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Abstract

On small scales terrain-following coordinates lead to strongly deformed grids, computational errors
and even numerical instability when following a steep and/or abruptly changing surface. An alterna-
tive approach is to use height as a vertical coordinate. This then leads to terrain-intersecting coordi-
nate surfaces and a lower boundary consisting of cut cells. The main aim of the present work is to
compare these two approaches. To this end we implement a cut-cell lower boundary into an existing
finite volume model. Several additional improvements are made to the model. We add a Rayleigh
sponge layer at the top of the domain, implement computational and physical mixing and correct the
implemented divergence damping. For an accurate calculation of the vertical acceleration the origi-
nal well-balanced finite volume model requires the evaluation of a hydrostatic background state at
every time step. It was found that a less frequent update of the hydrostatic background state leads to
identical simulation results, but with the benefit of an increase in performance of more than 90%.
Several tests were undertaken with the improved model including the simulation of internal gravity
waves triggered by flow past mountains, the nonlinear development of a negative buoyant thermal
bubble and an atmosphere at rest over steep topography. The results obtained with the new model
agree well with the reference solutions of these problems.





1 Introduction

1.1 Background

Due to the steady increase in available computer power it is nowadays possible to run numerical weath-
er prediction models on finer and finer computational grids and thus resolve the orography much better.
We can resolve surface features that are steep and abruptly changing such as narrow valleys or small
mountain peaks. By this the virtually in all existing operational forecasting models used terrain-follow-
ing vertical coordinates are brought close to their limit. The increasing distortion of the computational
mesh over steep terrain leads to poor accuracy and failure of numerical convergence, cf. Klemp et al.
[1], Zängl et al. [2] and Bonaventura [3]. Especially in the computation of the horizontal pressure gradi-
ent force big truncation errors may arise. But metric terms are contained in all horizontal derivatives and
may introduce errors even for not so steep slopes. A possible solution to avoid metric terms is the use of
a Cartesian terrain-intersecting grid. 

Independent of the used vertical coordinate the grid refinement gives us the opportunity to simulate pro-
cesses we weren't able to resolve on coarser grids. One of these processes in the case of atmospheric
models is convection. For convection the vertical acceleration is not negligible compared to buoyancy
forces. But in the hydrostatic approximation vertical acceleration is neglected. Thus, in order to simulate
convection we cannot use the hydrostatic approximation. We therefore need a non-hydrostatic model.
Non-hydrostatic  models  have  been  used  for  years,  at  least  in  research  (e.g.  MC2,  ARPS,  MM5,
COAMPS). For a review of numerical methods for non-hydrostatic weather prediction models see Step-
pler et al. [4]. 

Correctly simulating vertical acceleration yields some new problems. The vertical acceleration in atmo-
spheric flows is a small residue of the sum of two very large nearly balanced forces, the gravitational
force and the vertical pressure gradient force. Therefore standard finite volume methods used in compu-
tational fluid dynamics are either very inaccurate or prohibitively expensive for atmospheric flows as
these methods introduce non-balanced local truncation errors (LTEs) in both forces. These LTEs can
generate vertical acceleration orders of magnitude larger than the correct physical acceleration. How big
the LTEs are depends on the grid spacing and the order of the numerical scheme. In general a numerical
scheme of order  r  on a grid with spacing h introduces LTEs of order hr . Keeping the LTEs small de-
mands a very fine grid and/or a high order numerical scheme which both lead to time consuming meth-
ods. 

The standard approach in numerical weather prediction to control the LTEs are the so called well-bal-
anced methods where the momentum balance is formulated in terms of the deviations of pressure from a
hydrostatic background state. In [5] Botta et al. suggested a new method to represent the hydrostatic
background state. Instead of the global and time independent background state a local and time depen-
dent hydrostatic background state is used. Because the hydrostatic background state is time dependent
the deviation of the complete state from the background state can be kept small even for longtime inte-
grations (cf. Wunderlich in [6] , Müller in [7]). Another advantage of the well balanced methods over
the standard approaches is the local representation of the background state required for Godunov type
schemes (Botta et al. in [5]). More details on the well balanced methods are given by Botta et al. in [5],
Wunderlich in [6] and Müller in [7].
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1.2 Motivation

In [6] Wunderlich implemented a 2D well balanced finite volume method based on the ideas of Botta et
al. in [5]. He used a terrain-following vertical coordinate in his model. In this work we adapt the model
to a cut-cell approach and compare it to the terrain-following approach. To improve performance the hy-
drostatic background state is no longer calculated in every time step. It is rather kept constant for a num-
ber of time steps. Nevertheless the deviation of the complete state from the hydrostatic background state
remains small as long as the background state is reconstructed reasonably often. Since the original mod-
el is very sensitive to the choice of the divergence damping coefficients, the divergence damping term is
reviewed. Then, the following improvements are made to the model:�  The implemented divergence damping is corrected (see section 4.2)�  Computational mixing is added in order to remove small scale noise of computational origin 

(section 4.3)�  Physical mixing is added to simulate diffusion (section 4.4)�  A Rayleigh sponge layer at the top of the domain is introduced in order to absorb upward propa- 
gating waves (section 4.5)

To test the improved model several tests are undertaken. The test cases include �  Linear, non-hydrostatic flow (see section 6.3)�  Linear, hydrostatic flow (section 6.4)�  Flow over a Schär hill (section 6.5)�  Development of a negative buoyant thermal bubble (section 6.6)�  Atmosphere at rest over steep topography (section 6.7)
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2 Governing equations and the discrete Archimedes' principle

2.1 The inhomogeneous Euler equations

The inhomogeneous Euler equations constitute a hyperbolic system of conservation laws where the con-
served quantities are the mass, the momenta in every space dimension and the total energy. In two space
dimensions x and z the inhomogeneous Euler equations are given by

where � is the density, u and w are the horizontal and vertical velocities, p is the pressure, e is the sum
of the internal and the kinetic energy, ��� gz is the time independent gravitation potential with  g  the
gravitational acceleration and z the elevation above sea level. The pressure p is related to the flux vari-
ables � , � u , � w and � e over the thermodynamic equation of state

where � : � c p � cv � 1 ��� 1 � �"!#� 1.4 is the adiabatic exponent. As our domain size is about 100 km wide
the Coriolis terms are neglected. Defining a state vector q, horizontal and vertical flux vectors f  and h
and a source vector s as

the inhomogeneous Euler equations read
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2.2 The integral form of the inhomogeneous Euler equations

