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Simulation in HEP

»  Defailed simulation is essential from detector
R&D to data analysis

®» | arge statistics are generally needed to reduce
systematic errors or study rare signals

»  Complex physics and geometry modeling Wall clock consumption 1/01/2016-04/06/2017

®» Heavy computation requirements, strongly
CPU-bound

B MC Simulation

B MC Event Generation
MC Reconstruction

B Group Production

W User Analyses
Others

More than 50% of WLCG power is used for

simulations
Fabbri, LPCC

éi! 200 Computing centers in 20 countries: > 600k cores
mmemne @CERN (20% WLCG): 65k processor cores ; 30PB disk + >35PB tape storage




The problem

High Luminosity LHC

» Higher Luminosity — higher statistics —
smaller simulation errors — larger MC
statistics (.. and precise physics

delling)

CPU needs (kHS06)

120,000

100,000 —— [l Data Reprocessing

WU MC Reconctruction
80,000
£ MC Simulation Full
Wl Evgen

== == Projection

@====CPU need

ATLAS computing needs
Campana, CHEP 2016

Start of LHC - 2009: s = 900 GeV

Runt: Js=7-8TeV,L= 27x1033cmzs
Bunch spacing: 75/50/25 ns (25 s2011;2012?)

LHC shutdown to prepare for design energy and nominal luminosity

Run2 Js=13-14TeV,L=1x 10% cm?%s!
Bunch spacing: 25 ns

Injector and LHC Phase-l upgrade to go to ultimate luminosity

Run3: Js =14 TeV,L =2x 10% cm?s!
Bunch spacing: 25 ns

High-luminosity LHC (HL-LHC), crab cavities, lumi levelling, ...

Run4: Js=14TeV,L=5x 10% cm?s'
Bunch spacing: 25 ns

Other communities
share similar needs:

» |ntensity frontier
experiments need
to have detailed
description of larger
phase spaces

~25 b

>50 fb”

~300 fb

~3000 fo"

[Ldt



Speeding up simulation

Several inifiatives are on-going

» [ntfroduce multi-threading and/or task based approach (GaudiHive,
GaudiMP, Geant4 Multi-threading)

CMS geometry (GDML), =~ 50 GeV (FTFP_BERT), B field (4T) - KNL

wi Geant4

Event-level
parallelism

Version 10.2-p02 on KNL
(strong-scalability)

20

50 100 150 200 250

Num Threads ASC”, LPCC




Speeding up simulation

» Mix data to simulation (pile-up overlay techniques) to reduce CPU time and

memaory
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see A: Gheata talk on GeantV

Speeding up simulation

» |ntroduce fine grained parallelism

» GEANTV aims at x5 total speedup through vectorisation, concurrency,
locality

» |mproved geometry algorithms: VecGeom library developed for GEANTV
(also available to GEANT4 and ROOT)

= New SIMD library (VecCore) 25 &
“AVX512

Tube AVX2

VecGeom vectorisation 15 +—
speedup measured on
Intel Xeon Phi

¥ S.V., PASC17/




Going beyond: Fast Simulation

» Already used for searches, upgrade studies,... p T remsisim

— — Full Sim

» / Different techniques

» Shower libraries (pre-simulated EM showers, fwd
calorimeters in ATLAS/CMS)

» Shower shapes parametrizations (GFlash,..)

» Fast trackers simulation (ATLAS FATRAS, .. )

longitudinal profile

» | ook-up tables

» Fully parametrized simulation (DELPHES)

» Different performance

deposited energy per tslice (GeV)
- i [ i

g depogited energy per r slice (GeV)

» Different speed improvements (x10 - x1000)

» Different levels of accuracy (~10% wrt full sim)

Choice is “experiment” dependent!

20 25 T T TR T PO L
l(x()) r(Rhl)

Zaborowska, CHEP2016




A generic framework for fast simulation
s R | e

» MC need to integrate fast simulation g [LHCb
()
I
» GEANT4 has mechanism to mix fast and full .
simulatfion: user-defined models within s
“envelopes” > few use it L T
B Rt s MRS
» Towards a common framework providing Looens o o oo
» Algorithms and fools e
E SIMULATION !

