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Take-home message

- | propose a probabilistic phonotactic model and learner based on Strictly
Piecewise languages studied in Formal Language Theory (FLT).

- The learner successfully learns nonlocal phonotactics from both segmental
and featural representations of the corpus data, and correctly predicts the
acceptability of the nonce forms in Quechua.



Formal Language Theory and noisy corpus data

- There has been a gap between FLT and noisy corpus data; (Heinz & Rawski, in
press; Gouskova & Gallagher, 2020)

- The computational learning theory grounded on FLT focuses on the theorem
and proof of learnability instead of simulation;

- However, understanding the domain-specific, structural properties of small
dataset can help us to handle large noisy dataset.
(Heinz, 2010; Jardine & Heinz, 2016; Jardine & McMullin, 2017)



What is phonotactics?

- Phonotactics: the speakers’ knowledge of possible and impossible sound
sequences.
legal  brick [brik]
legal  blick [blik]
illegal  *bnick [bnik]

Table 1: Local phonotactics in English
(Chomsky & Halle, 1965; Gorman, 2013)

- Nonlocal phonotactics: the phonotactic knowledge of nonadjacent sound
sequences at arbitrary distance.



A running example: Quechua nonlocal phonotactics

- Quechua has three types of stops: plain stop, aspirated stop ["], and ejectives
[].

- Nonlocal stop-ejective and stop-aspirate pairs are illegal in Quechua.

- stop-ejective: *kut'u, *k'ut’u, *k"ut’u;

- stop-aspirate: *kut"u, *k’'ut"u, *k"ut"u;

- legal: K'utuj ‘to cut) rit'i ‘snow’, jut"u ‘partridge’.

(Gouskova & Gallagher, 2020)

- Nonlocal vowel height phonotactics are also attested:

- Uvular and high vowel sequences are illegal *q...i *g...u *i...q
- Mid vowels sequences are illegal *e..e *e..o *o..e ...

(Wilson & Gallagher, 2018)



Questions

- Theoretical: How do speakers learn a finite phonotactic grammar that
distinguish legal and illegal words from an infinite set of possible sound
sequences?

- Practical: can we model the phonotactic learning with input from realistic
corpus data?



Local n-grams and baseline Learner

- Local n-gram: contiguous sequence of n items;

- Previous works usually hypothesize local n-grams as the free
parameters/constraints (grammar) of the phonotactic learner.
(Hayes & Wilson, 2008)



Local n-grams and baseline Learner

- Local n-gram: contiguous sequence of n items;

- Previous works usually hypothesize local n-grams as the free
parameters/constraints (grammar) of the phonotactic learner.
(Hayes & Wilson, 2008)
- Imagine a learner only observed one word K'utuj:
n observed local n-grams unobserved local n-grams

2 K'u, ut, tu, uj *uk'...
3 K'ut, utu, tuj *tuk'...
- E.g *tuk’u will be penalized by the bi-/trigram constraints (*uk’, *tuk’).



Challenge

- However, local n-grams fails to capture nonlocal interactions;
- Learners based on local n-grams eventually learn numerous local n-grams
that approximate nonlocal phonotactics.
- E.g *tuAk’u requires local 4-grams *tuAk’, *tupuk’u requires local 5-grams
*tupuk’, ...
(Hayes & Wilson, 2008; Gouskova & Gallagher, 2020)
- Any such approximation also completely misses the generalization of

nonlocal interaction at arbitrary distance.
(Heinz, 2010)



Strictly Piecewise phonotactic model



Subsequences

- Subsequences aka. nonlocal n-grams keep track of the order between
symbols; e.g. if the learner observes k'utuj:

n observed subsequences unobserved subsequences
2 K.u, K.t, K., . .k
3 K..u.t K..u.j .. *touk

- Strictly Piecewise (SP) grammar evaluates nonlocal n-grams; e.g. *tuk’uj,

*tukk’u, *tupuk’u are all penalized by nonlocal bigram *t..k' (“t precedes k).
(Heinz & Rogers, 2010)




