
Oracle database – programming Zbigniew Staszak

108

3.6. Subprograms

Subprograms (procedures and functions) available since Oracle 7,

unlike anonymous blocks, are blocks with a name and can be stored in

the database as database objects. Subprograms stored in the database

can be referenced from other blocks (subprograms) and functions,

additionally (since Oracle 7.3), can be referenced from the DML

commands and the SELECT command. The functions stored in the

database can therefore extend the capabilities of SQL language.

The procedure block is defined according to the syntax:

PROCEDURE procedure_name [({parameter [, ...]})]

[AUTHID {DEFINER | CURRENT_USER}]

{IS | AS}

 [-- definitions of the PL/SQL objects for the procedure]

BEGIN

 -- executable part of the procedure

 [EXCEPTION

-- exception handling]

END [procedure_name];

The function block is defined according to the syntax:

FUNCTION function_name [({parameter [, …]})]

 RETURN return_type

[AUTHID {DEFINER | CURRENT_USER}]

{IS | AS}

 [-- definitions of the PL/SQL objects for the function]

BEGIN

 -- executable part of the function with at least one

 -- command: RETURN expression;

[EXCEPTION

-- exception handling]

END [function_name];

Oracle database – programming Zbigniew Staszak

109

The RETURN command without expression can also occur in the

executable part of the procedure. Using this form of command causes

the procedure to stop and pass control to the calling program.

A subprogram defined in this way can be an internal subprogram

(DECLARE section) of another block (subprogram) or an element of

the package (the package is a library of objects grouped under one

name such as types, procedures, functions, variables, constants,

cursors and exceptions).

The AUTHID clause specifies the rights with which the subprogram

will be run (rights of user, who define subprogram or rights of user

who call it - the default are the first rights). The parameter in both

definitions has the syntax:

parameter_name [{IN | OUT [NOCOPY] | IN OUT [NOCOPY]}]

 type [{:=|DEFAULT} initial_value];

Subprogram parameters, if they occur, play the role of formal

parameters. The type of formal parameter (also defined by the

%TYPE attribute) and the return type specified in the function

definition means any predefined or defined type (without length!).

Formal parameters can have one of three modes:

− IN - read-only parameter to which cannot be assigned a new

value in the subprogram (this is the default mode),

− OUT - a write-only parameter which in a subprogram gets value

(the value from the subprogram call is ignored) and which

cannot be read,

− IN OUT - parameter for reading and writing (features of the IN

and OUT modes).

Oracle database – programming Zbigniew Staszak

110

Parameters in IN mode are passed by reference (indicator) and in OUT

and IN OUT modes by value. The NOCOPY modifier (since Oracle

8i) causes the compiler to attempt to pass a parameter by reference

rather than by value. This modifier is ignored if:

− actual parameter is an element of the index table,

− the type of the actual parameter has a length limit (however, this

does not apply to parameters of character types), accuracy or the

parameter has a NOT NULL limit,

− actual and formal parameters are records implicitly declared as

control variables of the FOR loop or are declared using the

%ROWTYPE pseudo-attribute, and the constraints of the

corresponding fields in the records differ from each other,

− auto-conversion of type will occur when passing actual

parameters.

The NOCOPY modifier is mainly used to speed up the transfer of

large tables. In addition, it allows the parameter values determined in

the subprogram to be retained in the event of an error (normally in

such a situation, for passing by the value, the actual parameter retains

the value of before the call).

The subprogram is called according to the syntax:

subprogram_name(argument [, ...])

Call arguments act as actual parameters. They can be specified in

positional notation (suitability of actual and formal parameters) or in

name notation (any order of actual parameters). In name notation, the

parameter is specified according to the syntax:

formal_parameter_name=>actual_value

Oracle database – programming Zbigniew Staszak

111

The following is an example of a procedure header and examples of

calling it (correct and incorrect).

PROCEDURE something(order NUMBER, volume NUMBER:=450,

 donor VARCHAR2:='Honey',

 recipient VARCHAR2:='Drunkard');

something; -- incorrect

something(221); -- correct

something(221,'Mite'); -- incorrect

something(221,recipient=>'Mite'); -- correct

something(order=>221,recipient=>'Mite'); -- correct

The subprogram is saved as a database object using the DDL

command of SQL language, according to the syntax:

CREATE [OR REPLACE] subprogram_block_definition;

Attention!!! Oracle also saves in the database a subprogram with

compilation errors. A corresponding warning will then appear on

the screen. The SHOW ERRORS command displays a list of errors.

A subprogram stored in the database can be called from within any

PL/SQL block. The procedure stored in the database (preceded by the

username) in SQL Developer environment is called by EXECUTE

command. The stored function can be called as part of a DML

command or as part of a SELECT command. In the event of such a

call it must meet the following conditions:

− commands in function body cannot modify data of the database,

− function parameters must be passed in IN mode,

− function parameters and parameter returned by function must be

of the simple type.

In addition, a DML command cannot use a function that works on

relation whose attributes this DML command modifies.

Task. Save in the database the function determining the minimum

mice ration in a band specified by the function parameter and then use

the defined function in the SELECT query and the DML command.