®» Mechanism o mix fast and full simulation
according to parficle type and detector

1
: Interface
1
:
physics .
1
1
1
1

» R&D to develop a generic fully customizable fast
sim framework

» Deep Learning based -

geometry

| Zaborowska, CHEP2016
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Deep Learning for fast sim

Generic approach

Can encapsulate expensive computations

DNN inference step is faster than algorithmic approach

Already parallelized and optimized for GPUs/HPCs.

Industry building highly optimized software, hardware, and cloud services.



Generative Models




Generative models

The problem:
®» Assume data sample follows pyqtg distribution
» Can we draw samples x from distribution Ppogqer SUCh that Priogel = Paata®

well known solution:

» Assume some form for p.,.q4er USING prior knowledge and
parameterized by 6

» Find the maximum likelihood estimator choose parameters that

maximize the likelihood

6" = | mode ;0 —
argé"axz o8 (Pmodel (x; 9)) training data

xeD
= Draw samples from pg,

» Generaftive models don’t assume any prior form for progers

» Use Neural Networks instead arXiv-1701.00160v3 9 Jan 201




Generative models for simulation

Many models: Generative Stochastic Networks, Variational Auto-Econders,
Generative Adversarial Networks ..

» Readlistic generation of samples

Use complicated probability distributions

Can do interpolation

»
» Opfimise multiple output for a single input
»
»

Work well with missing data

‘Small blue bird with black wings” —
‘Small yellow bird with black wings’

Wps://omiv.org/pdf/l 605.05396.pdf

Original Input Layer 1 Layer 2 Layer 3 Laver4 Layer 4 (x 10)

i O

Ranzato, Susskind, Mnih, Hinton, IEEE CVPR 201




Questions:

Can imaging approaches be useful?
» Can we keep accuracy while doing things fastere

®» Can we sustain the increase in detector complexity

(future highly-granular calorimeters are more
demanding)?

» \What resources are needede?




arXiv:1406.2661v 1

Generative adversarial networks

Simultaneously train two networks that compete and cooperate with each other:

» Generator learns to generate
data starfing from random petwod | —
noise e

0
)

’
o0 :
~ | o
*
5507

Discriminator learns how to N
distinguish real data from
generated data

Generator [——| Sample

Latent random variable
D00

The counterfeiter/police case

» Counterfeiter shows police the fake money

®» Police says it is fake and gives feedback

» Counterfeiter makes new money based on feedback

» |ferate until police is fooled




Generative adversarial fraining

D gradient guides G to
regions more likely to
be classified as data

po(data) Data distribution
Model distribution
N N

Y

D is not an
accurate

classifier

{ S N e e
-~ A
.._ . e

N 7/ NN

Poorly fit model After updating D After updating G~ Mixed strategy
equilibrium

D is frained fo
discriminate samples
from data

arXiv:1406.2661v 1

Generator is trained to maximize the probability of Discriminator making a mistake

G and D don't
Improve anymore.
D is unable to
differentiate



GAN application examples

F’r‘

r*ﬁ

Samples of images of bedrooms generated by
a DCGAN trained on the LSUN dataset.

Samples drawn trained on the CIFAR-10 dataset

https://arxiv.org/pdf/1701.00160v1.pdf




Many GAN flavors

» Original GAN was based on Multi Layer
Perceptrons in 2014

» Deep Convolutional GAN in 2015
Conditional GAN

» Fxtended to learn a parameterized
generartor Proqel(X | 0);

» Useful fo obtain a single generator
object for all © configurations

» |nterpolate between distribution
» Auxiliary Classifer GAN

» D can assign a class to the image

(fake)

ES

(Xreat ata) | (( Xpake )

G

[C (class)) ( 7 (noise))

Conditional GAN
(Mirza & Osindero, 2014)

arXiv: 1411.1784

(=D
GeaD) (=2
Take) )

(Xreat @ata)  (_ Xpake )

i

(C (dass)) (Z (noise)]

AC-GAN
(Present Work)

arXiv:1610.0958




Convolution layers

®» |mages can be considered as a matrix of pixel values

» Convolutions extract features from the input image using small
squares of input data

» preserve spatial relationship between pixels.

