ring homomorphisms. A restriction functor
with this property is called an algebra restriction functor, see [1]. Hence
we have proved the following.
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3.5. Lemma. The functor associating a subgroup H of G to the abelian
group T (H) together with the above conjugation and restriction maps
is a restriction functor. Moreover the above product turns this functor
into an algebra restriction functor.

Now we are ready to prove the following identification.

3.6. Proposition. For any subgroup H of G, there are isomorphisms
of rings

Indµ
ρT (H) ∼= Λ(H).

Moreover this isomorphism is compatible with the induction, restriction
and conjugation maps. In other words the functor Λ becomes a Green
functor via the above isomorphism.

Proof. By [1, Section 2.2] and [5, Theorem 5.1], the isomorphism

Indµ
ρT (H) ∼=

( ⊕
K≤H

T (K)
)

H

of abelian groups holds. Here for any H-module M , we denote by MH

the largest quotient of M on which H acts trivially. Moreover it is
known that the module in right-hand side of the above isomorphism
is generated as an abelian group by the set {[K, a]H |K ≤H H, a ∈
T (K)}. Here [K, a]H denote the image of a ∈ T (K) in the quotient( ⊕

K≤H T (K)
)

H
. Now if we let a run over a NH(K)-basis of T (K),

that is over a complete set of representatives of NH(K)-orbits of normal

subgroups of K, the above set becomes a Z-basis for
( ⊕

K≤H T (K)
)

H
.

In other words the set

{[K, N ]H |K ≤H H,N ∈ [NH(K)\N(K)]}

is a basis for
( ⊕

K≤H T (K)
)

H
. Here we write N(K) for the set of all

normal subgroups of K and the notation N ∈ [NH(K)\N(K)] means
that N runs through a complete set of NH(K)-conjugacy class represen-
tatives of normal subgroups of K. Note that the above isomorphism is
given by associating a generator tHK⊗a of Indµ

ρT (H) to [K, a]H . There-

fore the induced module Indµ
ρT (H) has basis {tHK⊗ [N ]K |K ≤H H,N ∈

[NH(K)\N(K)]}.
Now it is clear that the correspondence

Indµ
ρT (H) → Λ(H), tHK ⊗ [N ]K 7→ [K/N ]H

sets up an isomorphism of abelian groups.



RING OF SUBQUOTIENTS OF A FINITE GROUP II: PURE BISETS 13

Now by [1, Section 2.2], there is a ring structure on the induced
functor Indµ

ρT , given, at a subgroup H of G, by

(tHK⊗[N ]K)·(tHL⊗[M ]L) =
∑

x∈K\G/L

tHK∩xL⊗((rK
K∩xL[N ]K)·(rxL

K∩xL[xM ]xL))

and with this ring structure, Indµ
ρT becomes a Green functor. Now by

the definition of product in T (H), we obtain the following formula.

(tHK ⊗ [N ]K) · (tHL ⊗ [M ]L) =
∑

x∈K\G/L
xMN≤K∩xL

tHK∩xL ⊗ [xMN ]K∩xL

which corresponds, under the above isomorphism, to the multiplication
in the ring Λ(H) of subquotients of H. In other words, the above
isomorphism is an isomorphism of rings.

Now induction, restriction and conjugation maps of the Mackey func-
tor Indµ

ρT is obtained by multiplication with the corresponding gener-
ator of the Mackey algebra from the left, which can easily be shown
to correspond these operations defined for the ring Λ(G). We refer
to [1] or [5] for more explicit formulas of induction, restriction and
conjugation maps for the functor Indµ

ρT . ¤
Our next result on the structure of the ring of subquotients is its

decomposition as a Mackey functor over a field K of characteristic
zero. It is well-known that the Mackey algebra is semisimple over K
(see [11]). In particular KΛ is semisimple as a Mackey functor, and we
have the following result.

Proposition 3.1. The following isomorphism of Mackey functors holds

KΛ ∼=
⊕

H≤GG

V ∈IrrK(NG(H))

mH,V SH,V .

Here mH,V =
∑

M dimV NG(H,N) where M runs over a complete set of
representatives of normal subgroups of H up to NG(H)-conjugacy and
where NG(H,M) := NNG(H)(M).

