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Bayes Decision Theory

Assumptions:
The decision problem is posed in probabilistic terms
All the relevant probability values (or distributions) are
known.

Let ω denotes the state of nature (i.e. pattern classes)

e.g. ω =
{
ω1 for salmon
ω2 for sea bass

There exist some a priori probability P (ω1) and P (ω2), i.e.
before any observation is done.
e.g. If 2/3 of all the fishes are salmon and 1/3 are sea basses,
then we know that

P (ω1) = 2/3, and
P (ω2) = 1/3

without any observation.
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Note

1 for a 2-class case, P (ω1) + P (ω2) = 1, and P (ω1) ≥ 0,
P (ω2) ≥ 0.

2 Capital P is used for probability value, while small p is used
for probability density function (when input is continuous).

To recognize the pattern, we need to make observation on the
object. The observation is a measurement ~x, a feature vector
representing the pattern.
The problem becomes:

Given ~x, i.e. Observing the length and lightness, how to
make decision?
How to represent information (in numerical values) such
as:

salmon is longer than sea bass
salmon is lighter than sea bass, etc.
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State-conditional probability density

p(~x|ωj) the probability density function for ~x given that the
state of nature is ωj (i.e. The fish is salmon (ω1) or sea
bass (ω2)).
These probability density function can be obtained by
observing a large number of pattern samples (statistical).
e.g. By measuring a large number of samples of salmon
(or sea bass), we can estimate the densities for both length
and lightness, given that the class is salmon (or sea bass).
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State-conditional probability density
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Bayes Rule

Suppose the a priori probability P (ωj) and the
state-conditional densities p(~x|ωj) are known.
we want to compute the a posteriori probability P (ωj |~x),
i.e. Given the observation ~x, we want to know the
probability of it being a salmon or sea bass.
We can use Bayes rule

P (ωj |~x) =
p(~x|ωj)P (ωj)

p(~x)
,

where

p(x) =
2∑
j=1

p(~x|ωj)P (ωj)
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Example

For example, given the density function as in fig. 2.1, we can
obtain the a posteriori probability, for P (ω1) = 2

3 , P (ω2) = 1
3 .

For more than 2 classes, just replace 2 by c, where c is the
number of classes.
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The Bayes Decision Rule

If we have an observation such that P (ω1|~x) is greater than
P (ω2|~x) we will incline to decide the object is ω1.
The probability of error is then:

P (error|~x) =
{
P (ω1|~x) if we decide ω2

P (ω2|~x) if we decide ω1

The average prob. of error is given by:

P (error) =
∫ ∞
−∞

P (error, ~x)d~x =
∫ ∞
−∞

P (error|~x)p(~x)d~x

Consider the Bayes decision Rule:
decide ω1 if P (ω1|~x) > P (ω2|~x); otherwise decide ω2.

Under this rule,

P (error|~x) = min [P (ω1|~x), P (ω2|~x)]

Hence we can see that P (error) will be minimized.
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Discriminant Functions

The classifier is viewed as a machine that computes c
discriminant functions gi(~x), i = 1, · · · , c.
The classifier selects class ωi if

gi(~x) > gj(~x) ∀j 6= i

fig 2.5 shows such machine:
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Minimum Error Rate Classification

For minimum error rate classification,

gi(~x) = P (ωi|~x)

We can replace gi(~x) by f(gi(~x)) where f is a
monotonically increasing function without changing the
result.
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Example

gi(~x) = P (ωi|~x) for minimum-error rate,
since

P (ωi|~x) =
p(~x|ωi)P (ωi)

p(~x)

the following classifiers are equivalent:

gi(~x) =
p(~x|ωi)P (ωi)

p(~x)
gi(~x) = p(~x|ωi)P (ωi)
gi(~x) = log p(~x|ωi) + logP (ωi)
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Decision Regions

The effect of any decision rule is to divide the feature
space into c decision regions <1, · · · ,<c.
If gi(~x) > gj(~x) ∀j 6= i, then ~x is in <i.
If <i and <j are contiguous, the equation for the decision
boundary separating them is

gi(~x) = gj(~x)

CSIS8502 2. Bayes Decision Theory 12



Example (2 category case)

one discriminant function can be used, instead of 2.
Let g(~x) = g1(~x)− g2(~x)
Decide ω1 if g(x) > 0, otherwise decide ω2.

