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ABSTRACT 

 
An effective two-dimensional dynamic interaction potential energy function has been 

developed to understand the pairing mechanism leading to high-TC superconductivity in 
copper-oxide superconductors. It has been carried out under perturbation approximation 
using Dyson diagrammatic formulism and the technique of Fourier transform by assuming 
layered structure of cooper-oxide superconductors as supported by X-ray diffraction and 
spectroscopic studies within the framework of BCS theory. Three different potentials namely 
Coulomb, Yukawa like and Modified have been employed. The effective two-dimensional 
dynamic interaction potential energy functions thus obtained are complex in nature ab-initio. 
The calculations of coupling strength, Coulomb repulsive parameter, transition temperature, 
relaxation time, resistivity, specific heat jump, energy gap and thermal conductivity are being 
carried out separately for each case taking LSCO as a sample. The calculated results 
calculations show that the coupling between Cu-O conducting layers makes the effective 
potential energy function more attractive and a less repulsive. 
 
Keywords: Electron-electron interaction, High-Tc Superconductivity, Strong coupling theory 

 
INTRODUCTION 
 

The field of materials science got a new lease of life with the discovery of high-Tc 
copper-oxide superconductors (COS) [1]. Banking on experimental observations that copper-
oxide superconductors exhibit layered structure having Cu-O as conducting planes [2-11], a 
phenomenological layered structure model have been developed to understand pairing 
mechanism within the framework of BCS theory leading to high-Tc superconductivity. The 
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basic ingredient of layered structure model is that a three-dimensional system is effectively 
reduced to two-dimensional one. Physically it amounts to the fact that these high-Tc 
superconductors are constrained systems. From the dynamics point of view it is well known 
that the system under constrained motion with reduced degree of freedom has complex 
potential energy function. The imaginary part of the potential energy function accounts for 
the dissipation of energy or resistivity in the present case. During the course of earlier 
investigations [12-15] the layered structure model has been so developed that the calculated 
effective interaction potential energy function is real and to account for the resistivity, the 
potential energy function has been made complex employing somewhat artificial 
prescription. Our aim has been to rectify this weakness of the layered structure model. In the 
present investigation the modified formulism of layered structure model has been so 
developed that the effective interaction potential energy function is complex ab-initio. It is 
true that Tc is not describable within mean field theory because of phase fluctuations rather 
than amplitude fluctuations dominated systems. Nevertheless BCS theory has its relevance 
even in this context.  

 
MODEL     
 

Experimental as well as theoretical studies of the inverse dielectric response function 
[4-5] suggest that copper-oxide superconductors possess a layered structure and their normal 
conducting state may be more like a doped semiconductor rather than a metal. Also, the 
crystallographic as well a spectroscopic studies [16-20] suggest a layered structure for COS. 
It has been further investigated that the change in the oxygen deficiency in copper-oxide 
superconductors develops free charge carriers in copper oxide conducting   planes. We 
consider an array of two-dimensional layered electron gas model for La-Sr-Cu-O. It is 
assumed that the conduction of charge carriers is very pronounced in copper oxide plane (X-
Y plane) and reasonably feeble perpendicular to the plane (Z-direction). Thus the charge 
carriers are strongly coupled with in the plane but weekly coupled with in the Z direction. 
The present model is based on following  assumptions: 
 
1. There is one Cu-O layer plane per unit cell. 
2. Cu-O plane forms an infinite array of planes along Z-axis. 
3. A non-conducting plane between Cu-O planes is considered as a uniform dielectric 

medium with a background dielectric response function taking as a constant εb. 
4. The oxygen deficient Cu-O chain stabilizes the charge carriers in the conducting planes. 
 
We shall carry out the study separately for all the three chosen potential energy functions.  
 

Case-I: FORMULISM BASED ON COULOMB POTENTIAL ENERGY FUNCTION 
 
To obtain the effective two-dimensional dynamic interaction potential energy function we 
start with bare Coulomb potential energy function || rrV

o ′−
rr

 for the pair of charge carriers 
existing in consecutive conducting planes given as: 

||4
1

||
2

rr

e
rrV

b

o

′−
=′− rr

rr

o
επε                                                                        

(1) 

here ε◦ is dielectric constant in vacuum εb is static dielectric constant of background.  
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Taking two-dimensional Fourier transform in the X-Y plane, and following the usual 
procedure [21] we get the bare potential energy function in two-dimensional plane as: 
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(2) 

 here q
r

 is momentum transfer wave vector.  
 