Oracle database – programming Zbigniew Staszak

112

CREATE OR REPLACE FUNCTION min_ration(bno NUMBER)

RETURN NUMBER

AS

 minr Cats.mice_ration%TYPE;

BEGIN

 SELECT MIN(mice_ration) INTO minr

 FROM Cats WHERE band_no=bno;

 RETURN minr;

EXCEPTION

 WHEN NO_DATA_FOUND THEN NULL;

 WHEN OTHERS THEN DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;

FUNCTION min_ration compiled

SELECT nickname

FROM Cats

WHERE mice_ration=min_ration(2);

NICKNAME

MISS

UPDATE Cats

SET mice_ration=min_ration(3)

WHERE band_no=2;

ORA-04091: the Z.CATS table is mutating, the trigger/function

may not see it

ORA-06512: at "Z.MIN_RATION", line 12

Error report:

SQL Error: 06503. 00000 - "PL/SQL: Function returned without

 value"

The defined function was called without a problem as part of the

SELECT command, while an error occurred during the UPDATE

command. It results from the mentioned prohibition of using in the

DML command a function which works on relation whose attributes

the DML command modifies - the min_ration function operates on

the Cats relation which is modified by the UPDATE command

The subprogram is removed from the database using the DDL

command with the syntax:

DROP {PROCEDURE | FUNCTION} subprogram_name;

Oracle database – programming Zbigniew Staszak

113

A list of all user subprograms can be found in the USER_OBJECTS

system view and their content in the USER_SOURCE view.

Subprograms in PL / SQL can be called recursively.

Task. Determine recursively all superiors of the selected cat.

CREATE OR REPLACE

FUNCTION superiors_rec(cat_nickname Cats.nickname%TYPE)

RETURN VARCHAR2

AS

 chief_ni Cats.chief%TYPE; chief_na Cats.name%TYPE;

BEGIN

 SELECT C1.chief,C2.name INTO chief_ni,chief_na

 FROM Cats C1,Cats C2

 WHERE C1.chief=C2.nickname AND C1.nickname=cat_nickname;

 DBMS_OUTPUT.PUT('Nickname of chief: ');

 DBMS_OUTPUT.PUT(RPAD(chief_ni,10));

 DBMS_OUTPUT.PUT_LINE(' Name: '||RPAD(chief_na,10));

 RETURN superiors_rec(chief_ni);

END superiors_rec;

FUNCTION superiors_rec compiled

DECLARE

 ni Cats.nickname%TYPE:='&nickname';

 cat_ni Cats.nickname%TYPE;

 cat_na Cats.name%TYPE;

BEGIN

 SELECT name INTO cat_na

 FROM Cats

 WHERE nickname=ni;

 DBMS_OUTPUT.PUT('Nickname of cat: ');

 DBMS_OUTPUT.PUT(RPAD(ni,10));

 DBMS_OUTPUT.PUT_LINE(' Name: '||RPAD(cat_na,10));

 cat_ni:=superiors_rec(ni);

EXCEPTION

 WHEN NO_DATA_FOUND THEN DBMS_OUTPUT.PUT_LINE('The end');

END;

anonymous block completed

Nickname of cat: ZERO Name: LUCEK

Nickname of chief: HEN Name: PUNIA

Nickname of chief: ZOMBIES Name: KOREK

Nickname of chief: TIGER Name: MRUCZEK

The end

Oracle database – programming Zbigniew Staszak

114

3.7. Packages

PL/SQL gives the possibility of grouping certain objects (types,

procedures, functions, variables, constants, cursors and exceptions)

into libraries called packages. The package is another PL/SQL block

saved as a database object. The package includes:

− specification - it contains declarations and some definitions

(constants, types, cursors) of objects provided by the package

(this is the interface of the package),

− body - it contains the package object definitions as well as

declarations and definitions of internal body objects available

only for the package.

The package specification is defined according to the syntax:

CREATE [OR REPLACE] PACKAGE package_name

[AUTHID {DEFINER | CURRENT_USER}]

{IS | AS}

/* definitions of constants, types, cursors, subprograms declarations

(their headers), variables, exceptions available from outside the

package */

END [package_name];

The package body is defined according to the syntax:

CREATE [OR REPLACE] PACKAGE BODY package_name

{IS | AS}

/* definitions and declarations of objects, local for the package */

/* definitions of subprograms declared in the package specification */

[BEGIN

/* optional block initializing package variables at the time of the first

 reference to the package */]

END [package_name];

The package body is an optional element (it does not appear if the

specification does not contain subprogram declarations). In the event

that a package subprogram refers to another package subprogram in

the package body, then that subprogram must be defined before the

Oracle database – programming Zbigniew Staszak

115

subprogram from which it is referenced. If for some reason this is not

possible, declare the called subroutine in the form of its header placed

before the definition of the calling subprogram (early declaration).

One can reference to the package objects according to the syntax:

package_name.package_object_name

Subprograms inside a package can be overloaded, i.e. there can be

more than one procedure or function with the same name but different

parameters. Overloading of subprograms hast the following

restrictions:

− two subprograms may not be overloaded if their parameters differ

only in name or passing mode,

− one cannot overload two functions that differ only in the type of

the returned value,

− one cannot overload two functions for which parameters have

types from the same family (e.g. CHAR and VARCHAR2).

If the SQL command or the PL / SQL block uses functions contained

in the package, then the system, up to and including Oracle 8.1, cannot

check the condition for their use (i.e. lack information of modification

of the content of the relation by the function commands - only the

package specification is available). Since Oracle 9i, this restriction

only applies to package functions intended to be called from the block.

In this case, in the package specification, after the function header,

include relevant information about the so-called level of purity of the

function. The compiler directive RESTRICT_REFERENCES is used

for this purpose. Its syntax is as follows:

PRAGMA RESTRICT_REFERENCES(function_name ,

 WNDS [, WNPS][, RNDS][, RNPS][,TRUST]);

This directive applies only to functions because only functions can be

performed from SQL level. The meaning of parameters determining

the level of function purity is presented below.