Problem of exhaustively searching nonlocal n-grams

Natural class trigrams by word length
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- “Devising a computationally efficient search..will require a sophisticated

implementation that...is currently lacking”
(Gouskova & Gallagher, 2020) 10



Solution: a probabilistic SP phonotactic model

- Strictly Piecewise grammar can be
characterized by a set of Weighted
Deterministic Finite-state Automata
(WDFAS). (Shibata & Heinz, 2019)

- BEg {M;, M,} bans {*k..k, *k'..k'} with a
simplified alphabet A ={k, Kk u}.

K:1/3
u: 1/3

ki 1/2
k: 0
u: 1/2

"



Parameters

- The parameters are transition weights
W(M, g, o) given the machine M, state
g, and segment o.

ki 1/2
k: 0
u: 1/2
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Target symbol

- Each machine M only checks if it has
seen one specific target symbol o;

- No = stay in state qo;
- Yes = go to state gy;

K:1/3
u: 1/3

ki 1/2
k: 0
u: 1/2
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Coemission probability

- Coemission probability synchronizes the
parameters on different machines at the

same time:

Coemit(oj) =

for one specific segment o;
——

K
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normalizer

(Shibata & Heinz, 2019)
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Word likelihood

k k'
Mi: Qo 4o @1 2 G — G

k k'
M Go 2 Go 72 Go 7 @
Coemit(oj): € 1';3 o1 1;2 o9 E’ o3

- Word likelihood is the product of coemission probabilities of all the
segments in a word:
N
lhd(w) = lhd(o102 ... on) = [ ] Coemit (o)

=1

- Eg. lhd(kuk’) =1/3-1/2-0 = 0, Coemit(k’) = 0 given k = *k..k" is penalized.
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Word likelihood

k k'
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- Word likelihood is the product of coemission probabilities of all the
segments in a word:
N
lhd(w) = lhd(o102 ... on) = [ ] Coemit (o)

=1

- Eg. lhd(kuk’) =1/3-1/2-0 = 0, Coemit(k’) = 0 given k = *k..k" is penalized.



Learning




Learning problem

- Problem: to optimize parameters VA\/(M?q,a) so that the generated
distribution maximally approaches the target distribution D.

- In practice, the parameters are optimized by minimizing the negative log
likelihood (NLL) of a sample/wordlist S drawn from D:

W(M,q,0) = argmin — ) " loglhd(w).

wes

T

Maximum Likelihood Estimation &~ Maximum Entropy



- 10, 848 unlabelled legal phonological words;

Training

ahinaAkamantaqga
tukutdifawanki
g"erkipfoqga

18



Evaluation

- Can't test the accuracy since it's unsupervised learning with unlabelled data.

- Ask if the learned model distinguish the NLL of illegal words from legal words
in testing data — Clustering + nonparametric test

- If the learning is successful, legal words should have lower NLL (higher
likelihood).

19



Testing data I: Gouskova & Gallagher (2020)

- Testing data: 24, 352 generated nonce forms (C;VCyV and C;VCCyV) which
were manually labelled as legal, illegal-aspirate, and illegal-ejective.
(Gouskova & Gallagher, 2020)

Testing Label

gatha illegal-aspirate
ghatf a illegal-ejective
g"akda legal

20



Primary result I: nonlocal phonotactics of stops

scale = CVCCV scale = CVCV
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Testing data Il: expanding to vowel height harmony

- Can the learned model capture the vowel height phonotactics reported in
Wilson & Gallagher (2018) as well?
- 15000 generated nonce words with new labels

- illegal-stops: violating any stop phonotactics in Gouskova & Gallagher (2020);

- illegal-vowel: violating any vowel height phonotactics in Wilson & Gallagher
(2018);

- illegal-stops-vowel: violating any stop or vowel height phonotactics

22



Primary result Il: interaction of multiple nonlocal phonotactics

template = CVCVCV template = CVCCV template = CVCV
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Discussion and conclusion




Structure matters

- SP phonotactic model only keeps track of nonlocal n-grams, which
guarantees the efficient learning of nonlocal phonotactics.