For minimum error rate,

g(~x) = P (ω1|~x)− P (ω2|~x), or

g(~x) = log
p(~x|ω1)
p(~x|ω2)

+ log
P (ω1)
P (ω2)
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2-class case
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Normal Density

The structure of a Bayes classifier is determined primarily
by the conditional densities p(~x|ωi)
Usually assume normal distribution
The uni-variate Normal density:

p(x) =
1√
2πσ

exp

[
−1

2

(
x− µ
σ

)2
]

for which

E[x] =
∫ ∞
−∞

xp(x)dx = µ

E[(x− µ)2] =
∫ ∞
−∞

(x− µ)2p(x)dx = σ2
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Normal Denity

The uni-variate normal density is completely specified by 2
parameters, µ and σ.
Multivariate Normal Density

p(~x) =
1

(2π)
d
2 |Σ|

1
2

exp
[
−1

2
(~x− ~µ)tΣ−1(~x− ~µ)

]
where ~x is a d-dim vector;

µ is a d-dim mean vector,
Σ is a d× d covariance matrix

similarly,

~µ = E[~x]
Σ = E[(~x− ~µ)(~x− ~µ)t]
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Normal Density

The covariance matrix Σ is always symmetric and positive
semi-definite (i.e. Determinant ≥ 0)
If Σ = [σij ], the diagonal elements σii is the variance of xi,
and the off-diagonal elements σij the covariance of xi, and
xj .
If xi and xj are statistically independent, σij = 0.
The multi-variate normal density is completely specified by
d+ d(d+ 1)/2 parameters, d for the mean vectors, and
d(d+ 1)/2 for the covariance matrix.
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Some properties of Normal Densities

Any linear combination of normally distributed random
variables is also normal.
Knowledge of the covariance matrix allows us to calculate
the dispersion of the data in any direction – it determines
the shape (hyperellipsoid) of the cluster of samples drawn
from the distribution (fig. 2.9)
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Properties of Normal Densities

The principal axes of these hyperellipsoid are given by the
eigenvectors of Σ.

The Mahalanobis distance is r =
[
(~x− ~µ)tΣ−1(~x− ~µ)

] 1
2

The volume of the hyperellipsoid bounded by the
equi-Mahalanobis contour r is

V = Vd|Σ|
1
2 rd

where Vd is the volume of a d-dim unit hypersphere

Vd =


π

d
2

( d
2 )! d even

2dπ
d−1
2 ( d−1

2 )!

d! d odd
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Discriminant Function for Normal Density

discriminant function for minimum-error-rate classification

gi(~x) = log p(~x|ωi) + logP (ωi)

Assume p(~x|ωi) ∼ N(~µi,Σi), then

gi(~x) = −1
2

(~x− ~µi)tΣ−1
i (~x− ~µi)−

d

2
log 2π − 1

2
log |Σi|

+ logP (ωi)
gi(~x) = −

[
(~x− ~µi)tΣ−1

i (~x− ~µi) + log |Σi|
]
− 2 logP (ωi)

by dropping constant terms and multiply by +ve constant
If the a priori probability for different classes the same, i.e.
P (ωi) = P (ωj) ∀i, j, then

gi(~x) = −
[
(~x− ~µi)tΣ−1

i (~x− ~µi) + log |Σi|
]
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Discriminant Function for Normal Density

There are 2 cases:
1 Σi = Σj = Σ, ∀i, j
2 Σ Arbitrary
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Discriminant Function for Normal Density

case 1 Σi = Σj = Σ, ∀i, j then

gi(~x) = −1
2

(~x− ~µi)tΣ−1(~x− ~µi) + logP (ωi), (1)

or

gi(~x) =
1
2

(~x− ~µi)tΣ−1(~x− ~µi) if P (ωi) = P (ωj)∀i, j.

Expanding the quadratic form (eqn 1), we get

gi(~x) = −1
2
[
~xtΣ−1~x− 2(Σ−1~µi)t~x+ ~µtiΣ

−1~µi
]

+ logP (ωi)

Note that ~xtΣ−1~x is a constant term, hence

gi(~x) = (Σ−1~µi)t~x+
[
−1

2
~µtiΣ

−1~µi + logP (ωi)
]

which is a linear discriminant function.
The decision boundary will be a hyperplane.
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Discriminant Function for Normal Density
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Discriminant Function for Normal Density

case 2 Arbitrary

gi(~x) = −1
2

(~x− ~µi)tΣ−1
i (~x− ~µi)−

1
2

log |Σi|+ logP (ωi)

= ~xt
[
−1

2
Σi

]
~x+ (Σ−1

i ~µi)t~x−
1
2
~µtiΣ

−1
i ~µi −

1
2

log |Σi|+ logP (ωi)

The decision surface are hyperquadrics, which can be
1 pair of hyperplanes
2 hypersphere
3 hyperellipsoid
4 hyperparaboloid
5 hyperhyperboloid

See fig 2.14 and fig 2.15.
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Discriminant Function for Normal Density
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Discriminant Function for Normal Density
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