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Magazine Roundup

The IEEE Computer Society’s lineup of 12 peer-reviewed technical magazines covers cutting-edge topics rang-

ing from software design and computer graphics to Internet computing and security, from scientific appli-

cations and machine intelligence to visualization and microchip design. Here are highlights from recent issues.

Changing the Paradigm of 
Control System Cybersecurity

Current cybersecurity protec-

tion relies on network monitoring. 

Changing the paradigm to moni-

tor process sensors makes it prac-

tical to develop workable control 

system cybersecurity engineer-

ing solutions while simultaneously 

addressing reliability, safety, resil-

ience, and productivity concerns. 

Read more in this article from the 

March 2022 issue of Computer.

Massively Parallel Particle 
Hydrodynamics at Exascale

In this article from the January/

February 2022 issue of Comput-

ing in Science & Engineering, the 

authors introduce the work of the 

Massively Parallel Particle Hydro-

dynamics working group, part of 

the UK’s ExCALIBUR software 

initiative. The aim of the group 

is to develop extensible soft-

ware suitable for simulating com-

plex hydrodynamics problems 

on exascale computing facilities 

using a Lagrangian particle-based 

approach. These methods com-

plement mesh-based approaches 

and are particularly suited to prob-

lems with a large and fluid dynamic 

range or ones that involve free sur-

faces. The code uses fine-grained 

task parallelism to achieve a good 

load balance, when the workload 

varies greatly from fluid element 

to element. 

Russian Logics and the 
Culture of Impossible:  
Part I—Recovering 
Intelligentsia Logics

This article from the October–

December 2021 issue of IEEE 

Annals of the History of Comput-

ing reinterprets algorithmic ratio-

nality by looking at the interac-

tion between mathematical logic, 

mechanized reasoning, and com-

puting in the Russian Imperial and 

Soviet contexts to offer a history 

of the algorithm as a mathemati-

cal object bridging the inner and 

outer worlds. The authors exam-

ine continuities between the turn-

of-the-twentieth-century discus-

sions of “poznaniye”—an epistemic 

orientation towards the process of 

knowledge acquisition—and the 

postwar rise of the Soviet school 

of mathematical logic.

Segmentation and 
Recognition of Offline  
Sketch Scenes Using  
Dynamic Programming

Sketch recognition aims to seg-

ment and identify objects in a col-

lection of hand-drawn strokes. In 

general, segmentation is a compu-

tationally demanding process, since 

it requires searching through many 

possible recognition hypotheses. 

It has been shown that, if the draw-

ing order of the strokes is known, 

as in the case of online drawing, a 

class of efficient recognition algo-

rithms becomes applicable. In this 

article from the January/Febru-

ary 2022 issue of IEEE Computer 

Graphics and Applications, the 

authors introduce a method that 

achieves efficient segmentation 

and recognition in offline drawings 

by combining dynamic program-

ming with a novel stroke ordering 

method. They demonstrate that the 

combined system is efficient and 
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either beats or matches the state 

of the art in well-established data-

bases and benchmarks.

Incremental  
Computation in Dynamic 
Argumentation Frameworks

Dealing with controversial infor-

mation is a challenging and impor-

tant task for intelligent systems. 

Formal argumentation enables 

reasoning on arguments for and 

against a claim to decide on an out-

come. An argumentation frame-

work often models a dynamic 

situation where arguments as 

well as the way they interact fre-

quently change over time. Con-

sequently, the sets of accepted 

arguments (i.e., extensions under 

a given semantics) often need to 

be computed again after perform-

ing an update. In this article from 

the November/December 2021 

issue of IEEE Intelligent Systems, 

the authors address the problem 

of efficiently recomputing exten-

sions of dynamic argumenta-

tion frameworks. They present an 

incremental algorithmic solution 

whose main idea is that of using an 

initial extension and the update to 

identify a (potentially small) por-

tion of the argumentation frame-

work, which is sufficient to com-

pute an extension of the whole 

updated framework.

Quantum Information Science

As classical computational infra-

structure becomes more limited, 

quantum platforms offer expand-

ability in terms of scale, energy con-

sumption, and native 3D problem 

modeling. Quantum information 

science is a multidisciplinary field 

drawing from physics, mathematics, 

computer science, and photonics. 

Quantum systems are expressed 

with the properties of superposi-

tion and entanglement, evolved 

indirectly with operators (ladder 

operators, master equations, neu-

ral operators, and quantum walks), 

and transmitted (via quantum tele-

portation) with entanglement gen-

eration, operator size manipula-

tion, and error correction protocols. 

This article from the January/Feb-

ruary 2022 issue of IEEE Internet 

Computing discusses emerging 

applications in quantum cryptog-

raphy, quantum machine learning, 

quantum finance, quantum neuro-

science, quantum networks, and 

quantum error correction.

Artificial Intelligence  
Best Practices in  
Smart Agriculture

Smart agriculture, with the aid 

of artificial intelligence (AI), is 

playing a pivotal role in ensuring 

agriculture sustainability. AI tech-

niques are employed in soil and 

irrigation management, weather 

forecasting, plant growth, dis-

ease prediction, and livestock 

management, which are consid-

ered significant domains of agri-

culture. The authors of this article 

from the January/February 2022 

issue of IEEE Micro review recent 

AI techniques that have been 

deployed in these domains. They 

focus on the various AI algorithms 

used as well as their performance 

impact. This review not only high-

lights the effective use of AI at 

different layers of a smart agricul-

ture architecture, but also identi-

fies future research directions in 

this field.

Are Remote Play Streaming 
Systems Doomed to Fail? A 
Network Perspective

Digital games represent one of 

the most compelling fields in 

computer science, embodying 

a wide variety of technical chal-

lenges. Thanks to the evolution of 

streaming and broadband tech-

nology, new service provisioning 

schemes have emerged. Remote 

play streaming services represent 

an interesting case study deserv-

ing a thorough investigation. To 

this end, the authors of this article 
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from the October–December 2021 

issue of IEEE MultiMedia present 

a network measurement study 

that can be useful to create traf-

fic models and help researchers 

identify issues, guiding architec-

ture, and protocol design. Moving 

beyond latency and jitter issues, 

the purpose is to understand 

whether remote play streaming 

services can operate through reg-

ular connectivity or, on the con-

trary, are doomed to fail as hap-

pened to some pioneer providers. 

Obtaining Labels for In-the-
Wild Studies: Using Visual 
Cues and Recall

The observer effect found in lab-

oratory studies has long posed a 

problem for researchers. In-the-

wild studies reduce the observer 

effect but have problems with 

gathering accurately labeled 

data that is usable for training 

algorithms. Manual labeling is 

time-consuming, obtrusive, and 

unfeasible, and, if done by the 

researchers, it potentially violates 

the privacy of the participants. 

In this article from the January–

March 2022 issue of IEEE Perva-

sive Computing, the authors pres-

ent a labeling workflow based on 

an in-the-wild study that inves-

tigated cognitive state changes 

through eye-gaze in naturalis-

tic settings. They contribute a 

setup that enables participants to 

label their data unobtrusively and 

quickly. They use J!NS MEME elec-

trooculography glasses, Narrative 

Clip 2 wearable cameras, and a 

proprietary data-tagging software 

package. The setup is reproduc-

ible for field studies, preserves 

data integrity, and maintains par-

ticipant privacy. 

Automated Privacy 
Preferences for Smart Home 
Data Sharing Using Personal 
Data Stores

Personal data stores (PDSs) are 

decentralized, user-centric data 

storage and processing environ-

ments for implementing privacy-

aware smart home data storage. 

In this article from the January/

February 2022 issue of IEEE Secu-

rity & Privacy, the authors’ privacy 

preference recommender system 

works with PDSs to assist users 

in making data-sharing deci-

sions to avoid unintended privacy 

mishaps.

Hybrid Digital Twins:  
A Primer on Combining 
Physics-Based and Data 
Analytics Approaches

Two popular approaches to build-

ing digital twins are pure data-

based and physics/simulation-

based methods. In this article from 

the March/April 2022 issue of IEEE 

Software, the authors present a 

framework for hybrid digital twins 

that combines the strengths of the 

two approaches, sharing results 

and demonstrating applicability to 

a flow network.

Makers’ Studio: Enabling 
Education and Skill 
Development Through ICT

Education has been evolving with 

advancements in information 

and communication technologies 

(ICT). The pace of this moderniza-

tion is determined by the require-

ments of the society and the tech-

nological developments. Although 

the online mode of education 

has existed for four decades, an 

abrupt shift to completely online 

mode during COVID-19 exposed 

the lack of proper infrastructure 

and technological solutions. This 

article from the January/Febru-

ary 2022 issue of IT Professional 

contributes to filling in this gap 

and proposes a community-based 

approach of learning via the estab-

lishment of Makers’ Studio, where 

all the stakeholders of the aca-

demic community will have contri-

butions and takeaways. 

Join the IEEE 
Computer 
Society
computer.org/join
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Editor’s Note

Big Data Storage

Big data has the power to 

unlock insights and discov-

eries in many domains, but it can 

be challenging to efficiently handle 

vast amounts of heterogeneous 

structured and unstructured data. 

Organizations are increasingly 

seeking cost-effective, scalable, 

and flexible data storage solu-

tions. This ComputingEdge issue 

explores the trends and innova-

tions in data storage technology 

that are allowing organizations to 

leverage big data.

“It’s Time to Talk About HPC 

Storage: Perspectives on the 

Past and Future,” from Comput-

ing in Science & Engineering, cov-

ers developments in high-perfor-

mance computing storage system 

architectural designs that sup-

port concurrent and low-latency 

access to massive volumes of sci-

entific data. “Big Data: Present 

and Future,” from Computer, dis-

cusses new strategies for storing 

big data, such as data lakes and 

NoSQL databases.

Visualization is helpful and 

sometimes essential for analyz-

ing data and making evidence-

based decisions. In IEEE Computer 

Graphics and Applications’ “Bub-

bleUp: Supporting DevOps With 

Data Visualization,” the author 

reports on a tool for rapidly analyz-

ing complex data from distributed 

systems. In IT Professional ’s “Rig-

orous Data Validation for Accurate 

Dashboards: Experience From a 

Higher Education Institution,” the 

authors describe a suite of visu-

alization dashboards used at Cal-

ifornia State University, Fullerton 

to promote a data-driven opera-

tional culture.

Information technology edu-

cation is critical to preparing 

today’s young people for the work-

force and for life beyond school. 

The authors of IEEE Security & Pri-

vacy’s “Designing a K-16 Cyberse-

curity Collaborative: CIPHER” pro-

pose a framework for addressing 

the challenges of creating a pipe-

line of qualified and diverse cyber-

security professionals. The author 

of IEEE Pervasive Computing’s 

“Beyond Bots and Buttons—New 

Directions in Information Liter-

acy for Students” suggests inter-

active methods for teaching mis-

information awareness and media 

literacy.

This ComputingEdge issue 

closes with one article about 5G 

and 6G cellular networks and sys-

tems. Computer’s “An Attack Vec-

tor Taxonomy for Mobile Telephony 

Security Vulnerabilities” presents 

a novel scheme for categorizing 

threats to 5G networks. 
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Figure 1 shows examples of prevalent access pat-
terns for analytics, which are characterized by this
lack of ordering.

Two technology trends have emerged as crucial to
data-driven scientific discovery. First, the high-speed net-
works usedwithin scientific computing platforms provide
extremely low-latency access to remote systems, includ-
ing billions of message injections per second and direct
access to remote system memory via remote direct
memory access (RDMA) operations. Second, solid-state
disks (SSDs) accessed through the non-volatile memory
express (NVMe) interface provide more than 1,000 times
the performance of traditional hard disk drives for the
small random reads used within data-intensive work-
loads. Interestingly, while HPC storage systems broadly
leverage both high-speed networks and SSDs, this adop-
tion was not driven by the need to provide low-latency
access to remote storage, but by simulation require-
ments for fast point-to-point communication between
processes and high-throughput requirements for access
to HPC storage systems. With the advent of new read-
heavy analysis workloads, however, low-latency remote
storage access is now also a key enabling technology for
newdata-driven approaches to computational science.

The evolution of HPC workloads has highlighted
previously hidden shortcomings of modern storage
systems. This is due to storage architectures that
emerged in the early 2000s and remained static using
storage servers with designated metadata and data
roles, tightly attached to the HPC network, and
focused on delivering throughput while relying on soft-
ware layers that hid latency issues. Traditionally, sys-
tem architects have relied on the increase of CPU
frequencies and scaling out to prevent latency from
affecting application performance. In recent years,
however, CPUs have increased their computational
power through the addition of CPU cores with

decreasing frequencies that complicate real-time
event processing. Scaling out to meet the IOPS
requirements that modern HPC workloads place on
the storage system is problematic as well. Balancing
work to keep storage and network capability fully uti-
lized is difficult at scale, resulting in underutilized
resources and a higher total cost of ownership.

EMERGING CHALLENGES IN HPC
STORAGE

Modern HPC storage architectures were shaped by the
performance characteristics of conventional hard
drives. Conventional hard drives exhibit minimal (if
any) onboard processing capability, low randomaccess
performance, and high latency. These characteristics
placed a ceiling on overall storage system perfor-
mance, and the remainder of the storage infrastructure
was designed around mitigating their limitations as
much as possible. Specifically, storage servers were
designed to mediate all access to hard drives. By doing
so, they could shape traffic (e.g., by serializing and
batching), buffer data (e.g., through caching based on
locality), and process I/O requests on more powerful
host CPUs (e.g., by handling interrupts, packing and
unpacking remote procedure call (RPC) requests, and
enforcing authorization) tomake themost of hard drive
capabilities. Hard drive access latency also had subtle
implications for other elements of the storage system;
there was no incentive to avoid latencies in the client-
side operating system or the storage fabric as long as
hard drives gated overall performance (see Figure 2).

Low-Latency Access to Storage
The architectural approach shown in Figure 2 was
successful: it allowed HPC storage systems to extract
maximum aggregate throughput from vast arrays of

FIGURE 1. Examples of prevalent analysis access patterns: Data-intensive analysis algorithms (propelled by breakthroughs in AI

and statistical methods) must extract samples from immense data sets, thereby triggering storage access patterns that are

unpredictable to outside observers. These workloads put pressure on the storage system’s random read input/output opera-

tions per second (IOPS) rate and response time in ways that cannot be solved with general purpose caching and prefetching.
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High-performance computing (HPC) storage systems area key component of the
success of HPC to date. Recently, we have seen major developments in storage-
related technologies, as well as changes to how HPC platforms are used, especially
in relation to artificial intelligence and experimental data analysis workloads. These
developments merit a revisit of HPC storage system architectural designs. In this
article, we discuss the drivers, identify key challenges to status quo posed by these
developments, and discuss directions future research might take to unlock the
potential of new technologies for the breadth of HPC applications.

High-performance computing (HPC) storage
systems have become trusted repositories for
hundreds of petabytes of data with aggregate

throughput rates in the terabytes per second. Numerous
research advances have contributed to this success.
Object storage technologies helped eliminate bottle-
necks related to the management of space on storage
devices. The development of separate data and meta-
data planes facilitated scale-out in the data plane to
enable high throughput. The adoption of network porta-
bility layers eased porting to new HPC networking tech-
nologies. Disaggregation was adopted early, bringing
powerful cost and administrative savings and providing
flexibility to serve the diverse batch workloads typical of
HPC. Together with input/output (I/O) middleware tech-
nologies, HPC storage systems have largely addressed
the throughput challenges of checkpoint and restart for
traditional message passing interface simulation codes,
whichwas their primary driver formany years.

Meanwhile, HPC applications have evolved from
numerical simulations to workloads that include artificial
intelligence (AI) and analytics. For example, scientists at
the Oak Ridge National Laboratory (ORNL) Health Data

Sciences Institute are developing AI-based natural lan-
guage processing tools to extract information from tex-
tual pathology reports using Summit, the USA’s most
powerful supercomputer, due to the vast amounts of
memory it provides to its compute cores. Similarly, the
High Luminosity Large Hadron Collider (HL-LHC) will fur-
ther extend the capabilities of the LHC, allowing further
investigation of phenomena fundamental to the nature of
the universe. To be installed in 2025, these enhancements
will lead to annual data generation rates of tens of peta-
bytes, with reduced datasets in the petabyte range being
used for analysis. These applications are often read-inten-
sive, and may rely on latency-sensitive transfers, each
consisting of small amounts of data. This marks a dra-
matic shift in how HPC storage systems are used. While
some emerging read-intensive workloads may be able to
rely on structuring within the data to construct efficient
data retrieval plans based on caching or prefetching tech-
niques, AI workloads and many data analytics routines
are inherently required to access the data without any
predictable ordering. According to the Department of
Energy’s 2020AI for Science report:1

“AI training workloads, in contrast, must read
large datasets (i.e., petabytes) repeatedly and
perhaps noncontiguously for training. AI mod-
els will need to be stored and dispatched to
inference engines, which may appear as
small, frequent, random operations.”
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Figure 1 shows examples of prevalent access pat-
terns for analytics, which are characterized by this
lack of ordering.

Two technology trends have emerged as crucial to
data-driven scientific discovery. First, the high-speed net-
works usedwithin scientific computing platforms provide
extremely low-latency access to remote systems, includ-
ing billions of message injections per second and direct
access to remote system memory via remote direct
memory access (RDMA) operations. Second, solid-state
disks (SSDs) accessed through the non-volatile memory
express (NVMe) interface provide more than 1,000 times
the performance of traditional hard disk drives for the
small random reads used within data-intensive work-
loads. Interestingly, while HPC storage systems broadly
leverage both high-speed networks and SSDs, this adop-
tion was not driven by the need to provide low-latency
access to remote storage, but by simulation require-
ments for fast point-to-point communication between
processes and high-throughput requirements for access
to HPC storage systems. With the advent of new read-
heavy analysis workloads, however, low-latency remote
storage access is now also a key enabling technology for
newdata-driven approaches to computational science.

The evolution of HPC workloads has highlighted
previously hidden shortcomings of modern storage
systems. This is due to storage architectures that
emerged in the early 2000s and remained static using
storage servers with designated metadata and data
roles, tightly attached to the HPC network, and
focused on delivering throughput while relying on soft-
ware layers that hid latency issues. Traditionally, sys-
tem architects have relied on the increase of CPU
frequencies and scaling out to prevent latency from
affecting application performance. In recent years,
however, CPUs have increased their computational
power through the addition of CPU cores with

decreasing frequencies that complicate real-time
event processing. Scaling out to meet the IOPS
requirements that modern HPC workloads place on
the storage system is problematic as well. Balancing
work to keep storage and network capability fully uti-
lized is difficult at scale, resulting in underutilized
resources and a higher total cost of ownership.

EMERGING CHALLENGES IN HPC
STORAGE

Modern HPC storage architectures were shaped by the
performance characteristics of conventional hard
drives. Conventional hard drives exhibit minimal (if
any) onboard processing capability, low randomaccess
performance, and high latency. These characteristics
placed a ceiling on overall storage system perfor-
mance, and the remainder of the storage infrastructure
was designed around mitigating their limitations as
much as possible. Specifically, storage servers were
designed to mediate all access to hard drives. By doing
so, they could shape traffic (e.g., by serializing and
batching), buffer data (e.g., through caching based on
locality), and process I/O requests on more powerful
host CPUs (e.g., by handling interrupts, packing and
unpacking remote procedure call (RPC) requests, and
enforcing authorization) tomake themost of hard drive
capabilities. Hard drive access latency also had subtle
implications for other elements of the storage system;
there was no incentive to avoid latencies in the client-
side operating system or the storage fabric as long as
hard drives gated overall performance (see Figure 2).

Low-Latency Access to Storage
The architectural approach shown in Figure 2 was
successful: it allowed HPC storage systems to extract
maximum aggregate throughput from vast arrays of

FIGURE 1. Examples of prevalent analysis access patterns: Data-intensive analysis algorithms (propelled by breakthroughs in AI

and statistical methods) must extract samples from immense data sets, thereby triggering storage access patterns that are

unpredictable to outside observers. These workloads put pressure on the storage system’s random read input/output opera-

tions per second (IOPS) rate and response time in ways that cannot be solved with general purpose caching and prefetching.
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High-performance computing (HPC) storage systems area key component of the
success of HPC to date. Recently, we have seen major developments in storage-
related technologies, as well as changes to how HPC platforms are used, especially
in relation to artificial intelligence and experimental data analysis workloads. These
developments merit a revisit of HPC storage system architectural designs. In this
article, we discuss the drivers, identify key challenges to status quo posed by these
developments, and discuss directions future research might take to unlock the
potential of new technologies for the breadth of HPC applications.

High-performance computing (HPC) storage
systems have become trusted repositories for
hundreds of petabytes of data with aggregate

throughput rates in the terabytes per second. Numerous
research advances have contributed to this success.
Object storage technologies helped eliminate bottle-
necks related to the management of space on storage
devices. The development of separate data and meta-
data planes facilitated scale-out in the data plane to
enable high throughput. The adoption of network porta-
bility layers eased porting to new HPC networking tech-
nologies. Disaggregation was adopted early, bringing
powerful cost and administrative savings and providing
flexibility to serve the diverse batch workloads typical of
HPC. Together with input/output (I/O) middleware tech-
nologies, HPC storage systems have largely addressed
the throughput challenges of checkpoint and restart for
traditional message passing interface simulation codes,
whichwas their primary driver formany years.

