Heavy to light exclusive at Belle (II) Christoph Schwanda for the Belle/Belle II collaborations

Challenges in Semileptonic B Decays, April 19-23, 2022, Barolo (IT)

 $B \rightarrow \pi \ell \nu$

The golden mode

- Differential rate in terms of $q^2 = (p_{\ell} + p_{\nu})^2$ $\frac{d\Gamma(B^0 \to \pi^- \ell^+ \nu)}{da^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 |p_\pi|^3 |f_+(q^2)|^2$
- BCL extraction of $|V_{\mu b}|$ [Phys.Rev.D79:013008,2009; Erratum-ibid.D82:099902,2010]
 - Experiments determine the differential rate in bins of q^2
 - Theory calculates $f_+(q^2)$ at values of q^2
 - Combined fit to the BCL expansion to determine $|V_{ub}|$ and $b_k(z)$ is a map of q^2)

$$f_{+}(q^{2}) = \frac{1}{1 - q^{2}/m_{B^{*}}^{2}} \sum_{k=0}^{K-1} b_{k} \left[z^{k} - (-1)^{k-K} \frac{k}{K} z^{K} \right]$$

- Lattice QCD
 - Fermilab-MILC [Phys. Rev. D 92, 014024 (2015)] form factor calculation presented as BCL expansion
 - RBC-UKQCD [Phys. Rev. D 91, 074510 (2015)] form factor at $q^2 = 19.0, 22.6, 25.1$ GeV²
- Light-cone sum rules
 - A. Bharucha [*JHEP* 05 (2012) 092] form factor at $q^2 = 0$

 $\frac{14024 (2015)}{16024 (2015)}$ S BCL expansion $\frac{4510 (2015)}{1600}$

 $B \rightarrow \rho, \omega, \eta^{(\prime)} \ell \nu$

- Although these modes have been measured precisely at B factories, we haven't seen competitive determinations of $\|V_{ub}\|$
- Theoretical issues
 - LCSR FF available for rho and omega [J. High Energ. Phys. (2016) 2016: 98]
 - Lack of precise lattice predictions for the vector modes
- Experimental issues
 - $B \rightarrow \rho \ell \nu$: Spin of the rho not identified in experimental analyses, scalar pi pi background?

$B^+ \to \pi^+ \pi^- \ell^+ \nu$ [Phys. Rev. D 103, 112001 (2021)]

$$\begin{split} \mathcal{B}(B^+ \to \pi^+ \pi^- \ell^+ \nu_\ell) \\ &= (22.7^{+1.9}_{-1.6}(\text{stat}) \pm 3.5(\text{syst})) \times 10^{-5} \\ \\ \hline \text{vs.} \\ \end{split}$$

on the same data set [Phys. Rev. D 88, 032005 (2013)]

Untagged vs. Tagged

poor q^2 resolution (-)

Tagged:

 $B_{\rm sig}$ and $B_{\rm tag}$ are reconstructed

signal yield O(10³) lower (-) low backgrounds (+) good q^2 resolution (+) tag calibration (-)

$B \rightarrow \pi \ell \nu$ untagged [PRD 86, 092004 (2012)]

- 416/fb of BaBar $\Upsilon(4S)$ data
- Reconstruct only $\pi e, \pi \mu$, infer neutrino momentum from p_{miss} (loose neutrino reconstruction technique)
- About 12,000 signal events, S/N ~0.1
- Partial branching fractions obtained in 12 q^2 bins
- Systematics: detector effects, $b \rightarrow u$ background

 $\begin{bmatrix} m_{ES} = \sqrt{E_{beam}^{*2} - \mathbf{p}_{\pi\ell\nu}^{*2}} \\ \Delta E = E_{\pi\ell\nu}^* - E_{beam}^* \end{bmatrix}$

$B \rightarrow \pi \ell \nu$ with hadronic tag [PRD 88, 032005 (2013)]

711/fb of Belle Υ(4S) data Belle hadronic tag Yield extracted from M²_{miss} in 13 (7) bins of q² for B⁰ → π⁻ℓ⁺ν (B⁺ → π⁰ℓ⁺ν)

Main systematics: tag calibration

$B^0 \rightarrow$	$\pi^- \ell^+ \nu$
Component	Yield
$\bar{B}^0 \rightarrow \pi^+ \ell^- \bar{\nu}_\ell$	462.6 ± 27.7
$\bar{B}^0\!\rightarrow\!\rho^+\ell^-\bar{\nu}_\ell$	514.5(fixed)
$\bar{B} \to X_u \ell^- \bar{\nu}_\ell$	599.5 ± 198.4
$B\overline{B}$	5511.6 ± 200.7
qar q	111.8(fixed)
χ^2/ndf	76.0/76

$$B^+ \to \pi^0 \mathscr{C}^+ \nu$$

Component	Yield	
$B^- \! ightarrow \! \pi^0 \ell^- \bar{ u}_\ell$	232.2 ± 22.6	
$\bar{B} \to X_u \ell^- \bar{\nu}_\ell$	100.0 ± 86.7	
$B\overline{B}$	1993.4 ± 90.7	
qar q	18.5(fixed)	
χ^2/ndf	56.3/50	

