MACHINE LEARNING APPLICATION IN THE SEARCH FOR A MAGNETIC MONOPOLE INATLAS

Ana M. Rodríguez Vera, Dr. Wendy Taylor (PhD Supervisor)

PhysRevLett.124.031802

OVERVIEW - TL;DR

- Search for magnetic monopoles in the ATLAS detector
- Pileup conditions in Run 2 affect the discriminating power of one of our signal selection variables
- Random Forest Classifier introduced in the hopes of increasing signal efficiency
- This results in improvement for higher mass monopoles, but reduced signal efficiency in lower mass monopoles

MOTIVATION

- Dirac Magnetic Monopoles (Quantum electrodynamics) [see Dirac]:
 - ➤ Explain electric charge quantization
 - Symmetry (electric-magnetic fields) in Maxwell's equations

$$\nabla \cdot \mathbf{E} = \frac{\rho_e}{\epsilon_0} \qquad \nabla \cdot \mathbf{B} = \mu_0 \ \rho_r$$

$$\nabla \times \mathbf{E} = -\mu_0 \left(\mathbf{j_m} + \frac{\partial \mathbf{B}}{\partial t} \right)$$

$$\nabla \times \mathbf{B} = \epsilon_0 \mu_0 \left(\mathbf{j_e} + \frac{\partial \mathbf{E}}{\partial t} \right)$$

Dirac string is unobservable if:

$$g_D = \frac{1}{2\alpha} = 68.5$$

$$\frac{q_m q_e}{\hbar c}$$
 $\frac{1}{2}$

$$q_m = Ng_D ec$$

- Magnetic monopole: Fundamental particle with magnetic charge "qm"
- Static source of radial magnetic field.
- Stable due to magnetic charge conservation.

m

Muon Spectrometer

METHOD

- ATLAS detector: LHC (Run 2) 13 TeV pp collisions, 137 fb⁻¹
 - \rightarrow m_m< 4 TeV
- Ionization of the medium
 - ➤ Energy loss ∝ charge² ~4700 x more ionizing than proton!
 - ➤ Many large energy deposits in the Transition Radiation Tracker (TRT)
 - Stops before muon system,
 mostly before Hadronic
 Calorimeter
 - Monopoles don't produce a shower in ATLAS LAr EM Calorimeter

Feynman-like diagrams for Drell-Yan magnetic monopole pair production.

- Drell-Yan (DY) pair production dictates kinematic distributions and predicted cross sections.
 - > Spin 0 and 1/2 monopoles
- Monopole: $|g| = 1 g_D$, $2 g_D$
- Masses considered: Between 0.2 and 4 TeV.

ATLAS DETECTOR SCHEMATIC IN THE r-Φ plane

SIGNAL DISCRIMINATING VARIABLES:

Concentrated high energy deposition in the LAr EM calorimeter.

Many large energy deposits in the TRT observed as TRT **High Threshold hits**

$$f_{HT} = \frac{HT_{hits}}{HT_{hits} + LT_{hit}}$$

beam pipe

Simulated 1000 GeV, 1g_D magnetic monopole event in ATLAS

LAr EM

ATLAS Simulation work-in-progress

CAP 2021 - Ana M.

ROC CURVES

*Receiver Operating Characteristic

- Balance between signal selection (TPR) and background rejection (FPR)
- Area under the curve (AUC) measures discriminating power

W AND F_{HT} DISCRIMINATING POWER

False Positive Rate

- w has almost ideal discriminating power!
- The larger the mass, the less we are able to discriminate using f_{HT}

F_{HT} – TRT PILEUP PROBLEM

- Increased number of interactions per bunch-crossing
 - ➤ More low threshold hits
- f_{HT} decreases as a function of the mean number of interactions per bunch crossing $<\mu>$
- Introducing alternative methods to quantify high-threshold hits

Luminosity-weighted distribution of the mean number of interactions per crossing for p-p collisions [see ATLAS Twiki]

<μ> MHEP 2021 - Ana M.

f_{HT} IMPROVEMENT THROUGH RANDOM FOREST CLASSIFIER

- Train a random forest (RF) classifier on a pair of sections called "roads" (one signal, one background) of the TRT for the same event
- Consider only TRT-barrel events

Features

• 2D representation of HT hits, LT hits and empty straws.

Labels

- signal = section |Фcluster| < 4mm
- background = section | Фrandom | < 4mm

Sections of TRT hits in r-Φ plane

CAP 2021 - Ana M.

Results

- Training and testing on limited Monte Carlo Drell-Yan samples of different masses and charges $(2g_D)$
 - Less than 5% variability on results
 - Same trends
 - No under or overfitting of the model (Train-Test score difference < 6%)
- Area Under the Curve > 0.95 shows great
 discriminating power of the Random Forest classifier
- We quantify the loss or gain of signal efficiency using the Random Forest classifier, large masses benefit from it, while small and mid range do not

FINAL REMARKS AND OUTLOOK

- We successfully trained a Random Forest Classifier to discriminate TRT roads with monopole-like signals in the TRT
- This classifier improved selection efficiency of preselected Drell-Yan spin 1/2, $1\,g_D$ monopoles of mass 4000 GeV between 10% and 26%
- In the future, we will train in a combination of samples of different masses and charges
- We will also test if the classifier performs better at higher $<\mu>$ conditions. THANK YOU!

