
https://iaeme.com/Home/journal/IJPTM 101 editor@iaeme.com

International Journal of Production Technology and Management (IJPTM)

Volume 10, Issue 2, July- December 2019, pp.101-109, Article ID: IJPTM_10_02_015

Available online at http://iaeme.com/Home/issue/IJPTM?Volume=10&Issue=2

ISSN Print: 0976- 6383 and ISSN Online: 0976 – 6391

DOI: https://doi.org/10.17605/OSF.IO/FVJPM

© IAEME Publication

INSPECTING THE POLICY CONFLICTS IN

DISTRIBUTED SYSTEM MANAGEMENT

Dr. K. Venkatasalam

Associate Professor, CSE Department, Mahendra Engineering College,

Namakkal, Tamil Nadu, India

M. Pandiyan

Assistant Professor, CSE Department, Mahendra Engineerin

g College,

Namakkal, Tamil Nadu, India

ABSTRACT

The activities required to ensure that broad distributed networks will operate in

compliance with their users' goals are referred to as distributed system management.

This goals are usually stated in the form of policies, which are then interpreted by

system administrators. There are advantages of offering automatic assistance to human

administrators or automating repetitive management functions. It is desirable to

provide a model of policies as artefacts that can be represented by the framework itself

in order to accomplish this. This is a summary of the model. There is no doubt that

policy conflicts will arise. Human administrators may be able to handle these disputes

informally, so in order for an automated framework to recognise and resolve them

properly, it must first analyse the forms of dispute that may arise. We examine the

different forms of policy overlap that may exist to explain how this study relates to the

different types of policy dispute. This study is placed in the light of other work on policy,

authority and similar fields, including deontic reasoning, and several alternative

approaches to dispute prevention and resolution are proposed.

Key words: Management policy, policy conflicts, authority, conflict resolution,

distributed system management.

Cite this Article: K. Venkatasalam and M. Pandiyan, Inspecting the Policy Conflicts

in Distributed System Management, International Journal of Production Technology

and Management (IJPTM), 10(2), 2019, pp. 101–109.

http://iaeme.com/Home/issue/IJPTM?Volume=10&Issue=2

1. INTRODUCTION

This paper introduces a policy model for distributed system management and examines several

potential forms of policy disagreement in terms of the model's components. For organisations

to coordinate their own operations and communicate with others, large distributed computing

networks are becoming increasingly necessary. They are usually made up of several integrated

Inspecting the Policy Conflicts in Distributed System Management

https://iaeme.com/Home/journal/IJPTM 102 editor@iaeme.com

networks that cover the operating infrastructure of many separate companies. For a variety of

reasons, active management rather than reactive management is needed for programmes of this

kind. For starters, multiple organisations already rely on distributed networks to operate, and

they've progressed from supporting to organisational positions, necessitating a proactive

approach to ensuring that they work properly. Second, in many situations, the machine is not

managed from a single stage, but often requires the collaboration of many different

administrators to keep it running. Third, distributed networks are extremely dynamic in many

ways: they may comprise hundreds of thousands of resources and be used by thousands of users;

they may be distributed across large geographical areas, across international borders, across

different regulatory authorities, and across time zones; they may contain various materials

manufactured by diverse manufacturers; they may be distributed across large geographical

areas, across international boundaries, across different regulatory authorities, and across time

zones; they may contain hundreds of thousands of resources and be used by thousands of

users.[1]

1.1 Distributed System Management

The role of managing the operation demanded of a framework is referred to as distributed

system management. A series of Open Systems Interconnection (OSI) management

specifications has been created to make this feasible for heterogeneous systems and to deal with

uncertainty. They divide overall administration into functional areas of accountability. The

main functional areas identified by OSI are: Configuration Management, which is concerned

with controlling the installation of both hardware and software components within a distributed

system or application; Performance Management, which is concerned with optimisation of

performance to improve the service provided to users in terms of better throughput, response

times, or reliability, or to reduce operating costs; and Fault Management, which is concerned

with fault management to improve the service provided to users in terms of better throughput,

response times, or reliability, or to reduce operating costs. In addition, while it is not a typical

OSI Systems Management feature, monitoring of state, failures, output, and utilisation

information is required to help any of the above management functions. The solution to

distributed systems management, like any other management job, is to behave as far as possible

based on general policies rather than specific situations. This entails the development of policies

that refer to classes of device components and consumers rather than specific units in abstractly

specified circumstances. The same regulation, for example, may extend to anyone in a

department or to the whole collection of files related to an application. The classification of

machine artefacts into management domains, which policies can correspond[2].

