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Abstract A high number of grayling (Thymallus)

species have been described from the Altai-Sayan

mountain region, for which little to no genetic

information is available. We investigated genetic

relationships within this genus of salmonid fishes

using mtDNA and microsatellite markers. The anal-

ysis focused on three putative species, Markakol

grayling (T. brevicephalus), Upper Ob grayling (T.

nikolskyi) and Mongolian grayling (T. brevirostris).

We integrated these data with mtDNA sequences from

eight other grayling species, including two of geo-

graphic proximity to the study area. Phylogenetic

results revealed three pairs of reciprocally mono-

phyletic sister species, two of which were phyloge-

netically juxtaposed across isolated drainage systems.

Based on microsatellite analysis (up to 10 loci) no

evidence of hybridization or introgression was found

among species, supporting the mtDNA phylogeny.

Based on a time-calibrated tree, divergence times

between the focal taxa ranged from 0.36 to 1.1 MY.

The genetic data support the distinction of these

species and underscore the importance of paleohydro-

logical dynamics in this biogeographically complex

region. Well-documented mega-flood events in the

region provide a model of how the contemporary

cross-basin distribution of these species may have

evolved.

Keywords Lake Markakol, Western Mongolia �
Historical biogeography � Pleistocene � Salmonidae

Introduction

Paleoclimatic processes have played a major role in

shaping species distributions and diversity (Wiens &

Donoghue, 2004). A better understanding of the

legacies of such processes is crucial for conserving

biodiversity and modeling predictions of how species,
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as well as ecosystems, will respond to anthropogenic

climate change (Svenning et al., 2015). The interplay

between climatic processes and evolution may be

markedly different for freshwater compared to terres-

trial organisms, as drainage position and historical

connectivity play a larger role in explaining both

species ranges and phylogeographic structure (Dias

et al., 2014; Carvajal-Quintero et al., 2019). The

generalization that paleohydrological dynamics and

historical connectivity can strongly influence contem-

porary species diversity and distributions is supported

by many studies of freshwater fishes in North America

(Griffiths, 2015; Matamoros et al., 2016), Europe (Buj

et al., 2017; Levin et al., 2019), New Zealand (Craw

et al., 2007), Australia (Waters et al., 2019), Asia

(Froufe et al., 2003, 2008; de Bruyn et al., 2013) and

South America (Schönhuth et al., 2011). The origins of

this conceptual development began with a large

number of phylogeographic studies that attempted to

link phylogeographic patterns with contemporary

drainage networks and ocean basins. In Europe, such

studies on freshwater fishes began with brown trout

Salmo trutta Linnaeus, 1758 (Bernatchez et al., 1992),

European chub Squalius cephalus (Linneaus, 1758)

(Durand et al., 1999), European perch Perca fluviatilis

Linnaeus, 1758 (Nesbo et al., 1999) and European

grayling Thymallus thymallus (Linnaeus, 1758)

(Weiss et al., 2002).

Similar studies were carried out throughout Eur-

asia, including Siberia (Stepien et al., 1998; Froufe

et al., 2003). Thymallus spp. (graylings) were the

target of one of the first broad-scale phylogeographic

analyses of freshwater fishes in Siberia (Koskinen

et al., 2002). While the general phylogeographic

patterns uncovered in that study largely reflected

contemporary drainage networks, results also agreed

with a cataclysmic paleohydrological event involving

ancient Lake Baikal. Subsequent studies on the

diversity and distribution of graylings in Siberia took

advantage of the growing knowledge of large-scale

river network dynamics in this area, associated with

Quaternary climatic oscillations and glacial cycles.

While the paleogeological history of Lake Baikal has

attracted considerable research interest, elsewhere in

Siberia the potential effects of Pleistocene glaciations

on the hydrological network were underestimated or

understudied. However, beginning with the contro-

versial perspectives of Grosswald (1998), there has

been an increased understanding of the large scope and

magnitude of the paleohydrological dynamics of

Siberian rivers (e.g. Komatsu et al., 2016; Margold

et al., 2018).

Thus far, salmonid fishes, including Thymallus,

have proved to be good models for investigating the

interplay between such large-scale paleohydrological

processes and biological diversification (Koskinen

et al., 2002; Froufe et al., 2005; Weiss et al.,

2006, 2007; Froufe et al., 2008; Weiss et al., 2020).

These studies highlight the shifting phases of hydro-

logical isolation and historical connectivity within and

between major river drainage networks such as the

Amur, Lena, Enisei and Ob. These paleohydrological

insights are congruent with the description of specific

events (e.g. mega-floods) that have helped shape the

distributions of freshwater organisms (e.g. Ivanov

et al., 2016; Komatsu et al., 2016; Arzhannikov et al.,

2018).

Nevertheless, there is still much uncertainty con-

cerning the biological consequences of paleohydro-

logical dynamics, especially where knowledge of

faunal diversity and distributions is incomplete. The

Altai-Sayan mountain region, in particular, has been

insufficiently investigated concerning the distribution

and systematics of its aquatic fauna, including

grayling. Here, the headwaters of the Ob and Enisei

river drainages are juxtaposed with the endorheic

basin of the Khovd and Zavkahn river drainages

(Fig. 1). These rivers harbor several putative grayling

species with unclear evolutionary relationships (i.e. T.

baicalensis Dybowski, 1874; T. brevirostris Kessler,

1879; T. nikolskyi Kaschenko, 1899; T. nigrescens

Dorogostaisky, 1923; T. brevicephalus Mitrofanov,

1971 and T. svetovidovi Knizhin & Weiss, 2009).

Thymallus nigrescens is endemic to Lake Chuvsgol,

located in the upper Enisei River drainage in Mongo-

lia, whereas T. svetovidovi is found in another branch

of the Enisei drainage (Knizhin &Weiss, 2009) that is

geographically close to Lake Chuvsgol, but in terms of

the contemporary hydrological network, very distant.

Thymallus nikolskyi, first described over 100 years

ago (Kaschenko, 1899) is reported from several

tributaries of the adjacent upper Ob River drainage

(Romanov et al., 2016; Dyldin et al., 2017), whereas T.

brevicephalus is found in the nearby Irtysh River

branch of the Ob River drainage, in Lake Markakol

(Mitronfanov, 1971) as well as in adjacent tributaries

flowing from the Altai Mountains to the Irtysh.

Thymallus baicalensis is the commonly occurring
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grayling inhabiting most of the Enisei River drainage

including both Lake Baikal and its Selenga River

headwaters in northern Mongolia (see Weiss et al.,

2007). Problematic for the understanding of these

species is that they are often reported as Arctic

grayling (T. arcticus Pallas, 1776) or assigned to

subspecies of Arctic grayling (see Knizhin et al.,

2006a and the review of Dyldin et al., 2017).

Thymallus brevirostris occurs in the endorheic basin

of the Khovd and Zavkahn river drainages of Western

Mongolia and the Tuva Republic in Russia. The

phenotypic variability of T. brevirostris in Western

Mongolia is large, and not restricted to the large-

piscivorous phenotype most commonly associated

with the taxon (Knizhin et al., 2008; Slynko et al.,

2010).