Oracle database – programming Zbigniew Staszak

116

Parameter Description

WNDS The function does not modify the content of the relation

(using the DML command).

WNPS The function does not modify the values of package

variables (package variables are not used by the

assignment operator or by the FETCH command).

RNDS The function does not read the content of the relation

(using the SELECT command).

RNPS The function does not read the values of package variables

(package variables are not used on the right side of the

assignment operator or as part of an SQL or PL/SQL

expression).

TRUST The function can call other functions with an unspecified

level of purity.

Task. Create a package containing two functions, one determining the

minimum mice ration for a band specified by parameter, the other

determining the average mice ration for a band specified by

parameter. Use the package's functions to find cats whose mice ration

is greater than the average ration in their bands, displaying

additionally the difference between their mice ration and the minimum

ration in their band.

CREATE OR REPLACE PACKAGE package_of_functions AS

 FUNCTION min_ration(bno NUMBER) RETURN NUMBER;

 FUNCTION avg_ration(bno NUMBER) RETURN NUMBER;

END package_of_functions;

PACKAGE package_of_functions compiled

Oracle database – programming Zbigniew Staszak

117

CREATE OR REPLACE PACKAGE BODY package_of_functions AS

 FUNCTION min_ration(bno NUMBER) RETURN NUMBER

 IS

 mr Cats.mice_ration%TYPE;

 BEGIN

 SELECT MIN(NVL(mice_ration,0)) INTO mr FROM Cats

 WHERE band_no=bno;

 RETURN mr;

 END min_ration;

 FUNCTION avg_ration(bno NUMBER) RETURN NUMBER

 IS

 ar NUMBER(10,3);

 BEGIN

 SELECT AVG(NVL(mice_ration,0)) INTO ar FROM Cats

 WHERE band_no=bno;

 RETURN ar;

 END avg_ration;

END package_of_functions;

PACKAGE BODY package_of_functions compiled

SELECT name "Name",band_no "Band No",NVL(mice_ration,0)-

 package_of_functions.min_ration(band_no) "Excess"

FROM Cats

WHERE mice_ration>package_of_functions.avg_ration(band_no)

ORDER BY band_no;

Name Band No Excess

--------------- ---------------------- ----------------------

MRUCZEK 1 81

JACEK 2 43

ZUZIA 2 41

BOLEK 2 48

PUNIA 3 41

KOREK 3 55

MELA 4 11

PUCEK 4 25

KSAWERY 4 11

 9 rows selected

The package's functions were defined for their use from SQL level, so

it was not necessary to specify their purity level.

Oracle database – programming Zbigniew Staszak

118

3.8. Triggers

Triggers are another named block saved in the database as a database

object. Unlike explicitly executed by calling subprograms, triggers are

executed implicitly when a specific trigger event occurs. This event

may relate to DML operations on relation (Oracle 7.0 and above),

DML operations via the view (Oracle 8.0 and above), DDL operations

as well as database events such as login (Oracle 8.1 and above). The

trigger is defined according to the syntax:

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER} | INSTEAD OF triggering_event

ON {relations_name | DATABASE} | view_name

 [FOR EACH ROW]

[FOLLOWS trigger_name]

[WHEN trigger_condition]

{ PL/SQL block | CALL procedure};

The trigger content size cannot exceed 32K. For a larger trigger, one

can reduce its volume by moving some of the code in the form of

subprograms to the package. Triggers can have the same names as

subprograms or relations (they have a different namespace).

Below Oracle 8i version, the trigger content could only be a PL/SQL

block. Since Oracle 8i, its content can also be a procedure stored in

the database (not necessarily written in PL/SQL!), called with the

CALL command.

The BEFORE type triggers are activated before the triggering event

(DML operations on relations, DDL operations and database events),

the AFTER type after the triggering event. The INSTEAD OF type

triggers are performed instead of DML (trigger event) operations on

the view.

Oracle database – programming Zbigniew Staszak

119

There are the following DML trigger events for BEFORE | AFTER ...

ON relation_name type trigger and for the INSTEAD OF ... ON

view_name type trigger:

− INSERT - inserting a new row directly in the relation or indirectly

in the relation (relations) via view,

− UPDATE [OF attribute_list] - modification of attribute values

directly in relation or indirectly in relation (relations) via view

(attribute_list defines the attributes whose modification activate

the trigger; this list is not available for the INSTEAD OF trigger),

− DELETE - removing rows directly in a relation or indirectly in a

relation (relations) via view.

There are the following DDL triggering events for BEFORE and

AFTER ... ON DATABASE triggers:

− CREATE - creating a new database object,

− ALTER - change in an existing database object,

− DROP - removing the database object.

There are the following database triggering events for type triggers

BEFORE AFTER ... ON DATABASE:

− SERVERERROR - appearing of server error message (type

AFTER only),

− LOGON - user logging in (only AFTER type),

− LOGOFF - user logging out (only BEFORE type),

− STARTUP - opening the database (only AFTER type),

− SHUTDOWN - closing the database (only BEFORE type).

Trigger events can be combined using an OR logical operator.

The FOR EACH ROW clause applies only to triggers activated by the

DML command and is placed when the trigger is to be activated for

each modified row (so-called row trigger). Otherwise (no clause) the

trigger is triggered only once, regardless of the number of lines

modified by the DML command (so-called command trigger). The

INSTEAD OF trigger is always a row trigger, hence the FOR EACH

ROW clause over there does not exist.