 Now as the charge carriers are confined only in the two-dimensional conducting planes, z 
and z′ can be represented by discrete variables nd and n′d respectively. Here n and n′ are the 
numbers required to index the consecutive Oxygen deficient planes and d is the separation 
between them. From Eq. (2) it is evident that the bare two-dimensional potential energy 
function depends on (n-n′) and not on n and n′ separately. Hence it is mod of (n-n′) i.e. |n-n′| 
appears in the expression of bare potential. Consequently Eq. (2) reduces to 
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Assuming that the polarizability for a given conducting plane can be expressed as sum of the 
polarizabilities of all the possible charge carriers and all conducting planes to be identical, we 
obtain the effective potential energy function employing Dyson diagrammatic technique and 
using Discrete Fourier Transform (DFT) [22], as 
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where    ( ) ( ) ( )zz kqVqkq ,,1,, o∏−= ωωε ( ) =∏ ω,q  Polarization function for the  two-

dimensional conducting planes and  
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This may be pointed out that earlier workers [12-15] have used mod of (n-n′) only in the 
expression for ( )||, nnqV ′−o and not taking mod of (n-n′) in the exponential occurring in Eq. 
(5). This arbitrary choice is mathematically inconsistent. As a matter of fact n and n′ are the 
numbers used to index respective conducting layers and hence it is the mod of (n-n′) viz. |n-
n′| contribute wherever it occurs in the formulism. Nevertheless  for the sake of completeness 
and to bring out the clarity we have investigated the following possible options of  (n-n′) in 
Eq. (5). In table 1 the occurrence of  (n-n′) in term Vo and in exponential term of Eq. (5) is 
designated as first and second positions, respectively. 
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Table 1: Summary of results with all possible options of (n-n′) in Eq. (5) 
 
 
 
 
 
 
 
 
 
 
From table 1 it is clear that the options III and IV gives null effective potential energy 
function leading to non-formation of cooper pairs and therefore, these options are of no use in 
present analysis of high-Tc superconductivity. Further the option II in the table does bear 
finite value of effective potential energy function but this option is mathematically 
inconsistent, as we have already discussed. Thus the only possible and mathematically correct 
option is the first one, which is employed to develop the present model. 
 
Following the usual technique [21], Eq. (5) yields 
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Form Eq.(4) and Eq.(6)we get 
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where ( ) ( )∏−= ω
εε

ω ,
2

,
2

q
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A realistic calculation of ( )ω,qP  requires a many-body treatment (marginal Fermi-liquid 
treatment) of a strongly correlated 2D system. However, here we use an RPA expression for 

( )ω,qP , in order to see the coupling effects in a simple manner. We take ( )ω,qP  [23] as  
 

Option  First position of n-
n′ 

Second position of 
n-n′ 

),( zkqV
o  

I Mod Mod Finite output 

II Mod  Without mod Finite output 
III Without mod  Mod  0 

IV Without mod Without mod 0 
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where Fk  and FV  are Fermi wave vector and Fermi velocity, respectively and m* is effective 
mass of the charge carriers.  
 
Analysis of Coulomb Potential Energy Function 
 
1. Cut-off Frequency and Attractive and Repulsive  Frequency Ranges  

 
The cut-off frequency, which gives the upper cut-off limit for attractive potential energy 
function, is obtained as follows: 
The average dynamic permittivity ( )ωε ,q is computed as 
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Thus on integrating, Eq. (10) yields  
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where qd
eA =  

 
The zeros of Real ( )ωε ,q i.e. ( )ωε ,Re q give the cut-off frequency cω . Hence we have  

( ) 0,1 =+⇒ cqP ω                                                                                   (12) 

On solving Eq. (12) and using Eq. (9) we get 
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The frequency range in which interaction potential energy function is attractive can be 
obtained as follows. 
Using Eq. (13) and Eq. (9) (RPA polarization) ( )ωε ,Re q  becomes 
 