1/1/1/0|0
» [nput: 5 x 5image 03 1J1/0) |4
. : 0,0,/1/1(1
» Filter: 3 x 3 matrix olol1l1l0
» Slide the filter ouput matrix element ol1l1lolo0
1. element wise multiplication Image Convolved
2. Sum of the multiplication outputs Feature

Image source




Common GAN problems

Collapse Mode:
» Goal of GAN: To generate fake examples imitating real samples

» [Fasy way of achieving goal: Just generate easy modes (classes).

Class 0

. ‘ - - Class 7 - Class 1
- - - - - -
Successful - ' * ‘ ’ ‘ . . . Chss6e « Class 2
- = - - = - - 7 “ql 3
Class5 Class4 m
- -

Class 0

Class7_ = _Class1
Unsuccessful - - - ®  Jass6e - Class2
¥ & ®(lass3
(mOde co"apse) Class5 Class4 -
Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target

Vanishing/Exploding gradients s

1.04

» The representational power (or capacity)
between discriminator and generator is not
balanced

0.6 1 A

0.44

0 250 500 750 1000 1250 1500
Luke Metz, oole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial networks (2016). Training epoch
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Enhancing MC simulation with GAN

Smith, IML workshop

» An example from LAr e :
TPC

LArIAT Data |

» MC-Trained CNN to -
classify hits as shower- J:=rn
like or tfrack-like
erformed on noise- /; |

filtered ADC values Entering Particle - #— Bt ]

after hit finding,

one of the ﬁrST nout Image Selected pixel Convolutional Neural Network

reconsfruction steps putimag and its patch S Probability:

Greatly speeds up [ Track

TrGCkIﬂg ‘ b | E; EM Shower
y o iaf® : Empty

Makes shower P

clustering possible

Convolutional Layers Dense Layers Network Output



Enhancing MC simulation with GAN

» MC shows good separation as expected
however,

» But the method does not work on datal

» Difference between MC and data affects
the network in unpredictable ways

wire-to-wire cross-talk
wire-to-wire inductance,

physics of wire charge deposition range,
electronic noise,

wire-to-wire variance are all not simulated in
MC

200 - MC events
e Shower-Like - | Track-Like

Network Output

ok L L 1 1 | 1 L
0 01 02 03 04 05 06 07 08 08 1
N

etwork Output

638 m- data events with p/e contamination

Shower-Like

N
8 &
LALA AR ALY LALA LA LA L

4000

3500

3000

2500

2000|

1500

10001

500F

T[T T T T O

Track-Like

NI EEERE FRETI REEN FEETE FRET FERTE SN STl SN NS PR
01 02 03 04 05 06 07 08 09
Network Output

TP TP PP TP PP TP PP Bvwe =
070263008 08 0 0 0
N

letwork Output



Enhancing MC simulation with GAN

Smith, IML workshop
» Pass a MC sample to a GAN }(
generator S

» Training against data will create @ SLCek
data-driven filter for MC ' ReallFake

Fake Img

: . . Label | Training
-» iItered MC sample that is very similar Real Img -
to data -
200 s- MC events ) ] ]
: : sof” : Filtered-MC Trained Classifier
= Shower-Like | f | Track-Like )
- ol Tracks: __ Showers:
4000 2000 saf- Track-Like i
o 2000(— 200; N
20005— 3 |50§
“E e : |00; 20]
3‘:%'373 ‘‘‘‘‘ 01 02 03 04 05 06 07 &gwrg uuuuu 50;
638 mt- data events with p/e contamination P T sttt o el E e ] pd
4000F= E F S0
s Shower-Like | .0 Track-Like =t :
z:é: zsaaé: ] ‘502 :m;—
'5002— 1soai ‘M; 205—
:g 500 502— m? ’_\Jlr’_l—qj
E 2 E :.—PJ-L'FI L[l acmnli Il
mmmmmmmmmmmmmm put 0 01 02 03 04 05 06 07 08 09

