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Abstract

The ocean is the largest home for al kinds of creatures. It ranges from microscopic bacteria, dgae and fungi to the
largest animals in the world. More than 2,50,000 marine species have been discovered in the world. Benthic habitat is
important for many reasons. The benthic ecosystems in the east and near the coast support a plethora of marine life by
providing spawning habitat and feeding grounds for fins and shellfish. Benthic organisms contribute to the
sedimentation, decomposition and turnover of organic matter on the seafloor, and help to circulate nutrients to the
overlying water column. Polychaete is the most important group in the benthic community, accounting for about 75%
of the total number of macrobenthic communities. Their diet includes microorganisms, namely bacteria, microal gae,
protists and fungi. The distribution of marine bacteria in different seasons.
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I ntroduction

Marine environments are complex ecosystems
that often contain a variety of closely intertwined
organisms. Among them, eukaryotic
communicative microorganisms have received
much attention in the past decade (Egan et 4d.,
2008). The surface of all marine eukaryotes is
covered with microbes that inhabit diverse
communities and often integrate into substrates to
form biofilms (Perez-Matos et al., 2007). In
addition, host specificity has been demonstrated
by studies showing unique and stable populations
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of individuals of geographically distant species
(Webster and Bourne, 2007). The natural
microbia products of the sea have not yet been
fully studied. The marine environment consists of
many unigue microorganisms that produce
biologically active compounds to adapt to specific
environmental conditions. For example, surface
microbes are a rich source of novel biological
activity, as chemicas must be developed to
protect crops from fierce competition between
surface microbes in the marine environment.
Marine eukaryotes (Penesyan et al., 2010).
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The number of natura products found in a variety
of organisms, including plants, animals, and
microorganisms, currently exceeds one million
(Berdy, 2005), and more (40-60%) are derived
from terrestria plants. 20-25% of these natural
products have some biologically active properties,
particularly antibacterial, antifungal,
antiprotozoal, antihemolytic, anticancer, antiviral
and anti-inflammatory properties. Plants and plant
extracts have been used to treat human ailments
for thousands of vyears, and their use is
documented in the oldest archaeological sources.
In contrast, the discovery of microorganisms as
manufacturers of therapeutics did not begin until
the 20th century (Monaghan and Tkacz, 1990).
Bacteria have been shown to be associated with
all organisms. The main attraction of the sea is
Verongia sp. 50% of bacterial biomass.
Cyanobacteria and  oxychlorobacteria are
abundant in many sponges. Many eukaryotic
microbes are a'so known to coexist. For example,
Dinophyceae sponges, various invertebrates,
agae, fungi and algae (Taylor et al., 2007).
Polychaetes or polychaetes are a group of
annelids. Each part of the body has many hairs
called cheetahs and a pair of fleshy projections
called parapods made of chitin. Many spiny-
bound microbes have not been studied much.
There are many benefits to using microorganisms
as a source of bioactive compounds. Therefore, in
this study, the antibacteria activity of some fungi
was investigated. This study provides details on
the important activity of bacteria associated with
marine invertebrates.

Materialsand M ethods
I solation of marine bacteria from polychaetes

Polychaetes were collected from the Uppanar
estuary in Cuddalore, India, stored in plastic bags
and transported to a cooler laboratory where they
were stored at 40 °C. Approximately 1 g of total
folic acid tissue was triturated and diluted with 10
ml of PBS (phosphate buffer). Up to 105 using
this as a thinner. Diluted samples were plated on
marine agar and incubated at room temperature
for 48 hours. Bacterial colonies were identified
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based on significant evidence of determinative
bacteriology.

Antibacterial activity

The antibacterial activity of the culture filtrate
against bacterial clinical pathogens was tested
according to the well assay. After Swapping
pathogens from the Mueller-Hinton agar plate, 0.1
ml of a cell-free culture solution filtered at 10,000
rpm was added to the well for 20 minutes, and the
plate was incubated at 370° C. for 48 hours.
Filtration of bacterial cultures that inhibit the
growth of pathogens around the wells was
evaluated from the zone of inhibition around the
wells after 2 days.

Statistical Analysis

Data analysis was carried out with SPSS, Inc.
software (version 10.0). One-way ANOVA was
used to study any significant difference between
means with a significant level of P<0.05. Critical
difference values were used to perform multiple
comparisons between means. All data are
expressed as the mean + standard deviation.