Alternatively to the differential form (2.7) the inhomogeneous Euler equations can also be written in the
integral form

Here nx and nz are the horizontal and vertical part of the outward pointing unity vector n normal to the
boundary of volume V. The integral form states that a change of the total amount of q over time in the
control volume V can only result from fluxes through its boundary or from a source term inside the con-
trol volume. To simplify the notation we define the outward flux normal to the volume boundary as

Then (2.8) becomes

2.3 Finite volume method

Because we want  to  compare our  cut-cell  approach with the terrain-following approach we need a
method that is easily adaptable to different grids. Finite volume methods feature this property and are
therefore well suited to our problem. To this end we divide our whole domain into grid cells ci and de-
fine the cell average of the state vector q over grid cell ci as

Then the change of q over time in any grid cell ci can be calculated with
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2.4 Discrete Archimedes' principle

In any grid cell ci let pi
h and � i

h be exact solutions of the hydrostatic relation

where pi
h is  the local  pressure and � i

h the local  density.  Integrating (2.13)  over  grid cell ci and using
Gauss' divergence theorem to replace the volume integral of pressure on the right hand side by the sur-
face integral over the cell boundary M ci yields the so called discrete Archimedes' principle of buoyancy

Now assume that we have approximations P i and Ri to the exact data pand � on cell ci . Then standard fi-
nite volume approximations of the cell averages of the pressure gradient and source term are given by 

Using Gauss' divergence theorem to replace the volume integral in (2.15) by a surface integral yields 

where n is the outward pointing vector normal to the boundary N ci . Now let Pi
h  and Ri

h be exact solu-
tions of (2.13) interpolating P i and Ri in the center of cell ci . Using the discrete Archimedes' principle
(2.14) the integral in (2.16) can be replaced, with second order accuracy, by

Thus we have approximated the source term in the finite volume formulation (2.12)

with second order by means of a boundary integral of the local hydrostatic pressure function Pi
h :
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Let us now consider the balance between pressure gradient and source term. In nearly hydrostatic flows
the difference between the two terms is

where T is the order of magnitude of the vertical acceleration and k is the unit vector aligned with the
gravity acceleration. In nearly hydrostatic flows the vertical acceleration is much smaller than the two
almost equal quantities on the left hand side of (2.21). We give here an example to illustrate the propor-
tions. In [8] Holton shows in a scale analysis of the vertical momentum tendency that pressure gradient
and source term both have a magnitude of 10 m U s2 . The simulation of a nearly hydrostatic flow with
our model yields a vertical acceleration of the order of 10 V 4 m W s2 .

The problem of standard numerical models is that on a grid of spacing h any standard numerical method
of order r introduces local truncation errors (LTEs) of order hr to the approximations to X(Y[Z and O p .
Therefore spurious accelerations of order hr are introduced to the balance that may be orders of magni-
tude larger then the physical vertical acceleration. Thus, keeping the errors small demands a high resolu-
tion and/or high order scheme. To circumvent this problem well-balanced methods use the representa-
tion of the source term in terms of the local hydrostatic background pressure function Pi

h . With (2.20)
the second order approximation to the cell average of \ p ] ^ \`_  becomes

With this the introduced LTEs can be reduced considerably. As long as the deviations from the local hy-
drostatic background state are of order a , i.e.

the balanced LTEs we introduce to the cell average of the pressure gradient are only of order b hr instead
of hr .
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3 Spatial discretization
In this section we show how the right hand side terms of the finite volume formulation (2.12) are spa-
tially discretized. We then have a semi-discrete formulation

where g i h q i is the spatially discretized right hand side. To solve this differential equation in time we
can use a standard time integration scheme asuch s the leapfrog scheme or a Runge-Kutta scheme. De-
tails on time integration are given in section 4.

On a two dimensional, logically rectangular grid the finite volume formulation for any grid cell cij reads

Here
�
f is the outward flux normal to the cell boundary defined in (2.9). Using midpoint approximation

for the integrals over the boundary interfaces then yields

where jF k is the numerical outward flux normal to the k-th (east, north, west and south) interface, I k is
the area of the k-th interface and S ij is the approximated source term inside cell cij . We now have to cal-
culate the numerical flux function at the interfaces and the source term.

3.1 Calculation of the numerical flux

To approximate the flux kf l q m over the cell interfaces we need a numerical flux function nF k at these in-
terfaces and the interface areas I k . For the eastern interface of cell cij at time step t  the numerical flux
must fulfill

Here the indexes i o , j p denote the bottom and top of the eastern interface respectively. The integrals
are approximated by the analytic fluxes at the interface midpoints. This yields the numerical flux func-
tion

where Qi q , j
* is an approximation to the state vector at the eastern interface midpoint of cell cij . Introduc-

ing a new index at the top of the reconstructed state vector Q at the interfaces, denoting the direction of
reconstruction, the average state can be written as
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In other words Qi q , j
* is calculated by averaging the reconstructions from the center of cell cij to the east

and from the center of cell ci � 1 j to the west. Averaging the state at the interfaces assures the uniqueness
of the values used for the numerical fluxes. 