Oracle database – programming Zbigniew Staszak

120

The FOLLOWS clause, introduced since Oracle 11g version, allows

the user to indicate a DML trigger of the same type for a given table,

which is to be executed before the trigger just defined. In lower

versions of Oracle this order was undefined.

The WHEN clause allows one to define an additional condition (in

parentheses and without subqueries!) That limits the number of trigger

calls. For row DML triggers (i.e. those with the FOR EACH ROW

clause or INSTEAD OF triggers), this clause allows definition of the

condition for selecting the rows whose modification will activate the

trigger. Such triggers (row triggers, no other!) can additionally use

two qualifiers in the WHEN clause and in their body, i.e. NEW and

OLD (in the body of the trigger they must be preceded by a colon - :).

They provide access to the new (corrected) and old value of the

attribute, which is modified by DML command. This access is

implemented in accordance with the syntax:

 [:]NEW.attribute_name [:]OLD. attribute_name

An additional qualifier PARENT has been introduced since Oracle 8i

version. It applies to triggers activated by a modification of the so-

called nested table (this type of table will be discussed when

presenting of the object extensions of Oracle).

For the INSERT and DELETE commands, the OLD and NEW

qualifiers are NULL, respectively.

Triggers activated by DDL commands and database events (named

together system triggers) have the following restrictions on the kind of

condition in the WHEN clause:

− no conditions can be specified for STARTUP and SHUTDOWN

triggers,

− for SERVERERROR triggers, one can only use the ERRNO

variable specifying the server error number,

− for LOGON and LOGOFF triggers only the password and

username can be checked (ORA_DES_ENCRYPTED_PASSWORD and

ORA_LOGIN_USER).

Oracle database – programming Zbigniew Staszak

121

− for DDL triggers, one can only check the object type and name

(ORA_DICT_OBJ_TYPE and ORA_DICT_OBJ_NAME) as well as the

password and username.

Creating system triggers is only possible with ADMINISTER

DATABASE TRIGGER privileges.

Task. Tiger decided to protect himself from removing him from the

herd through deleting od his band (if the ON DELETE CASCADE

restriction will be additionally defined for the foreign key band_no in

the relation Cats). He also decided additionally to secure his

henchman, Bald (band No 2). Define the trigger activated by deleting

the row in the Bands relation, which implementing these protections.

CREATE OR REPLACE TRIGGER or_removing_band

BEFORE DELETE ON Bands

FOR EACH ROW WHEN (OLD.band_no IN (1,2))

DECLARE

 how_many_members NUMBER(3):=0;

BEGIN

 SELECT COUNT(*) INTO how_many_members

 FROM Cats

 WHERE band_no=:OLD.band_no;

 IF how_many_members>0 THEN

 RAISE_APPLICATION_ERROR(-20105,

 'Band '||:OLD.name||' with members is irremovable!');

 END IF;

END;

TRIGGER or_removing_band compiled

DELETE FROM Bands WHERE band_no=1;

Error report:

SQL Error: ORA-20105: Band SUPERIORS with members is

 irremovable!

DELETE FROM Bands WHERE band_no=5;

1 rows deleted.

ROLLBACK;

rollback complete.;

Oracle database – programming Zbigniew Staszak

122

Trigger has blocked the deletion of band 1. The band 5 has been

deleted without any problem. The defined trigger is only meaningful if

in CREATE TABLE command the ON DELETE CASCADE

constraint has been defined for the foreign key band_no in the Cats

relation. Otherwise, the bands will be protected by the reference

constraint - error "ORA-02292: integrity constraint (Z.CA_BNO_FK)

violated - child record found".

Task. Using the Kittens view, which choose nickname, name,

in_herd_since, chief from the relation Cats and name from the

relation Bands, add a new cat to the relation Cats.

CREATE OR REPLACE VIEW Kittens AS

SELECT nickname,C.name cat_name,in_herd_since,

 B.name band_name,chief

FROM Cats C JOIN Bands B USING(band_no);

view KITTENS created.

CREATE OR REPLACE TRIGGER new_cat

INSTEAD OF INSERT ON Kittens

DECLARE

 bn NUMBER; l NUMBER;

BEGIN

 SELECT COUNT(*) INTO l FROM Bands WHERE name=:NEW.band_name;

 IF l=0

 THEN RAISE_APPLICATION_ERROR(-20001,'Invalid band name');

 END IF;

 SELECT band_no INTO bn FROM Bands

 WHERE name=:NEW.band_name;

 IF :NEW.in_herd_since>SYSDATE

 THEN RAISE_APPLICATION_ERROR(-20002,'Date above current');

 END IF;

 SELECT COUNT(*) INTO l FROM Cats

 WHERE nickname=:NEW.nickname;

 IF l=1

 THEN RAISE_APPLICATION_ERROR(-20003,'Existing nickname');

 END IF;

 SELECT COUNT(*) INTO l FROM Cats

 WHERE chief=:NEW.chief;

 IF l=0

 THEN RAISE_APPLICATION_ERROR(-20004,'Non-existent chief');

 END IF;

 INSERT INTO Cats (nickname,name,in_herd_since,band_no,chief)

 VALUES (:NEW.nickname,:NEW.cat_name,:NEW.in_herd_since,bn,

 :NEW.chief);

END;

TRIGGER new_cat compiled

Oracle database – programming Zbigniew Staszak

123

ALTER SESSION SET NLS_DATE_FORMAT='YYYY-MM-DD';

session SET altered.

INSERT INTO Kittens

VALUES ('FAT','RYCHO','2020-04-17','BLACK KNIGHTS','BALD');

1 rows inserted.

ROLLBACK;

rollback complete.