Meanwhile, HPC applications have evolved from
numerical simulations to workloads that include artificial
intelligence (AI) and analytics. For example, scientists at
the Oak Ridge National Laboratory (ORNL) Health Data

Sciences Institute are developing AI-based natural lan-
guage processing tools to extract information from tex-
tual pathology reports using Summit, the USA’s most
powerful supercomputer, due to the vast amounts of
memory it provides to its compute cores. Similarly, the
High Luminosity Large Hadron Collider (HL-LHC) will fur-
ther extend the capabilities of the LHC, allowing further
investigation of phenomena fundamental to the nature of
the universe. To be installed in 2025, these enhancements
will lead to annual data generation rates of tens of peta-
bytes, with reduced datasets in the petabyte range being
used for analysis. These applications are often read-inten-
sive, and may rely on latency-sensitive transfers, each
consisting of small amounts of data. This marks a dra-
matic shift in how HPC storage systems are used. While
some emerging read-intensive workloads may be able to
rely on structuring within the data to construct efficient
data retrieval plans based on caching or prefetching tech-
niques, AI workloads and many data analytics routines
are inherently required to access the data without any
predictable ordering. According to the Department of
Energy’s 2020AI for Science report:1

“AI training workloads, in contrast, must read
large datasets (i.e., petabytes) repeatedly and
perhaps noncontiguously for training. AI mod-
els will need to be stored and dispatched to
inference engines, which may appear as
small, frequent, random operations.”
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parallel and low-latency access to storage is a natural
research direction. Alterations and alternatives to
existing data-transport methods for storage—perhaps
built using compute-enabled devices—should be
investigated and their potential demonstrated. User-
land access to resources has also been shown as criti-
cal for maintaining low latencies, which will be critical
in the data plane if not also in at least some aspects
of the metadata plane. Approaches along these lines
have begun to be explored in the larger storage com-
munity4 but must be adapted to the scales and net-
works of HPC.

Securing Access to Storage Devices
In addition to providing efficient access to storage
devices, storage system software is also tasked with
providing access control to the data stored within
high-performance storage systems. In the current
server-mediated access to the storage model, the
system software is tasked with enforcing all data
access controls. As we move to a storage access par-
adigm that supports faster, low-latency access to
storage devices, a server-mediated access control
scheme becomes a bottleneck that paralyzes emerg-
ing workloads rather than acting as a useful enforce-
ment mechanism. At the same time, storage devices
have gained richer interfaces and capabilities, includ-
ing zoned namespaces (ZNS) and embedded func-
tions in the form of computational storage, and thus,
it is clear that security models that treat storage
devices as only a repository for stored data are
obsolete.

More direct access to storage devices from large
numbers of client processes, which may include user-
space access to remote storage devices, must pro-
vide new models of security not currently provided by
either the network protocols or storage devices.
While the NVMe standards body has defined multiple
methods for securely accessing storage, none of
these mechanisms are currently a good match for
data-intensive scientific discovery. The two most
common NVMe security methods, in-band authenti-
cation and per-request security, are focused on
ensuring that clients are authenticated with servers
but cannot differentiate between data plane opera-
tions that read data or write data and control plane
operations that create or destroy on-device name-
spaces. And while key-per-IO is a novel model that
enables every disk access to be secured separately,
the overheads of checking an encryption key for
every operation is antithetical to low-latency access
to storage devices. Instead, new security models that

expose the performance advantages of ZNS5 and
leverage scalable approaches to embedded compute,
such as computational storage and SmartNICs,6

require additional research.

ENABLING A FUTURE FOR DATA-
DRIVEN SCIENCE

A great deal of effort was required to stabilize HPC
storage and make it trustworthy, but it did happen.
Multiple production file system options exist for data
centers to choose from, and checkpoint and restart
for HPC codes has largely been addressed. But stor-
age system designers cannot rest on their laurels, and
storage is not a solved problem. Even more than for
simulation codes, the potential benefits of HPC for AI
and analysis applications hinge on high-performance
storage. We need not just innovation, but innovation
that goes hand in hand with these scientific
objectives.

ARCHITECTURALLY, THE COMMUNITY
MUST REVISIT THE DATA PATH
BETWEEN ANALYSIS APPLICATIONS
AND STORAGE DEVICES.

Architecturally, the community must revisit the
data path between analysis applications and storage
devices. In much the same way that user-space
RDMA access has revolutionized HPC networking
(removing handshaking, buffering, and host process-
ing from the interprocess communication path) and
allowed networks to keep pace with memory
throughput, we must adopt new HPC storage access
paradigms that minimize obstructions in the storage
data path and allow storage systems to keep pace
with NVMe capabilities. The need for RPC processing
can be minimized (by thoughtful partitioning of work
to control planes), any remaining RPC processing or
asymmetric transfer can be offloaded to smart devi-
ces, and the complete data path can be holistically
evaluated to eliminate duplicate and superfluous pro-
tocol translations that collectively leach latency from
the system.

From a device interface perspective, storage sys-
tems traditionally divide responsibility between the
storage device and host rigidly: the device is respon-
sible for handling data block updates, and the host is
responsible for data processing. But as SSDs con-
tinue to replace hard disks at the front-line storage
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commodity hard drives. Limitations are evident, how-
ever, now that we attempt to match emerging IOPS
and response-time-sensitive workloads to more capa-
ble low-latency storage devices. User-space APIs
such as libaio or liburing can issue millions of opera-
tions per second from a single core, network inter-
face cards can inject hundreds of millions of
messages into a network per second, and these rates
can be matched by just a few hundred NVMe storage
devices. Despite these capabilities, modern storage
servers are only able to process 100,000 RPCs per
second from a single core. Even an incredibly high-
end storage server with 100 high-frequency cores
could service only 10 million read or write RPCs per
second. Such performance strands over 90% of the
network interface capability and saturates fewer than
10 fast NVMe devices.

In other words, the host-based RPC processing that
in the past served to optimize access to storage devi-
ces has now become a hindrance. The server’s ability
to deserialize and process an RPC request and then

serialize and send an RPC response is now the gating
factor in the IOPS rate. The fastest RPC libraries, co-
designed with high-performance interconnects and
performing no server-side processing, have been
unable to achieve even 500,000 RPCs per second per
core. The traditional HPC solution of scaling out to
achieve higher IOPS is inefficient; expanding the num-
ber of server CPU cores will increase complexity, foot-
print, and power demands, offer diminishing returns on
aggregate IOPS rate, and effect no improvement in
response time for individual accesses. The classic HPC
storage architecture must now be revisited in the con-
text ofmixedworkloads and thewidespread availability
of low-latency hardware components.

THE CLASSIC HPC STORAGE
ARCHITECTUREMUST NOWBE
REVISITED IN THE CONTEXT OFMIXED
WORKLOADS AND THEWIDESPREAD
AVAILABILITY OF LOW-LATENCY
HARDWARE COMPONENTS.

Scaling andMaintaining Low Latency
Science teams driving these data-intensive activities
are pushing the scalability of their computations just
as teams with simulation codes have before them,
and it is paramount that storage systems support that
scalability. Traditional caching and prefetching are not
generally effective for these algorithms, eliminating a
common option for accelerating access. On the other
hand, the HPC networking community has learned
much that can be applied to next-generation storage
systems. Limiting the state associated with connec-
tions is an important enabler for scale-out, especially
when there is no obvious structure in the communica-
tion as there is in many scientific codes.

Devices supporting protocols that require connec-
tion establishment are incredibly challenging to
employ at the HPC scale, but unfortunately, that is the
current direction of network-accessible device proto-
cols such as NVMe-oF. Connectionless models of
communication have been demonstrated in HPC2 and
supported in production hardware:3 it is up to HPC to
invent the fast, direct access to remote storage devi-
ces that will be a key enabling technology for scalable
storage systems. HPC platforms have similarly been at
the leading edge of requirements for high-concur-
rency, low-latency access to remote memory, and
extending proven techniques to enable similarly

FIGURE 2. Exemplar disaggregated HPC storage architecture.

Traditional HPC storage systems have been propelled by sim-

ulation workloads to optimize for aggregate bulk synchro-

nous throughput. This is a key disconnect for data-driven

analysis: systems designed to maximize aggregate through-

put are poorly suited to individual random reads. Each access

must traverse multiple distinct protocol hops, where each

protocol hop has its own interrupt processing, buffering,

handshaking, serialization, and access control conventions.

These protocol translations were designed in an era when

high-latency storage devices gated overall performance, an

assumption that no longer holds today.

November/December 2021 Computing in Science & Engineering 65

LEADERSHIP COMPUTING



www.computer.org/computingedge 11

LEADERSHIP COMPUTING

23mcse06-settlemyer-3117353.3d (Style 7) 14-12-2021 22:50

parallel and low-latency access to storage is a natural
research direction. Alterations and alternatives to
existing data-transport methods for storage—perhaps
built using compute-enabled devices—should be
investigated and their potential demonstrated. User-
land access to resources has also been shown as criti-
cal for maintaining low latencies, which will be critical
in the data plane if not also in at least some aspects
of the metadata plane. Approaches along these lines
have begun to be explored in the larger storage com-
munity4 but must be adapted to the scales and net-
works of HPC.

Securing Access to Storage Devices
In addition to providing efficient access to storage
devices, storage system software is also tasked with
providing access control to the data stored within
high-performance storage systems. In the current
server-mediated access to the storage model, the
system software is tasked with enforcing all data
access controls. As we move to a storage access par-
adigm that supports faster, low-latency access to
storage devices, a server-mediated access control
scheme becomes a bottleneck that paralyzes emerg-
ing workloads rather than acting as a useful enforce-
ment mechanism. At the same time, storage devices
have gained richer interfaces and capabilities, includ-
ing zoned namespaces (ZNS) and embedded func-
tions in the form of computational storage, and thus,
it is clear that security models that treat storage
devices as only a repository for stored data are
obsolete.

More direct access to storage devices from large
numbers of client processes, which may include user-
space access to remote storage devices, must pro-
vide new models of security not currently provided by
either the network protocols or storage devices.
While the NVMe standards body has defined multiple
methods for securely accessing storage, none of
these mechanisms are currently a good match for
data-intensive scientific discovery. The two most
common NVMe security methods, in-band authenti-
cation and per-request security, are focused on
ensuring that clients are authenticated with servers
but cannot differentiate between data plane opera-
tions that read data or write data and control plane
operations that create or destroy on-device name-
spaces. And while key-per-IO is a novel model that
enables every disk access to be secured separately,
the overheads of checking an encryption key for
every operation is antithetical to low-latency access
to storage devices. Instead, new security models that

expose the performance advantages of ZNS5 and
leverage scalable approaches to embedded compute,
such as computational storage and SmartNICs,6

require additional research.

ENABLING A FUTURE FOR DATA-
DRIVEN SCIENCE

A great deal of effort was required to stabilize HPC
storage and make it trustworthy, but it did happen.
Multiple production file system options exist for data
centers to choose from, and checkpoint and restart
for HPC codes has largely been addressed. But stor-
age system designers cannot rest on their laurels, and
storage is not a solved problem. Even more than for
simulation codes, the potential benefits of HPC for AI
and analysis applications hinge on high-performance
storage. We need not just innovation, but innovation
that goes hand in hand with these scientific
objectives.

ARCHITECTURALLY, THE COMMUNITY
MUST REVISIT THE DATA PATH
BETWEEN ANALYSIS APPLICATIONS
AND STORAGE DEVICES.

Architecturally, the community must revisit the
data path between analysis applications and storage
devices. In much the same way that user-space
RDMA access has revolutionized HPC networking
(removing handshaking, buffering, and host process-
ing from the interprocess communication path) and
allowed networks to keep pace with memory
throughput, we must adopt new HPC storage access
paradigms that minimize obstructions in the storage
data path and allow storage systems to keep pace
with NVMe capabilities. The need for RPC processing
can be minimized (by thoughtful partitioning of work
to control planes), any remaining RPC processing or
asymmetric transfer can be offloaded to smart devi-
ces, and the complete data path can be holistically
evaluated to eliminate duplicate and superfluous pro-
tocol translations that collectively leach latency from
the system.

From a device interface perspective, storage sys-
tems traditionally divide responsibility between the
storage device and host rigidly: the device is respon-
sible for handling data block updates, and the host is
responsible for data processing. But as SSDs con-
tinue to replace hard disks at the front-line storage
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commodity hard drives. Limitations are evident, how-
ever, now that we attempt to match emerging IOPS
and response-time-sensitive workloads to more capa-
ble low-latency storage devices. User-space APIs
such as libaio or liburing can issue millions of opera-
tions per second from a single core, network inter-
face cards can inject hundreds of millions of
messages into a network per second, and these rates
can be matched by just a few hundred NVMe storage
devices. Despite these capabilities, modern storage
servers are only able to process 100,000 RPCs per
second from a single core. Even an incredibly high-
end storage server with 100 high-frequency cores
could service only 10 million read or write RPCs per
second. Such performance strands over 90% of the
network interface capability and saturates fewer than
10 fast NVMe devices.

In other words, the host-based RPC processing that
in the past served to optimize access to storage devi-
ces has now become a hindrance. The server’s ability
to deserialize and process an RPC request and then

serialize and send an RPC response is now the gating
factor in the IOPS rate. The fastest RPC libraries, co-
designed with high-performance interconnects and
performing no server-side processing, have been
unable to achieve even 500,000 RPCs per second per
core. The traditional HPC solution of scaling out to
achieve higher IOPS is inefficient; expanding the num-
ber of server CPU cores will increase complexity, foot-
print, and power demands, offer diminishing returns on
aggregate IOPS rate, and effect no improvement in
response time for individual accesses. The classic HPC
storage architecture must now be revisited in the con-
text ofmixedworkloads and thewidespread availability
of low-latency hardware components.

THE CLASSIC HPC STORAGE
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Scaling andMaintaining Low Latency
Science teams driving these data-intensive activities
are pushing the scalability of their computations just
as teams with simulation codes have before them,
and it is paramount that storage systems support that
scalability. Traditional caching and prefetching are not
generally effective for these algorithms, eliminating a
common option for accelerating access. On the other
hand, the HPC networking community has learned
much that can be applied to next-generation storage
systems. Limiting the state associated with connec-
tions is an important enabler for scale-out, especially
when there is no obvious structure in the communica-
tion as there is in many scientific codes.

Devices supporting protocols that require connec-
tion establishment are incredibly challenging to
employ at the HPC scale, but unfortunately, that is the
current direction of network-accessible device proto-
cols such as NVMe-oF. Connectionless models of
communication have been demonstrated in HPC2 and
supported in production hardware:3 it is up to HPC to
invent the fast, direct access to remote storage devi-
ces that will be a key enabling technology for scalable
storage systems. HPC platforms have similarly been at
the leading edge of requirements for high-concur-
rency, low-latency access to remote memory, and
extending proven techniques to enable similarly
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tier, block interface support requires complex firm-
ware that affects device performance and cost, and
as storage becomes disaggregated from computa-
tion, reducing data movement between the device
and host becomes crucial. Novel interfaces, like
zoned storage, have emerged to reduce firmware
complexity by delegating responsibilities to the host,
and computational storage allows data to be proc-
essed on the device in accordance to application
needs, blurring the divide between device and host.
Future work will need to adapt popular application
types to fully leverage the capabilities of these devi-
ces and explore the right balance of near-storage
computation for different tasks.

User abstractions are another key piece of the puz-
zle. Building fast and productive storage systems will
require not only addressing these technology challenges
but also understanding emerging science needs. The
HPC storage community has contributed interface
advances in the past, including concepts eventually
adopted in the mainstream, but recently most storage
abstraction innovation has occurred elsewhere, with
cloud service providers offering options such as column
stores, document stores, key-value stores, streaming
data infrastructure, and object stores. HPC storage
researchers must work together with technology pro-
viders and domain scientists to find abstractions that
match science needs and then to develop scalable stor-
age services embodying those abstractions.

The HPC storage research community also a needs
to be reinvigorated. A misconception persists that
HPC storage is a solved problem: new storage systems
are iteratively designed and deployed by solving for-
mulas based on commodity market forces and logisti-
cal constraints. In reality, however, many unsolved
problems remain in high-performance storage, espe-
cially as high-performance storage comes to the fore-
front as the key to enabling both simulation and data-
driven analytics use cases. The high-performance stor-
age community must innovate within this space and
then translate those innovations into solutions for our
data-driven science partners. HPC storage and its
workloads must become first-class citizens within
computer science curricula, coordinated research
thrusts, and partnerships between industry, academia,
and governments.

CONCLUSIONS
The push to achieve the largest and most complex
scientific discoveries using HPC requires heroic
efforts from computational scientists, computing sys-
tem designers, and software developers. But critically,

these tremendous efforts have proven to successfully
flow downstream and make equally important, but
less computationally demanding, scientific discover-
ies tractable. By design, a calculation that was
entirely heroic a decade ago can now be achieved by
a handful of highly motivated graduate students. To
usher in this same downstream effect for data-driven
science, a set of sustained and heroic efforts are
needed for building and operating storage systems
that can support highly concurrent and low-latency
access to massive volumes of scientific data. With
this key underpinning under development and then in
use, we enable the additional efforts needed to
extract new insight and invent new methods for
accelerating data-driven scientific discovery. And in
several years, as the benefits of new methods for
analyzing data are realized and made commonplace,
small teams of highly motivated graduate students
will perform data-driven searches for discovery that
could not be dreamed of as possible within contem-
porary HPC data centers. The road ahead, and its
inevitable roadblocks and detours, will be difficult
and surprising, but the rewards at the end of this
journey are too great to resist.
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Big data in the 21st century will impact every individual, organization, and government. 
Organizations must invest in big data tools for business growth and efficiency while 
protecting data privacy as we continue toward digitization and datafication.

The term big data was first referenced in 1997 in 
an article by Michael Cox and David Ellsworth 
in the ACM digital library. The article discusses 

the challenges of visualization due to large data sets 
requiring high memory capacity. The authors referred 
to this as the problem of big data. Later in 2001, Doug 
Laney, an analyst with the Meta Group, published an 
article on data management with the “3Vs”: volume, 
velocity, and variety; these terms went on to become 
the most commonly accepted definitions of big data. 
Over the years, variability and value were added as 
other key attributes of big data. In general terms, big 
data is a large complex set of data that requires addi-
tional computation to extract, analyze, and process to 
drive decision making.

Big data is broadly categorized into three data 
types: structured, unstructured, and semistructured. 
Structured data sets are made of clearly defined data 
types, which makes them easy to search and organize 
in relational databases. Some examples of structured 
data are phone numbers, street addresses, and Social 
Security numbers. Transactional data are another type 
of structured data and consist of, for example, sales 
orders, payments, returns, refunds, invoices, purchase 
orders, inventory-level changes, shipping documents, 
passport applications, credit card payments, and 
insurance claims.1

Unstructured data sets are those that are 
not easily searchable nor stored in structured 

database format. Such data could be textual, audio, 
or video and both human and machine generated. 
Human-generated unstructured data include audio 
and video data shared on YouTube, Instagram, Face-
book, Twitter, and so on. Machine-generated unstruc-
tured data include satellite imagery, sensor, and digital 
surveillance data. Today, only 20% of the existing data 
are classified as unstructured, but at a 62% growth 
rate per year, by 2020, unstructured data will form 
93% of the data sets.2

Lastly, semistructured data are a type that cannot 
be organized in relational databases, and they do not 
have a strict structural framework. However, they still 
have some structural properties. An example would 
be emails, which can be categorized based on, for 
instance, sender, subject, recipient, and send date and 
hence are structured. However, the content in emails 
falls under the unstructured data type, making emails 
a semistructured data set overall.

Big data is being created at an astounding pace to 
say the least. The total volume of data created, cap-
tured, copied, and consumed worldwide is expected to 
be 149 ZB in 2024, up almost two orders of magnitude 
from 2 ZB in 20103 (Figure 1). To put the size in perspec-
tive, it would take 181 million years if all of the existing 
data were to be downloaded. This explosion in data is 
a result of two macrotrends: an increase in Internet 
users and Internet-of-Things (IoT)-connected devices 
and a decrease in data storage and analysis costs, 
which came about due to a reduction in semiconduc-
tor computing (CPUs, GPUs, accelerators, and so on) 
and storage (memory) costs and advancements in 
network connectivity in the last two decades. Today, 
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there are 4.7 billion Internet users4 
in the world, who are increasingly 
consuming and creating content 
on social media, search engines, 
online entertainment, and news. 
The Internet users generate about 
6,123 TB of traffic every minute, 
which includes 185 million sent 
emails, 5.2 million Google searches, 
305k Skype calls, and 84,000 pho-
tos uploaded on Instagram.5 Apart 
from Internet usage, IoT-connected 
devices (sensors, smart cars, and 
so on) are expected to increase 
from 26.7 billion devices in 2020 to 
75 billion devices in 2025.6

The cloud-computing industry has grown in 
lockstep with big data in the last two decades, with 
significant advances in data extraction, storage, and 
predictive and prescriptive analysis tools, including 
artificial intelligence (AI) and machine learning (ML). 
The global cloud-computing market size is expected to 
grow from US$371.4 billion in 2020 to US$832.1 billion 
by 2025, at a compound annual growth rate of 17.5%.7 
This growth rate is further expected to increase with 
accelerated cloud technology adoption by enterprises 
in sectors where the work-from-home initiative is help-
ing to sustain enterprise business functions.

APPLICATIONS
Big data in today’s world has tremendous potential to 
provide insights into almost all aspects of our lives, 
enabling smart decision making, cost reductions, 
future predictions, production-throughput improve-
ments, and new product offerings. It ranges from pro-
viding personalized recommendations for best places 
to shop or eat based on user history, to playing a piv-
otal role for health agencies in managing the COVID-19 
pandemic through contact tracing and hospital 
availability analysis. It is also widely accepted that 

companies focusing on big data analytics to create 
business values will succeed. This requires both stra-
tegic design and a well-thought-out architecture that 
can utilize the available data streams to meet specific 
business objectives, determine customer behavioral 
and usage patterns, and predict market trends.