For a better understanding of distribution patterns

of freshwater fishes, it is essential to integrate

paleohydrological and phylogenetic information (Car-

vajal-Quintero et al., 2019). Systematic studies of the

region’s freshwater fauna will provide not only a

better understanding of the evolutionary history of

specific organisms but also potentially help fill

knowledge gaps in the paleohydrological history itself

(Koskinen et al., 2002; Wong et al., 2004; Near &

Keck, 2005). The extremely dynamic paleohydrolog-

ical events in the Altai-Sayan mountain region were

asynchronous with those in Siberia and western

Central Asia (Gillespie et al., 2008). These events

involved ice-dammed lakes and fluvial catastrophes,

exceeding in magnitude the renowned flood of Lake

Missoula in the Western USA (Agatova & Nepop,

2019 and citations therein). Mega-floods are well

documented in the Lena (Margold et al., 2018), Enisei

(Arzhannikov et al., 2018) and Ob river drainages

(Bohorquez et al., 2015; Komatsu et al., 2016). The

latter has been estimated to be two orders of magnitude

larger than contemporary floods of the world’s largest

rivers (Agatova & Nepop, 2019 and citations therein).

While these events were probably largely catastrophic

for many organisms in the short-term, they also likely

resulted in drainage rearrangements and cross-drai-

nage colonization corridors that led to lineage distri-

butions that contrast with the freshwater

phylogeographic paradigm of isolation among drai-

nages (Avise, 2007; Lerceteau-Köhler et al., 2013).

Here we constructed an mtDNA molecular phy-

logeny of putative (following Dyldin et al., 2017 and

Fig. 1 a Overview map of Asia showing the location of the

study area in a box, and the flow of three major Siberian river

systems; Altai-Sayanmountain region in grey; b overview of the

upper Ob and Enisei River drainages as well as the adjacent

endorheic basin of Western Mongolia, including the focal area

of this study. The numbered sample sites are color-coded to

represent the three grayling species known to occur in this

region; green = T. brevirostris, red = T. brevicephalus, and

blue = T. nikolskyi (same as in Fig. 3). Shown are the

approximate distribution ranges of these species along with

those of T. svetovidovi, T. baicalensis and T. nigrescens as well
as several hypothesized mega-flood events shown with black

arrows. These events are (a) Tunguska–Enisei shortcut; (b) Altai

as shown in Komatsu et al., 2016); (c) Mogen–Buren valley

outburst (Agatova et al., 2015); (d) Sayan flood (Komatsu et al.,

2016); and (e) Angara breakout (Arzhannikov et al., 2018)
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Frick et al., 2020) Thymallus species occurring in the

Altai-Sayan region, using both original data and data

obtained from the literature (Koskinen et al., 2002;

Froufe et al., 2005; Knizhin et al., 2008; Knizhin &

Weiss, 2009). Using mitochondrial and microsatellite

data, we further investigated the molecular phylogeo-

graphic and population genetic structure of those three

taxa, distributed in the Irtysh and Biya sub-drainages

of the Ob River drainage, and the endorheic basin of

Western Mongolia. We also used coalescent modeling

to help understand the recent evolutionary history of T.

brevicephalus. For these analyses, we used both

mitochondrial and microsatellite markers. No popula-

tion genetic data are presently available for these three

taxa and, for T. brevicephalus, this represents the first

investigation with molecular genetic markers.

Materials and methods

In 2012, 89 grayling were captured via gill nets from

three locations in the upper Irtysh drainage in

Kazachstan: the Kara-Kaba River (Kka); the Urunk-

haika River (Rur), a tributary of Lake Markakol; and

the Kaldzhir River (Kal), the lake’s primary outflow

(Fig. 1; Table 1). Additional samples (N = 40) from

Lake Teletskoye (Biy) in the upper Ob River drainage,

and various locations in the Khovd (Khg, Kht, Khv,

Tol, Ach), and Zavkhan (Kn) river drainages (N = 62)

of Western Mongolia were included (Knizhin et al.,

2008; Fig. 1; Table 1). Whole genomic DNA was

isolated from ethanol preserved fin clips using a high

salt (ammonium acetate) extraction protocol (Sam-

brook et al., 1989). The complete mtDNA control

region (CR) together with partial segments of the two

flanking tRNA (Proline & Phenylalanine) genes was

amplified in 32 samples from the Irtysh River drainage

basin using the primers CRRII_Int2F (50-GGA ATC

CCCCGGCTTCTAC-30), CRI_ Int1R (50-ACT TCC

TGG TTT AGG GGT TTG AC-30) and the internal

primer Int5R (50-ATA TAA GAG AAC GCC CGG

CT-30). Additionally, six samples from Lake Telet-

skoye were amplified with the primers LRBT-25 and

LRBT-1195 (Uiblein et al., 2001). Use of the mtDNA

CR allows comparison with a large number of publicly

available sequences, and the gene has proven useful

for both within- and between-species analyses in the

genus (Weiss et al., 2002; Koskinen et al., 2002;

Froufe et al., 2005; Weiss et al., 2020). PCRs were

done in 25 ll with each reaction containing 13.5 ll
H2O, 5 ll of Phusion GC Buffer (Thermo Scientific),

0.5 ll of 10 mM dNTPs, 1.25 ll 10 mM of each

primer, 2.5 ll Phusion Polymerase, and 1 ll of

100 ng/ll DNA. Initial PCR denaturation was at

98�C for 30 s, followed by 35 cycles at 98�C for 10 s,

annealing at 57�C (LRBT-25 and LRBT-1195) or

55�C (CRII_Int2F, CRI_Int1R and Int5R) for 30 s and

72�C for 30 s and final extension at 72�C for 10 min.

PCR products were purified with ExoSap-IT (Amer-

sham Biosciences) and sequenced on an ABI 3130xl

Genetic Analyzer using a BigDye Terminator v3.1

Cycle Sequencing Kit (Applied Biosystems).

Phylogenetic analysis

New sequences were aligned together with additional

CR sequences (N = 66) from previously published

studies (see Table 1 and Supplementary Material S1).