INSERT INTO Kittens

VALUES ('TIGER','RYCHO','2020-04-17','BLACK KNIGHTS','BALD');

Error report:

SQL Error: ORA-20003: Existing nickname!

The INSTEAD OF trigger enabled modification relation Cats through

the view Kittens, even though it is a non-modifiable view. Such a

trigger is characterized by the fact that the operation causing its

"firing" is ignored and replaced by the operation defined in his body.

System trigger events, i.e. DDL events and database events, have

attributes that can be read within the trigger body. These attributes are:

− DICTIONARY_OBJ_NAME - the name of the database object

used in the DDL command,

− DICTIONARY_OBJ_TYPE - type of object in the DDL

command,

− DICTIONARY_OBJ_OWNER - owner of the object whose name

was used in the DDL command,

− IS_ALTER_COLUMN (attribute IN VARCHAR2) - TRUE if the

definition of the attribute has been changed,

− IS_DROP_COLUMN (attribute IN VARCHAR2) - TRUE if the

attribute has been removed,

− IS_SERVERERROR (error_number IN NUMBER) - TRUE if an

error with the given number occurred,

− LOGIN_USER - the name of the user whose action activated the

trigger,

− SYSEVENT - name of the event whose occurrence triggered the

trigger,

− CLIENT_IP_ADRES - client computer IP address.

Oracle database – programming Zbigniew Staszak

124

Task. Task. Define a trigger to monitor in the relation Events

instances of DDL commands

CREATE TABLE Events

(command VARCHAR2(10),

 user_name VARCHAR2(15),

 event_date DATE,

 object_type VARCHAR2(10),

 object_name VARCHAR2(14));

table EVENTS created.

CREATE OR REPLACE TRIGGER event_description

BEFORE CREATE OR ALTER OR DROP ON DATABASE

DECLARE

 com Events.command%TYPE;

 usn Events.user_name%TYPE;

 evd Events.event_date%TYPE;

 obt Events.object_type%TYPE;

 obn Events.object_name%TYPE;

BEGIN

 com:=SYSEVENT;

 usn:=LOGIN_USER;

 evd:=SYSDATE;

 obt:=DICTIONARY_OBJ_TYPE;

 obn:=DICTIONARY_OBJ_NAME;

 INSERT INTO Events VALUES (com,usn,evd,obt,obn);

END;

CREATE TABLE New_table(kolumn NUMBER);

table NEW_TABLE created.

SELECT * FROM Events;

COMMAND USER_NAME EVENT_DATE OBJECT_TYPE OBJECT_NAME

---------- ---------- ------------- ----------- ------------

CREATE Z 2020-04-18 TABLE NEW_TABLE

When several different DML triggers, triggered by different events,

need to be defined for one relation, it can be done within one trigger,

the content of which will be divided into sections that will be activated

separately upon the occurrence of a specific event. The INSERTING,

UPDATING, DELETING predicates placed in the IF statement are

used for this.

Oracle database – programming Zbigniew Staszak

125

CREATE OR REPLACE TRIGGER something

BEFORE INSERT OR UPDATE OR DELETE ON Cats

BEGIN
 ...

 IF INSERTING THEN ...
 ...

 END IF;
 ...

 IF UPDATING THEN ...
 ...

 END IF;

 -- IF UPDATING('mice_ration') OR

 -- UPDATING('mice_extra') THEN ...

 -- ...

 -- END IF;
 ...

 IF DELETING THEN ...
 ...

 END IF
 ...

END;

3.8.1. Locking and removing triggers

Once defined, the trigger is normally ready for operation (unlocked).

Locking or unlocking the trigger is carried out in accordance with the

syntax:

ALTER TRIGGER trigger_name {DISABLE | ENABLE};

All triggers associated with a specific relation can be locked or

unlocked according to the syntax:

ALTER TABLE relation_name {DISABLE ALL TRIGGERS |

 ENABLE ALL TRIGGERS};

The trigger is removed with the command:

DROP TRIGGER trigger_name;

Oracle database – programming Zbigniew Staszak

126

3.8.2. Restrictions on the use of DML triggers

In Oracle 7.0 version, only one command trigger and only one row

trigger of each type: BEFORE INSERT, BEFORE UPDATE,

BEFORE DELETE, AFTER INSERT, AFTER UPDATE, AFTER

DELETE can be associated with a given relation. As of Oracle 7.3,

multiple triggers of the same type can be associated with a relation.

Additionally, triggers have the following restrictions:

− row triggers and all triggers triggered indirectly as a result of the

ON DELETE CASCADE constraint or ON DELETE SET NULL

constraint cannot read or change the content of the modified

relation (mutating table). As modified relation is understood as

the relation on which the action activates the trigger or the

relation referring to the relation on which the action activates the

trigger, all through the above-mentioned restrictions. This does

not apply to INSTEAD OF triggers,

− triggers cannot execute DDL commands or DCL commands. The

exceptions here are triggers with so-called autonomous

transaction (available from Oracle 8i),

− no LONG or LONG RAW type variables can be declared in the

trigger content. Also, OLD and NEW qualifiers cannot refer to

attributes of these types if they are specified in the relation for

which the trigger is defined,

− below Oracle 8 version one cannot refer in triggers to attributes of

LOB (Large Objects) type. From Oracle 8 version one can do this,

but cannot modify their value.

The only cases of row triggers that can read or modify a relation on

which the action activates the trigger are BEFORE and AFTER

triggers for an INSERT statement inserting one row only (e.g., not for

the statement INSERT ALL or for the statement INSERT INTO

relation_name SELECT... , even if it return only one row).