2. POLICIES

2.1 Management Policies

All structured organisations have rules, which are described by the dictionary as an

organization's plans to achieve its objectives. They are the engine that drives management. They

have two purposes: defining the organization's priorities and allocating capital to accomplish

those goals. In a bureaucratic manner, the policies are used as a management tool. A high-level

policy directs a boss, who may accomplish his or her objectives by enacting lower-level policies

that affect other managers in the hierarchy. Most organisations provide Policy Statements that

provide guidance to its representatives in specific situations. Policies can offer constructive

feedback on the organization's objectives and how they should be accomplished, or they can

impose limits about how the goals should be achieved. Such policy statements delegate

(authorise access to) the tools required to achieve the objectives. Budgets are what they're called

as they spend resources. The need for autonomous managers to be able to negotiate, create,

K. Venkatasalam and M. Pandiyan

https://iaeme.com/Home/journal/IJPTM 103 editor@iaeme.com

question, and execute policies that relate to a given general collection of circumstances is a

popular theme in distributed system management[3].

The interconnection between two network administration areas, such as a Public Network

(PN) and a local Imperial College (IC) network, is an example of cooperation between

autonomous managers. In order to share management details and determine access authority,

the PN and IC network managers must communicate. Assume that there are two pertinent

policies in effect: PN policy grants the PN Manager complete control of all network

management processes, while IC policy allows the IC Network Manager to update his users on

the state of the academic subset of PN nodes on a daily basis. These administrators are referred

to as policy topics. In the absence of all such policies, the PN Manager has the right but not the

responsibility to supply routine status reports, while the IC Network Manager has the obligation

but not the authority to collect the information. To satisfy IC's criteria, the PN Manager must

establish (create) an additional regulation. As seen in figure 1b, one solution is to develop an

imperatival strategy that requires the PN Manager to produce status details and provide it to the

IC Network Manager on a regular basis. As seen in figure 1c, an alternate solution is to establish

a policy that grants the IC Network Manager the authority to conduct the operations required

to receive the normal status details. This example highlights one of the model's key points.

Policies that initiate practises and policies that grant authority to carry out activities will also

occur independently of one another. However, if only either of the two types of policies applies

to a certain procedure, it would not be carried out. For management operations to be carried

out, a boss must be the focus of two types of policies: one that gives him permission to carry

out the activity and another that forces him to do so[4].

2.2 The Need to Model Policies

We define system management as the process of putting the policies of the organization(s) in

charge of the system into action. Independent managers need a system that allows them to

question, discuss, set up, and alter policies. Of course, the tried-and-true way of making phone

calls and exchanging document may be used, but there are possible advantages of utilising the

distributed mechanism itself to connect and store policy, particularly in terms of automated

management. As a result, regulations must be able to be represented and modified inside a

computing framework. It's critical that the way policies are represented and the procedures used

to discuss them are consistent across management applications. The possible advantage of

computer-assisted support for distributed system management, or even full automation in

suitable situations, is a significant element in distributed system management. With the

automation of many areas of management of distributed systems and information networks, it's

become necessary to reflect management strategy within the computer system so that automated

administrators can understand it and control their behaviour. Since 'regulation' is such a broad

concept, there is no chance of capturing both types of policy in a model. We discern between

two types of policy here, though acknowledging that there might be several others that are

none[5].

2.3 Policy Conflicts

We'll use the dictionary meaning of dispute as a starting point: "opposition, disparity,

disagreement." Policy disputes are defined by a number of well-known words. Conflict of

interests refers to a case in which a single individual is responsible for two separate businesses,

and it might be difficult to carry out these activities ethically. A breach of the control theory of

division of duties, which requires at least two separate parties to be interested in carrying out

critical transactions, is referred to as a conflict of duties. When the available resources are

insufficient to satisfy the demands placed on them, a conflict of interests arises. Other types of

confrontation are more primitive, and are usually (but not always!) avoided by human

Inspecting the Policy Conflicts in Distributed System Management

https://iaeme.com/Home/journal/IJPTM 104 editor@iaeme.com

administrators, such as where an activity is both authorised and prohibited; or where someone

is obligated to carry out an action that is prohibited. Human administrators use a mix of

systematic and intuitive principles, as well as informal negotiation, to recognise, avert, and

settle disputes. They don't really do a good job. Automated processes are expected to take a far

more formal path, because if issues are not handled properly, the device will crash completely.

