ORTOTRÓP PÁLYASZERKEZET FÁRADÁSVIZSGÁLATA

Mihálffy Attila^{*} - Joó Attila László^{***} - Dunai László^{***} - Dr. Szatmári István^{****}

RÖVID KIVONAT

A Dunaújvárosi és az M0 Autópálya Északi Duna-híd ellenőrzése során két szerkezeti részleten végeztünk fáradásvizsgálatot: a hosszborda hegesztett illesztésének, és a pályalemez-hosszborda hegesztett kapcsolatának környezetében. A feszültségek meghatározására a vizsgálatokban végeselemes modellt alkalmaztunk. A vizsgálatok során kimutattuk, hogy a vizsgált szerkezeti részletek fáradásra megfelelnek. Elvégeztünk egy paraméteres vizsgálatot is, amelyben a pályalemez vastagításának hatását vizsgáltuk a borda gerincében keletkező hajlítófeszültségekre.

I. BEVEZETÉS

A Dunaújvárosi és az M0 Autópálya Északi Duna-híd ortotróp pályaszerkezetében fáradás szempontjából olyan helyeket vizsgáltunk, amelyekben az egyes gépjárművek kerékterheinek hatására jelentős feszültségingadozás keletkezik, illetve amelyekre szerkesztési szabály betartásával – vizsgálat nélkül – nem igazolható a megfelelő fáradási élettartam. Az egyik ilyen hely a hosszborda hegesztett illesztése, a másik pedig a hosszborda és a pályalemez közötti hegesztett kapcsolat. A vizsgálat célja az volt, hogy ezekben a részletekben az Eurocode 3 [1] előírásai alapján igazoljuk a szerkezet megfelelőségét. A vizsgált szerkezeti részletek feszültségeloszlásának számításához, és а fáradásvizsgálat alapját jelentő feszültségamplitúdók meghatározásához különálló végeselemes modelleket készítettünk.

A kijelölt szerkezeti részletek ellenőrzésétől függetlenül paraméteres vizsgálatot is végeztünk, amelyben azt vizsgáltuk, hogy a pályalemez vastagságának milyen hatása van a hosszborda – pályalemez kapcsolat környezetében kialakuló feszültségekre.

2. A VIZSGÁLAT ELMÉLETI HÁTTERE

Az Eurocode 3 [1] szabvány szerinti fáradásvizsgálat az adott forgalmi adatok alapján meghatározható feszültségtörténetből számított feszültségspekrumon, illetve az ezekhez tartozó fáradást okozó ismétlésszámokon (fáradási élettartamokon) alapul. Az egyes spektrumokhoz tartozó károsodások a Palmgren-Miner elv szerint összegezhetők.

^{*} okl. építőmérnök, doktorandusz, BME Hidak és Szerkezetek Tanszéke

^{**} okl. építőmérnök, egyetemei tanársegéd, BME Hidak és Szerkezetek Tanszéke

^{***} okl. építőmérnök, Dr. habil, egyetemi tanár, BME Hidak és Szerkezetek Tanszéke

^{*****} okl. építőmérnök, Dr. habil, egyetemi magántanár, BME Hidak és Szerkezetek Tanszéke

Ez alapján nem következik be fáradási tönkremenetel, ha az összegzett károsodás értéke egynél kisebb.

Az egyes feszültségamplitúdók és fáradást okozó ismétlésszámok közötti kapcsolatot a szabványos Wöhler-görbék adják meg minden fáradási osztályra. Az 1. ábrán láthatók a Wöhler-görbék; a görbéket a szerkezeti részlet osztálya jellemzi, ami a 2 millió ismétlésszámhoz tartozó fáradási tartamszilárdságot adja meg. Az 5 millió ismétlésszámhoz tartozó fáradási tartamszilárdságot mind az Eurocode, mind a vonatkozó magyar szabvány állandó amplitúdójú fáradási határként definiálja.

Az Eurocode 3 [1] ajánlása szerint a szerkezetben nem következik be fáradási tönkremenetel, ha a feszültségtörténetben a változó feszültségamplitúdók egyike sem éri el az állandó amplitúdójú fáradási határt ($\Delta \sigma_{D}$ -t).