Proof. It is not difficult to prove that given a restriction functor D for G
over K, a simple Mackey functor SH,V for G over K is a direct summand
of Indµ

ρ D with multiplicity n if and only if the simple KNG(H)/H-
module V is a direct summand of D(H) with multiplicity n. Therefore
we only need to decompose KT (H) for each subgroup H of G. Given
a subgroup H of G, recall that, by definition, we have

T (H) =
⊕
N£H

K [N ]H .
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The action of the group NG(H) on this K-module is given by per-

mutation of the coordinates. Therefore if we denote by [N ]
NG(H)
H the

NG(H)-orbit sum of N , the above KNG(H)-module can be written as

KT (H) =
⊕

N∈[NG(H)\N(H)]

K [N ]
NG(H)
H .

But the stabilizer of the orbit of N is its normalizer in NG(H). There-
fore we get

KT (H) ∼=
⊕

N∈[NG(H)\N(H)]

Ind
NG(H)
NG(H,N)K

where the NG(H, N)-module K is the trivial module. Here we write
NG(H,N) for the group NNG(H)(N). Clearly the action of H on T (H)
is trivial and this decomposition is a decomposition of KNG(H)/H-
modules. Now given a simple KNG(H)/H-module V , the multiplicity
of V in KT (H) is

mH,V =
∑

N∈[NG(H)\N(H)]

< Ind
NG(H)
NG(H,N)K, V >

which is equal to the number given in the statement of the proposition,
by Frobenius reciprocity. ¤

3.7. A decomposition of Λ. The structure of the Mackey functor Λ
over an arbitrary field k is more complicated. Next we obtain a decom-
position of the functor of subquotients into (not necessarily indecom-
posable) Mackey functors, one of which is the Burnside ring functor.

Given a subgroup H of G, define the restriction subfunctor kTH of
kT := k ⊗ T by

kTH(K) =
⊕

L£K,L=GH

k[L]K

with the induced restriction and conjugation maps. Then it is clear
that kTH is a direct summand of kT . Moreover the functor kTH is
indecomposable for any H. Indeed the functor kTH is cogenerated by
its value at H, which is equal to k. Therefore the endomorphism ring
of TH , being equal to k, is local. Alternatively one can show that
there is an isomorphism of restriction functors TH = Coindρ

γ Sρ
H,1, from

which the indecomposability follows immediately. It is also clear that
TH = TL if, and only if, H =G L. Therefore we have shown that the
functor kT decomposes into indecomposable summands as

kT =
⊕

H≤GG

TH
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Now since induction is additive, this decomposition induces a decom-
position of the Mackey functor kΛ into summands kΛH := Indµ

ρ TH

where the evaluation kΛH(K) has basis consisting of subquotients of
the form [L/N ]K with N =G H. Therefore we have proved

3.8. Proposition. There is an isomorphism of Mackey functors

kΛ ∼=
⊕

H≤GG

kΛH

where kΛH is the Mackey functor Indµ
ρ Coindρ

γ Sγ
H,1.

3.9. Mackey structure in terms of pure bisets. It is possible
to describe the Mackey structure using the identification of the group
Λ(G) as the Grothendieck group of the category of pure (G,G)-bisets.
As far as the Mackey structure is concerned, we can slightly change
the definition of the group Λ(H) for H ¹ G as follows. We define a
(transitive) pure (H,G)-biset as a transitive (H, G)-biset (H×G

U
) which

can be decomposed as

(H ×G

U

)
= TinH

K/MDesG
K/M .

In other words, a pure (H, G)-biset is an (H,G)-biset which contains no
isogations. By [6, Theorem 3.3], there is a bijective correspondence be-
tween the isomorphism classes of pure (H,G)-bisets and the conjugacy
classes of subquotients of H.

Now as above, we obtain the category of pure (H,G)-bisets and de-
noting the Grothendieck group of this category by Λ(H, G), we obtain
an isomorphism of abelian groups

t : Λ(H) → Λ(H, G)

given by extending linearly the correspondence

[K/M ]H 7→ TinH
K/M DesG

K/M .

Now it is clear how to define induction, restriction and conjugation,
(and deflation and inflation) maps. For example, if X ≤ Y are sub-
groups of G, then the restriction map

ResY
X : Λ(Y ) → Λ(X)
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is defined by left multiplication pre-composed by the above isomor-
phism and post-composed by its inverse, that is,

ResY
X([K/M ]Y ) = t−1(DesY

XTinH
K/MDesG

K/M)

=
∑

x∈X\Y/K
xM≤X

t−1(TinX
(X∩xK)/xMDes

K/M
(X∩xK)/xMcx

K/MDesG
K/M)

=
∑

x∈X\Y/K
xM≤X

t−1(TinX
(X∩xK)/xMDesG

(X∩xK)/xM)

=
∑

x∈X\Y/K
xM≤X

[(X ∩ xK)/xM ]X

Here to obtain the third equality, we used compatibility of conjugation
maps with destriction maps, transitivity of destriction maps and that
the conjugation cx

G is identity if x ∈ G. Similarly one can obtain the
other maps.

