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Motivation

Autoregressive models are very popular.

We want to generalize usual assumptions ⇒ parametric case limits
the scope and extent of inference.

Instead, we want to define a notion of “flexible autoregressive model”.

For instance, for order 1 dependence, we would like to replace
Yt = β + αYt−1 + εt by Yt | Yt−1 = y ∼ Fy.

Proposal is based on dependent Dirichlet processes (DDP) but
method can be extended to other types of random probability
measures.
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Dependent Dirichlet Processes (DDP)

Given a set of indices {x : x ∈X }, MacEachern (1999, 2000) proposed
to consider

Gx(·) =

∞∑
j=1

wj(x)δθj(x)(·), x ∈X .

Barrientos et al. (2012) studied the case

wj(x) = Vj(x)
∏j−1
i=1 (1− Vi(x)), where {Vj(x)}x∈X are i.i.d.

stochastic processes (s.p.) such that Vj(x) ∼ Beta(1,Mx) for every
x ∈X using copulas!

the {θj(x)}x∈X are i.i.d. s.p. with θj(x) ∼ G0 using copulas too!

{Vj(x)} and {θj(x)} vary smoothly with x.
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DDPs (Cont.)

Generic form to construct DDPs:

use real-valued i.i.d. Gaussian processes {Zj(x)} and {Uj(x)}, j ≥ 1,
with N(0, 1) marginals, say. For instance, a continuous AR(1) when
X = R.

define Vj(x) = B−1
x (Φ(Zj(x))) where Bx: CDF for the Beta(1,Mx)

distribution and Φ: N(0, 1) CDF.

define θj(x) = G−1
0 (Φ(Uj(x))).

define

Gx(·) =

∞∑
j=1

{
Vj(x)

j−1∏
i=1

(1− Vi(x))

}
δθj(x)(·).

Gx ∼ DP (Mx, G0) for every x ∈X .
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DDPs (Cont.)

Particular cases:

“single weights”: Vj(x) ≡ Vj for all x ∈X ;

“single atoms”: θj(x) ≡ θj for all x ∈X ;

“single everything”: Vj(x) ≡ Vj and θj(x) ≡ θj for all x ∈X ⇒ the
usual DP.

Let Θ: support of baseline measure; P(Θ): set of all probability measures
supported on Θ; P(Θ)X : all P(Θ)-valued functions defined on X .

Result

Adequate construction of DDPs implies good properties (Barrientos et al.,
2012), in particular, full weak support in P(Θ)X . True also for the
single-weights or the single-atoms models.
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DDPs (Cont.)

We typically want to use mixture model

fx(· | Gx) =

∫
k(· | θ) dGx(θ)

for some convenient kernel density function k(· | θ) (e.g. location-scale
family).

Result

Under adequate assumptions on k(· | θ), Hellinger support of
{fx : x ∈X } is

∏
x∈X

{∫
Θ k(· | θ)dPx(θ) : Px ∈P(Θ)

}
valid for

DDPs, single-atoms or single-weights models.

It is even possible to obtain large Kullback-Leibler support under further
conditions on k(· | θ) (similar to Wu and Ghosal, 2008).
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Some recent references

Caron et al. (2008a): linear dynamic models with Dirichlet process mixtures for hidden
states and observations.

Caron et al. (2008b): propose a stationary sequence of urn models, each marginally
following a DPM.

Rodŕıguez and ter Horst (2008): propose time-dependent stick-breaking weights (but
focus on the single-weights case) and Markovian dependence in the
atoms using a dynamic linear model.

Lau and So (2008): propose an infinite mixture of autoregressive models.

Fox et al. (2011): propose a modified version of the HDP-HMM of Teh et al. (2006)
applied to speaker diarization data, to allow persistence of states in time
(i.e., sticky states).

Rodŕıguez and Dunson (2011): propose a probit stick-breaking approach, with atoms
defined in terms of a latent Markov random field.

Nieto-Barajas et al. (2012): a time dependence is introduced in the weights of
stick-breaking representation.
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The Model: Continuous Case

Given p ≥ 1, we want a flexible model for Yt | (Yt−1, . . . , Yt−p) = y.

We propose, in general,

Yt | (Yt−1, . . . , Yt−p) = y,mt ∼ N(Yt | mt, σ
2), mt ∼ Gy,

where

Gy(·) =

∞∑
h=1

wh(y)δθh(y)(·).

Equivalent representation:

Yt | (Yt−1, . . . , Yt−p) = y ∼
∑
h≥1

wh(y)N(Yt | θh(y), σ2).

Similar to Müller, West and MacEachern (1997).

Different from Mena and Walker (2004), where they focus on
stationary models with a given stationary distribution.
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stationary models with a given stationary distribution.
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The Model: Continuous Case (cont.)