Oracle database – programming Zbigniew Staszak

127

3.8.3. The order of execution of DML triggers

In the case where at least two triggers of different type related to the

one relation are activated by DML events, the order of their execution

is important. It is as follows:

1. The BEFORE command trigger (if any) is executed,

2. For each row, row trigger BEFORE is executed (if any),

3. The command activating the trigger is executed,

4. For each row, row trigger AFTER is executed (if any),

5. The AFTER command trigger (if any) is executed.

Up to Oracle 11g version, the order of execution of the same type of

DML triggers associated with one relation was indefinite. From the

Oracle 11g version, this is resulted by the presented earlier optional

clause FOLLOWS of trigger header.

3.8.4. COMPOUND TRIGGER

Since the Oracle 11g version, actions related to one relation,

implemented so far by many separate DML triggers (command or row

triggers, in BEFORE and AFTER mode) can be defined in a one

trigger named compound trigger. The big advantage of this solution is

the ability to access, through each of these actions, to shared data

stored in the local variables of the trigger. In earlier versions of

Oracle, subsequent triggers could share data stored in variables, in

defined for this purpose, specification of package.

There are two basic situations in which compound trigger can be used:

1. Preparation of data for mass processing (mass binding - this issue

will be presented later in the lecture).

2. To avoid error ORA-04091: mutating-table error.

Oracle database – programming Zbigniew Staszak

128

The compound trigger syntax is shown below.

CREATE [OR REPLACE TRIGGER] trigger_name

FOR DML_triggering_event

ON relations_name | view_name

[FOLLOWS trigger_name]

[WHEN trigger_condition]

COMPOUND TRIGGER

 [-- definitions and declarations of the PL/SQL objects for the trigger]

 BEFORE STATEMENT IS

 [-- definitions and declarations of the PL/SQL objects for the section]

 BEGIN

 -- sentences of the section implementing the command part BEFORE

 [EXCEPTION

 -- section exception handling sentences]

 END BEFORE STATEMENT;

 BEFORE EACH ROW IS

 [-- definitions and declarations of the PL/SQL objects for the section]

 BEGIN

 -- sentences of the section implementing the row part BEFORE

 [EXCEPTION

 -- section exception handling sentences]

 END BEFORE EACH ROW;

 AFTER EACH ROW IS

 [-- definitions and declarations of the PL/SQL objects for the section]

 BEGIN

 -- sentences of the section implementing the row part AFTER

 [EXCEPTION

 -- section exception handling sentences]

 END AFTER EACH ROW;

Oracle database – programming Zbigniew Staszak

129

 AFTER STATEMENT IS

 [-- definitions and declarations of the PL/SQL objects for the section]

 BEGIN

 -- sentences of the section implementing the command part AFTER

 [EXCEPTION

 -- section exception handling sentences]

 END AFTER STATEMENT;

END trigger_name;

The trigger is activated by the indicated type of DML event (INSERT,

DELETE or UPDATE [OF attribute_list]; events can be combined

using the logical operator OR) on the indicated relation or view. It

contains an optional declarative part in which data, among others, can

be stored, shared by all sections of the trigger. Trigger sections

perform the following actions: command part BEFORE, row part

BEFORE, row part AFTER and command part AFTER. As part of the

row sections one can use the qualifiers :OLD, :NEW and :PARENT.

Sections can only appear in the order determined by above syntax. A

trigger must contain at least one of these sections.

The use of the compound trigger has some limitations.

1. A trigger can only be activated by DML commands on a relation

or view.

2. The trigger cannot contain a autonomous transaction (PRAGMA

AUTONOMOUS_TRANSACTION directive in the declarative

part - see the next section).

3. Exceptions must be handled within the section in which they

occur.

4. Jumping (GOTO command) can only take place within a

specific section.

5. Value :NEW can only be modified in the BEFORE EACH ROW

section.

6. After a DML exception occurs, within one of the sections, the

values of local variables of the sections are re-initialized (their

previous values are lost), however, modifications made earlier

are not rollback.

Oracle database – programming Zbigniew Staszak

130

An example of a compound trigger that performs data preparation for

mass processing will be presented in the part of the lecture on mass

binding, while an example illustrating how to avoid the error ORA-

04091 error: mutating-table error will be the subject of one of the

tasks on project lists.

3.8.5. Triggers with an autonomous transaction

Since Oracle 8.1 version it is possible to use the so-called autonomous

transaction. Such a transaction is an independent transaction

embedded in the main transaction, performed during the suspended

main transaction. After its completion, the main transaction continues.

An autonomous transaction must always be completed (committed or

rolled back) otherwise the exception "ORA-06519: active

autonomous transaction detected and rolled back" will

occur. Rollback of the main transaction does not affect the

autonomous transaction. An autonomous transaction is defined using a

compiler directive:

PRAGMA AUTONOMOUS_TRANSACTION;

Task. Tiger decided to remember the history of mice ration changes

(also such changes which was not committed) in the Change_history

relation. Define a trigger that monitors each such change.

CREATE TABLE Change_history

(change_no NUMBER(5),

 for_whom VARCHAR2(15),

 date_of_change DATE,

 ration NUMBER(5),

 extra NUMBER(5));

table CHANGE_HISTORY created.

CREATE SEQUENCE no_in_history;

sequence NO_IN_HISTORY created.

