SWIOFP Project

Component 4 - Survey of pelagic fishes in the South West Indian Ocean

Composante 4 – Prospections des poissons pélagiques du Sud-Ouest de l'Océan Indien

Report of the instrumented longline fishing experiments training course carried out on board the F/V "Brahma" from 23rd February to 3rd March 2011

Rapport de la formation à la réalisation de pêches une palangre instrumentée effectuée à bord du palangrier « Brahma » du 23 février au 3 Mars 2011

BACH P.

La Réunion – March 2013

CONTENTS

С	ontex	xt : SWIOFP/ASCLME project	3
1	Int	roduction: SWIOFP Instrumented Longline training cruise	4
2	Tin	ne schedule of operations	8
3	Ма	terial and methods	. 12
	3.1	Oceanographic observations	. 12
	3.2	Biological observations	. 13
	3.3	Fishing experiments using instrumented longline	. 13
4	Re	sults	. 18
	4.1	Hydrological situation in the area	. 18
	4.2	Instrumented longline fishing operations	. 18
	4.3	Hooking responses and capture	. 29
5	Co	nclusions	. 33

Citation :

Bach P., 2013. SWIOFP Project: Report of the instrumented longline fishing experiments training course carried out on board the fishing vessel "Brahma" from 23rd of February to 3rd of March 2011. IRD/SWIOFP Report, 32 pp.

Context : SWIOFP/ASCLME project

Up to now, only tuna and some large pelagic fishes associated with tuna fisheries in the South Western Indian Ocean are under monitoring and management by the regional fisheries management organization (RFMO): Indian Ocean Tuna Commission (IOTC). However many other marine living resources in the region are exploited by commercial fisheries and require a regional approach in order to improve their respective management in an "ecosystem approach to fisheries" perspective. These resources are mostly spread along Exclusive Economic Zones (EEZs) of coastal countries representing shared stocks of crustaceans, demersal fishes and small pelagic fishes. Because of the weakness of financial supports in marine fisheries research in the region compared to the diversity of stocks to manage, both scientists and policy managers have to share information and knowledge to improve marine resource management at local, regional and basin-wide scales. Moreover, the south-western part of the Indian Ocean is known to be home of several endangered species of the marine megafauna (sea turtles, marine mammals) and the improvement of biological knowledge regarding these species is essential in order to reduce interactions with fishing activities. The South West Indian Ocean Fishery Commission became operational relatively recently. The aim of this Commission is to promote a regional management of local fisheries complementary to marine fisheries management activities of the Indian Ocean Tuna Commission. This management will be structured around the three core functions of fisheries management: monitoring/survey, control (decisions on the appropriate exploitation levels) and surveillance (strict monitoring of compliance). Activities regarding the survey/monitoring are classically carried out by the Scientific and Technical Committee (SCT) Major objectives for the first five years of the SWIOF Project are to develop operational framework to implement an efficient MCS. This initiative does not necessarily depend on the emergence of the SWIOFC but it represents a driver of its survey/monitoring function.

Indeed, the principal components are:

@ Integration of local fishery database at a regional level,

Audit of knowledge in general (scientific, technical) of major exploited stocks (crustaceans, demersal stocks and small and large pelagic fishes) with the aim of respective estimations of exploitation levels,

The collect of data for non-commercial species due to theirs interactions with commercial fisheries (for instance some marine mammals interacted with gillnet fisheries, sea turtles interacted with longline fishery and purse seine fishery on FAD).

Countries involved in the project are countries of the South West Indian Ocean having coast along the ocean : Kenya, Tanzania, Mozambique, Republic of South Africa, Seychelles, Comoros, Madagascar, Mauritius and France (Eparses Islands, Mayotte, Tromelin, Reunion). Somalia could be soon integrated in the project as observer country. The global cost of these five years project is 21 millions \$ US (~ 16 millions €).

The French Fund for the Environment (FFEM = Fonds Français pour l'Environnement Mondial) participates in this project as co-financial support at a level of 800 K \in (1 millions of US \$). Essentially, these funds are mobilized to support 3 components of the project :

- Component 1 "Data and Information": Gap analysis and supply of an integrator database software named « StatBase »,
- Component 4 "Pelagic Fishes": Electronic tagging programme for swordfish and bigeye tuna, deployment of anchored Fish Aggregating Devices (FADs) allowing managing actions to increase the number of fishing activities for a given fishing pressure, improvement of fishing gear (develop methods to mitigate adverse impact of some fishing practices, application of the ecosystem based approach to fisheries),
- Component 5 "Non-commercial species": research studies of some marine mammals populations interacting with longline fisheries in the region, research programme of sea turtles movement behaviour to identify area and period for which the risk of accidental mortality due to fishing activities is high.

This project is carried out at a regional scale simultaneously with the ASCLME project (Agulhas Somalia Current Large Marine Ecosystem). One of the objectives of the ASCLME project is to develop indicators (simple or composite) to characterize ecosystems. As corollary of this objective, ASCLME investigates physical and biological characteristics of the ocean in this region and then the habitat of marine living resources targeted in the SWIOF project. These two regional projects ASCLME and SWIOFP are parts of a set of project included in the Marge Marine Ecosystem international project. These two projects share some tools or operational framework such as oceanographic cruises.

1 Introduction: SWIOFP Instrumented Longline training cruise

Pelagic fish surveys with an instrumented longline (ILL) were proved as a relevant way to collect valuable information to improve our knowledge of interactions between the pelagic resource and the fishing gear (Bach et al., 2003¹):

✓ the behaviour of the fishing gear while fishing to measure the volume of the habitat prospected according to the tactic of the mainline setting,

^{1 -} Bach P., L. Dagorn, A. Bertrand, E. Josse, C. Misselis, 2003. Acoustic telemetry versus monitored longline fishing for studying the vertical distribution of pelagic fish : bigeye tuna (*Thunnus obesus*) in French Polynesia. Fish. Res., 60 (2-3), 281-292.

- ✓ the habitat of species inferred from the position of the hook on the basket mainline, the hooking time, the shape of the mainline when the capture occurred and the environment (temperature, oxygen, ...) characterizing the fishing station,
- ✓ the hooking pattern of both target species and bycatch along the fishing time,

So far, two cruises to prospect large pelagic fishes in the SWIO in general and the Mozambique Channel in particular have been carried out (Bach et al., 2009²; Bach et al., 2013³). During a SWIOFP meeting held in Seychelles in 2010, national coordinators for the component 4 solicited France to organize 1 or 2 training cruises to allow each partner of the SWIO region for being able to carry out instrumented longline surveys by themselves.

The commercial longliner, the F/V « Brahma » based in La Reunion was wet-leased to achieve this instrumented longline (ILL) training.

Six fishery technicians and students from the SWIO region participated in:

- FAHARDINE Ahamada (Fishery Administration of Comores),
- BEHIVOKE Faustinato (IHSM Madagascar),
- MUHAJI Chande (TAFIRI, Tanzanie),
- NDEGWA Stephen (KMFRI, Kenya),
- CUNEE Moganah Nadeen (Ministry of fisheries Mauritius)
- JULIE Danny (Seychelles Fishing Authority) our colleague and friend left us suddenly and unexpectedly in April 2012. May his soul rest in peace.

^{2 -} Bach P., E. Romanov, T. Filippi, 2009. SWIOFP/ASCLME Project: Mesoscale eddies and large pelagic fish in the Mozambique Channel – Report of monitored longline fishing experiments carried out on board the fishing vessel "Manohal" from 27th of November to 18th of December 2008. IRD/SWIOFP Report, 74 p.

^{3 -} Bach P., T. Fillipi, G. Berke & A. Sharp, 2013. SWIOFP/ASCLME Project: Mesoscale eddies and large pelagic fish in the Mozambique Channel – Report of monitored longline fishing experiments carried out on board the fishing vessel "Brahma" from 1st to 20 of April 2010. IRD/SWIOFP Report, 33 pp.

