
Setting up development infrastructure for Petalinux projects
and Zynq MPSoC/RFSoC based hardware utilizing continuous

integration and deployment techniques

Michal Husejko

CERN SoC Interest Group Meeting

https://indico.cern.ch/event/1208190/

2022 NOVEMBER 23

https://indico.cern.ch/event/1208190/

Abstract

• In this tutorial we demonstrate how to setup basic Petalinux development and
continuous integration and deployment (CI/CD) infrastructure for MPSoC/RFSoC based
projects.

• We start by showing how to organize a workstation so that it could be used at the same
time for interactive and batch (gitlab CI based) Petalinux compilation jobs.

• In the next step we extend the setup with an example RFSoC board to show how to
perform continuous deployment of Petalinux images directly to the hardware utilizing
network boot and how to execute and organize basic tests utilizing features of gitlab CI
server.

• Tutorial relies on standard components which can be enabled in Petalinux/yocto (like
docker and kubernetes) and provides low level information when necessary so that
attendees could rather easily reuse all or part of the demonstrated content on their own
premises.

i.e. in this presentation we mainly focus on Petalinux CI/CD

2

Workstation
(Vivado & Petalinux)

Agenda in pictures

gitlab runner
(CI/batch

jobs)TFTP Srv.

NFS exp.

JTAG

Ethernet Controlled Power Outlet

eth/USB
Dongle

PS eth

JTAG/UART
over USB

USB

Terminal/GUI
(Interactive

Work)

DHCP Srv.

gitlab
server

Network 3

NAS
(optional)

Agenda in words

• Initial requirements.

• Setting up a workstation for Zynq development and (batch) CI jobs
execution.

• Setting up Petalinux CI build.

• Basic Petalinux CI flow.

• Continous Deployment to hardware (Xilinx XUP RFSoC 4x2 board).

• Gitlab CI support of junit reports, and coloring of merge requests

4

Gitlab CI – first step

5

What is required to enable gitlab CI jobs
execution ?
• Gitlab repository:

• https://gitlab.cern.ch/
• gitlab server at your Home Institute
• home installation
• ...

• Gitlab Runner(s) attached to your project (from
gitlab web UI: Settings -> CI/CD -> Runners). Your
own (project specific) or shared.

• .gitlab-ci.yml file controls what is happening
on/with your runners when events related to
your reposistory are occuring (push, merge, web
[Run Pipeline], etc.)

• In this tutorial we will use a private runner -
workstation connected to a self hosted gitlab
server (VirtualBox) – just for fun and learning
purposes.

6

https://gitlab.cern.ch/

Tutorial folder structure

• In this tutorial we utilize github RFSoC 4x2 repository which we
extend with our own recipes, build scripts and gitlab CI control
files.
• Original repo available here:

https://github.com/RealDigitalOrg/RFSoC4x2-BSP
• The above repository contains Petalinux BSP file, but don’t utilize it –

instead we build everything with our own recipes (for learning
purposes).

• Above repo extended with:
• Zynq PL code:

• Makefile to execute Vivado.
• Petalinux:

• Recipes and scripts.
• CI flow related

• Scripts.
• Tools.

7

https://github.com/RealDigitalOrg/RFSoC4x2-BSP

Our gitlab CI control file (gitlab-ci.yml)

8

Ho to launch a CI/CD pipeline

1. Navigate to Pipelines view of your repository (CI/CD -> Pipelines) and click
“Run Pipeline”

2. Launch a “web” pipeline (with default values from branch - freshest branch
and ZYNQ_BSP=k8s) by clicking “Run Pipeline”.

9

1.

2.

Image taken from the previous talk about Pynq-Z2

Setting up a workstation for Zynq
development and gitlab CI jobs
execution.

10

Setting up a workstation for Zynq
development and CI jobs execution
• Overview of HW and SW used for this tutorial

• Installing Vivado and Petalinux 2020.2

• Setting up a „Service account”

• A not so „Basic” gitlab runner installation

• RFSoC net boot services: DHCP, TFTP, and NFS

11

HW and SW used for testing

• Intel (Skull Canyon) NUC workstation:
• Will be attached to our gitlab repository as a project specific runner.