Big data has enabled faster data processing and 
cost reduction by switching to cloud-based analytics, 
thus reducing the hardware and associated infrastruc-
ture needed for data storage and processing. Faster 
processing and internalization of complex data has 
enabled businesses to assess their competitors more 
quickly against their own offerings to make decisions 
in a continuously evolving business environment. The 

THE GLOBAL CLOUD-COMPUTING 
MARKET SIZE IS EXPECTED TO GROW 
FROM US$371.4 BILLION IN 2020 
TO US$832.1 BILLION BY 2025, AT A 
COMPOUND ANNUAL GROWTH RATE 
OF 17.5%.
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predictive capabilities offered by AI and ML have led 
companies to make future projections further out with 
higher accuracy and consistency.

The AI-powered user-pattern analysis from polls, 
surveys, Internet shopping, search history, location 
data, and so on has enabled the prediction of future 
human behavior and the provision of personalized 
recommendations for shopping, travel, restaurants, 
politics, weather, and even health. It is now possible 
to assess customer wants along with resulting sat-
isfaction levels to deliver the right product. This has 
led many big companies to continuously innovate and 
launch customer-centric products on a consistent 
basis. Some of the industries benefiting from big data 
are health care, banking, media, retail, and energy. 
Other industries, such as medicine, construction, 
and transportation, are moving fast toward adopting 
and integrating big data analytics in their day-to-day 
operations and decision making.

The health-care industry benefits from big data 
by enabling the removal of redundant diagnoses from 
medical records, the early detection of diseases, and 
the ability to prevent virus outbreaks. The data have 
structured elements, like a patient’s personal informa-
tion and vitals, and unstructured elements, like X-ray 
and ultrasound records. Data are typically obtained 
from patient records or user generated from devices 
such as health apps,8 Apple Watches, and Fitbits. 
The data are analyzed to help hospitals assess the 
effectiveness of therapies and drug administrations 
to improve future treatment plans. The most recent 
example is how health-care agencies and govern-
ments were able to do contact tracing for COVID-19 to 
follow the spread of the pandemic and help regulate 
social-distancing and shelter-in-place orders.

On the medical frontier, big data can be found at the 
leading edge of therapeutic and diagnostics research. 
For example, DeepMind, Google’s deep-learning 

program, made a huge leap through its AlphaFold 
program to successfully determine the 3D shapes of 
proteins from their amino-acid sequence and solve 
a huge, decades-old challenge in biology. AlphaFold 
solved this problem after getting training on big data 
comprising approximately 170,000 protein structures.9 
Similarly, AI and big data platforms now provide the 
capability to sift through years of data to identify 
possible drugs that are already approved for treating 
certain diseases and help identify new molecules using 
this database to accelerate vaccine development.10

Although the banking sector has stringent data 
security regulations and has been relatively slow in 
adopting innovations, big data has started to play an 
important role in the banking business. The applica-
tions span fraud detection, customer behavior-pattern 
prediction, market trend detection, improved trade 
execution, and enhanced customer experience. Banks 
make use of both structured data (such as demo-
graphics, credit scores, and transaction types) and 
unstructured data (macrodevelopments, geopolitical 
news, and so on) to grow business and enhance client 
experience.

With the advent of online streaming, big data ana-
lytics has played a key role in driving the growth of the 
entertainment and media industry worldwide. Netflix, 
a popular streaming service, has experienced astro-
nomical growth, with subscribers increasing from 21 
million to 197 million globally in the last decade.11 More 
recently, Disney’s video-on-demand channel gained 
74 million subscribers within a year of launch.12 This 
growth has been due to both good content and big 
data. These platforms collect an incredible amount 
of data while their services are being used, to provide 
personalized recommendations for genres of shows 
and movies and improve customer engagement. Big 
data is also used to make decisions on which scripts 
or shows to produce or license by predicting viewer-
ship based on the content and performance of similar 
shows or movies in the past.13

Big data has also revolutionized the retail busi-
ness forever. Online retail giants such as Amazon and 
Alibaba use big data to sift through millions of seller 
options in every product category to provide their 
users with enhanced experiences. Big data is also 
used in customer relationship management by almost 
90% of businesses to enhance customer experience 

ON THE MEDICAL FRONTIER, BIG 
DATA CAN BE FOUND AT THE 
LEADING EDGE OF THERAPEUTIC AND 
DIAGNOSTICS RESEARCH.
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and increase sales.14 Another example is Starbucks, 
which had harnessed big data from 30 million mobile 
app users and 20 million loyalty program members at 
the end of 2020.15,16 The introduction of in-app pay-
ments, which provide valuable data about customer 
preferences, enables Starbucks to provide targeted 
offerings and rewards to its customers and increase 
overall sales.

TOOLS AND KEY PLAYERS
Organizations in general have to ingest both struc-
tured and unstructured data generated from disparate 
sources. Given this heterogeneity of big data, organi-
zations need to make architectural choices about data 
storage and analytics solutions that provide both agil-
ity and flexibility.

The first architectural option is a data lake, which 
allows cost-effective storage of massive amounts of 
raw data that have an undefined or unclear purpose 
but are possibly needed for future use.17 Data lakes 
offer fully redundant data storage infrastructure for 
storage and retrieval with accessibility across geogra-
phies, web spaces, or time horizons.18 Data lakes have 
now become a prominent offering by cloud providers 
such as Microsoft (Azure Blob Storage), Amazon Web 
Services (AWS) (S3), Google (Cloud Storage), IBM 
(Cloud Object Storage), and Oracle (Cloud Infrastruc-
ture Object Storage) among others.

An alternative to a data lake is a not Structured 
Query Language (NoSQL)-based database that can 
handle nonstructural data with high availability and 
durability. A key benefit of NoSQL databases is hori-
zontal scalability,19 which allows seamless scaling of a 
single table over hundreds of servers and lower admin-
istrative overhead for operating and scaling distrib-
uted clusters.18 While data lakes and databases have 
different advantages and are more suited to disparate 
business needs, companies such as Netflix use both to 
serve various requirements.18 AWS DynamoDB, Mon-
goDB, Google Cloud Bigtable, and Microsoft Azure 
Cosmos DB are among many NoSQL-based products 
that are currently available for database needs.

Once a data source is known, a data warehouse 
can be built using Extract, Transform, Load or Extract, 
Load, Transform operations.20 A data warehouse con-
sists of restructured data that are organized, easy to 
query, integrated from multiple sources, and of higher 

quality to ensure that robust reporting and data analy-
sis can be performed for business intelligence (BI) or 
business analysis purposes. Data warehouse products 
are offered by all major cloud providers (AWS Redshift, 
Google Cloud’s BigQuery, and Microsoft Azure SQL 
Data Warehouse), stand-alone providers such as Clou-
dera, and unique providers such as Snowflake that 
have the capability to integrate data from Amazon S3, 
Microsoft Azure, and Google Cloud platforms.21

The wide-ranging structured and unstructured 
stored big data is ultimately processed for predictive 
and prescriptive analysis to gain better understanding 
and insights in the application area.22 The analysis 
spans from SQL-based BI reports, dashboards, and 
analysis to help business operations, to unstruc-
tured data processing using Apache Hadoop to solve 
data-intensive and computationally intensive prob-
lems23 and AI and ML tools for building smart appli-
cations, such as predictive analytics, deep learning, 
image identification and classification, and natural 
language processing.

The rapid growth in the big data industry in the last 
decade has resulted in the availability of a multitude of 
tools to execute these analyses. While Tableau, AWS 
QuickSight, MicroStrategy Analytics, Microsoft Power 
BI, and Google Data Studio are among the most com-
monly used BI tools, Amazon EMR, Microsoft Azure 
HDInsight, and Cloudera Manager are some of the 
common unstructured data processing platforms that 
support big data frameworks, such as Apache Hadoop 
and Apache Spark. A wide-ranging suite of tools (Ama-
zon’s Lex, Polly, and Rekognition; Google’s AutoML, AI 
Infrastructure, and Healthcare Natural Language,24 
and so on) are further available to conduct predictive 
analysis using AI and ML.

WHILE IT IS ARGUABLE THAT SUCH 
ACTIONS ARE USER ORIENTED 
WITHIN BOUNDS OF INTENDED 
USAGE, THERE ARE GRAVE RISKS 
AROUND SECURITY BREACH AND 
ETHICAL USAGE OF BIG DATA TO 
INFLUENCE PEOPLE ON DEEPLY 
PERSONAL DECISIONS.
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TRENDS
Big data and data analytics will continue to grow in 
the coming years and are expected to be valued at 
US$230 billion by 2025.25 An ever-growing number 
of organizations will continue to adopt and opera-
tionalize AI, resulting in a fivefold increase in stream-
ing data and analytics infrastructure by 2024. The 
2020 trends of growth in AI/ML, augmented analyt-
ics, edge-computing growth, in-memory computa-
tion, and continuous intelligence as well as growth or 
Spark and Databricks tools will continue in the next 
few years as well.

Augmented analytics utilizes AI and ML techniques 
to automate data preparation, sharing, and analytics, 
resulting in the transformation of complex, seemingly 
unusable data into smaller, usable data sets. It is esti-
mated that augmented analytics markets will become 
a dominant driver for BI in 2021. Cloud-to-edge transi-
tion is also picking up to move away from central-
ized computing systems requiring high bandwidths. 
Edge computing will result in faster data analysis 
and reduced costs since it’s better to extract and 
process data at the edge and then distribute them 
to relevant users/customers as needed. According to 
estimates,26 by 2025, 75% of the enterprise data will be 
processed by edge computing. Due to the increasing 
need for real-time data analytics and the decreasing 
cost of memory, in-memory computing is expected to 
continue to grow in the coming years. This will be par-
ticularly helpful for business clients (banks, retailers, 
and utilities) for rapid identification of patterns.

Continuous intelligence is also expected to support 
automatic real-time data analysis and decision making 
via ML and continuous data analysis. It uses optimiza-
tion, business rule management, event stream pro-
cessing, and augmented analytics. It is predicted that 
more than 50% of new business systems will incorpo-
rate continuous intelligence by 2022.27 Lastly, with the 
migration to cloud for data ingestion, analytics, and 
storage, traditional tools working on data center infra-
structures such as Hadoop may no longer be the best 
option. Newer tools such as Spark, which can work 
with both data centers and cloud-based systems, will 
start to become more mainstream.

CHALLENGES
As big data is on a continuous-growth path, there are 

a few areas that need focus so that organizations and 
societies can continue to benefit their businesses, 
improve user experiences, and at the same time pre-
vent privacy breaches, erroneous analyses, and disad-
vantages to small organizations trying to integrate big 
data into their day-to-day operations.

Ethical aspects of data collection, management, 
and application are continuously evolving and will 
influence industry practices in the next decade. Data 
privacy arising from big data is undoubtedly the big-
gest challenge affecting the current 4.7 billion Internet 
users. Big data is essentially the “big boss” in the online 
world, wherein our every action gets logged some-
where, often permanently, is analyzed, and influences 
our day-to-day decisions, often without any of us real-
izing it. The data include, but are not limited to, infor-
mation about our favorite restaurants and cuisines, 
travel, shopping history, and search history.

Besides the personal information that users can 
choose to share, an individual’s trails of disparate 
online data can be used not only to extract additional 
personal information but also draw inferences on how 
a person thinks by creating psychographic profiles. 
Using big data, the “big five” personality traits—open-
ness, conscientiousness, extroversion, agreeable-
ness, and neuroticism—can be determined with high 
accuracy. Researchers Kosinski and Wu created a 
model that predicts an average person’s personality, 
sometimes even more accurately than their family 
and friends can. As an example, skin color (with 95% 
accuracy) and political affiliation (with 85% accuracy) 
could be predicted based on an average of 68 Face-
book “likes” by a user.28

The combination of shared and deduced personal 
information on users is employed for highly personal-
ized marketing to influence decisions on where to shop, 
eat, travel, and so forth. While it is arguable that such 
actions are user oriented within bounds of intended 
usage, there are grave risks around security breach 
and ethical usage of big data to influence people on 
deeply personal decisions. The biggest such situation 
in recent memory was the leak of the Facebook data 
of 87 million users—the largest known leak in Face-
book history—by Cambridge Analytica to determine 
and sell psychological profiles of American voters for 
political campaigns.29 These profiles, together with 
personal data, such as land registries, shopping data, 
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and club memberships, purchased from data brokers 
like Acxiom and Experian,28 helped to perform “behav-
ioral microtargeting with psychographic messaging”29 
and influence voters. While the true effectiveness of 
such messaging has been a matter of public debate, 
the instance highlights how big data usage can sig-
nificantly influence our lives on both a personal and a 
societal level.

Although data privacy affects 59% of the global 
population who are connected to the Internet,30 only 
a very few, piecemeal policy responses to big data 
regulation, most prominently the European Union’s 
General Data Protection Regulation (GDPR) and the 
California Consumer Privacy Act, are in place to tackle 
this challenge. Data-collection practices and usage 
must be transparent, and companies must abide by 
them to ensure that user privacy and data breaches 
do not occur. The increased data mining from social 
platforms poses an increased risk of data misuse and 
loss or theft of sensitive personal information.

As companies venture into mainstream big data 
analytics, they will need to appropriately invest in the 
development of cybersecurity tools as well. GDPR was 
implemented in 2018 for data protection to regulate 
big data by empowering users to have the choice to 
decide with which businesses to share their data. The 
intent is to drive trustworthy data sharing with busi-
nesses, which in turn is expected to generate more 
reliable data and their associated analytics. At the 
same time, big data regulation should not come at the 
cost of efficiency and technological advancement and 
should be balanced to allow healthy and transparent 
sharing of data. A more universal policy framework for 
regulation of big data that balances the needs of orga-
nizations and the privacy of their customers should be 
deliberated and implemented by both national govern-
ments and international bodies.

Organizations currently working with big data or 
intending to delve into big data space encounter a 
myriad of challenges spanning adoption and opera-
tional issues due to the massive scale and analyt-
ics requirements, especially for unstructured data. 
While there have been continuous investments and 
advancements in utilizing structured and unstruc-
tured data, we are really at the tip of the iceberg for 
unstructured data. More unstructured data types 
are being added to the scope and are expected to 

dominate big data in the years to come, as we traverse 
the digital age dominated by social media and online 
platforms. There is a need for corporations to invest in 
the analytics for unstructured data to drive better BI. 
This requires big data management tools to have the 
right people, policies, and technologies to ensure the 
accuracy, security, and quality of data.

Organizations considering adopting big data often 
suffer from insufficient understanding and accep-
tance of it due to their legacy practices. It is therefore 
important to have a clear business use case and an 
expected value to be derived from big data analyt-
ics. This is especially relevant as the cost of big data 
analysis—whether done in house or outsourced—can 
be quite high as the data grow and expand. Organiza-
tions, especially nontechnological firms, also face 
considerable challenges making the right technology 
decisions themselves or even through external coun-
sel from specialized firms.31

The other set of challenges can be attributed to 
the inherent massive scale of big data and its asso-
ciated infrastructure needs. As organizations con-
tinuously generate astronomical amounts of data, the 
scalability of storage and analytic processes becomes 
increasingly difficult. It is anticipated that once data 
volumes surge to exabytes, data storage technologies 
and network bandwidths will become increasingly 
constrained and require continuous upgrades and 
technology advancements. Furthermore, the multi-
fold aspects of big data management, including data 
distribution across geographies, access manage-
ment, compliance, ownership, and governance, are 
becoming important from security, legal, and opera-
tional perspectives. Lastly, as organizations increas-
ingly adopt big data, the heterogeneous expansion 

A MORE UNIVERSAL POLICY 
FRAMEWORK FOR REGULATION OF 
BIG DATA THAT BALANCES THE NEEDS 
OF ORGANIZATIONS AND THE PRIVACY 
OF THEIR CUSTOMERS SHOULD BE 
DELIBERATED AND IMPLEMENTED BY 
BOTH NATIONAL GOVERNMENTS AND 
INTERNATIONAL BODIES.
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of data in both richness and variety will require the 
evolution of data architecture and analytics to pro-
cess new data types. This increase in scale often 
compounds the noise, opacity, and relational nature 
of data, which increases the risk of data corruption 
and makes data validation, movement, and analysis 
very challenging.32

Big data analytics is another major problem often 
experienced when using unstructured data to arrive 
at desired results and conclusions. High data het-
erogeneity presents issues in determining a relevant 
data set for the analysis, preparing, or cleaning data 
and making sense of the unanticipated effects of 
outliers. Moreover, ascertaining the analytic method 
that is most appropriate for a problem or data set is 
not always clear. The decision-making process used 
to select from the wide range of analyses, such as 
predictive, prescriptive, and decision modeling; the 
different forms of analysis, such as quantitative, 
classification, visual; and the types of analysis, such 
as graph theory, social network analysis, behavioral 
analytics, econometric modeling, and control theory, 
among many others, can be both overwhelming and 
prone to error.32

B ig data is undoubtedly one of the most defining 
trends of the 21st century, and it will impact 

every individual, organization, and government glob-
ally. The astronomical growth in the data generated 
from the Internet and IoT devices has provided huge 
opportunities to make improvements in decision mak-
ing and efficiency in business operations and drive 
innovations in the research industry through analytic 
tools and AI/ML advancements. Big data is expected 
to be the next growth driver in all industries, from 
health and medicine to retail, banking, entertainment 
and media, and more. Along with the opportunities 
and growth associated with big data, organizations 
also face multiple challenges due to increased data 
size and complexity. This requires a continuous search 
for improved tools for data gathering, extraction, stor-
age, and analytics and also necessitates organizations 
to be on the lookout for concerns of data breach and 
leaking of sensitive user information. Companies and 
organizations must address these challenges by con-
tinuing to invest in the development and adoption of 
big data tools and security and privacy practices to 

drive business improvements, protect user privacy, 
and ensure that they do not fall behind as the world 
marches onto digitization and datafication. 

REFERENCES
1. D. McGilvray, Executing Data Quality Projects: Ten 

Steps to Quality Data and Trusted Information. San 

Francisco, CA: Morgan Kaufmann, 2008.

2. “Structured vs. unstructured data—Best thing you 

need to know.” ProWebScraper. https://prowebscraper 

.com/blog/structured-vs-unstructured-data-best 

-thing-you-need-to-know/ (accessed Jan. 30, 2021).

3. A. Holst “Volume of data/information created, 

captured, copied, and consumed worldwide from 2010 

to 2024.” Statista. Dec. 3, 2020. https://www.statista 

.com/statistics/871513/worldwide-data-created/ 

(accessed Jan. 30, 2021).

4. “Digital around the world.” Datareportal. https: 

//datareportal.com/global-digital-overview (accessed 

Jan. 30, 2021).

5. Internet live stats. https://www.internetlivestats.com 

(accessed Jan. 30, 2021).

6. “Top 10 big data trends of 2020.” FinTech News. Nov. 

2020. https://www.fintechnews.org/top-10-big-data 

-trends-of-2020/ (accessed Jan. 30, 2021).

7. “Cloud computing industry to grow from $371.4 

billion in 2020 to $832.1 billion by 2025, at a CAGR of 

17.5%.” Globenewswire. Aug. 2020. https://www 

.globenewswire.com/news-release/2020/08/21 

/2081841/0/en/Cloud-Computing-Industry-to-Grow 

-from-371-4-Billion-in-2020-to-832-1-Billion-by-2025 

-at-a-CAGR-of-17-5.html (accessed Jan. 30, 2021).

8. “HealthKit.” Apple. https://developer.apple.com 

/healthkit/ (accessed Jan. 30, 2021).

9. “AlphaFold: A solution to a 50-year-old grand challenge 

in biology.” Deepmind. Nov. 2020. https://deepmind 

.com/blog/article/alphafold-a-solution-to-a-50-year 

-old-grand-challenge-in-biology (accessed Jan. 30, 

2021.)

10. “Big data as a double-edged sword in the fight against 

COVID-19.” ReadWrite. Apr. 2020, https://readwrite.com 

/2020/04/30/big-data-as-a-double-edged-sword-in-the 

-fight-against-covid-19/ (accessed Jan. 30, 2021).

11. J. Stoll, “Number of Netflix paid subscribers worldwide 

from 3rd quarter 2011 to 3rd quarter 2020.” Statista. 

Jan. 2021. https://www.statista.com/statistics/250934 

/quarterly-number-of-netflix-streaming-subscribers 



www.computer.org/computingedge 21

DATA

-worldwide/ (accessed Jan. 30, 2021).

12. J. Bursztynsky. “Disney+ emerges as an early winner of 

streaming wars, expects up to 260 million subscribers by 

2024.” CNBC. Dec. 2020. https://www.cnbc.com/2020 

/12/11/after-showing-massive-growth-disney-hikes-5 

-year-subscriber-goal-.html (accessed Jan. 30, 2021).

13. E. Dans. “Netflix: Big data and playing a long game is 

proving a winning strategy.” Forbes. Jan. 2020. https: 

//www.forbes.com/sites/enriquedans/ (accessed Jan. 

30, 2021).

14. D. Karr. “2020 CRM statistics: The uses, benefits & 

challenges of customer relationship management 

platforms.” Aug. 2020. https://martech.zone/crm 

-statistics/ (accessed Jan. 30, 2021).

15. “Starbucks ramps up expansion efforts with focus on 

digital offerings.” Business Insider. Dec. 2020. https: 

//www.businessinsider.com/starbucks-drives 

-expansion-efforts-with-digital-offerings-2020-12 

(accessed Jan. 30, 2021).

16. B. Pearson. “12 ways Starbucks’ loyalty program has 

impacted the retail industry.” Forbes. Dec. 2020. 

https://www.forbes.com/sites/bryanpearson/2020/12 

/16/12-holiday-gifts-from-the-starbucks-card/?sh 

=16f603df4534 (accessed Jan. 30, 2021).

17. “Data lake versus data warehouse.” Talend. https: 

//www.talend.com/resources/data-lake-vs-data 

-warehouse/#:~:text=Data%20lakes%20and%20

data%20warehouses,processed%20for%20a%20

specific%20purpose (accessed Jan. 30, 2021).

18. “Amazon DynamoDB vs Amazon S3.” Stackshare. 

https://stackshare.io/stackups/amazon-dynamodb 

-vs-amazon-s3 (accessed Jan. 30, 2021).