SWIOFP participants to the ILL training cruise

The objectives of this ILL training were :

- To familiarize trainees with the necessary material to fish with a monofilament pelagic longline (spool, mainline, branchline, hooks, floats, radio buoys, goniometer, beeper). The shooter necessary to give a slack to the mainline in order to set the mainline deeper in order to target tunas was not installed on the longliner,
- To deploy the longline and its instrumentation (hook timer HT, time depth recorder TDR) according to a given fishing tactic (for example attachment point of the TDR to measure the maximum fishing depth),
- 3. To collect data characterizing the fishing operation (setting, hauling),
- 4. To collect biometric (length) and biological (sex, sexual maturity, muscle sampling for genetic and isotope analysis),
- 5. To familiarize trainees with the principal large pelagic fishes in longline catches,
- 6. To fill the different sampling forms aimed at collected all the information on the fishing operation, the spatio-temporal positions of catches along the longline (hook timer data,

hook number on the basket, basket number on the longline), the status of the fish at hauling, the position of the hook on the fish caught, biometric and biological individual fish data,

- 7. To use the Win Memo (NKE) software to configure time depth recorders before deployment, to download the data recorded and save them in a ASCII format for further analysis,
- 8. To deploy XBT (expendable bathythermograph) to obtain temperature depth profile associated to the fishing station or to characterize the oceanographic environment at a larger scale.

In the middle of the training course at sea one morning was dedicated to briefly present:

- 1. the interest of the measure of the hooking time obtained from hook timers associated to fishing depth records (TDR data) to describe the habitat of large pelagic fishes,
- 2. the COPAL software ⁴.

^{4 -} Bach P., Romanov E. & D. Gaertner, 2012— COPAL (COmportement de la PALangre). Longline behaviour modelling software. Version 2.7. IRD.

2 Time schedule of operations

This training cruise of the SWIOFP Component 4 « Pelagic Fishes » started on Wednesday 23rd of February 2011 from Le Port (La Reunion) at 12:00 pm.

The route of the cruise (date, time, latitude, longitude every 5 minutes) will be obtained from the vessel monitoring system (VMS) and these data were stored in the SEALOR 5 database.

The synthetic representation of operations at sea (hydrology, instrumented longline fishing) is displayed on the Figure 1. Date, time and positions of instrumented longline sets and XBT stations are resumed in the Table 1A and Table 1B, respectively. Instrumented longline fishing sets and XBT stations are displayed on the figure 2.

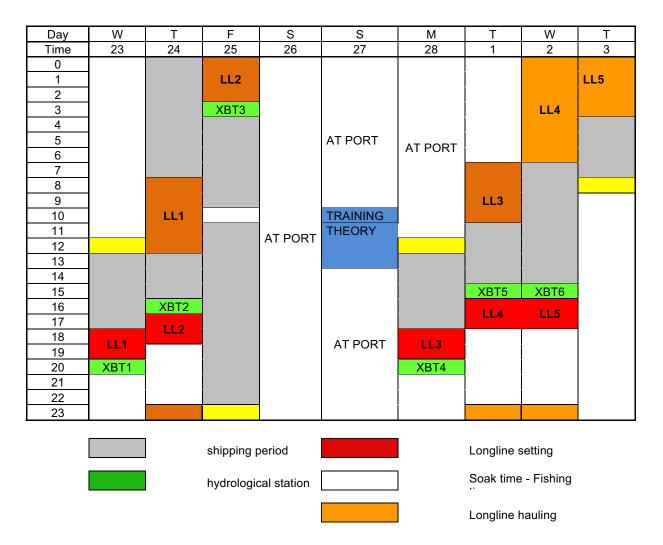


Figure 1 – Chronogram of operations carried out on board the F/V "Brahma" during the SWIOFP Instrumented Longline (ILL) training cruise.

^{5 -} Bach P., N. Rabearisoa, T. Filippi & S. Hubas, 2008 - The first year of **SEALOR** : Database of **SEA**-going observer surveys monitoring the local pelagic **LO**ngline fishery based in La **R**eunion. IOTC/WPEB/WP13, 26 p

				START	
Date	Set N°	Operation	Local time	Lat (°S)	Long (°E)
23/02/11	1	Setting	04:00	10.506	40.506
24/02/11	1	Hauling	11:00	-10.506	-40.506
24/02/11	2	Setting	03:00	-20.647	55.025
25/02/11	2	Hauling	11:00	-20.595	55.009
05/12/08	3	Setting	03:50	-20.473	54.412
28/02/11	3	Hauling	12:00	-20.442	54.37
01/03/11	4	Setting	04:10	-21.064	54.765
01/03/11	4	Hauling	11:55	-20.976	54.782
02/03/11	5	Setting	04:29	-21.182	54.246
02/03/11	5	Hauling	12:00	-21.143	54.261

				END	
Date	Set N°	Operation	Local time	Lat (°S)	Long (°E)
23/02/11	1	Setting	06:55	20.506	50.339
24/02/11	1	Hauling	15:40	-20.506	-50.339
24/02/11	2	Setting	05:20	-20.567	54.867
25/02/11	2	Hauling	15:20	-20.504	54.852
05/12/08	3	Setting	06:05	-20.476	54.21
28/02/11	3	Hauling	16:23	-20.451	54.205
01/03/11	4	Setting	06:25	-21.065	54.544
01/03/11	4	Hauling	17:35	-20.965	54.603
02/03/11	5	Setting	06:39	-21.008	54.14
02/03/11	5	Hauling	17:00	-20.973	54.158

Date	Set N°	Operation	Bearing (°)	Distance (km)
23/02/11	1	Setting	42	1532.36
24/02/11	1	Hauling	222	1532.36
24/02/11	2	Setting	298	18.72
25/02/11	2	Hauling	302	19.25
05/12/08	3	Setting	269	21.07
28/02/11	3	Hauling	267	17.24
01/03/11	4	Setting	270	22.96
01/03/11	4	Hauling	274	18.65
02/03/11	5	Setting	330	22.28
02/03/11	5	Hauling	330	21.74

The F/V "Brahma" departed from Le Port, La Reunion on Feb. 23 and was back at the same location on Feb. 25 for the first leg and started on Feb. 28 and was back on March 3 for the second leg. The fishing sets were carried out close to west coast of the La Reunion Island in order to optimize the time at sea. Five longline sets were operated (Figure 2).

XBT N*	Date	Local time	Lat (°)	Long (*)	N"XBT
XBB1	23/02/11	20:40	-20.567	54.867	329547
XBT2	24/02/11	16:10	-20.475	54.42	329551
XBT3	25/02/11	02:40	-20.445	54.201	329552
XBT4	28/02/11	20:40	-21.067	54.5	329553
XBT5	01/03/11	16:20	-21.188	54.25	329554
XBT6	02/03/11	13:30	-21.062	54.147	329555

Table 1 B – Time, date and positions of XBT casts.