The numerical flux at the northern, western and southern interface is computed analogously. But since
two cells lying next to each other share an interface we calculate only the numerical flux at the western
and southern interfaces. The numerical flux at the eastern and northern interfaces is then calculated with

With the notation hi � , j and hi , j � for the western and southern interface area of cell cij the sum of the flux-
es on the right hand side of (3.3) can be calculated as

3.2 Reconstructing the variables at the cell interfaces

To evaluate the numerical flux function we need to reconstruct the complete state vector at the cell in-
terface midpoints.  In  this  reconstruction well  balanced and standard methods  differ.  Well  balanced
methods use the local hydrostatic background state to interpolate the complete state vector at the inter-
faces where standard methods usually simply interpolate the data between two neighboring cells.  The
evaluation of the local hydrostatic background state is explained in section 3.5

We now show how the complete state is reconstructed at the interface midpoints in our well balanced
model. Basically we use a linear Taylor approximation. As we do not necessarily evaluate the local hy-
drostatic background state at every time step a time derivative appears in addition to the spatial gradient
term. Eventually the local approximation Qij to the complete state vector at the interface midpoints  at
time � t after the last evaluation of the background state reads

Here t0 is the time the local hydrostatic background state Qij
h

was evaluated last and G i � Qij and G j � Qij

are the two dimensional approximations to the gradients of the deviation of the complete state from the
local hydrostatic background state along the computational dimensions i and j respectively. For a more
detailed derivation of the spatial gradients see Wunderlich in [6]. How the gradients are calculated is
shown in section 3.3. The time derivative vector in (3.10) and (3.11) is given by

Note that Qij
h s�� , t0 x � t t#� Qij

h s�� , t0 t where t0 is the last time the local hydrostatic background state was
calculated and � t is the time that has passed since then. 
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3.3 Computing the gradients

The evaluation of the complete state at the cell interfaces in (3.10) and (3.11) requires an approximation
to the gradients of the deviation from the local hydrostatic background state along the computational di-
mensions i and j. We calculate the deviations in the center of all neighbor cells of cell cij . For the eastern
cell this deviation is

where � i � 1, j is the value of the local vertical coordinate � evaluated at the center of cell ci � 1, j .  For the
other three cells the deviation is calculated analogously. From this four deviations we can compute four
gradients, two along each computational dimension. How this is done in detail for curvilinear grids tak-
ing metric terms into account is shown in [6]. To avoid spurious oscillations the two gradients along the
same computational direction are smoothed using a gradient limiter function. To smoothen the gradients
g1 and g2 we have used either the minmod limiter

the monotonized central limiter

or the Van Leer (sometimes also called WENO (weighted essentially non oscillatory)) limiter 

where w is the regulated absolute value w � gi  S¡2¢ � gi
2 £ ¤   , and ¥�¦ 10 § 6 .

3.4 Calculation of the source term

As seen in section 2.4 the source term inside cell cij can be approximated with second order by

To perform a discrete integration of the source term in each cell the hydrostatic background pressure has
to be defined at the interfaces. In section 3.5 the hydrostatic background state is defined for each cell as
a function of the local vertical coordinate ¨ . The discrete integration of the vertical momentum compo-
nent of the source term then reads

All three other components of the source term of the inhomogeneous Euler equations (2.1) equal zero.
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3.5 Reconstruction of the local hydrostatic background state

We need the local hydrostatic background state at the cell interfaces to approximate the source term in-
side each cell cij and to reconstruct the complete state at the interface midpoints. We therefore define the
local hydrostatic background state for each cell as a function of a local vertical coordinate ¨ . The local
hydrostatic background state has to fulfill the following three requirements in each cell cij of the compu-
tational domain:

1. fulfill the hydrostatic relation

2. interpolate the averaged data in the cell midpoint:

3. fulfill the thermodynamic equation of state for ideal gases

where p00 is the reference pressure defined at sea level and R is the gas constant of dry air. Using (3.21)
to replace the expression for Rij

h sR� t in (3.19) yields the ordinary differential equation

for the pressure Pij
h s�� t of the local hydrostatic background state. Together with a given potential temper-

ature profile and the interpolation condition (3.20) the ODE (3.22) can be solved. How this is done in
detail for different temperature profiles is shown by Müller in [7]. With the solution of equation (3.22)
we can reconstruct the complete local hydrostatic background state as a function of � in each cell ana-
lytically assuming that the horizontal and vertical velocities are constant in each cell.

10

µ
ij
h s�� t u Pij

h s�� t
R Rij

h s�� t·¶ p00

Pij
h s�� t¹¸»º

¼
Pij

h �R½ �¼ ½ � � g Rij
h �R½ � ,

Qij
h s 0 t u Qij ,

}
3.19 ~}
3.20 ~

¼
Pij

h �R½ �¼ ½ � � g
Pij

h �R½ �
R ¾ ij

h �R½ �·¶ p00

Pij
h �R½ �¹¸»º

}
3.21 ~
s 3.22 t



4 Numerical integration and further developments
In section 3 we spatially discretized the right hand side terms of the finite volume formulation (2.12).
We now want to solve the resulting differential equation

where ¿ i À q Á is the spatial discretization of the right hand side terms.

4.1 The 2nd order leapfrog scheme

A very common and efficient scheme for time integration is the 2nd order leapfrog scheme. For some
given numerical approximations Qn and Qn Â 1 to the analytic states q Ã x , tn Ä and q Ã x , t n Å 1 Ä the scheme to
calculate the numerical approximation Qn Æ 1 at time t n Ç 1 È tn É*Ê t is

Because the 2nd order leapfrog scheme is a three-level scheme we need the states Q0 and Q1 to initiate the
time integration. Q0 is given by the initial state of the atmosphere and Q1 is calculated using a standard
two-level  scheme. In addition to the leapfrog scheme Wunderlich [6] also implemented a 3rd order
Runge-Kutta scheme which we use to calculate Q1 .