A pályaszerkezet fáradási szempontból érzékeny szerkezeti részleteinek, a hosszborda hegesztett illesztésének és a pályalemez-hosszborda hegesztett kapcsolatának fáradásvizsgálatát hajtottuk végre részletesen [3] ajánlása szerint. A 2. és 3. ábrákon láthatóak a vizsgált szerkezeti részletek, melyekhez az Eurocode 3 [1] a következő állandó amplitúdójú fáradási tartamszilárdságokat határozza meg:

Hosszborda hegesztett illesztése 71-es fáradási osztályú, ezért:

 $\Delta \sigma_D = 52 \text{ N/mm}^2$ Pályalemez és hosszborda kapcsolata 50-es fáradási osztályú, ezért: $\Delta \sigma_D = 37 \text{ N/mm}^2$

2. ábra: Hosszborda hegesztett illesztése

3. ábra: Pályalemez és hosszborda hegesztett kapcsolata

3. SZERKEZETI RÉSZLETEK – VÉGESELEM MODELLEK

3.1. Az 1. modell bemutatása

Az 1. modell a hosszborda hegesztett illesztésének fáradásvizsgálatához szükséges feszültségeloszlások meghatározására készült. A vizsgált részlet a híd pályaszerkezetének két függesztett kereszttartó közé eső része. A pályaszerkezet ortotróp kialakítású, hosszirányú merevítőbordákkal. A kereszttartók távolsága 3800 mm, a hosszbordák trapéz keresztmetszetűek, egymástól 600 mm-enként helyezkednek el, felül 300 mm alul 200 mm-es mérettel, magasságuk 300 mm, vastagságuk 8 mm. A pályalemez 12 mm vastag. A híd szimmetriája, illetve a teher hatásának lokális kiterjedése miatt a vizsgálatban a pályaszerkezet fele szerepel. A modell két kereszttartó közötti részt tartalmaz: két kisebb kereszttartót, 25 hosszbordát és egy hossztartót, a járdakonzol nélküli fél pályaszerkezet szélességében. A végeselemes modell kialakítását a 4. ábra mutatja. A vizsgálat célja a hosszbordában kialakuló legnagyobb feszültségamplitúdó meghatározása, ezért a borda és környezete felületszerkezeti elemekkel, a feszültségeloszlást nem befolyásoló szerkezeti részek pedig rúdszerkezeti elemekkel lettek modellezve.

4. ábra: Hosszborda illesztés - végeselemes modell

A felületszerkezetek végeselemes hálózatának kialakítása olyan, hogy a terhelt, illetve a vizsgált részeken jelentősen sűrűbb a hálózat. A terhek és a vizsgálati helyek egyaránt a 4. ábrán bekarikázott helyen, a harmadik hosszborda mentén helyezkednek el, így a bordának, illetve a pályalemeznek és kereszttartóknak a bordához közel eső részeinek sűrűbb a hálózata. A hálózatban a nem sűrített helyen egy-egy elem élhossza maximum 300 mm, sűrített helyen maximum 30 mm. A modell 28053 csomópontból és 38899 elemből épül fel.

A szerkezeti részlet megtámasztását a főtartó gerince, illetve a főtartó gerincre támaszkodó kereszttartók jelentik. A szimmetria miatt a kereszttartók végkeresztmetszete nem fordulhat el. További megtámasztások szükségesek a hosszbordák végénél, amik a borda folytonosságát veszik figyelembe.

3.2. A 2. modell bemutatása

A 2. modell a pályalemez és a hosszborda hegesztett kapcsolatának fáradásvizsgálatához szükséges feszültségeloszlások meghatározására készült. A 2. modellben 25 helyett csak 7 hosszborda szerepel, de a lokális viselkedést ez nem befolyásolja. A 5. és 6. ábrákon láthatóak a modell részletei. Míg az 1. modellben a vizsgált borda teljes hosszán szükség volt a hálózat sűrítésére, addig a 2. modellben csupán közvetlenül a terhelés alatt, mivel a keréknyomás hatására, a 6. ábrán nyíllal jelölthelyen kialakuló lokális feszültségkoncentráció meghatározása volt a cél.