Including two outgroup taxa, a total of 104 sequences

were aligned using the Mafft multiple sequence global

pair alignment (Katoh & Stanley, 2013) and reduced

to unique haplotypes with the DNA collapser tool on

the FaBox 1.5 platform (Villeseon, 2007). Phyloge-

netic analyses were carried out with Maximum

Likelihood (ML) and Bayesian Inference (BI). The

best-fit model (HKY?I?G) of nucleotide substitution

was identified using jModelTest2 v2.1.6 (Darriba

et al., 2012). The ML phylogeny was reconstructed

using RAxML-HPC2, v8.2.12 (Stamatakis, 2014),

with the model GTR ? G (following RAxML

authors’ recommendation) and 1000 bootstrap itera-

tions. Both jModelTest and RAxML were run in the

CIPRES gateway (Miller et al., 2010). The BI analysis

was performed with MrBayes v3.2.6 (Ronquist &

Huelsenbeck, 2003) with the model HKY?I?G, again

run in the CIPRES gateway. Two independent runs of

2 9 107 generations, sampled every 2000 generations,

were performed, each with four chains (three hot, one

cold). A burn-in of 20,000 generations was determined

by assessing ESS values with Tracer v1.7.1 (Rambaut

et al., 2018). The two independent runs were merged,

and a 50% majority rule tree generated with MrBayes

v3.2.6 offline. To gain a non-bifurcating perspective of

haplotype relationships among drainages, a haplotype

network was generated with a 95% parsimony crite-

rion (Templeton et al., 1992) using TCS v1.13

(Clement et al., 2000). For this analysis, indels were

coded as a fifth state character.
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To estimate divergence times between species, a

time-calibrated phylogeny was produced in BEAST

(Drummond & Rambaut, 2007; Suchard & Rambaut,

2009) in CIPRES science gateway (Miller et al.,

2010). The analysis was carried out with the same

substitution model used for the MrBayes phylogeny

and uncorrelated relaxed molecular clock priors with

lognormal distributions (Drummond et al., 2006). The

Birth–Death speciation process (Gernhard, 2008) was

chosen as a tree prior, given the dataset comprised

intra- and inter-specific relationships. The substitution

rate prior was set with a normal distribution and 1%

per MY (average 0.01 and 0.002 SD) following the

mtDNA molecule calibration for salmonids (Smith,

1992) and the reported lower bound of the expansion

described in Koskinen et al. (2002). Analysis was

performed with one 30 M MCMC iterations run,

sampling every 3000 runs. Burn-in and run conver-

gence (ESS[ 200) were determined using Tracer

v1.7.1 (Rambaut et al., 2018). The final tree was

produced in TreeAnnotator v1.10.4 (in the BEAST

package) and formatted in FigTree v1.4.4 (Rambaut,

2012).

To characterize further the differences within and

among putative species, the nucleotide diversity (Nei

& Li, 1979) was calculated using DnaSP v5 (Librado

& Rozas, 2009). Net nucleotide divergence (Da)
between putative species (uncorrected p-distances)

was calculated using MEGA v10.0.05 (Kumar et al.,

2018).

Population-level genetic structure

To evaluate genetic relationships within and among

sample locations and provide bi-parentally inherited

nuclear DNA markers to compliment the mtDNA-

based phylogenetic reconstruction, we examined

allelic variation across 10 microsatellite loci. How-

ever, due to the high genetic divergence among groups

of samples, presumably spanning different species, not

all loci amplified or revealed polymorphism for all

samples. Thus, all 10 loci were applied to samples

from the upper Irtysh drainage (T. brevicephalus),

while only seven loci could be applied to samples from

the Biya River (T. nikolskyi) and Western Mongolia

(T. brevirostris). Loci were amplified using duplex or

triplex PCRs following conditions in Weiss et al.

(2013) (see Table 2) on an ABI 3130xl Genetic

Analyzer and scored using Gene Mapper softwareT
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šn
ik

et
al
.
(2
0
0
0
)

T
h
ym

a
ll
u
s

th
ym

a
ll
u
s

R
:
G
T
T
T
C
T
T
G
A
T
T
T
C
A
T
A
A
T
C
A
G
G
T
C
A
A
T
A
G
T
C
A
T

T
ar
1
0
3

(A
T
C
C
) 7
T
C
C
(A

T
C
C
) 1
4

F
:
C
A
G
T
C
G
G
G
C
G
T
C
A
T
C
A
C
G
G
G
G
A
T
C
A
A
T
A
A
A
G
T
A
T
C
C

H
E
X

5
8
�C

D
ig
g
s
&

A
rd
re
n

(2
0
0
8
)

T
h
ym

a
ll
u
s

a
rc
ti
cu
s

R
:
C
T
T
C
A
C
T
G
T
C
G
C
T
G
T
G
A
G
T
A
C

T
th
4
4
5

(G
A
T
A
) 2
0

F
:
T
G
A

C
G
G

C
T
A

C
A
G

G
A
A

T
T
G
T

N
E
D

5
8
�C

Ju
n
g
e
et

al
.
(2
0
1
0
)

T
h
ym

a
ll
u
s

th
ym

a
ll
u
s

R
:
G
T
T
T
C
T
T
C
C
A
C
A
G
A
G
G
G
T
T
C
T
A
C
A
T
T
G

5
P
le
x

T
ar
1
0
0

(C
T
T
T
) 5
C
T
T
C
(C
T
T
T
) 1
8

F
:
C
A
G
T
C
G
G
G
C
G
T
C
A
T
C
A
T
T
T
G
G
A
T
G
T
G
T
C
A
G
A
C
C
T
G

N
E
D

5
8
�C

D
ig
g
s
&

A
rd
re
n

(2
0
0
8
)

T
h
ym

a
ll
u
s

a
rc
ti
cu
s

R
:
G
A
G
A
A
A
G
C
A
A
G
G
A
G
A
A
A
T
C
A
C

T
ar
1
0
1

(C
T
T
T
) 2
2

F
:
C
A
G
A
G
C
A
C
A
C
C
A
A
G
C
A
G
A
G

H
E
X

5
8
�C

D
ig
g
s
&

A
rd
re
n

(2
0
0
8
)

T
h
ym

a
ll
u
s

a
rc
ti
cu
s

R
:
G
T
T
T
C
T
T
A
G
G
G
C
A
A
G
T
C
A
T
T
C
C
A
G
T
C

T
ar
1
1
0

(T
A
G
A
) 3
0

F
:
G
C
A
A
T
A
A
C
A
A
T
T
C
C
A
T
G
A
G
A
A
G

F
A
M

5
8
�C

D
ig
g
s
&

A
rd
re
n

(2
0
0
8
)

T
h
ym

a
ll
u
s

a
rc
ti
cu
s

R
:
G
T
T
T
C
T
T
C
T
C
C
T
C
T
G
A
T
T
C
C
A
A
G
A
A
A
T
G

T
ar
1
1
2

(T
A
T
C
) 7

F
: C
A
G
T
C
G
G
G
C
G
T
C
A
T
C
A
C
C
T
G
G
G
A
A
T
C
A
A
C
A
A
A
G
T
A
T
C

N
E
D

5
8
�C

D
ig
g
s
&

A
rd
re
n

(2
0
0
8
)

T
h
ym

a
ll
u
s

a
rc
ti
cu
s

R
:
A
G
G
A
G
G
T
T
C
A
G
T
G
A
G
T
G
T
T
T
C

T
th
3
1
3

(G
A
G
T
) 2
2

F
:
A
A
A
C
C
A
G
T
C
C
A
A
G
C
G
A
G
A
G

F
A
M

5
8
�C

Ju
n
g
e
et

al
.
(2
0
1
0
)

T
h
ym

a
ll
u
s

th
ym

a
ll
u
s

R
:
G
T
T
T
C
T
T
C
T
C
C
T
G
T
T
T
A
T
C
A
C
A
T
G
A

S
h
o
w
n
ar
e
th
e
lo
cu
s
co
m
b
in
at
io
n
s
fo
r
th
e
si
n
g
le
an
d
tw
o
m
u
lt
i-
p
le
x
P
C
R
s,
in
cl
u
d
in
g
th
e
lo
cu
s
n
am

e,
re
p
ea
t
m
o
ti
f,
p
ri
m
er

se
q
u
en
ce
s,
fl
u
o
re
sc
en
t
d
y
e
u
se
d
,
an
n
ea
li
n
g
te
m
p
er
at
u
re