• Used for local compilations and gitlab-runner (shell executor), OS: Ubuntu LTS
18.04.6, 32 GB RAM, Intel i7-6770HQ (4c/8t).

• Configured with NFS export, TFTD, and DHCP servers.

• USB dongle with JTAG and internal network connected to RFSoC 4x2 board.

• Petalinux 2020.2 (no BSP file used).

• RFSoC 4x2 board:
• Configured for JTAG boot, no SD card used/inserted.

• Powered from power outlet controlled over Ethernet.

12

Installing Vivado and Petalinux 2020.2

• Instructions provided by Xilinx:
• https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug973-

vivado-release-notes-install-license.pdf
• https://www.xilinx.com/support/installer/installer-info-2020-2.html

• Don’t forget to install dependency packages listed by Petalinux:
• https://www.xilinx.com/support/answers/72950.html
• https://www.xilinx.com/support/answers/73296.html

• Configure licensing if running with non Webpack devices:
• Webpack Features: https://www.xilinx.com/products/design-tools/vivado/vivado-

webpack.html#webpack
• Webpack Devices: https://www.xilinx.com/products/design-tools/vivado/vivado-

webpack.html#architecture

• Tutorial references tools installed into /opt/Xilinx/v2020 folder

13

https://www.xilinx.com/support/installer/installer-info-2019-2.html
https://www.xilinx.com/support/installer/installer-info-2019-2.html
https://www.xilinx.com/support/answers/72950.html
https://www.xilinx.com/support/answers/73296.html
https://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html#webpack
https://www.xilinx.com/products/design-tools/vivado/vivado-webpack.html#architecture

Setting up a „Service account” on the
workstation
• We will add a „Service account” on our workstation.

• Local home directory (/home/soc-usr)

• This account will be used to run CI jobs, place TFTP and NFS images into service folders, and
communicate with hardware over password less ssh.

• add soc-usr to sudoers
• enable passwordless sudo (visudo -> soc-usr ALL=(ALL) NOPASSWD: ALL)

• we will use sudo access to unpack rootfs and to be able to re-start TFTP and NFS services.
• You could limit sudo access only to the commands which are nesscessary in your scripts.

• generate private+public key (ssh-keygen -t rsa -b 4096)
• We will inject public key into Petalinux rootfs so that we can easily communicate with RFSoC

board and to execute scripts remotely.

14

Default gitlab-runner installation

• Instructions provided on this website:
• https://docs.gitlab.com/runner/install/linux-repository.html

• By default – installs gitlab-runner into default folder (/home/gitlab-runner),
uses signle config file for all registered projects, and executes gitlab CI jobs
with gitlab-runner account (also added to sudoers).

• We will replace default gitlab-runner account with our „service account”
and register multiple services each with different control files.
• Unique control files per each service – control of jobs concurrency (shell executor)

• Multiple services – each with its own control file, and its own control of
work/execution folder (SATA vs. NVMe Gen4, RAID vs. splitting storage traffic).

• NOTE: You can use multiple services pattern for sharing a single computing node
among many users, having some control over QoS (concurrency) and accounting
(unique user names) 15

https://docs.gitlab.com/runner/install/linux-repository.html

Not so basic gitlab runner installation

• We will create 4 gitlab-runner services:
• gitlab-runner-vivado (concurrency 4 jobs).
• gitlab-runner-petalinux (concurrency 1 job).
• gitlab-runner-sim (concurrency 8 jobs).
• gitlab-runner-prog (concurrency 1 job).