The main problem when using the leapfrog scheme is the appearance of computational modes which
can lead to numerical instabilities. To prevent these modes from growing we use an Asselin filter where
the filtered value Qn is given by

The damping coefficient Ë ass is a real, positive number typically chosen between 0.05 and 0.2 for atmo-
spheric modeling. Taking the Asselin filter into account the leapfrog scheme becomes
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In [5] the authors suggested to rewrite the inhomogeneous Euler equations using the homogeneous state
vector 

instead of the inhomogeneous state vector defined in (2.3). The state vector we use in our model is as
defined here in (4.5). Although this is just an implementation detail we consider here the effects of this
change for the sake of completeness. The change yields an additional term on the right hand side of the
inhomogeneous Euler equations which then are

where

is the additional term added to the right hand side. Using the homogeneous state vector (4.5) the energy
equation of (4.1) becomes

In the used leapfrog scheme the energy equation therefore has to be updated  after each time step by
adding the r term to the right hand side 
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4.2 Divergence damping

In [6] Wunderlich showed how to implement a divergence filter. By adding a numerical diffusion term

to the right hand side of the semi discrete equation (4.1) acoustic waves can be damped. Surprisingly his
model is very sensitive to the values chosen for the divergence filter coefficients. It was found that the
damping term had not been implemented correctly. There had been an error in the implementation of the
mixed second derivatives. This led to incorrect results and to the observed sensitivities. Replacing the
old momentum damping term

with the correct term

makes the model less sensitive to the choice of the divergence filter coefficients ëì x and ëì z .

To take the local hydrostatic background state into account we implemented a new damping method.
The new damping term replaces the old momentum damping term with

where í h denotes the density of the local hydrostatic background state. The default term we use is (4.13)
but the old, corrected damping term (4.12) is also available as an option of the leapfrog scheme.

13

d î u , î w Ï ï ëì x ð Ì 2 Í ã u ÎÌ
x2

Õ Ì 2 Í ã u ÎÌ
x
Ì

z ñëì z ð Ì 2 Í ã w ÎÌ
x
Ì

z
Õ Ì 2 Í ã w ÎÌ

z2 ñ.ò Ñ 4.11 Ò
d î u , î w Ï2ó ëì x ô Ì 2 Í ã u ÎÌ

x2
Õ Ì 2 Í ã w ÎÌ

x
Ì

z õëì z ô Ì 2 Í ã u ÎÌ
z
Ì

x
Õ Ì 2 Í ã w ÎÌ

z2 õ�ö à 4.12 á

d Ï ÷ 0
d î u

d î w

0 ø à 4.10 á

d î u , î w
h Ï ï ëì x ð Ì 2 Í ã h u ÎÌ

x2
Õ Ì 2 Í ã h w ÎÌ

x
Ì

z ñëì z ð Ì 2 Í ã h u ÎÌ
z
Ì

x
Õ Ì 2 Í ã h w ÎÌ

z2 ñ#ò à 4.13 á



To calculate the damping term in each cell cij the derivatives with respect to x are approximated using fi-
nite differences:ð å 2 ù h uå

x2 ñ ij ú ù
ij
h ÜRû i Ó 1, j

ß ui Ó 1, j ÛüÜ x ij
Þ x i Ô 1, j

ßSÙ2ù
ij
h ÜRû i Ô 1, j

ß ui Ô 1, j ÛÝÜ x i Ó 1, j
Þ x ij

ßSÞ ù
ij
h Ü 0 ß uij ÛÝÜ x i Ó 1, j

Þ x i Ô 1, j
ß

1
2 Ü x i Ó 1, j

Þ x i Ô 1, j
ß Ü x i Ó 1, j

Þ x ij
ß Ü x ij

Þ x i Ô 1, j
ß .

The derivatives with respect to z are computed analogously. The mixed second derivatives are approxi-
mated using centered differences first in x direction and then in z direction or vice versa. In the discrete
case the damping coefficients ëì x and ëì z are

where ì x and ì z are non-dimensional coefficients. To ensure stability the divergence damping is applied
to the old values of the state vector q. According to the ARPS User Guide [9] the coefficients ý x and ý z

have to be smaller than 0.75 to assure stability.

4.3 Computational mixing 

We introduce numerical smoothing in the computational space in order to remove small scale noise of
computational origin following the ARPS User Guide [9] . Therefore second order computational mix-
ing terms C þ u , þ w are added to the right hand side of the conservation equations of momentum. Like di-
vergence damping the mixing is applied to the previous time level to ensure stability. The mixing is ap-
plied to the perturbations u' and w' form the local hydrostatic background state. The mixing terms using
a second order finite difference operator along the computational variables ÿ and � in each cell cij are:

where � is either u or w. Note that ã ij
h Í�� ij Î Ï ã ij

h Í 0 Î since � is the local vertical coordinate. The parame-
ters K x and K z equal � x ��� t and � z ��� t respectively. Subject to [9] the non dimensional coefficients � x

and � z must be smaller then 1/8 to guarantee stability. If not stated otherwise we use a value of 0.0005
for both coefficients in order to keep the computational mixing small.
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4.4 Diffusion

An additional diffusion term

is added to the right hand side of the momentum equations to simulate diffusion. The second derivatives
with respect to x and z are approximated using finite differences analogously to (4.14). K is the diffusion
coefficient.

4.5 Rayleigh sponge layer

Also according to the ARPS User Guide [9] a damping layer is introduced at the top boundary in order
to absorb upward propagating wave disturbances and to eliminate wave reflection at the top boundary.
For this purpose a Rayleigh damping term 

is added to the right hand side of the conservation equations. The Rayleigh damping term operates on
the perturbation of the state vector q from the undisturbed initial state q0 . It is applied after updating the
energy equation in the leapfrog scheme. zD is the height of the bottom of the damping layer and zT is the
height of the top boundary. Typically the thickness of the layer corresponds to about 1.5 vertical wave-
lengths. The inverse damping coefficient ý R

� 1 has a magnitude of 10 to 50 time steps. 

4.6 Stability

In two dimensions the CFL criterion for stability including diagonally propagating waves is

where � xi and � z j are the horizontal and vertical, nonuniform grid spacings and max p � i , j
p is the speed

of the fastest propagating wave in x- or z-direction. However, in our atmospheric simulations the wave
speeds are dominated by the sound speed

where � is the adiabatic coefficient, R is the gas constant for dry air and T is the temperature in Kelvin.
Thus we use c as an approximation to max p � i , j

p . The size of the time step is therefore limited by

With a grid spacing of 300 m a value of 0.4 seconds is an appropriate choice for the time step. To pre-
vent the simulations from running into instability we implemented a CFL break condition that stops the
simulation as soon as the CFL number gets too big.
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5 Boundary conditions and grids
The number of necessary ghost cells outside the physical domain is given by the reconstruction of the
state variables at the interfaces. To reconstruct the gradients in the outermost cells of the physical do-
main we only need one row and column of ghost cells. But in order to calculate the numerical flux at the
physical domain boundary we also need the complete state there reconstructed from the ghost cell adja-
cent to the physical domain boundary, as seen in section 3.1. We therefore need a second row and col-
umn of ghost cells to calculate the limited gradients in the inner ghost cells. 