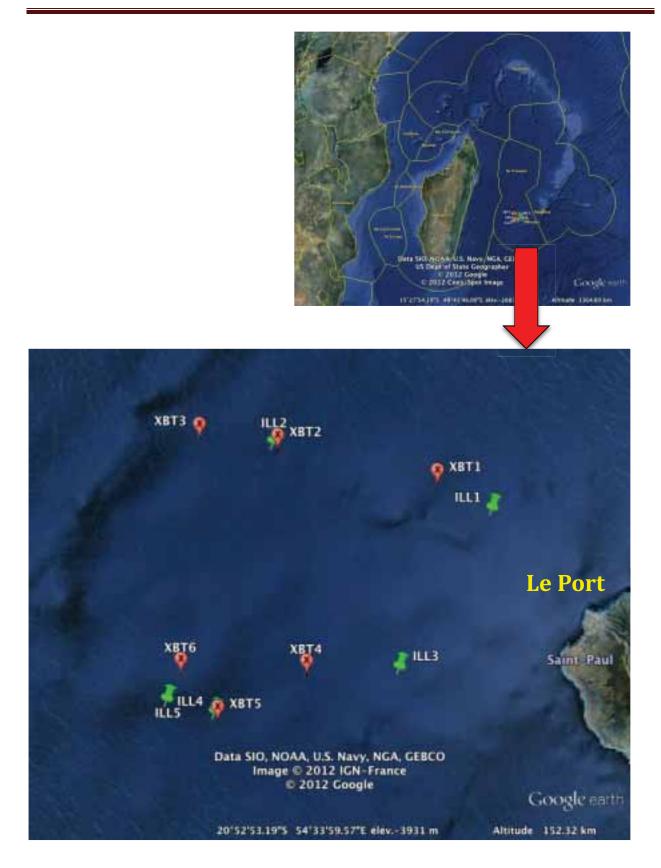


Figure 2 – Positions of longline sets (ILL – symbol green) and XBT launches (XBT – symbol red) carried out by during the ILL training cruise.

3 Material and methods

3.1 Oceanographic observations

Hydrological observations were carried out using Sippican's Expendable Bathythermograph (XBT probes producing temperature – depth profiles.

The design of the Sippican's system is displayed on the figure 3. XBT profiles were analysed on board by running the WinMK21 software.

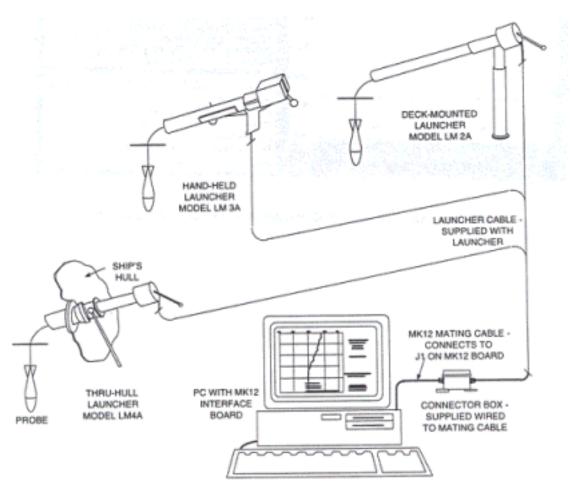


Figure 3 – Design of the Sippican's XBT system used to carry out temperature – depth profiles (Source : <u>http://www.sippican.com</u>).

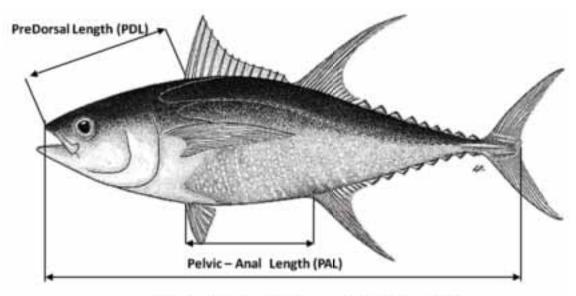
3.2 Biological observations

All fish were measured with a calliper (for straight length measurements) and measuring tape (curved length measurements) with precision to 1 cm. Several types of morphometric measurements were taken to develop relationships for further key conversions of size to size. The following measurements were taken:

Tuna: straight fork length (FL); curved fork length (CFL); straight predorsal length (PDL), and straight pectoral-anal length (PAL), (Figure 4 A).

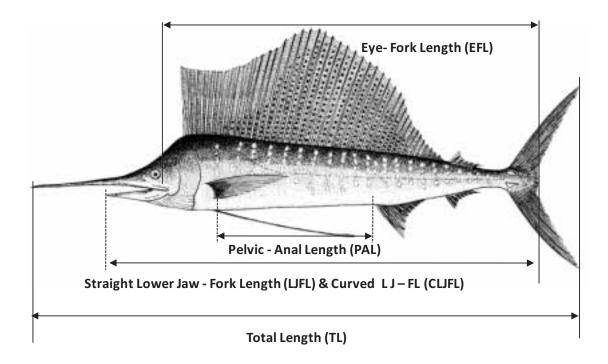
Billfish: curved total length (TL); straight lower jaw-fork length (LJFL), curved lower jaw-fork length (CLJFL), curved eye-fork length (EFL), curved pectoral-anal length (PAL), (Figure 4 B).

Sharks: curved total length (TL); curved fork length (FL); curved standard length (SL); curved inter-dorsal length (IDL); straight length of the rear margin of the left and the right pectoral fin P1P (L) and P1P (R) respectively, (Figure 4 C).

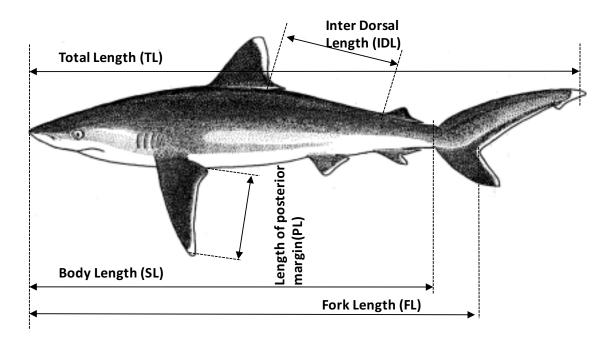

Skates: straight total length (TL), straight disk width (DW) and straight disk length (DL).

Other species: straight fork length (FL).

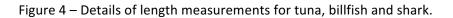
Sex and maturity stage: of fish were recorded, gonad were weighed. Liver was weighed in tuna.


3.3 Fishing experiments using instrumented longline

The F/V « Brahma » is a longliner of ~ 25 m LOA. The crew was composed of 5 persons including the captain. The longliner is equipped with a nylon monofilament mainline stocked on a spool manufactured by Lindgren PitmanTM. The line capacity of the spool is ~ 60 miles for a line diameter of ~ 3.4 mm (Figure 5). This spool is also used for the hauling of the mainline. The longline is a string of hooks attached with a snap to the mainline, which is maintained at the surface of the ocean by buoys also attached to the mainline at regular intervals. A transmitter buoy is fastened at each end of the mainline (Figure 6). During our fishing experiments, the mainline was attached to 10-m polypropylene float lines with 10-l floats at the surface. Monofilament branch lines were 12-m long and snapped on at a constant time interval for a given set. Each brancline is equipped with a weight of 60 g and a circle hook with an offset of 12°. Circle hooks (Figure 6) were used because their lower impact on potential capture of non-target species (mainly sea turtles). Squid (*Ilex* spp.) were used as bait.



Straight Fork Length (FL) & Curved Fork Length (CFL)


A – Tuna and tuna like species

B – Billfish measurements

C - Sharks measurements

For each set, some baskets (the part of the longline between two successive floats) were equipped with time depth recorders (Figure 7). TDRs were programmed to record fishing depth once per minute. The TDRs were placed at the mid-point on the basket mainline which corresponds to its maximum depth. For one experiment the longline behaviour was studied with several TDRs close to each hook of a given basket and with GPS buoys to measure simultaneously the variation of the sag ratio.

Each branch line was equipped with a hook timer (Figure 8). Hook timers indicate elapsed time in minutes between the hooking contact (triggered hook timer with or without capture) of fish on the line and landing on deck, from which the time of the hooking contact is deduced. Hooking depths will be inferred from hook depths at hooking times estimated by a longline shape model.