(T
a
),
li
te
ra
tu
re

so
u
rc
e,

an
d
fo
ca
l
sp
ec
ie
s
o
f
th
e
o
ri
g
in
al

cl
o
n
in
g
an
d
lo
cu
s
d
ev
el
o
p
m
en
t

a
F
=
fo
rw

ar
d
,
R
=
re
v
er
se

123

Hydrobiologia



v3.7 (Applied Biosystems). The number of alleles per

locus, deviations from Hardy–Weinberg Equilibrium

(HWE) based on FIS values, and deviations from

linkage equilibrium (LE) were calculated with FSTAT

v2.9.3.2 (Goudet, 2001). Observed and expected

heterozygosity, and two different pairwise measures

of differentiation, one based on an infinite allele model

(an FST analog) and one based on a stepwise mutation

model (RST), were calculated using ARLEQUIN

v3.5.1.2 (Excoffier & Lischer, 2010). The estimates

of pairwise differentiation were used to evaluate the

potential contrast between differentiation within and

between putative species across multiple sampling

locations.

Genetic relationships among individual genotypes

of Thymallus spp. (without regard to location or

assumed taxonomic assignment) were graphically

represented using a factorial correspondence analysis

(FCA) computed in GENETIX v4.05.2 (Belkhir et al.,

1996–2004). This multi-variate procedure is based on

a matrix of binary input variables representing the

presence or absence of each microsatellite allele

across all loci. Additionally, a Bayesian clustering

method in STRUCTURE v2.3.4 (Pritchard et al.,

2000) was used to assess the overall genetic structure

in the data, again, without a-prior assignment of

individuals to species or drainages. The posterior

probabilities of K (number of populations) were

estimated assuming uniform prior values ofK between

1 and 6. Structure was run for 100,000 iterations, of

which the first 50,000 iterations were discarded as

burn-in and five independent replicates of the MCMC

were conducted for each value of K assuming an

admixture model and correlated allele frequencies.

We determined the numbers of K that best fit the data

with the ad-hoc Delta K statistic (Evanno et al., 2005)

using the online tool Structure Harvester (Earl &

vonHoldt, 2012). Graphs of individual Q values

(estimated percent ancestry) were displayed to eval-

uate potential admixture between sample locations.

Thymallus nikloskyi DIY-ABC modeling

Preliminary analysis showed significant divergence

between the two sample locations of T. nikolskyi

directly connected to Lake Markakol (Rur and Kal)

and the sample location in the more distant Kara-Kaba

River (Kka). Thus, we decided to estimate divergence

times and population history of these three population

samples using a coalescent-based Approximate Baye-

sian Computation (ABC) algorithm in the program

package DIY-ABC v2.0.4 (Cornuet et al., 2014).

Demographic parameters were simulated for three

hypothetical evolutionary scenarios (Fig. 2) and then

compared to the observed real data to rank those

scenarios (Csilléry et al., 2010). The parameters of

interest were the coalescence time (in generations)

since population divergence, discrete change in

effective population size, and the time (and rate) of

population admixture. We used a default uniform

distribution and broad priors for all parameters.

Effective population sizes were set to range from 30

to 40,000 for all populations and events. Priors for

coalescence times (in generations) were set as follows:

t1 = the most recent split between populations ranging

from 1 to 10,000; t12 = time of population size change

ranging from 30 to 20,000, whereby t12 C t1; and

t2 = the initial split from an ancestral population

ranging from 50 to 40,000 whereby t2[ t1, t2[ t12.

For scenario 2, an admixture event was modeled at

time t1, with the Rur population resulting from

admixture between Kka and Kal, with an admixture

rate of ra ranging from 0.001 to 0.999. An equal prior

probability was assumed for each competing scenario.

To assign mutation rates and evolutionary models,

genetic loci were divided into three groups: dinu-

cleotide microsatellites, tetranucleotide microsatel-

lites, and the mtDNA CR. Microsatellites had a

possible range of 40 contiguous allelic states. The 10

loci were assumed to follow a Generalized Stepwise

Mutation model (Estoup et al., 2002), where each

mutation involves an increase or decrease in allele

length by one or more several repeat motifs. To apply

this model, the parameters mean mutation rate (l) and
a geometric distribution (P) from which the number of

repeats is drawn, are required. The mean mutation

rates for both sets of microsatellite loci were assumed

to follow a uniform distribution with the prior rate per

locus per generation set to range from 10-6 to

9 9 10-4 for the dinucleotide loci, and from 10-4 to

9 9 10-4 for the tetranucleotide loci. The geometric

distribution parameter P was set to range from 0.1 to

0.3. Additionally, each microsatellite locus was char-

acterized by an individual mutation rate li, drawn
from an individual geometric distribution Pi. The

mtDNA CR was assumed to follow the Hasegawa-

Kishino-Yano substitution model (Hasegawa et al.,

1985) with a Gamma shape parameter of 0.596, and an
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assumption of invariable sites set at 61%. The mean

mutation rate per site per generation for the mtDNA

locus was also assumed to be uniform with a prior set

from 10-9 to 10-7 per site per generation. We

simulated 106 datasets for each explored scenario.

Posterior probabilities of each scenario were com-

pared using local logistic regression on 1% of the

closest simulated data set.

Results

Phylogenetic analysis

The final alignment encompassed 1009 bp of the CR,

68 bp of the tRNA proline gene and 10 bp of the tRNA

phenylalanine gene. There were 161 variable sites,

129 of which were parsimony informative. BI and ML

methods resulted in topologies that were congruent for

the focal taxa, so only the BI tree is shown (see

Supplementary Material S2 for the ML topology),

Fig. 2 Graphic representation of the three demographic sce-

narios (1, 2, and 3) that were modeled for the three population

samples of T. brevicephalus, using DIY-ABC, and the

comparative posterior probabilities of each model fitting the

real data. The demographic modeling used both 10 microsatel-

lite loci and the mtDNA CR sequences. See ‘‘Materials and

methods’’ for details
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with node support values depicted from both

approaches (Fig. 3). Incongruences in non-focal taxa

were related to the placement of branches with very

low support in both trees. Net mean divergence

(uncorrected p-distances) between species ranged

from a minimum of 0.2% (T. baicalensis Dybowski,

1874 vs. T. nigrescens Dorogostaisky, 1923) to a

maximum of 5.6% (T. tugarinae Knizhin, Antonov,

Safronov & Weiss, 2007 vs. T. grubii) (Fig. 3;

Table 3). After the splits involving Amur River

drainage species (T. tugarinae, T. grubii, T. flavomac-

ulatus, T. burejensis Antonov, 2004), T. thymallus, T.

arcticus and T. baicalolenensis Matveev, Samusenok,

Pronin & Tel’pukhovsky, 2005, three monophyletic

clades remained, representing grayling of the Altai-

Sayan mountain region. Clade A contains samples

from T. nikolskyi in the upper Ob River drainage and T.