4. Table of Generalized Marks

4.1. Generalized marks. In this section, we introduce marks of sub-
quotients on each other, which we call the generalized marks. The
induced mark homomorphism extends the usual one and has similar
properties. In particular, it is injective and after extending the coeffi-
cients to a field of characteristic zero, it becomes an isomorphism. In
the next section, we use these results to find an idempotent formula
for primitive idempotents of the algebra QΛ(G) = Q⊗Z Λ(G).

4.2. Definition. Given subquotients H/N and K/M of G. The (gen-
eralized) mark mK/M,H/N of K/M on H/N is the natural number

mK/M,H/N := |{x ∈ K\G/H : xN ≤ M, K ≤ xH}|.
Note that when both N and M are equal to the trivial subgroup of
G, the generalized mark is equal to the ordinary one. Now we call the
matrix formed by the marks of subquotients the table of (generalized)
marks. Once we order the set of subquotients by non-decreasing order
of their sizes, the table of generalized marks becomes lower triangular
as the following result shows.

4.3. Proposition. The table of generalized marks is lower triangular
with determinant ∏

K/M¹GG

|NG(K, M)|
|K| .
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where NG(K, M) = NG(K) ∩NG(M).

Proof. Clearly an entry mK/M,H/N of the table of marks is non-zero if
some conjugate of K/M is contained in H/N . Therefore the matrix is
upper triangular. Now a diagonal entry is given by

mK/M,K/M = |{x ∈ K\G/K : xM ≤ M, K ≤ xK}|
= |{x ∈ K\G/K : xM = M,K = xK}|
=

|NG(K,M)|
|K| .

as required. ¤
4.4. Remark. It is well-known that the table of (ordinary) marks
does not determine the group. Examples of non-isomorphic groups with
isomorphic table of marks are given by Thévenaz [10]. Unfortunately
the table of generalized marks could not identify these groups, too.
However the table of marks determines the table of ordinary marks, as
the following proposition shows.

4.5. Proposition. The table of generalized marks determines the
table of ordinary marks.

Proof. Given a table of generalized marks without the labels of columns
and rows, it is possible to determine the columns that corresponds to
subgroups. First, the order of the group G appears only once in the
diagonal and this entry corresponds to the mark m1/1,1/1. Indeed the
diagonal entries are

mK/M,K/M =
|NG(K, M)|

|K|
and mK/M,K/M = |G| is satisfied only if K = 1 is the trivial group.
Now m1/1,H/N is non-zero if and only if N = 1. Therefore the columns
corresponding to non-zero entries of the row corresponding to the trivial
group are the one that are indexed by subgroups of G. Since generalized
marks for subgroups coincide with the ordinary marks, the table of
marks is determined. ¤
4.6. The orbit counting lemma revisited. Now we come to the
main result of this section. The well known orbit counting lemma
(also known as the Cauchy-Frobenius-Burnside relation or Burnside’s
Theorem) states that given a finite G-set X, one has the number |X\G|
of G-orbits of X satisfies

|X\G| = 1

|G|
∑
g∈G

|X<g>|
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where X<g> denotes the set of < g >-fixed points of X. Recall that
given a subgroup K of G, the mark mK(X) of K on X is defined as the
number |XK | of K fixed points of X. Thus we can rewrite the above
equation as

|X\G| = 1

|G|
∑
g∈G

m<g>(X).

In particular, if X = G/H is transitive, then this equation becomes

|G| =
∑
g∈G

m<g>(G/H).

The generalized mark version of this equation is the following theorem.
It counts the number of certain conjugacy classes of a given subgroup.

4.7. Theorem. Let H be a subgroup of G and K/M be a subquotient
of G such that M ≤ H ≤ K. Then the number of K-conjugacy classes
of the G-conjugacy class of H that contains M is

|H|
|NG(H)|

∑

g∈NG(H)

m<g>H/H,K/M .

Proof. Recall that

m<g>H/H,K/M = |{x ∈< g > H\G/K|xM ≤ H, < g > H ≤ xK}|
which can be written as

m<g>H/H,K/M = |{x ∈ G/K|xM ≤ H, H ≤ xK, g ∈ xK}|.
Therefore we obtain the following equalities.

