# Measurement of gas gain fluctuations

*M. Chefdeville, LAPP, Annecy TPC Jamboree, Orsay, 12/05/2009* 

### Overview

• Introduction

- Motivations, questions and tools

- Measurements
  - Energy resolution & electron collection efficiency Micromegas-like mesh readout
  - Single electron detection efficiency and gas gain
     *TimePix readout*
- Conclusion

#### Gas gain fluctuations

- Final avalanche size obeys a probability distribution Signal fluctuations impact on detector performance
  - Spatial resolution in a TPC
  - Energy resolution in amplification-based gas detectors
  - Minimum gain and ion backflow
  - Detection of single electrons with a pixel chip
- What is the shape of the distribution? How does it vary with gas, field, geometry...?
- The Polya distribution parametrized by gas gain *G* and parameter *m* 
  - Works well with Micromegas/PPC/MCP/single GEM
  - With GEM stacks, distribution is more exponential

$$p_m(g) = \frac{m^m}{\Gamma(m)} \frac{1}{G} \left(\frac{g}{G}\right)^{m-1} \exp(-mg/G)$$

$$\sigma^2 = 1/m$$
 = b, relative gain variance

Micromegas, NIMA 461 (2001) 84





#### Gain fluctuations in gas detectors



MCP+Micromegas, NIMA 535 (2004) 334

### Investigation methods

#### • Simulation, since recently within GARFIELD:

- Simulation of e- avalanche according to MAGBOLTZ cross-section database: study of gas & field
- Simulation of e- tracking at microscopic scale in field maps (3D): study of geometry

#### • On the experimental side:

- Direct measurement of the distribution:
  - High gains, low noise electronics, single electron source
- Indirect measurements
  - Do not provide the shape but some moments (variance)
  - Assuming Polya-like fluctuations, one obtains the shape
- In this talk, only indirect methods are presented
   The Polya parameter *m* is deduced from:
  - Trend of energy resolution and collection efficiency
  - Trend of single electron detection efficiency and gas gain





### Measurement of gain variance

#### • Energy resolution *R* and electron collection efficiency *η*

- R decreases with the efficiency according to
- $R^2 = F/N + b/\eta N + (1-\eta)/\eta N$
- $R^{2} = p_{0} + p_{1}/\eta$  $p_{0} = (F-1)/N$  $p_{1} = (b+1)/N$
- Measure  $R(\eta)$  at e.g. 5.9 keV, fix F and N, adjust b (i.e. m) on data

#### • Single electron detection efficiency $\kappa$ and gas gain G

-  $\kappa$  increases with G as more avalanches end up above the detection threshold t

$$\kappa_m = \int_t^\infty p_m(g) dg$$

Integral can be calculated for integer value of m

- Count the number of e- from  $^{55}$ Fe conversions (*N*) with TimePix
- Measure N(G), adjust  $\kappa(G,m)$  on this trend, keep m for which the fit is best

### Experimental set-up(s)

#### • Measure 1: $R(\eta)$

- InGrid on bare wafer
- Preamp/shaper/ADC
- <sup>55</sup>Fe 5.9 keV X-ray source
- Ar-based gas mixtures with *i*C<sub>4</sub>H<sub>10</sub> and CO<sub>2</sub>

- Measure 2: κ(G)
  - InGrid on TimePix chip
  - Pixelman and ROOT
  - <sup>55</sup>Fe 5.9 keV X-ray source
  - Enough diffusion for counting
    - 10 cm drift gap
    - Ar 5% *i*C<sub>4</sub>H<sub>10</sub>







### **Energy resolution & collection**

- Vary the collection efficiency with the field ratio
- Record <sup>55</sup>Fe spectra at various field ratios
  - Look at peak position VS field ratio define arbitrarily peak maximum as  $\eta = 1$
  - Look at resolution VS collection
  - Adjust b on data points







