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Simulation in HEP

´ Detailed simulation is essential from detector 
R&D to data analysis

´ Large statistics are generally needed to reduce 
systematic errors or study rare signals

´ Complex physics and geometry modeling

´ Heavy computation requirements, strongly 
CPU-bound

´ More than 50% of WLCG power is used for 
simulations
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200 Computing centers in 20 countries: > 600k cores

@CERN (20% WLCG): 65k processor cores ; 30PB disk + >35PB tape storage 

Fabbri, LPCC

ATLAS 



The problem

High Luminosity LHC

´ Higher Luminosity → higher statistics → 
smaller simulation errors → larger MC 
statistics (.. and precise physics 
modelling) 
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Campana, CHEP 2016

Other communities 
share similar needs:

´ Intensity frontier 
experiments need 
to have detailed 
description of larger 
phase spaces

ATLAS computing needs



Speeding up simulation

Several initiatives are on-going 
´ Introduce multi-threading and/or  task based approach (GaudiHive, 

GaudiMP, Geant4 Multi-threading)
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Asai, LPCC

Geant4

Event-level 
parallelism



Speeding up simulation

´ Mix data to simulation (pile-up overlay techniques) to reduce CPU time and 
memory
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Haas, CHEP 2016



Speeding up simulation

´ Introduce fine grained parallelism

´ GEANTV aims at x5 total speedup through vectorisation, concurrency, 
locality
´ Improved geometry algorithms:  VecGeom library developed for GEANTV 

(also available to GEANT4 and ROOT)
´ New SIMD library (VecCore)
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S.V., PASC17

see A: Gheata talk on GeantV

VecGeom vectorisation
speedup measured on 

Intel Xeon Phi



Going beyond: Fast Simulation

´ Already used for searches, upgrade studies,…

´ Different techniques

´ Shower libraries (pre-simulated EM showers, fwd
calorimeters in ATLAS/CMS)

´ Shower shapes parametrizations (GFlash,..) 

´ Fast trackers simulation (ATLAS FATRAS, .. )

´ Look-up tables

´ Fully parametrized simulation (DELPHES)

´ Different performance

´ Different speed improvements (x10 - x1000)

´ Different levels of accuracy (~10% wrt full sim)
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Zaborowska, CHEP2016

FCChh

ATLAS

Choice is “experiment” dependent!



A generic framework for fast simulation

´ MC need to integrate fast simulation 

´ GEANT4 has mechanism to mix fast and full 
simulation: user-defined models within 
“envelopes” à few use it

´ Towards a  common framework providing

´ Algorithms and tools

´ Mechanism to mix fast and full simulation 
according to particle type and detector

´ R&D to develop a  generic fully customizable fast 
sim framework
´ Deep Learning  based

FCC Gaudi framework
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• Full Sim 600 HS06.s (curr
3-5 times that )

• Fast Sim 10% of Full Sim
Assumption

year

Bozzi, CHEP 2016

LHCb

Zaborowska, CHEP2016



Deep Learning for fast sim10

Energy 
depositions 
in cells

Particle type, 
mometum, 
pseudorapidity, 
detector 
geometry..

EX. SIMULATION OF A CALORIMETER



Deep Learning for fast sim

´ Generic approach
´ Can encapsulate expensive computations 
´ DNN inference step is faster than algorithmic approach
´ Already parallelized and optimized for GPUs/HPCs. 
´ Industry building highly optimized software, hardware, and cloud services. 
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Generative models
The problem:
´ Assume data sample follows pdata distribution 
´ Can we draw samples x from distribution  pmodel such that pmodel ≈ pdata?

A  well known solution:
´ Assume some form for pmodel, using prior knowledge and 

parameterized by θ
´ Find the maximum likelihood estimator
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´ Draw samples from pθ∗

´ Generative models don’t assume any prior form for  pmodels

´ Use Neural Networks instead arXiv:1701.00160v3 9 Jan 201 

choose parameters that 
maximize the likelihood 
training data 



Generative models for simulation
Many models: Generative Stochastic Networks, Variational Auto-Econders, 
Generative Adversarial Networks ..
´ Realistic generation of samples
´ Use complicated probability distributions
´ Optimise multiple output for a single input
´ Can do interpolation
´ Work well with missing data

Ranzato, Susskind, Mnih, Hinton, IEEE CVPR 2011
https://arxiv.org/pdf/1605.05396.pdf
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Questions: 

Can imaging approaches be useful? 
´ Can we keep accuracy while doing things faster? 
´ Can we sustain the increase in detector complexity 

(future highly-granular calorimeters are more 
demanding)? 