10



Location Aware GAN

(generator-level study )

(uses particle type information)
» tfmage sparsity

Location dependent features
®» | arge dynamic range

3 LAGAN (signal)
. C 1 HEPjet2D (signal) i
-1 |C3 LAGAN (bkg)
: "'|Z 21 HEPjet2D (bkg)

0.00 = " s s n
40 50 60 70 80 90 100 110 120

Discretized m of Jet Image

Reproduce 2D generator level anti-kT jet images
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Modification of DCGAN (convolutions) and ACGAN

arxiv:1701.05927
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arxiv:1705.02355

Geant4, Pb Absorber, |Ar Gap, 10 GeV e Geant4, Pb Absorber, |Ar Gap, 10 GeV e

ndirection [mm]
ndirection [mm)

CaloGAN

Local Energy Deposit [MeV]

15

_________ Lesv o bov v bvwna b bony e by alleey
-200 -150 -100 -50 0 50 100 150 200 0 -200 -150 -100 -50 0 50 100 150 200
Depth from Calorimeter Center [mm)] Depth from Calorimeter Center [mm)]

» ATLAS LAr calorimeter

®» Heterogeneous longitudinal segmentation into
3 layers

® [rregular granularity in eta and phi

» Fnergy deposition in each layer as a 2D
image

Build one LAGAN per layer

Trainable fransfer unit to preserve layer
correlations

» Result is a concatenation of 2D images that 5
reproduce full 3D picture kz

N



GEANT  GAN

Energy (MeV)
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10 10°
ho! 1ot
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» Comparison to full simulation:
g \c-; w‘aé
» Average showers : .
. . 10 10°
» Shape variables (depth, width, layer energy.. ) \ ;
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GeantV GAN




i Electromagnetic
§ shower (e, y)

CLIC calorimeter data
vy, ¥
CLIC is a CERN project for a linear accelerator of electrons anc.t Ny r . S ?
positrons to TeV energies ! N -' 1Y
I U/
» Associated electromagnetic calorimeter detector design(’) ?
» A highly segmented array of absorber material and silicon
Sensors
» | .5 minnerradius, 5 mmx5 mm segmentation: 25 tungsten | :
apsorber layers + silicon sensors CleroRy
Data is essentially a | ﬁ". ..' :
3D image i 00 27 e A
W |
25\, ZONMROEEN *

-
=

4 gt

-

() https ‘s.cern.ch/record/2254048#




CLIC calorimeter data

» Highly segmented (pixelized)

» Segmentation is critical for particle
identification and energy calibration.

» Sparse.

» Non-linear

cation-dependency
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GeantV GAN for calorimeter images

» Based on convolution/deconvolutions

» 3D (de)convolutions to describe full
shower development

» Particle tag as auxiliary classifier
» mplemented fips&tricks found in literature

= Some helpful (ho batch normalisation
in the last step, LeakyRelu, no hidden
dense layers, no pooling layers)

= Some not (Adam optimiser)
= Batfch training

® [ 0ssis combined cross entropy

------------

iiiHUi

‘‘‘‘‘

,n

vvvvvvvvvvvvvvvvv

............

..............

Fanen
Drapeoutsil 7

DISCRIMINATOR



particle :
[ eneray ] X [ noise }

Conditioning on additional variables
| generator
Training the generator and the discriminator [data sample]—{mscnmmator - 8222{8}:" ]
sing initial particle energy o P
ata
. . . sample?
» Add aregression fask fo the discriminator fo reconstruct the primary \ —
particle energy yes/no | [ e;eecr;y

= Train ’rhe?merc’ror to reproduce correct shapes

X-axis Y-axis
44— Data 50 — Data 50
== Data 100
= Data 150 - Data 100 - 0.6 - o
3 3 | — Data 200 44— Data 150 o)) - Data 50
fult == Data 300 —— Data 200 E
o —— Data 400 < 0.4 - —7// Data 180
TH| 24— Data 500 - Data 300 L ) — Data 150
2 , | — Data 400 = —— Data 200
O —— Data 500 $ 0.2 —— Data 300
—— Data 400 \
0.0 —— Data 500 \\
' 1 1 1
0 10 20

Z axis Position




Image quality assessment and validation

» Detailed study of calorimeter response
» Energy distribution in single cells

» Average shower shapes

‘= Primary particle energy estimation from discriminator
» High level variables (e.g. jet features)

» Does analysis tools performance change if we replace detailed
simulation with GAN generated data? (e.g. particle
identification algorithms) WORK iN PROGRESS

Comparison to full sim and different fast sim tools




First 3D Images

/ 'G,'A\N generated (100 GeV)
' electrons

’

» First generated results look promising!