- The structure studied extensively in Formal Language Theory (FLT) is the
conditions on the parameter space such as nonlocal n-grams.
(Heinz, 2018; Jardine & Heinz, 2016; Chandlee et al., 2019)
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Ineseno Chumash nonlocal sibilant phonotactics

- In Ineseno Chumash, the co-occurrence of alveolar {s, z, ts, dz,..} and
lamino-postalveolar {J, 3, T, d; ...} sibilants is illegal e.g. *[...s, *s...[.
(Applegate, 1972)
(1) Japitfolit  /s-api-tffo-it/ 3-grams 5-grams
‘I have a stroke of good luck’

. . fap  Japitf”
(2) Japit/"olufwal  /[-api-tffo-us-waf/ api apit/o
‘He had a stroke of good luck’ pit/h pit/hol

(3) *sapit/Molit, *[apit/Toluswa]



Ineseno Chumash nonlocal sibilant phonotactics

- In Ineseno Chumash, the co-occurrence of alveolar {s, z, ts, dz,..} and
lamino-postalveolar {J, 3, T, d; 3,..} sibilants is illegal e.g. *[...s, *s...[.
(Applegate, 1972)
(4) fapitffolit  /s-api-tffo-it/ 3-grams  5-grams
‘I have a stroke of good luck’

. . fap  Japitf”
(5) Japit/"olufwal  /J-api-tffo-us-waf/ api apit/o
‘He had a stroke of good luck’ pitfh pit/hol

(6) *sapit/"olit, *fapit/"oluswa]

- Trigrams won't work — difficult to choose current window n.



Ineseno Chumash and nonlocal n-grams

(7) fapitfholit  /s-api-tffo-it/ legal illegal
‘I have a stroke of good luck’ [ s
(8) Jfapitffolufwal  /[-api-tf"o-us-wa]/ g s

‘He had a stroke of good luck’ [ *s..[
(9) *sapit/Tolit, *[apit/"oluswa] :




Feature-based representation

- Feature-based model can be implemented by replacing the alphabet by a set
of feature values [aF]. For example, given the simple feature system below:



Feature-based SP phonotactic model

+F:1/3

+F:1/3 —F:1/3
“F:1/3 0F:1/3
8 0F:1/3 3

a) M,

+G:1/3

+G :1/3 -G :1/3
-G:1/3 0G:1/3

_’8 0G:1/3
(d) My

+F:1/3

+F:1/3 —F:1/3
0F:1/3 0F:1/3
8 —F:1/3

(b) M>

—G:1/3

+G:1/3 +G:1/3
0G:1/3 0G:1/3

&
(e) M

—F:1/2
—F:1/3 +F:0
0F:1/3 0F:1/2
8 YF:1/3
—>
(c) Ms
-G:1/2
-G:1/3 +G:0
0G:1/3 0G:1/2

b
(f) Ms

Figure 1: The feature-based SP phonotactic model which bans *+F...+Fand *+G...

with the simple feature system



Learning feature-based representation

scale = CVCCV scale = CVCV
26
*okokk
I 1

24 * ok ok ok
] r 1 o
<3 <3
22 £
) o)
= =
;50 20 Eo r ,
° ° ok
= Z —
® s
op 18 oh
[} Q
c c

16

14

illegal-aspirate illegal-ejective legal illegal-aspirate illegal-ejective legal

acceptibility acceptibility



Forward algorithm

NLL < O;
for word in S do
state < 0 in each automaton M;;
for o; in word do
Initialize a lookup dictionary D for Hle T(M;j,q,0");
for M; in automata do

for ¢’ in alphabet do

L Update the lookup dictionary with ¢’;

Update the state on M;;
| NLL <= NLL - log(Coemit(s))
Result: Negative log likelihood NLL of S
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