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Introduction 

Traditional underwater images for ecology study often include time-lapse or brief video 
recordings over short periods of time.  More recently, with the installation of under water cabled 
observatories that provide constant electrical power and data connections to the seafloor, long-
term video recordings are possible for the first time.   

These valuable recordings are essential for underwater ecology studies, particularly 
abundance and distribution studies but also behavioral studies. However, the analysis of these 
video and time-lapse recordings often becomes quickly overwhelming. In some cases, the number 
of underwater animal activities can be infrequent, resulting in recordings with many hours of 
video with few events of interest.  Sometimes the human resources do not exist to analyze the 
recordings, or if resources are available, the strains on human attention quickly abate the efforts.  

To help address this issue, over the past six years an automated detection, tracking, and 
classification software system called The Automated Visual Event Detection and Classification 
System (AVEDac) has been under development at the Monterey Bay Aquarium Research 
Institute (MBARI). The AVEDac system is a powerful aid that is currently being used to analyze 
Remotely Operated Vehicles (ROVs) and deep-water cabled observatory video recordings 
recorded in the Monterey Accelerated Research System (MARS) observatory. It has been 
recently modified to also process still images recorded from Autonomous Underwater Vehicles 
(AUVs) and stationary cameras on the sea floor.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The cornerstone of this system is its approach for detection.  Taking cues from 

evolutionary systems, the AVEDac software analyzes each image searching for “interesting” 
events using a neuromorphic software model based on the human vision system. An “interesting” 
event is an object that can be tracked successfully over several frames. This approach has been 
shown to be remarkably effective.  Once “interesting” events are detected using this approach, the 
system then tracks these events across multiple frames and then passes them to a Bayesian 

Figure 1. A 3-D perspective of the MARS cabled-to-shore 
observatory site on Smooth Ridge, at the edge of 
Monterey Canyon off the coast of California, USA. 
 
 



classifier utilizing a Gaussian mixture model to determine the lowest possible taxonomic 
category. The output of the AVEDac software is recorded into XML formatted data that can be 
edited in the AVEDac graphical editor for misclassifications, or exported to Excel format for 
further analysis in conjunction with ancillary data. 
  

Detection 

The AVEDac detection system uses a neuromorphic software model based on the human 
vision system from the iLab Neuromorphic Vision C++ Toolkit developed at the University of 
Southern California [1].  Using this toolkit, different methods are used for detecting “interesting” 
objects in a scene depending on whether still-frames and video. For still-frames, the local 
variance in 16x16 image patches of the input frame is calculated and input into a saliency map. 
For video, the input frame is decomposed into seven channels (intensity contrast, red/green and  

 
 
 
 
 
 
blue/yellow double color opponencies, and the four canonical, spatial orientations). In both cases, 
calculations are done at six spatial scales and stored into saliency maps. After iterative spatial 
competition for salience within each map, maps are combined into a unique saliency map. The 
saliency map is then scanned by the focus of attention in order of decreasing saliency, through the 
interaction between a winner-take-all neural and an inhibition-of return mechanism  [2]. The peak 
points in this map are used to seed the tracking system. 

 

Figure 2. Saliency map from the iLab toolkit warped onto 
a 3-D map for a single video frame. Peaks in the map 
show points of high visual attention where the 
Rathbunaster and Leukothele are (near image center).  
 
 
 



Segmentation and Tracking  

  A number of different algorithms are used for segmentation and tracking depending on 
whether processing ROV, AUV, or observatory camera images.  These algorithms are defined in 
predefined profiles that are selected before processing.  

For instance, in the case of video recorded from a fixed observatory, an image average 
from a running image cache is used with a graph cut-based [3] algorithm to extract foreground 
objects from the video. Only pixels determined to be background versus detected foreground 
objects are included in this image cache, thereby removing the objects weight on the background 
computation.  To track visual events in this case a simple nearest neighbor tracking algorithm is 
used.  In the case of an ROV camera, a segmentation algorithm based on an adaptive threshold 
and Otsu’s method is used [4]. This method begins by building a histogram based upon the 
image, and then the threshold is determined by the value that maximizes the between-class 
variance of the gray level histogram.  To track visual events in this case, tracking is achieved with 
separate linear Kalman Filters for the x and y centroid of each tracked object. 
 

Classification 

For classification, each “interesting” even is segmented from the scene into square images. 
Because animals in underwater video can be in various poses, features from these images need to 
be invariant with respect to shift and rotation. We derive our features from “local jets” [5] and the 
invariants defined by Mohr and Schmid [6].  The first invariant is the local average luminance, 
the second one is the square of the gradient magnitude, and the fourth one is the Laplacian.  These 
invariants are computed at four different scales. Classification is finally done using a Gaussian 
mixture model to the lowest taxonomic category represented by the labeled training set.  In the 
case of video, a class is assigned for each video frame of an “interesting” event, then a majority-
win voting scheme is used to decide the winning class.  A further discussion of the classification 
can be found in the referenced paper [7] for which this work was based on. 
 

Results and Future Work 

In recent test, classification of an independent test set taken from bottom ROV video 
resulted in 100% accuracy for a type of deep-sea benthic echinoderm Rathbunaster californicus (a 
sea urchin) and 95% accuracy for the Parastichopus leukothele. In contrast, an independent test of 
still images from ocean bottom time-lapse recordings didn’t perform well, with 24% accuracy for 
Echinocrepis rostrata (a sea urchin), and 26% accuracy for Benthocodon (a common jellyfish).  
Based on these results, future work includes exploring additional classifiers to improve still image 
classification results. 
 

Conclusion 

We present a real-word system for use in classifying animals in underwater video and 
still images. With the increasing importance and collections of digital images and video in 
oceanography, this software system is an example of how innovative software technology can be 
used to aid scientist in underwater ecology studies. This system is currently being used to analyze 
video and still images collected from ROVs, AUVs, and stationary cameras on the sea floor off 
the coast of California.  Preliminary testing indicates AVEDac is suitable for classifying animals 
in video, yet improvements to the classification are needed to improve the accuracy to an 
acceptable level for day-to-day use in still image applications. 
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