
SIMCLOUD: RUNNING OPERATIONAL SIMULATORS IN THE CLOUD

Annabell Langs

(1)
, Claudia Mehlig

(1)
, Stefano Ferreri

(2)
, Mehran Sarkarati

(3)

(1)

Telespazio VEGA Deutschland GmbH

Europaplatz 5, 64293 Darmstadt, Germany

Email: annabell.langs@telespazio-vega.de, claudia.mehlig@telespazio-vega.de

(2)

Terma GmbH

Europahaus, Europaplatz 5, 64293 Darmstadt, Germany

Email: stefano.ferreri@esa.int

(3)

European Space Operations Centre

Robert-Bosch-Str. 5, 64293 Darmstadt, Germany

Email: mehran.sarkarati@esa.int

ABSTRACT

At ESOC, operational simulators are typically deployed as separate systems using dedicated hardware and a dedicated

installation of the simulation infrastructure (SIMSAT) per simulator. To enable a more flexible use of resources and to

ease deployment and validation of operational simulators, the SIMCLOUD activity targets a new Cloud based

provisioning model, where SIMSAT acts as a Platform-as-a-Service (PaaS). The PaaS provides a dynamically scalable,

shared runtime environment which can host multiple versions of multiple operational simulators simultaneously. Taking

this concept one step further, multiple versions of the re-usable Generic Models and Ground Models are provided as

Software-as-a-Service (SaaS) on top of the SIMSAT PaaS such that even more of the common SIMULUS infrastructure

can be shared.

The solution presented here includes a new SIMSAT monitoring agent that manages SIMSAT daemons which run on

shared physical machines as well as specific SIMSAT cloud daemons that are provisioned dynamically on virtual

machines (VM) in the ESA cloud (based on VMware vCloud). The process of creating additional VMs is driven by

mission resource requirements like CPU and RAM utilisation and the availability of existing resources. Apart from the

prompting to confirm the automatic creation of a new VM in the case that not enough resources are available, the user is

not confronted with any additional management overhead. This management including the connection, configuration

and release of such VMs (done via secured connection and the VMware vCloud API) is instead handled by the

monitoring agent. Moreover, for the support of multiple users and multiple versions of missions a new simulator

deployment structure has been developed.

As part of the research activity the performance impact of running in a virtualised environment has been evaluated. This

analysis includes a comparison of disk I/O rate, CPU usage and speed factor values of an operational simulator under

different loads and for different hardware configurations using both virtual and physical servers.

We conclude this paper with an outlook on possible future developments.

INTRODUCTION

Nowadays operational simulators are typically delivered to and deployed at ESOC as a package containing all software

required to run the simulator. This includes the simulation infrastructure (SIMSAT), Ground, Reference Architecture

and Generic Models and any other third party libraries and packages. This infrastructure and the mission specific

simulator models are installed on dedicated hardware to ensure isolated execution. However this approach requires both

a lot of resources that are statically occupied by a mission and a thorough management of the various machines and

simulators by the mission teams.

The SIMCLOUD solution presented in this paper targets a new approach to simulator deployment and runtime

management by following a cloud based provisioning model that allows a more flexible use of resources and an easier

deployment and validation of operational simulators. For example, the new concepts enable deploying multiple versions

of an operational simulator based on the same simulation infrastructure. Moreover, hardware resources such as server

machines together with software resources such as a common infrastructure installation may be shared between

missions, thus increasing the efficient utilisation of machines and thereby reducing costs.

Platform-as-Service

In the SIMCLOUD approach, SIMSAT acts as a Platform-as-a-Service (PaaS) that allows users to run and manage

simulators without the complexity previously imposed on them. The PaaS provides a shared runtime environment

where multiple versions of multiple operational simulators can run simultaneously. The platform consists of the

installation of a cloud-enabled version of SIMSAT, a web interface to deploy the simulators and the underlying

hardware. It dynamically provisions additional virtual machines which act as hosts to the simulators in case a lack of

mailto:annabell.langs@telespazio-vega.de
mailto:claudia.mehlig@telespazio-vega.de
mailto:stefano.ferreri@esa.int
mailto:mehran.sarkarati@esa.int

available resources is detected. The solution scales with the amount of operational simulators running at any time and

frees up resources once they are not used by a mission anymore.

Software-as-a-Service

While the PaaS allows sharing hardware resources and the basic installation of SIMSAT amongst the missions, further

elements of the underlying SIMULUS infrastructure such as the Generic Models, the Ground Models and the Reference

Architecture are often identical amongst missions and can equally be shared. In the SIMCLOUD solution these

elements are adapted to act as a Software-as-a-Service (SaaS). This requires a new concept of the deployment of

simulators for use with SIMCLOUD. Additionally, the SaaS approach allows to easily integrate new versions of

infrastructure models.