Example: if p = 1, wh(y) = wh and if θh(y) = βh + αhy the model
can be represented as

p(Yt | Yt−1 = y, (βt, αt), σ
2) = N(Yt | βt + αty, σ

2)

(βt, αt) | G
i.i.d.∼ G G ∼ DP (M,G0)

(DP mixture model where atoms are given by linear trajectories,
similar to Lau and So, 2008).
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The Model: Continuous Case (cont.)

It may be computationally convenient to consider truncated version of
model:

Redefine the weights as wh(y) =
∏
i<h(1− Vi(y))Vh(y), for

h = 1, . . . ,H, con Vh(y) as before, and VH(y) ≡ 1, which guarantees
P (
∑H

h=1wh(y) = 1) = 1 for all y ∈ Y (Ishwaran and James, 2001).

Hierarchical version of the former (linear atoms case):

Yt | Yt−1 = y, rt = h, {(βj , αj)}, σ2 ∼ N(βh + αhy, σ
2),

P (rt = h) = wh(y), (βh, αh)
i.i.d.∼ G0, h = 1, . . . ,H.

General thought

Despite the great generality of the proposed construction, it is in practice
useful to resort to simple and manageable specifications.
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Model for Binary Outcomes

Purpose: to extend the previous constructions to time series of binary
outcomes.

Idea: use the previous model in a latent scale.

Albert and Chib (1993): introduce Zt (continuous) such that

Yt = 1⇐⇒ Zt > 0,

(so that P (Yt = 1) = P (Zt > 0)).

Latent sequence {Zt} defines binary sequence {Yt}.
Two options:

1 Consider Zt | (Yt−1, . . . , Yt−p) = y (Markovian of order p!); or
2 Consider Zt | (Zt−1, . . . , Zt−p) = z (can be easily extended to ordinal

outcomes).
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Model for Binary Outcomes (cont.)

“Completely latent” definition: Yt = I{Zt > 0} with

Zt | (Zt−1, . . . , Zt−p) = z,mt ∼ N(Zt | mt, σ
2), mt ∼ Gz ,

where

Gz(·) =

∞∑
h=1

wh(z)δθh(z).

The other case is similar.

We can adopt the same previous simplifications, i.e. truncation, single
weights or atoms, etc.
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Old Faithful Geyser

Data discussed in Härdle (1991).

Available on-line in R.

Consider {yt, t = 1, . . . , 272}, where yt: waiting time until tth
eruption of the geyser.
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Old Faithful Geyser (cont.): yt vs. yt−1
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Old Faithful Geyser (cont.): F̄y = E(Fy | data), AR(1)
model, single weights, linear atoms

Density of the posterior mean f̄yt−1 (yt) for yt−1 = 50 (left), 65 (center) and 80 (right). Black

line: prior σ−2 ∼ Ga(2, 2); red line: σ2 = 25; blue line: kernel estimator.
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Old Faithful Geyser (cont.): F̄y = E(Fy | data), AR(1)
model, single weights, linear atoms

Density of the posterior mean f̄yt−1 (·) for yt−1 = 85 (blue), with pointwise 95% credibility

bands (red) and median (black).
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Old Faithful Geyser (cont.)

Density of the posterior mean f̄yt−1 (·) for yt−1 = 85 with M = 1, H = 20 (red), for M = 10,

H = 20 (orange), for M = 1, H = 50 (green) and for M = 10, H = 50 (blue).
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Old Faithful Geyser (cont.)

yt−1 = 50 yt−1 = 65 yt−1 = 80
Posterior means f̄yt−1 (·) under AR(1)-DDP model with H =∞, and with varying weights

wh(y) = Vh(y)
∏

i<j(1− Vh(y)) with Vh(y) = logit(ηh1 + ηh2y).
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Old Faithful Geyser (cont.)

One draw of all the atoms θh, h = 1, . . . , H in the linear case θh(y) = βh + αhy (left) and the

quadratic case θh(y) = βh + αhy + γhy
2 (right). Colors identify points in the same cluster.
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Bladder Cancer Data

Data from a bladder cancer study carried out by the Veteran’s
Administration Cooperative Urological Research Group, VACURG
(Byar et al., 1977, Davis and Wei, 1988, Giardina et al. 2011).

Target: compare efficacy of 2 treatments (placebo and thiotepa) in
prevention of bladder cancer recurrence.

m = 81 patients with ≤ 12 observations (3-months periodicity).

Two groups (thiotepa treatment; placebo): T (36 patients), P (45
patients).