As lateral boundary conditions we use periodic conditions. The boundary conditions for the velocity at
the top and bottom are free-slip conditions, i.e. the velocity component orthogonal to the domain bound-
ary must be zero. Let v be the velocity vector and n the normal vector pointing outward of the atmo-
sphere. Then the top and bottom boundary conditions for the velocity are

Density  and energy density  at  the  top and bottom  must  have a  vanishing  normal  derivative.  With6
q : 7 298 ,

8
e 3 T being the vector of density and energy density the boundary conditions for :q are

The boundary conditions (5.2) for the inner and outer ghost cells at the top and bottom then take the
form

where the indexes 1 and 2 refer to the first two rows of cells in the physical domain either from the top
or from the bottom. The velocity constraint (5.1) is realized by reflecting the velocity vector v of any in-
ner state q at the boundary. This is done using the reflection operator

to calculate the velocities in both the inner and the outer ghost cells.
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5.1 Uniform Cartesian grid using cut cells

To avoid errors coming from metric terms we replace the terrain-following grid with a uniform Carte-
sian grid. Using such a uniform Cartesian grid requires a special treatment of the boundary cells that are
cut by the topography. In [10] Forrer described a new way to treat these cut cells. To avoid numerical
instabilities due to small cell sizes he suggested to treat the cut cells as whole cells instead of using only
the part of the cut cells lying in the physical domain. A boundary treatment was developed that locally
reflects the velocity fields at a straight boundary line. The prognostic equations in the cut cells are then
solved as if there was no boundary. All cell values lying outside the physical domain required to update
the state variables in the cut cells are locally reflected from the inside of the physical domain. At last the
boundary conditions (5.2) for density and energy density are applied.

We now show how the local reflection is done. Inside the cut cells the topography is approximated by a
straight line that serves as symmetry line. Suppose this symmetry line goes through the point m and the
vector normal to the line pointing into the physical domain is given by 

where A is the lead angle of the line. Any point p B ? x , z @ T outside the physical domain can now be re-
flected at the symmetry line to the point 

lying inside the physical domain. 
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Then the state vector q can be extrapolated to the point p with

where R K is the reflection matrix

Using (5.9) we can now define the state vector inside any cut cell cij as

Here cij
1 is the part of the cut cell lying inside the physical domain and r ij L cij

2 M is the reflected part of the
cut cell originally lying outside the physical domain, see figure 5.1.

In order to update the state vector in the cell cij we need the complete actual state vectors in the regular
cells ci , j N 1 , ci , j N 2 , in the cut cells ci O 2, j , ci O 1, j , ci N 1, j , ci N 2, j and in the empty cells ci , j O 1 , ci , j O 2 . Note the
simpler stencil in comparison to the terrain-following grid. The state vector in the regular cells is given
by (2.11) and in the cut cells it is defined by equation (5.10). To calculate the state vector in the empty
cells we again use the assumption of local reflection of the velocity field. For the cell ci , j P 1 this yields
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Figure 5.1: Illustration of locally reflected cells in a uniform Cartesian grid with cut cells
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To evaluate the integral in (5.11) numerically we make a bilinear interpolation of the function q \ x , z ] at
the reflected cell center r mi , j ^ 1 , _ ij ` C i , j O 1 a between the centers of the surrounding regular or cut cells, cf.
figure 5.1. The coordinates of the reflected cell center can be calculated with

After reflecting the velocity field we apply the boundary condition (5.2) for density and energy density
to ensure that we have a vanishing normal derivative.

So far we have only implemented the case where any empty cell is used to update exactly one cut cell.
In this case we can update the cut cells and the empty cells after each time step when we apply the
boundary conditions. The case where an empty cell is used by two different cut cells is more complicat-
ed to solve and hasn't been implemented in this work. A solution would be to calculate the state vectors
on the fly when they are needed to update the cut cells instead of calculating them before the actual up-
dating.

5.2 Simplifications

Due to the use of a uniform Cartesian grid our model can be simplified in some aspects. There is no ver-
tical flux over the eastern and western and no horizontal flux over the northern and southern cell bound-
aries anymore. This simplifies the numerical flux over a cell boundary in (3.3) to

The normal vector on the eastern and western interface doesn't have any z-component anymore and the
discrete integration of the vertical momentum component (3.18) becomes

As the grid is now uniform the second derivatives with respect to x in (4.14) read

and analogously for the z  direction. Furthermore the local vertical coordinate b doesn't vary along the
now horizontal i-coordinate anymore. This causes some additional simplifications in the calculation of
the computational mixing and divergence damping terms as the local hydrostatic background density is
now constant along the i-coordinate.
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5.3 Terrain-following grid

The terrain-following grid we use in this work is given by Wunderlich in [6]. The coordinate surface
follows the topography at the bottom and slowly level off to the top as in figure 5.2.

5.4 Hybrid coordinates

Instead of using terrain-following coordinates in the whole physical domain we have also the opportuni-
ty to use uniform coordinates in the upper part of the domain. This yields hybrid coordinates as in figure
5.3 where we use uniform coordinates above 12000 m and terrain-following below.
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Figure 5.2: Terrain-following grid over a Gaussian hill

Figure 5.3: Hybrid coordinates over a Gaussian hill using uniform co-
ordinates above and terrain-following coordinates below 12000 m
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6 Numerical results
All tests are performed in two dimensions. The initial atmospheric state is either isentropic or constantly
stratified (constant Brunt-Väisälä frequency). To simulate the behavior of a thermal bubble (see section
6.6) we have the possibility to insert an elliptic thermal perturbation into the initial state. More details
on the typical potential temperature, density and pressure profiles of the two types of atmosphere are
given in [6].

