Mexico in HEP Latin American Workshop on Software and Computing challenges in High-energy Particle Physics Alfredo Castaneda Universidad de Sonora Ciudad de Mexico, November 20-23th 2019 # Diversity of Mexican collaboration in HEP experiments - Over more than three decades Mexico has participated in all kind of particle physics experiments including: particle colliders, fixed target, astrophysics, among others. - Including Major contributions in physics analysis (breakthrough discoveries), detector development and computing - With the financial support from universities and grants from the government agencies (CONACYT) ### *Not all experiments shown #### Timeline Mexico in HEP #### Location of institutes participating in HEP | Institucion | Experiment(s) | | | |--------------------------------------|---|--|--| | Autonomous University of Puebla | CMS, Alice, HAWC,
Belle-2, Auger, NICA | | | | CINVESTAV | CMS, Alice, HAWC,
Belle-2, Auger | | | | Universidad Nacional
Autonoma | Alice, HAWC, Belle-2,
Auger, NICA | | | | Universidad Iberoamericana | CMS | | | | Universidad de Sonora | CMS | | | | Universidad de Sinaloa | CMS, Belle-2, NICA | | | | Univ. Autonoma de
San Luis Potosi | CMS, NA62 | | | | Universidad
Michoacana | HAWC, Auger | | | | CIC-IPN | HAWC | | | # Participation in breakthrough discoveries #### **Top Discovery** VOLUME 74, NUMBER 14 PHYSICAL REVIEW LETTERS 3 APRIL 1995 #### Observation of the Top Quark S. Abachi, ¹² B. Abbott, ³³ M. Abolins, ²³ B. S. Acharya, ⁴⁰ I. Adam, ¹⁰ D. L. Adams, ³⁴ M. Adams, ¹⁵ S. Ahn, ¹² H. Aihara, ²⁰ J. Alitti, ³⁶ G. Álvarez, ¹⁶ G. A. Alves, ⁸ E. Amidi, ²⁷ N. Amos, ²² E. W. Anderson, ¹⁷ S. H. Aronson, ³ R. Astur, ³⁸ R. E. Avery, ²⁹ A. Baden, ²¹ V. Balamurali, ³⁰ J. Balderston, ¹⁴ B. Baldin, ¹² J. Bantly, ⁴ J. F. Bartlett, ¹² K. Bazizi, ⁷ J. Bendich, ²⁰ S. B. Beri, ³¹ I. Bertram, ³⁴ V. A. Bezzubov, ³² P. C. Bhat, ¹² V. Bhatnagar, ³¹ M. Bhattacharjee, ¹¹ A. Bischoff, ⁷ N. Biswas, ³⁰ G. Blazey, ¹² S. Blessing, ¹³ A. Boehnlein, ¹² N. I. Bojko, ³² F. Borcherding, ¹² J. Borders, ³⁵ C. Boswell, ⁷ A. Brandt, ¹² R. Brock, ²³ A. Bross, ¹² D. Buchholz, ²⁹ V. S. Burtovoi, ³² J. M. Butler, ¹² D. Casey, ³⁵ H. Castilla-Valdez, ⁹ D. Chakraborty, ³⁸ S.-M. Chang, ²⁷ S. V. Chekulaev, ³² L.-P. Chen, ²⁰ W. Chen, ³⁸ L. Chevalier, ³⁶ S. Chopra, ³¹ B. C. Choudhary, ⁷ J. H. Christenson, ¹² M. Chung, ¹⁵ D. Claes, ³⁸ A. R. Clark, ²⁰ W. G. Cobau, ²¹ J. Cochran, ⁷ W. E. Cooper, ¹² C. Cretsinger, ³⁵ D. Cullen-Vidal, ⁴ M. Cummings, ¹⁴ D. Cutts, ⁴ O. I. Dahl, ²⁰ K. De, ⁴¹ M. Demarteau, ¹² R. Demina, ²⁷ K. Denisenko, ¹² N. Denisenko, ¹² D. Denisov, ¹² S. P. Denisov, ³² W. Dharmaratna, ¹³ H. T. Diehl, ¹² M. Diesburg, ¹² G. Di Loreto, ²³ R. Dixon, ¹² P. Draper, ⁴¹ J. Drinkard, ⁶ Y. Ducros, ³⁶ S. R. Dugad, ⁴⁰ S. Durston-Johnson, ³⁵ D. Edmunds, ²³ A. O. Efimov, ³² J. Ellison, ⁷ V. D. Elvira, ^{12,*} R. Engelmann, ³⁸ S. Eno, ²¹ G. Eppley, ³⁴ P. Ermolov, ²⁴ O. V. Eroshin, ³² V. N. Evdokimov, ³² S. Fahey, ²³ T. Fahland, ⁴ M. Fatyga, ³ M. K. Fatyga, ³⁵ J. Featherly, ³ S. Feher, ³⁸ D. Fein, ² T. Ferbel, ³⁵ G. Finocchiaro, ³⁸ H. E. Fisk, ¹² Yu. Fisyak, ²⁴ E. Flattum, ²³ G. E. Forden, ² M. Fortner, ²⁸ K. C. Frame, ²³ P. Franzini, ¹⁰ S. Fredriksen, ³⁹ S. Fuess, ¹² A. N. Galiaev, ³² E. Gallas, ⁴¹ C. S. ⁸LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil ⁹Centro de Investigacion y de Estudios Avanzados, Mexico City, Mexico ¹⁰Columbia University, New York, New York 10027 #### CINVESTAV Heriberto Castilla (Leader of the Dzero Mexican collaboration) #### Higgs Discovery (2012) #### **CMS-Mexico** #### ATLAS (Mexican working for foreign institutes) A.M. Castaneda Hernandez 173,i, E. Castaneda-Miranda 173 M.I. Pedraza Morales 173 ¹⁷³ Department of Physics, University of Wisconsin, Madison, WI, United States # Participation in detector developments # ACORDE detector for ALICE - Mexico contributed for the construction of the ALICE Cosmic ray detector (ACORDE) - The Dr. Arturo Fernandez