This paper investigates how much our policy model should be used to analyse disputes with the

aim of preventing, identifying, and resolving them[6].

3. A MANAGEMENT POLICY MODEL

The key type of regulation that is of concern to distributed machine management is management

intervention policies; in a nutshell, they define a permanent, positive or negative, imperative or

authority for a group of policy subjects to accomplish objectives or activities on a collection of

target items. Inside the computer code, software objects may be used to depict human subjects

or goals.

Other policies, on the other hand, are difficult to incorporate within this system. For

example, the policy that "the same party cannot be allowed to enter a payment and sign the

payment check" is difficult to model as a management action policy. Since two management

action policies are in question: one authorising X to input accounts for payment and the other

authorising X to authorise accounts for payment, it's best defined as a policy regarding

management action policies (PAMAP policy). According to PAMAP, the two management

intervention plans cannot coexist[7].

We don't know how to model PAMAP policies in a useful way right now, so we have to go

"outside the model" to explain them. This isn't relevant right now because there's already a lot

of research to be conducted on ordinary management intervention policies and their

interrelationships. However, this is a major disadvantage that would need to be solved in the

long run. We specify certain characteristics of the proposals we'll be addressing in order to have

a more specific working description than merely "plans." We begin with the assumption that

policies are meant to affect behaviour. Policies, on the other hand, are unconcerned by split-

second actions to take steps that are then immediately carried out. When a boss orders things to

be performed just once and immediately, such as 'Shut the door!', he is not creating a policy;

however, he is merely causing the operation to be carried out. Since it describes a particular

potential activity or recurring acts, or because it refers to the ongoing management of a

situation, our concept of strategy necessitates persistence[8].

3.1 Policy Modalities - Imperatival and Authority

We differentiate between policies that are meant as imperatives to trigger acts and policies that

grant or withhold authority for actions to take place, as seen in the example above. Actions are

operations carried out by agents on goal subjects if two prerequisites are met: imperative and

authority:

• Imperatival policies are those which cause actions to be initiated (or deterred). A

common form of imperative is an obligation which is undertaken by the agent, and many

of our examples refer to obligations as a form of imperative;

• Authority Policies are those that enable acts to be carried out with authority. Figure 1

depicts our perspective of the universe. Agents are objects that view and implement

imperatival policies that they are the targets of. When these policies' requirements are

met, the agent performs an activity aimed at a target entity. A reference monitor

intercepts all conducted activities and then permits them to continue (authorises them)

if the relevant authority policies warrant them. The goal item is affected by the approved

K. Venkatasalam and M. Pandiyan

https://iaeme.com/Home/journal/IJPTM 105 editor@iaeme.com

operation.

Figure 1 The Roles of Imperatival and Authority Policies

3.2 Policy Attributes

Modality, policy topics, policy aim items, policy priorities, and policy limits are all

characteristics of policies, whether they are concerned with imperatives or power. Figure 2

shows how we illustrate policies using a typical graphical convention (without constraints). The

topics and aim objects are displayed in traditional Venn diagram convention for graphical

simplicity, while the collection of priorities is shown as a list attached to the policy modality.

Subjects are described by circles, and goal objects are represented by triangles.

Figure 2 A Management Action Policy

3.3 Modality

Positive authority (permitting), negative authority (forbidding), positive imperatival (requiring

or obliging), and negative imperatival (forbidding) are the four modalities of a regulation

(deterring). We don't rule out the likelihood of other useful policy modalities being proposed,

but these are sufficient for our purposes. As previously said, we consider a duty to be a particular

kind of imperative.

3.4 Policy Subjects and Target Objects

Policies are for organisational objectives that must be met by others. The policy subjects

attribute identifies a group of users with all policies in this model. The policy subjects are the

individuals who are affected by the policy, i.e., those who have the responsibility or power to

carry out the policy objective under the policy restrictions. When a protocol is automated as a

computer machine order, the policy subject is the consumer who will enter the system

Inspecting the Policy Conflicts in Distributed System Management

https://iaeme.com/Home/journal/IJPTM 106 editor@iaeme.com

command. Many rules, by extension, are directed to all users, perhaps bound by some predicate,

and the regulation subjects attribute's meaning is the collection of all users[9].

The regulation goal objects attribute specifies which artefacts are targeted by the policy.