∑

g∈NG(H)

m<g>H/H,K/M =
∑

g∈NG(H)

|{x ∈ G/K|xM ≤ H,H ≤ xK, g ∈ xK}|

=
∑

g∈NG(H)
x∈G/K

bxM ≤ H ≤ xK, g ∈ xKc

where the notation bpc is the boolean operator which is equal to 1 if
p is true and is equal to zero otherwise. Changing the order of the
summation we get

∑

g∈NG(H)
x∈G/K

bxM ≤ H ≤ xK, g ∈ xKc =
∑

x∈G/K
xM≤H≤xK

|{g ∈ NG(H)|g ∈ xK}|

=
∑

x∈G/K
xM≤H≤xK

|NxK(H)|
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Now denote by X the indexing set of the last summation, that is, put

X := {xK ∈ G/K| xM ≤ H ≤ xK} = {x ∈ G/K|M ≤ Hx ≤ K}.
Then X is an NG(H)-set via left multiplication and as an NG(H)-set,
it decomposes as

X ∼=
⊔

x∈[NG(H)\X]

NG(H)/NxK(H).

Indeed h ∈ NG(H) is in the stabilizer in NG(H) of any left coset xK
of K in G if and only if hxK = xK if and only if h ∈ xK ∩NG(H) =
NxK(H).

It is clear that the function |N?K(H)| : X → Z is constant on the
NG(H)-orbits of the set X. Hence we get

∑

x∈G/K
xM≤H≤xK

|NxK(H)| =
∑

x∈[NG(H)\X]

|NG(H)|
|NxK(H)| |NxK(H)|

=
∑

x∈[NG(H)\X]

|NG(H)|

= |NG(H)\X||NG(H)|
Finally, it is also clear that the number |NG(H)\X| is the number of
K-conjugacy classes that contains M of the G-conjugacy class of H, as
required. ¤

4.8. Remark. To obtain the orbit counting lemma, one takes H = 1
the trivial subgroup. Indeed in this case the sum in the statement of
the above theorem is equal to 1 if M is the trivial subgroup and equal
to zero otherwise and the sum becomes

1

|G|
∑
g∈G

m<g>,K

which is the same summation as in the statement of the orbit counting
lemma.

5. Ghost Ring and the Mark Homomorphism

The generalized marks can also be interpreted as ring homomor-
phisms. Given a subquotient K/M , denote by βG

K/M the map

βG
K/M : Λ(G) → Z
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given by βG
K/M([H/N ]G) = mK/M,H/N . As in the case of the Burnside

ring, we also consider the product map

βG :=
∏

K/M¹GG

βG
K/M : Λ(G) →

∏

K/M¹GG

Z

which we call the mark homomorphism. It is clear from this definition
that the mark homomorphism is a homomorphism of abelian groups.
Next we show that it is a ring homomorphism.

First note that by the identification of Proposition 3.6 and by [1,
Section 2.3], we obtain a mark homomorphism

β̃G : Λ(G) → (
∏

K≤GG

T (K))G

defined as follows. Given a subquotient H/N of G, the K-th coordinate

β̃G
K([H/N ]G) of β̃G([H/N ]G) is

β̃G
K([H/N ]G) =

∑

x∈G/H
K≤xH

r
xH
K ([xN ]xH)

where restriction on the right hand side is the one defined for the re-
striction functor T . Applying this definition we obtain

β̃G
K([H/N ]G) =

∑

x∈G/H
xN≤K≤xH

[xN ]K .

Now by its definition, β̃G
K([H/N ]G) lies in T (K)NG(K) which has a ba-

sis consisting of the NG(K)-orbits [N ]GK of normal subgroups of K.
Moreover, for a normal subgroup M of K, there is a map

β̄K
M : T (K) → Z

given by

β̄K
M([N ]K) =

{
1, if N ≤ M ;
0, otherwise.

It is clear that for any normal subgroup M of G, the map β̄G
M is a ring

homomorphism and we have

βG
K/M = β̄K

M ◦ β̃G
K .

Therefore the mark homomorphism, βG, being a composition of two
ring homomorphisms is a ring homomorphism. Now we define the
ghost ring Λ∗(G) by

Λ∗(G) :=
∏

K/M¹GG

Z.
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Note that this ring can be identified by the ring of class functions
constant on the conjugacy classes of subquotients of G. Moreover by
the above discussion, there is an isomorphism

Λ∗(G) ∼= (
∏

K≤G

T (K))G ∼=
∏

K≤GG

T (K)NG(K)

of rings. Hence we have proved

5.1. Proposition. The map

βG : Λ(G) → Λ∗(G)

given by associating a subquotient H/N of G to the class function

fG
H/N : K/M 7→ |{x ∈ K\G/H : K/M ¹ x(H/N)}|

is a ring homomorphism.