svetovidovi in the upper Enisei River drainage. Clade

B contains haplotypes from T. nigrescens and

T. baicalensis in the Lake Baikal branch of the Enisei

drainage. Clade C includes all haplotypes from all

samples of T. brevirostris from the endorheic basin of

Western Mongolia as well as T. brevicephalus from

the upper Irtysh River drainage. The monophyly of T.

brevirostris and T. brevicephalus (Clade C) are each

supported bymoderate ML bootstrap values (69–85%)

and high BI values ([ 95%). The net mean divergence

between these two species was 0.4%, between T.

nikolskyi and T. brevirostris 1.5%, and between T.

nikolskyi and T. brevicepahlus 1.7%. T. nikolskyi

showed more nucleotide diversity (p = 0.0032) than

T. brevirostris (p = 0.0020) and T. brevicephalus

(p = 0.0011). There were shared haplotypes among

the three sampling sites for T. brevicephalus (Kka,

Kal, Rur), but especially between samples from Lake

Markakol’s tributary (Rur) and outflow (Kal).

The time-calibrated phylogeny provided approxi-

mate divergence times among the focal taxa, all well

within the Pleistocene epoch (Supplementary Material

S3). The time to the most recent common ancestor

(TMRCA) for T. brevirostris and T. brevicephaluswas

0.5 MY (0.23–0.82), and for T. nikolskyi and T.

svetovidovi 0.36 MY (0.13–0.62). The TMRCA for T.

nikolskyi and the clade containing both T. brevirostris

and T. brevicephalus was 1.1 MY (0.56–1.69), and for

the one sister taxon pair inhabiting the same river

drainage T. baicalensis and T. nigrescens the TMRCA

was 0.18 MY (0.05–0.34).

The haplotype network indicated a close relation-

ship between T. brevirostris and T. brevicephalus.

Thymallus brevirostris revealed 18 haplotypes among

35 sampled individuals and T. brevicephalus 10

haplotypes among 32 sampled individuals (Fig. 4).

The most frequent haplotype of T. brevicephalus was

shared by individuals from the two sample sites

directly connected to Lake Markakol (Rur and Kal),

although both sample sites also had private (i.e. unique

to the population sample) haplotypes. Five haplotypes

Table 3 Net pairwise distances (uncorrected p-distances) based on the complete mtDNA control region and partial tRNA flanking

regions (1087 bp in total) among all Thymallus species addressed in this analysis

1 2 3 4 5 6 7 8 9 10 11 12 13

1 T. grubii –

2 T. flavomaculatus 0.010

3 T. tugarinae 0.056 0.049

4 T. thymallus 0.034 0.035 0.043

5 T. nikolskyi 0.043 0.042 0.049 0.035

6 T. burejensis 0.037 0.034 0.053 0.036 0.031

7 T. nigrescens 0.048 0.044 0.054 0.035 0.022 0.033

8 T. baicalensis 0.047 0.044 0.049 0.035 0.020 0.033 0.002

9 T. arcticus 0.047 0.041 0.049 0.036 0.036 0.032 0.032 0.029

10 T. brevicephalus 0.045 0.042 0.044 0.030 0.017 0.030 0.018 0.016 0.031

11 T. brevirostris 0.043 0.040 0.045 0.030 0.015 0.028 0.018 0.017 0.030 0.004

12 T. baicalolenensis 0.045 0.042 0.041 0.027 0.020 0.028 0.020 0.017 0.024 0.013 0.013

13 T. svetovidovi 0.045 0.043 0.047 0.033 0.007 0.030 0.022 0.020 0.035 0.014 0.013 0.017 –
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were found exclusively in Kka, which is not directly

connected to Lake Markakol, and one haplotype was

shared between the Kka and the lake’s outflow (Kal).

The genetic relationships among haplotypes for both

T. nikolskyi and T. brevirostris and their corresponding

Fig. 3 Phylogenetic reconstruction of the relationships among

the studied species of grayling estimated using the whole

mtDNA CR and partial tRNA flanking region sequences. The

represented topology was obtained in MrBayes and calculated

using unique haplotypes only. The support values above and

below nodes indicate Bayesian posterior probability (bpp) from

MrBayes (%), and bootstrap support (bss) from RAxML,

respectively. A star denotes 100 for both bpp and bss support

values. Support values below 80% were omitted. Species are

indicated on the right side of the tree and further highlighted

using the same colors as shown in Fig. 1. Both unique and

duplicate haplotypes for each of the tree focal species as well as

T. svetovidovi are collapsed into triangles. The clades containing
the three pairs of sister species discussed in this study are labeled

A, B, & C
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geographic distribution did not support any clear

phylogeographic structure in either species.

Population genetic analysis

Individual sample locations for T. brevirostris (Khg,

Kht, Khv, Tol, Ach) revealed no statistically signif-

icant deviation from HWE proportions or LE. The

mean expected heterozygosity was high across all

sample locations and ranged from 0.67 for Lake

Khoton (Kht) to 0.81 for the Khovd River (Khv). FIS

values were distributed around zero except for the

Lake Tolbo sample (Tol) (FIS = - 0.153), which

indicates an excess of heterozygotes for this popula-

tion sample (Table 4). Pairwise genetic differentiation

(FST) for most pairwise site comparisons were low

(0.010 to 0.028), and moderate (0.075) for the

comparison of Kht and Tol (Table 5). Pairwise RST

values for these same comparisons were generally

higher but also highly variable compared to FST values

(Table 5).

Similarly, for T. brevicephalus there was no

deviation from HWE or LE for individual sample

locations (Kka, Rur, Kal), and mean expected

heterozygosity varied from 0.69 (Kal) to 0.83 (Kka)

(Table 4). Kal and Rur displayed low genetic differ-

entiation (FST = 0.037) while moderate levels of

differentiation occurred between the two populations

associated with Lake Markakol and Kka (FST-

= 0.129–0.165). The RST value (0.039) between the

two Lake Markakol populations (Rur and Kal) was

nearly identical to the FST value whereas RST values

for all other pairwise comparisons were considerably

higher, reaching 0.434 for the Kka vs. Kal comparison.

Fig. 4 TCS 95% parsimony network(s) of all haplotypes from

the three focal species, T. nikolskyi, T. brevicephalus, and T.
brevirostris. Indels were coded as a 5th character state, small

dots represent missing haplotypes, and circle size is proportional

to haplotype frequencies
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All pairwise differentiation statistics (FST and RST) for

T. brevicephalus were statistically significant

(P\ 0.05), supporting population substructure.

The mean FST between T. brevirostris samples

fromWestern Mongolia and T. brevicephalus samples

from the upper Irtysh River drainage was 0.25

whereby the individual values for each population

varied widely (0.164–0.317). The mean FST between

T. brevicephalus samples and the single sample of T.

nikolskyi (Biy) was 0.190 (0.156–0.220).

The divergence among the putative species and

different drainage systems is also seen in the FCA

diagrams. All T. brevicephalus individuals cluster

together, along the first axis (4.94% of variance) while

individuals of T. nikolskyi and T. brevirostris formed

their clusters along the second axis (4.37%) (Fig. 5a).