We record indicator of cancerous tumor recurrence.

yit = 1 if # detected tumors at time t increased for patient i, yit = 0
otherwise, t = 1, . . . , ni, i = 1, 2, . . . ,m.

xi = 0 if patient i ∈ group P , and xi = 1 otherwise.
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Data

Recurrent tumors are removed at each visit, then treatment continues.

Time
Patient 1 2 3 4 5 6 7 8 9 10 11 12

1 (P) 0 0
2 (P) 0 0 0
3 (P) 0 1 0
4 (P) 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
45 (P) 1 0 1 1 1 1 1 0 0 0 1 0
46 (T) 1 0
47 (T) 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
81 (T) 0 0 0 0 0 0 0 0 0 0 0 0
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Model: Multiple Binary Sequences with covariates

Y i = (Yi1, . . . , Yini), Zi = (Zi1, . . . , Zini): sequences of responses
and latent variables for patient i = 1, . . . ,m, with Yit = 1⇔ Zit > 0.

Latent AR(1) model: {Zi} are conditionally independent:

Zit|Zi t−1 = zi t−1, xi, β0, β1 ∼∫
R2

N(β0+β1xi+α1zi t−1+α2xizi t−1, σ
2)dG(α1, α2), G ∼ DP (M,G0)

Latent-Y AR(1) model (Markovian):

Zit|Yi t−1 = yi t−1, xi, β0, β1 ∼∫
R2

N(β0+β1xi+α1yi t−1+α2xiyi t−1, σ
2)dG(α1, α2), G ∼ DP (M,G0)

σ2 is fixed due to identifiability reasons.
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Model (cont.)

Models are completed by defining

G0(α) ≡ N2(α;α0, Vα) and α0 ∼ N2(α00, V ).
(β0, β1) ∼ N(β0, Vβ);
Initial value for each sequence:

Zi1|xi, µxi ∼ N(µxi , σ
2
1), i = 1, . . . ,m, xi = 0, 1,

with prior such that µ0 = µ1 +D and P (D > 0) = 1.

We consider also a simplified version with no interaction term (3P
model).
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Results - Latent-Y AR(1) Model

M = 1 M ∼ U(0.5, 10) M ∼ trunc-IG(2, 2)
3P 4P 4P 4P

mean sd mean sd mean sd mean sd
β0 -0.2171 0.0410 -0.2221 0.0439 -0.2206 0.0433 -0.2207 0.0429
β1 -0.1348 0.0749 -0.1547 0.1299 -0.1301 0.1038 -0.1286 0.0995
α01 0.0798 3.1894 0.3576 0.9326 0.4703 0.9552 0.4128 0.9386
α02 - - -0.2642 0.9937 -0.1596 0.9635 -0.1969 0.9562
µ1 -0.4275 0.0890 -0.4240 0.0876 -0.4252 0.0883 -0.4249 0.0882
D 0.1475 0.0811 0.1483 0.0816 0.1482 0.0815 0.1465 0.0809
K 4.0524 1.5484 4.2164 1.6007 3.7666 1.6754 4.2758 1.6719
M - - - - 0.8411 0.3331 1.1115 0.2748

3P and 4P Models; σ2=0.25, H = 30.
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Results - Latent-Y AR(1) Model (cont.)

H = 30 and M = 1, for models 4P (continuous) and 3P (segments).
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Results - Latent AR(1) Model

M = 1 M ∼ U(0.5, 10) M ∼ trunc-IG(2, 2)

mean sd mean sd mean sd

β0 -1.0797 0.0881 -1.0818 0.0891 -1.0816 0.0891

β1 -0.4039 0.1483 -0.4009 0.1532 -0.4007 0.1497

α01 0.8921 0.9371 0.8870 0.9370 0.8851 0.9219

α02 0.2114 0.9766 0.2234 0.9521 0.2136 0.9411

µ1 -0.7454 0.1656 -0.7479 0.1675 -0.7465 0.1667

D 0.2143 0.1361 0.2173 0.1376 0.2157 0.1373

K 4.3454 1.6996 3.9334 1.8607 4.8270 2.0100

M - - 0.8615 0.3582 1.1450 0.3103

Case H = 30 and σ2=1.
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Results - Latent AR(1) Model

Case H = 30 and M = 1, for σ2 = 1.
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Comparison of predictions for both models (4P case)

Prediction for a new P and T patient.
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Comparison of predictions (cont.)
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Final Comments

We presented a flexible autoregressive model for both continuous and
binary/ordinal data.

Model is characterized as an infinite/finite mixture of autoregressive
terms, with a fixed number of lags.

Some possible extensions (future research):

multivariate model formulation;
estimate the number of lags (so, make them random!);
study more properties of autoregressive models.
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¡MUCHAS GRACIAS!

THANKS!

More at http://www.mat.puc.cl/˜quintana.
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