The steady state solutions produced by the flow of a stratified fluid over a mountain depends on the dif-
ferent height and width of the mountain. We distinguish between linear and nonlinear as well as hydro-
static and non-hydrostatic flows. To classify the flows we use the non-dimensional mountain width

and height

Here a is the mountain half width, h is the height of the mountain and u0 is the initial horizontal veloci-
ty. Hydrostatic flows are flows where the time a parcel of air needs to cross the mountain is much bigger
than the inverse Brunt-Väisälä frequency 1/N. With use of (6.1) a hydrostatic flow is therefore charac-
terized by �a � 1. Linear flows are characterized by a low non-dimensional mountain height �h � 1 typi-
cally around 0.001. To test our model we simulate hydrostatic and non-hydrostatic, linear flows.

6.1 Setup

Three hill types with a maximum height H and a half width a are defined by the topography function
h � x � . They are

the Gaussian hill

the Bell hill

and the Schär hill

The parameter � in (6.5) defines the wavelength of the Schär hill. We simulate the flow over a Gaussian
hill as well as the flow over a Schär hill.
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6.2 Performance improvement

The main part of increase in performance is due to the change in evaluating the local hydrostatic back-
ground state. Instead of doing the time consuming evaluation every time step we merely do it every 10th

time step. To illustrate the resulting increase in performance we consider a typical simulation of a linear,
non-hydrostatic flow past a small Gaussian hill. The simulation is done using the cut-cell approach. The
complete list of used parameters is given in table 6.1. For this simulation the number of calls for the
procedure to calculate the local hydrostatic background state has been reduced from 12501 to 1251
calls. This reduces the totally used CPU time from about 6500 seconds to about 3400 seconds which is
an increase in performance of more than 90%. However, not calling the procedure every time step does
not have a noticeable impact on the solution. Figure 6.1 shows the result of a simulation where the local
hydrostatic background state is evaluated every time step, figure 6.2 the same for every 10th time step. 

parameter value unit

time integration scheme

atmosphere

leapfrog

stratified

-

-

mountain height

mountain half width

mountain type

1

1000

Gaussian

m

m

-

horizontal domain size

vertical domain size

horizontal cell size 

vertical cell size range

number of horizontal grid cells

number of vertical grid cells

40

21

400

300

100

70

km

km

m

m

-

-

initial Brunt-Väisälä frequency

bottom potential temperature

initial vertical velocity

0.01

288

10

1/s

K

m/s

time step

integration time

x-divergence damping coefficient

z-divergence damping coefficient

Asselin coefficient

Rayleigh damping coefficient

Rayleigh damping layer thickness

x-computational mixing coefficient

z-computational mixing coefficient

0.4

5000

0.05

0.05

0.05

0.02

9000

0.0005

0.0005

s

s

-

-

-

-

m

-

-

Table 6.1: Default parameters used for the simulation of a linear, non-hydrostatic flow past a Gaussian hill.
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Figure 6.2: As figure 6.1, but background state is calculated every 10th time step.

Figure 6.1: Horizontal and vertical velocity perturbations of a linear, non-hydrostatic flow. Cal-
culation of background state at every time step. The contour interval is 0.001 m/s. Positive values
are solid blue and negative values are dash-dotted cyan.
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6.3 Linear, non-hydrostatic flow

With the default parameters from table 6.1 we get a non-dimensional mountain width �a   1 and a non-di-
mensional mountain height ¡h ¢ 0.001. Thus, we have a linear and non-hydrostatic flow. Figure 6.3 gives
the analytic steady state solution in a domain of 20 km in the horizontal and 10500 m in the vertical. We
can see a stationary wave with a downwind tilt typical for hydrostatic flows. Comparing the analytic so-
lution to the simulation results shown in figure 6.1 and 6.2 we see, that our model is able to simulate the
typical wave pattern in an appropriate way. The simulation results are very smooth and especially in the
lower region the amplitude is close to the analytic solution. In the next subsections we want to show
how the different improvements made during the course of the present work affect the results and we
will compare the new cut-cell approach to the old terrain-following grid.

6.3.1 Grid comparison

The assumptions we made in the cut-cell approach in section 5.1 are feasible for simple linear test cases.
Thus, we can use it for all simulations we consider here with exception of the hydrostatic balance 6.7
where we use the terrain-following grid. The simulation of the flow past a Schär hill, shown in section
6.5, is also done using the cut-cell approach. To prove that our cut-cell approach works we show here
the results of a simulation using the same parameters as in table 6.1 but on a terrain-following grid. We
decrease the time step from 0.4 to 0.35 seconds to get good, smooth results. When we compare figure
6.4 to figure 6.1 or 6.2 there is almost no visible difference. But where the 5000 seconds of integration
time on the terrain-following grid uses 3900 seconds of total CPU time, the cut-cell approach only needs
3400 seconds. This improvement in performance results from some of the simplifications of the cut-cell
approach mentioned in section 5.2 and of course from the bigger time step. Using a initial bottom poten-
tial temperature of 255 K instead of 288 K decreases the fastest propagating wave speed and allows us
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Figure 6.3: Analytic steady state solution of the linear, non-hydrostatic flow past a Gaussian hill.
The mountain height and half width are 1 m and 1000 m respectively. Horizontal and vertical ve-
locity perturbations. The contour interval is 0.001 m/s. Positive values are solid blue and negative
values are dash-dotted cyan.
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to run the simulation on a terrain-following grid with a time step of 0.4 seconds. The totally used CPU
time then reduces to about 3700 seconds which is still 300 seconds more than required for the cut-cell
approach.
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Figure 6.4: As figure 6.2, but for the terrain-following grid.
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6.3.2 Impact of the corrected divergence damping

To show how the corrected derivatives in the divergence filter decrease the sensitivity to the choice of
the damping parameters we consider a simulation without taking mixed second derivatives into account.
The parameters £ x e 0.001 and £ z e 0.0044 used by Wunderlich in [6] are increased to the default values£ x e £ z e 0.05. Therefore, we expect the wind pattern to get smoother. But as can be seen in Figure 6.5
this increase almost cancels out the wave pattern when not using the mixed derivatives. This is also in
agreement with the statements of Wunderlich in [6]. Nevertheless the remaining wave pattern is now
very smooth.