$B \rightarrow \pi \ell \nu$ average HFLAV 2021

 $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu_\ell) = (1.50 \pm 0.02_{\text{stat}} \pm 0.06_{\text{syst}}) \times 10^{-4}$

- Average in each bin of q^2
- Taking into account correlated systematic uncertainties

•
$$P(\chi^2) = 6\%$$

 Total *B* is obtained from summing up partial branching ratios (accuracy 6%)

BCL fit HFLAV 2021

$$|V_{ub}| = (3.67 \pm 0.09_{exp} \pm |V_{ub}|) = (3.70 \pm 0.10_{exp})$$

Parameter	Value
$ V_{ub} $	$(3.67 \pm 0.15) \times 10^{-3}$
b_0	0.418 ± 0.012
b_1	-0.399 ± 0.033
b_2	-0.578 ± 0.130

Parameter	$ V_{ub} $	b_0	b_1	b_2
$ V_{ub} $	1.000	-0.780	-0.404	0.401
b_0	-0.780	1.000	2.110	-0.587
b_1	-0.404	2.110	1.000	-0.686
b_2	0.401	-0.587	-0.686	1.000

 $= 0.12_{\text{theo}}) \times 10^{-3} \text{ (data + LQCD + LCSR)}$ $= \pm 0.12_{\text{theo}}) \times 10^{-3} \text{ (data + LQCD)}$

$B \rightarrow \rho, \omega \ell \nu \text{ average}$ **HFLAV 2021**

- $B \to \rho \ell \nu$
 - $B^+ \rightarrow \rho^0 \ell^+ \nu$ average includes $B^0 \rightarrow \rho^- \ell^+ \nu$ results rescaled by $0.5\tau_{B^+}/\tau_{B^0}$ (isospin symmetry)
 - 7% overall precision
 - 3 sigma discrepancy between BaBar untagged and Belle tagged for $B^+ \to \rho^0 \ell^+ \nu$

• $B \rightarrow \omega \ell \nu$

• 8% overall precision

$B \rightarrow \rho, \omega \ell \nu q^2$ spectrum **HFLAV 2021**

- $B \to \rho \ell \nu$
 - Rate times bin width of the most precise measurements (BaBar untagged, Belle tagged) are averaged
- $B \to \omega \ell \nu$
 - BaBar untagged and Belle tagged are averaged
 - 2nd and 5th bin of the Belle spectrum is split using the LCSR spectrum [J. High Energ. Phys. (2016) 2016: 98]

$B \rightarrow \eta^{(\prime)} \ell \nu$ average HFLAV 2021

 $B^+ \to \eta^{(\prime)} \ell^+ \nu$

Submitted to PRD [arXiv:2104.13354]

$$\mathcal{B}(B^+ \to \eta \ell^+ \nu_{\ell}) = (2.83 \pm 0.55 \pm 0.34) \times 10^{-5}$$
$$\mathcal{B}(B^+ \to \eta' \ell^+ \nu_{\ell}) = (2.79 \pm 1.29_{(\text{stat.})} \pm 0.30_{(\text{syst.})}) \times 10^{-5}$$

Hadronic tagging at Belle II

Comput Softw Big Sci (2019) 3: 6.

- The hadronic FEI employs over 200 boosted decision trees to reconstruct 10000 B decay chains
 - $\epsilon_{B^+} \approx 0.5 \%$, $\epsilon_{B^0} \approx 0.3 \%$ at low purity

$$M_{bc} = \sqrt{E_{beam}^2 / 4 - (p_{B_{tag}}^{cm})^2} > 5.27 \; {
m GeV}/c^2$$

$B \rightarrow \pi e \nu$ tagged at Belle II Winter 2021 — paper in preparation

- 189.3/fb of Belle II, tag side is reconstructed by hadronic FEI
- $\pi^- e^+$ and $\pi^0 e^+$ are reconstructed on the signal side
- Signal yield is extracted from the missing mass distribution in three bins of q^2

•
$$M_{\text{miss}}^2 = (p_{\Upsilon(4S)} - p_{B_{\text{tag}}} - p_{\pi} - p_e)^2$$

