
Clustering with openMosix

Maurizio Davini (Department of Physics and INFN Pisa)

Presented by

Enrico Mazzoni (INFN Pisa)

12/06/2003 HTASC 2

Introduction
• What is openMosix?

– Single-System Image
– Preemptive Process Migration
– The openMosix File System (MFS)

• Application Fields
• openMosix vs Beowulf
• The people behind openMosix
• The openMosix GNU project
• Fork of openMosix code

12/06/2003 HTASC 3

The openMosix Project MileStones

• Born early 80s on PDP-11/70. One full PDP and disk-less PDP,
therefore process migration idea.

• First implementation on BSD/pdp as MS.c thesis.
• VAX 11/780 implementation (different word size, different

memory architecture)
• Motorola / VME bus implementation as Ph.D. thesis in 1993

for under contract from IDF (Israeli Defence Forces)
• 1994 BSDi version
• GNU and Linux since 1997
• Contributed dozens of patches to the standard Linux kernel
• Split Mosix / openMosix November 2001
• Mosix standard in Linux 2.5?

12/06/2003 HTASC 4

What is openMOSIX

• Linux kernel extension (2.4.20) for clustering
• Single System Image - like an SMP, for:

– No need to modify applications
– Adaptive resource management to dynamic load

characteristics (CPU intensive, RAM intensive, I/O
etc.)

– Linear scalability (unlike SMP)

12/06/2003 HTASC 5

A two tier technology

1. Information gathering and dissemination
– Support scalable configurations by probabilistic

dissemination algorithms
– Same overhead for 16 nodes or 2056 nodes

2. Pre-emptive process migration that can migrate any process,
anywhere, anytime - transparently

– Supervised by adaptive algorithms that respond to global
resource availability

– Transparent to applications, no change to user interface

12/06/2003 HTASC 6

Tier 1: Information gathering and
dissemination

• Each unit of time (1 second) each node
gathers and disseminates information
about:
–CPU(s) speed, load and utilization
–Free memory
–Free proc-table/file-table slots

• Info sent to a randomly selected node
–Scalable - more nodes better scattering

12/06/2003 HTASC 7

Tier 2: Process migration by
adaptive resource management algorithms

• Load balancing: reduce variance between pairs of
nodes to improve the overall performance

• Memory ushering: migrate processes from a node that
nearly exhausted its free memory, to prevent paging

• Parallel File I/O: bring the process to the file-server,
direct file I/O from migrated processes

12/06/2003 HTASC 8

Performance of process migration

• CPU: Pentium III 400 MHz

• LAN: Fast-Ethernet
• For reference: remote system call = 300microsec
• Times:

– Initiation time = 1740microsec (less than 6 system
calls)

– Migration time = 351microsec per 4KB page

• Migration speed: 10.1 MB/Sec = 88.8 Mb/Sec

12/06/2003 HTASC 9

Process migration (MOSIX) vs.
static allocation (PVM/MPI)

Random process size with
average 8MB

Fixed number of processes
per node

Note the performance
(un)scalability !

12/06/2003 HTASC 10

System Image Cluster

•Users can star t from any node in the cluster , or sysadmin
setups a few nodes as " login" nodes

•Use round-robin DNS: “ hpc.qlusters” with many IPs
assigned to same name

•Each process has a Home-Node

–Migrated processes always seem to run at the home
node,
e.g., “ ps” show all your processes, even if they run
elsewhere

12/06/2003 HTASC 11

Migration - Splitting the Linux
process

• System context (environment) - site dependent- “home” confined
• Connected by an exclusive link for both synchronous

(system calls) and asynchronous (signals, MOSIX events)

• Process context (code, stack, data) - site independent - may migrate

Deputy

R
em

ot
e

Kernel Kernel

Userland Userland

openMOSIX LinkLoc
al

12/06/2003 HTASC 12

Direct File System Access
(DFSA)

• I/O access through the home node incurs high overhead
• Direct File System Access (DFSA) compliant file systems

allow processes to perform file operations (directly) in the
current node - not via the home node

• Available operations: all common file-system and I/O
system-calls on conforming file systems

• Conforming FS: GFS, openMOSIX File System (MFS),
Lustre, GPFS and pvfs in the future

12/06/2003 HTASC 13

DFSA Requirements
• The FS (and symbolic-links) are identically
mounted on the same-named mount-points