The third axis of the FCA distinguishes the two

population samples of T. brevicephalus associated

with Lake Markakol (Rur and Kal) from individuals

sampled from Kka (Fig. 5b). The differentiation

between Lake Markakol (Rur and Kal) and Kka is

also supported by the Bayesian clustering analysis (for

K = 4). STRUCTURE runs indicated a large change in

the posterior probabilities between K = 3 and K = 4

Table 4 Summary of genetic statistics for the seven common analyzed microsatellite loci across the sample locations for the three

focal species

Sample code NA AR HO HE FIS

T. brevicephalus (upper Irtysh river, Ob drainage)

Rur 8.143 3.581 0.767 0.738 - 0.040

Kal 8.286 3.524 0.665 0.687 0.033

Kka 11.714 4.184 0.79 0.834 0.054

T. nikolskyi (Teletskoye Lake, Ob drainage)

Biy 13.429 4.178 0.835 0.83 - 0.006

T. brevirostris (Western Mongolia)

Khg 8.286 3.742 0.714 0.723 0.012

Kht 10.571 3.547 0.631 0.669 0.057

Tol 3.429 3.429 0.81 0.724 - 0.153

Khv 8.286 4.192 0.81 0.807 - 0.003

Shown are the mean number of alleles per sample over all seven loci (NA), the mean allelic richness per sample (AR), the mean

observed (HO) and expected (HE) heterozygosity and within-population coefficient of inbreeding (FIS). For sample codes see Table 1

Table 5 Pairwise differentiation within and among the three focal species of this study based on FST (lower diagonal), and RST

(upper diagonal) statistics

Ob river drainage T. brevirostris (Western Mongolia)

T. brevicephalus (Upper Irtysh drainage) T. nikolskyi (Teletskoye Lake)

Kal Rur Kka Biy Khv Kht Khg Tol

Kal 0.039 0.434 0.316 0.679 0.655 0.620 0.713

Rur 0.037 0.409 0.308 0.706 0.682 0.654 0.740

Kka 0.165 0.129 0.267 0.615 0.600 0.593 0.696

Biy 0.220 0.193 0.156 0.245 0.312 0.278 0.308

Khv 0.248 0.248 0.164 0.131 0.002 0.038 0.145

Kht 0.317 0.165 0.200 0.193 0.023 0.053 0.273

Khg 0.284 0.254 0.199 0.175 0.014 0.026 0.125

Tol 0.288 0.258 0.189 0.174 0.010 0.075 0.028

Statistically significant values (P\ 0.05, adjusted for multiple testing) are shown in bold. For sample codes see Table 1
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thus supporting K = 3 as the most optimal solution

(following Evanno et al., 2005), with each species in a

cluster (data not shown). However, there was also a

significant peak at K = 4, with this additional group

corresponding to a distinct population sample. Thus

we display this four-cluster model (Fig. 6a), revealing

that T. brevicephalus from Lake Markakol (Kal and

Rur) and T. brevicephalus from Kara-Kaba River

(Kka) form two separate clusters (dark and light red).

Assignment probabilities (Q values) at K = 4

remained above 78% for all individuals, with little

evidence of admixture between the four groups.

Extending our data set to 10 loci for the three T.

brevicephalus populations only, produced the same

clustering at K = 2 (Fig. 6b) as with the seven loci,

with individuals of Kal and Rur in one cluster (bright

red) and individuals of Kka in a second cluster

(orange), with all individuals having a membership

coefficient of[ 90%.

Demographic modeling of Irtysh River drainage

The local logistic linear regression supported Scenario

1 (Fig. 2), as the best fit for the data, with an initial

split (t2) of Kka from an ancestral population,

followed by a change in effective population sizes

(t12) along the branch leading eventually to a split

between Rur and Kal (t1) (Fig. 2). The first split (t2) in

this scenario was estimated to occur 2 9 104 gener-

ations ago, and approximately 1 9 104 generations

ago (t12), the remaining ancestral population under-

went a demographic change leading to the final split

(t1) of the two sample populations (Rur and Kal)

5 9 103 generations ago. These results are concordant

with the differentiation between the Lake Markakol

(Rur and Kal) and Kara-Kaba River (Kka) popula-

tions. The effective population size was estimated at

2 9 104 for all populations. An overview of all priors

and the posterior probabilities of all parameters for

Scenario 1 is provided in Supplementary Materials S4.

Discussion

Phylogenetic and phylogeographic overview

The mtDNA-based phylogenetic results conform to

existing taxonomic descriptions (Dyldin et al., 2017).

Haplotypes from each of the three putative focal

species of this study (T. brevicephalus, T. brevirostris

and T. nikolskyi,) form reciprocally monophyletic

clades with their respective sister taxon. The distribu-

tions of these three taxa correspond to three rather

small adjacent freshwater ecoregions: upper Irtysh

(Ecoregion ID: 603), Western Mongolia (622), and

Chuya (604), following Abell et al. (2008). Nonethe-

less, the phylogenetic split pattern does not follow the

contemporary river drainage networks. The distribu-

tions of the focal species, along with T. svetovidovi,

the sister taxon to T. nikolskyi, appear to have been

strongly influenced by paleohydrological events. Here

we would like to point out that there is an inherent

weakness in drawing inferences based on phylogenetic

analysis of mtDNA due to its maternal inheritance

(e.g. see Ballard & Whitlock, 2004). However, our

multi-locus population genetic analyses are highly

supportive of our phylogenetic results, as there is little

to no sign of introgression or hybridization among the

three focal species. This, combined with the fact that

these species are all found in allopatry with no

contemporary hydrological connection between their

distribution areas, results in a relatively high likeli-

hood that the mtDNA phylogeny reflects the popula-

tion history of these species. We briefly review

knowledge of these species in light of our new data

as well as the existing paleohydrological information,

in an attempt to assess the role that these processes

may have played in shaping their current distributions.

Thymallus nikolskyi: Upper Ob grayling

Thymallus nikolskyi is the sister species of T. svetovi-

dovi of the upper Enisei River drainage in northwest-

ern Mongolia. The Upper Ob grayling is not widely

recognized as a distinct species outside of the Russian

literature and has been often synonymized with Arctic

grayling (T. arcticus) or recognized as a subspecies of

Arctic grayling. However, as shown here, the lineage

is 3.6% divergent from T. arcticus (Fig. 3; Table 3)

and is phenotypically distinct (Kaschenko, 1899;

Romanov et al., 2016). Severin & Zinoviev (1982)

reported on a minor karyotypic difference between the

grayling populations of the lower reaches of the Ob

(98–100 chromosomes), presumably T. arcticus, and

those of the upper reaches (100–102), presumably T.

nikolskyi. Additionally, nearly three-quarters of the 45

morphological characters investigated revealed statis-

tically significant differences between populations
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from these two reaches of the Ob River drainage

(Severin & Zinoviev, 1982).