$B \rightarrow \pi e \nu$ tagged at Belle II Winter 2021 — paper in preparation

q^2 bin	Signal efficiency	Unfolded signal yield	$\Delta \mathcal{B}$
		$B^0 \to \pi^- e^+ \nu_e$	
$0~{\rm GeV^2} \le q^2 < 8~{\rm GeV^2}$	$(0.189 \pm 0.002)\%$	15.5 ± 4.6	$(0.61 \pm 0.18(\text{stat}) \pm 0.03(\text{syst})) \times 10^{-4}$
$8~{\rm GeV^2} \leq q^2 < 16~{\rm GeV^2}$	$(0.239 \pm 0.003)\%$	15.3 ± 4.8	$(0.48 \pm 0.15(\text{stat}) \pm 0.02(\text{syst})) \times 10^{-4}$
$16~{\rm GeV^2} \le q^2 \le 26.4~{\rm GeV^2}$	$(0.229 \pm 0.003)\%$	10.3 ± 4.2	$(0.34 \pm 0.14(\text{stat}) \pm 0.02(\text{syst})) \times 10^{-4}$
Sum	—	41.1 ± 7.8	$(1.43 \pm 0.27(\text{stat}) \pm 0.07(\text{syst})) \times 10^{-4}$
Fit over full q^2 range	$(0.217 \pm 0.002)\%$	42.0 ± 7.9	$(1.45 \pm 0.27(\text{stat}) \pm 0.07(\text{syst})) \times 10^{-4}$
			-
q^2 bin	Signal efficiency	Unfolded signal yield	$\Delta \mathcal{B}$
		$B^+ \to \pi^0 e^+ \nu_e$	
$0~{\rm GeV^2} \le q^2 < 8~{\rm GeV^2}$	$(0.329 \pm 0.004)\%$	12.9 ± 4.7	$(2.90 \pm 1.12(\text{stat}) \pm 0.19(\text{syst})) \times 10^{-5}$
$8~{\rm GeV^2} \leq q^2 < 16~{\rm GeV^2}$	$(0.439\pm0.005)\%$	18.1 ± 5.1	$(3.05 \pm 0.91(\text{stat}) \pm 0.20(\text{syst})) \times 10^{-5}$
$16~{\rm GeV^2} \le q^2 \le 26.4~{\rm GeV^2}$	$(0.451\pm0.006)\%$	14.5 ± 4.9	$(2.38 \pm 0.85(\text{stat}) \pm 0.16(\text{syst})) \times 10^{-5}$
Sum	_	45.5 ± 8.5	$(8.33 \pm 1.67(\text{stat}) \pm 0.55(\text{syst})) \times 10^{-5}$
Fit over full q^2 range	$(0.402\pm0.003)\%$	43.9 ± 8.3	$(8.06 \pm 1.62(\text{stat}) \pm 0.53(\text{syst})) \times 10^{-5}$

• Yields in q^2 bins are corrected by bin-by-bin unfolding

$B \rightarrow \pi e \nu$ tagged at Belle II Winter 2021 — paper in preparation

of			% of	
π^{-}	$e^+\nu_e$	$\mathcal{B}($	$B^+ \to \pi$	$^{0}e^{+}\nu_{e})$
	3	1	2	3
		2.9		
		1.2		
2			3.1	
6			0.3	
			4.8	
	1.4	1.3	1.2	1.3
	0.4	1.0	0.5	0.5
	0.4			
	4.8	6.7	6.7	6.7

First Belle II determination of $|V_{ub}|$ Winter 2021 — paper in preparation

• BCL fit with the FNAL-MILC form factor [Phys. Rev. D 92, 014024 (2015)]

Decay mode	Fitted $ V_1 $	ub
$B^0 \to \pi^- e^+ \nu_e$	(3.71 ± 0.55)	$\times 10^{-3}$
$B^+ \to \pi^0 e^+ \nu_e$	(4.21 ± 0.63)	$\times 10^{-3}$
Combined fit	(3.88 ± 0.45)	$\times 10^{-3}$

Summary

•
$$B \to \pi \ell \nu$$

• The golden mode for $|V_{\mu b}|$ exclusive from $\Upsilon(4S)$ data

•
$$\mathscr{B}(B^0 \to \pi^- \mathscr{C}^+ \nu) = (1.50 \pm 0.02_{\text{stat}})$$

•
$$|V_{ub}| = (3.67 \pm 0.09_{exp} \pm 0.12_{th}) \times$$

- $B \to \rho, \omega \ell \nu$
 - \mathscr{B} s known to 7-8% precision (HFLAV 2021)
 - Lack of precise FF calculations limits their usefulness in terms of $|V_{ub}|$

 $\pm 0.06_{\rm syst}$) × 10⁻⁴ (HFLAV 2021) 10^{-3} (HFLAV 2021, LQCD, LCSR)

Summary

- New Belle II results
 - Belle II data
 - $|V_{\mu h}| = (3.88 \pm 0.45) \times 10^{-3}$ (Belle II, LQCD)
- More results are in preparation
 - will significantly increase the precision in $|V_{ub}|$

• First determination of $|V_{\mu b}|$ from $B \rightarrow \pi e \nu$ tagged using 189.3/fb of

• We expect in particular the untagged measurements for ICHEP 2022 which