Tellez (bottom right) from Autonomous University of Puebla coordinated the effort - It consists of an array of plastic scintillator placed in the three upper faces of the magnet - The purpose of the detector was to act as a cosmic ray trigger for ALICE and collect data to study high energy cosmic rays # V0 detector for ALICE - Small angle detector consisting of two arrays of 32 scintillator counters - Provides Minimum Bias trigger and centrality trigger for the central barrel detectors in pp and A-A collisions - France and Mexico participated in the construction, maintenance and operations Ildefonso Leon Monzon (Universidad de Sinaloa) Gerardo Herrera Corral (CINVESTAV) #### Contributions for the RPC system in CMS GIF++ at CERN - Common effort from Ibero, Cinvestav, Puebla - Since 2015 contributed to Longevity studies for the upgrade of the RPC system during Phase-2 - Salvador Carrillo (Ibero) was GIF++ and Test beam coordinator during 2016-2017 - Isabel Pedraza (Puebla) is the upgrade coordinator for the RPC system - CMS chamber production Responsible for Phase-2 (2018-2020) ## Contributions for the NA62 experiment - Experiment designed to measure the very rare kaon decay K+-> pi+ nu nubar at the CERN SPS - Sensitive to searches for the dark photon (invisible decay) - With participation from faculty and students from Universidad de San Luis Potosi - Jurgen Engelfried (Universidad de San Luis Potosi) is the Data Quality coordinator - Contribution to the development of RICH detectors #### Contributions for the BRIL project in CMS - Beam Radiation Integrated Luminosity (BRIL) project is a collection of detectors located near the collision point at the CMS experiment - Designed to measure luminosity and radiation doses - Mexico contributes with simulation studies and performance for Phase-2 upgrades - TPEX system is an extension of the pixel detector that will allow a better determination of luminosity - Universidad de Sonora will contribute to the R&D studies, Test Beam exercises and electronics (FPGA programming) # Upgrade of the TPC in ALICE - ALICE experiment will contribute to the upgrade of the TPC detector at ALICE - Integration of GEM technology to afford the increase rate of particles - Universidad Nacional Autonoma (UNAM) perform studies at the lab to test the new technology ## HAWC experiment - ► 13 Mexican institutions participating https://www.hawcobservatory.org/collaboration/ - HAWC is located on the flanks of the Sierra Negra volcano near Puebla at an altitude of 4100 meters - ► HAWK is a facility designed to observe gamma rays and cosmic rays between 100 GeV and 100 TeV - HAWC construction leaded by scientists from USA and Mexico - Principal role of Mexican scienstist: - Dr. Andres Sandoval (UNAM), Spokeperson (Mexico) - Dr. Alberto Carraminana (UNAM), Science coordinator - Dr. Ibrahim Torres (INAOE), on place coordinator at the observatory ### Mexico in Belle-2 Belle-II will test SM on the next level with 50 ab-1 (x50 Belle data) UAS and CINVESTAV contributing with computing Large Angle Bremsstrahlung Monitor (LABM) Electronics done in Mexico ### Mexico in NICA - Nuclotron-based Ion Collider Facility is implemented at the Joint Institute for Nuclear Research (JINR) located in Russia. - ►Memorandum of understanding between JINR and research institutes of Mexico - Mexico will participate on the construction of a detector that would study the intensity of the interacting beams - ► Jose Alejandro Ayala (UNAM) leading the effort of the Mexican scientists participating in NICA ## Contributions to physics analysis # Mexico participation in the Hunting for new physcs phenomena #### Hunting for Dark matter #### QGP effects Cosmic ray studies #### Higgs properties #### Precise B-physics studies ### Searching for new physics phenomena | Institucion | Signature | Institution | |---|---|-----------------------------------| | Dark matter searches
(Collider) | Dark sector particles: Dark photon,