• Each service to be executed with our service account „soc-usr”.
• Password less sudo, private+public ssh key. Temporary storage on NVMe drive.
• Example:

• sudo gitlab-runner install -n gitlab-runner-petalinux -d "/opt/gitlab-ci-tmp/petalinux" -c
"/home/soc-usr/.gitlab-runner/config-petalinux.toml" -u soc-usr

• sudo service gitlab-runner-petalinux restart

• We register runners with our gitlab repository as shell executors:
• Example:

• gitlab-runner register -c /home/soc-usr/.gitlab-runner/config-petalinux.toml

16

Our workstation in our
gitlab repository
• Our single workstation with 4 gitlab-

runner services.

• Each service with:
• More meanningful account

• Behind a single tag

• With job conccurency controll and

• Full storage location control

17

DHCP for internal network

• The DHCP server will serve internal network 10.5.5.x (Eth from USB
dongle, directly connected to RFSoC board)

• sudo service isc-dhcp-server start

18

TFTP to serve Linux kernel

• sudo service tftpd-hpa start

• Service tied to dongle eth interface (/etc/default/tftpd-hpa)

• Folder to store Petalinux generated Image:

• /tftpboot

• soc-user has write permissions to
that folder - used by CI to deploy images.

19

NFS export to serve Linux root file system

• NFS export:
/tftpboot/nfsroot *(rw,sync,no_root_squash,no_subtree_check,crossmnt)

• sudo service nfs-kernel-server start

• Petalinux bootargs:
• console=ttyPS0,115200n8 earlyprintk ip=dhcp root=/dev/nfs rootfstype=nfs

nfsroot=10.5.5.1:/tftpboot/nfsroot,port=2049,nfsvers=3,tcp rw

• soc-user uses sudo permissions to unpack Petalinux generated rootfs.tar.gz into /tftpboot/nfsroot

20

Forcing NFS server to work with specific
version.
• sudo vim /etc/default/nfs-kernel-server

• Was: # RPCNFSDCOUNT=8

• Is: RPCNFSDCOUNT="8 --no-nfs-version 4“

• sudo cat /proc/fs/nfsd/versions
-2 +3 -4 -4.0 -4.1 -4.2

21

Zynq PL Vivado CI flow
Not so important for this presentation

22

„Vivado” stage

23

Zynq PL related elements

• gitlab-ci.yml (Vivado stage)

• Makefile (Vivado project mode
flow commands)

• Original github Zynq PL design
kept as a Vivado/IPI exported
design.

• We just add a makefile:
• make xsa

24

make xsa

• … but this tutorial utilizes XSA (with bit file) available from the github
repo.

25

Basic Petalinux CI flow

26

„Petalinux” stage

27

We have three different “BSP” avaiable

• basic:
• Really basic BSP with TFTP+NFS+JTAG boot.

• docker:
• Basic + docker

• k8s:
• Basic+docker+kubernetes

• Selction of the BSP to build is done using
ZYNQ_BSP variable.
• Example to build k8s:

• Run pipeline with ZYNQ_BSP=k8s

28

29

1. Setup environment

2. Use the XSA available in the repo.

3. Create basic petalinux project (no BSP used)

4. Copy pre-generated project-spec files (kernel and rootfs configs)
- generation explained on next slides

5. Adjust settings using perl script and echo commands:
- inject branch name and short gith hash as a RFSoC hostname
- add download/sstate/sstate_local cache repositories

6. Apply recipe to add soc-usr local account, inject public key, and
create custom application which we will use during CD/test phase.

7. Build Petalinux project

8. Store artifacts

More details on simple petalinux flow

• Get XSA file from storage

• Create basic Zynq(-7000) project using “zynqMP” template – no BSP used
• petalinux-create --type project --template zynqMP --name peta20202

• Ingest XSA file into basic project
• petalinux-config --project peta20202 --get-hw-description=./../sw/design_1_wrapper.xsa --silentconfig

• Configure newly created project to match your (CI) needs:
• details on the next slides – 3 different methods to configure Petalinux from lowest to highest complexity

• Apply new config:
• petalinux-config --project peta20202 –silentconfig

• Build the project:
• petalinux-build --project peta20202

• Store artifacts in the storage (to be used by programming stage)
• In principle push whole ./peta20202/images/linux repo to the storage.