´ What resources are needed?
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Generative adversarial networks

´ Generator learns to generate 
data starting from random 
noise

´ Discriminator learns how to 
distinguish real data from 
generated data

The counterfeiter/police case
´ Counterfeiter shows police the fake money
´ Police says it is fake and gives feedback 
´ Counterfeiter makes new money based on feedback
´ Iterate until police is fooled
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arXiv:1406.2661v1 

Simultaneously train two networks that compete and cooperate with each other: 



Generative adversarial training
Generator is trained to maximize the probability of Discriminator making a mistake
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arXiv:1406.2661v1 

G and D don’t 
improve anymore.
D is unable to 
differentiate

D is not an 
accurate 
classifier

D is trained to 
discriminate samples 
from data

D gradient guides G to 
regions more likely to 
be classified as data



GAN application examples18

Samples of images of bedrooms generated by 
a DCGAN trained on the LSUN dataset.

https://arxiv.org/pdf/1701.00160v1.pdf

Samples drawn trained on the CIFAR-10 dataset



Many GAN flavors

arXiv:1610.0958

´ Original GAN was based on Multi Layer 
Perceptrons in 2014

´ Deep Convolutional GAN in 2015
´ Conditional GAN 

´ Extended to learn a parameterized 
generator pmodel(x|θ); 

´ Useful to obtain a single generator 
object for all θ configurations

´ Interpolate between distribution
´ Auxiliary Classifer GAN

´ D can assign a class to the image
arXiv: 1411.1784
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Convolution layers

´ Images can be considered as a matrix of pixel values
´ Convolutions extract features from the input image using small 

squares of input data
´ preserve spatial relationship between pixels.
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Image source

´ Input: 5 x 5 image
´ Filter: 3 x 3 matrix
´ Slide the filter ouput matrix element 

1. element wise multiplication 

2. Sum of the multiplication outputs



Common GAN problems
Collapse Mode:
´ Goal of GAN: To generate fake examples imitating real samples

´ Easy way of achieving goal: Just generate easy modes (classes).
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Vanishing/Exploding gradients
´ The representational power (or capacity) 

between discriminator and generator is not 
balanced

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial networks (2016).



Applications
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Enhancing MC simulation with GAN

´ An example from LAr
TPC

´ MC-Trained CNN to 
classify hits as shower-
like or track-like 

´ Performed on noise-
filtered ADC values 
after hit finding, 

´ one of the first 
reconstruction steps

´ Greatly speeds up 
tracking

´ Makes shower 
clustering possible

Smith, IML workshop
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Enhancing MC simulation with GAN

´ MC shows good separation as expected 
however, 

´ But the method does not work on data!

´ Difference between MC and data affects 
the network in unpredictable ways 
´ wire-to-wire cross-talk 

´ wire-to-wire inductance,

´ physics of wire charge deposition range, 
electronic noise, 

´ wire-to-wire variance are all not simulated in 
MC

24



Enhancing MC simulation with GAN

´ Pass a MC sample to a GAN 
generator

´ Training against data will create a 
data-driven filter for MC

´ A filtered MC sample that is very similar 
to data

Smith, IML workshop
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Location Aware GAN

´ Reproduce 2D generator level anti-kT jet images 
(generator-level study )

´ Modification of DCGAN (convolutions) and ACGAN 
(uses particle type information)  

´ Image sparsity
´ Location dependent features
´ Large dynamic range

arxiv:1701.05927

26



CaloGAN

´ ATLAS LAr calorimeter
´ Heterogeneous longitudinal segmentation into 

3 layers
´ Irregular granularity in eta and phi

´ Energy deposition in each layer as a 2D 
image

´ Build one LAGAN per layer
´ Trainable transfer unit to preserve layer 

correlations
´ Result is a concatenation of 2D images that 

reproduce full 3D picture

27

arxiv:1705.02355



CaloGAN performance

´ Comparison to full simulation:
´ Average showers

´ Shape variables (depth, width, layer energy.. ) 
and event variables (sparsity level per layer)

´ Energy reconstruction

28



GeantV GAN
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CLIC calorimeter data
´ CLIC is a CERN project for a linear accelerator of electrons and 

positrons to TeV energies
´ Associated electromagnetic calorimeter detector design(*)

´ A highly segmented array of absorber material and silicon 
sensors

´1.5 m inner radius, 5 mm×5 mm segmentation: 25 tungsten 
absorber layers +  silicon sensors

30

(*) http://cds.cern.ch/record/2254048#

3025 2525

Data is essentially a 
3D image 



CLIC calorimeter data

´ Highly segmented (pixelized)
´ Segmentation is critical for particle 

identification and energy calibration.

