Abstract

For most objectively scored test items, there is one and only one correct answer, and experts all agree on what that answer is. However, for some psychological constructs, experts may disagree about the correct answer, or the answer may vary across context or culture. In those situations,
another method is needed to identify the correct answer OOe increasigly another method is needed to identify the correct answer. One increasingly popular method is
proportion consensus scoring (PCS), in which a person's score on an item is equal to the proportion of the norm group who gave that same response.
PCS is controversial (Keele \& Bell, 2009; Maul, 2011). The purpose of this paper is to determine whether PCS can be used to identify the correct answers on a test. We used items for which there is one and only one correct answer, so that we could determine objectively whether PCS gives the moderate items, but would not work well for difficult items. A total of 353 undergraduates completed the Las Vegas Vocabulary Test (Barchard, 2004). This test contains 60 multiple-choice items. First, we calculated objective scores using the dichotomous
scoring key ($1=$ right, $0=$ wrong). Next, we grouped the items by difficulty: We sorted the items scoring key ($1=$ right, $0=$ wrong). Next, we grouped the items by difficulty: We sorted the items
from easiest to hardest, and divided them into three groups of 20 . In this sample, the 20 easiest items from easiest to hardest, and divided them into three groups of 20. In this sample, the 20 easiest item
had mean scores of 60 or higher, and the 20

Introduction
For most objectively scored test items (e.g., a math problem), there is one and
only one correct answer, and experts all agree on what that answer is. Creating the only one correct answer, and experts all agree on what that answer is. Creating the
scoring key is easy. However, for some psychological constructs (e.g., emotional intelligence), experts may disagree about the correct answer to particular items, or is needed to identify the contect or culture. In those situations, anollor On increasingly popular method is to create the scoring key using the responses from
the norm group. This is referred to as consenss the norm group. This is referred to as consensus scoring.
Mayer, Caruso, \& Salovey, 2000; Mayer, Salovey, Caruso, \& Sitarenios, 2003 Zeidner, Shani-Zinovich, Matthews, \& Roberts, 2005), proportion consensus scoring is often used. In proportion consensus scoring (PCS), a person's score on an item is equal to the proportion of he norm group who gave that same response For example, if 35% of respon
In general, the tests that use consensus scoring have demonstrated adequate reliability and validity (Mayer et al., 2000; Mayer et al., 2003; Zeidner et al., 2005),
Within domains of ham interaction Within domains of human interaction, consensus scoring is plausible. For example, emotional knowledge evolves within a general social context, and thus group
consensus should be able to identify the correct answers (Mayer, Salovey, Caruso, \& Sitarenios, 2001). However, empirical investigations of this matter have not always reached the same conclusion. For example, Keele and Bell (2009)
examined item responses to the Changes and Blends tasks on the Mayer-Saloveyexamined item responses to the Changes and Blends tasks on the Mayer-SaloveyCaruso Emotional Intelligence Test (Mayer et al., 2003) and found no clear
agreement on responses to the items. Moreover, Geher and Renstrom (2004)
argued that PCS may be assessing convergence to popular opinion rather than actual ability The purpose of this paper is to determine whether PCS can be used to identify the correct answers
on a test. We used items for which there is one and only one correct answer, on a test. We used items for which there is one and only one correct answer, so that we could
determine objectively whether PCS gives the highest score to the correct answer. We hypothesized that PCS would work well for easy or moderate items. Most people would select the correct answer, and so people who selected the correct answer would obtain a high score on that item. Moreover, there would be a high correlation between the PCS scores and objective scores. However, we
hypothesized that PCS would not work well for difficult items. Most people would not select the correct answer, and so people who selected the correct answer would not get a very high score on that item. Because of this, there would be a low correlation between PCS scores and objective scores.

Method

Participants
145 male) participated in this study in return for course A total of 353 undergraduates (208 female, 145 male) participated in this study in return for cous as
credit. They ranged in age from 18 to 50 (M 19.84, SD 3.28). They identified their ethnicities as follows: 58.4% Caucasian, 12.8% Hispanic, 11.1% Asian, 8.8% African American, 5.7% Pacific Islander, and 3.1% Other. Two people did not identify their ethnicity
Measures
Las Vegas Vocabulary Test (LVVT Barchard, 2004) is a multiple choice test. There are two sections, each containing 30 items in increasing levels of difficulty. Examples of an easy and
difficult item are given in Figure 1. Each item on the LVVT was designed to have a single correct difficult, item are given in Figure 1. Each item on the LVVT was designed to have a single correct answer.