30

Initial project-spec configs – generate on your workstation
using menuconfig then push to git and use as a baseline

• DTG Settings -> Kernel Bootargs -> generate boot args automaticaly []
• Disable

• DTG Settings -> Kernel Bootargs -> user set kernel bootargs
• earlycon console=ttyPS0,115200n8 clk_ignore_unused earlyprintk rootwait root=/dev/nfs rw

nfsroot=10.5.5.1:/tftpboot/nfsroot,port=2049,nfsvers=3,tcp ip=dhcp

• Image Packaging Configuration -> Root filesystem type -> (NFS)
• Chose NFS

• Enable TFTP boot

• Image Packaging Configuration -> Location of NFS root directory (/tftpboot/nfsroot)

• Image Packaging Configuration -> tftpboot directory (/tftpboot)

• Firmware Version Configuration -> (MK_CONFIG_SUBSYSTEM_HOSTNAME) Hostname

• Firmware Version Configuration -> (MK_BSP_NAME) Product name

• Firmware Version Configuration -> (1.00) Firmware Version

• Store config in repository and then apply within CI flow as a base line – from our yaml file:
• cp ../petalinux_bsp/${MK_BSP_NAME}/sw/project-spec/configs/config peta20202/project-spec/configs/config

31

Adjust settings using perl script and echo
commands
• Two examples below:

• perl -i -pe 's/\bMK_CONFIG_SUBSYSTEM_HOSTNAME\b/${MK_EXPECTED_HOSTNAME}/g'
./peta20202/project-spec/configs/config

• echo "DL_DIR = \"/home/soc-usr/ycache/v20202/downloads\"" >> peta20202/project-
spec/meta-user/conf/petalinuxbsp.conf

32

Firmware Version Configuration ->
(MK_CONFIG_SUBSYSTEM_HOSTNAME) Hostname (perl)

• Hostname name used to help visualize traceability – inject branch
name and git sha into it (replace
MK_CONFIG_SUBSYSTEM_HOSTNAME project name)

33

Images taken from the previous talk about Pynq-Z2

Apply recipe to add soc-usr local account, inject
public key, and create custom application (1/3)

• mkdir -p ./peta/project-spec/meta-user/recipes-core/images/
• cp ${MCI_FLOW_ROOT_DIR}/recipes/recipes-core/images/petalinux-user-

image.bbappend ./peta/project-spec/meta-user/recipes-core/images/

petalinux-image-minimal.bbappend content

inherit extrausers

EXTRA_USERS_PARAMS = "\
usermod -P * root; \
useradd -P * soc-usr; \

usermod -aG docker soc-usr; \

"

34

Apply recipe to add soc-usr local account, inject
public key, and create custom application (2/3)
• petalinux-create --project peta20202 --type apps --template install --name

mhcicd --enable --force

• rm ./peta/project-spec/meta-user/recipes-apps/mhcicd/files/*

• rm ./peta/project-spec/meta-user/recipes-apps/mhcicd/mhcicd.bb

• cp ${MCI_FLOW_ROOT_DIR}/recipes/recipes-apps/mhcicd/files/id_rsa.pub

./peta/project-spec/meta-user/recipes-apps/mhcicd/files

• cp ${MCI_FLOW_ROOT_DIR}/recipes/recipes-apps/mhcicd/mhcicd.bb

./peta/project-spec/meta-user/recipes-apps/mhcicd

35

Apply recipe to add soc-usr local account, inject
public key, and create custom application (2/3)
SUMMARY = "Simple mhcicd application“

SECTION = "PETALINUX/apps“

LICENSE = "MIT“

LIC_FILES_CHKSUM =

"file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4f302“

SRC_URI = "file://id_rsa.pub \ “

S = "${WORKDIR}“

USER="soc-usr“

do_install() {

install -d ${D}/home/${USER}/.ssh/

install -m 0755 ${S}/id_rsa.pub ${D}/home/${USER}/.ssh/

install -m 0755 ${S}/id_rsa.pub ${D}/home/${USER}/.ssh/authorized_keys}

FILES_${PN} += "/home/${USER}/.ssh/*"