Results

Annual bacterial densities associated with
Polychaetes were observed in samples from
January 2020 to December 2020. Simultaneous
bacterial spread was observed at various times of
the year. They were present in the monsoon and
summer seasons with densities of 1.8 x 10° and
6.0 x 10° CFU/g, respectively. During the work,
the Zobel Marine Marine Egger was used.
Bacterial transmission during the study period
was up to 6.0 x 10° CFU/g for Perineris cultifera
species in the Uppanar estuary in summer. The
highest bacterial load was recorded in the
Uppanar estuary during the summer and in the
year when the maximum load was found prior to
rainfall, with a minimum of 1.8 x 105 CFU/g in
the Uppanar estuary during the monsoon season
(Table 1).
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Table. 1 Seasonal variation of Bacterial density in different Polychaetes of Uppanar estuary.

S. No Polychaetes of Seasonal variation of Bacterial density (CFU/q)
Uppanar estuary Post monsoon | Summer Pre monsoon M onsoon
1 Arenicola sp. 25x 10° 5.1x 10° 3.6x10° 2.7x 10°
2 Ancistrosyllis parva - 5.0x 10° 35x 10° -
3 Arabella mutans 2.7x10° - - 2.1x 10°
4 Armandia longicaudata 2.8x 10° 4.7 x 10° 3.7x10° 2.8x 10°
5 Armandia intermedia - 43x 10° 3.9x10° -
6 Capitella capitata 24x10° 4.2 x 10° 3.2x10° 3.0x 10°
7 Chaetopterus sp. 25x 10° 39x 10° 3.3x10° 2.2x10°
8 Cirratulus chrysoderma 29x 10° 4.1x 10° 3.3x10° -
9 Cirratulus sp. - 4.4x10° 3.7x10° 2.6x 10°
10 Cossura coasta - 45x 10° 4.2 x 10° -
11 Dodecaceria sp. 2.6x10° 4.2 x 10° 35x 10° 29x 10°
12 Dorvillea gardineri 29x 10° - 3.7x10° 2.0x 10°
13 Euchone rosea - 4.6x 10° - -
14 Euchone tentacul ata - 5.0x 10° 3.7x10° -
15 Fabricia filamentosa 3.7x10° 5.5x 10° - 2.3x 10°
16 Goniada emeriti 3.4x10° 4.2x10° 39x10° 2.8 x 10°
17 Glycera alba 35x 10° 5.9x 10° 35x 10° 2.6x 10°
18 Glycera sp. 33x 10° 55x 10° 3.2x10° 2.7x 10°
19 Lumbrineris heteropoda - - 3.4x10° -
20 Lumbrineris aberrans 29x 10° 4.1x10° 33x10° 2.9x 10°
21 Lumbrineris brevicirra - 44x10° 3.7x10° -
22 Maldane sarsi - 45x 10° 42x10° -
23 Nephtys dibranchis 2.6x 10° 4.2 x 10° 35x 10° 29x 10°
24 Nephtys homber gi 29x 10° 4.2x10° 3.7x10° 2.0x 10°
25 Nephtys sp. 34x10° 46x 10° 3.6x10° 1.8x 10°
26 Notocirrus australis - 5.0x 10° - -
27 Nereis capensis 35x 10° 5.1x 10° 3.6x10° 2.7x 10°
28 Nereisvirens - 5.0x 10° 35x10° -
29 Nereis sp. 3.3x10° 55x 10° - 2.1x10°
30 Perinereis cultrifera 29x 10° 6.0x 10° 37x10° 2.8 x 10°
31 Scololepsis squamata - 43x 10° 3.9x10° -
32 Notomastus aberans 2.7x10° 4.7 x 10° 32x10° 3.0x10°
33 Notomastus sp. 2.7x10° 39x 10° 3.3x10° 2.2x10°
34 Polydora ciliata - 4.1x10° - -
35 Pisioneindica 25x 10° 44x 10° 37x10° 2.6 x 10°
36 Onupis sp. - 5.1x 10° 3.6x10° 2.7x 10°
Average 3.7x10° 2.8x 10° 45x 10° 37x10°
A total of 140 strains were isolated during the 1- strains tested for clinical pathogens, BSJ2 was
year sampling period. Of these, only 15 were significant against Staphylococcus aureus (31.31
selected for further investigation due to their + 0.02), Klebsiella pneumoniae (18.00+0.007),
antimicrobia activity against clinica pathogens Pseudomonas aeruginosa (33.21 + 0.014), and E.
(Table 2). In this study, we selected the power of coli.

bacteria to produce more bacteriocins. Of the 15
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Table.2 Antibacterial activity by marine bacterial filtrates