Any of the policy subjects and goal items may be defined either by enumeration or by a

predicate that must be fulfilled. Specific policy topics and goal objects are seldom defined

because policies are usually expressed in terms of organisational roles and object realms, rather

than entities. Using management domains is one way to define organisational positions and

enumerate classes of items. It's worth noting that, although both imperatival and authority

policies are specified as sets, the traditional set membership is likely to be different. An

authority policy's set of subjects clearly specifies who has the authority to do acts, and there are

no issues whether the set includes a significant number of participants. However, when most

actions are performed by one person, and where the same goal is assigned to more than one,

conflict will arise. It may be appropriate for the subject set to be defined as a position, such as

Security Administrator, with more than one member, but then it may be necessary for members.

3.5 Policy Goals

The policy targets attributes can be expressed as a high-level agenda that determines what the

planner can do in general terms that do not specify how to accomplish the objectives.

Alternatively, the objectives may be reduced to a series of more specific activities that detail

how to accomplish the desired outcome. Actions are defined using an alphabet of operations

that can be conducted on device properties, making them amenable to automatic interpretation.

A high-level aim can be broken down into a variety of different action steps. Refining a target

to a series of behaviour is equivalent to refining a set of parameters into a computer program's

comprehensive specification.

4. REPRESENTING MANAGEMENT ACTION POLICIES AS OBJECTS

It is useful to view management action policies as objects on which operations can be

performed. For simplicity we assume the following minimal set of operations:

• Create a policy;

• Destroy a policy;

• Query a policy.

To execute operations on policy properties, authority might be needed. No restrictions may

be required if the computer system is merely a documentation assist. In the other side, limits on

activities are needed if the rules are actually used to manipulate device behaviour, as in the case

of access control policies.

It is simpler to decide what policies occur and modify them when policies are represented

as explicit objects that are viewed by managers. To discourage modification, policies may be

rendered read-only if appropriate. Many programmes, on the other hand, specify policies

indirectly by coding it into the system's execution or the manager components. Even if encoding

a protocol into an implementation is the most realistic way to enforce such rules, there should

also be a (high level) policy object to directly define the policy such that it does not get updated

for a new device update without the user realising it.

5. OVERLAPPING POLICIES

Both topics and goal items are represented as collections of objects in our model of management

intervention policies. When the intersection of two sets of points is not zero, the overlap

relationship occurs, as seen in figure 3.

K. Venkatasalam and M. Pandiyan

https://iaeme.com/Home/journal/IJPTM 107 editor@iaeme.com

Figure 3 Overlapping Sets

We believe that without any sort of correlation between the subjects in two laws, there will

be no disagreement between them, so overlap is critical to our discussion of policy conflicts.

We use the kind of overlap as our first stage of classification to analyse conflicts further down.

There are many combinations of overlap between subjects in the topic and goal object sets of

the policies, leading to different combinations of overlap between policies[10]:

• Double overlap - both the subjects and the target objects of the two policies overlap;

• Subjects & Target objects overlap;

• Subjects - Targets overlap - One policy's topics and another policy's goal items

differ. Overlap of any sort is, of necessity, a requirement for certain types of non-

conflictual relationships between police forces. Below are a few instances of policy

aim entity attributes that overlap but do not conflict.

• Authority hierarchies. A well-defined authority structure exists in many

organisations. When a senior manager delegated power to subordinate managers,

the aim items were normally divided into subsets and allocated to separate

managers. The goal object set in the policy that assigned authority to the higher level

manager obviously overlaps with the target object sets delegated to the hierarchical

managers. An imperatival strategy prevents the higher-level boss from having

authority over the assigned priorities, even in the unlikely event of a subordinate

manager's breakdown.

• Imperatival policy hierarchies. There is apparent overlap between the intended

objects of higher and lower level policies as a high level imperative regulation is

distilled into more precise lower level policies or collections of activities. This

would not cause friction since administrators can just put the more concrete lower-

level strategies into effect.

• Responsibility. When considering an aim to be accomplished, there is a difference

between responsibility for and duty to. We believe that breaking down the principle

of duty into two distinct imperatival policies that each refer to the same group of

goal subjects would be beneficial. The objects of the two proposals will be the

manager who is accountable for meeting the target and the manager who is

responsible for the first manager. Current research is being conducted on this

subject.