L. (classification

» Qualitative results show no collapse problem

loss) per Epoch

— discriminator (train)
—— generator (train)
— discriminator (test)
—— generator (test)
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Single cell response
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Single cell response
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Single cell response is not perfect

» Set up higher level criteria for image validation (reconstructed variables)




Energy regression test

» Train the network on a uniform energy spectrum (100-500) GeV

» Test the capability of the discriminator to correctly predict the
primary particle energy.

) o . Energy | Error (%)
» This is an additional regression task. (GeV)
Not the typical simulation use case 100 >
150 13
200 10
Mean  (std) Mean (std) Mean  (std)
[ GAN 100 100.44 (6.77) 1204 [ GAN 150 136.97 (14.91) ool [ GAN 300 288.93 (20.39)
H 300 6
Eg 60: :% 60 400 10
100 A 40 500 ]5

\\



Energy shower shapes

X-axis Y-axis
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From the computing resources
perspective...




Inference

Time/Shower
(msec)
. . . Full Simulation (G4) Intel Xeon ES 56000
» Using a trained model is very fast
3d GAN Intel i7 (laptop) 66
. (batchsize 128)
> Orde'rs of 'mognl.’rude faster than S =— —
etailed simulation

» Even on a simple laptop!

We are testing performance on FPGA and new integrated accelerator
technologies



Training

» Training on NVIDIA GTX-1080 for 30 epochs on 200k particles takes ~1 day
» Test different hardware

» Testing on single node with an Intel® Xeon Phi™ processor (formerly
code named Knights Landing)

» Performance of underlying mathematical library (MKL) not as good
(probably due to the size of our matrix operations)

» Cloud environment
» Testing different framewaorks

» Infel Nervana Neon implementation is about 20% faster than
Tensorflow on GPU



Multi-node scaling

= We want to provide a generic, fully configurable tool for fast
simulation

» Optimal network design depends on the problem to
solve

» Hyper-parameters funing and meta-opfimization

» Parallelization on distributed systems
» Fvaluate existing libraries

» Opftimize training strategy and reduce communication
overhead




DL engine for fast simulation

» GeantV GAN represent first proof of
concept, developed within the GeantV
prototype

» \We aim at a generic fully configurable
OOl ooooooooooooooooooooooooooooooo
» tmbed the tool in the GeantV prototype raining Tramedhidefntvé
NP =5
W/

for tesfing
» |nference step

» Automated training
» Make it available as soon as possible in

Physics (et, e-,y,T..)

Kinematics...

Geant4
= or any future GeantX!




Before concluding...

.. another 3d convolutional GAN
application




Generated
CT

Generator

» further increase potential risks of cancer

Discriminator

Real

N
b

N\
4t Real CT

ﬁ Euclidean

Generated

D. Nie at al, arXiv:1612.05362v1, Dec 2016

Medical Image Synthesis

Patients are exposed to radiation during CT imaging

se 3D convolutional GANs to “simulate” CT images from MR

MRI

MRI CT

MRI images contain much richer texture information than CT images

It is challenging to directly estimate a mapping from MRI to CT.