( )
2

22

22

2

,Re

ω

ωω
ωε

−

−
=

F

c

Vq
q

                                                                          

(14) 

and the range in which interaction potential energy function is attractive, is defined as 
( ) 0,Re <ωε q  
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Thus there are two possibilities to fulfill this condition:  

       22
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and 22
22

2 c
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Second possibility is automatically ruled out from Eq. (13). Thus first condition i.e. Eq. (15) 
gives the frequency range in which the effective two-dimensional dynamic interaction 
potential energy function is attractive, viz. 
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For the values of ω, lying beyond the inequality in Eq. (17), V(q, ω) is repulsive.  
 
2. Analysis and Comparison of Effective and  Bare Potential Energy Functions 

 
Effective two-dimensional dynamic potential energy function obtained in Eq. (8) is complex 
ab-initio. Therefore, in the present formulism the complex nature of potential energy 
function, responsible for the resistivity of the material has been included in natural way. This 
gets rid of all ad-hoc prescriptions as are being used in earlier investigations [12-15] to make 
the effective potential energy function complex in nature. We have investigated the behavior 
of bare and effective potential energy functions as given by Eq. (6) and Eq. (8) respectively 
with respect to qd for a given Cosθ (where θ = Kzd ) and ω.  For the sake of completeness a 
comparison of present results has been done with that of earlier investigators [12-15] as well.  
 
The bare and effective potential energy functions obtained by earlier workers [12-15] 
following arbitrary prescription as mentioned above (option II of Table 1), are: 
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On the basis of the calculations following inferences can be drawn: 
 
� The behavior of effective potential energy function with respect to qd has been 

investigated. The value of ω is chosen within the range for which the dielectric response 
function leads to the formation of cooper pairs. The real of effective potential energy 
function of the present model exactly same as the total effective potential energy function 
obtained by earlier workers [12-15] (here termed as Old V). The total effective potential 
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energy function of the present model is linear sum of its real and imaginary parts. Hence it 
is much more attractive as compare to Old V. Therefore, it is envisaged that if a sample is 
so prepared that charge carriers in conducting planes are guided such that they practically 
suffer elastic collisions in the forward direction (q is small and Cosθ ≈ 1), the sample has 
enhanced probability of exhibiting high transition temperature.  

� The behavior of bare potential energy function with qd is being investigated for Cosθ=0.9 
and ω=1013 Hz. The results are consistent with the behavior of effective potential energy 
function as discussed above. 

 
Case-II: FORMULISM BASED ON YUKAWA LIKE POTENTIAL ENERGY 

FUNCTION 
 
Similar formulation is being done starting with short-range Yukawa like potential energy 
function || rrV

o ′−
rr

 for the pair of charge carriers existing in consecutive conducting planes 
to incorporate the all possible excitons as exchange particle and it is given as: 
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Talking two- dimensional Fourier transform and following the procedure [21] we get the 
potential energy function in two- dimensional plane as: 
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Where 22
qQ += µ  and µ= mexchc/ħ 

 
Following the technique as we have opted in Case-I, the bare and effective potential energy 
functions thus obtained are given here respectively in Eq. (22) and Eq. (23)  
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Case-III: FORMULISM BASED ON MODIFIED COULOMB POTENTIAL ENERGY 

FUNCTION  
 
All the earlier investigations [12-15] based on layered structure model have taken three 
dimensional Coulomb potential energy function for the pair of charge carriers belonging to 
the consecutive conducting planes as the starting point. Its well known that the Coulomb 
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potential energy function has ultra violet singularity viz. the potential energy function 
becomes infinite in the limit when 0→r . The problem is perplexing and leads to number of 
unphysical situations like infinite self energy, infinite self momentum, pre-accelerated 
phenomenon, run away solutions and like that. In order to circumvent these difficulties and to 
provide physically acceptable solutions a modified Coulomb potential energy function has 
been proposed by Gupta [24]. This modified Coulomb potential energy function is also 
capable of incorporating short-range co-relations between the pair of electrons forming 
Cooper pairs. To obtain the modified effective two-dimensional dynamic interaction potential 
energy function we start with modified bare Coulomb potential energy function for the pair of 
charge carriers existing in consecutive conducting planes, given as: 
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where, ( )|| rrYSi ′−

rr
is an exponential function and has following limiting behavior:  