BACKUP

HIGHLY IONIZING PARTICLES

 $-\frac{dE}{dx} = \frac{4\pi e^4 z^2 N_e}{m_e c^2 \beta^2} \left[\ln \left(\frac{2m_e c^2 \beta^2 \gamma^2}{I} \right) - \beta^2 - \frac{\delta}{2} \right]$

HECOs: Bethe-Bloch

$$-\frac{dE}{dx} = \frac{4\pi e^2 g^2 N_e}{m_e c^2} \left[\ln \left(\frac{2m_e c^2 \beta^2 \gamma^2}{I} \right) + \frac{k(g)}{2} - \frac{1}{2} - \frac{\delta}{2} - B(g) \right]$$

Magnetic Monopoles: Bethe-Ahlen see Ahlen et al.

- Electrons in the presence of a magnetic monopole would experience an interaction proportional to $g\beta$
- Bremsstrahlung energy losses go as 1/M, where M is the mass of the monopole (~TeV)
- Pair production is less likely due to the kinematics of these monopoles (γ < 10)

Energy loss per unit distance as a function of the Lorentz factor for a 1g_D 1500 GeV monopole in LAr. <u>Palacino, Gabriel.</u>

BREMSSTRAHLUNG

Bremsstahlung

$$-\frac{dE_{rad}}{dx} = \frac{16NZ^2e^2g^4}{3\hbar mc^2}$$

Ionization

$$-\frac{dE_{rad}}{dx} = \frac{16NZ^2e^2g^4}{3\hbar mc^2} \qquad -\frac{dE}{dx} = \frac{4\pi e^4z^2N_e}{m_ec^2\beta^2} \left[\ln\left(\frac{2m_ec^2\beta^2\gamma^2}{I}\right) - \beta^2 - \delta/2) \right]$$

$$-\frac{dE_{rad}}{dE_I} \approx \frac{4g^2 Z m_e}{3\pi\hbar c m} \approx 10^{-3}$$

$$\frac{4g^2Z}{3\pi\hbar c} \approx 10^4$$

$$\frac{4g^2Z}{2\pi\hbar a} \approx 10^4 \qquad \frac{m_e}{m} \approx 10^{-7}$$

RELEVANCE OF THIS STUDY

- ➤ Magnetic Monopole has not been observed.
- ➤ LHC might be producing them.
- ➤ We have data: ATLAS experiment collects valuable "all purpose" data.
- ➤ Complements other Dirac Magnetic Monopole searches:

RECENT MONOPOLE SEARCHES AT THE LHC

MoEDAL: "exposed to [...] proton-proton collisions at the LHCb interaction point [...] searching for induced persistent currents"

PhysRevLett.123.021802
Full Run 2 (13 TeV)

JHEP08(2016)067
Full Run 1 (8 TeV)

ATLAS: Highly ionizing particle signal

PhysRevLett.124.031802:

Partial Run 2 (13 TeV) analysis

PhysRevD.93.052009

Full Run 1 (8 TeV)

Results

- Training and testing on limited Monte Carlo Drell-Yan samples of different masses and charges $(2g_D)$
 - Less than 5% variability on results
 - Same trends
 - No under or overfitting of the model (Train-Test score difference < 6%)
- Area Under the Curve > 0.95 shows great
 discriminating power of the Random Forest classifier
- We quantify the loss or gain of signal efficiency using the Random Forest classifier, large masses benefit from it, while small and mid range do not

Signal Efficiency Cut Flow DY spin-1/2 1 gD

		200 GeV		1500 GeV		4000 GeV	
	Preselection	1		1		1	
Training	W	0.99		0.98		0.98	
		f _{HT}	RF	f _{HT}	RF	f _{HT}	RF
2gD 200 GeV	TRT information	0.92	0.86	0.89	0.83	0.65	0.75
2 gD 1500 GeV	TRT information	f _{HT}	RF	f _{HT}	RF	f _{HT}	RF
		0.92	0.86	0.89	0.86	0.65	0.89
2 gD 4000 GeV	TRT information	f _{HT}	RF	f _{HT}	RF	f _{HT}	RF
		0.92	0.87	0.89	0.86	0.65	0.91

SYMMETRY IN MAXWELL'S EQUATIONS

In a sense, Maxwell's equations beg for magnetic charge to exist—it would fit in so nicely. And yet, in spite of a diligent search, no one has ever found any.

- Griffiths "Introduction to Electrodynamics" p.338

Monopole "Free"

$$\nabla \cdot \mathbf{E} = \frac{\rho_e}{\epsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{B} = \epsilon_0 \mu_0 \left(\mathbf{j_e} + \frac{\partial \mathbf{E}}{\partial t} \right)$$

$$\nabla \times \mathbf{E} = -\mu_0 \frac{\partial \mathbf{B}}{\partial t}$$

With Magnetic charge

$$\nabla \cdot \mathbf{E} = \frac{\rho_e}{\epsilon_0}$$

$$\nabla \cdot \mathbf{B} = \mu_0 \left[\rho_m \right]$$

$$\nabla \times \mathbf{B} = \epsilon_0 \mu_0 \left(\mathbf{j_e} + \frac{\partial \mathbf{E}}{\partial t} \right)$$

$$\nabla \times \mathbf{E} = -\mu_0 \left(\mathbf{j_m} + \frac{\partial \mathbf{B}}{\partial t} \right)$$

SUPERVISED MACHINE LEARNING

RANDOM FOREST CLASSIFIER

- Classifiers learn hierarchy of *if/else* questions leading to a decision. These classifiers can be represented as decision trees
- Ensemble methods combine the prediction of one method to improve generalizability and robustness
 - averaging: independent training
 - boosting: sequential training
- Random Forests are an averaging method: the combination of the prediction of multiple individual decision trees introducing two sources of randomness:
 - ➤ Each tree has a random portion of the training data
 - ➤ Each tree "decides" based on a portion of the features
- The resulting predictions are averaged to reduce overfitting.

Decision Tree Classifier. *Copyright "2017 Sarah Guido, Andreas Müller.*