Oracle database – programming Zbigniew Staszak

131

CREATE OR REPLACE TRIGGER about_mice

BEFORE INSERT OR UPDATE OF mice_ration,mice_extra

ON Cats FOR EACH ROW

DECLARE

 ni Cats.nickname%TYPE;

 mr Cats.mice_ration%TYPE;

 me Cats.mice_extra%TYPE;

 PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN

 IF INSERTING

 THEN ni:=:NEW.nickname; mr:=:NEW.mice_ration;

 me:=:NEW.mice_extra;

 ELSE ni:=:OLD.nickname;

 END IF;

 IF UPDATING('mice_ration')

 THEN mr:=:NEW.mice_ration;

 ELSIF NOT INSERTING THEN mr:=:OLD.mice_ration;

 END IF;

 IF UPDATING('mice_extra')

 THEN me:=:NEW.mice_extra;

 ELSIF NOT INSERTING THEN me:=:OLD.mice_extra;

 END IF;

 INSERT INTO Change_history

 VALUES (no_in_history.NEXTVAL,ni,SYSDATE,mr,me);

 COMMIT;

END;

TRIGGER about_mice compiled

UPDATE Cats SET mice_extra=50 WHERE nickname='LOLA';

1 rows updated.

ROLLBACK;

rollback complete.

CHANGE_NO FOR_WHOM DATE_OF_CHANGE RATION EXTRA

--------- ----------- ---------------- ----------- -----------

1 LOLA 2020-04-20 25 50

By using the autonomous transaction, it was possible to roll back row

modifications in the Cats relation without at the same time rollback

changes in the Change_history relation (prohibited COMMIT

operation for other triggers but required in triggers with autonomous).

Triggers in which autonomous transaction is defined can, in addition

to DCL operations, perform DDL operations that are prohibited for

other triggers.

Oracle database – programming Zbigniew Staszak

132

Task. Define a trigger creating a new database user (without

permissions) in the form of a new member of the cat herd.

CREATE OR REPLACE TRIGGER new_user

BEFORE INSERT ON Cats FOR EACH ROW

DECLARE

 PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN

 EXECUTE IMMEDIATE 'CREATE USER '||:NEW.nickname||

 ' IDENTIFIED BY '||:NEW.nickname;

 EXECUTE IMMEDIATE 'GRANT CREATE SESSION TO '||:NEW.nickname;

END;

TRIGGER new_user compiled

INSERT INTO

Cats(nickname,name,in_herd_since,chief,mice_ration,mice_extra)

VALUES ('FAT','RYCHO','2020-04-20','BALD',50,10);

1 rows inserted.

connect FAT/FAT;

Connected

The EXECUTE IMMEDIATE command used in the trigger is an

element of the so-called internal (native) dynamic SQL. In this case, it

the first command creates a new user and the second command gives

him permissions to create a session. All this is specified by string

expressions (the DDL command and the DCL command, both

prohibited for other trigger are here executed!).

3.9. Internal dynamic SQL

SQL is called dynamic if the full command is not defined until

program running. Only then is command created in the form of a

string expression. This expression can contain any SQL statements,

including also those not available in PL/SQL blocks. In Oracle there

are two implementations of dynamic SQL: uncomfortable to use,

although having a lot of capabilities DBMS_SQL package and

introduced since Oracle 8.1. native dynamic SQL.

Oracle database – programming Zbigniew Staszak

133

The basic command of native dynamic SQL is EXECUTE

IMMEDIATE, which executes any SQL command (also a PL/SQL

block) written as a string. This command has two forms:

EXECUTE IMMEDIATE string_expression_SQL_command

[[INTO {variable [, ...]}][USING {bound_argument [, ..]}]];

EXECUTE IMMEDIATE string_expression_PL/SQL_block

[USING {bound_argument [, ..]}];

The first command applies to dynamic SQL, the second to dynamic

PL/SQL. The string defining the dynamic PL/SQL block must end

with a semicolon (;). If a string defining dynamic SQL command is

terminated with a semicolon, it will be treated as a PL/SQL block. A

string expression (in a special case a variable or string constant)

defines any SQL query. The INTO clause applies to the dynamic

version of the SELECT statement in a PL/SQL block (this clause

cannot be part of a SELECT statement defined as a string). The

USING clause defines the so-called bound arguments. The

corresponding to them variables, which de facto act as formal

parameters of the dynamic query, are part of a string expression. For

identification they are preceded there by a colon (:) and the binding

takes place in the order in which they occur in the chain. They are

passed in the IN, OUT, IN OUT modes known from subprograms

(default IN). These arguments must have of the types allowed in SQL,

not in PL/SQL, and must have names different from database object

names.

Task. The Tiger's thoughts were overcome by a conspiracy vision of

the world. The conspiracy was to be established among cats who are

old citizens of the European Union, and was to consist of forced

exchange (under the cover of trade) of healthy Polish mice for

artificially "driven", European ones. To remedy the danger, Tiger

decided to set up members of his herd secret mice accounts where

some of the hunted mice would be stored. Write a block implementing

this task. On start, transfer to account of each cat a number of mice

proportional to his position in the herd.