´ Sparse.

´ Non-linear location-dependency

a
.u

.

a
.u

.



GeantV GAN for calorimeter images

´ Based on convolution/deconvolutions

´ 3D (de)convolutions to describe full 
shower development

´ Particle tag as auxiliary classifier

´ Implemented tips&tricks found in literature

´ Some helpful (no batch normalisation
in the last step, LeakyRelu, no hidden 
dense layers, no pooling layers)

´ Some not (Adam optimiser)

´ Batch training

´ Loss is combined cross entropy 

32
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Conditioning on additional variables

´ Add a regression task to the discriminator to reconstruct the primary 
particle energy 

´ Train the generator to reproduce correct shapes

33

Training the generator and the discriminator 
using initial particle energy 



Image quality assessment and validation

´ Detailed study of calorimeter response 
´ Energy distribution in single cells 

´Average shower shapes 
´ Primary particle energy estimation from discriminator
´ High level variables (e.g. jet features)
´ Does analysis tools performance change if we replace detailed 

simulation with GAN generated data? (e.g. particle 
identification algorithms)

Comparison to full sim and different fast sim tools

34

WORK iN PROGRESS
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First 3D images

´ First generated results look promising!
´ Qualitative results show no collapse problem
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Single cell response36
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Single cell response

Single cell response is not perfect

´ Set up higher level criteria for image validation (reconstructed variables)

37

Mean sigma

G
A

N
/G

4

G
A

N
/G

4

Cell IDCell ID



Energy regression test

´ Train the network on a uniform energy spectrum (100-500) GeV 
´ Test the capability of the discriminator to correctly predict the 

primary particle energy.
´ This is an additional regression task.
´ Not the typical simulation use case

38

Energy 
(GeV)

Error (%)

100 5

150 13

200 10

300 6

400 10

500 15



Energy shower shapes

´ Check that the networks correctly describes the 
energy shapes for different input energies (generator 
output) 

39



From the computing resources 
perspective…

40



Inference41

u Using a trained model is very fast

u Orders of magnitude faster than 
detailed simulation

u Even on a simple laptop!

Time/Shower
(msec)

Full Simulation (G4) Intel Xeon E5 56000

3d GAN
(batchsize 128)

Intel i7 (laptop) 66

GeForce GTX 1080 0.04

We are testing  performance on FPGA and new integrated accelerator 
technologies  



Training42

u Training on NVIDIA GTX-1080  for 30 epochs on 200k particles takes ~1 day

u Test different hardware

u Testing on single node with an Intel® Xeon Phi™ processor (formerly 
code named Knights Landing)

u Performance of underlying mathematical library (MKL) not as good 
(probably due to the size of our matrix operations)

u Cloud environment

u Testing different frameworks

u Intel Nervana Neon implementation is about 20% faster than 
Tensorflow on GPU



Multi-node scaling
´ We want to provide a generic, fully configurable tool for fast 

simulation

´ Optimal network design depends on the problem to 
solve

´Hyper-parameters tuning and meta-optimization
´ Parallelization on distributed  systems

´ Evaluate existing libraries 
´Optimize training strategy and reduce communication 

overhead
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DL engine for fast simulation

´ GeantV GAN represent first proof of 
concept, developed within the GeantV
prototype
´ We aim at a generic fully configurable 

tool 
´ Embed the tool in the GeantV prototype 

for testing
´ Inference step

´ Automated training 

´ Make it available as soon as possible  in 
Geant4 
´ or any future GeantX!
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Before concluding…

.. another 3d convolutional GAN 
application
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Medical Image Synthesis 

´ Patients are exposed to radiation during CT imaging
´ further increase potential risks of cancer

´ MRI images contain much richer texture information than CT images

´ It is challenging to directly estimate a mapping from MRI to CT. 