Figure 5 - The mainline spool by Lindgren Pitman $^{\rm {\scriptscriptstyle TM}}$ installed on board the longliner

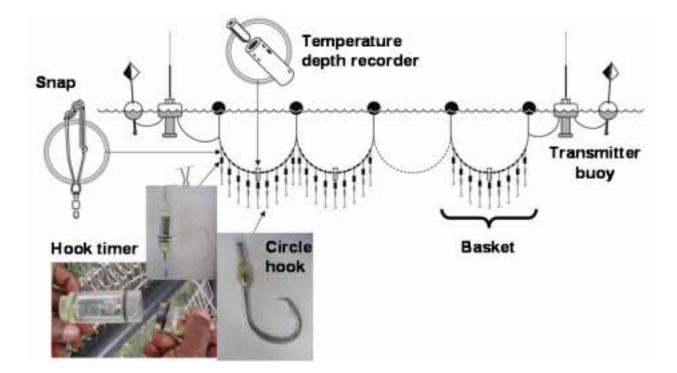


Figure 6 - The instrumented longline deployed during the SWIOFP ILL training cruise

Figure 7 – TDRs ready to be deployed on the mainline

Figure 8 - Set of branchlines equipped with hook timers in its box.

4 Results

4.1 Hydrological situation in the area

Temperature – depth profiles were imported in a geolocalized oceanograhic database and mapped by using the Ocean Data View 4.5 software (http://odv.awi.de/). Sea surface temperature during the cruise reached about 29°C. Temperature vertical profiles displayed a weak thermocline between 50 m and 70 m depth followed by a linear decrease of temperature values until 450 m where the water temperature was about 12.5° C (Figure 9). Kriging maps produced from these profiles showed fronts of temperature at 50 m with a decrease of the temperature from North to South (Figure 9) and from East to West at latitudes south to 21°. However, for the 100 m isobath the temperature of the water mass appeared as homogeneous with a temperature of about 24.5 °C (Figure 9).

4.2 Instrumented longline fishing operations

General presentation of longline fishing operations

Detailed information on characteristics of the instrumented longline deployment for each set are presented in the Table 2 A, B, C, D, E. A summary of numbers of sets realized, number of baskets, hooks, hook timers and temperature depth recorders deployed is presented in the Table 3.

The 5 sets realized represented 182 baskets, 1957 hooks (circle and tuna hooks) and 58 TDR profiles. At the beginning of the cruise, the theoretical number of hooks per basket was 10 (*i.e* the number of interval between floats was 11) while 14 and 16 were used for the fishing operations 4 and 5, respectively. As the time interval between hooks and the setting speed were the same for the different sets the increase of the number of hooks per basket generated an increase of the mainline length per basket. Then, the idea was to illustrate for trainees the theoretical relationship between the mainline length per basket and the maximum fishing depth for a given sag ratio. This strategy was used as the F/V "Brahma" was not equipped with a line shooter normally used the set the longline deeper with a given ratio usually ranged between 60% and 85%.

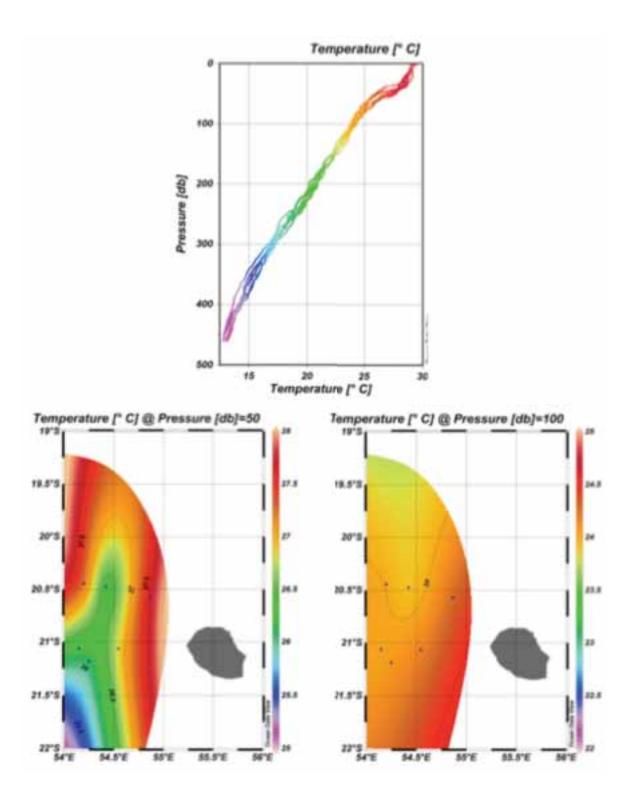


Figure 9 – Depth – temperature XBT profiles obtained during the ILL training cruise (top). Kriging map of the water temperature at 50 m depth (down left) and 300 m (down right) obtained from XBT profiles.

Table 2 – Detailed characteristics of the instrumented longline deployment

A – Set 1

81.1	234	13/11													
Real speed	(Anto) =														
11, 107	feet	YES													
		Hock ty													
-		THORE OF											-	TOP is	and the loss
N' Basket	N. 94	Circle	Tuna	N. horika	N.HTu	PL (19)	NTDR	TBH (A)	TBF (x)	DBF (m)	LLBF (m)	SPR(%)	Bat	Min	Max
1	- 11	-	. 9.		9	10		15	165	509	524.7	37	Squit		-
2	11		10	F. 10	10	10		15	165	509	519.4		Squid		I .
3	. tt	0.0	. 6			10		15	105	509	519.4	- 84	Squid		
4	11	. 9		r 9		10		15	185	509	519.4	58	Squid		I .
5	11	1.7		r 7	1	10		15	165	509	519.4	. 108	Squid		
6	. 11	10		1.110	10	10		15	165	509	519.4	14	Sould		
7	11	1.1		 		10		15	165	500	519.4	14	Squid		L
	11	124	0.0000	P 8	1074000	1121020		15	105	509	019.4	10104101	Sold	32	1.47
9	tt.	.9		9	.9	10	_	15	185	509	519.4	. 98	Squid	-	
10	11	10		10	10	10		15	165	509	\$15.4	08	Squid		
11	11	100	1000	10	101010101	1004800	54	15	105	509	519.4	1000420	Solid	23	10.05
12	-11	9		·	. 9	10		15	165	509	519.4	- 545	Squid		_
13	11	5	. 8	10	10	10		15	105	505	519.4	. 94	Squid	· · · ·	
14	1000	a sector	10100	10	10158211	10110-01	15	115	105	11509(1)	619.4	10100101	Equid	192913	10.05
15	11	-	10	10	10	10		15.	165	509	519.4	88	Squit		_
16	11			P. 18		10		15	165	509	519.4	- 94	Sould		
17	IN THE OWNER		Distant:	10	IN NEW YORK	1004000	18	101620	10533	100000	519.4	10064001	State	1280	1004
18	11	-	10	10	10	10		15	185	509	519.4	60	Squit		-
18	11		10	10	10	10		15	185	500	018.4	100	Squid		
20	11		10	10.	10	10		15	165	509	519.4	104	Squid		
24	11					10		15	165	509	519.4	148	Sould		
22	- 11					10		15	105	509	519.4	10	Sould	1.1.1.1	
23	HC.		10	10	10000	1000	17	187	105	600	515.4	10000317	Sold	100	1.10
. 24	11	10	_	10	10	.10		15	765	509	618.4	. 94	Squid		
25	11	90		10	10	10		15	365	509	519.4	548	Squid		
24	CONTRACTOR OF	1018510	10000	10	COMPROVE NO.	1014001	10	15	16521	509	519.4	12.94 (1)	Spid	285	10.04
27	11	17		· 7	7	10		15	365	509	519.4	145	Squit	_	_
28	11	10		10	10	10		15	105	509	519.4	94	Squid		
29	11	7			7	10		15	165	509	519.4	100	Squid		
30	- 15			r 8	. 6	10		15	165	809	519.4	- 98	Squid		
31	10	8		P 8	. 8	10		15	165	509	519.4	10	Squid		
37	10.00	0.	_	P 8	10000	1011010	.39	10160	10511	10 60810	519.4	111146211	Douit	100403	10 az
33	11	10		10	10	16		15	165	509	\$19.4	118	Squit		1.00
34	THE OWNER	101000	1000	10	1010000	10100	20	to the	105	500	10154	TO MAD	South	0.510	1222
35	11	1.1		5 . 5	1	10	-	15	165	509	519.4	10	Squid		1.000
36		1.1			- i - i	10		16	185	500	519.4	144	Squit		
i i i i i i i i i i i i i i i i i i i	THE R	in in	and the second		10000	TO NO.	21	10150	1051	1000	meniam	COMPANY.	Sould	1000	1100
34	11	1.1	-	2.00		10		15	165	509	519.4	. 64	Squid	-	1000
20	11	10		10	10	10		15	165	509	515.4	- 10	Squid		
40	11	10		10	10	10		15	165	509	519.4	54	Squid		