Taxonomic revisions of Svetovidov (1936) and

Berg (1948) reported that only T. arcticus inhabit the

Ob River drainage, with the holotype of the species

stemming from an Ob River tributary, the Sob River,

which joins the Ob ca. 70 km before it drains into the

Kara Sea. This locality is over 3000 km river distance

from the headwaters of the Ob (rivers Katun, Biya and

Tom) comprising the type localities of T. nikolskyi.

This pattern of T. arcticus inhabiting the lower course

of a major Palearctic river system, and the headwaters

harboring other grayling species, is consistent across

the Ob, Enisei and Lena river drainages. Thus, T.

arcticus in the Lena River is replaced in the headwa-

ters by T. baicalolenensis (Knizhin et al., 2006a,

Weiss et al., 2006); and T. arcticus in the lowermost

Enisei River is replaced by T. baicalensis in most of

the Enisei and Lake Baikal catchments (Knizhin et al.,

2006b; Weiss et al., 2007). Of these three basins and

their corresponding species pairs, only the two taxa in

the Lena River catchment (T. arcticus and T.

Fig. 5 a First two axes of a Factorial Correspondence Analysis
(FCA) based on the presence and absence of microsatellite

alleles across seven loci for all three focal species. b second and

third axes of this same analysis

Fig. 6 aGraph of meanQ values from five independent runs of

STRUCTURE using K = 4 and seven loci for all sample

locations of the three focal species T. brevicephalus, T.
brevirostris, and T. nikolskyi. b Graph of mean Q values from

five independent runs of STRUCTURE using K = 2 using 10

loci for the three population samples (Kka, Kal, Rur) of T.
brevicephalus
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baicalolenensis) show a sister taxon relationship,

possibly reflecting within-basin cladogenesis.

Thymallus brevicephalus: Markakol grayling

Like T. nikolskyi, T. brevicephalus receives little

attention outside of the Russian literature. Based on

our mtDNA data, its divergence from T. brevirostris

occurring in the endorheic basin of Western Mongolia

corresponds to about 500,000 years, whereby its

divergence to T. nikolskyi sampled from the upper

Ob River drainage corresponds to approximately 1.1

MY. The moderately high FST values for the seven

microsatellite between T. nikolskyi and T. brevi-

cephalus (0.156–0.220) likely underestimate diver-

gence due to homoplasy, which is a common

occurrence for microsatellites from highly divergent

lineages (see Queney et al., 2001), especially if the

populations are large, as is likely the case here.

Accordingly, the RST values, which account for allele

size differences (see Slatkin, 1995 and discussion in

Sefc et al., 2007), are comparatively higher, ranging

from 0.245 to 0.312.

Thymallus brevicephalus was described based on a

considerably different head morphology compared to

either T. brevirostris or other grayling found in the Ob

River drainage (Mitrofanov, 1971; Mitrofanov et al.,

1986). Little else has been published on this species

but it is clear that, opposed to T. brevirostris, it lacks

dentition or large jaws and is a rather small-sized

grayling (mostly less than 30 cm) that primarily feeds

on benthic invertebrates (e.g. Gammarus and Tri-

choptera) and, seasonally, terrestrial insects (Coleop-

tera and Formicidae) (Mitrofanov et al., 1986).

Thymallus brevicephalus has a restricted distribution,

centered on Lake Markakol, although the exact extent

of its distribution is not known with certainty. Lake

Markakol (Rur, Kal) and Kara-Kaba river (Kka)

populations of T. brevicephalus are well-differenti-

ated, with high RST-and FST-values, with the most

likely ABC scenario supporting a split at approxi-

mately 100,000 years (generation time of 5 years)

with no likely subsequent contact. The split between

the inflow and outflow sampling sites (Rur and Kal)

equates to approximately 25,000 years. While we

assume that all three of these population samples

belong to one species, we lack sufficient phenotypic

data to definitively determine if the Kka sample can

also be phenotypically assigned to T. brevicephalus.

Thymallus brevirostris: Mongolian grayling

In contrast to the other two focal species of this study,

T. brevirostris has received considerable attention

reaching back over a century (see Knizhin et al., 2008

and citations therein). In addition to its well-docu-

mented distribution in Western Mongolia and the

Tuva Republic, Russia, several reports exist that the

species also occurs south of the Altai Mountain range

in the upper Irtysh River drainage of northern China.

These reports began with the description of Phyloge-

phyra altaica Boulenger, 1898 south of the Altai,

which, based on morphological features, has been

synonymized with T. brevirostris (Knizhin, 2009).

The present-day occurrence of T. brevirostris in this

region is poorly documented. Thymallus brevirostris is

primarily known as the only member of the genus

bearing relatively well-developed teeth on both the

upper and lower jaws, vomer, palatine and tongue

(Knizhin, 2009). The species is generally described as

a large-growing piscivorous inhabitant of the species’

poor lakes of Western Mongolia. However, surveys of

the species’ range have consistently reported a

smaller-sized, insectivorous cogener T. cf. arcticus,

sharing habitat or living close to Mongolian grayling

(Knizhin et al., 2008 and citations therein). These fish,

however, at least from Western Mongolia, and based

on mtDNA control region sequences, belong to the

same monophyletic clade as T. brevirostris (Knizhin

et al., 2008), with no apparent genetic structure. Our

current data set further supports these results with the

application of multi-locus population genetic data

(e.g. Fig. 5). Without such population genetic data,

one could not have excluded that the smaller-sized,

insectivorous grayling in the region form a distinct

genetic unit, or that phylogenetic relationship between

small insectivorous and large-piscivorous grayling

based on mtDNA is merely the result of one or more

hybridization events. Nonetheless, the high pheno-

typic variability of grayling inhabiting Western Mon-

golia still requires further explanation, and the genetic

resolution of the data presented here (mtDNA control

region ? 7 microsatellite loci) is limited and may not

be able to detect most recent genetic divergence, or

other more complex genetic-environmental phenom-

ena resulting in one or more phenotypic variants.
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Thymallus nigrescens: Chuvsgol grayling and T.

baicalensis: Enisei grayling

In contrast to the geographic and phylogenetic relation

of the three focal species, T. nigrescens and T.

baicalensis show a close sister relationship (Fig. 3)

and occur in the same major river drainage (Enisei). It

has been suggested that T. nigrescens is an ecotype of

T. baicalensis (Kaus et al., 2019). However, the

current distribution of T. baicalensis has been estab-

lished to be the result of a cataclysmic paleohydro-

logical event. As described in Koskinen et al. (2002),

Lake Baikal was colonized from Enisei River drainage

after the Angara River breakout between 110,000 and

130,000 years ago. This event began with the tecton-

ically caused isolation of the lake, subsequent rising

water levels, and an earthquake and/or landslide

resulting in a massive flood that established Lake

Baikal’s contemporary outlet to the Enisei River

drainage, via the Angara River (Arzhannikov et al.,

2018; Fig. 1). Enisei grayling expanded up into the

Selenga River of Mongolia including Lake Chuvsgol

in Northwestern Mongolia. While support for a single

expansion event into Lake Chuvsgol was supported by

both microsatellites and mtDNA (Koskinen et al.,

2002) the results of a recent Next-Generation-Se-

quencing (NGS) study has led to hypothesize a more

complex colonization of Lake Chuvsgol (Roman et al.,

2018). Additionally, evidence is provided for resource

partitioning within T. nigrescens in Lake Chuvsgol,

which may indicate incipient speciation (Olson et al.,

2019).