5.2. Fundamental theorem. Let G be a finite group. Then there
is an exact sequence of abelian groups

0 Λ(G) Λ∗(G) Obs(G) 0.............................................................................. ............
βG

................................................ ............ ............................................................... ............ ................................................................................... ............

where βG is the mark homomorphism and

Obs(G) =
∏

K/M¹GG

Z/|NG(K, M) : K|Z.

Here one can interpret the group Obs(G) as the group of the ob-
structions for an element of the ghost ring to be an element of the ring
of subquotients.

Proof. By the above identification of the mark morphism and by The-
orem 4.1 of [8], the cokernel of the mark homomorphism is given by

CokerβG =
⊕

K≤GG

Ĥ0(NG(K)/K, T (K))

where Ĥ0(NG(K)/K, T (K)) is the 0-th Tate cohomology of the NG(K)/K-
module T (K). Now we also have

T (K) ∼=
⊕

M£NG(K)K

Ind
NG(K)/K
NG(K,M)/KZ
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where Z is the trivial NG(K,M)/K-module, since T (K) is a permuta-
tion NG(K)/K-module with permutation basis the set of normal sub-
groups of K. Now the result follows from Shapiro’s Lemma since

Ĥ0(NG(K)/K, T (K)) = Ĥ0(NG(K)/K,
⊕

M£NG(K)K

Ind
NG(K)/K
NG(K,M)/MZ)

=
⊕

M£NG(K)K

Ĥ0(NG(K, M)/K,Z)

Similarly, by the same theorem, Theorem 4.1 of [8], and by similar
calculations, we obtain that the kernel of the mark morphism is given
by

KerβG =
⊕

M∈[NG(K)\N(K)]

Ĥ−1(NG(K, M)/K,Z)

which is equal to zero as the Tate cohomology groups at the right hand
side are well-known to be zero. ¤

5.3. Remark. Note that the mark morphism is not compatible with
the ◦-biset functor structure of the functor Λ described in [7]. However
there is an alternative definition, described below, of a mark of sub-
quotient on another one which is also compatible with this structure.
Our reason of choosing the above one is that it is compatible with the
Mackey functor structure and hence it is easier to determine the inverse
of it. The alternative description goes as follows.

Given subquotients H/N and K/M of G. The ◦-mark nK/M,H/N of
K/M on H/N is the natural number

mK/M,H/N := |{x ∈ K\G/H : xN ≤ M,K ≤ xHM}|.
This definition also extends the ordinary marks and also the table of
◦-marks is upper triangular with the following order on the set of sub-
quotients of G.

We write K/M < H/N if and only if either |K/M | < |H/N | or
|K/M | = |H/N | and |M | > |N |. Now denote by S := {H0, H1, ·, Hn}
the ordered set of conjugacy classes of subquotients of G indexed in
such a way that for i < j, we have Hi < Hj or |Hi| = |Hj| and
|Hi∗| = |Hj∗|. Then the table of ◦-marks M is the matrix

M :=
(
mHi,Hj

)
Hi,Hj∈S .

To prove that the matrix is upper triangular, note that, given subquo-
tients K/M,H/N of G, the mark mK/M,H/N is non-zero only if xN ≤ M
and K ≤ xHM for some x ∈ G. Now multiplying both sides of the sec-

ond inequality by xN , we get KxN ≤ xHM . In particular, |K|
|M | ≤ |H|

|N | .
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If the inequality is strict we are done. Otherwise if |K/M | = |H/N |
then the condition xN ≤ M should be satisfied. Again we are done
if the inequality is strict. But when the equality is satisfied we have
|K| = |H| and |M | = |N |. In this case xN = M and K = xH, that is,
K/M = xH/N , as required.

6. Primitive Idempotents over K

In this section, we find formula for the primitive idempotents of the
algebra KΛ(G) where K denotes a field of characteristic zero. Since
KΛ(G) is commutative, there is an isomorphism of K-vector spaces

KΛ(G) ∼=
∏

H/N¹GG

K

and hence there are as many primitive idempotents as the number of
conjugacy classes of subquotients of G. Note that by the Fundamental
Theorem of the last section, over K, the mark homomorphism

βG : KΛ(G) → KΛ∗(G)

is an isomorphism of rings. Therefore we can determine the primitive
idempotents of the algebra KΛ(G) of subquotients of G by determining
the inverse images under βG of the primitive idempotents of the ghost
KΛ∗(G).