However, when we do not neglect the mixed derivatives, as we usually don't, we get results that are in
good agreement with the analytic solution as for example in figure 6.2. 

6.3.3 Influence of the Rayleigh sponge layer

The Rayleigh sponge layer at the top is introduced to eliminate wave reflections at the boundary and to
absorb upward propagating wave disturbances. To illustrate its effects we made a simulation with the
default parameters given in table 6.1 but turned off the sponge layer. The results are shown in figure 6.6.
Without sponge layer some waves are reflected at the top. They start to propagate downwards and to
disturb the solution. Whereas with the sponge layer the waves are filtered out as can be seen in figure
6.7. 
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Figure 6.5: Horizontal and vertical velocity of a linear, non-hydrostatic flow. The contour interval
is 0.001 m/s centered around zero for the vertical and around 10 m/s for the horizontal velocity.
Bigger values are solid blue and smaller values are dash-dotted cyan. Mixed derivatives in the di-
vergence damping term are neglected.
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Figure 6.6: Horizontal and vertical velocity perturbations for a linear, non-hydrostatic flow in the
whole computational domain. No Rayleigh sponge layer at the top. The contour interval is 0.001
m/s. Positive values are solid blue and negative values are dash-dotted cyan.
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Figure 6.7: As figure 6.6, but with Rayleigh sponge layer at the top.
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6.3.4 The effects of computational mixing

Computational mixing removes small scale noise of computational origin. Figure 6.8 shows the result of
another simulation using the default parameters but this time without computational mixing. When we
compare the results to those shown in figure 6.7 above we see, that the computational mixing prevents
small scale disturbances from growing. For example the vertical velocity disturbances on the left side of
the domain are an effect of the periodic lateral boundary conditions. They are visibly smaller when us-
ing computational mixing. Also the solution at the lower boundary is somewhat smoother. The main
drawback of computational mixing is that it also prevents correct wave patterns from growing. There-
fore the amplitude of the mountain waves are slightly closer to the analytic solution when we do not use
computational mixing.

6.4 Linear hydrostatic flow

Our second test case is the simulation of a linear, hydrostatic flow past a Gaussian hill. The Mountain
height H is again 1 m but the mountain half width a is now increased to 5000 m. This yields the non di-
mensional mountain height  and width ¤h ¥ 0.001 and �a e 5 which characterize a linear and hydrostatic
flow. We use again the cut-cell approach. The complete list of used parameters is given in table 6.2.
Figure 6.9 shows the analytic solution in the steady state compared to the simulation results after 10000
seconds. Again, the simulation results are close to the analytic solution.
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Figure 6.8: As figure 6.7, but without computational mixing.
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parameter value unit

time integration scheme

atmosphere

leapfrog

stratified

-

-

mountain height

mountain half width

mountain type

1

5000

Gaussian

m

m

-

horizontal domain size

vertical domain size

horizontal cell size 

vertical cell size range

number of horizontal grid cells

number of vertical grid cells

50

21

500

300

100

70

km

km

m

m

-

-

initial Brunt-Väisälä frequency

bottom potential temperature

initial vertical velocity

0.01

288

10

1/s

K

m/s

time step

integration time

x-divergence damping coefficient

z-divergence damping coefficient

Asselin coefficient

Rayleigh damping coefficient

Rayleigh damping layer thickness

x-computational mixing coefficient

z-computational mixing coefficient

0.4

10000

0.05

0.05

0.05

0.02

9000

0.00005

0.00005

s

s

-

-

-

-

m

-

-

Table 6.2: Parameters used for the simulation of a linear, hydrostatic flow past a Gaussian hill.
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Figure 6.9: Horizontal and vertical velocity perturbations for a linear, hydrostatic flow past a
Gaussian hill. Exact steady state solution (upper panel) compared to simulation results (lower
panel) after 10000 seconds integration time. The contours intervals are 0.001 m/s for the vertical
and 0.004 m/s for the horizontal velocity. Positive values are solid blue and negative values are
dash-dotted cyan.
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6.5 Flow over a Schär hill 

A third test case is the flow over an idealized topography, the so called “Schär-Hill”. The topography is
given by 

with ¦¨§ 4 km, H e 250 m and a e 5 km. All other parameters we use are listed in table 6.3. Figure 6.10
shows the comparison of our simulation after 10000 seconds integration time, again computed using the
cut-cell approach, with the analytic steady state solution. The results we get are comparable to those giv-
en in literature using approximatively the same grid spacing and a well balanced method, e.g. Botta et
al. in [5]. 

parameter value unit

time integration scheme

atmosphere

leapfrog

stratified

-

-

mountain height

mountain half width

mountain type

mountain wavelength

250

5000

Schär

4000

m

m

-

m

horizontal domain size

vertical domain size

horizontal cell size 

vertical cell size range

number of horizontal grid cells

number of vertical grid cells

200

19.2

500

300

400

64

km

km

m

m

-

-

initial Brunt-Väisälä frequency

bottom potential temperature

initial vertical velocity

0.01

273.16

10

1/s

K

m/s

time step

integration time

x-divergence damping coefficient

z-divergence damping coefficient

Asselin coefficient

Rayleigh damping coefficient

Rayleigh damping layer thickness

x-computational mixing coefficient

z-computational mixing coefficient

0.4

10000

0.0017

0.0017

0.05

0.05

5000

0.0015

0.0015

s

s

-

-

-

-

m

-

-

Table 6.3: Parameters used for the simulation of a linear, non-hydrostatic flow past a Schär hill.
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Figure 6.10: Vertical velocity of a linear, non-hydrostatic flow past a Schär hill. Exact solution in steady state
(upper panel) compared to simulation after 10000 seconds (lower panel). The contour interval is 0.05 m/s cen-
tered around zero. Positive values are solid blue and negative values are dash-dotted cyan.
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6.6 Thermal bubble