To examine the relationship
between objective scores
PCS scores, we first had to
PCS scores, we first had to
calculate objective scores. In
objective scoring, a response was
scored as 1 if it was correct or 0
if it was incorrect.
Next, we grouped the items
by difficulty. For each item,
by difficulty. For each item, w
calculated the proportion

Table 1 Correlations with Veridical Scoring for Easy Items		
Item	Veridical	PCS
	Mean	Correlation
5	. 99	1.000
3	. 96	1.000
1	. 96	1.000
34	. 95	1.000
31	. 95	1.000
37	. 93	1.000
35	. 93	1.000
8	. 93	1.000
39	. 92	1.000
32	. 92	1.000
2	. 89	. 999
6	. 84	. 999
11	. 82	1.000
7	. 78	. 999
40	. 76	. 997
9	. 75	. 997
19	. 75	. 999
18	. 69	. 993
38	. 65	. 995
55	. 62	. 994
Average	. 85	. 999

Figure 1
Example Items from the Las Vegas Vocabulary Test
36. Surge

a) Encourage	27. Demeritorious
b) Drip a) Salacious c) Twill b) Opprobrious d) Swell c) Portentous e) Schooner d) Palmary e) Ostentation	

respondents who selected the correct answer according to the objective scoring key. Then we sorted the items from easiest to hardest, and divided them into three groups of 20. In this sample, the 20
easiest items had mean scores of . 60 or higher, and the 20 most difficult items had mean scores assiest items had mean scores of 60 or higher, and the 20 most firficult items had mean soz 265 or lower. Note that these undergraduate students were performing near chance levels on the difficult items. Next, we constructed a PCS scoring key. If 20% of the sample selected option A, hen all participants who selected option A received a score of 20

Results

As expected, the correlation between PCS and objective scoring decreased as item difficulty increased. Table 1 shows the correlations for the 20 easy items, Table 2 shows the moderate items, and Table 3 shows the difficult items. The average of the correlations for the three types of items were $.999, .796$, and .235 , respectively. These results demonstrate that PCS scoring does a poor job
of identifying the correct answer for difficult items.

> Conclusions
foportion consensus scoring works well for easy items. Most people select the correct answer, and so the correct answer is given a high score. For items with a moderate level of difficulty, PCS till reasonable. It does a pretty good job of still reasonable. It does a pretty good job of
identifying the best answer. However, for difficult items, PCS performs poorly. Few people select the best answer, and so the people who do select The best answer are given a low score. The uns scoring is that large the use of consensus scoring is that large samples of
individuals converge on correct answers (Legree 1995). This study demonstrates that this rationale is only applicable to easy and moderate items. For difficult items, an alternative rationale is
needed. Future research should explore Future research should explore
alternative rationales for proportion consensus scoring, and should examine alternative normbased scoring procedures.

References

Barchard. K. A. (2004). Las Vegas Vocabularary Test. [Unpublished Psychological Test]
Available from Kimberly A. Barchard Uniesity of Nevada, LasVVegas 4505 Available from Kimberly A. Barchard, University of Nevada, LasVegas, 4505
Maryland Parkway, Las Vegas, NV, $89154-5030$, barchard@unlv.nevada.edu Geher, G. \& Renstrom, K.L. (2004). Measurement issues in emotional intelligence research. In G. Geher (Ed.) Measuring emotional intelligence: common ground
and controversv (1-17) Hauppauge, NY: Nova Science and controversy (1-17) Hauppauge, NY: Nova Science.
of the MSCEIT V. P. Personality ansunsus Individual Differencences, 47, 740-747. Doi: doi:10.1016/j.paid.2009.06.013
Legree, P. J. (1995). Evidence for an oblique social intelligence factor established with
a Likert-base testing procedures. Intelligence, $21,247-266$. doi 1010160160 ${ }^{2}$ a Likert-base testin
Maul, A. (2011). The validity of the Mayer-Salovey-Caruso Emotional Intelligence Test
(MSCEIT) as a measure of emotional intelligence. Emotion Review (MSCEIT) as a measure of emotional intelligence. Emotion Review.
Aayer J. D...Caruso D. R. \& Salovey P. (2000). Emotional intelligence
traditional standards for an intelligence. Intelligence, 27, 267-298. doi: 10.1016 S0160-2896(99)00016-1
Mayer, J. D., Salovey, P., Caruso, D. R., \& Sitarenios, G. (2001). Emotional intelligence
as a standard intelligence. Emotion, 1, 232-242. doi:10.1037/1528-3542.13.23224
24 J. D., Salovey, P., Caruso, D. R., \& Sitarenios, G. (2003). Measuring emotional yer, J. D., Salovev, P., Caruso, D. R.,. \& Sitarenios, G. (2003). Measuring emoin
intelligence with the MSCEIT V2.0. Emotion, 3,97-105 DOI: 10.1037/1528dner, M. Shani
r, M., Shani-Znovich, 1., Matthews, G., \& Roberts, R. D. (2005). Assessing emotional inteligence in gifted and non-gitted high school students: outcomes
depend on the measure, Inteligencee, 33 , 369-391. doi: 10.1016 j.intel.2005.03.001