N. Hooks = number of hooks per basket (circle hook + tuna hooks),

- N. HTs = number of hook timers deployed per basket
- FL (m) = length of the floatline
- N° TDR = N° of the temperature depth recorder
- TBH (s) = time between hooks
- DBF (m) = horizontal distance between floats
- LLBF (m) = mainline length between floats
- SR (%) = sag ratio = DBF/LLBF

TDR depth = min and max values of depth recorded at the middle of baskets

Table 2 (Cont'd) – Detailed characteristics of the instrumented longline deployment

B – Set 2

Roat speed 11. set		e ves													
_		Hook	type	í	_									_	
N' Basket	N. Int	Circle	Tena	N.hocks	N. H79	FL (m)	N'TDR	TBH (a)	718# (8)	DBF (m)	LLBF (m)	(58(%)	Bot	TDPL (A	oth in Max
	11		1			10		15	165	309	519.4	10	Squid	-	_
2	11			r 9		10		15	185	509	\$19.4	100	Squid		
3	11		10	10	10	10		15	185	509	\$19.4	100	Squid		
4	11		1.1	1.18		10		15	105	509	519.4	- 94	Squit		
-	H	122	100	1.10	12	101003		15	165	506	519.4	10.000	Solid	0.7000	10130
	11	7		· 7	7	10		15	105	509	518.4	188	Squid		
7	11	10	- 1	10	10	10	-	15	185	509	519.4	10	Sould	1000	
1.5	11	0.0.0	1000		1004000	10.10	- 8	10181	105	505	618.4	10000000000	South?	1720	1110
	15	10		10	10	10		15	165	509	519.4	548	Squid		
10	-19	.90		10	10	10		15	185	509	519.4	548	Squid		
11	21	1.2.2.1	10	10	10	10		15	165	509	519.4	58	Sould		
12		U 1	. 10	10	10	10		15	165	509	519.4	98	Sould	S	
13	11.		1000		1110030	1004010	10	1018	105	CONTRACT	519.4	1010620	David	104603	1108
14	. 11		10	1 10	10	. 10		15	205	509	619.4	14	Baukt		_
15	11		7	· · ·	1	10		15	105	1679	519.4	148	Squid		
16	et					10		15	185	509	\$19.4	64	Sould		
-17	11	10		10	10	10		15	185	509	\$19.4	100	Squid		
18	11					10		15	165	109	519.4	100	Second		
19	11	10	L 1	10.	10	10	_	15	165	508	519.4	148	Squid		
20	100	10000	Distants of		1000000	1001000	11	(Chings)	1053	10000	10000410	10000000	Suid	87.0	1100
21	tt .		1.1			10		15	105	505	519.4	64	Sepulat		
22	10					10		15	165	5235	518.4	10.8	Squid	1	
23	10.00		1000	10	HOMEON	1000000	12	15	305	1050611	519.4	111044120	(Squid)	(28400	11334
24	11	_	10	. 10	10	10		15	105	509	519.4		Sepute		
25	11	1.1	1.0	· B		10		15	105	509	519.4	100	Sould		
26	11		1.1	1	18	10		18	165	509	519.4	98	(Squid		
27	11	10		10	10	10		15	165	505	519.4	141	Siguld	· · · · ·	
1226	10.15	1109077		10	11150111	10040400	13	101610	105	1050900	619.4	10104101	Sould	OWNER	10822
25	11	10		10	10	16	_	15	105	1/16	519.4	10	Beauty		_
30	11	10		10 8	10	10		15	165	505	519.4	101	Stault		
21	11	1.11				10		16	105	1524	\$19.4	148	Sound		
32	11		10	10	10	10		15	185	509	\$19.4	68	Sould		
33	11		6			.10		11.	105	505	515.4	10	Squid		
13 M 10	CONCEPT ON A	-	10100	10	TO BE T	INCOME: N	22	1000	1051	100000	12194	12200122	South	0.9412	1000
35	11	-	1.1	1	1	10	-	15	185	509	518.4	144	Squid	Conceptual de la concep	
36	11			1.0	- îi - 1	10		15	185	509	519.4	100	Squid		
37	11	1.1		1.2	7	10		15	165	509	515.4	0.6	Squid		
1000	in the second	no ince	ALC: NO	1.61	D	100000	23	THEORY	105	10000010	IT STRACT	100000000	159.68	198417	11126
30	11.	10	_	10	10	10		15	165	509	519.4	14	Squid		
40		10		10	10	10		15	165	509	519.4	- iii	Sepuld		

Table 2 (Cont'd) – Detailed characteristics of the instrumented longline deployment

C – Set 3

N' Basket	10.00	Hook	-		N HTL	FL imi	N'TOR	TBH (4)	TEF (s)	DBF (m)	LLBF int	58(%)	Bat	TDR is	with inv
N. Desvel	N. 94	Circle	Tune	N. Norska	N. PITS	LT INI	NUM	Line but	(m. (a)	DBF (H)	rras, (uit	Old (JP)	mat	Mars	Max
1	11	. 10		10	10	10.		16.	185	509	519.4	- 648	Squit		
2	11	- 8	2	10	10	30		15/	105	500	515.4	10.00	Squid	70	150
3	- 11		. 6	A 8		10		10	165	509	519.4		5quit		
4	11	1000	10	10	10	10	10	10	185	000	519.4	12.00.00	Sould	-57	156
5	11	10		10	10	10		10	1405	509	.519.4	548	Squid	1	
- 6C -	11	10	1.2.2	10	10	. 10		15	165	509	519.4	. 98	Squid		
7.	11		10	10	10	10		15	165	508	515.4	- 98	Squid		
	11		10	10	10	10		15	165	509	519.4	94	Squid.		
9	11	. 6	1.80		9	- 10	. 98	15	165	509	519.4	545	Save	- 50	992
10	- 11	8		6	. 6	10	1.	15	165	509	519.4	548	Squid		
11.	15	10	10000	10	10	10	12	15	165	509	619.4	12.00	Squid.	- 50	153
12	11					10		15	165	509	519.4		Squit	10.000	
13	11	Concerning of the second	10	10	10	90.0	13	15	985	505	519.A	COMES!	Squit	5073	163
14	11	7	2	9	. 0	90		15	185	509	519.4	. 88	Squid.		
15	11	10		10	10	10		15	165	509	\$19.4	94	Squid		
10	11	. 9		9. 9		10		15	165	509	519-4	318	Siquid		
17	11		10	10	10	90	14	15	165	509	519.A	13 14 12	Sound	47	154
18	11		10	10	10	10		16.	165	509	519.4	148	Siguid		
19	11.		. 9		. 9	10		15	185	509	519.4	38	Squid		
20	11	8			. 0	10		15	165	509	\$19.4	98	Squid		
21	11			9		10	1.1.1.1	15	165	509	519.4	98	Squid.		1100
22	11.	10	100.00	10	10	- 90	15	15	985	509	519.4	12 94 51	Squid	45	118
23	11.		7	7 7	7	. 10		15	165	509	519.4	98	Squid	1	
24	11		- 10	10	10	10		15	165	509	519.4	- 98	Squid		
24	11	10100		e	17. W. 19	90	16	18.0	- 465	N9	519.4	12.00	Squid	48	106
26	. 11	10		10		10		10	165	509	519.4		Siguid		-
27	11	10		10	10	90		15	185	509	519.4		Squid		
28	11	10		10	10	90	.17	18.	185	500	318.4	10.00	Topiel.	. 45	107
.29	11				8	10		15	185	.509	519.4	588	Squid		
30	11		10	10	10	90		15	165	509	519.4	98	Squit		
31	11		10	10	10	10	15	15	185	509	519.4	115.64	Squid.	- 59	121
32	11		10	10	10	. 10		15	165	509	519.4	98	Squid.	0.100	
10	11.	80	Contraction of the	10	10	10	20	78	365-1	509	519.4	LIS M OL	Equid	80	308
- 34	11	10		10	10	10		15	160	509	519.4	98	5quid	1.1.1.1	
35	11	50	1	10	10	30	22	18	105	505	519.4	0.00	David	. 82	112
36	11.	10		10	10	30	10000	15	165	509	519.4		5quet		1.00
- 57	88.	10		10	10	10		15	185	509	519.4	88	Squid		
38	11	2	4	6	6	90		15	185	509	519.4	00	Squid	-	
36	. 11.	122	. 0		100015	- 10	25	15	1115	500	515.4	12 10 (2)	Staid	90	760
40	11		. 10	10 30	10	90		16	160	509	.519.4	94	Squid		
41	11	1	- 10	10	10	10	23	15	965	509	519.4	12.00	Squit	110	208
43	11			P 8		40		15.	18/5	509	519.4	100	flaguid		