19. “NoSQL vs relational databases.” Mongodb. https: 

//www.mongodb.com/scale/nosql-vs-relational 

-databases (accessed Jan. 30, 2021).

20. “Extract, transform, and load (ETL).” Microsoft. https: 

//docs.microsoft.com/en-us/azure/architecture/

data-guide/relational-data/etl (accessed Jan. 30, 2021).

21. “Snowflake: The data cloud.” Snowflake. https://www 

.snowflake.com (accessed Jan. 30, 2020).

22. “Building a data lake on amazon web services (AWS).” 

AWS Cloud. https://pages.awscloud.com/rs/112-TZM 

-766/images/Building-a-data-lake-on-Amazon-Web 

-Services.pdf (accessed Jan. 30, 2021).

23. “What is Hadoop?” Amazon. https://aws.amazon.com 

/emr/details/hadoop/what-is-hadoop/ (accessed Jan. 

30, 2021).

24. “AI and machine learning products.” Google. https: 

//cloud.google.com/products/ai#tab1 (accessed Jan. 

30, 2021).

25. “Big data market worth $229.4 billion by 2025.” Market-

sand markets. https://www.marketsandmarkets.com 

/PressReleases/big-data.asp (accessed Jan. 30, 2021).

26. “Edge computing by the numbers: 9 compelling  

stats.” The enterprisers project. Apr. 2020, https: 

//enterprisersproject.com/article/2020/4/edge 

-computing-9-compelling-stats (accessed Jan. 30, 

2021).

27. “Gartner identifies Top 10 data and analytics technol-

ogy trends for 2019.” Gartner. https://www.gartner.com 

/en/newsroom/press-releases/2019-02-18-gartner 

-identifies-top-10-data-and-analytics-technolo 

(accessed Jan. 30, 2021).

28. H. Grassegger and M. Krogerus. “The data that turned 

the world upside down.” Vice. Jan. 2017, https://www 

.vice.com/en/article/mg9vvn/how-our-likes 

-helped-trump-win (accessed Jan. 30, 2021).

29. N. Confessore. “Cambridge analytica and Facebook: 

The scandal and the fallout so far.” NY Times. Apr. 2018. 

https://www.nytimes.com/2018/04/04/us/politics 

/cambridge-analytica-scandal-fallout.html (accessed 

Jan. 30, 2021).

30. “Global digital population as of October 2020.”  

Statista. https://www.statista.com/statistics/617136 

/digital-population-worldwide/#:~:text=Almost 

%204.66%20billion%20people%20were,percent 

%20of%20the%20global%20population (accessed 

Jan. 30, 2021).

31. A. Bekker. “The ‘scary’ seven: Big data challenges and 

ways to solve them.” Mar. 2018, https://www.scnsoft 

.com/blog/big-data-challenges-and-their-solutions 

(accessed Jan. 30, 2021).

32. J. Alberto Espinosa, S Kaisler, F Armour, and W H. 

Money, “Big data redux: New issues and challenges 

moving forward,” in Proc. 52nd Hawaii Int. Conf. Syst. 

Sci., 2019 doi: 10.24251/HICSS.2019.131.

PREETI CHAUHAN is a Senior Member of IEEE, Santa Clara, 

California, USA. Contact her at preeti.chauhan@ieee.org.

MOHIT SOOD is at the University of California, Berkeley, 

Berkeley, California, 94720, USA. Contact him at mohit_sood 

@berkeley.edu.



22 August 2022 Published by the IEEE Computer Society  2469-7087/22 © 2022 IEEE

41mcg01-fisher-3024039.3d (Style 7) 09-01-2021 14:52

EDITORS: Daniel F. Keefe, dfk@umn.edu
Melanie Tory, mtory@tableau.com

DEPARTMENT: PEOPLE IN PRACTICE

BubbleUp: Supporting DevOpsWith Data
Visualization
Danyel A. Fisher, Honeycomb, San Francisco, CA USA

BubbleUp is a tool that lets DevOps teams—data analysts who specialize in
building and maintaining online systems—rapidly figure out why anomalous data
have gone wrong. We developed BubbleUp with an iterative, human-centered design
approach. Through multiple rounds of feedback, we were able to build a tool that
presents a paired-histogram view to help make high-dimensional data make sense.

T he alarm pierces 3 A.M. sleep like a lightning
bolt: somebody somewhere is having trouble
using your service as they expect. As the human

on-call, you need to evaluate the following.

› Who is affected (and how many)?
› How bad is the failure?
› What is actually wrong?

And you’d better do it fast. Do you wake up the
rest of the troubleshooting team in the middle of the
night, or can you go back to bed?

No pressure or anything.
The need to evaluate well and fast is the core premise

of a group of tools generally called application perfor-
mancemanagement (APM).APMtools try tohelpDevOps
teams—teams of developer-operators—understand the
reliability of their online systems. At Honeycomb, our soft-
ware product (also called Honeycomb) is one such APM
tool: it supports DevOps teams in exploring complex
instrumentation data from their distributed systems.

From the perspective of data visualization, DevOps
work in a fascinating data analytics domain. They have
deep domain knowledge of highly complex systems;
they are responsible for both creating and analyzing a
data stream dedicated to the task of monitoring and
debugging distributed systems that are run on remote
servers. The analytics challenges that they solve have
impacts that can be measured in both dollars and
hours of lost sleep. Most interestingly, because

DevOps teams tend to repair bugs after finding them,
each investigation is likely to be unique.

The data analytics tasks that DevOps carry out are
familiar to the visualization research community, and
the lessons that we learn from their work generalize well
to other applications of data analytics. They are asking
loosely structured questions of high-dimensional data
and need to pursue analyses to solve complex problems.

This article discusses the design and development
of BubbleUp. A core component of Honeycomb, Bub-
bleUp exists to support DevOps. Its design is the
result of working closely with our target users to
understand their needs, iterating on the design, and
then tracking the use of the tool over time. BubbleUp
illustrates a way to help analysts navigate highly com-
plex data; the process of working intensively with our
target users helped us narrow down on a solution that
would directly address their challenges.

EXAMPLE: A SLOWAPI
Figures 1–3 show a sample usage of BubbleUp. An
operations team is responsible for handling an API
that is exposed on the web; client applications call
into it. This team is responsible for making sure that
performance continues to run at satisfactory levels.
They have been alerted that their system is handling
some requests intolerably slowly. Fortunately, their
system is well-instrumented, and so they can try to dig
into their data to figure out what is wrong.

As shown in Figure 1, they issue a query in their
dataset to get a heatmap of how long it takes to pro-
cess requests. Each point in the heatmap represents
the performance of a single request being processed.
They note the unusual spike, where some requests are
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taking much longer than others, and want to know
why they are different.

Using BubbleUp, they select those events (see
Figure 2)—the selection is shown as an orange box. Bub-
bleUp responds by showing them a series of histograms
comparing the data within the selection to that outside
of it (see Figure 3). Each histogram represents one dimen-
sion of the data. We compare the events that make up
the selection to the events that make up the baseline—
all the remaining events. The team can rapidly see that
only one endpoint and one app.user_id were affected: there
is only one selection bar on the histogram. In contrast,
they can also see that app.platform and app.build_id, in the
second row, do not seem to be important factors: the
selection and baseline bars are very similar.

DEBUGGING DISTRIBUTED
SYSTEMS

Let’s step back to discuss how BubbleUp fits into a
broader domain.

Most of the web now runs on distributed systems.
An online service might consist of dozens of different

microservices: front-end servers, back-end storage,
authentication services, transaction processors, adver-
tising management, and others. This complexity makes
it difficult to figure out what has gone wrong when
there is a failure. Which service caused a particular
slowdown or error? DevOps teams try to instrument
their code to describe what their systems are doing,
and then try to diagnose and figure out what is going
wrong when there is a failure.

The state of the art is to store important metrics—
system-level metrics, like memory and CPU usage,
and application-level metrics, like the duration of suc-
cessful API requests—to provide a useful overview of
how a service is doing. Each metric can be kept as a
single time series. It can be useful to split these met-
rics out across multiple dimensions: for example, there
might be a time series for every distinct API call, split
further by whether the requests succeeded or failed.

This makes it extremely fast and effective to offer
useful visualizations: a tally of erroneous requests, or
the 95th percentile of request duration, for each API
endpoint. A talented DevOps team grows experienced
with the ways their system can fail and can recognize
patterns in the metrics.

Visualization research has looked at this perspec-
tive on managing distributed systems. LiveRAC1 and
MeDiCi2 visualize metrics for many systems simulta-
neously, for example.

High Cardinality and High
Dimensionality
Unfortunately, this still yields a very shallow view of the
underlying system and hides a lot of detail about what is
actually going on. Accurate diagnosis requires richer
information. For example, handling a user request may
require a call to authentication, databases, and a web-
server to be properly processed. To figure out what’s

FIGURE 1. Heatmap of the latency for a request in Honey-

comb. The darkness of a cell shows the number of requests

that were served at that time and latency. The dark line

across the bottom of the heatmap shows that most events

were served very quickly, but an unusual spike across the top

shows some that were much slower.

FIGURE 2. User selects a region of the chart.

FIGURE 3. Bubbleup’s histograms, one per dimension, com-

paring the baseline to the selection.

100 IEEE Computer Graphics and Applications January/February 2021

PEOPLE IN PRACTICE

41mcg01-fisher-3024039.3d (Style 7) 09-01-2021 14:52

EDITORS: Daniel F. Keefe, dfk@umn.edu
Melanie Tory, mtory@tableau.com

DEPARTMENT: PEOPLE IN PRACTICE

BubbleUp: Supporting DevOpsWith Data
Visualization
Danyel A. Fisher, Honeycomb, San Francisco, CA USA

BubbleUp is a tool that lets DevOps teams—data analysts who specialize in
building and maintaining online systems—rapidly figure out why anomalous data
have gone wrong. We developed BubbleUp with an iterative, human-centered design
approach. Through multiple rounds of feedback, we were able to build a tool that
presents a paired-histogram view to help make high-dimensional data make sense.

T he alarm pierces 3 A.M. sleep like a lightning
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using your service as they expect. As the human
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› Who is affected (and how many)?
› How bad is the failure?
› What is actually wrong?

And you’d better do it fast. Do you wake up the
rest of the troubleshooting team in the middle of the
night, or can you go back to bed?

No pressure or anything.
The need to evaluate well and fast is the core premise

of a group of tools generally called application perfor-
mancemanagement (APM).APMtools try tohelpDevOps
teams—teams of developer-operators—understand the
reliability of their online systems. At Honeycomb, our soft-
ware product (also called Honeycomb) is one such APM
tool: it supports DevOps teams in exploring complex
instrumentation data from their distributed systems.

From the perspective of data visualization, DevOps
work in a fascinating data analytics domain. They have
deep domain knowledge of highly complex systems;
they are responsible for both creating and analyzing a
data stream dedicated to the task of monitoring and
debugging distributed systems that are run on remote
servers. The analytics challenges that they solve have
impacts that can be measured in both dollars and
hours of lost sleep. Most interestingly, because

DevOps teams tend to repair bugs after finding them,
each investigation is likely to be unique.

The data analytics tasks that DevOps carry out are
familiar to the visualization research community, and
the lessons that we learn from their work generalize well
to other applications of data analytics. They are asking
loosely structured questions of high-dimensional data
and need to pursue analyses to solve complex problems.

This article discusses the design and development
of BubbleUp. A core component of Honeycomb, Bub-
bleUp exists to support DevOps. Its design is the
result of working closely with our target users to
understand their needs, iterating on the design, and
then tracking the use of the tool over time. BubbleUp
illustrates a way to help analysts navigate highly com-
plex data; the process of working intensively with our
target users helped us narrow down on a solution that
would directly address their challenges.

EXAMPLE: A SLOWAPI
Figures 1–3 show a sample usage of BubbleUp. An
operations team is responsible for handling an API
that is exposed on the web; client applications call
into it. This team is responsible for making sure that
performance continues to run at satisfactory levels.
They have been alerted that their system is handling
some requests intolerably slowly. Fortunately, their
system is well-instrumented, and so they can try to dig
into their data to figure out what is wrong.

As shown in Figure 1, they issue a query in their
dataset to get a heatmap of how long it takes to pro-
cess requests. Each point in the heatmap represents
the performance of a single request being processed.
They note the unusual spike, where some requests are
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wrong with the system, it’s helpful to know what user
had made the request, which server processed it, what
call was made to the database, and how long each of
these took andwhat status code they returned.

Each of those attributes—the call to the data-
base, the user id—are different dimensions of the
dataset; some of those dimensions, like the user id,
are extremely high cardinality. Clearly, keeping a
combinatoric collection of time series becomes prohib-
itive. A new generation of systems support those many
dimensions, by using column stores. These can provide
powerful tools to explore this data. Honeycomb is one
of them; the general architecture for such systems fol-
lows the example of Facebook’s SCUBA.3 Now it is pos-
sible to provide that same count as before, but now
split acrossmany different dimensions.

To give an example of how it can look to start using
high-cardinality data, Figure 4 shows 50 overlaid time
series, representing different users of the system. The top

chart shows all the different users overlaid; the bottom
chart calls out the onewith an unusual diurnal pattern.

High Cardinality and the Core
Analysis Loop
This leads to a new analysis dilemma. How do people
who develop and operate systems figure out which
fields to look at? When there can be hundreds of
fields, with millions of values, where do you look to
figure out what caused a problem?

I was tasked with helping our users understand the
complexity of their data. I went out and interviewed a
dozen users, both internal and external to the com-
pany. The interviews focused on how they went about
going from an alert to a response; in many of them, we
chose a recent investigation that they had carried out
and reconstructed their process of discovery—includ-
ing looking at their dead ends. A single strategy
recurred in debugging incidents, the core analysis loop.

Users would often start with an anomaly in the sys-
tem that interested them. The core analysis loop
started when the user visualized a basic metric that
illustrates that anomaly—for example, they might have
noticed that some requests were getting slow, so they
visualized the median duration of events in the system
to see whether it had increased. They would then itera-
tively try to group thatmetric by various variables. Their
goal was to find a variable that had good explanatory
power: that one particular value of one variable could
show how the anomaly was different.

For example, let us say that we had encountered
the graph at the left side of Figure 5. We wanted to
better understand why the 95th percentile of data

FIGURE 4. Count of events on a service, broken down by user

ID. (Top) all of the customers, and (bottom) one customer,

highlighted, showing a diurnal cycle. Y axes are obscured to

hide actual traffic levels.

FIGURE 5. Left, the 95th percentile of the duration of requests to the service over time, which dropped from 22:00 to 10:00. Mid-

dle and right, grouped by build_id and by whether the app.batch flag was set. Build does not seem to be a factor, but batch does.
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processing time for this query was high at some times
and had such a strong dip from 22:00 to 10:00. I sus-
pect that some dimension in my data might explain
why the number had dropped. To find out, I might test
a series of hypotheses: could this be caused by a spe-
cific build of the software? Might it be that a certain
set of requests—perhaps those with the batched flag—
are acting up? For each hypothesis, I would group the
data: how does the line look when I aggregate only
within builds? What about within the batch flag?

The process of choosing a good variable to check
relies on the analyst’s experience: if they saw error
types that are often associated with database issues,
they would turn first to fields that were related to data-
bases. Others would use trial and error, or test hypoth-
eses about their senses of different classes of bugs.

Because Honeycomb is designed as a high-perfor-
mance query engine, with most queries returning in a
few seconds, users could quickly try many different
dimensions, looking for an answer. The process could
be taxing, as users had to try multiple fields. Honey-
comb offers a very loose schema—users can send in
whatever sorts of events they want. Many dimensions
had nomeaningful values, or had toomany distinct val-
ues, or simply were not relevant to the investigation.

This is a novel problem to the domain we were
working in. Many of our competitors simply restricted
the number of dimensions that users could send in,
often limiting them to under 10. In contrast, it was not
unusual for our customers to create datasets with
hundreds or thousands of dimensions.

This was a competitive advantage—but also a pain
point for our customers. In a low-dimensionality sys-
tem, it was never hard to find the interesting dimen-
sions. For our customers, there was a risk they would
get lost in the noise.

Designing BubbleUp
Honeycomb decided to take on the problem of shorten-
ing the core analysis loop. If we could make it simpler to
iterate through choices, they would more rapidly con-
verge on their final result. As a secondary advantage,
many of our users were unaccustomed to working with
high dimensionality data; an experience that helps them
understand howpowerful their datawerewould also help
themdifferentiate Honeycomb fromour competitors.

We drew inspiration from Scorpion4 and Macro-
base,5 which highlight the value of explaining anoma-
lies by comparing them to other data.

The heart of the concept is comparing two high-
dimensional datasets. Since we knew that our users had
already identified anomalous data—such as the dip

from 22:00 to 10:00—the question was whether there
was a way to separate these groups of points. It would
be possible to use high-dimensional analysis techniques
that would extract sophisticated, multidimensional
explanations. However, we suspected thatmost explan-
ations we were interested in could actually be much
simpler: in many cases, a single dimension could distin-
guish between the anomalous and normal data.

We collected operational data from our servers
and started experimenting with prototypes. The first
prototypes ran in a Python notebook and generated
sheets of side-by-side histograms: each dimension’s
distribution, shown for the data labeled as anomalous
against the baseline.

In these exemplar datasets, it became quickly
apparent that there were some dimensions that car-
ried important signals and others that did not. (In
Figure 6, which shows our first prototpe, mentioned
above, for example, cache_status seems relevant, while
bundler_minor_version probably is not). It also became
quickly visible that many dimensions were boring: they
had only one value or no values. Perhaps more inter-
estingly, some dimensions had a meaningful value
only in the outliers, or in the exceptions.

Admittedly, thesewere only samples of a single data-
set. Every Honeycomb customer has distinctive data,
with custom fields that relate to their own business
cases. We needed to validate our beliefs about whether
this wasmore broadly true for our customers, too.

One of our users granted us permission to run the
code on their data; we sent them a PDF of the python

FIGURE 6. First prototype of BubbleUp, built in a Python note-

book and visualized using matplotlib. Iterating in the notebook

allowed us to rapidly explore the design space and validate

our decisions.
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wrong with the system, it’s helpful to know what user
had made the request, which server processed it, what
call was made to the database, and how long each of
these took andwhat status code they returned.

Each of those attributes—the call to the data-
base, the user id—are different dimensions of the
dataset; some of those dimensions, like the user id,
are extremely high cardinality. Clearly, keeping a
combinatoric collection of time series becomes prohib-
itive. A new generation of systems support those many
dimensions, by using column stores. These can provide
powerful tools to explore this data. Honeycomb is one
of them; the general architecture for such systems fol-
lows the example of Facebook’s SCUBA.3 Now it is pos-
sible to provide that same count as before, but now
split acrossmany different dimensions.

To give an example of how it can look to start using
high-cardinality data, Figure 4 shows 50 overlaid time
series, representing different users of the system. The top

chart shows all the different users overlaid; the bottom
chart calls out the onewith an unusual diurnal pattern.

High Cardinality and the Core
Analysis Loop
This leads to a new analysis dilemma. How do people
who develop and operate systems figure out which
fields to look at? When there can be hundreds of
fields, with millions of values, where do you look to
figure out what caused a problem?

I was tasked with helping our users understand the
complexity of their data. I went out and interviewed a
dozen users, both internal and external to the com-
pany. The interviews focused on how they went about
going from an alert to a response; in many of them, we
chose a recent investigation that they had carried out
and reconstructed their process of discovery—includ-
ing looking at their dead ends. A single strategy
recurred in debugging incidents, the core analysis loop.

Users would often start with an anomaly in the sys-
tem that interested them. The core analysis loop
started when the user visualized a basic metric that
illustrates that anomaly—for example, they might have
noticed that some requests were getting slow, so they
visualized the median duration of events in the system
to see whether it had increased. They would then itera-
tively try to group thatmetric by various variables. Their
goal was to find a variable that had good explanatory
power: that one particular value of one variable could
show how the anomaly was different.

For example, let us say that we had encountered
the graph at the left side of Figure 5. We wanted to
better understand why the 95th percentile of data

FIGURE 4. Count of events on a service, broken down by user

ID. (Top) all of the customers, and (bottom) one customer,

highlighted, showing a diurnal cycle. Y axes are obscured to

hide actual traffic levels.

FIGURE 5. Left, the 95th percentile of the duration of requests to the service over time, which dropped from 22:00 to 10:00. Mid-

dle and right, grouped by build_id and by whether the app.batch flag was set. Build does not seem to be a factor, but batch does.
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output. We were delighted at their positive feedback:
they instantly understood what was interesting about
some of the dimensions, and were able to diagnose a
previously unintelligible problem.

This was validation enough to get started on build-
ing an implementation. Our design team worked to try
to figure out how to incorporate the experience into
Honeycomb—a challenge, as the UI did not have a
simple way to select a region of the heatmap.

We deployed early (and unstable) betas, first to
internal users, then to external users who opted into
the experiment. Many of our external users participate
in a customer-facing set of Slack channels; wewere able
to reach out to those users via Slack to build a group of
interested users who could exchange feedback.

The feedback we got was a fascinating mix: users
would send us long bug-lists and complaints about UI
issues and pieces that were difficult to use—and then
casually comment that they had used the tool to
resolve an incident and that their time to detect issues
had dropped from hours to seconds. (One of our
insights was that if a user has spent enough time in a
tool to complain about small details, then that implies
they are finding enough value to dig that deep.)

While beta testing, one user wrote (in a Slack con-
versation), [I] was seeing some big latency spikes ...
look at that it’s mostly from one IP address ...oh look,
it’s one IP in Australia.

Another said, it “automates”my previousworkflow of
breaking down and hovering over the table. Some of the
use cases we had so far are pinpointing that a specific
web process is being slow or seeing that the slowness is
being caused byDB queries on a specific endpoint or job.