            In the limit when x is large ( ) 2/π=xSi and in the limit when x is small ( )xSi  can be 

represented as infinite series given as ( ) ( ) ( )
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It is worth mentioning that the modified Coulomb potential energy function as proposed in 
Eq. (28) is regular at the origin and leads to the usual Coulomb potential energy function at 
large distances without introducing any additional parameter. The modified bare and effective 
potential energy functions thus obtained are respectively given here in Eq.(29) and Eq.(30) 
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RESULTS AND DISCUSSIONS 

 

Coupling Strength (λ), Coulomb Repilsive Parameter (µ
*
) and Transition Temperature 

(Tc) 
 
Employing the present formulism, we have calculated λ, µ* and Tc for La2-xSrxCuO4 cuprate 
superconductor, which consists of one Cu-O layer per unit cell, using [25] following 
formulae 
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where ( ) ( )ωωα F

2  is the Eliasberg function and F(ω) is the boson density of states. 

( ) ( )ωωα F
2  can be given by [26] 
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where << ( )zkqV ,,Im ω >> is the average of the imaginary part of ( )zkqV ,,ω  over q and kz. 
The averaging over kz is done over whole range i.e.; -π/d ≤kz ≤ π/d, while averaging over q is 
done in the range 0≤q≤qc.  
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where µ is the averaged Coulomb repulsion and EF is the Fermi energy at absolute zero. µ can 
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where qc is the upper cut-off value of q, Nο is the density of states at Fermi surface. 
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For case-I we have calculated coupling strength (λ) and Coulomb repulsive parameter 

(µ*) with the help of Eq. (8) considering small-angle scattering of charge carriers at the Fermi 
surface. ωc is obtained from Eq. (13). With the help of Eq. (27), (29) and (31), we have 
computed Tc for La2-xSrxCuO4 at x=0.15. For computation we used m*=4me, kF=0.2833 Å-1, 
d=13.25Å, qc=0.0239    Å-1 and 

bε =22 [25]. We obtained λ= 1.54 and µ*=0.02 and Tc=39.6 
K. We thus find that our calculated values of λ, µ* and Tc are in good agreement with the 
experimentally observed value [27-28].  
For case-II we have calculated coupling strength (λ) and Coulomb repulsive parameter (µ*). 
The obtained values are λ= 1.59 and µ*=0.03 and Tc=39.7 K. We thus find that our calculated 
values of λ, µ* and Tc are in good agreement with the experimentally observed value [27-28].  
For case-III we have obtained λ=1.66  and µ*=0.05 and Tc=39.9 K. Which  are in good 
agreement with the experimentally observed value [27-28].  

The computed values of  λ, µ* and Tc fairly agrees with the experimentally measured 
values. The important intrinsic parameters which characterize La2-xSrxCuO4 and related COS 
are effective mass of charge carriers, two-dimensional carrier density and background 
dielectric constant. In order to see how the variation in these parameters affects the Tc , we 
have computed the Tc as a function of m* and 

bε . It should be noted here that larger value of 

bε   in our model calculation gives rise to smaller value of plasmon energy. Again, smaller 
plasmon energy results in smaller Tc value in our calculation. Therefore, the behavior of Tc 



International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN 0976 – 

6480(Print), ISSN 0976 – 6499(Online) Volume 4, Issue 2, March – April (2013), © IAEME 

55 
 

with bε , is what one expect from our model calculation. Further we have also ploted Tc as a 

function of m*. We notice that similar to variation of Tc with bε , Tc decreases on increasing 
m*. Larger value of m* yields smaller value of plasma frequency which could be used in pair 
formation. Further, it is implied that a smaller boson frequency results in a smaller value of 
Tc. We thus find that our calculated results are consistent with the generally expected 
behavior of Tc with m*. We also notice that Tc first decreases rapidly and then slowly on 
increasing m*. 
 