• File consistency: when an operation is
completed in one node, any subsequent
operation on any other node see the results of
that operation

–Required because an openMOSIX process may
per form consecutive syscalls from different nodes

–Time-stamp consistency: if file A is modified after
B, A must have a timestamp S B's timestamp

12/06/2003 HTASC 14

Global File System (GFS) with DFSA

• Provides local caching and cache consistency over the
cluster using a unique locking mechanism

• Provides direct access from any node to any storage
entity (via Fiber-channel)

• Latest: GFS now includes support for DFSA

• GFS + process migration combine the advantages of
load-balancing with direct disk access from any node -
for parallel file operations

• Problem with License (SPL)

12/06/2003 HTASC 15

The MOSIX File System (MFS)

• Provides a unified view of all files and all mounted FSs
on all the nodes of a MOSIX cluster as if they were
within a single file system

• Makes all directories and regular files throughout
an openMOSIX cluster available from all the nodes

• Provides cache consistency as files viewed from different
nodes by maintaining one cache at the server node

• Allows parallel file access by proper distribution of files
(each process migrate to the node which has its files)

12/06/2003 HTASC 16

The MFS File System
Namespace

/

etc usr varbin mfs

/

etc usr var bin mfs

12/06/2003 HTASC 17

Postmark (heavy FS load)
client-server performance

124.5

157.5

104.4

101.0

16KB

MFS with
DFSA

136.1153.3202.9277.2382.11711.0
MFS without
DFSA

159.5156.0161.3158.0169.1184.3NFSv3

105.5104.9104.1103.9104.0104.8

100.2100.2102.2100.0102.1102.6
Local
(in the server)

8KB4KB2KB1KB512B64B

Data Transfer Block SizeAccess
Method

12/06/2003 HTASC 18

Kernel 2.4. API and Implementation

• No new system-calls

• Everything done through /proc

/proc/hpc
/proc/hpc/admin Administration
/proc/hpc/info Cluster-wide information
/proc/hpc/nodes/nnnn/Per-node information
/proc/hpc/remote/pppp/ Remote proc. information

Performance test (1):
PVM on MOSIX

12/06/2003 HTASC 20

Introduction to PVM

Description
• PVM (Parallel Virtual Machine) is an integral framework that enables

a collection of heterogeneous computers to be used in coherent and
flexible concurrent computational resource that appear as one single
“virtual machine”

• using dedicated library one can automatically start up tasks on the
virtual machine. PVM allows the tasks to communicate and
synchronize with each other

• by sending and receiving messages, multiple tasks of an application
can cooperate to solve a problem in parallel

URL
http://www.epm.ornl.gov/pvm

12/06/2003 HTASC 21

CPU-bound test description

• this test compares the performance of the execution of sets
of identical CPU-bound processes under PVM, with and
without MOSIX process migration, in order to highlight
the advantages of MOSIX preemptive process migration
mechanism and its load balancing scheme

• hardware platform
16 Pentium 90 Mhz that were connected by an Ethernet LAN

• benchmark description
1) a set of identical CPU-bound processes, each requiring 300 sec.
2) a set of identical CPU-bound processes that were executed for random
durations in the range 0-600 sec.
3) a set of identical CPU-bound processes with a background load

12/06/2003 HTASC 22

Scheduling without MOSIX

14

P1

P2

P5

P4

P3

P6

P14

P13

P12

P11

P10

P9

P8

P7

P16

P15

CPU #

1

2

3

4

5

6

7

8

9

10

11

12

13

15

16

time (sec)150 300

14

P1

P2

P5

P4

P3

P6

P14

P13

P12

P11

P10

P9

P8

P7

P16

P15

CPU #

1

2

3

4

5

6

7

8

9

10

11

12

13

15

16

time (sec)150 300 450

P17

600

P18

P19

P20

P21

P22

P23

P24

P1 P17

P2 P18

P3 P19

P4 P20

P5 P21

P6 P22

P7 P23

P8 P24

16 processes 2 4 processes

12/06/2003 HTASC 23

Scheduling with MOSIX

14

P1

P2

P5

P4

P3

P6

P14

P13

P12

P11

P10

P9

P8

P7

P16

P15

CPU #

1

2

3

4

5

6

7

8

9

10

11

12

13

15

16

time (sec)150 300

14

P1

P2

P5

P4

P3

P6

P14

P13

P12

P11

P10

P9

P8

P7

P16

P15

CPU #

1

2

3

4

5

6

7

8

9

10

11

12

13

15

16

time (sec)150 300 450

P17

600

P18

P19

P20

P21

P22

P23

P24

P1

P17

P2

P18

P3

P19

P4

P20

P5

P21

P6

P22

P7

P23

P8

P24

16 processes 2 4 processes

12/06/2003 HTASC 24

Execution times

Optimal vs. MOSIX vs. PVM vs. PVM on MOSIX execution times (sec)