The sales team also had a strong reaction to Bub-
bleUp. They had been accustomed to showing how Hon-
eycomb could handle a wide range of data by trying a
series of wrong guesses before finding the right answer.
BubbleUp allowed them to create a shortened demo
(there’s an anomaly, we found it)—or to walk through the
slower process, and then showhowBubbleUp short-cut it.

Arguably, the hardest part about releasing Bub-
bleUp was the name: it went from Smart Drilldown to
Anomaly Detector to Copilot before we settled on
BubbleUp; different names were meant to both explain
what it did, but also have a personality.

Decisions in Design Iteration
BubbleUp went through numerous rounds of design
iteration. It is particularly interesting that we made a
number of substantial changes after we released Bub-
bleUp, in response to internal and external feedback
on the tool, and our own experience with it.

Color Coordination
In the first iteration of BubbleUp, we had users com-
pare blue to green histograms (see Figure 7). We got
very strong feedback that this was confusing: both
colors were well within the color palette of the heat-
map, and so users needed to look hard to figure out
which was the selection and which was the baseline.
By changing to the yellow-and-blue color palette, the
questions went away instantly: users understood the
yellow mapped to the yellow highlighted area.

Histogram Ranking
We wanted to ensure that the histograms were ordered
usefully, to help ensure that users could identify impor-
tant dimensions. We playedwith several differentmetrics
and even ran A/B tests comparing ranking algorithms. In
the end, we picked a relative risk metric (adapted from
Macrobase5), asymmetrically weighted to highlight fields
that had low cardinality values in the selection.

Null Pies
Honeycomb data can be nonrectangular: not all rows
of the dataset have all the same fields. For example, a
dataset might contain some events that use the Inter-
net—and, therefore, have fields like http.status and
http.request—while other events might use a database,
and so have fields like b.request and db.response. We rap-
idly found that for many of the most interesting data-
sets, a single bar for “no meaningful value” turned out
to dominate much of the UI. In Figure 8, for example,
status, batch, and batch_num_datasets were often empty but
dominated the display.

We worked with a designer to create donut charts
that could represent howmany nonempty values there
were, instead. In these three images, we see that every
event has a defined trace.trace_id. Interestingly, most
events in the selection have a defined trace.parent –

FIGURE 7. BubbleUp in the blue-green color palette. It was

difficult to determine which were the selection compared to

the baseline, as both colors were used in the heatmap.
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but very few events in the baseline have a defined
trace.parent. This can help a user rapidly understand
how the two groups differ.

Removing Background Events
Whenwe first designed BubbleUp, we contrasted the
selection against everything. That meant that we
counted points inside the rectangle twice: once in the

baseline then a second time in the selection. While
this had a certain mathematical elegance, it made it
actively harder to recognize signals in the data,
because data in the selection would also appear in the
baseline. Removing points in the selection from the
baselinemade it far easier to see what was different.

InteractingWith BubbleUp
We rapidly realized that one of the most interesting
next steps from a BubbleUp was issuing a second
query: allowing users to ask when I eliminate this fac-
tor, what’s different?, or when I focus on this factor,
how does it look?. Following user feedback, we added
click through interactions that allow users to create
filters and groupings from BubbleUp bars.

BubbleUp for Lines
BubbleUp was efficient to build because it can com-
pare two well-known sets of data points. Still, the
most common request to Honeycomb is not compar-
ing heatmap regions—it is understanding why a count,
or 95th percentile request, failed. Unfortunately, it is
much harder to compute that difference. In those
aggregated graphs, we longer know for sure which
points sit in the baseline and the selection. Crude
techniques—like picking only the slowest points, or all
the points in the time region—proved to be insuffi-
ciently accurate to provide useful signals. The techni-
ques in Scorpion4 can help with that computation,
and were considering how to incorporate them. Still,
BubbleUp-for-Count has been one of the dominant
feature requests from our users.

Continuing Life of BubbleUp
BubbleUp continues to be an integral part of the Honey-
comb experience. Interestingly, it has had a secondary
effect: it is so different from features offered by compet-
itors that it has caused people to see Honeycomb as
more substantially differentiated. It emphasizes the
value of high dimensional data, and how value can be
derived from something that had been seen as out of
reach.

The core value of BubbleUp is that it makes it easy
to ask novel questions, e.g.,What is special about that
particular point?. This is a key question in the DevOps
world—most likely, in many other fields, too—and it
drives action. Knowing why a data point is special can
help figure out what parameter needs to be tuned,
what server needs to be rebooted, or what line of
code broke.

We have also begun to build BubbleUp into our
product’s workflows because it answers the funda-
mental need to know what happened. For example,
Honeycomb recently released features to support ser-
vice level objectives (SLOs). An SLO computes the
ratio of good and bad events. A key panel of the SLO
view shows a BubbleUp of good compared to bad
events; we have found that this comparison can rap-
idly highlight important changes that have caused the
SLO to degrade.

CONCLUSION
Comparative Histograms
The heart of BubbleUp is comparing two pools of data
to each other as paired histograms. While the applica-
tions we have discussed here are for specialized
domain, the broader questions about comparing two
sets of data should be broadly applicable. I would
encourage data analysts in other domains, too, to pick
up this sort of a cross-dimensional comparison tool,
and to consider paired histograms as a powerful start-
ing step.

Iterative, User-Centered Design
Much of the strength of BubbleUp came, in part, from
iterating on feedback from our users throughout the
process. Honeycomb users—internal and external—
were involved in every development stage, from the
first prototypes in Python, through the first release,
and then through the incremental improvements.
Because of their feedback, we were able to verify that
we were going in the right direction, could decide
when we were good enough to release, and could pri-
oritize improvements.

FIGURE 8. Bubbleup with no value columns, top, and null pies,

bottom. The pie chart shows the percentage of rows that

have a valid, nonnull value; the histogram only shows the

valid values.
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output. We were delighted at their positive feedback:
they instantly understood what was interesting about
some of the dimensions, and were able to diagnose a
previously unintelligible problem.

This was validation enough to get started on build-
ing an implementation. Our design team worked to try
to figure out how to incorporate the experience into
Honeycomb—a challenge, as the UI did not have a
simple way to select a region of the heatmap.

We deployed early (and unstable) betas, first to
internal users, then to external users who opted into
the experiment. Many of our external users participate
in a customer-facing set of Slack channels; wewere able
to reach out to those users via Slack to build a group of
interested users who could exchange feedback.

The feedback we got was a fascinating mix: users
would send us long bug-lists and complaints about UI
issues and pieces that were difficult to use—and then
casually comment that they had used the tool to
resolve an incident and that their time to detect issues
had dropped from hours to seconds. (One of our
insights was that if a user has spent enough time in a
tool to complain about small details, then that implies
they are finding enough value to dig that deep.)

While beta testing, one user wrote (in a Slack con-
versation), [I] was seeing some big latency spikes ...
look at that it’s mostly from one IP address ...oh look,
it’s one IP in Australia.

Another said, it “automates”my previousworkflow of
breaking down and hovering over the table. Some of the
use cases we had so far are pinpointing that a specific
web process is being slow or seeing that the slowness is
being caused byDB queries on a specific endpoint or job.

The sales team also had a strong reaction to Bub-
bleUp. They had been accustomed to showing how Hon-
eycomb could handle a wide range of data by trying a
series of wrong guesses before finding the right answer.
BubbleUp allowed them to create a shortened demo
(there’s an anomaly, we found it)—or to walk through the
slower process, and then showhowBubbleUp short-cut it.

Arguably, the hardest part about releasing Bub-
bleUp was the name: it went from Smart Drilldown to
Anomaly Detector to Copilot before we settled on
BubbleUp; different names were meant to both explain
what it did, but also have a personality.

Decisions in Design Iteration
BubbleUp went through numerous rounds of design
iteration. It is particularly interesting that we made a
number of substantial changes after we released Bub-
bleUp, in response to internal and external feedback
on the tool, and our own experience with it.

Color Coordination
In the first iteration of BubbleUp, we had users com-
pare blue to green histograms (see Figure 7). We got
very strong feedback that this was confusing: both
colors were well within the color palette of the heat-
map, and so users needed to look hard to figure out
which was the selection and which was the baseline.
By changing to the yellow-and-blue color palette, the
questions went away instantly: users understood the
yellow mapped to the yellow highlighted area.

Histogram Ranking
We wanted to ensure that the histograms were ordered
usefully, to help ensure that users could identify impor-
tant dimensions. We playedwith several differentmetrics
and even ran A/B tests comparing ranking algorithms. In
the end, we picked a relative risk metric (adapted from
Macrobase5), asymmetrically weighted to highlight fields
that had low cardinality values in the selection.

Null Pies
Honeycomb data can be nonrectangular: not all rows
of the dataset have all the same fields. For example, a
dataset might contain some events that use the Inter-
net—and, therefore, have fields like http.status and
http.request—while other events might use a database,
and so have fields like b.request and db.response. We rap-
idly found that for many of the most interesting data-
sets, a single bar for “no meaningful value” turned out
to dominate much of the UI. In Figure 8, for example,
status, batch, and batch_num_datasets were often empty but
dominated the display.

We worked with a designer to create donut charts
that could represent howmany nonempty values there
were, instead. In these three images, we see that every
event has a defined trace.trace_id. Interestingly, most
events in the selection have a defined trace.parent –

FIGURE 7. BubbleUp in the blue-green color palette. It was

difficult to determine which were the selection compared to

the baseline, as both colors were used in the heatmap.
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This gave us the confidence to massively simplify
the fundamental concepts. Comparing sets of histo-
grams on points is computationally simple, rapid to
implement, and easy to understand. While techniques
like Scorpion4 and Macrobase5 are powerful, the cost
of building that infrastructure and the complexity of
maintaining it was intimidating to a product team in
an early stage startup. Building out BubbleUp allowed
us to accomplish that the level of value at a fraction
of the price.

Fundamentally, BubbleUp has helped our users
discover the value of high-dimensional data and to
deeply understand their challenges. When that alarms
wakes them at 3 A.M., they can find precisely where to
look—and faster remediation means better responses
to crises.
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Rigorous Data Validation for Accurate
Dashboards: Experience From a Higher
Education Institution
Noha Abdou , Afshin Karimi , Rohit Murarka , and Su Swarat , California State University, Fullerton, CA,
92831, USA

Data have become an indispensable aspect of
our daily lives. The demand for data visualiza-
tion tools such as dashboards is driven by the

desire to make data—and more importantly, the power
of using data to inform decision making—accessible to
all. During the current pandemic, the availability of real-
time data via various dashboards at the global, national,
and local levels empowered many to accurately assess
the situation and take appropriate actions, a testament
to the value of data visualization. For the same reasons,
data dashboards are increasingly popular in higher edu-
cation to promote data consumption and data-driven
decision making. California State University, Fullerton
(CSUF) is no exception. CSUF has developed a suite of
dashboards in the past few years to promote an opera-
tional culture that is rooted in evidence.

Discussions about data visualization tools often
gravitate towards dashboard design, accessibility, and
usability, while neglecting a fundamental (and argu-
ably more critical) issue—the importance of having
appropriate and accurate underlying data. The accu-
racy and adaptability of a dashboard are determined
by the accuracy and adaptability of the data behind it,
and to ensure such requires a meticulous, streamlined
development process. This article is intended to do a
“deep dive” into this process.

Institutional Context
In collaboration with the Division of Information Tech-
nology (IT), the Office of Assessment & Institutional
Effectiveness (OAIE) at CSUF leads systematic and
integrated efforts on campus to monitor and demon-
strate the impact of university programs, curricula,
services, and operations. Being the official data “stew-
ard” on campus, OAIE prides itself on providing

meaningful data to support strategic planning and deci-
sion-making at all levels of the university. To foster a
more accessible and easy-to-understand campus cul-
ture of data-informed decision-making, OAIE utilizes
dashboards to provide important data trends to various
campus stakeholders. OAIE’s dashboards demonstrate
progress across the entire span of students’ academic
careers from application and admission, major and
course enrollment, academic performance, retention,
and graduation, to degree completion. Furthermore,
OAIE develops dashboards to track key institutional
performance indicators including postgraduation
alumni outcomes, and faculty and staff diversity.

OAIE regularly maintains two types of dash-
boards. One type displays static, official, census
data, and the other is connected to the Data Ware-
house. The connection to the Data Warehouse as
opposed to the live operational system is necessary
for several reasons.

› Live operational systems [such as CSUF’s stu-
dent information system (SIS) database] are not
easily accessible to all users and are not
designed for end-user analysis. The live opera-
tional databases are typically highly normalized,
and querying them involves large numbers of
database join operations that could potentially
cause system performance issues. Data Ware-
houses, on the other hand, are designed for
quick data retrieval and provide very fast query
response times.

› Data Warehouses separate analysis/decision-
support from the operational systems. Opera-
tional systems are used to manage dynamic
data in real-time and support large numbers of
transaction processing. They are optimized for
“add record”/ “update record” types of opera-
tions on well-normalized data. Data Warehouses
are designed to handle high-volume analytical
processing and are optimized (for the “read”
operation) to handle complex queries.
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› Needed data may reside in different databases
on different servers in different formats. Data
Warehouses bring consistency in the data defini-
tion and format across all collected data, making
it easier for the users and the decision-makers
to understand, analyze, and share the informa-
tion. Data Warehouses provide quick access to
critical data in one centralized location.

› Data Warehouses support the ad hoc,
unplanned exploration of data. They also provide
an ideal data framework for dashboards and
other analytical tools that have drill-down
capability.

The Data Warehouse, as well as the extract, trans-
form, and load (ETL) (explained in detail later), process
development efforts usually follow a typical software
development life cycle model. The stages of such a life
cycle model include requirements definition, design,
implementation, testing and validation, and release
and maintenance.

At CSUF, OAIE serves as the domain data expert
who works with a multitude of campus constituents to
fulfill their data needs. Furthermore, OAIE is the func-
tional owner of the dashboards, and is therefore respon-
sible for their quality. OAIE’s focus, therefore, is on the
requirements definition, and testing, and validation
aspects of the life cycle model, in addition to the final
dashboard development, while IT ismostly charged with
the design and implementation aspects of the process.
Once the Data Warehouse is developed and validated,
OAIE then builds business intelligence (BI) tools, such
as dashboards, for campus consumption.

Details of the dashboard warehouse development
process that OAIE is responsible for—namely require-
ments gathering, testing and validation, and dash-
board development—will be discussed in the
remainder of this article.

REQUIREMENTS DEFINITION
According to the IEEE software engineering glossary,
Data Warehouse requirements are defined as follows.

1. A condition or capability needed by a user to
solve a problem or achieve an objective.

2. A condition or capability that must be met or
possessed by a system or system component to
satisfy a contract, standard, specification, or
other formally imposed document. The set of
all requirements forms the basis for subse-
quent development of the system or system
component.

Abbott defines requirements as: any function, con-
straint, or other property that must be provided, met,
or satisfied to fill the needs of the system’s intended
user(s). The process of determining requirements for a
system is referred to as requirements definition, the
foundation upon which subsequent stages in system
development are built.

Requirements definition is a careful assessment of
the needs that a system is to fulfill. It must answer
why the system is needed, what features will serve
and satisfy the needs, and how the system is to be
built. As such, the first crucial step in defining require-
ments is identifying the subject matter experts (SMEs)
who understand the problem definition and can
authoritatively address any arising questions.

The requirements analysts work as catalysts with
the SMEs in identifying requirements from the various
information collected, structure the information by
modeling it, and communicate draft requirements to
the various audiences. They also draw on their exper-
tise to surface the underlying business needs that the
SMEs may not be able to articulate well. This is an
exploratory and iterative process, since, oftentimes,
SMEs are not able to envision their needs until they
see a deliverable, at which point they further refine
their requirements. As the requirements definition
process typically involves a variety of participants, the
requirements must be presented in various forms that
are easily understood by the different audiences.
Requirements can be divided into functional and non-
functional requirements.

Functional Requirements
Functional requirements describe what the system
should do, e.g., what inputs the system should accept,
what outputs the system should produce, and what
computations the system should perform.

Nonfunctional Requirements
Nonfunctional requirements describe the general
quality characteristics that the system must have to
ensure ease of use, optimal system performance, sys-
tem reliability, and good user experience. Examples
include how fast the website loads, or how many con-
current users the system can handle efficiently.

To illustrate the requirements definition process in
the higher education setting, let us imagine a univer-
sity leadership that requests a dashboard to track the
daily enrollment registration process for a specific
term, in order to gauge the colleges’ progress towards
meeting their headcount (HC) and full-time equivalent
(FTE) enrollment targets. Additionally, they would like
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to compare the daily enrollment with the same regis-
tration cycle in the prior year to see change year over
year. The university’s institutional research analysts,
who serve as both the requirements analysts and the
SMEs, draft the requirements and work with the IT
team to develop this dashboard.

Functionally, the leadership wants to view enroll-
ment broken down by the students’ major, by the col-
lege that offers the course, by undergraduate and
graduate/postbaccalaureate student standing, and by
new and continuing student status. Due to the differ-
ent fee structures, they would also like to view enroll-
ment by the students’ residence status. Additionally,
since the university is encouraging its undergraduates
to enroll in 15 units or more per semester in order to
graduate in a timely manner, the campus leadership is
interested in knowing the students’ unit-taking pat-
terns. Finally, they would like drill capability from col-
lege-level, department-level, course-level, and class-
level to quickly determine enrollment status (including
enrollment limit, HC enrolled, available seats, etc.).

In this case, the functional requirements such as
computational fields (e.g., FTEs calculations) are
clearly defined, and the fields that capture daily enroll-
ment are identified in the campus Data Warehouse.
Nonfunctional requirements, on the other hand,
include the user experience. Plausible requirements
that need to be defined include questions such as
when a selection is made from the filter, how quickly
the data refreshes on the dashboard? Also, does a
selection in one filter concurrently requery the data in
another filter? Or, when a user selects a specific col-
lege, do the departments change accordingly in the
Department filter?

TESTING AND VALIDATION
Once the requirements definition, the design, and
implementation stages are completed, it is time to
test the quality of the Data Warehouse. To conduct
proper testing, the tester needs to have the following.

› Data Warehouse & ETL business rules (mapping
documents, transformation rules).

› Environment other than Production (test/devel-
opment environment).

› Read/Write access to test instances of the
source database (data sandboxes).

› Ability to launch the ETL process and have visi-
bility into the Data Warehouse.

ETL processes are the centerpieces in an institu-
tion’s data management strategy. An ETL process

copies data from one or more source databases,
transforms that data to a format that is suitable for
reporting and analysis, and finally loads that data to a
destination repository (Data Warehouse).

To test the correct execution of this process, a
Data Warehouse tester should be knowledgeable
about the data source table/field location and infor-
mation, the destination table/field information and
location, as well as the data transformation rules and
logic. This information is typically captured in a map-
ping document. A Data Warehouse tester can use this
information to develop and execute test cases.

In addition to having access to an ETL data map-
ping document, a Data Warehouse tester needs
access to a nonproduction Data Warehouse environ-
ment, as depicted in Figure 1 below. In a nonproduc-
tion test environment, the ETL process loads the data
from test instances of different source databases and
then loads the transformed data to a test instance of
the Data Warehouse.

In such an environment, one can set up test cases
by manipulating and setting up data in a source data-
base (e.g., SIS). This implies that the tester has full
read/write access to those test database instances.
After setting up the test data, the tester launches the
ETL process and examines the loaded data in the test
instance of the Data Warehouse to see whether the
test case passes.

DataWarehouse Testing Example
As a test scenario, let us consider CSUF’s Student
Success Dashboard. The dashboard, among other indi-
cators, has a student-level flag called “Enrolled” that
indicates whether a given student is enrolled at the
university.

The business rules indicate that this flag should be
set for students enrolled in an undergraduate state-
support academic program, who are degree-seekers
and are currently enrolled in one or more credit units

FIGURE 1. Typical Data Warehouse environment.
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› Needed data may reside in different databases
on different servers in different formats. Data
Warehouses bring consistency in the data defini-
tion and format across all collected data, making
it easier for the users and the decision-makers
to understand, analyze, and share the informa-
tion. Data Warehouses provide quick access to
critical data in one centralized location.

› Data Warehouses support the ad hoc,
unplanned exploration of data. They also provide
an ideal data framework for dashboards and
other analytical tools that have drill-down
capability.

The Data Warehouse, as well as the extract, trans-
form, and load (ETL) (explained in detail later), process
development efforts usually follow a typical software
development life cycle model. The stages of such a life
cycle model include requirements definition, design,
implementation, testing and validation, and release
and maintenance.

At CSUF, OAIE serves as the domain data expert
who works with a multitude of campus constituents to
fulfill their data needs. Furthermore, OAIE is the func-
tional owner of the dashboards, and is therefore respon-
sible for their quality. OAIE’s focus, therefore, is on the
requirements definition, and testing, and validation
aspects of the life cycle model, in addition to the final
dashboard development, while IT ismostly charged with
the design and implementation aspects of the process.
Once the Data Warehouse is developed and validated,
OAIE then builds business intelligence (BI) tools, such
as dashboards, for campus consumption.

Details of the dashboard warehouse development
process that OAIE is responsible for—namely require-
ments gathering, testing and validation, and dash-
board development—will be discussed in the
remainder of this article.

REQUIREMENTS DEFINITION
According to the IEEE software engineering glossary,
Data Warehouse requirements are defined as follows.

1. A condition or capability needed by a user to
solve a problem or achieve an objective.

2. A condition or capability that must be met or
possessed by a system or system component to
satisfy a contract, standard, specification, or
other formally imposed document. The set of
all requirements forms the basis for subse-
quent development of the system or system
component.

Abbott defines requirements as: any function, con-
straint, or other property that must be provided, met,
or satisfied to fill the needs of the system’s intended
user(s). The process of determining requirements for a
system is referred to as requirements definition, the
foundation upon which subsequent stages in system
development are built.