P e
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! )
\/i
FCN
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Ground Truth



Summary |

» MC production has been so far a major fraction of WLCG
workload

» Experiments are implementing a large range of fast simulation
solutions

» H|-LHC runs will scale up MC needs by orders of magnitude

®» A generic framework with common fast sim algorithm and
strategies for mixing full and fast sim

» Could bring great benefit to the HEP community

®» Serve small experiments/collaborations as well




Summary |l

» Generative Models seem good candidates to speedup
simulation

» Rely on the possibility o inferpret “events” as “images”

» First GANs applications to calorimeter simulations look very
promising

» Many studies ongoing in the different experiments

» 3d GAN is the initial step of a wider plan towards a generic fully
configurable tool

» |nitially infegrated in GeantV , and then integrate in Geant4 and
other frameworks




Outlook

» Fven larger speedup gained by replacing digitization and
reconstruction steps

®» As improved analysis tfechniques arise .. Could this not even be an
Issue any moreee

ROC for Gamma vs. Pi0 Classifier

Simulation Analysis Reconstruction 1.0 1
Comp§rison 0.8 -
—Partickes .
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ke]
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0.0 - —— feature-based bdt (max depth 5)
Reponstructed 0.0 0.2 0.4 0.6 0.8 1.0
points Background Efficiency
’ .
Processing B.Hooberman, S. V. et al. Submitted to NIPS2017

Rawgdata



The end..

Deep Learning represent an impressive inter-
disciplinary example!

HEP community can certainly profit from opening
up and collaborating to different fields!

Thank you!

Questions?e



Some references

» GANS:

Hl
.

Just google “Generative Adversarial Networks

|. Goodfellow recent seminar; https://indico.cern.ch/event/673%989/

A. Radford, L. Metz and S. Chintala, Unsupervised representation learning with deep convolutional
generative adversarial networks. 2015.

Mirza, Mehdi and Osindero, Simon. Conditional generative adversarial nets. 2014.

Augustus Odena, Christopher Olah, Jonathon Shlens, Conditional Image Synthesis with Auxiliary
Classifier GANs. ICML, 2017.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, llya Sutskever, Pieter Abbeel. INfoGAN:
Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets. 2016.

Tim Salimans, lan Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen. Improved
Techniques for Training GANs. NIPS, 2016.

» Advanced GANSs:

https://indico.cern.ch/event/655447 /contributions/2742180/attachments/1552018/2438676/advanced

aans iml.pdf (see refs on page 16)

» Physics and ML:

DS@HEP : (2017 workshop) https://indico.fhal.gov/event/13497/timetable/#20170508
Connecting the dofs:

https.//indico.hephy.ceaw.ac.at/event/86/timetable/#20160222 (2016 workshop)

IML workshops: https://indico.cern.ch/event/595059/ and https://indico.cern.ch/event/655447/




Variational Auto Encoders

» Typically used for un-labelled data and de-noising
» Two stacked NN (encoder — decoder)
» Sequentially de-construct input data into a latent representation

Use this representation to reconstruct output that resembles the original

2D latent
space
Latent Space
Calorimeter Generated
Shower Hit =) — Calorimeter
(x,y.z,E,O) Shower Hit
(x.y.z.E.0)
Ob;::\a/ed input > Z ———————— » output Recogztt;ucted

P(z/x) P(x/z)

D.Salamani, U. of Geneva



Training GANS Is a many steps process:

1. Train the discriminator LG et

1. Generate images with the Generator.

o8- e L
2. Train the Discriminator to recognize l l

Generator data from Real data. [ — ] [ ]

3. Push the combined model to tag it as -
Real data. l

C .. : B ke . PR n_JnF)itEP* o [
. Discriminator weighfts are frozen. T

4. Back feed to Discriminator and R
repeat [@ ]

http://www.rricard.me/machine/learning/generative/adversarial/networks/2017/04/05/g
ans-part1.html



A precursor - Falcon

Ultra-fast, self-tuning, non-parametric simulation based on lookup tables that

directly map generated events intfo simulation events

®» Turbosim (B. Knuteson) developed at the Tevatron

®» Falcon: Modern version (Gleyzer at al., 1605.02684)

» Consists of two parts:

» Builder: Non-parametric representation of the
detector response function obtained from FullSim
events.

» Uses a k-d free 1o bin the generated objects in the
lookup table.

» Simulator: Uses events in the parton level to simulate

reconstruction level events. P
eading jet p; from

p+p— H — ff

events
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