### **Energy resolution & collection**

- Record <sup>55</sup>Fe spectra at various field ratios
  - Look at peak position VS field ratio define arbitrarily peak maximum as  $\eta = 1$
  - Look at resolution VS collection
  - Fix F and N, adjust b on data points



N = 230 in Ar/iso N = 220 in Ar/CO2

| Gas      | b    | b_err | √b (%) | m=1/b |
|----------|------|-------|--------|-------|
|          |      |       |        |       |
| Ar       | 1,68 | 0,02  | 130    | 0,60  |
| Ar1iso   | 1,37 | 0,01  | 117    | 0,73  |
| Ar2_5iso | 0,71 | 0,01  | 84     | 1,41  |
| Ar5iso   | 1,18 | 0,02  | 109    | 0,85  |
| Ar10iso  | 0,93 | 0,01  | 96     | 1,08  |
| Ar20iso  | 1,29 | 0,01  | 114    | 0,78  |
| Ar5CO2   | 0,86 | 0,02  | 93     | 1,16  |
| Ar10CO2  | 0,91 | 0,02  | 95     | 1,10  |
| Ar20CO2  | 0,97 | 0,02  | 98     | 1,03  |

Rather low Polya parameter 0.6-1.4 May be due to a poor grid quality
Curves do not fit very well points Could let *F* or/and *N* free



#### Single electron detection efficiency and gain

• Trend depends on:

- the threshold *t*, the gas gain *G* and *m* 

 $p_1(g) = \exp(-g/G)$  $p_2(g) = 4\frac{1}{G}\frac{g}{G}\exp(-2g/G)$  $p_5(g) = \frac{3125}{24}\frac{1}{G}\left(\frac{g}{G}\right)^4\exp(-5g/G)$ 





$$\kappa_m = \int_t^\infty p_m(g) dg$$

$$\kappa_1(t/G) = \exp(-t/G)$$

$$\kappa_2(t/G) = \exp(-2t/G)\left(1 + 2\frac{t}{G}\right)$$

$$\kappa_5(t/G) = \exp(-5t/G)\left(\frac{625}{24}\left(\frac{t}{G}\right)^4 + \frac{125}{6}\left(\frac{t}{G}\right)^3 + \frac{25}{2}\left(\frac{t}{G}\right)^2 + 5\left(\frac{t}{G}\right) + 1\right)$$

#### Single electron detection efficiency and gain

- Considering <sup>55</sup>Fe conversions: the efficiency is proportionnal to the number of detected electrons at the chip
- Count the number of electrons at various gains
  - In the escape peak!
  - Apply cuts on the X and Y r.m.s. of the hits

Raw frame







## Single electron detection efficiency and gain

- Number of detected electrons at given voltage determined by
  - Adjusting 2 gaussians on escape peak
  - K<sub>beta</sub> parameters constrained by K<sub>alpha</sub> ones
  - 3 free parameters
- Number of detected electrons and voltage
  - Use common gain parametrization
  - Fix p<sub>2</sub> (slope of the gain curve)
  - 2 free parameters: t/A and  $\eta N$

$$N_{\rm d} = \eta \kappa(m, t, G) N_{\rm p} = \eta \kappa(m, t, V_{\rm g}) N_{\rm p}$$
$$G = A \exp(BV_{\rm g})$$
$$N_{\rm d} = p_0 \cdot \exp\left(-p_1 \exp(-p_2 V_{\rm g})\right)$$

$$p_0 = \eta N_p \ p_1 = t/A \ p_2 = B_1$$





#### Single electron detection efficiency and gain



### Conclusion

- Two methods to investigate gas gain variance
  - Assuming Polya fluctuation, shape available for detector simulation
  - Energy resolution and collection efficiency simple (mesh readout) but a certain number of primary e- and Fano factor have to be assumed
  - Single e- detection efficiency and gain powerful (provide not only *m* but *W* and *F*) but a InGrid-equipped pixel chip is needed



- Another one not presented
  - Energy resolution and number of primary electrons

$$R^{2} = p_{0}/N$$
$$p_{0} = F+b$$