Requirements definition is a careful assessment of
the needs that a system is to fulfill. It must answer
why the system is needed, what features will serve
and satisfy the needs, and how the system is to be
built. As such, the first crucial step in defining require-
ments is identifying the subject matter experts (SMEs)
who understand the problem definition and can
authoritatively address any arising questions.

The requirements analysts work as catalysts with
the SMEs in identifying requirements from the various
information collected, structure the information by
modeling it, and communicate draft requirements to
the various audiences. They also draw on their exper-
tise to surface the underlying business needs that the
SMEs may not be able to articulate well. This is an
exploratory and iterative process, since, oftentimes,
SMEs are not able to envision their needs until they
see a deliverable, at which point they further refine
their requirements. As the requirements definition
process typically involves a variety of participants, the
requirements must be presented in various forms that
are easily understood by the different audiences.
Requirements can be divided into functional and non-
functional requirements.

Functional Requirements
Functional requirements describe what the system
should do, e.g., what inputs the system should accept,
what outputs the system should produce, and what
computations the system should perform.

Nonfunctional Requirements
Nonfunctional requirements describe the general
quality characteristics that the system must have to
ensure ease of use, optimal system performance, sys-
tem reliability, and good user experience. Examples
include how fast the website loads, or how many con-
current users the system can handle efficiently.

To illustrate the requirements definition process in
the higher education setting, let us imagine a univer-
sity leadership that requests a dashboard to track the
daily enrollment registration process for a specific
term, in order to gauge the colleges’ progress towards
meeting their headcount (HC) and full-time equivalent
(FTE) enrollment targets. Additionally, they would like
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(excluding course enrollments with “W”grade). Self-
support programs, other extended education pro-
grams, postbaccalaureate, graduate-level programs,
as well as certificate and credential only enrollments,
are excluded.

Furthermore, the dashboard displays data stored
in the Data Warehouse. To test this flag, a tester
should know the names of the tables and fields in the
source database that are used to create this flag. The
tester should also know the rules that explain the
transformation of the source fields into a single binary
“Enrolled” flag. The tester can then start writing test
cases to test this flag in the Data Warehouse test envi-
ronment. Table 1 lists some example test cases writ-
ten to test the “Enrolled” flag.

Different Types of DataWarehouse
Software Testing
There are many types of ETL/Data Warehouse testing.
Some examples are as follows.

Data transformation testing
Data completeness testing
Data accuracy testing
Metadata testing
Regression testing

› Data transformation testing: The source data is
transformed (‘T’ in ETL) before being loaded into
the target database. Data can be aggregated,
recoded, joined with data from other tables, or
transformed based on a certain logic. The trans-
formation rules and logic are in the Data Ware-
house mapping document (the tester needs to

collect this information if no such document
exists). This type of testing may involve writing
multiple queries that should run to verify each
transformation rule.

› Data completeness testing: This testing is to ver-
ify that all the data is loaded from the source
database into the target database. Simple count
comparisons between source data and destina-
tion data for variables that are not transformed
or are minimally transformed can be performed
to satisfy this type of testing. Also, aggregated
functions (e.g., sum, max, etc.) can be utilized for
this purpose.

One possible reason for having incomplete data in
the destination database could be due to an errone-
ous database join operation. Performing an inner join,
instead of an outer join, for example, can cause a cer-
tain number of rows to drop from the resulting data-
set. The figure below (see Figure 2) shows how the
resulting dataset (in red) can vary depending on how
the two tables A and B are joined.

1) Data Accuracy testing: This test is done to
ensure the accuracy of the loaded data. It can
include checks for duplicate record loading, as
well as tests for effective dates.

2) Metadata testing: Metadata refers to data that
describe data. In a Data Warehouse, metadata
testing includes checking the data types for the
target fields and tables, validating the necessary
data lengths for different fields, and checking
the table indexing.

TABLE 1. Example test cases to test the data warehouse’s “ENROLLED” flag.

Test Setup Test
Execution

Expected Outcome

Locate an undergraduate degree-seeking state-support student enrolled in at last
1 credit unit in the test SIS. . . we call this student A

Launch
the ETL

Enrolled flag in test DW
should be set to 1

Change the grades for all the courses that student A is enrolled in to ‘W’ in the SIS Launch
the ETL

Enrolled flag in test DW
should be set to 0

Update student A’s academic career, program, and plan to a graduate-level
program in the SIS

Launch
the ETL

Enrolled flag in test DW
should be set to 0

Drop all the classes that student A is enrolled in SIS Launch
the ETL

Enrolled flag in test DW
should be set to 0

Change student A’s academic plan from a degree plan to a credential-only plan in
the SIS

Launch
the ETL

Enrolled flag in test DW
should be set to 0

Add a certificate plan as student A’s second academic plan in the SIS Launch
the ETL

Enrolled flag in test DW
should be set to 1

Change student A’s academic program and plan to reflect a self-support
matriculated student in the SIS

Launch
the ETL

Enrolled flag in test DW
should be set to 0
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3) Regression testing: Regression testing verifies
that any software previously developed still
functions correctly after changes are made to
the product. The goal is to catch unintended
defects introduced when the source code was
updated. The Data Warehouse tester should exe-
cute regression test cases before every release
of the product. Regression test cases typically
cover the basic functionality of the product. As
defects are fixed or enhancements are made,
the corresponding test cases can be added to
the regression test suite.

DASHBOARD DEVELOPMENT
After the Data Warehouse is tested and validated, the
next step is to develop different BI reports for information
dissemination. There are different BI tools that an institu-
tion may leverage for the development of such reports.
At CSUF, two such tools are utilized: Oracle Business
Intelligence Enterprise Edition (OBIEE) suite and Tableau.

Oracle Business Intelligence Edition
CSUF’s Data Warehouses are built using Oracle data-
bases. TheOBIEE suite provides a seamlessway of creat-
ing dashboards on top of the Data Warehouses and is
the preferred choice when users need to drill down to
individual record level data for more information. One
such use case is the aforementioned Student Success
Dashboard. The dashboard demonstrates the students’
academic progression in the university depending on
their categorization. This is one of the popular

dashboards at CSUF, as it gives users the ability to look
at student progression both at the individual and the
cohort level, thereby allowing the flexibility of implement-
ing different interventions at different scales.

Registration Snapshot is another dashboard that is
built-in OBIEE environment. This dashboard displays
the university’s enrollment registration numbers and
is used to monitor daily registrations when class regis-
tration is taking place. This dashboard is instrumental
for real-time enrollment monitoring, year-to-year com-
parison, and class planning (see Figure 3).

Tableau
Tableau is another data visualization tool that is
widely used to develop visualizations to disseminate
information to the campus community. It can connect
to various back-end data sources to extract data. At
CSUF, the Tableau dashboards built by OAIE are
heavily used to connect to various data sources.

The Tableau connection to the Data Warehouse is
done either by using a web connector or connecting
directly to the Data Warehouse by signing in to the
server from within Tableau. OAIE has used both con-
nection methods. Initially, OAIE used a web connector
to connect to the Data Warehouse. Over time, as the
size of the Data Warehouse grew, the web connector
method could not adequately address the needs as
there was a limit to the amount of data that can be
accessed by Tableau through this means. Additionally,
with new edition releases of Tableau, the web connec-
tor also needs to be constantly updated to ensure

FIGURE 2. Moffatt’s visual representation of database join operations 2009.
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(excluding course enrollments with “W”grade). Self-
support programs, other extended education pro-
grams, postbaccalaureate, graduate-level programs,
as well as certificate and credential only enrollments,
are excluded.

Furthermore, the dashboard displays data stored
in the Data Warehouse. To test this flag, a tester
should know the names of the tables and fields in the
source database that are used to create this flag. The
tester should also know the rules that explain the
transformation of the source fields into a single binary
“Enrolled” flag. The tester can then start writing test
cases to test this flag in the Data Warehouse test envi-
ronment. Table 1 lists some example test cases writ-
ten to test the “Enrolled” flag.

Different Types of DataWarehouse
Software Testing
There are many types of ETL/Data Warehouse testing.
Some examples are as follows.

Data transformation testing
Data completeness testing
Data accuracy testing
Metadata testing
Regression testing

› Data transformation testing: The source data is
transformed (‘T’ in ETL) before being loaded into
the target database. Data can be aggregated,
recoded, joined with data from other tables, or
transformed based on a certain logic. The trans-
formation rules and logic are in the Data Ware-
house mapping document (the tester needs to

collect this information if no such document
exists). This type of testing may involve writing
multiple queries that should run to verify each
transformation rule.

› Data completeness testing: This testing is to ver-
ify that all the data is loaded from the source
database into the target database. Simple count
comparisons between source data and destina-
tion data for variables that are not transformed
or are minimally transformed can be performed
to satisfy this type of testing. Also, aggregated
functions (e.g., sum, max, etc.) can be utilized for
this purpose.

One possible reason for having incomplete data in
the destination database could be due to an errone-
ous database join operation. Performing an inner join,
instead of an outer join, for example, can cause a cer-
tain number of rows to drop from the resulting data-
set. The figure below (see Figure 2) shows how the
resulting dataset (in red) can vary depending on how
the two tables A and B are joined.

1) Data Accuracy testing: This test is done to
ensure the accuracy of the loaded data. It can
include checks for duplicate record loading, as
well as tests for effective dates.

2) Metadata testing: Metadata refers to data that
describe data. In a Data Warehouse, metadata
testing includes checking the data types for the
target fields and tables, validating the necessary
data lengths for different fields, and checking
the table indexing.

TABLE 1. Example test cases to test the data warehouse’s “ENROLLED” flag.

Test Setup Test
Execution

Expected Outcome

Locate an undergraduate degree-seeking state-support student enrolled in at last
1 credit unit in the test SIS. . . we call this student A

Launch
the ETL

Enrolled flag in test DW
should be set to 1

Change the grades for all the courses that student A is enrolled in to ‘W’ in the SIS Launch
the ETL

Enrolled flag in test DW
should be set to 0

Update student A’s academic career, program, and plan to a graduate-level
program in the SIS

Launch
the ETL

Enrolled flag in test DW
should be set to 0

Drop all the classes that student A is enrolled in SIS Launch
the ETL

Enrolled flag in test DW
should be set to 0

Change student A’s academic plan from a degree plan to a credential-only plan in
the SIS

Launch
the ETL

Enrolled flag in test DW
should be set to 0

Add a certificate plan as student A’s second academic plan in the SIS Launch
the ETL

Enrolled flag in test DW
should be set to 1

Change student A’s academic program and plan to reflect a self-support
matriculated student in the SIS

Launch
the ETL

Enrolled flag in test DW
should be set to 0
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smooth communication between Tableau and the
Data Warehouse. Upon observing these challenges,
OAIE worked with IT to transition to connecting to the
Oracle Data Warehouse directly from Tableau. Thus
far, this connection method has been able to success-
fully house dashboards that require daily updates.

CONCLUSION
Dashboards have become a regular part of higher edu-
cation operations. The ability to visualize data helps
empower a broad range of stakeholders with the abil-
ity to make data-driven decisions beyond a small
group of individuals (e.g., institutional researchers). An
important precursor to visualization is having access
to accurate data, which are typically housed in Data
Warehouses. Data Warehouses are built using an
extensive process of requirements gathering, design,
implementation, and testing and validation. Only then
can dashboard development begin, as described ear-
lier in this article. We have been able to do so at CSUF
through collaboration between IT and OAIE in the
software development life cycle, a relationship that
maximizes the use of each team’s expertise. Although
we agree with W. Edwards Deming that “In God we
trust, all others must bring data,” we would add that
all must bring accurate data through a rigorous data
validation process.
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smooth communication between Tableau and the
Data Warehouse. Upon observing these challenges,
OAIE worked with IT to transition to connecting to the
Oracle Data Warehouse directly from Tableau. Thus
far, this connection method has been able to success-
fully house dashboards that require daily updates.

CONCLUSION
Dashboards have become a regular part of higher edu-
cation operations. The ability to visualize data helps
empower a broad range of stakeholders with the abil-
ity to make data-driven decisions beyond a small
group of individuals (e.g., institutional researchers). An
important precursor to visualization is having access
to accurate data, which are typically housed in Data
Warehouses. Data Warehouses are built using an
extensive process of requirements gathering, design,
implementation, and testing and validation. Only then
can dashboard development begin, as described ear-
lier in this article. We have been able to do so at CSUF
through collaboration between IT and OAIE in the
software development life cycle, a relationship that
maximizes the use of each team’s expertise. Although
we agree with W. Edwards Deming that “In God we
trust, all others must bring data,” we would add that
all must bring accurate data through a rigorous data
validation process.
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Designing a K–16 Cybersecurity 
Collaborative: CIPHER
Karen L. Sanzo, Jay Paredes Scribner, and Hongyi Wu, Old Dominion University

C yberattacks have become more common, 
sophisticated, and harmful, while, at the same 
time, there is a critical shortage of cyberse-

curity professionals. For example, from October 2019 
to September 2020, there were more than 40,000 
unfilled positions for information security analysts.2 
While educational organizations have responded to 
this burgeoning demand, cybersecurity education 
and training institutions in the United States have 
found it difficult to keep pace with the growing call for 
cybertalent.

Three significant challenges—untapped pools of 
talent, a lack of diversity in the field of cybersecurity, 
and inadequate standardization within and across 
K–16 institutions—impede the identification and 
cultivation of quality cybersecurity professionals. 
Although many universities have established cyber-
security degrees, concentrations, and certificate 
programs, a significant gap exists between K–12 and 
college education in cybersecurity.6 It also remains 
deeply challenging to achieve diversity and inclusion 
in the cybersecurity field. Additionally, there are no 
standardized articulations regarding cybersecurity 
between elementary schools, middle schools, high 
schools, community colleges, and four-year universi-
ties, and there is no guarantee that students at the 
same grade level are introduced to identical academic 
content and skills.3,5

In this article, we share initial findings from the 
testing of a proposed framework to address the 

aforementioned challenges in establishing a K–16 
pipeline to prepare cybersecurity professionals. 
The goal of the initiative is to create a researcher–
practitioner partnership (RPP) that paves the 
way for a national alliance for the development of 
fundamental, theoretically grounded, and systematic 
approaches to inclusive K–16 cybersecurity education, 
especially for students who have a low socioeconomic 
status (SES). The Cybersecurity Inclusive Pathways 
Toward Higher Education and Research (CIPHER) 
model brings together scholars from multiple disci-
plines and practitioners from various fields to col-
laborate and fully understand the problems explicated 
here and to coconstruct a K–16 partnership model to 
address those challenges.

The planning phase is designed to substantially 
shape the development of CIPHER. This process, 
using a design-based implementation research (DBIR) 
approach, enables us to iteratively test ideas with 
stakeholders, engage with partners to co-design and 
test evolutions of CIPHER, and develop a model that 
can be implemented and scaled up with fidelity.4 Ulti-
mately, this will lead to a clearly articulated vision and 
mission for the CIPHER alliance, a well-planned struc-
ture and guidelines, and clear road maps for research, 
education, outreach, and diversity.

DBIR
We use a DBIR approach, which is an extension of 
design-based research (DBR).4 Hallmarks of DBR 
include tenets highlighted by Anderson and Shat-
tuck:1 being situated in a real educational con-
text, focusing on the design and testing of a signifi-
cant intervention, using mixed methods, involving 
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multiple iterations, building a collaborative partner-
ship between researchers and practitioners, evolv-
ing design principles, and making a practical impact. 
Further, DBIR extends DBR through a focus “on build-
ing organizational or system capacity for implement-
ing, scaling, and sustaining educational innovations.”4 
Through this research lens, we are able to present our 
initial conception of CIPHER to partners and co-design 
the initiative with educators; make real-time, progres-
sive changes to the model; have tangible and imme-
diate impacts on practice; and study the efficacy of 
the work. We present the findings from our initial 
two DBR iterations of CIPHER, including results from 
our launch meeting and how the model has evolved 
based on partner collaboration. We conclude with 
anticipated next steps for the initiative. Readers are 
encouraged to contact us, in the spirit of DBIR, to 
provide feedback and if they would like to be part of 
CIPHER or begin a similar enterprise.

ITERATION 1
The first iteration of CIPHER was developed based on 
stakeholder survey feedback and a four-hour meet-
ing with more than 35 participants, drawing from 
K–12 school districts, state-level educational agen-
cies, institutions of higher learning, and industry 
partners. The survey provided an overview of the 
purpose of CIPHER and was used to understand if 
the model resonated with potential partners, ask 
about who should be included in the planning, and 
discover initial impressions. These data were used 
as grounding for the CIPHER launch meeting with 
stakeholders. The purpose of that meeting was to 
further explore the model and the emerging vision, 
present the preliminary concept of having five “task 
forces” to aid in development, and solicit focus group 
input through four facilitated breakout groups. The 
task forces and their purposes are described in the 
following:

 › Administration and Articulation Task Force: 
engage the CIPHER community, identify the 
leadership team, and develop a plan for coordi-
nating K–16 schools and colleges to establish 
articulations across the years of schooling 
to define the pathways for cybersecurity 
education

 › Diversity Task Force: develop plans for inspiring 
and improving the participation of underrepre-
sented groups and low-SES students

 › Human Resource Development Task Force: 
identify effective ways to support teachers, 
counselors, and administrators to integrate 
cybersecurity into content areas in K–12 
curriculum

 › Infrastructure Task Force: understand the 
structure support in different schools and clas-
sify schools into three tiers: those with high-SES 
students and substantial computer and Internet 
infrastructure (tier 1), those with computers for 
every student but limited Internet access (tier 
2), and those with many low-SES students and 
no computer and Internet infrastructure (tier 
3); make recommendations on curricula and 
infrastructure support to ensure the equity of 
the proposed cybersecurity education

 › Research and Assessment Task Force: develop 
an assessment plan; identify a pilot program 
to test hypothetical approaches, collect data, 
and understand what administrators/teachers/
counselors/parents need to know and be able to 
do to support cybersecurity education; create 
a plan to disseminate research outcomes and 
solidify CIPHER partnerships.

We asked numerous questions: What are your 
hopes and expectations for a cybersecurity collabora-
tive? What are considerations we should be cognizant 
of moving forward? Looking ahead three to five years, 
what will success look like for CIPHER? What should 
our immediate next steps be? The following focus 
group themes aided in the development of the second 
iteration of CIPHER:

 › Creating a central hub: Attendees expressed 
a desire to streamline myriad initiatives in 
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the cybersecurity education space. The col-
laborative emphasis of CIPHER was seen as 
beneficial, as there was a lack of collaboration 
among school districts that had cyberinitiatives 
(generally due to a lack of capacity and funding 
resources); a central coalescing mechanism 
such as CIPHER could address that gap. 
Essentially, the attendees believed CIPHER was 
necessary and felt that the initiative’s timing 
was serendipitous.

 › Collaborating, not “bombarding”: Another 
interesting but not surprising finding was that 
K–12 faculty sometimes felt that higher educa-
tion institutions were “bombarding” them with 
initiatives, although colleges and universities 
could also be seen as “partners” and “collabora-
tors.” The attendees viewed CIPHER as highly 
favorable due to the central role K–12 educators 
would have in the initiative.

 › Building an authentic pipeline: Much of the 
conversation around this question revolved 
around developing a collaborative “pipeline” 
from K–12 schools to higher education to the 
workforce. The need to focus on a comprehen-
sive cybersecurity curriculum, access for all 
students, and training for teachers would be 
embedded in the concept. While there appeared 
to be pockets of success in crafting cybersecu-
rity curricula and providing training to teachers, 
none of the attendees cited a cohesive frame-
work/approach. Some school representatives 
said there were different departments within 
the same district that oversaw cybersecurity 
efforts but rarely interacted. For example, in 
one district, the responsibility for developing 
and teaching cybersecurity could be spread 
across the career and technical education, 
science, and mathematics departments, with 
little collaboration.

 › Partnering with employers: Businesses 
expressed concern about the challenges to 
finding cybersecurity talent and the need to 
establish internships and apprenticeships 
for high-schoolers and university students. A 
centralizing hub, such as CIPHER, was seen 
as a viable mechanism to broker partnerships 
across educational and industry boundaries 

while engaging in substantive research to 
learn iteratively about how to better establish 
collaborations.

 › Taking action, not just meeting: The attendees 
spoke to the need for immediate action and said 
they did not want to be involved in a years-long 
“planning-only” initiative. Attendees saw 
CIPHER’s initial focus on planning and devel-
opment as a drawback and expressed the need 
to demonstrate immediate, actionable results 
to prove the concept and build trust with 
partners. They advocated for small work groups 
with specific time frames and deliverables. 
As part of the action orientation, attendees 
affirmed the work group concept in the original 
CIPHER design

 › Fostering inclusivity: Attendees described 
the need to include representatives from all 
stakeholder groups, including teachers, admin-
istrators, school counselors, business partners, 
higher-education personnel, and students.

ITERATION 2
Changes were made to the CIPHER planning and to the 
initiative’s mission and vision based on the survey data 
and focus group findings from iteration 1. We combined 
the Diversity and Infrastructure task forces into one 
group to eliminate redundancy. The task forces were 
populated with volunteers from the initial launch meet-
ing and with additional educators recruited through 
monthly meetings where the CIPHER concepts con-
tinued to be explored and the framework was further 
developed. Additionally, task force leads were selected 
from the educator partners to coordinate the teams, 
including gathering data for future meetings.

Another outcome of iteration 2 was the decision 
to focus on K–12 partners for five months (Septem-
ber–January) before including additional business 
and industry collaborators in the design process. 
The following elements were identified in iteration 2 
through focus group (task force) meetings as essential 
components to the next CIPHER iteration, both in the 
planning phase and in the initiative’s design:

 › Building understanding among internal and 
external stakeholders: At times, there was a 
marked dissonance about the meaning of cyber, 
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cybersecurity, and computer science. The task 
force members overwhelmingly expressed 
the need for K–12 schools to have a common 
understanding of cybersecurity, career trajecto-
ries for students interested in cyberfields, and 
the preparation teachers need to lead courses 
in this area. CIPHER was seen as a mechanism 
to develop this common understanding across 
districts.