5. ábra Hosszborda és pályalemez kapcsolata - végeselemes modell - 1

6. ábra Hosszborda és pályalemez kapcsolata - végeselemes modell - 2

A 6. ábrán a hálózat besűrítésének helye és a besűrítés mértéke látható. A hálózatban a nem sűrített helyen egy-egy elem élhossza maximum 300 mm, sűrített helyen maximum 30 mm. A modell 6011 csomópontból és 6255 elemből épül fel.

Mindkét modellt az Ansys végeselemes programban készítettük el. A felületszerkezeti elemeket a programban a SHELL181 elnevezésű 4 csomópontú héjelemekkel, a rúdként modellezett elemeket pedig a BEAM24 elnevezésű 2 csomópontú rúdelemekkel vettük fel.

4. FÁRADÁSI TEHERMODELL

1	2	3	4
Tehergépkocsi típusa	Tengelytáv	Tengelysúly	Keréktípus
	[m]	[kN]	[kN]
	- ini		Table 4.8)
	4,5	90	A
E C		190	В
	4,20	80	A
	1,30	140	В
a <u>- aa</u>		140	в
	3,20	90	Α
	5,20	180	в
	1,30	120	С
	1,30	120	с
		120	С
	3,40	90	A
	6,00	190	в
	1,80	140	в
		140	В
	4,80	90	A
	3,60	180	В
	4,40	120	С
	1,30	110	С
		110	С

4.1. Terhelés az 1. modellben

A fáradásra mértékadó járműterhet a szabvány [2] által előírt, a 7. ábrán látható 2, 3, 4 vagy 5 tengelyű tehergépkocsik eltérő terhelésű kerékterheiből származtathatjuk. А vizsgált szerkezeti részlet méreteit és a tehergépkocsik tengelytávolságát figyelembe véve az 1. táblázatban feltüntetett mértékadó kerékteher kombinációkat származtathatiuk. A különböző jelű kerékterhek eltérő terhelését és megoszlási területét az 1. táblázat tartalmazza. А terhelés megoszlási területének meghatározásához az aszfaltréteg teherelosztó hatása miatt a kerék felfekvési területe megnövelhető 45°-os szétterjedést feltételezve

7. ábra: Szabványos tehergépjárművek

Mindegyik teher két teheresetben kerül a szerkezetre, egyszer a maximális húzófeszültséget (8. és 9. ábrákon fent) eredményező helyzetben mezőközépi, egyszer pedig a maximális nyomófeszültséget (8. és 9. ábrákon lent) eredményező szomszédos mezőben lévő helyzetben. A 8. és 9. ábrákon a szerkezet hosszmetszete látható, a vizsgált keresztmetszetet "K" jelöli. Azonos jelű kerékteher nagysága járművenként eltérhet, de a vizsgálatokban – a biztonság javára tett közelítéssel – mindig a legnagyobb értékkel szerepelnek a kerékterhek.

Teher	Kerék	Terhelés	Felfekvési terület	Megoszlási terület
sorszáma		nagysága	[mm]	[mm]
1.	Α	35 kN	320x220	520x420
2.	В	75 kN	320x540	520x740
3.	С	45 kN	230x270	520x470
4.	B + B	2x60 kN		
5.	C + C	2x45 kN		
6.	C + C + C	3x45 kN		

1. táblázat: Mértékadó kerékteher kombinációk és felfekvési felületek

8. ábra: Mértékadó teheresetek: "A" kerék

9. ábra: Mértékadó teheresetek: "C+C+C" kerék

A modellben a [2] szabvány által meghatározott A,

B, és C jelű kerékterhek szerepelnek. A borda és a

pályalemez lokális vizsgálatakor a teher egy

kerékből származik, hiszen a távolabb eső kerekek

tehermodellben nem szerelnek az 1. táblázatban lévő több kerékből álló tehercsoportok. A hosszborda

feszültségeinek alakulása szempontjából nagyon

jelentős a kerékteher támadáspontjának és a borda

hajlítást,

ezért

а

lokális

4.2. Terhelés a 2. modellben

tengelyének a helyzete, mivel a külpontos elhelyezkedés hatására a borda két gerince egyenlőtlenül terhelt. Az 10. ábrán látható a modellben alkalmazott három kerékteher három pozíciója.