´ Use 3D convolutional GANs to “simulate” CT images  from MR

46

MRI CT

Fig. 1. A pair of corresponding brain MR (left) and CT (right) images from the same subject

It is technically difficult to directly estimate CT image from MR image. As shown
in Fig. 1, CT and MR images have very different appearances. MR images contain
much richer texture information than CT images. Therefore, it is challenging to directly
estimate a mapping from MRI to CT.

Recently, many researches focus on estimating one modal image from another modal-
ity image, e.g., estimating CT image using MRI data. The first category of methods is
image segmentation based methods. Zaidi et al. [20] developed a fuzzy clustering tech-
nique to segment MR images into different tissue classes, and then refined segmenta-
tion manually. Berker et al. [1] proposed four class tissue segmentation technique with
a combined ultrashort-echo-time/Dixon MRI sequence to fulfill MRI-based attenuation
correction. These methods segment MR images into different tissue classes, and then
assign each class with a known attenuation property. This category of methods highly
depends on the segmentation accuracy and always needs manual work to get final ac-
curate results. The second category of methods is atlas-based methods. These methods
first register an atlas (with the attenuation map) to the new subject’s MR image, and
then warp the corresponding attenuation map of the atlas to the new MR image as its
estimated attenuation map [3]. However, the performance of these atlas-based meth-
ods highly depends on the registration accuracy. The third category is learning-based
methods, in which a non-linear mapping model is learnt from MRI to CT image. Jog et
al. [9] learned nonlinear regression using random forest to improve MR Resolution. Tri
et al. [7] presented an approach to predict CT image from MRI using structured random
forest. Since estimating MRI from CT is not a one-to-one mapping task, using only
the intensity values cannot effectively distinguish the structural details. Such methods
often have to first represent the input MR image by features and then map them to out-
put the CT image. Thus, the performance of these methods is bound to the quality of
the extracted features and how well they can represent the natural properties of the MR
image.

On the other hand, recently the convolutional neural network (CNN) [11] became
popular in both computer vision and medical imaging fields. As a multi-layer and fully
trainable model, CNN is able to capture the complex non-linear mapping from the in-
put space to the output space. For the case of 2D images, 2D CNN has been widely
used in many applications. However, it is unreasonable to apply 2D CNN to process 3D
medical images because 2D CNN considers the image appearance slice by slice, thus

several works that have extended GAN, showing that some architectural constraints
are necessary in order to achieve a stable training. The authors in [15], for example,
were able to obtain very realistic images by using FCN without max pooling and with
batch normalization across different layers in both G and D in a way similar to what we
propose.

In Fig. 2, we also show the architecture of our generator network G which has the
constraints mentioned above, where the numbers indicate the filter sizes. The network
takes as input an MRI image, and tries to generate the corresponding CT image. It has
8 stages containing convolutions, Batch Normalization and ReLu operations with num-
ber of filters 32, 32, 32, 64, 64, 64, 32, 32, respectively. The last layer only includes 32
convolutional filters, and its output is considered as the estimated CT. Finally, the Dis-
criminator is a typical CNN architecture including three stages of convolutions+Batch
Normalization+ReLu+Max Pooling and a combination of convolution with three fully
connected layers, where the first two use ReLu as activation function, and the last one
uses sigmoid, whose output represents the likelihood that the input data was drawn from
the distribution of real CT. The filter sizes are 5⇥ 5⇥ 5, the numbers of filters are 32,
64, 128 and 256 for the convolutional layers, and the numbers of output nodes in the
fully connected layers are 512, 128 and 1.
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33
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33
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77

3
33

Euclidean
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MRI Real CT

Fig. 2. Architecture used in the Generative Adversarial setting used for estimation of synthetic
images.

2.2 Auto-Context Model (ACM) for Refinement

Since our work is patch-based, the context information available for each training sam-
ple is limited inside of the patch. This affects the modeling capacity of our network.
One way to enlarge the context during training is by using the Auto-Context model
which is commonly used in medical image analysis applications and it has been shown
to be very effective. It was first introduced by [17], where it was used in the context of
segmentation. The idea is to train several classifiers iteratively where each classifier is
trained not only with the feature data, but also with the probability map obtained from
the previous classifier, which gives to the classifier additional context information. At
testing time, the features will be processed for each classifier one after the other, con-
catenating the probability map to the input features. This technique has shown to work

MRI FCN GAN Ground Truth

Fig. 4. Visual comparison for impact of adversarial training. FCN means without adversarial
training, and GAN means with adversarial training.