Relaxation Time and Resistivity 
 
Following classical Drude relation, we have  

τ
ρ

2ne

m
∗

=
                                                                                                    

(32) 

 
where ∗

m  is the effective mass of the charge carrier, the n and τ are the carriers density per 
unit volume and the relaxation time for scattering of charge carriers from phonon like bosons 
respectively. In other words τ is mean time to absorb or emit a phonon like boson. The n can 
be related to ns via the relation νnns = , whereν is the number of Cu-O planes per unit 
length. The inverse of relaxation time (τ) at temperature (T) higher than Debye temperature, 
for the scattering of charge carriers in a two- dimensional (2D) conduction Cu-O plane (a-b 
plane) is given as [29] 
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(33) 

where Λ  is mean free path and is given by 
 
Let ( )θσ  be the cross section per unit solid angle for scattering of conduction electron by an 
impurity atom. The electrical resistivity is concerned the change on scattering of the 
projection of the wave vector along the axis of the current flow. Thus the effective average 
cross section for resistivity is  

( )( )∫
+

−

−=
π

π

θθθσθπσ CosSind 12
                                                             

(34) 

and 

( ) ( ) 2
2

2
||

4
qV

m








=

hπ
θσ

                                                                          
(35) 

Where V(q) is effective potential energy function. 
where the last factor on the right hand side weights the average according to the change of  
kz. The associated relaxation frequency is given by Eq. (39). 
 
The calculated relaxation time and resistivity for La2-xSrxCuO4 at x=0.15 comes out to be 

Sec
14109.3 −×=τ , meterΩ= µρ 7317.0  for case-I, Sec

14104.3 −×=τ , meterΩ= µρ 839.0  

for case-II and Sec
14102.3 −×=τ , meterΩ= µρ 8918.0  for case-III. For computation we 

used m*=4me, kF=0.2833 Å-1, d=13.25Å, qc=0.0239    Å-1, bε =22 [25] and carrier 
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concentration 21810277.1 −×= mnS
. The above calculated values are in good agreement with 

experimental results. Further we notice that resistivity explicitly depends upon intrinsic 
parameters such as bε , m* and ns of COS. Computed results are in good agreement with the 
results obtained in earlier investigations [32-34].  
 
Specific Heat Jump at Transition Temperature 
 
 The relation between specific heat difference, ∆C(T), of superconducting and normal state, 
∆F(T), at any temperature T may be obtained from the solution of Eliashberg equations. 
Eliashberg equations are a set of two coupled equations for the pairing potential and the 
renormalized Matsubara Frequencies [35-36]. In addition to knowledge of the solutions of the 
Eliashberg equations an expression for the free- energy difference between normal and 
superconducting state ∆F(T) is required which is given by Daams et al [35] and Rainer et al [36].  
The relation ∆C and ∆F(T) may therefore be obtained as [37-38], 
 

2

2 )(
)(

dT

TFd
TTC c

∆
=∆

                                                                                
(36) 

 
The free energy , ∆F(T), depends on the single spin electronic density of states at Fermi surface 
Nο, the electron-boson spectral density ( ) ( )ωωα F

2 and the Coulomb pseudo potential ∗µ . The 
normalized specific heat jump ( R ) at T=Tc can these be given by an empirical relation [39-40] 
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By defining two arbitrary parameters the empirical relation for R can be simplified to [38] 
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(38) 

 
where lnω  is an appropriate average boson frequency related to Eliashberg function  ( ) ( )ωωα F

2  

and first introduced by Allen and Dynes [41]. The lnω is defined as  
 

( ) ( )
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ω d
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(39) 

 

We have obtained lnω using our calculated value of λ and ( ) ( )ωωα F
2 . Our computed λ and 

( ) ( )ωωα F
2 are given by Eq. (27) and Eq.(28) respectively. For computation we have used same 

experimental data as used before. The normalized specific heat (R) at T=Tc is then obtained using 
our calculated value of  lnω  along with the evaluated value of Tc from our model calculation. Our 
calculated value of R for La2-xSrxCuO4 comes out to be 2.64, 2.64 and 2.65 respectively for case-
I, case-II and case-III respectively, which is consistent with the experimental results [42]. 
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Energy Gap 
 
 The gap equation at finite temperature ( )TkB/1=β  is  
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(40) 

 
Near Tc the energy gap may be expressed as  
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(41) 

Geilikman and his colleagues [43] obtained the Energy gap equation at T=0K with the use of 
Eliashberg equation and the following expression were obtained 
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(42) 

 
where 3.5=α  and ω~  is a characteristic phonon frequency. 
 