6. MANAGEMENT ACTION POLICY CONFLICTS

Conflicts between management behaviour and strategy are not well known, and we do not claim

in this paper to include all potential types of dispute. The policy paradigm, on the other hand,

has made systemic study of policy disputes possible. This research is only in its early stages,

however it has taken a move forward by recognising that the convergence of artefacts between

policies – one or all policy subjects and goal objects – is a critical prerequisite for confrontation.

Inspecting the Policy Conflicts in Distributed System Management

https://iaeme.com/Home/journal/IJPTM 108 editor@iaeme.com

There is no chance of disagreement between two strategies since they have no objects in

common. Figure 5 depicts how we identify disputes. Conflict of modalities and conflict of goals

are the two main distinctions. Conflicts of modalities may be identified without regard to the

policy goal's context, while conflicts of objectives are either semantically based or application-

dependent.

Figure 5 Category’s Policy Conflict

7. CONCLUSIONS

This paper outlined our methodology to formalising management practises, and using the

formalisation as a basis for analysing policy disputes. The various forms in which policies may

intersect have been discovered to strongly correlate to the informal intuitive grouping of

policies. In the long term, automation of policy dispute identification and resolution would be

critical for successful automated distributed system management; if any future or current

conflict requires human interaction, most of the value of automation would be lost. Before this

concept will become a fact, though, improvements must be made on at least three fronts.

To begin, a thorough understanding of the distributed system management application functions

is needed. In this article, we have provided our examples based on what is obvious and common.

And through understanding the real conflicts that exist will we be certain of the fields that need

the most effort. Second, improvement on the generic formalisation of policy is needed. It must

be systematic and only then would it be possible to deal with it rationally, whether by modelling

models or formal logic reasoning. It must also be generic, and if policy conflicts need to be

addressed, they must all fall within a compatible context. Third, the theoretical model's

functional applications must be generated and produced. Work on this has begun in ventures

like Domino, but there is still a long way to go until it pays off

REFERENCES

[1] D. Skeen and M. Stonebraker, “A Formal Model of Crash Recovery in a Distributed System,”

IEEE Trans. Softw. Eng., vol. SE-9, no. 3, pp. 219–228, 1983, doi: 10.1109/TSE.1983.236608.

[2] G. Surekha and P. L. Priya, “Categorizing and Analyzing the Data Stream Requirements in

Distributed System,” vol. 6, no. 2, pp. 622–623, 2018.

[3] R. V. A. N. Renesse, K. P. Birman, and W. Vogels, “P164-Van_Renesse,” ACM Trans. Comput.

Syst., vol. 21, no. 2, pp. 164–206, 2003.

K. Venkatasalam and M. Pandiyan

https://iaeme.com/Home/journal/IJPTM 109 editor@iaeme.com

[4] C. Fidge, “Fundamentals of distributed system observation,” IEEE Softw., vol. 13, no. 6, 1996,

doi: 10.1109/52.542297.

[5] F. Cristian and C. Fetzer, “The timed asynchronous distributed system model,” Dig. Pap. - 28th

Annu. Int. Symp. Fault-Tolerant Comput. FTCS 1998, vol. 1998-January, pp. 1–10, 1998, doi:

10.1109/71.774912.

[6] J. D. Moffett and M. S. Sloman, “Policy conflict analysis in distributed system management,”

J. Organ. Comput., vol. 4, no. 1, pp. 1–22, 1994, doi: 10.1080/10919399409540214.

[7] K. M. Chandy and L. Lamport, “Distributed Snapshots: Determining Global States of

Distributed Systems,” ACM Trans. Comput. Syst., vol. 3, no. 1, pp. 63–75, 1985, doi:

10.1145/214451.214456.

[8] K. M. Chandy et al., “World-wide distributed system using Java and the Internet,” IEEE Int.

Symp. High Perform. Distrib. Comput. Proc., pp. 11–18, 1996, doi: 10.1109/hpdc.1996.546168.

[9] A. Vermeulen, “for the Long Term Hormonal,” Endocrinol. Metab., vol. 74, no. 4, 1992.

[10] D. Gunter and B. Tierney, “NetLogger: A toolkit for distributed system performance tuning and

debugging,” IFIP Adv. Inf. Commun. Technol., vol. 118, pp. 97–100, 2003, doi: 10.1007/978-

0-387-35674-7.

[11] Neela Madheswari A, "The availability of Workloads for Grid Computing Environments",

International Journal of Engineering Research and Technology, p.no. 211-213, 2015