In [11] Straka et al. present the numerical solution of a nonlinear density current in an otherwise homo-
geneous and isentropic atmosphere. This density current  serves us as another test case. It is initiated as
a cold blob of air that subsequently descends to the ground. The elliptic temperature perturbation is
specified by

where xc   0.0 km , xr   4.0 km , zc   3.0 km and zr   2.0 km. In the rest of the domain the potential tem-
perature is 300 K. The perturbation in the potential temperature

�«ª
resulting from (6.7) can be calculat-

ed using the relation T e � ª
where � is the exner function � e c pp0

� 1 d¬¯® � 1 ° ± ® and ² § 1.4 is the adiabatic
exponent. Table 6.4 gives the list of the parameters we use for our simulation. Figure 6.11 shows the so-
lution of the thermal bubble simulation at times t e 0,300,600and 900 seconds. According to [11] we
use a diffusion coefficient of 75 m2 s � 1 . Our simulation shows the typical development of three so called
Kelvin-Helmholtz shear instability rotors during the period from 0 to 900 seconds described in [11]. 

parameter value unit

time integration scheme

atmosphere

leapfrog

isentropic

-

-

horizontal domain size

vertical domain size

horizontal cell size 

vertical cell size

number of horizontal grid cells

number of vertical grid cells

30

5

100

100

300

50

km

km

m

m

-

-

undisturbed potential temperature

initial vertical velocity

300

0

K

m/s

time step

integration time

x-divergence damping coefficient

z-divergence damping coefficient

Asselin coefficient

diffusion constant

x-computational mixing coefficient

z-computational mixing coefficient

0.125

900

0.02

0.02

0.1

75

0.0005

0.0005

s

s

-

-

-

m²/s

-

-

number of steps between background

state calculation

5

Table 6.4: List of used parameters for the thermal bubble simulation.
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Figure 6.11: Simulation of a negative buoyant blob of cold air in an otherwise isentropic atmosphere. Potential
temperature at 0, 300, 600 and 900 seconds (from top to bottom). Contours are downwards from 299K with an
interval of 1K. Only the right half of the computational domain is shown.



6.7 Atmosphere at rest

We now want to show that our model is able to simulate an atmosphere at rest over steeper topography.
The parameters used are listed in table 6.5. We compare the evolution of the maximum magnitude of the
horizontal velocity to the values obtained by Wunderlich in [6]. The grid we use is hybrid with terrain-
following coordinates below and uniform coordinates above 12000 m. That's also where our Rayleigh
sponge layer starts. We make a time integration of 25000 seconds which is about 7 hours. The numbers
we get are slightly smaller than those Wunderlich gets in [6], compare figure 6.12 and 6.13. The main
differences of the two models are the improvements we made, the number of time steps between the
evaluation of the local hydrostatic background state and the hybrid grid we use. 

parameter value unit

time integration scheme

atmosphere

leapfrog

stratified

-

-

mountain height

mountain half width

mountain type

1500

5000

Gaussian

m

m

-

horizontal domain size

vertical domain size

horizontal cell size 

vertical cell size range

number of horizontal grid cells

number of vertical grid cells

40

21

800

300

50

70

km

km

m

m

-

-

initial Brunt-Väisälä frequency

bottom potential temperature

initial vertical velocity

0.01

288

1/s

K

m/s

time step

integration time

x-divergence damping coefficient

z-divergence damping coefficient

Asselin coefficient

Rayleigh damping coefficient

Rayleigh damping layer thickness

x-computational mixing coefficient

z-computational mixing coefficient

0.4

25000

0.05

0.05

0.05

0.02

9000

0.005

0.005

s

s

-

-

-

-

m

-

-

Table 6.5: List of parameters used for the simulation of an atmosphere at rest above steep topography.
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Figure 6.12: Time evolution of maximal vertical velocity above steep topography. Simulation of an at-
mosphere at rest with unimproved model on terrain-following coordinates.

Figure 6.13: As figure 6.12, but using all model improvements and hybrid coordinates consisting of ter-
rain-following coordinates below and uniform above 12000 m. 



7 Conclusion and outlook
We have made several improvements to the model developed by Wunderlich in [6], based on the ideas
of Botta et al. in [5]. We implemented computational and physical mixing, a Rayleigh sponge layer at
the top that prevents wave reflections at the boundary and corrected the divergence damping term so
that the model has become less sensitive to the choice of the damping parameters. Performance has been
increased by over 90%. This results mostly from the fact that the local hydrostatic background state is
now calculated every 10th time step instead of every time step. We looked at results from a cut-cell ap-
proach using uniform, terrain intersecting, Cartesian coordinates instead of terrain-following coordi-
nates. To avoid stability problems due to small cells we have used a cut-cell approach that handles cut
cells like whole uniform cells. The results we get are close to those from the terrain-following coordi-
nate approach.

Several test cases have shown that our model yields results close to the analytic solutions in the case of
hydrostatic and non-hydrostatic linear flows over different topographies. The simulation of a nonlinear
density current in form of a descending cold blob of air yields good results too. Furthermore, the simula-
tion of an atmosphere at rest above steep topography produces only very small deviations from absolute
rest even after seven hours of integration time.

In summary, the model has been advanced by several improvements, is now more complete and effi-
cient than before and yields good results for several test cases. Furthermore, a cut-cell approach was im-
plemented that makes the use of a uniform Cartesian grid possible.

However, the cut-cell approach we made in this work contains some drawbacks and simplifications that
should be further investigated.  First,  our approach is  not suitable for surfaces where there is  a big
change in steepness between adjacent grid cells. For idealized, smooth terrain this problem can be partly
circumvented by a higher grid resolution. But on real surfaces including buildings etc. we will always
face abrupt slope changes. Nevertheless the approach looks promising. One could try to replace the cal-
culation of the reflected cells, needed to update the cut cells, by a more sophisticated method than we
used. An idea would be to reflect cells locally when they are needed to update a certain cell. Secondly,
we do not calculate the fluxes at the border between atmosphere and solid ground but at cell interfaces
close to it. Therefore the scheme is not completely conservative and some investigations on mass pro-
duction inside the domain should be done to show how big the error is.
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