6.1. First we determine the primitive idempotents of the ghostKΛ∗(G).
Since

KΛ∗(G) ∼=
( ∏

H≤G

KT (H)
)G ∼=

∏
H≤GG

KT (H)NG(H)

and addition is coordinate-wise, the primitive idempotents of KΛ∗(G)
are all of the form (xH)H≤G where xH = 0 for all subgroups H of G
except for a unique conjugacy class, say with representative K. More-
over xK is a primitive idempotent of the algebra KT (K)NG(K). There-
fore we need to determine the primitive idempotents of the algebra
KT (K)NG(K). By definition,

KT (K) =
⊕
N£K

K[N ]K

with the ring structure given by the linear extension of the following
multiplication of the basis elements

[M ]K [N ]K = [MN ]K

where M and N are both normal subgroups of K.
Clearly KT (K)NG(K), with the inherited ring structure, is commuta-

tive and is generated by NG(K)-orbit sums of the normal subgroups of
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K. Hence the primitive idempotents of the algebra KT (K)NG(K) are
determined by the species of KT (K)NG(K), that is by the algebra maps
KT (K)NG(K) → K. Next we classify these species.

Now for any normal subgroup N £ K, the map SK
N given by

SK
N ([M ]K) =

{
1, if M ≤ N
0, otherwise.

for any M £ K, is a species of KT (K) and any species of KT (K) is of
this form for some normal subgroup N . Now the species ofKT (K)NG(K)

are the NG(K)-orbit sums of these species. Explicitly, these are given
as follows.

6.2. Proposition. Let N be a normal subgroup of K. Then the map

sK
N : KT (K)NG(K) → K, x 7→

∑
M£K
M≤N

coefficient of [M ]GK in x

is a species. Here [M ]GK denotes the NG(K)-orbit sum of [M ]K. More-
over two species sK

N and sK
M are equal if, and only if, N =NG(K) M and

any species of KT (K)NG(K) is of the form sK
N for some normal subgroup

N of K.

Proof. It is clear that for a given normal subgroup N , the map sK
N is

the NG(K)-orbit sum of the species SK
N of KT (K) and that given two

normal subgroups N and M of K, the species sK
N and sK

M are equal if
and only if N =NG(K) M . Therefore as N runs over the set of NG(K)
orbits of the set of normal subgroups of K, the species sK

N are pairwise
distinct. Moreover since dimKT (K)NG(K) is equal to the number of
NG(K)-orbits of normal subgroups of K, there is no other species. ¤

6.3. Now also the primitive idempotents ofKT (K)NG(K) are the NG(K)-
orbit sums of the primitive idempotents of KT (K). We first determine
the primitive idempotents of KT (K). For a given normal subgroup N
of K, we define the element εK

N of KT (K) by the property that

SK
M(εK

N ) = δ(M,N),

where δ(M,N) is the Kronecker symbol. It is clear that these are prim-
itive mutually orthogonal idempotents of KT (K) which sum up to 1.
Then any element x in KT (K) can be written as

x =
∑
N£K

xNεK
N

for some xN in K. By the above property, we get

xN = SK
N (x).
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In particular, for any normal subgroup M of K, we have

[M ]K =
∑
N£K

SK
N ([M ]K)εK

N =
∑
N£K
M≤N

εK
N

by the definition of the species SK
N . Now we apply Möbius inversion to

the poset of normal subgroups of K with incidence function given by

ζ(N, M) =

{
1, if N ≤ M ;
0, otherwise.

The inversion gives

εK
M =

∑
N£K
M≤N

µ£K(M,N)[N ]K

where µ£K is the Möbius function of the poset of normal subgroups of
K.

Now the primitive idempotents of KT (K)NG(K) are given by

εK
[M ] =

∑

M ′£K
M ′=NG(K)M

εK
M ′

where M runs over NG(K)-orbits of normal subgroups of K. More
explicitly, we have

εK
[M ] =

∑

M ′£K
M ′=NG(K)M

∑
N£K
M ′≤N

µ£K(M ′, N)[N ]K

Hence we have proved

6.4. Proposition. Let M be a normal subgroup of K. Then the ele-
ment

εK
[M ] =

∑

M ′£K
M ′=NG(K)M

∑
N£K
M ′≤N

µ£K(M ′, N)[N ]K

is a primitive idempotent of KT (K)NG(K). Moreover letting M run over
a complete set of NG(K)-orbit representatives of normal subgroups of
K, the idempotents εK

[M ] are pairwise orthogonal and sum up to the
identity element.