dark Z, dark Higgs | Sonora, UAS, CINVESTAV | | Dark matter searches (Indirect detection) | Product of Annihilation | UNAM, INAOE | | Higgs properties | Rare processes: tH, BSM Higgs | Universidad de Sonora, BUAP | | B-physics studies | Rare B decays | CINVESTAV, UAS | | QGP effects | Quarkonia production in QGP | UNAM, CINVESTAV, Sinaloa | | Cosmic Rays | TeV scale cosmic rays | UNAM, Michoacam, CIC, Guadalajara | ### Relevant contributions to B-physics - CINVESTAV group has more than 20 years of experience on b-physics analysis, first with D0 at Fermilab now with CMS - Alberto Sanchez is the first Mexican to give a seminar at CERN - The seminar "Recent CMS measurements on B_c and B_s spectroscopy" represent the work of students and researchers from CINVESTAV group - The observation of those new states have been published in important journals as PRL # Computing, GRID, New technologies - Mexico has proven its impact on detector development and physics analysis - New technologies and volumes of data require resources for data storage, processing and analyzing - Mexico commitment is to contribute to the collaboration to provide computing resources to success on the next physics goals - High Performance Computing and Artificial Intelligence are two areas of development in the coming years ### Worldwide LHC Computing Grid 2019 - Global computing resources to store, distribute and analyze data (~50-70 pb) expected each year - Divided into 3 Tier systems: Tier-0, Tier-1, Tier-3 each with various responsibilities - CERN has a Tier-0 that has the responsibility to store, process (reconstruction) and distributed data # Mexico contributions to the GRID - Mexico contributes with a Tier-2 center locate in Universidad Autonoma de Mexico - ► The Tier-2 Center started operations in 2014 with a MOU signed between CERN and UNAM - ► There is interest to have additional Tier-2 centers operational - ► The Laboratorio Nacional de Supercomputo (LNS) has all requirements to become the 2nd Mexican Tier-2 center, - ▶ LNS is located at Puebla ### High speed connectivity - ► To be competitive in computing resources in addition to hardware the data transferring rate is essential - Currently in Mexico we are limited by the low speed services provided by companies - By connecting Mexican institutions with US centers (with optical fibers) a new window of possibilities will be created - Currently there is project to connect Universidad de Sonora with US (Tucson, Arizona) with with several kilometers fiber optics to be used for differnet scientific purposes - Once connected this will motivate the creation of a Tier-2 Center at the Norwest of Mexico # Dedicated facilities for Al - ► There are several research centers with the capabilities to run Machine Learning algorithms - ► LNS (Puebla) - ► CIC (Mexico City) - ▶ Universidad de Sonora - Several implementations (online, offline) will require the use of neural networks models to perform different tasks - ► Towards the HL-LHC there are areas of development on integration of machine learning models to perform particle identification, signal vs noise separation, triggering, data quality monitoring, among others. GPU cluster (Sonora) ### Machine learning applications in HEP PID, reconstruction and triggering Simulation DQM Hardware triggering Jet Classification Overview of ML and Big data Tools #### Conclusions - Mexico is ready to continue and increase its contributions in HEP experiments - Several institutions collaborating in various experiments in the Frontier of Science - Looking for further understanding in the universe, searching for new physics phenomena - Development of new detector technologies, computing tools - Physics analysis looking at: - ► SM, B-physics - ► Higgs physics, BSM (Dark matter) - Quark Gluon Plasma physics - ► Astrophysics, Cosmic rays, neutrino experiments - ▶ Future look bright but there is plenty of work to do