okoznak

nem

10. ábra: Kerékteher elhelyezések

5. EREDMÉNYEK

5.1. Az 1. modell vizsgálatának eredményei

A bordaillesztés fáradásvizsgálatának elvégzéséhez szükségünk van az illesztésnél keletkező maximális húzó és nyomófeszültségekre, amikből a feszültségamplitúdókat számolhatjuk. A bordaillesztés távolsága a kereszttartótól 1200 mm. A 11. ábrán nyíl jelöli a maximális húzófeszültséget adó teheresetben kialakuló legnagyobb húzófeszültség helyét.

11. ábra: Hosszirányú feszültségek az A jelű kerék első helyzetében

A feszültségamplitúdó a legnagyobb húzó- és nyomófeszültségek különbségeként számolható. A 2. táblázat tartalmazza a vizsgált helyen kialakuló maximális feszültségeket és feszültségamplitúdókat.

2.	táblázat:	Feszültség	ek a h	osszborda	illesztésénél
----	-----------	------------	--------	-----------	---------------

Tehereset	Húzófeszültség a	Nyomófeszültség	Feszültségamplitúdó
	vizsgált helyen	a vizsgált helyen	[MPa]
	[MPa]	[MPa]	
А	18,13	-4,57	22,70
В	27,44	-6,92	34,36
С	22,66	-5,72	28,38
B + B	32,04	-10,12	42,16
C + C	28,35	-8,89	37,24
C + C + C	28,10	-10,79	38,89

A legnagyobb húzófeszültség a kerékterhek első helyzetében, a maximális nyomófeszültség a kerékterhek második helyzetében keletkezik. Az egy kerék (vagy kerékcsoport) áthaladásakor keletkező legnagyobb nyomófeszültség és húzófeszültség különbsége adja meg az adott teherhez tartozó feszültségamplitúdót. A legnagyobb számított feszültségamplitúdó értéke 42,16 MPa

5.2. A 2. modell vizsgálatának eredményei

A pályalemez és a hosszborda kapcsolatánál a borda ferde gerincében a lokális hajlítás miatt kialakuló maximális húzó és nyomófeszültséget vizsgáltuk. A 12. ábrán a "B" jelű teher esetén keletkező lehajlásokat, a 13. ábrán pedig a lokális terhelés hatására a bordákban bekövetkező deformációkat láthatjuk. A fáradásvizsgálat alapját jelentő feszültségamplitúdót ($\Delta \sigma$) a legnagyobb és a legkisebb feszültség különbségeként kaphatjuk meg. Egy kerék áthaladásakor a keresztirányú feszültség nulláról növekszik, eléri a maximumát, majd visszacsökken nullára. Ennek értelmében a legkisebb feszültség a nulla, a legnagyobb feszültség pedig a kialakuló maximális feszültség, vagyis a feszültségamplitúdó értéke megegyezik a kialakuló, abszolút értékben legnagyobb feszültséggel.

12. ábra: Lehajlás az 1. helyen lévő B jelű kerékteherből

13. ábra: A bordák deformációja az A-A metszetben

Az egyes kerékterhelések esetén a három kerékhelyzetben keletkező maximális feszültségeket kigyűjtöttük a 3. táblázatba. A hosszborda gerincében a hegesztés környezetében keletkező legnagyobb feszültség a C kerék harmadik helyzetében fordul elő, értéke 31,64 MPa.