36

Apply recipe to add soc-usr local account, inject
public key, and create custom application (3/3)
• petalinux-create --project peta --type apps --template install --name trojan --

enable –force

• rm ./peta/project-spec/meta-user/recipes-apps/trojan/files/*

• cp ${MCI_FLOW_ROOT_DIR}/recipes/recipes-apps/trojan/files/trojan ./peta/project-

spec/meta-user/recipes-apps/trojan/files

37

Enable docker and kubernetes (k8s)

• CONFIG_YOCTO_MACHINE_NAME="docker-zynqmp-generic"

38

Speed up the Petalinux compilation

• echo "DL_DIR = \"/home/soc-usr/ycache/v20202/downloads\"" >> peta20202/project-spec/meta-
user/conf/petalinuxbsp.conf

• echo "SOURCE_MIRROR_URL = \"file:///home/soc-usr/ycache/v20202/downloads\"" >> peta20202/project-
spec/meta-user/conf/petalinuxbsp.conf

• echo "SSTATE_DIR = \"/home/soc-usr/ycache/v20202/sstate_local\"" >> peta20202/project-spec/meta-
user/conf/petalinuxbsp.conf

39

Continous Deployment to
hardware

40

41

Power outlet controlled over Ethernet

• Netio PowerPDU 4PS
• Around 220 CHF on galaxus.ch

• Commands send using curl
• More sophisticated APIs available.

• JSON and status checking would be better.

• Command constructed using gitlab CI
Variables (Settings->CI/CD->Variables)

42

43

Programming flow (1/4)

• Executed automatically after power ON.

• Extract content of ./peta20202/images/linux from storage

• Populate /tftpboot and /tftpboot/nfsroot with
content from above
• Image.ub -> /tftpboot

• rootfs -> unpack to /tftpboot/nfsroot

44

Deploy to the DANGER-ZONE

45

Programming flow (2/4)

• Remaining necessary contents of the ./peta20202/images/linux
pushed over jtag:
• petalinux-boot --jtag --uboot --fpga --bitstream system.bit

46

Programming flow (3/4)

• Push button image redeployment with full
gitlab hash traceability

47

Image taken from the previous talk about Pynq-Z2

Programming flow (4/4)

• Push button image redeployment with full gitlab hash traceability

48

Image taken from the previous talk about Pynq-Z2

Basic testing

49

50

Four example tests (trivial)

• Check if the git hash injected into petalinux images matches pipeline
commit hash
• Parse result of “hostname” command (we injected hostname and and short git hash

into ./peta20202/project-spec/configs/config file at build time).

• Execute basic script and check if the returned value matches expected
response.
• Parse result returned by our “trojan” command (we can adjust the message to inject

errors: modify the file, commit && push, and observe test passing/failing).

• Check docker version and compare against expected value.

• Display kubectl version.

• All tests executed through password less ssh.

51

52

• from our recipes/recipes-
apps/trojan/files/trojan

53

Lets inject some problems – Tony Montana
back in Town !
• Modify recipes/recipes-
apps/trojan/files/trojan

• Commit && rebuild

54

Gitlab CI test tab

• Lets use gitlab CI server backend to organize our testing reports.

• We will use junit reporting supported by gitlab CI.

• Each test (we have 4 of them) generates report.xml (in junit format).

• Junit report stored as an artifact – all per job reports combined into a single table.

55

Combined test report and error details

56

Fix the tst2

57

Gitlab environments – tracability of
deployments to the DANGER-ZONE

58

3 times a charm – fix the errors

59

Gitlab Environments – tracing deployments

60

Utlize test reports on merge requests

61

Next steps

• Clean the code and release it on gitlab.cern.ch

• Extend tutorial with a k3s cluster built out of the workstation (primary
controller/tainted) and the dev kit (computing node).

62