With the help of Eq.(42) energy gap parameter ( ( )02∆ ) is calculated for all three cases separately 
using same experimental data as used before for LSCO sample. The calculated values are 

Joule
2110921.1 −× , Joule

211092.1 −×  and Joule
211072.2 −×  for case-I, case-II and case-III 

respectively. Results are in good agreement with experimental data [44]. For the sake of 
completeness variation of energy gap with qd is also studied. It is observed that the energy gap 
remains constant for large values of qd, for small values of qd the energy gap increases and 
practically infinite for zero qd. 
 
Thermal Conductivity 
 
We know that in a real superconductor the mean free path for collision between one quasi-particle 
and another (le) is always much greater than that for collisions between quasi-particles and lattice 
defects (l), so that hydrodynamic flow of the normal fluid is not possible. We shall only consider 
only the case where thermal conduction is electronic and where it is limited by collisions with 
static effects and not phonons. A successful theory for this case was developed by Bardeen 
Rickayzen, and Tewordt (BRT) [45]; it was based straightforwardly on a solution of the 
Boltzmann equation for the excitation gas, and it yielded the following result for the thermal 
conductivity: 
 

∫
∞
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dEEE
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2

2
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(43) 

 
where l is the mean free path of the quasi-particles (equal to that for electrons in the normal state) 

and [ ] 11)exp()( −
+= EEf β  is the Fermi distribution for the quasi-particles at temperature T. 
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We have computed Thermal conductivity (K) for La2-xSrxCuO4 at x=0.15 with the help of 
Eq.(43) for all the three cases. For present computation we have considered same 
experimental data as used before. Calculated value of thermal conductivity (K) is 0.038, 
0.0387 and 0.0393 Watt meter/K for case-I, case-II and case-III respectively. From 
computation we observe that thermal conductivity increases with rising temperature. 
However, this may be pointed out here that thermal conductivity is less pronounced in 
LSCO because transition temperature for LSCOs are around 40 K and for low 
temperature (around up to 65 K) thermal conductivity is not much pronounced. On the 
other hand thermal conductivity is highly pronounced at higher temperature. The present 
results are in good agreement with the experimental data [46-50]. 
 
CONCLUSION 

 
On the basis of our investigation on copper-oxide superconductors, following conclusions 
are being drawn. 
 
1.    The formulism required to develop model calculations for layered structure systems 

have been made mathematically consistent and physically logical ab-initio. As a 
matter of fact the reduction of three-dimensional system to an effective two-
dimensional system gives reduced degree of freedom. The occurrence of complex 
nature of an effective potential energy function is a direct consequence of the 
reduction of degree of freedom.  Earlier investigations have used an ad-hoc 
prescription in an artificial way in order to incorporate reduced degree of freedom. 
Therefore, it can be concluded that our formulism provides mathematically correct 
and physically logical layered structure model. 

2.    An attempt has also been made to use a potential energy function, which free from 
singularities ab-initio. Following Gupta [24] a modified Coulomb potential energy 
function has been employed. For the sake of completeness we have extended model 
calculation on the basis of present formulism for 123 (having two conducting layer 
per unit cell) systems and 223 (having three conducting per unit cell) systems are in 
progress and shall be reported through our future communications. 

3.     Following the prescription as given by Y M Gupta [21] we have confined our 
investigations in the region of small momentum transfer with reference to scattering 
between free electrons inside the materials. This facilitates us to choose with the well-
supported experimental evidence that the only electrons are the charge carriers in 
dielectric response function. In conventional explanation for the reason of transition 
temperature in superconductors two types of charge carriers are required in dielectric 
response function so to cover the whole region of momentum transfer. However, there 
is no clear-cut experimental support in favor of the charge carriers other than 
electrons. From the analysis it is concluded that high-Tc superconductors prefers 
scattering in forward direction (Cosθ≈1). This provides a criteria to look for the 
materials which may exhibit superconducting property viz the materials which have 
the tendency for suffering scattering in forward direction, are the stronger candidates 
for seeking transition in superconducting state. 
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