Oracle database – programming Zbigniew Staszak

134

DECLARE

 CURSOR kitties

 IS SELECT level,nickname

 FROM Cats

 START WITH chief IS NULL

 CONNECT BY PRIOR nickname=chief;

 dyn_string VARCHAR2(1000);

 maxl NUMBER(2):=0;

 how_many NUMBER(4);

BEGIN

 FOR ki IN kitties

 LOOP

 IF ki.level>maxl THEN maxl:=ki.level; END IF;

 SELECT COUNT(*) INTO how_many

 FROM USER_TABLES

 WHERE table_name=ki.nickname;

 IF how_many=1 THEN

 EXECUTE IMMEDIATE 'DROP TABLE '||ki.nickname;

 END IF;

 dyn_string:='CREATE TABLE '||ki.nickname||'

 (entry_date DATE,release_date DATE)';

 EXECUTE IMMEDIATE dyn_string;

 END LOOP;

 FOR ki IN kitties

 LOOP

 dyn_string:='INSERT INTO '||ki.nickname||

 ' (entry_date) VALUES (:en_da)';

 FOR i IN 1..maxl-ki.level+1

 LOOP

 EXECUTE IMMEDIATE dyn_string USING SYSDATE;

 END LOOP;

 END LOOP;

 FOR ki IN kitties

 LOOP

 dyn_string:='SELECT COUNT(*)-COUNT(release_date) FROM '

 ||ki.nickname;

 EXECUTE IMMEDIATE dyn_string INTO how_many;

 DBMS_OUTPUT.PUT_LINE(RPAD(ki.nickname,10)||

 ' - Number of available mice: '||how_many);

 END LOOP;

END;

anonymous block completed

Oracle database – programming Zbigniew Staszak

135

TIGER - Number of available mice: 4

BALD - Number of available mice: 3

CAKE - Number of available mice: 2

FAST - Number of available mice: 2

MISS - Number of available mice: 2

TUBE - Number of available mice: 2

BOLEK - Number of available mice: 3

LITTLE - Number of available mice: 3

LOLA - Number of available mice: 3

REEF - Number of available mice: 3

EAR - Number of available mice: 2

LADY - Number of available mice: 2

MAN - Number of available mice: 2

SMALL - Number of available mice: 2

ZOMBIES - Number of available mice: 3

FLUFFY - Number of available mice: 2

HEN - Number of available mice: 2

ZERO - Number of available mice: 1

Task. Fear of conspiracy caused the herd leader ordered that his

nickname was secret. He did it so effectively that he finally forgot his

nickname himself. Write a block that executes a dynamic PL/SQL

block that finding the nickname of any cat based on his name.

DECLARE

 na Cats.name%TYPE:='&cat_nmae';

 co NUMBER(2);

BEGIN

 SELECT COUNT(*) INTO co FROM Cats WHERE name=na;

 IF co=0 THEN

 RAISE_APPLICATION_ERROR(-20105,'Wrong name!');

 END IF;

 EXECUTE IMMEDIATE

 'DECLARE

 CURSOR namesakes IS

 SELECT nickname FROM Cats WHERE name=:na;

 BEGIN

 FOR i IN namesakes

 LOOP

 DBMS_OUTPUT.PUT_LINE

 ('||'''Nickname - '''||'||i.nickname);

 END LOOP;

 END;'

 USING na;

END;

CAT_NAME - MRUCZEK

anonymous block completed

Nickname - TIGER

Oracle database – programming Zbigniew Staszak

136

In static SQL, SELECT commands returning multi-row relations were

supported either through declaring an explicit cursor or through cursor

variables. Internal dynamic SQL uses a cursor variable whose value

(SELECT command) is defined as a string. The new syntax element is

here the USING clause in the OPEN command, with a list of bound

arguments. The syntax for this command is:

OPEN cursor_variable FOR string_expression

The string expression defines the query SELECT of the cursor.

Task. Tiger came to the conclusion that it is worth (as part of

protection against conspiracy) to hide some mice rations by reducing

the number of additional mice (mice_extra) taken into account in the

function which displaying statistics of monthly consumption. The

number of additional mice consumed by each cat included in the

official statement would be equal to half the average value of

additional consumption. Write a block displaying, for selected cats,

modified mice ration.

CREATE OR REPLACE PACKAGE cursor AS

 TYPE c IS REF CURSOR;

END cursor;

PACKAGE cursor compiled

CREATE OR REPLACE

FUNCTION about_cats(addition NUMBER,

 WHEREcondition VARCHAR2)

RETURN cursor.c

AS

 cur cursor.c;

 query VARCHAR2(1000);

 BEGIN

 query:='SELECT nickname,NVL(mice_ration,0)+NVL(:do,0)

 FROM Cats WHERE '||WHEREcondition;

 OPEN cur FOR query

 USING addition;

 RETURN cur;

END about_cats;

Oracle database – programming Zbigniew Staszak

137

DECLARE

 condition VARCHAR2(500):='&condition';

 rescur cursor.c;

 ad NUMBER(3);

 ni VARCHAR(15);

 cons NUMBER(3);

BEGIN

 SELECT ROUND(AVG(NVL(mice_ration,0))/2,0) INTO ad

 FROM Cats;

 rescur:=about_cats(ad,condition);

 DBMS_OUTPUT.PUT_LINE('Mouse consumption by selected cats');

 LOOP

 FETCH rescur INTO ni,cons;

 EXIT WHEN rescur%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE(' '||' Cat '||ni||' eats '||cons);

 END LOOP;

 CLOSE rescur;

EXCEPTION

 WHEN OTHERS THEN DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;

CONDITION – function=''CAT''

anonymous block completed

Mouse consumption by selected cats

 Cat ZERO eats 69

 Cat EAR eats 66

 Cat SMALL eats 66

CONDITION – mice_ration>400

anonymous block completed

Mouse consumption by selected cats

 Cat CAKE eats 93

 Cat TUBE eats 82

 Cat ZERO eats 69

 Cat TIGER eats 129

 Cat BOLEK eats 76

 Cat ZOMBIES eats 101

 Cat BALD eats 98

 Cat FAST eats 91

 Cat REEF eats 91

 Cat HEN eats 87
 Cat MAN eats 77

 Cat LADY eats 77