Table 2 (Cont'd) – Detailed characteristics of the instrumented longline deployment

D – Set 4

LL set	t (krdu) =. Sect	YES													
		Hook	type												
N' Baiket	N. 84	Circle	Tuise	N. hours	N, HTs	FL.(m)	N'TDR	78H (s)	TBF (s)	DBF (m)	LLBF (m)	3R(%)	Bat	TDR di Min	Max Max
1	15		14	14	14	20		15	605	709.2	723.7	UH.	Squit		_
-2	15	10.1500	1004011	14	14	20 (1	- 4 -	15	605	705.2	723.7	10104-001	South	1443	11100
3	15	- 14		14	- 14 -	20		15	6105	708.2	723.7	14	Squit		-
	15	10.00	13	13	13	20		15	6045	709.2	723.7	12104-01	5000	100	152
5	15	1.1.1	13	13	13	20		15	605	708.2	723.7	100	Siguid.		
- 6	18	34	11000	14	54	20	10	15	605	708.2	723.7	10.00	South	2070	144
3	15	.14		14	14	20		15	605	709.2	723.7	0.8	5quid.		
8	15	4	10	14	14	20	. 11	15	605	709.2	723.7	10054000	Squid	. 96	548
9	15		.9	- 14	14	20	1.11	15	695	709.2	723.7	98	Squid.		1.1.1
10	15	12	2		14	20	12	15	696	709.2	723.7		5quid	. 30	1.882
11	15.	. 54		54	14	20	100	15	695	709.Z	723.7		Squid.		
12	15	10000	- 14	 M.C. 	14	20	- 13 -	15	- 605.5	709.2	723.7	13.00	South	2.27	138
- 13	15		13	10	15	20		15	695	708.2	723.7	94	5quel		
- 14	18.		14	14	14	220-11	- 14	15	600	709.2	723.7	100	Disk!	37	. 215.
18	15	13		13	13	20		15	605	708.2	723.7	98	Squid.		
1.94	18	10.5400		2 14	1.14	20	- 19	10.0	605	708.2	723.7	10.00	Series?	43	1.94
17	18		13	13	13	20		15	695	709.2	723.7	10	Squid		
12	15		14	13	12	20	- 18	15	000	709.2	723.7	121.646 (2)	South	48.	113
	15	· · · · ·	14	114	14	20		15	605	709.2	723.7	98	Squid		
20	15	38	1011025	13	13	29	17	18.	- 605	709.2	723.7	0.04	Sold	1945	709
21	15	54		14	- 14	20		15	605	709.2	723.7	548	Squid.		
22	15	- 14		14	14	20		15	605	709.2	723.7	58	Squid	· · · · · · ·	
23	15	1000000	- 14	14	14	- 20	-18	18	095	709.2	723.7	100	Squitt	2.88	1538
- 24	15		7	· · · ·	1	20		15	695	709.2	723.7	98	Squkt		
25	15	11.00	14	14	- 14	20	20	18	605	208.2	723.7	10.00	David	8017	134
28	15	14		14	- 14			15	605	709.2	723.7		Squit		
27	15	14	557.05	- 14	14	- 20	- 21	18	405.5	708.2	723.7	101000	(Squel)	76	120
28	15		- 11	11 14	11	20		15	605	708.2	723.7	0.0	Siguid		
29	15	1000	. 14	14	. 14	- 20		15	605	709.2	723.7	. 98	Squid.		
30	10	.14	- 20.80	- 14	14	20	- 22	15	6005	709.2	723.7	12.00	Dquid	1.918.0	3100
31	15	. 54		. 14	14	20		15	695	709.2	723.7		Squel	-	
32	15	12	17-31	12	11142171	20.00	- 23	15	605	708.2	723.7	10100	(Double)	238	205

E – Set 5

		Hook	-											TDA de	the first
N' Baiket	N. Ird	Circle	Time	N. houks	N, HTs	FL.(m)	NTDR	78H (s)	TBF (s)	DBF (m)	LLBF (m)	SH(%)	Bel	Rafers .	Max
1	- 17	10	-	16	16	20		TAKE	15	787	603.1	0.0	Squit		_
2	17	_	10060	16	1198	20.0	- 4	INC:	15	787	803.1	10104101	Said	1158	200
- 9 -	17	.98		< 18.	16	- 20		NH2	- 15	317	801.1	1 M C	Sepidd.	137	366
4	1.7		.15	15	15	20		NHE	15	787	803.1	148	Squit		
	17	10.98-01	Gebool	10	10.18	10.20	10	ENG2	15	787	803.1	ICOM CON	15444	117	177
6	17	1.1.1	16	. 10	16	20	17	NRE.	15	787	803.1		Sepuld		
7	17.	10.1612	151121	18	118	20	- 11 -	MRE I	15	787	803.1	10.00	(Squid)	3.918-0	135
8	17		16	16	16	20		NHE	15	787	803.1	548	Squid		
- 0	17	101613	180733	 18 	10.86.53	220.00	-12-	NKE	- 15	787	803.1	10.98	Sould	918	345
10	17		16	10	16	30		NRE.	15	- 787	803.1	- 148	Squid		1.1.1
11	17	8				20		MHE.	15	787	603.1		Gguld.		
12	17.	1.16.1	1	16	11.96.71	20	.43	NHE	15	787	803.1	0.0000300	Squid:	0.216-0	105
13	17		11	. 98.	. 11	21		NH2	15	787	803.1		Squtt		
34	17		198	7. 26	1.16	2.2021	34	MAG	18:00	787	803.1	10.00	Digit!	112	367
15	- 17	10		16	16	20		NRE	15	787	803.1		Squid		
14	17	11296101		16	14	20		ME	15	717	903.1		Strivet	108	
- U.	- UT.		10	18	15	- 20		NHE	16	767	803.1	646	Squid		
18	17	110000	10.10	1282	13.	20.00	10	ME	.15	107	803.1	10.000	Suid	STREET	1.761
10	17	10		16	- 16	- 20	111	NKZ:	15	787	803.1	98	Siquel		
20	17	1001053	1111212	10	10.10	20	17	ME	15	787	803.5	12.94.225	ing set	118	1.160
25	17		. 9	9		20		MAGE	15	787	803.1	545	Squid		
- 72	-17		10	1	16	- 20		MRE	15	782	803.1	98	Sepuld	6 1	
22 23 24	17	96 7	1.1		16	20		NRE	15	787	603.1	. 98	Squid		
24	17	2.1	1.4	7	7	- 20		NH2	15	787	803.1	98	Squid.		
35	17		16	16	10			NE	15	787	003.1	. 34	Squit		-
124-	17	1	18	16	12160	26	21	NH2	15	287	603.1	11100	South	190	210
- 27	17	1.7		7		20		NHE	15	787	803.1		Squid		
28	17.	35		15	15	20	22	MHZ -	15	787	8013.1	1.1	Squid	100	1329