Biogeography and paleohydrology

While the full geographic ranges of the six Thymallus

species occurring in the Altai-Sayan mountain region

(Fig. 1 and clades A–C in Fig. 3) are not known with

certainty, it appears that all have been fundamentally

affected by major paleohydrological events. From the

mega-flood events pictured in Fig. 1, only the Angara

breakout (e in Fig. 1) has a timing relevant to the

contemporary distribution of two taxa, T. baicalensis

and T. nigrescens. The sister relationship of T.

svetovidovi and T. nikolskyi must stem from a

historical connection between the uppermost Ob River

drainage and the headwaters of the Enisei River in

northern Mongolia (or the Tuva Republic). Both the

‘‘Kas-Ket’’ (a in Fig. 1) and ‘‘Sayan’’ (d in Fig. 1)

mega-flood events (Komatsu et al., 2016) propose

connections between the Enisei and Ob river drai-

nages. Furthermore, there is evidence that T. baicalen-

sis, whose distribution was thought to be limited to the

Enisei River drainage, occurs in at least one right

tributary of the Ob River drainage, as revealed by

recent analysis based on mitogenomes across the

entire genus (Weiss et al., unpublished data). This

occurrence may be indeed directly linked to the ‘‘Kas-

Ket’’ mega-flood event (a in Fig. 1).

These events dating back to the late Pleistocene or

early Holocene are too young to explain the common

ancestry of taxa that are approximately 360,000 years

divergent. Thus, we take these events as simply

exemplary for the dynamics of the region, noting that

the traces of yet older floods along the same corridors

as those shown here would have likely been largely

erased by more recent ones. Additional biogeographic

support for these connections can be seen with the co-

occurrence of both Oreoleuciscus potanini (Kessler,

1879) and O. humilis (Warpachowski, 1899) in the

drainages of the upper Ob River and the endorheic

basin of Western Mongolia (Golubtsov et al., 1999;

Bogutskaya, 2001; Slynko & Dgebuadze, 2009;

Slynko & Borovikova, 2012).

While the ‘‘Altai’’ mega-flood (see b in Fig. 1)

(Komatsu et al., 2016), as well as the evidence of

repeated outbursts from the paleolake in the Khindik-

tik-Kol basin through the Mogen-Buren valley (see c

in Fig. 1) (Agatova et al., 2015; Agatova & Nepop,

2019), hypothesized paleohydrological corridors

between the endorheic basin of Western Mongolia

and the upper Ob River drainage, it is not clear how

these events could have influenced the contemporary

distribution of Thymallus in the region.

We lack a hypothesis for the origin of T. brevi-

cephalus as it is the sister clade to T. brevirostris and

not closely related to other Thymallus taxa found in the

Ob River drainage (T. arcticus, T. nikolskyi and T.

baicalensis). The most likely connection between the

now isolated basins of Western Mongolia and the

upper Irtysh drainage would be a corridor across the

Altai Mountains via the headwaters of the uppermost

Irtysh River (referred to as the Black Irtysh). This

region has also undergone substantial tectonic activity

as the Black Irtysh is thought to have been isolated

from the lower Irtysh River (or White Irtysh) with the

ancient Lake Zaysan being the border. Thus, rivers on

the south slopes of the Altai Mountains are
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hypothesized to have drained south into the Lake

Manas catchment in China before being diverted along

fault lines to the west into the contemporary upper

Irtysh River corridor (Yao & Li, 2010; Jolivet et al.,

2013). Here again, the co-occurrence of another genus,

Triplophysa lends support to such a transgression. The

genus is primarily found on the Tibetan Plateau (Yang

et al., 2019) but also in the upper Irtysh drainage (Yang

et al., 2016) as well as in the Uvs Nuur and Khovd

River drainages of Western Mongolia (Kottelat, 2006;

Prokofiev, 2006). Thus, an historical hydrological

colonization route through the Altai Mountains

between the endorheic basin of Western Mongolia

and the upper Irtysh River drainage of northern China

and Kazachstan seems plausible.

Several GenBank entries for Thymallus from the

Irtysh River drainage in China are inconclusive, as two

entries of mtDNA COI sequences labeled Thymallus

arcticus arcticus sampled from an unknown location

in the upper Irtysh River (GenBank nos. KT716357

and KT716358, Yang et al., 2016) group with our data

from T. brevicephalus from Lake Markakol, and a

mitogenome of T. brevirostris (GenBank no.

KJ866486, Ma et al., 2016) lists the Altai City market

as the source of the sample, leaving some doubt as to

whether the fish came from local waters or was

transported for sale from nearby Mongolia. Thus,

questions remain on whether T. brevirostris currently

occurs south of the Altai Mountains in China. Equally

intriguing is the question of whether the genetic

lineage corresponding to T. brevicephalus in our data

can be found in the uppermost headwaters of the Black

Irtysh, a part of which is found in Western Mongolia.

Future outlook

While this contribution adds considerable knowledge

on grayling diversity and relationships in the Altai-

Sayan mountain region, several issues need further

clarification. For T. brevirostris, further sampling

south of the Altai Mountains in China will be needed

to determine if the species occurs there. Deeper

genome-level sequencing will be needed to elucidate

the genetic mechanism responsible for the phenotypic

variability exhibited by the taxon. For the upper Ob

(inclusive of the large Irtysh sub-drainage and specif-

ically Lake Markakol) better phenotypic data is

needed to clarify both taxon delineation and the full

geographic distributions of T. nikolskyi and T.

brevicephalus. Here we note that T. brevicephalus

has undergone serious declines in Lake Markakol, due

to overfishing (pers comm. M. Baimukanov), and both

its phenotypic distinctiveness as well as its spawning

behavior (reportedly entering tributaries and outflows

in early spring) should be better investigated and used

to support a conservation management plan for the

species, especially considering that the entire lake

system is a nature reserve. It is also likely that T.

baicalensis and T. nikolskyi come into contact in one

or more right tributaries of the Ob, and if one of these

zones could be located one can test for reproductive

isolation, such as has been clearly shown for other

Asian grayling species in contact zones of the lower

Enisei River drainage (Weiss et al., 2007) and the

Bureya River of the Amur River (Weiss et al., 2020).

In those studies, sympatric species were clearly of

allopatric origin, similar to what we describe here for

the Altai-Sayan mountain region. Paleohydrological

processes that both isolate and reconnect lineages have

played a major role in cladogenesis and distribution of

grayling species throughout Eurasia.

Lastly, grayling inhabiting the upper Enisei and its

tributaries in Russia, just north ofMongolia, have been

poorly investigated and their taxonomic status remains

unclear. Two taxa, listed as subspecies of T. arcticus,

have been described in that region based on morpho-

logical data only (Grundriser, 1967, 1979). Consider-

ing the complexity and lineage diversity that we have

shown to occur in the Altai-Sayan mountain region

these taxa require reinvestigation, considering both

their phenotype and their phylogenetic relationships.
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