12/06/2003 HTASC 25

Test #1 results

MOSIX, PVM and PVM on MOSIX

e x e c u t i on t i m e s

12/06/2003 HTASC 26

Test #2 results

MOSIX vs. PVM random

e x e c u t i on t i me s

12/06/2003 HTASC 27

Test #3 results

MOSIX vs. PVM with background
l oad e x e cution tim e s

12/06/2003 HTASC 28

Comm-bound test description

• this test compares the performance of inter-process communication
operations between a set of processes
under PVM and MOSIX

• benchmark description
each process sends and receives a single message to/from each of its two

adjacent processes, then it proceeds with a short CPU-bound computation.

In each test, 60 cycles are executed and the net communication times,

without the computation times, are measured.

12/06/2003 HTASC 29

Comm-bound test results

MOSIX vs. PVM communication bound processes

ex ecution times (sec) f or messag e siz es of 1 K to 2 5 6 K

Performance test (2):
molecular dynamics simulation

12/06/2003 HTASC 31

Test description

• molecular dynamics simulation has been used as a tool to
study irradiation damage

• the simulation consists of a physical system of an energetic
atom (in the range of 100 kev) impacting a surface

• simulation involves a large number of time steps and a
large number (N > 106) of atoms

• most of calculation is local except the force calculation
phase; in this phase each process needs data from all its 26
neighboring processes

• all communication routines are implemented by using the
PVM library

12/06/2003 HTASC 32

Test results

• Hardware used for test
– 16 nodes Pentium-Pro 200 Mhz with MOSIX

– Myrinet network

MD performance
of MO S I X v s . t h e I B M S P 2

Performance test (3):
MPI on MOSIX

12/06/2003 HTASC 34

Introduction to MPI

Description
MPI (Message-Passing Interface) is a standard
specification for message-passing libraries.
MPICH is a portable implementation of the full MPI
specification for a wide variety of parallel computing
environments, including workstation clusters

URL
http://www-unix.mcs.anl.gov/mpi/mpich

12/06/2003 HTASC 35

MPI environment description

• Hardware used for test
– 2 nodes Dual Pentium III 800 Mhz with MOSIX

– fast-ethernet network

• Software used for test
– Linux kernel 2.2.18 + MOSIX 0.97.10

– MPICH 1.2.1

– GNU Fortran77 2.95.2

– NAG library Mark 19

12/06/2003 HTASC 36

MPI program description (1/2)

The program calculates

where α and β are two parameters.

For each value of α, a do loop is performed over four values of β.
MPI routines are used to calculate I for as many values of α as the number
of processes. This means that, for example, with a four units cluster with the
command

mpi r un –np 4 i nt pr og

each processor performs the calculation of I for the four values of β and a
given value of α (the value of α being obviously different for each
processor).

()βα ,;,,,, 5432154321 xxxxxfdxdxdxdxdxI ∫=

12/06/2003 HTASC 37

MPI program description (2/2)

While with the command

mpi r un –np 8 i nt pr og

each processor performs the calculation of I for the four values of β and a couple of

values of α.

The time employed in this last case is expected to be two times the time employed

in the first case.

