Advanced Functional Analysis

Problem Sheet 1

Due date: October 9, 2015
Remark: Let X, Y be Banach spaces. Remember that an operator $T \in \mathcal{L}(X, Y)$ is called compact if $T\left(\overline{B_{1}(0)}\right)$ has compact closure, where $\overline{B_{1}(0)}=\left\{x \in X \mid\|x\|_{X} \leq 1\right\}$.

Problem 1.1. Let X, Y be Banach spaces, $K \in \mathcal{L}(X, Y)$ be compact. Show:

- If K has closed range, then $X / \operatorname{ker}(K)$ is finite dimensional.
- If K is surjective, then Y is finite dimensional.
(Hint: Quotient spaces)
Problem 1.2. Let X be a Banach space. An operator $P \in \mathcal{L}(X)$ is called (linear continuous) projection if $P^{2}=P$. Let U be a closed subspace of X. Show that the following are equivalent:
i) There exists a closed subspace V of X such that $X=U \oplus V$ (i.e. $X=U+V$ and $U \cap V=\{0\}$.)
ii) There exists a linear continuous projection $P \in \mathcal{L}(X)$ with $\operatorname{rg}(P)=U(\operatorname{rg}(P)$ denotes the range of P).

Problem 1.3. If i) of Problem 1.2 above holds true, we say that U (again being a closed subspace) admits a complement in X.

- Show that, if U is finite dimensional, it admits a complement.
- We say that U is of finite codimension, if there exists a finite dimensional subspace V of X such that $X=U+V$. Show:
- If U is of finite codimension, it admits a (finite dimensional) complement.
- If U admits a finite dimensional complement V, for any subspace W of X with $X=$ $U \oplus W$ it follows that $\operatorname{dim}(W)=\operatorname{dim}(V)$.
- Show that the complement is not unique in general (e.g. by providing a counterexample).

Problem 1.4. For $f \in C^{1}([0,1])$ (the real valued continuously differentiable functions) define $\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$. Show that the (embedding) operator

$$
\begin{aligned}
& i: C^{1}([0,1],\|\cdot\|) \rightarrow C\left([0,1],\|\cdot\|_{\infty}\right) \\
& \quad f \mapsto f
\end{aligned}
$$

is compact. (Hint: Arzela-Ascoli)
Problem 1.5. For $k \in C\left([0,1]^{2}\right)$ define (the Volterra integral operator) $T_{k}: C\left([0,1],\|\cdot\|_{\infty}\right) \rightarrow$ $C\left([0,1],\|\cdot\|_{\infty}\right)$ as

$$
T_{k} x(s)=\int_{0}^{s} k(s, t) x(t) \mathrm{d} t
$$

Show that T_{k} is well defined and compact.

Problem 1.6. (Bonus question): Let X be a Banach space and U a closed subspace. With $U^{\perp}=\left\{x^{*} \in X^{*} \mid\left\langle x^{*}, u\right\rangle_{X^{*}, X}=0\right.$ for all $\left.u \in U\right\}$, show
U if of finite dimension $\quad \Leftrightarrow \quad U^{\perp}$ is of finite codimension
and, in the above case, $\operatorname{dim}(U)=\operatorname{codim}\left(U^{\perp}\right)$.