N° LL	N. baskets	N. Hooks	N. HTs	Number of TDRs deployed
1	40	364	364	9
2	40	367	367	8
3	42	394	394	14
4	32	428	428	15
5	28	404	404	12
Total	182	1957	1957	58

Table 3 – Summary of sets, baskets, hooks and hook timers and temperature depth recorders deployed during the SWIOFP ILL training cruise.

Maximum fishing depth

On figures 10 A to E the maximum, the mean and the median values of depth recorded by TDRs for each fishing experiments are represented. Maximum values ranged from 60 m to 200 m displayed highest intraset variations compared to mean and median values. Linear empirical relationship between these variables indicated that the difference between maximum depth values and mean depth values were about ~ 45 m ($R^2 = 69\%$, P < 0.001) while the difference between mean 62 m and negative otherwise ($R^2 = 96\%$, P < 0.001), (Figure 11).

The supposed relationship between the maximum fishing depth and the length of the mainline between floats we expected to find by increasing the number of hooks per basket is highlighted on the Figure 12. The slope of the linear relationship indicates an depth increase of 18 m for each 100 m increase of the mainline length between floats. Moreover, it must be noted that the variation amplitude of the median values was almost similar (\sim 80 m) for each mainline length between floats experimented (Figure 12). This result traduces the strong effect of the environment on the mainline at small scales for a given longline deployment strategy.

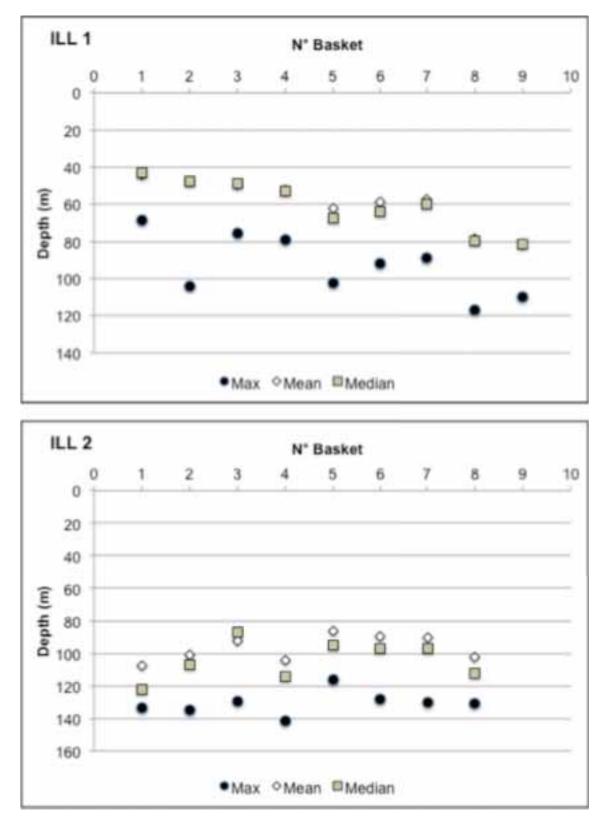


Figure 10 A, B – Maximum, mean and median of depth series recorded by TDRs on baskets of the instrumented longline fishing experiments 1 (ILL 1) and 2 (ILL2).

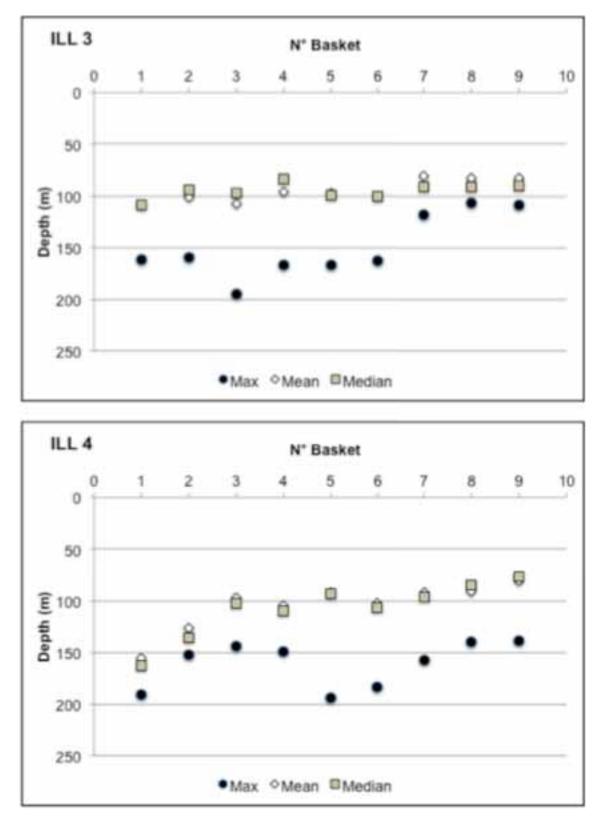


Figure 10 C, D – Maximum, mean and median of depth series recorded by TDRs on baskets of the instrumented longline fishing experiments 3 (ILL 3) and 4 (ILL4).

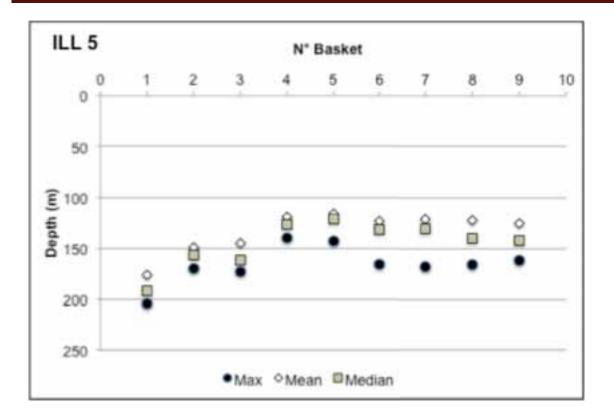


Figure 10 E – Maximum, mean and median of depth series recorded by TDRs on baskets of the instrumented longline fishing experiments 5 (ILL 5).

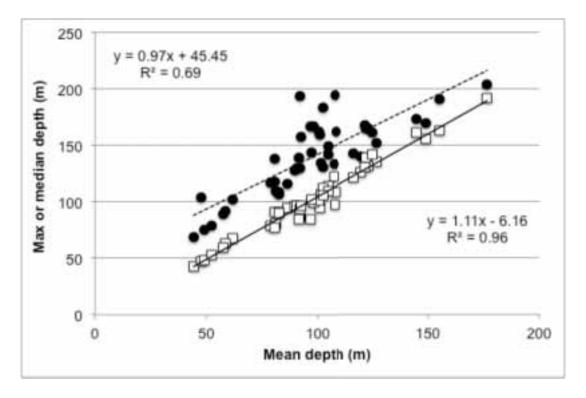


Figure 11 – Empirical linear relationships between the mean depth values (horizontal axis) and the maximum or the median depth values (vertical axis).