12/06/2003 HTASC 38

MPI test results
MPI test at INFN Napoli

0

50

100

150

200

250

300

4 8

num of processes

ti
m

e
 (

s
e

c)
Linux Linux+MOSIX

αααα1

β 1 β 2 β 3 β 4

αααα2

β 1 β 2 β 3 β 4

Node 1

CPU #1 CPU #2

αααα3

β 1 β 2 β 3 β 4

αααα4

β 1 β 2 β 3 β 4

Node 2

CPU #1 CPU #2

Operating System 4 8
Linux 123 248
Linux+MOSIX 123 209

num. of processes

(*) each value (in seconds) is the average value of 5 ex ecution tim es

12/06/2003 HTASC 39

…continued
• MOSIX for the 2.2.19 kernel:

– 80 new files (40,000 lines)

– 109 modified files (7,000 lines changed/added)

– About 3,000 lines are load-balancing algorithms

• openMOSIX for Linux 2.4.17
– 47 new files (38,500 lines)

– 126 kernel files modified (5,200 lines changed/added)

– 48 user-level files (12,000 lines)

12/06/2003 HTASC 40

…continued

• Some ancillary tools
– Kernel debugger for 2.2. and 2.4
– Kernel profiler
– Parallel make (all exec() become mexec()
– openMosix pvm
– openMosix mm5
– openMosix HMMER
– openMosix Mathematica

12/06/2003 HTASC 41

Cluster Administration(1)
• Various installation options:

1. LTSP (www.ltsp.org)

2. ClumpOs (www.clumpos.org)

3. Debian already includes openMosix

• Use 'mps' & 'mtop' for more complete
process status information, ‘mosctl' for node
administration

12/06/2003 HTASC 42

Monitoring
• Cluster monitor - ‘mosmon’ (or ‘qtop’)

– Displays load, speed, utilization and memory information
across the cluster.

– Uses the /proc/hpc/info interface for the retrieving
information

• Applet/CGI based monitor ing tools - display
cluster proper ties

– Access via the Internet
– Multiple resources

• openMosixview with X GUI

12/06/2003 HTASC 43

openMosixview

• Developed by Mathias
Rechemburg

• www.mosixview.com
(and its mirror)

12/06/2003 HTASC 44

Application Fields

• Scalable storage area cluster (SAN + Cluster)
for parallel file access
– Scalable transaction processing systems

• Scalable web servers: assign new incoming
requests to the least loaded node
– Scalable to any number of nodes by IP rotation
– Higher availability

• Misc. applications - parallel make

12/06/2003 HTASC 45

Example: Parallel Make

• Assign the next file to the least loaded
node

• A cluster of 52 4-way 550MHz Xeon
nodes

– Runs over a 40 builds of entire code of
SAP R/3 (4.7 million lines of code)
concurrently

– Got much better performance vs. LSF
cluster for less cost in computing nodes

12/06/2003 HTASC 46

People behind openMosix

• Copyright for openMosix, Moshe Bar
• Barak and Moshe Bar were co-project managers of

Mosix until Nov 2001
• Team Members

– Danny Getz (migration)
– Avraham Ben Yehudah (MFS and 2.5.x)
– David Santo Orcero (user-space utilities)
– Michael Farnbach (extern. Patch matching, ieXFS, JFS

etc.)
– Many others, including help from Ingo Molnar, Alan Cox,

Andrea Arcangeli and Rik van Riel

12/06/2003 HTASC 47

HPC Applications
Demanding applications:

– Protein classification

– Molecular dynamics

– Weather forecasting (MM5)

– Computational fluid dynamics

– Car crash numerical simulations (parallel
Autodyn)

– Military applications

12/06/2003 HTASC 48

Current Projects

• Make GFS work with load-balancing on Fibre
channel

– A prototype is already working, using SCSI disks

• High availability
– Recovery in a client/server architecture
– A distributed lock manager (FS, Cache consistency,

shared memory)
– Monitor lock managers activities to optimizeallocation

of processes to nodes

12/06/2003 HTASC 49

Current Projects

• Migrating sockets

• Network RAM

• Distributed Shared Memory

• Checkpoint / Restart

• Queue Manager / Scheduler

12/06/2003 HTASC 50

Future Plans

• Inclusion in Linux 2.6

• Re-writing MFS
• Stub-less migration

• Increase developers to 20-30

12/06/2003 HTASC 51

Conclusions

• openMosix is today still the most advanced HPC clustering
option

• A file system like NFS is not really an option in a cluster,
MFS, pvfs, GPFS(perhaps) and GFS (…) are.