 › Unpacking cybersecurity and computer science: 
In relation to developing a common understand-
ing of cybersecurity among stakeholders, task 
force members described the need to better 
understand how school districts envision and 
teach cybersecurity and computer science.

 › Communicating and marketing: Task force 
members discussed the necessity for focused, 
clear, and ongoing communication and market-
ing campaigns for CIPHER, including during the 
planning phase, to build interest in and support 
for the consortium.

 › Fostering hands-on professional development: 
As noted, our educator stakeholders emphasize 
taking action rather than just “discussing” 
the possibilities for CIPHER. This dovetails 
with our DBIR approach and, as such, multiple 
professional development opportunities have 
been explored and are in the planning phases 
to be implemented in 2021. They will be used as 
a vehicle to build interest in CIPHER, provide 
needed skills to educators, identify areas 
of additional improvement for teaches and 
administrators, and gather critical information 
to develop the K–16 cyberpipeline.

 › Leading cyber in schools: One area that was 
underdeveloped in the initial CIPHER design 
related to exploring the role of K–12 educational 
leaders. While our original goal was to support 
school-level leaders in their work leading 
effective and high-quality cybersecurity training 
programs, we have also come to better under-
stand how different school districts are develop-
ing and implementing cybersecurity curricula 
in classrooms. As a result, the CIPHER group 
needs to broaden its understanding of cyberse-
curity education leaders. In turn, as we work to 
identify those responsible for developing and 

implementing cybersecurity programs, we can 
enhance our support of their work and design 
development programs tailored to them.

 › Creating an advisory pipeline: A final area that 
the task forces have emphasized is to help 
to create an advisory pipeline that will help 
students outline their pathways to cybersecurity 
careers.

Our findings from the first iterations of CIPHER 
show there is a strong desire among K–12 educa-

tors to partner with one another and with institutions 
of higher education to develop a cohesive approach 
to preparing students in the area of cybersecurity. In 
the subsequent months of the CIPHER planning phase, 
we intend to use the themes to further develop the 
model, which we anticipate will include incorporating 
high-school and college students into committees; 
host professional development sessions focused on 
cybersecurity (norming around a common under-
standing, curriculum design and instruction, and the 
development of academic pathways for students 
interested in cybersecurity) for teachers, professional 
school counselors, and administrators; and codesign 
curricular K–16 cybersecurity pathways for students. 
Because of our DBIR approach, we are able to design 
and implement the model while studying the efficacy 
of the effort and making iterative changes based on 
ongoing research.

Our hope is that this work will lead to funda-
mental findings about what administrators, educa-
tors, counselors, and parents need to know and be 
able to do to support cybersecurity education. The 
anticipated outcomes include the establishment of 
a CIPHER RPP that engages all stakeholders, a deep 
understanding of the current knowledge and infra-
structure gap, and the creation of an inclusive model 
for K–16 cybersecurity education, which can be rep-
licated nationwide to bring cybersecurity education 
to all students. 
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Beyond Bots and Buttons—NewDirections
in Information Literacy for Students
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The computing profession has recently been
deeply involved in combating misinformation.
From measuring how misinformation is propa-

gated in computer networks to creating new algo-
rithms and interface options, computer scientists
have been at the forefront of fighting misinformation.
However, for those of us responsible for training
undergraduates, only relying on our core expertise
may be a disservice. Unless we expose students to a
breadth of perspectives and domains, their ability to
identify and combat misinformation will suffer. Infor-
mation literacy education is necessary, but needs to
be treated as a sophisticated and contextual exercise.

In 2020, people in the United States reported wide
distrust in traditional media sources, shaped largely by
their political inclinations.1 Critically, science informa-
tion has also been misused and misreported in various
ways at exactly the time that a global pandemic and
increasing climate events make trustworthy science
important.2 In complex, diverse societies information
quality is of paramount importance. How we deal with
shared environmental, medical, and political chal-
lenges is based on how well people understand infor-
mation, and even more fundamentally on a shared
understanding about what is true or not. It is challeng-
ing enough to agree what to do about something like
a global pandemic, but it is even more difficult when
people cannot even agree if something is real or not.
In this context, how do we train students to be aware
of misinformation and to provide them with the tools
with which to fight it?

Traditionally, the way we have trained students to
combat misinformation is through training them in
information literacy frameworks. Some of these frame-
works are relatively simple, and some are more com-
plex. For example, the CRAAP test3 highlights some

simple questions around source criticism, asking stu-
dents to examine currency, relevance, authority, accu-
racy, and purpose. However, over the past decade
there has been criticism of “checklist” versions of
information literacy. In an era of such pervasive misin-
formation, some of which is pushed by malicious
actors trying to undermine the concept of objective
truth, the checklists can even exacerbate the problem
by giving bad actors a roadmap to gaming authentic-
ity. Over the past decade, more complex frameworks
have tried to address this problem. For example, the
Association of College and Research Libraries (ACRL),
which is part of the American Library Association, has
been advocating a framework to get people to exam-
ine what is true or not.4 This framework focuses more
on the dynamic nature of information, the constructed
and contextual nature of authority, and information lit-
eracy as an ongoing, strategic process in which people
engage. This avoids the problems of less complex
methods by teaching people to think more deeply and
critically about the information they receive, and by
rejecting simple ideas of what is true or false.

In addition to information literacy, there has been a
call for different types of media literacy as well.5 Simi-
lar to information literacy principles, media literacy
campaigns try to get consumers of information to crit-
ically engage with how the channels or media that
transmit information shape its quality and character.
The main difference between these two types of liter-
acy campaigns—media and information—is a matter
more of focus on the information transmission pro-
cess. In media literacy the design of the channel, the
economic models of the industry, and the social pro-
cesses around the technology become as important
as the content of the information itself.

Information literacy campaigns have been around
for decades in the United States, yet it seems like mis-
information and conspiracy theories are as relevant as
ever. What happened? One issue could be that media
and information literacy campaigns backfired. Literacy
campaigns told people to be arbiters of what was true
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or not, downplayed the role of experts, and substi-
tuted individual literacy for institutional expertise. This
may have worked, if not for the advent of self-publica-
tion via the Internet, which now created a context in
which people felt enabled to determine their own
truth, and then to find plenty of information to be able
to back up that viewpoint.6 It is also possible that
human literacy became swamped by the sheer
amount of algorithmically curated content that sud-
denly became available. A goal of misinformation is
not necessarily to convince someone that a lie is true,
but it is to create so much doubt about the nature of
truth that people give up on analysis and rely on heu-
ristics instead. Sometimes this is referred to as “flood-
ing,” in which so much contradictory information is
made available that people cannot process effectively
what is true or not. Depending on heuristics to define
information then enables identity-based decision mak-
ing. For example, in the United States right now there
is a deeply partisan divide on some issues on whether
something is true or not. Party identity is an effective
heuristic when people feel like they cannot trust infor-
mation anymore.

Discerning Truth—a course to teach information
and media literacy to undergraduates

In this context where information literacy seems to
be struggling to keep up with the amount of misinfor-
mation available, I was charged with the task of devel-
oping an undergraduate course to help students
determine what was true or not. The course was a sur-
vey of students from all over the university and part of
a theme semester related to civics on campus. Taking
lessons from recent literature on information literacy,
the goal was to help students treat misinformation
not as a checklist, but as a deeply contextual concern.

Information literacy in contextual domains. To
some extent, an entire university is defined by the
question “what is true?” In order to cover the wide
range of options for epistemology available in higher
education, we focused on a variety of speakers and
interactions for students. Broadly, we had three cate-
gories of speakers, all from information disciplines.

› Computer scientists: these speakers were
experts in using computational methods to
study online misinformation. From these interac-
tions students learned about the challenges of
operationalizing the concept of misinformation,
observing information consumption at scale,
and converting findings into possible solutions.

› Legal experts: these speakers spoke to the
nature of evidence. From a first amendment law-
yer, the students learned about “close reading”

of texts and how to understand policy. From a
federal prosecutor, the students learned about
using evidence to build a case and working with
multiple other disciplines to come to a joint
sense of truth.

› National and local journalists: these speakers
taught students about how the financial struc-
ture of the new industry shapes information pro-
cesses, how journalism ethics works in a modern
media environment, and the interplay between
media production and social aspects like
commenting.

Overall, the speakers highlighted the contextual,
complex nature of information and misinformation.
While some speakers were able to address issues that
include more global perspectives as well as those of
people who have been traditionally excluded, those
issues should be more prevalent in future iterations of
this effort. In addition, while these three areas are
important aspects of information, one could imagine
including more philosophy, public health, public policy,
social work, and a range of other disciplines. In mod-
ern U.S. universities, colleges and departments are run
administratively separately it will take concerted
efforts to train students in information literacy in a
way that honors all of the different disciplines with
something to contribute.

Information and media literacy workshops. An
essential aspect of modern information literacy train-
ing is learning through practice. To accomplish this
goal, we had students engage in multiple exercises
that would highlight the complex nature of misinfor-
mation. Exercises included:

› A trolling workshop where students were tasked
with creating misinformation campaigns in a
sandbox social site. Students used memes, vid-
eos, and image macros in order to create their
campaigns, and determined success through
peer evaluation.

› A moderation exercise where students took
turns moderating content in an active social
media site, collaborating in groups to build cases
for what content should be deleted or not.

› Misinformation treasure hunts, where students
found pieces of misinformation online and then
did fact-checking exercises to refute the
information.

These exercises helped drive home many lessons
of misinformation that would be hard to absorb from
readings and speakers. For example, misinformation is
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as much an affective experience as it is cognitive. In
the trolling workshop students reported strong emo-
tional reactions, and really connected with affective
arguments. For information literacy, it is important
that we go beyond readings and reflections so that
students can really experience the multiple dimen-
sions of misinformation.

In computing, we tend to focus on algorithmic and
interface solutions to misinformation. However, there
is still a strong role for information literacy training to
bridge the sociotechnical gap that remains where
computing solutions fail.
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or not, downplayed the role of experts, and substi-
tuted individual literacy for institutional expertise. This
may have worked, if not for the advent of self-publica-
tion via the Internet, which now created a context in
which people felt enabled to determine their own
truth, and then to find plenty of information to be able
to back up that viewpoint.6 It is also possible that
human literacy became swamped by the sheer
amount of algorithmically curated content that sud-
denly became available. A goal of misinformation is
not necessarily to convince someone that a lie is true,
but it is to create so much doubt about the nature of
truth that people give up on analysis and rely on heu-
ristics instead. Sometimes this is referred to as “flood-
ing,” in which so much contradictory information is
made available that people cannot process effectively
what is true or not. Depending on heuristics to define
information then enables identity-based decision mak-
ing. For example, in the United States right now there
is a deeply partisan divide on some issues on whether
something is true or not. Party identity is an effective
heuristic when people feel like they cannot trust infor-
mation anymore.

Discerning Truth—a course to teach information
and media literacy to undergraduates

In this context where information literacy seems to
be struggling to keep up with the amount of misinfor-
mation available, I was charged with the task of devel-
oping an undergraduate course to help students
determine what was true or not. The course was a sur-
vey of students from all over the university and part of
a theme semester related to civics on campus. Taking
lessons from recent literature on information literacy,
the goal was to help students treat misinformation
not as a checklist, but as a deeply contextual concern.

Information literacy in contextual domains. To
some extent, an entire university is defined by the
question “what is true?” In order to cover the wide
range of options for epistemology available in higher
education, we focused on a variety of speakers and
interactions for students. Broadly, we had three cate-
gories of speakers, all from information disciplines.

› Computer scientists: these speakers were
experts in using computational methods to
study online misinformation. From these interac-
tions students learned about the challenges of
operationalizing the concept of misinformation,
observing information consumption at scale,
and converting findings into possible solutions.

› Legal experts: these speakers spoke to the
nature of evidence. From a first amendment law-
yer, the students learned about “close reading”

of texts and how to understand policy. From a
federal prosecutor, the students learned about
using evidence to build a case and working with
multiple other disciplines to come to a joint
sense of truth.

› National and local journalists: these speakers
taught students about how the financial struc-
ture of the new industry shapes information pro-
cesses, how journalism ethics works in a modern
media environment, and the interplay between
media production and social aspects like
commenting.

Overall, the speakers highlighted the contextual,
complex nature of information and misinformation.
While some speakers were able to address issues that
include more global perspectives as well as those of
people who have been traditionally excluded, those
issues should be more prevalent in future iterations of
this effort. In addition, while these three areas are
important aspects of information, one could imagine
including more philosophy, public health, public policy,
social work, and a range of other disciplines. In mod-
ern U.S. universities, colleges and departments are run
administratively separately it will take concerted
efforts to train students in information literacy in a
way that honors all of the different disciplines with
something to contribute.

Information and media literacy workshops. An
essential aspect of modern information literacy train-
ing is learning through practice. To accomplish this
goal, we had students engage in multiple exercises
that would highlight the complex nature of misinfor-
mation. Exercises included:

› A trolling workshop where students were tasked
with creating misinformation campaigns in a
sandbox social site. Students used memes, vid-
eos, and image macros in order to create their
campaigns, and determined success through
peer evaluation.

› A moderation exercise where students took
turns moderating content in an active social
media site, collaborating in groups to build cases
for what content should be deleted or not.

› Misinformation treasure hunts, where students
found pieces of misinformation online and then
did fact-checking exercises to refute the
information.

These exercises helped drive home many lessons
of misinformation that would be hard to absorb from
readings and speakers. For example, misinformation is
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An Attack Vector Taxonomy  
for Mobile Telephony  
Security Vulnerabilities
Matthew Lanoue, Chad A. Bollmann, James Bret Michael, and John Roth, Naval Postgraduate School

Duminda Wijesekera , George Mason University

A simplified cybersecurity threat matrix may provide a unifying way to define the 
security risk posed by current and future generations of mobile telephony.

A security framework proposed by Adam 
Shostack simplifies threat modeling by ask-
ing four questions:1

1. What are we working on?
2. What can go wrong?
3. What are we going to do about it?
4. Did we do a good job?

While the first and last questions may be easier to 
answer, the second and third questions require sub-
stantial effort to address. To answer the second ques-
tion, Shostack proposes using the STRIDE method to 
identify potential threats. This method invites scien-
tists and engineers to imagine how common attack 
methods such as spoofing, tampering, repudiation, 
information disclosure, denial of service (DoS), and 
escalation of privilege may be used to target a system. 
For simple systems, this may be effective, but it is not 
an efficient method for brainstorming threats for a 
complex system such as mobile telephony.

Addressing the security risks for mobile telephony 
is a multidisciplinary endeavor. The prevailing prac-
tice of examining methodologies and how attacks 
might be applied does not result in an intuitive rep-
resentation of attack vectors usable by most experts 
in areas other than security. We believe that an 
improved approach to identifying potential threats to 

mobile telephony, consistent with the four-question 
framework, is to categorize attacks in terms of attack 
vectors and their relationship to the user plane (UP), 
control plane (CP), and their interactions throughout 
the radio front-end and the core network. Our pro-
posed matrix can aggregate more detailed taxono-
mies in the literature to enable unified views of what 
can go wrong and facilitate decisions on what to do 
about it.

5G MOBILE TELEPHONY
The fifth generation of mobile telephony, also known 
as new radio (5G NR), promises increased bandwidth, 
reduced latency, customizability, and greater cellular 
coverage. The apps envisioned for 5G can be broadly 
categorized into three use cases: enhanced mobile 
broadband, massive machine-type communication, 
and ultrareliable low-latency communication. Exam-
ples of planned apps include vehicle-to-everything 
(V2X) communication, smart cities with networked 
sensors, and mobile streaming of 3D video with ultra-
high resolution and ultra-reliable low-latency commu-
nication. 5G virtualized many services of the previous 
generations and created app-specific, virtual net-
work slices that specify performance and cybersecu-
rity requirements—a significant advance. But 5G sys-
tems have also become complex in the quest to enable 
the flexibility to meet anticipated functional and per-
formance requirements over the next 10 years. 6G may 
introduce additional complexity with its move from 
centralized service provisioning to a decentralized 
network and service architecture.
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With the rapid adoption of 5G NR, one might assume 
that stakeholders have already thoroughly scrubbed 
5G NR artifacts (for example, standards, protocols, 
architecture, and designs) for security vulnerabilities, 
although recent studies indicate otherwise.2,3 Others 
have enumerated security vulnerabilities in 5G,4–6 
but the current taxonomies and threat models suffer 
from drawbacks, including complex methodologies 
that can be difficult for nonsecurity experts to rapidly 
apply. Some of these other taxonomies also afford 
limited flexibility to adapt to changes in technology, 
architecture, design, and usage.

Each engineering and science discipline involved 
in mobile telephony contributes in some way to 
understanding and assessing the security risks within 
the overall engineering tradeoff space. A common, 
easily graspable taxonomy to categorize the threats, 
which parts of the network they affect, and where 

they originate is necessary to facilitate the effective 
engagement and investment of resources spread 
across the research, development, sustainment, and 
defense of the mobile telephony infrastructure.

Accordingly, we developed a threat-matrix-based 
approach to the categorization of attacks based on 
attack vectors instead of methods. The approach is 
straightforward to use and adaptable. Let’s take a look 
at how the approach can be applied to 5G NR.
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SBI Messages Bus

•
•
•
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FIGURE 1. An overview of the 5G network architecture. SBI: service-based infrastructure; UE: user equipment; UPF: UP func-

tion; UDM: unified data management; AMF: access and mobility management function; SMF: session management function; 

NEF: network exposure function; AUSF: authentication server function; PCF: policy control function; NRF: network repository 

function; NSSF: network slice selection function.

BUT 5G SYSTEMS HAVE ALSO 
BECOME COMPLEX IN THE QUEST TO 
ENABLE THE FLEXIBILITY TO MEET 
ANTICIPATED FUNCTIONAL AND 
PERFORMANCE REQUIREMENTS 
OVER THE NEXT 10 YEARS.
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ADDITIONAL DETAILS ON 5G ARCHITECTURE

RADIO ACCESS NETWORK (RAN)
Per our approach, the access plane (consisting primarily 
of the RAN) is rolled into the UP. The Open RAN Alliance 
(O-RAN ALLIANCE) splits the RAN into three parts by 
separating the functional modules that compose a single 
logical radio node (gNB): the radio unit (RU), distributed 
unit (DU), and centralized unit (CU). In 5G literature, fron-
thaul refers to the link between the RU and DU, midhaul 
to the link between the DU and CU, and backhaul to the 
link between the CU and the 5G core network. This split, 
illustrated in Figure 2, supports integrated access and 
backhaul, promotes interoperability among vendors’ 
implementations of these modules within the RAN, and 
can (or will) be used to provide complementary ser-
vices such as optimized traffic flow based on artificial 
intelligence techniques.S1 The additional computing 
power available in the RAN enables the creation of new 
services further away from the core network—these are 
called mobile edge services.

UP
The N1 and N2 connections are used to pass information 
to and from the CPFs by the UE and gNB, respectively. As 
depicted in Figure 2, the UPF can be further classified by 
its connection to other UP features. The packet data ses-
sion anchor UPF connects to a gNB via the N3 link, and 
the intermediate UPF (IUPF) connects to another UPF 
via the N9 link. The IUPF connected to an external data 
network such as the Internet via the N6 link may also 
support inter public land mobile network UP security to 
protect the network from incoming malicious traffic.S2

CP
Important CPFs include the AMF, SMF, and UDM. The 
AMF controls the process for new UE and gNBs to 

connect to the 5G network and UE handoffs between 
gNBs. Within the CP, the destination for information 
carried over the N1 and N2 connections is the AMF. 
Upon the UE’s request, the SMF creates, updates, and 
terminates sessions as permitted by the AMF and man-
ages the session context with the UPF over the N4 con-
nection. The UDM replaces the home subscriber server 
in the 4G standard; it manages user data and authentica-
tion credentials. Further information on CPFs is found in 
3GPP Technical Specification 23.501; network functions 
and entities are listed in clause 4.2.2, and further details 
about each network function are in clause 6.2.S2

NETWORK FUNCTION VIRTUALIZATION AND 
NETWORK SLICING
Instead of each network function residing on separate 
machines, the network functions share common hard-
ware and become virtual network functions (VNFs). While 
this concept has been applied to some 4G networks, it will 
be fully adopted in 5G, including within the RAN.4 This is 
evident in the decoupling of gNB functionality, as previ-
ously discussed. A network slice can thus be thought of 
as all of the related VNFs servicing a certain network app. 
For instance, a server rack may contain a network slice 
for a massive machine-type communication network for 
the factory floor and another slice for an ultrareliable low-
latency communication network for connecting supervi-
sors to multiple geographically dispersed factory floors.

REFERENCES
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5G NR ARCHITECTURE
Figure 1 illustrates the key components of a simplified 
5G architecture. The 5G architecture organizes tele-
phony capabilities as being in the CP or UP in addi-
tion to specifying the relationships between the two 
planes. The specific implementation of any 5G net-
work may differ between service providers and granu-
larity can be added (such as an access plane).

The CP in Figure 1 consists of the 5G core and CP 
functions (CPFs), the logical connections N1 and N2 to 
the UE and logical radio nodes known as gNBs, and the 

N4 connections to the UPF. CPFs in the 5G core com-
municate with one another via HTTP/2 queries and 
responses over the SBI bus. For the interested reader, 
more details are contained in “Additional Details on 5G 
Architecture.”

The UP of Figure 1 consists of the UE, radio access 
network (RAN), UPF, and the connections N3, N6, and 
N9. Within the RAN, the actual mechanism by which 
the base station (gNB) interacts with the core network 
depends on the mode of operation and equipment 
involved. It could consist of a simple gNB such as in 



www.computer.org/computingedge 47

CYBERTRUST

Figure 1 or multiple radio units (RUs) working together 
as a single, virtual gNB to provide integrated access 
and backhaul (IAB), as depicted in Figure 2.