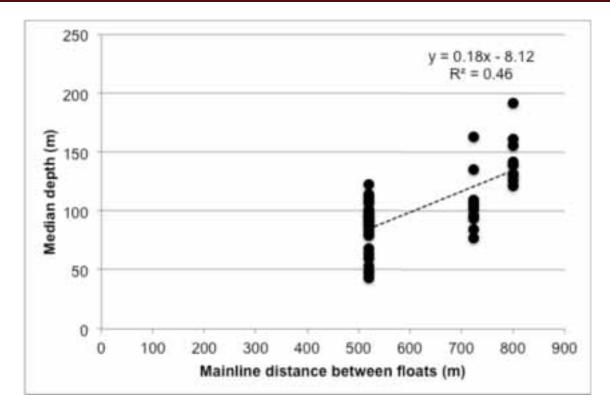


Figure 12 – Empirical linear relationship between the median depth recorded on baskets (m) and the mainline distance between floats.

4.3 Hooking responses and capture

During this cruise of five instrumented longline sets, a total of 92 hooking responses (HR) was recorded from hook timers (ranged from 10 to 39 HR per set). Among these HR, 49 corresponded to capture (hooking success), (Tab. 4). The level of the hooking efficiency for the 5 sets estimated at the ratio between the number of hooking success and the number of hooking contact was 53%.

	ILL1	ILL2	ILL3	ILL4	ILL5	Total
Hooking responses	39	11	10	18	14	92
Hooking success	9	7	7	13	13	49

These 49 hooking success corresponded to 9 large pelagic species (Tab. 5). Among these species, three of them (swordfish, lancetfish and blueshark) represented 80%. The swordfish (*Xiphias gladius*) and the lancetfish (*Alepisaurus ferox*) displayed each a relative contribution of 34.7% of total individuals caught and third the blueshark (*Prionace glauca*) represented with 10.2% of catches (Tabl. 5).

Table 5 – List of species and specific abundance (N and %) in the capture

Scientific name	Common name	FAO Code	N	% 2
Makaira nigricans	Blue marlin	BUM		
Alepisaurus ferox	Longnose lancetfish	ALX	17	34.7
Coryphaena hippurus	Common dolphinfish	DOL	1	2
Carcharhinus longimanus	Oceanic whitetip	ocs	1	2
Gempylus serpens	Snake mackerel	GES	3	6.1
Lepidocybium flavobrunneum	Escolar	LEC	1	2
Prionace glauca	Blue shark	BSH	5	10.2
Thunnus alalunga	Albacore tuna	ALB	3	6.1
Xiphias gladius	Swordfish	SWO	17	34.7
		Total	49	100

The time of hooking responses while the fishing period inferred from hook timers data is displayed on the figure 13. The distribution of hooking responses showed that during our experiments interactions between the gear and the pelagic fish resources were maximal between 20:00 and mid-night with 60% of hooking responses. Meanwhile, related to this previous result we observed that ~60% of hooking responses occurred with hooks soaked less than 5 hours (Fig. 14).

The capture time distribution for the swordfish as target species displayed a time window of two hours, from 19:00 to 21:00, where 50% of individuals where caught. An other time period from 00:00 to 01:00 observed a significant swordfish capture of 20% (Fig. 15). It must be noted that after the four first hours of the fishing time, swordfish capture reached ~60% of the total catch of the species. The link between these two results could be used to defined better fishing strategies by selecting the fishing period when the availability of the resource is maximal.

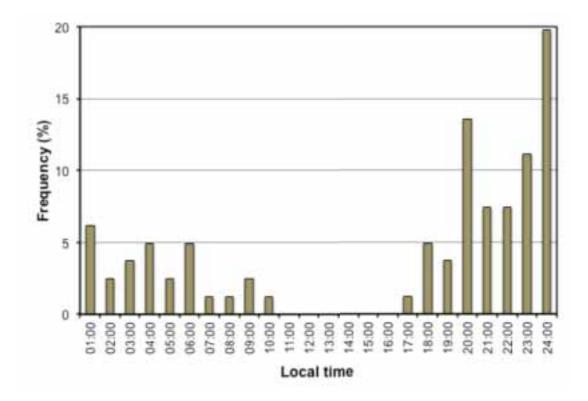


Figure 13 – Frequency (%) of hooking responses per hour during the time of the day (local time).

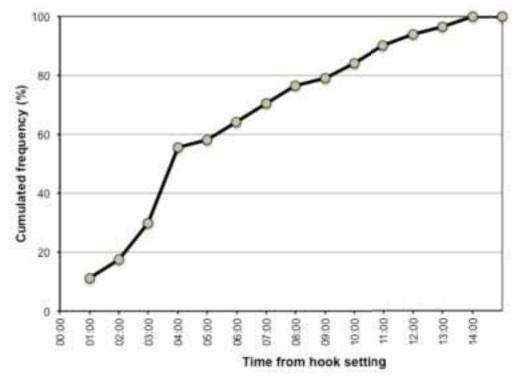


Figure 14 – Cumulated frequency (%) distribution of delay between the hook setting time and the hooking time for all hooking responses.

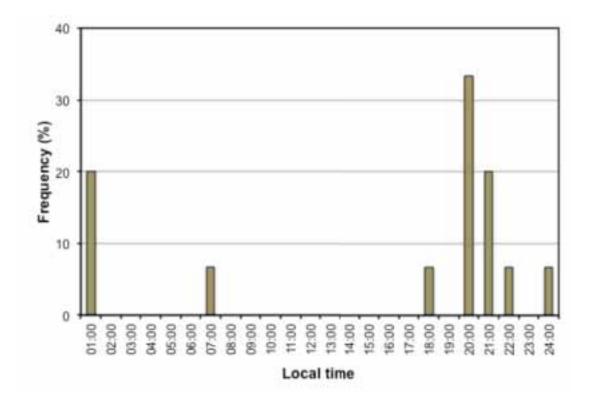


Figure 15 – Frequency (%) of hooking success per hour of swordfish during the time of the day (local time).

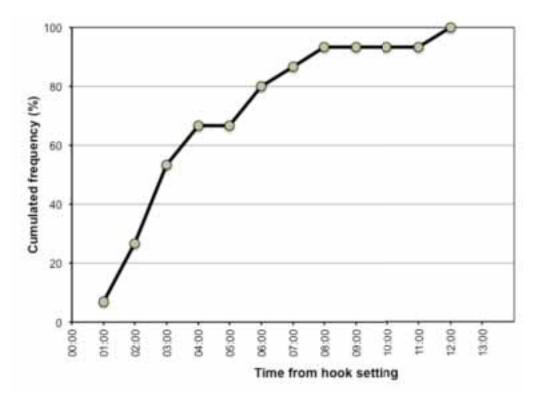


Figure 16 – Cumulated frequency (%) distribution of delay between the hook setting time and the hooking time of swordfish caught.

5 Conclusions

This SWIOFP Instrumented longline fishing cruise was a great opportunity for trainees of the SWIO region (Kenya, Tanzania, Mozambique, Comoros, Madagascar, Mauritius and Seychelles). They got a better appreciation of what is the work on field en general and what is the organization of a scientific cruise: how to control the scientific material which will be used on board (fishing materials and fishing sampling forms, fishing instruments, material for biological samples, field guide for species identification, XBT probe and XBT launcher), how to work with fishermen and how to pilot instrumented longline fishing experiments.

Organized in two batches of trainees this cruise was dense. Each member of the two groups was confronted with all operations carried out on board: longline deployment with beeper, hook timer (HT) setting, temperature depth recorder (TDR) setting, data collection during the longline hauling (hooking responses, hooking success), TDR data downloading, species identification, sampling biological and biometrical data on fish individuals and XBT deployment.

Hope this experience will be useful for SWIOFP partners for carrying out new instrumented longline surveys to better understand interactions between the fishing gear and the pelagic resources, the target species (swordfish and tunas) as well as all bycatch species with a particular attention on shark species and endangered species such as marine turtles.