• openMosix is much more open than the predecessor
• Over 300 installations already switched to openMosix

– University of Pisa
– STM
– Intel
– INFN Napoli
– SISSA

12/06/2003 HTASC 52

Publications

• Amar L., Barak A., Eizenberg A. and Shiloh A.
The MOSIX Scalable Cluster File Systems for LINUX
July 2000

• Barak A., La'adan O. and Shiloh A.
Scalable Cluster Computing with MOSIX for LINUX
Proc. Linux Expo '99, pp. 95-100, Raleigh, N.C., May 1999

• Barak A. and La'adan O.
The MOSIX Multicomputer Operating System
for High Performance Cluster Computing
Journal of Future Generation Computer Systems, Vol. 13, March 1998

- Postscript versions at: http://www.mosix.org

12/06/2003 HTASC 53

openMosix / Qlusters OS

• Based in part on openMosix technology
• Migrating sockets
• Network RAM already implemented
• Cluster Installer, Configurator, Monitor,

Queue Manager, Launcher, Scheduler
• Partnership with IBM, Compaq, Red Hat

and Intel
• First sales to Italy

12/06/2003 HTASC 54

QlusterOS Monitor

12/06/2003 HTASC 55

openMosix Clusters in Pisa

• Anubis cluster

• 13 SuperMicro 6010H
Dual PIII 1Ghz,1GB
RAM,18 SCSI disk

• RedHat 7.2

• openMosix 1.5.4

12/06/2003 HTASC 56

openMosix Clusters in Pisa

• Seth Cluster

• 27 Appro 1124 Dual
AMD Athlon MP
1800+,1GB
RAM,18GB SCSI disk

• RedHat 7.2

• openMosix 1.5.4

12/06/2003 HTASC 57

openMosix Cluster in Pisa

• Amon cluster
• 5 dual AMD Athlon

1900+, 1GB RAM,18
GB scsi disk Evolocity
Cluster

• RedHat 7.2
• openMosix 1.5.4
• Donated by AMD

Italy

Farm operating system:
L inu x k ernel + M O S I X

12/06/2003 HTASC 59

What is MOSIX ?

Description

MOSIX is an OpenSource enhancement to the Linux kernel providing
adaptive (on-line) load-balancing between x86 Linux machines. It uses
preemptive process migration to assign and reassign the processes
among the nodes to take the best advantage of the available resources

MOSIX moves processes around the Linux farm to balance the load,
using less loaded machines first

URL
http://www.mosix.org

12/06/2003 HTASC 60

MOSIX introduction

Execution environment
– farm of [diskless] x86 based nodesboth UP and SMP that are

connected by standard LAN

Implementation level
– Linux kernel (no library to link with sources)

System image model
– virtual machine with a lot of memory and CPU

Granularity
– Process

Goal
– improve the overall (cluster-wide) performance and create a

convenient multi-user, time-sharing environment for the execution
of both sequential and parallel applications

12/06/2003 HTASC 61

MOSIX architecture (1/9)

• network transparency

• preemptive process migration

• dynamic load balancing

• memory sharing

• efficient kernel communication

• probabilistic information dissemination algorithms

• decentralized control and autonomy

12/06/2003 HTASC 62

MOSIX architecture (2/9)

Network transparency
the interactive user and the application level programs are provided by
with a virtual machine that looks like a single machine

Example

disk access from diskless nodes on fileserver is completely transparent
to programs

12/06/2003 HTASC 63

MOSIX architecture (3/9)

Preemptive process migration

any user’s process, trasparently and at any time, can migrate to any
available node.

The migrating process is divided into two contexts:

• system context (deputy) that may not be migrated from “home”
workstation (UHN);

• user context (remote) that can be migrated on a diskless node;

12/06/2003 HTASC 64

MOSIX architecture (4/9)

Preemptive process migration

master node di sk l ess node

12/06/2003 HTASC 65

MOSIX architecture (5/9)

Dynamic load balancing
• initiates process migrations in order to balance

the load of farm

• responds to variations in the load of the nodes, runtime characteristics
of the processes, number of nodes and their speeds

• makes continuous attempts to reduce the load differences between
pairs of nodes and dynamically migrating processes from nodes with
higher load to nodes with a lower load

• the policy is symmetrical and decentralized; all of the nodes execute
the same algorithm and the reduction of the load differences is
performed indipendently by any pair of nodes

12/06/2003 HTASC 66

MOSIX architecture (6/9)

Memory sharing
• places the maximal number of processes in the farm main memory,

even if it implies an uneven load distribution among the nodes

• delays as much as possible swapping out of pages

• makes the decision of which process to migrate and where to migrate it
is based on the knoweldge of the amount of free memory in other
nodes