As a corollary we obtain the primitive idempotents of the ghost
KΛ∗(G).
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6.5. Corollary. Let K be a subgroup of G and N be a normal sub-
group of K. Then the element eG

K,N = (xH)H≤G ∈ Λ∗(G) where

xH = 0 unless H =G K and xK = εK
[N ] is a primitive idempotent

of KT (K)NG(K). Moreover as K runs over subgroups of G and N runs
over a complete set of NG(K)-orbit representatives of normal subgroups
of K, these idempotents are pairwise orthogonal and the sum is equal
to the identity in KΛ∗(G).

Finally we obtain a formula for the primitive idempotents of the
algebra KΛ(G) of subquotients of G.

6.6. Theorem. [Idempotent Formula] Let G be a finite group and K
be a field of characteristic zero. For a given subquotient K/M of G,
define

eG
K,M =

∑

M ′£K
M ′=NG(K)M

∑

L/N¹K/M ′
N£K

|L|
|NG(K)|µ(L,K)µ£K(M ′, N)[L/N ]G

where µ denotes the Möbius function of the poset of (all) subgroups of G
and µ£K denotes the Möbius function of the poset of normal subgroups
of K. Then the set {eG

K,M |K/M ¹G G} is a complete set of orthogonal
primitive idempotents of KΛ(G) such that

1Λ(G) =
∑

K/M¹GG

eG
K,M .

Proof. By [1, Proposition 2.4], over the field K, the mark morphism is
an isomorphism and its inverse is given by

β−1
G ((xH)H≤G) =

1

|G|
∑

L≤H≤G

|L|µ(L,H)
∑
N£H
N≤L

aN [L/N ]G

where the equality

xH =
∑
N£H

aN [N ]H

is satisfied in T (H). Now we calculate β−1(eG
K,M), where eG

K.M is a
primitive idempotent of Λ∗(G) defined above. We have

β−1(eG
K,M) =

∑
L≤H≤G
H=gK

|L|
|G|µ(L,H)

∑
N£H
N≤L

∑

M ′£H
M ′=NG(H)

gM,M ′≤N

µ£H(M ′, N)[L/N ]G
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Here g ∈ G. We can write the above equality as

eG
K,M =

∑

g∈G/NG(K)
L≤gK

|L|
|G|µ(L, gK)

∑
N£K
N≤Lg

∑

M ′£K
M ′=NG(K)M,M ′≤N

µ£K(M ′, N)[Lg/N ]G

Here nothing depends on g, so we get

eG
K,M =

∑
L≤K

|L|
|NG(K)|µ(L,K)

∑
N£K
N≤L

∑

M ′£K
M ′=NG(K)M,M ′≤N

µ£K(M ′, N)[L/N ]G

Finally rearranging the sums we obtain

eG
K,M =

∑

M ′£K
M ′=NG(K)M

∑

L/N¹K/M ′
N£K

|L|
|NG(K)|µ(L,K)µ£K(M ′, N)[L/N ]G

as required. The other claims follows easily. ¤

7. Prime ideals

7.1. In this section, we determine the prime ideals of the ring Λ(G).
Since both the ring Λ(G) and its ghost Λ∗(G) are finitely generated
as abelian groups, the extension Λ(G) ≤ Λ∗(G) is integral. There-
fore by [9, Chapter 28] any prime ideal of Λ(G) is of the form β−1(P )
where P is a prime ideal of the ghost. Moreover since the ring ex-
tension Λ∗(G) ≤ ∏

H≤GG T (H) is integral, the prime ideals of Λ∗(G)
are all of the form P ′ ∩ Λ∗(G) for some prime ideal P ′ of the product∏

H≤GG T (H). Finally, the non-zero prime ideals of the product are
of the form (PH)H≤GG where PH 6= 0 only for a unique representative
K of conjugacy classes of subgroups of G and PK is a prime ideal of
T (K). Therefore it suffices to determine the prime ideals of T (K) for
any subgroup K of G.