3. táblázat: Feszültségek [MPa] a kilenc teheresetben

,,	A" keré	k	"B" kerék		"C" kerék				
1. hely	2. hely	3. hely	1. hely	2. hely	3. hely	1. hely	2. hely	3. hely	Max
6.23	-14.6	-27.34	-12.48	-21.58	-30.83	0.92	-19.27	-31.64	31.64

Elvégeztünk egy paraméteres vizsgálatot, amelyben azt vizsgáltuk, hogy a pályalemez vastagításának milyen hatása van a pályalemez - hosszborda kapcsolatánál kialakuló feszültségekre. A hosszbordák vastagsága állandó 8 mm volt, a pályalemez vastagsága pedig 10-12-14 mm-es értéket vett fel. Az eredményeket a 4. táblázatban foglaltuk össze. A feszültségi értékeket a hosszborda ferde gerincében számítottuk a hegesztés környezetében, a borda külső és belső oldalán, a "B" kerék 10. ábrán bemutatott helyzetében.

4. táblázat: A paraméteres vizsgálat eredményei

	"B" kerékteher						
	1. kerékhelyzet		2. kerékhelyzet		3. kerékhelyzet		
	Belül	Kívül	Belül	Kívül	Belül	Kívül	
	feszültségek [MPa]		feszültségek [MPa]		feszültségek [MPa]		
10 mm	-12.56	-4.57	-35.77	23.06	-32.87	29.79	
12 mm	-12.67	-4.42	-30.27	17.71	-27.71	24.64	
14 mm	-12.24	-4.76	-26.52	14.1	-24.36	21.27	
10 mm	99	103	118	130	119	121	
12 mm	100	100	100	100	100	100	
14 mm	97	108	88	80	88	86	

A 4. táblázat alsó három sorában a 12 mm-es pályalemez esetén keletkező feszültségi értéktől való százalékos eltérés található. A legnagyobb eltérést a 2. kerékhelyzetben találjuk, itt 18-30%-os növekedést, illetve 12-20%-os csökkenést okoz a vastagság változtatása. Ennek oka, hogy ebben a kerékhelyzetben van kitéve a borda lemeze a legnagyobb hajlításnak. Az 1. kerékhelyzetben a különböző vastagságok esetén a feszültségek gyakorlatilag változatlanok, ami annak köszönhető, hogy ebben a kerékhelyzetben az eredő erő körülbelül a borda vonalára esik, vagyis a lokális lemezhajlításból kevés feszültség keletkezik. Ez a feszültségi értékekből is leolvasható, hiszen az első kerékhelyzetben a borda külső és belső oldala is nyomott, míg a másik két helyzetben az egyik oldal nyomott, a másik húzott.

6. FÁRADÁSVIZSGÁLAT – KÖVETKEZTETÉSEK

A hosszborda illesztés [2] és [3] szerint a 71-es fáradási osztályba tartozik, az ehhez tartozó állandó amplitúdójú fáradási határ 52 MPa; mivel a legnagyobb számított feszültségamplitúdó értéke 42,16 MPa, a szerkezeti részlet fáradásra megfelel.

A pályalemez és hosszborda sarokvarratos kapcsolata [2] és [3] szerint az 50-es fáradási osztályba tartozik, az ehhez tartozó állandó amplitúdójú fáradási határ 37 MPa. Mivel a legnagyobb feszültségamplitúdó értéke 31,64 MPa, a szerkezeti részlet fáradásra megfelel.

A paraméteres vizsgálat eredményeiből megállapítottuk, hogy a pályalemez 12 mm-ről 14 mm-re való vastagítása 20%-os mértékben csökkenti a bordában a helyi hajlításból származó feszültségeket. A csökkenés értéke akkor jelentős, ha a kerék a bordára aszimmetrikusan helyezkedik el, ugyanis ekkor keletkezik jelentős hajlítás. Megjegyezendő azonban, hogy a 10 mm-es pályaelemez esetén sem okoz a "B" kerék az állandó amplitúdójú fáradási határt elérő feszültségamplitúdót.

HIVATKOZÁSOK

- [1] prEN 1993-1-9: Eurocode 3: Design of steel structures Part 1-9: Fatigue; Final Draft, December 2003.
- [2] ÚT 2-3.413 Közúti hidak tervezési előírásai III. Közúti acélhidak tervezése, Útügyi Műszaki Előírás, 2002.
- [3] prEN 1993-2: Eurocode 3: Design of steel structures Part 2: Steel Bridges; Final Draft, February 2003.