Fig. 5. Performance of ACM on brain dataset with iterations.

4.3 Experimental Results for Brain Dataset

To qualitatively compare the estimated CT by different methods, we visualize the gen-
erated CT with the ground truth in Fig. 6. We can see that the proposed algorithm can
better preserve the continuity, coalition and smoothness in the prediction results, since
it uses image gradient difference constraints in the image patch as discussed in Section
2.1. Furthermore, the generated CT looks closer to the real CT compared to all others,
and we argue that this is due to the adversarial training strategy which constrains the
generated images to be so similar to the real ones that a even a complex discriminator
cannot perform better than chance.

We also quantitatively compare the predicted results in Table 1 in terms of PSNR
and MAE. Our proposed method outperforms all other methods in both metrics, and it
further demonstrates the advantage of our architecture.

4.4 Experimental Results for Pelvic Dataset

The prediction results by the same methods used above but on the pelvic dataset are
shown in Fig. 7. It can be clearly seen that our results are consistent with the ground-
truth CT. The quantitative results based on the same metrics used in the previous dataset
are shown in Table 2.

Quantitative results in Tables 2 show that our method outperforms the other meth-
ods in terms of both MAE and PSNR. Specifically, our method gives an average PSNR
of 34.1, which is considerably higher than the 32.1 obtained by the state-of-the-art
SRF+ method.

D. Nie at al, arXiv:1612.05362v1, Dec 2016



Summary I

´ MC production has been so far a major fraction of WLCG 
workload 
´Experiments are implementing a large range of fast simulation 

solutions
´ HL-LHC runs will scale up MC needs by orders of magnitude
´ A generic framework with common fast sim algorithm and 

strategies for mixing full and fast sim
´ Could bring great benefit to the HEP community

´Serve small experiments/collaborations as well
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Summary II

´ Generative Models seem good candidates to speedup 
simulation
´Rely on the possibility to interpret “events” as “images”
´First GANs applications to calorimeter simulations look very 

promising 
´Many studies ongoing in the different experiments 

´ 3d GAN is the initial step of a wider plan towards a generic fully 
configurable tool

´ Initially integrated in GeantV , and then integrate in Geant4 and 
other frameworks  
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Outlook
´ Even larger speedup gained by replacing digitization and 

reconstruction steps
´ As improved analysis techniques arise .. Could this not even be an 

issue any more??
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Figure 1: Signal efficiency vs. background efficiency ROC curves for the (left) � vs. ⇡0 and (right) e
vs. ⇡ classifier. The red dots mark the chosen working points for the feature-based classifiers used to
quantify the improvement in signal efficiency or background rejection from the cell-based classifier
that are quoted in Table 1.

Table 1: Performance parameters for BDT and DNN classifiers. The accuracy (acc.) and area under
curve (AUC) are quoted. The increase in signal efficiency for fixed background efficiency with respect
to the BDT working point of Figure 1 (�✏sig = ✏

DNN
sig � ✏

BDT
sig ) and the increase in background

rejection factor for fixed signal efficiency (�Rbkg = ✏

BDT
bkg /✏

DNN
bkg ) are also quoted.

� vs. ⇡0
e vs. ⇡

Model acc. AUC �✏sig �Rbkg acc. AUC �✏sig �Rbkg

BDT 83.1% 89.8% - - 93.8% 98.0% - -
DNN (features) 82.8% 90.2% 0.9% 0.95 93.6% 98.0% -0.1% 0.95
DNN (cells) 87.2% 93.5% 9.4% 1.63 99.4% 99.9% 4.9% 151

3 Regression: Energy Reconstruction90

We trained a separate dedicated DNN to estimate particle energies from their calorimeter deposits.91

This DNN is composed of two CNNs for ECAL and HCAL, followed by a flattening and concatenation92

layer, with a final densely connected layer. The ECAL branch uses a 3-feature convolutional layer93

with a 4⇥ 4⇥ 4 window and stride of 1 in each direction, followed by a 2⇥ 2⇥ 2 max pooling layer94

with a stride of 2. The HCAL branch has a 10-feature layer with a 2⇥ 2⇥ 6 window and stride of 1,95

followed by a 2 ⇥ 2 ⇥ 2 max pooling layer with a stride of 2. All convolutional layer have ReLU96

activation. The output of both branches are linearized and merged, followed by a fully connected97

layer with 1000 neurons. The final neuron has a linear activation function and the mean-squared error98