Fix a subgroup K of G. Then the map

αK : T (K) →
∏

N£K

Z, [M ]K 7→ (bM ≤ Nc)N£K

is a unital ring homomorphism where bM ≤ Nc is equal to one if
M ≤ N and zero otherwise. Clearly αK is injective and with a suitable
ordering of the normal subgroups of K, the matrix of αK is upper-
triangular with 1’s in the diagonal. Therefore any prime ideal of T (K)
is the inverse image of a prime ideal of Z.
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7.2. We can describe the inverse image by tracing the maps in the
above discussion. Any prime ideal of Λ(G) is obtained by determining
the preimage of a prime ideal of Z under the following composite map:

Λ(G) Λ∗(G)
∏

K≤GG T (H)
∏

K≤GG

∏
N£K Z Z.................................................. ........................

............α............................................. ........................
............β

....................................................... ........................
............

....................................................... ........................
............π

K
N

Here β is the mark morphism, α = (αK)K≤GG is the map defined
above and πK

N is the projection to the N -th coordinate. Let us de-
note this composite by sG

K,N . Then since all the maps are ring homo-

morphisms, the map sG
K,N is a species of Λ(G). Moreover the equality

sG
K,N = sG

K′,N ′ is satisfied if and only if K =G K ′ and assuming K = K ′,
N =NG(K) N ′. The species sG

K,N is given explicitly by

sG
K,N([H/M ]G) = |{x ∈ G/H|K/N ¹ x(H/M)}|

where [H/N ]G ∈ Λ(G). Hence we have proved the following theorem.

7.3. Theorem. Given a subquotient K/N of G and a prime ideal p
of Z. Define

P (K,N, p) = {x ∈ Λ(G)| sG
K,N(x) ∈ p}.

Then P (K, N, p) is a prime ideal of Λ(G). Moreover any prime ideal
of Λ(G) is of the form P (K, N, p) for some subquotient K/N ¹G G
and some prime ideal p of Z.

Appendix A. Two examples of table of generalized marks

We include the table of generalized marks for the groups S3 and A4.
For comparison, we also include the table of (ordinary) marks.

A.1. The group S3. Let G = S3 be the symmetric group on three
letters. It has a unique subgroup H of order 3, and three conjugate
subgroups K1, K2, K3 of order 2. We denote by K a fixed representative
of this class. In this case the ordered set S is

S = {G/G,H/H,K/K, 1/1, G/H, K/1, H/1, G/1}.

Now using the definition of the generalized marks, we calculate the
table of marks as follows. Note that the ·’s are all zeros.
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G/G H/H K/K 1/1 G/H K/1 H/1 G/1
G/G 1 · · · 1 · · 1
H/H 2 · · 1 · 2 1
K/K 1 · · 1 · 1
1/1 6 · 3 2 1

G/H 1 · · 1
K/1 1 · 1
H/1 2 1
G/1 1

On the other hand, the table of ordinary marks of the symmetric
group S3 is the following matrix.

1/1 K/1 H/1 G/1
1/1 6 3 2 1
K/1 1 · 1
H/1 2 1
G/1 1

A.2. The group A4. Now let G = A4, alternating group of order 12.
This group has a unique subgroup of order 4, isomorphic to V4, and
has two conjugacy classes of subgroups of order 3. We denote the copy
of V4 by H and representatives of the conjugacy classes of the cyclic
groups of order 3 by K and L. The non-trivial proper subgroups of H
are all G-conjugate to each other and we denote by T a representative
of this conjugacy class. With this notation, H is normal in G, K and
L are self-normalizing and the normalizer of T is H. Therefore the
ordered set S is the following set

{G/G,H/H, K/K,L/L, T/T, 1/1, H/T, T/1, G/H, K/1, L/1, H/1, G/1}.

The table of marks of the alternating group A4 is the following.
1/1 T/1 K/1 L/1 H/1 G/1

1/1 12 6 4 4 3 1
T/1 2 · · 3 1
K/1 1 · · 1
L/1 1 · 1
H/1 3 1
G/1 1

On the other hand the table of generalized marks is calculated as
follows.
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G
/G

H
/H

K
/K

L
/L

T
/T

1/
1

H
/T

T
/1

G
/H

K
/1

L
/1

H
/1

G
/1

G/G 1 · · · · · · · 1 · · · 1
H/H 3 · · · · 3 · 1 · · 3 1
K/K 1 · · · · · · 1 · · 1
L/L 1 · · · · · · 1 · 1
T/T 2 · 1 2 · · · 3 1
1/1 12 · 6 · 4 4 3 1
H/T 1 · · · · 3 1
T/1 2 · · · 3 1
G/H 1 · · · 1
K/1 1 · · 1
L/1 1 · 1
H/1 3 1
G/1 1
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[7] O. Coşkun, The ring of subquotients of a finite group I: Linearization, J.
Algebra 322 (2009), 2773 - 2792.
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