0 . Staphylococcus Klebsiella Pseudomonas E. coli
rganism : :
aureus(mm) pneumoniae (mm) = aeruginosa (mm) (mm)
BSJ01 2.07 £0.14 1.03 £0.07 1.61+0.11 1.38 £0.09
BSJ02 15.31 £0.02 18.00 +£0.007 33.21 +0.014 15.09 + 0.006
BSJ12 0.21 +0.014 0.02 £ 0.003 0.10 £0.007 0.06 £0.004
BSJ 26 1.89+0.13 1.11+£0.10 1.64+£0.11 1.52 +0.106
BSJ 39 8.19 £+0.57 2.32£0.30 5.91+0.41 3.20£0.22
BSJ41 9.63+1.37 8.57+0.59 9.65+0.67 8.56+0.07
BSJ53 2.92+0.20 2.41+0.16 2.10 £0.14 2.71+0.18
BSJ 60 3.46 +0.24 2.62 +0.18 2.32 £0.16 2.89£0.20
BSJ 72 7.35+0.12 1.27+0.15 2.72+0.19 5.00+0.35
BSJ81 13.35+0.49 4.53+0.42 7.81+0.49 6.75+0.45
BSJ 93 2.1+0.15 1.3+0.15 2.92 +0.06 0.4 £0.06
BSJ112 5+0.12 11+0.25 10+0.92 9+0.13
BSJ 104 2.07 £0.14 1.03 £0.07 1.61+0.11 1.38 £0.09
BSJ 126 0.31£0.02 0.08 £0.007 0.21+£0.014 0.09 £ 0.006
BSJ 135 0.21 +0.014 0.02 + 0.003 0.10 +0.007 0.06 +0.004

Among the collected samples, BSJ2 showed the
highest antibacterial  activity. Based on
morphological, physiological and biochemical
characteristics, it was identified as Lysinibacillus
sphaericus, named L. sphaericus, and classified as
BSJ2 species (Table 3). This strain was aso
confirmed by 16S rDNA sequencing. Further
sequencing was performed for analysis using

BLAST software. Based on the results shown in
Figure 1, the BSJ2 strain was identified as a
member of the genus Bacillus. In addition, the
similarity between the BSJ2 strain and the
Lysinibacillus sphaericus strain was 99%, and
based on this similarity, it was identified as
Lysinibacillus sphaericus. This sequence was sent
to GenBank (accession number: KF781636).

Table.3 Biochemical identification of BSJO2 strain

S. No Biochemical Tests Result
1 Gram stainig + (Rod)
2 Oxidase Reaction +
3 Catalase Reaction _

4 Growth at 42°C +

5 Production of fluorescent pigment .

6 Indole production on tryptophan .

7 Urease _

8 Esculin hydrolisis .

9 Casein hydrolisis +
10 Tween 20 hydrolisis +
11 B —Galactosidase .
12 N-Acetyl-D-glucosamine _
13 Maltose .
14 Gluconate _
15 L-Malate _
16 Citrate +

Key, - = negative, + =Positive,
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Pseudomonos aeruginosa Escherichia coli

Fig. 1 Antibacterial activity of BSJO1 marine bacterial filtrates.
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Fig. 1 Phylogenetic tree of BSJO02 strain
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Discussion

This study showed that the bacterial densities in
vertebrates were on the order of 1.8 x 10° and 6.0
x 10° CFU/g. Bacteria contamination was
observed in amost all samples throughout the
year. This may be due to the way the sediment is
settling, as it is already rich in nutrients and
therefore contaminated with bacteria. Raendran
and Nagatomo (1999) and Rooney-Varga et a.
(1997) observed seasonal changes in microbial
community composition in coasta seabed
sediments using phospholipid esters and related
fatty acids in genetic analysis. In temperate
estuaries, temperature is an important regulator of
seasonal changes in the microbia community
(Heil, 2011), suggesting that it may be responsible
for seasonal effects on the bacterial composition
of the gut lumen. The screening method used in
this study provides a rich source of
microorganisms with the desired properties. We
performed a preliminary evauation of
antimicrobial activity against clinical bacterial
pathogens such as Saphylococcus aureus,
Pneumococcus, Pseudomonas aeruginosa, and
Escherichia coli. Chemica interactions between
different types of bacteria can influence the
production and secretion of  secondary
antimicrobial metabolites (Patterson and Bolis,
1997). In this study, 140 spinal cords were
isolated from the Obner Estuary. Several studies
of the prevalence of bacterial forms in marine
environments (Fenical, 1993) and similar studies
of antibiotic production in marine bacteria
(Bernen, 1997) have been identified. 36% of
antibiotic producers were Gram-negative bacilli.
In this study, gram-positive and gram-negative
bacteria were isolated from midges (data not
shown). Since only 15 species of midges have
been isolated, more accurate culture methods can
reveal the true diversity of many related bacteria.
Different types of bacteria that produce marine
antibiotics (Hentschel, et a., 2000).
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