In a 5G deployment, the UP may consist of a single 
gNB or multiple gNBs as well as a single UPF or mul-
tiple UPFs. IAB provisioning itself is a potential UP 
attack (UPA) target.

In addition to the changes in network architecture, 
5G introduces or improves various security mecha-
nisms. These measures include encrypting the Inter-
national Mobile Subscriber Identity (IMSI) whenever 
it is required to be transmitted over the air, limiting 
which network functions have access to the IMSI (as 
part of the Subscription Permanent Identifier), and 
the improved 5G Authentication and Key Agreement 
protocol.7,8 A deeper investigation of the security 
architecture for 5G is beyond the scope of this article. 
Instead, we focus on how our methodology can be 
applied to mobile telephony, using a brief overview of 
the 5G network architecture as a backdrop.

MOBILE TELEPHONY ATTACK 
VECTOR CATEGORIZATION SCHEME

Much of the literature on the security of mobile tele-
phony centers on attack methods instead of the ori-
gins or targets of attacks. While approaches from 
MITRE and the European Union Agency for Cyberse-
curity (ENISA) may help to consolidate attack vec-
tors based upon objectives or methods such as out-
ages5 or credential access,6 these approaches do 

not adequately address complex systems such as 
5G in which functionality is partitioned among multi-
ple planes. For example, a DoS attack (that is, an out-
age) could be utilized against a gNB to prevent access 
within a network cell or against a service provider’s 
UDM to prevent access to an entire network.

Although these attacks have the same objective 
(outage) and method (target gNB), the attacks differ 
in their implementation and effect. Similarly, creden-
tial access could potentially be accomplished both in 
the UP as well as the CP. Thus, while binning attack 
vectors on the method is convenient, it does not 
provide sufficient clarity to the network engineers, 
who are constantly refining the standards, and the 
vendors and service providers, who are constantly 
refining the UE and infrastructure. Binning on meth-
odology also requires a more complex taxonomy that 
is difficult to visualize.

Considering that the CP and UP split is fundamen-
tal to 5G, we instead propose the approach described 
in Table 1 that bins attack vectors based on their source 
and targeted function [that is, a UPA or CP attack 

Legend
• Physical Connections
• Wireless Connections

UE UE UE 5G Core

RU RU RU

N4 N4

N3 N9 N6
IUPFPSA-

UPF
InternetDU DU DU CUvIAB-MT IAB-MT

IAB Node IAB Node IAB Donor

gNB

FIGURE 2. The disaggregation of RAN functions for IAB. DU: distributed unit; CU: centralized unit; PSA-UPF: packet data session 

anchor UPF; IUPF: intermediate UPF; IAB-MT: integrated access and backhaul mobile termination; vIAB-MT: virtual IAB-MT.

Type of A�ack (Targeted Function)

UPA CPA

A�ack 
source

UP

CP

TABLE 1. The proposed 5G attack vector matrix.
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(CPA)] within these two planes. This simplified top-level 
model provides for aggregating many of the more 
detailed taxonomies in the literature, such as ENISA5 
and ATT&CK Mobile,6 and can assist stakeholders in 
forming their own mental models of security risks.

To account for the complexity of the multiplane 
system, the user of the matrix categorizes the attack 
vectors based on the plane of their origin (UP or CP) 
and the type of attack (UPA or CPA), as shown in Table 
1. In a CPA, the targeted function or feature lies in the 
CP, whereas in a UPA, the function or feature that is 
targeted lies in the UP.

The following sections analyze selected attack 
methods (recently proposed as well as legacy) and 
examine how they might be applied to mobile tele-
phony, specifically against a 5G network. These attack 
methods are then fleshed out into more specific attack 
vectors and, in turn, categorized within our proposed 
taxonomy. While some of these legacy attack vectors 
presented may not be viable against a 5G network, we 
use them to illustrate our taxonomy. Used in conjunc-
tion with Shostack’s framework, one can assess the 
policies and mechanisms for mitigating the security 
risks of 5G in addition to assessing the goodness of 
the underlying trust assumptions for the security 
architecture. The power of categorizing attacks based 
on attack vectors is in presenting a simplified visual-
ization of weaknesses in the mobile telephony archi-
tecture to facilitate threat discovery. We believe that 
some of the first attack vectors employed against 5G 
networks will be derivatives of legacy attack vectors.

CPAs
The proprietary nature by which individual organiza-
tions implement CP features may deter unsophisti-
cated or poorly funded would-be attackers. History, 

however, teaches us that security through obscurity 
is inadequate. In addition, the network functions and 
large repositories of information are likely to be tempt-
ing targets for attackers. The 5G CP will also be the 
most complex, and history also shows that each added 
feature typically introduces bugs (that is, vulnerabili-
ties or weaknesses) and dependencies; some of the 
weaknesses may be exploitable for cyberattacks. 
Finally, the diversity of services and dynamic reconfig-
urability envisioned in 5G will require extensive virtual-
ization in control nodes and many more edge control 
nodes. The net result of these changes significantly 
increases both the attack surface and access vectors 
to the 5G CP.

Network function spoofing
The use of software-defined networking and network 
function virtualization to create multiple app-specific 
network slices will rely on configurations and updates 
that traverse the Internet using well-documented and 
recognized network protocols (for example, HTTP/2, 
TCP, and IP). A capable adversary could insert itself into 
the routing chain and determine the location and func-
tions contained in a particular network slice. Instead 
of probing and exploiting vulnerabilities within the 
network slice application programming interface and 
functions, they could redirect 5G traffic from a partic-
ular RAN to a spoofed network core, thus enabling the 
collection of information for all connected UE and the 
manipulation of any network function within the slice.

Database record access  
and manipulation
Using an initial methodology similar to network func-
tion spoofing, an adversary could exploit a vulnerabil-
ity within the network slice instead of simulating the 
entire slice. Such attacks are potentially more dam-
aging because the effects could be more difficult to 
detect and longer lasting. A spoofed slice or database 
is fixed by reestablishing the proper connections, but 
one that is manipulated requires additional effort to 
determine the scope of corruption of the database and 
restore its integrity.

Signaling interception, 
manipulation, and jamming
The radio frequencies associated with 5G are 

USED IN CONJUNCTION WITH 
SHOSTACK’S FRAMEWORK, ONE 
CAN ASSESS THE POLICIES AND 
MECHANISMS FOR MITIGATING THE 
SECURITY RISKS OF 5G IN ADDITION 
TO ASSESSING THE GOODNESS OF THE 
UNDERLYING TRUST ASSUMPTIONS 
FOR THE SECURITY ARCHITECTURE.
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tremendously diverse. Frequency bands are deployed 
differently by country, but low- and midbands with 
longer propagation paths start at about 600 MHz (for 
low bands) and 2.5 GHz for the midrange. The highest 
bands, millimeter-wave (mmWave), span the 20–60 
GHz range. The highest frequencies typically have 
much shorter and less robust propagation paths due 
to higher attenuation. However, the increased direc-
tionality can support ultradense deployments in urban 
areas and permit high-data-rate and low-latency apps 
that were simply not feasible with the available 4G 
spectrum. 5G design calls for significantly greater 
base station density and pushing many core services 
of the network to the edge to handle short propaga-
tion paths and novel apps.

The CP is subject to jamming attacks from the mid-
dle and both ends. End devices, legitimate or rogue, 
can target the CP for DoS and certain other types of 
cyberattacks. At the end of the day, the edge node is 
just another piece of commodity silicon running an 
operating system hosting many virtualized apps.9 
Similar attacks, targeting data in transit of user infor-
mation such as location and other privacy data, can 
originate from the Internet (used for global backhaul). 
Regarding “the middle,” dense deployments in urban 
areas require radio frequency (RF) backhaul that will 
enable classes of attacks not available in 4G.

While the encryption and directionality of back-
haul links will mitigate many types of interception and 
manipulation attacks, jamming is possible through 
both RF and physical means. The high attenuation 
and directionality of mmWave signals permit low-tech 
jamming solutions such as antenna or path blockage. 
In safety- or time-critical apps, such as the Industrial 
Internet of Things (IIoT) or connected vehicle com-
munications, DoS jamming attacks on the CP present 
a real threat to public safety and have been proven 
feasible in the 4G and, by extension, the 5G CPs.9

In the context of applying the proposed classifica-
tion taxonomy, jamming a link in the chain of nodes 
used to facilitate IAB (see Figure 2) could be used to 
manipulate artificial intelligence (AI) logic that routes 
user data to the CU connected via N3 to the PSA-UPF. 
If a compromised gNB was inserted in the new path 
determined by AI and used to harvest user informa-
tion, then the targeted jamming would be considered 
a CPA launched from the UP.

UPAs
While the transition from 4G to 5G may alter the tech-
nical details of UPAs, UPAs tend to be the most heavily 
researched and publicized subset of 5G attack vectors. 
Examples of UPAs that originate in the UP include DoS 
via cell jamming, key stealing, and hardware vulnera-
bility exploitation. Just as a DoS attack can be accom-
plished via multiple methods, a spoofed base station 
(gNB) can be used to accomplish a variety of attacks. 
Using a compromised gNB to deny service to a group 
of UE within the cell would represent a UPA launched 
from the UP. However, using the compromised gNB to 
create a database of user credentials and security keys 
by simulating access requests to the core network rep-
resents a CPA launched from the UP.

UE spoofing
Part of the 5G NR appeal lies in its billing as the “one 
standard to rule them all” by enabling the conver-
gence of the previously isolated silos composed of 
V2X, industrial control systems (ICSs), the IoT/IIoT, and 
mobile broadband (MBB) communications (among 
others). Although service providers try to offer robust 
authentication methods to thwart the use of spoofed 
(or rogue) UE, the added complexity of 5G NR cre-
ates opportunities for developing new classes of UE 
spoofing attacks. For instance, one might leverage 
the integration of ultralow-latency (ULL) communi-
cations provisioned for safety and industrial apps by 
exploiting known vulnerabilities in legacy manufactur-
ing stations. As noted previously, industrial or safety 
use cases present new consequences for DoS-type 
attacks against devices in the UP.

ICSs typically have stringent timing, availability, 
and reliability constraints that require the ULL prom-
ised by 5G. These use cases require the addition 
of quality-of-service (QoS) provisions to the 5G NR 
standards or slices thereof. These new specifications 
can, in turn, be leveraged to induce new classes of DoS 

JUST AS A DOS ATTACK CAN BE 
ACCOMPLISHED VIA MULTIPLE 
METHODS, A SPOOFED BASE STATION 
CAN BE USED TO ACCOMPLISH A 
VARIETY OF ATTACKS.
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attacks.10 For instance, the 5G NR standards permit 
ULL UE to preempt transmissions from MBB UE. In one 
recent study, authors simulated both throughput deg-
radation via MBB preemption and breaking typical ULL 
QoS guarantees using as few as five pieces of rogue 
UE.10 Ultimately, these attacks warp 5G’s flexibility to 
preempt normal device-to-base-station communica-
tions with spoofed higher priority requests; the result-
ing DoS does not have to be highly effective to break 
QoS guarantees for safety applications.

Cell jamming
The novelty of 5G ensures that many of the proposed 
5G jamming attacks are still theoretical. But, in princi-
ple at least, individual frequencies or mobile devices 
(UE) are subject to many of the same attacks that have 
already been proven against 4G and are well described 
by Lichtman et al.9

The frequency diversity of 5G NR makes it 
much more difficult for an adversary to jam all pos-
sible downlinks from an entire cell. In turn, this means 
broad-based noise jamming will remain effective 
but require high transmission powers and be readily 
observable to counterjamming sensors. Selective jam-
ming strategies will be stealthier and likely more effec-
tive at targeting smaller sets of UE. Selective jamming 
strategies target specific cell-to-UE connection infor-
mation carried by cell downlinks such as the primary 
synchronization signal (PSS) and physical broadcast 
channel (PBCH). These attacks would typically lever-
age the cell’s own broadcast information to identify 
and select the specific time and frequency blocks 
to target. Note that there are many more potential 
targets than the PSS and PBCH alone; Lichtman et al. 
provide a thorough discussion of these attacks.9

Base station spoofing
Base station spoofing (both Wi-Fi and 3G/4G) is a 
proven attack used by both law enforcement and crimi-
nals to target individuals and devices via the UP. Rogue 
base stations can be configured to enable different 
types of attacks. If configured to forward connection 
information from UE to the CP and connect to a legiti-
mate cellular provider, the base station acts as if it was 
the target’s device. By reading or recording the inter-
cepted traffic, the base station can impose nearly any 
attack on the connected UE, including confidentiality 

and integrity compromise, geolocation, and DoS.11,12 
Less-complex attacks have also been demonstrated 
that do not require the breaking of encryption, such as 
collecting UE identifying data, service downgrade, and 
battery-draining attacks.5

Hardware vulnerability exploitation
The popularity of location-based apps has resulted 
in many providers of telecommunications chips bun-
dling global navigation satellite system (GNSS) func-
tionality into their mobile telephone system as a 
system-on-a-chip solution. GNSS, being a set of 
well-documented standards designed to work with a 
low signal-to-noise ratio, enables a myriad of terres-
trial spoofing attacks. For instance, CVE-2019–2254 
represents a vulnerability applicable to numerous 
Qualcomm chip sets that uses the spoofed commands 
sent to the GNSS chip to conduct a buffer overflow 
and execute arbitrary code on a system.13,14 The prev-
alence of nonmobile telephone features on modern 
smartphones represents a significant attack vector 
for hardware vulnerabilities by increasing the device’s 
attack surface, as discussed previously.

Key catching and stealing
Encryption between UE and RAN utilizes a perma-
nently stored key in the UE’s subscriber identification 
module (SIM) card. The IMSI and International Mobile 
Equipment Identity of the UE are protected by tem-
porary IDs once the device is connected to the RAN. 
However, an attacker can force a situation where the 
temporary identifiers (IDs) stored in the UE and net-
work fall out of synchronization. In this case, the net-
work may request the UE to use its permanent ID to 
reestablish communications. In 4G networks, this 
mechanism could be exploited by the attacker to force 
all UEs served by a particular gNB to broadcast their 
IMSI, which was done in the clear, referred to as IMSI 
catching. Since the attack uses a CP authorization 
mechanism to steal user credentials, it would be a UPA 
launched from the CP.

Additionally, the use of permanent symmetric keys 
has fallen under scrutiny after The Great SIM Heist 
revealed a large-scale attack against the SIM provision-
ing process.4,15,16 Other methods for storing permanent 
authorization credentials include embedded universal 
integrated circuit cards or some other form of “soft 
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SIM” that can be remotely provisioned. Adversarial 
manipulation of any remote provisioning process could 
be used in a DoS attack or to enable the connection of 
unauthorized devices to a network. Such key stealing 
operations are UPA launched from the UP because the 
credentials stored in a SIM card are part of the UE.

Timing attacks
Precise time synchronization is essential for mobile 
apps, such as the synchronization of base stations 
to enable call handoff.17 While clock synchronization 
can be accomplished via cellular signals, it can also 
be accomplished via network-based protocols such as 
the Network Time Protocol (NTP) and Precision Time 
Protocol (PTP) or by wireless signals, such as those 
from GNSS constellations supporting real-time kine-
matic positioning. Each method has an associated 
accuracy and interface—which introduces its own 
associated set of vulnerabilities. Clock synchroniza-
tion protocols such as GNSS are one way and are thus 
susceptible to man-in-the-middle (MITM) attacks. PTP 
is a two-way clock synchronization protocol, where 
the round-trip time delay can be measured to detect 
MITM attacks. However, this alone is insufficient to 
guarantee protocol security.17

Timing attacks could be utilized to increase net-
work delays, degrade communication links, or create 
opportunities for UE to connect to a spoofed network 
infrastructure. Some levels of security against this type 
of attack are offered by the variety of timing synchro-
nization options available to the gNB. An attack that 
manipulates the timing inputs to the gNB to increase 
delays or degrade service is a UPA launched from the 
CP since timing is a service provided through the CP.

MITIGATIONS AND THE WAY 
AHEAD FOR IMPROVED SECURITY 
IN 5G AND BEYOND

Agreement on a common scheme for categorizing secu-
rity vulnerabilities is a required first step to enabling us 
to be efficient and effective at improving the security 
of mobile telephony. For example, the scheme can help 
us identify areas of overlap where investing our scarce 
time and people resources will maximize our return on 
investment in addressing potential threats. Vulnerabil-
ities can then be identified and investigated by using 
industrial-strength formal methods, simulations, and 

experimentation, which, in turn, feed into threat mod-
eling and security risk reduction. The goal here is to 
systematically improve 5G security and inform the 
research and development of follow-on work regard-
ing architectures, standards, protocols, and imple-
mentations. Let’s not repeat security missteps that 
occurred in prior generations of mobile telephony.

Table 2 illustrates our vector matrix, which is par-
tially populated using the attack examples described 
previously. This scheme is invariant to the evolution of 
equipment, standards, and implementations, making 
it possible to apply it to 6G and beyond—which may 
introduce new functional planes. It also helps consoli-
date multiple attack methods, making common threat 
vectors within the 5G architecture easier to discern 
and assess.

Each threat warrants a discussion of mitigations 
that are beyond the scope of this article. But we can 
identify a couple of overarching mitigation consider-
ations by considering two specific attacks discussed 
previously: cell jamming and base station spoofing.

Regarding selective jamming attacks, because 
most of this “free” targeting information is codified in 
the 5G NR standards, mitigating potential attacks in 
scalable, compatible ways is a challenging and open 

DISCLAIMER

Any mention of commercial products or references 
to commercial organizations are for information 
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ment by the U.S. Government, nor does it imply that 
the products mentioned are necessarily the best 
available for this purpose. The views and conclu-
sions contained herein are those of the authors and 
should not be interpreted as necessarily represent-
ing the official policies or endorsements, either 
expressed or implied, of the U.S. Government.

TIMING ATTACKS COULD BE UTILIZED 
TO INCREASE NETWORK DELAYS, 
DEGRADE COMMUNICATION LINKS, 
OR CREATE OPPORTUNITIES FOR 
UE TO CONNECT TO A SPOOFED 
NETWORK INFRASTRUCTURE.
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area of research. Hardware changes will have to be 
avoided to ensure backward compatibility. Software 
changes for security may unacceptably reduce the 
data rate or battery life. Because of the difficulty of 
changing a mature technology, the most effective 
mitigation—restricting the amount of timing and 
frequency detail that is provided to UE prior to authen-
tication with a base station and encryption of the 
link—will have to be reserved for 6G and beyond.

Some of these same mitigations would help to 
address the security risks related to base station 
spoofing. Additional service provider mitigations 
could include automated cellular network sensing 
and anomaly detection based on unusual gNB control 
messages (for example, frequent RRC_REJECT and 
RRC_IDLE), unusually high signal strength reports, or 
inconsistent blacklisted cell data.11 UE solutions could 
involve additional checks on certain control messages 
from the base station as well as reports to the CP.11 
Both UE and edge reports would effectively increase 
the number of sensors available to a provider to detect 
malicious and accidental network issues.

Many of the rogue base station mitigations could 
also be implemented in software in the CP. While 
imposing computational and data overhead, providers 
can implement these fixes relatively quickly. But to 
ensure smooth roaming and protection across cellular 
network operators, some fixes would require changes 
to the standards. Standards changes are the source 
of urgency for fully identifying 5G threats and mitiga-
tions; 6G standards are currently being refined, and 
the window for accepting changes may close before 
all of the useful changes are identified.18

We’ve presented a novel scheme for catego-
rizing attack vectors based on a dual-plane 

architecture, such as that specified for 5G. Given 
that mobile telephony is part of the Internet, apply-
ing our scheme requires thinking about how other 
parts of the Internet interact with mobile telephony. 
The Internet can be thought of as an extension of 
the RAN, carrying CP and UE messages. With this 
perspective, how do we classify the cyberattacks 
emanating from outside of the mobile telephony 
environment in the proposed scheme? For example, 
in Table 2 we listed timing attacks as UPA from the 
CP. To us, this makes sense if NTP or PTP is the 
feature we are looking at. If, instead, we looked at a 
border router peered with a 5G network, one could 
argue that the router is part of the UP since it is part 
of the data-routing path.

Regardless of whether an attacker attempts to 
leverage weaknesses of the UP, CP, or both, improv-
ing society’s trust in the dependability of deployed 
5G NR networks and the apps they enable will 
be challenging. By embracing the concept of the 
functional-plane split, our taxonomy is usable for 
6G and beyond while remaining simple enough to 
facilitate engagement and understanding by experts 
across technical domains. By focusing on vectors 
rather than specific methods, our scheme can aggre-
gate more detailed methodologies and accommo-
date the evolution of mobile telephony technology 
and cyberattacks. The matrix can also be scaled as 
desired, while improved threat visualization enables 
allocating limited resources to obtaining the most 
fruitful security enhancements. 

Type of A�ack

UPA CPA

A�ack source UP Cell jamming used to conduct DoS a�ack
Spoofed base station conducts DoS to a
subset of a�ached UE
Spoofed UE used to a�ach an unauthorized
device to the network
Hardware vulnerability exploitation
Key stealing

Spoofed gNB obtains user credentials by
simulating multiple access requests
Jam select links in IAB path to reroute user data
through compromised gNB
Modified gNB conducts DoS against multiple
gNBs a�ached to 5G channel by falsely
advertising favorable channel characteristics 

CP IMSI catching
Timing a�acks
Use privileged access to core network to
authorize a�achment of modified gNB that
captures user credentials

Use privileged access to core network to
manipulate billing
Use privileged access to core network to facilitate
DoS a�ack by modifying routing policies, QoS,
and so on   

TABLE 2. A partially populated 5G attack vector matrix.
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