(MSE) is used as the loss function. The data sample was split into 40,000 events for training, 10,00099

events for validation, and 30,000 events for testing.100

As a baseline measure of the energy, we use a simple bi-linear regression of the summed energy in101

ECAL and HCAL to the true energy. Figure 2 compares the energy dependence of the calorimeter102

resolution for each particle type and for both the neural net and the simple linear regression models.103

Table 2 quantifies the results by fitting this dependence to the expected form. We observe significantly104

better performance from the DNN as compared to the simple model, with resolution enhancement of105

a factor of 3.5–7 at low energies and 2–4 at high energies, for all four particle types.106

4 Generative Model: Particle Simulation107

We use the sample of ECAL 3D energy arrays to demonstrate the ability to simulate particles at given108

energies using Generative Adversarial Networks (GANs), as a proof of concept for a much larger109

plan, intended to integrate a generic deep-learning tool for fast simulation into the GeantV detector110

simulation library [18].111

Both the GAN generator and discriminator models consist of four 3D convolution layers with leaky112

ReLU activation functions. The number and sizes of filters have been chosen in order to optimize113

3

B.Hooberman, S. V. et al. Submitted to NIPS2017



The end..

Deep Learning represent an impressive inter-
disciplinary example!
HEP community can certainly profit from opening 
up and collaborating to different fields!

50

Questions?

Thank you!



Some references
´ GANs:

´ Just google “Generative Adversarial Networks”!

´ I. Goodfellow recent seminar: https://indico.cern.ch/event/673989/

´ A. Radford, L. Metz and S. Chintala, Unsupervised representation learning with deep convolutional 
generative adversarial networks. 2015.

´ Mirza, Mehdi and Osindero, Simon. Conditional generative adversarial nets. 2014. 

´ Augustus Odena, Christopher Olah, Jonathon Shlens, Conditional Image Synthesis with Auxiliary 
Classifier GANs. ICML, 2017. 

´ Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, Pieter Abbeel. InfoGAN: 
Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets. 2016. 

´ Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen. Improved 
Techniques for Training GANs. NIPS, 2016.

´ Advanced GANs: 
´ https://indico.cern.ch/event/655447/contributions/2742180/attachments/1552018/2438676/advanced_

gans_iml.pdf (see refs on page 16)

´ Physics and ML:

´ DS@HEP : (2017 workshop) https://indico.fnal.gov/event/13497/timetable/#20170508

´ Connecting the dots:

´ https://indico.hephy.oeaw.ac.at/event/86/timetable/#20160222 (2016 workshop)

´ IML workshops: https://indico.cern.ch/event/595059/ and https://indico.cern.ch/event/655447/
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Variational Auto Encoders
´ Typically used for un-labelled data and de-noising

´ Two stacked NN (encoder – decoder)

´ Sequentially de-construct input data into a latent representation

´ Use this representation to reconstruct output that resembles the original
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Calorimeter 
Shower Hit 
(χ,y,z,E,σ)

Generated
Calorimeter
Shower Hit 
(χ,y,z,E,σ)

2D latent 
space

D.Salamani, U. of Geneva



Training GANs is a many steps process:

1. Generate images with the Generator. 
2. Train the Discriminator to recognize 

Generator data from Real data.
3. Push the combined model to tag it as 

Real data. 

I. Discriminator weights are frozen. 
4. Back feed to Discriminator and 

repeat

http://www.rricard.me/machine/learning/generative/adversarial/networks/2017/04/05/g
ans-part1.html
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A precursor - Falcon

´ Turbosim (B. Knuteson) developed at the Tevatron
´ Falcon: Modern version (Gleyzer at al., 1605.02684) 
´ Consists of two parts:

´ Builder: Non-parametric representation of the 
detector response function obtained from FullSim
events. 

´ Uses a k-d tree to bin the generated objects in the 
lookup table. 

´ Simulator: Uses events in the parton level to simulate 
reconstruction level events. Leading jet pT from

events

54

Ultra-fast, self-tuning, non-parametric simulation based on lookup tables that 
directly map generated events into simulation events