12/06/2003 HTASC 67

MOSIX architecture (7/9)

Efficient kernel communication
• is specifically developed to reduce the overhead of the internal kernel

communications (e.g. between the process and its home site, when it is
executing in a remote site)

• fast and reliable protocol with low startup latency and high throughput

12/06/2003 HTASC 68

MOSIX architecture (8/9)

Probabilistic information dissemination
algorithms

• provide each node with sufficient knowledge about available
resources in other nodes, without polling

• measure the amount of the available resources on each node
• receive the resources indices that each node send at regular

intervals to a randomly chosen subset of nodes
• the use of randomly chosen subset of nodes is due for

support of dynamic configuration and to overcome partial
nodes failures

12/06/2003 HTASC 69

MOSIX architecture (9/9)

Decentralized control and autonomy
• each node makes its own control decisions independently and there is

no master-slave relationship between nodes

• each node is capable of operating as an independent system; this
property allows a dynamic configuration, where nodes may join or
leave the farm with minimal disruption

Future directions:
DFSA and GFS

12/06/2003 HTASC 71

Introduction

• MOSIX is particularly efficient for distributing and executing CPU-
bound processes

• however the MOSIX scheme for process distribution is inefficient for
executing processes with significant amount of I/O and/or file
operations

• to overcome this inefficiency MOSIX is enhanced with a provision for
Direct File System Access (DFSA) for better handling of I/O-bound
processes

12/06/2003 HTASC 72

How DFSA works

• DFSA was designed to reduce the extra overhead of
executing I/O oriented system-calls of a migrated process

• The Direct File System Access (DFSA) provision extends
the capability of a migrated process to perform some I/O
operations locally, in the current node.

• This provision reduces the need of I/O-bound processes to
communicate with their home node, thus allowing such
processes (as well as mixed I/O and CPU processes) to
migrate more freely among the cluster's node (for load
balancing and parallel file and I/O operations)

12/06/2003 HTASC 73

DFSA-enabled filesystems

• DFSA can work with any file system that satisfies some properties
(cache consistency, syncronization, unique mount point, etc.)

• currently, only GFS (Global File System)
and MFS (Mosix File System) meets the DFSA standards

NEWS: The MOSIX group has made considerable progress integrating
GFS with DFSA-MOSIX

Conclusions

12/06/2003 HTASC 75

Environments that benefit from MOSIX (1/2)

• CPU-bound processes
with long (more than few seconds) execution times and low volume of
IPC relative to the computation, e.g., scientific, engineering and other
HPC demanding applications.
For processes with mixed (long and short) execution times or with
moderate amounts of IPC, we recommend PVM/MPI for initial
process assignments

• multi-user, time-sharing environment
where many users share the cluster resources. MOSIX can benefit
users by transparently reassigning their more CPU demanding
processes, e.g., large compilations, when the system gets loaded by
other users

12/06/2003 HTASC 76

Environments that benefit from MOSIX (2/2)

• parallel processes
especially processes with unpredictable arrival and execution times -
the dynamic load-balancing scheme of MOSIX can outperform any
static assignment scheme throughout the execution

• I/O-bound and mixed I/O and CPU processes
by migrating the process to the "file server", then using DFSA with
GFS or MFS

• farms with different speed nodes and/or memory sizes
the adaptive resource allocation scheme of MOSIX always attempts to
maximize the performance

12/06/2003 HTASC 77

Environments currently not benefit
much from MOSIX

• I/O bound applications with little computation
this will be resolved when we finish the development of a "migratable
socket"

• shared-memory applications
since there is no support for DSM in Linux. However, MOSIX will
support DSM when we finish the "Network RAM" project, in which
we migrate processes to data rather than data to processes

• hardware dependent applications
that require direct access to the hardware of a particular node

12/06/2003 HTASC 78

Conclusions

• the most noticeable features of MOSIX are its load-
balancing and process migration algorithms, which implies
that users need not have knowledge of the current state of
the nodes

• this is most useful in time-sharing, multi-user
environments, where users do not have means (and usually
are not interested) in the status (e.g. load of the nodes)

• parallel application can be executed by forking many
processes, just like in an SMP, where MOSIX
continuously attempts to optimize the resource allocation

References