DEPLOYMENT CONCEPT

Currently, the installation of a simulator into SIMSAT mostly consists of populating the single share directory of

SIMSAT with simulator components such as configuration files and libraries as well as installation of required

dependencies like Ground Models. To support parallel execution of different simulators with different configurations

within a single shared installation a new deployment concept has been introduced in order to separate data from

different missions or versions. This concept allows for changes or even deletion of files without a direct impact on other

missions in the shared environment.

Instead of using just one share folder multiple such share folders are needed for a SIMSAT PaaS. Each folder represents

the installation of one operational simulator with a specific version. This means that a simulator is still installed using

the same directory structure thus minimizing the impact on simulator development. The individual deployment areas

(share folders) are registered with the SIMSAT PaaS via a top-level deployments folder.

Each individual simulator deployment consists of binaries and configuration data. Binaries represent the static artifacts

that are provided by the simulator developers, for example the library files, while the configuration data consists of all

the files that configure the simulator, namely: Ground files, kernel architecture file, scripts & script engine

configuration files, display files including ANDs and graphs, breakpoints, thermal configuration and OBSW images.

The configuration files are initially provided by the simulator developers; however they are continuously changed by

the simulator users, for example breakpoints are generated, scripts are created or modified.

In the case a simulator needs to provide its own versions of one of the SaaS components, it may do so. To support this, a

fall-back mechanism has been implemented allowing to load the mission specific versions if provided - otherwise using

the ones of the shared SIMULUS infrastructure.

Figure 1 SIMCLOUD Overview

The SIMULUS infrastructure models have been adapted to work with the new deployment concept in a shared

environment. Minor changes were necessary in the build and logging systems of the models.

While in a traditional single user and mission environment the SIMSAT share directory only needs to be accessible by

the user that starts the SIMSAT daemon that accesses this directory, the deployment concept is based on the idea of a

shared storage. The SIMCLOUD concept uses an NFS server and client architecture where the deployments folder

together with the SIMSAT PaaS is installed on a shared drive. This shared drive needs to be accessible for all SIMSAT

machines that are part of the SIMSAT cloud.

CLOUD BASED PROVISIONING

Besides changing the deployment concept it has also been necessary to adapt the process of starting simulators in

SIMSAT. The following steps are involved:

Step Original SIMSAT SIMCLOUD

Daemons Start of the SIMSAT daemon by the simulator

user on a machine later hosting the simulator.

Start of the SIMSAT Cloud Agent and Daemon by

the SIMSAT cloud operator once on a central PaaS

server.

MMI Start of a SIMSAT MMI to open a simulation on

a specific daemon.

Start of a SIMSAT MMI to open a simulation by

simulation name and version.

Simulation

Selection

The daemon reports the available simulators of

the single architectures folder as part of the share

directory back to the user.

The agent reports the available simulators of the

deployments folder back to the user.

Simulation

Launch

Launch of the specified simulation. This involves

the SimHost running the Kernel, the Ground

Model Manager to read configuration files and

the Smp2Adapter to load a number of libraries,

catalogues, assemblies, schedules and further

mission specific data.

Launch of the specified simulation involving an

automatic cloud based provisioning of hardware

resources in addition to the previous processes

adjusted to the new deployment concept.

The SIMSAT Cloud Agent and Daemon

The process of manually starting a SIMSAT daemon on a machine by the user is replaced by the concept of a so-called

SIMSAT Cloud Agent automatically starting SIMSAT Cloud Daemons. The Cloud Agent is accessed by the MMI and

thus the single point of contact for the end user.

Figure 2: Deployment Concept

It is responsible for managing a number of Cloud Daemons and acts as a master daemon while a Cloud Daemon is an

advanced SIMSAT Daemon. There are two subsets of Cloud Daemons: shared and elastic daemons. Differentiation

between those two types of daemons allows for a more reliable and predictable environment: Elastic daemons are

started (and stopped) on demand for a particular simulator and provide the simulator expert a dedicated environment

without interference of other simulators. On the other hand the shared daemons are never stopped and can be used by

multiple simulators at the same time.

A minimal cloud based setup consists of a SIMSAT Cloud Agent started manually by the cloud operator on a central

PaaS server and a shared Cloud Daemon that is started on an arbitrary machine which is connected to the central PaaS

server. This daemon is required and will never be stopped by the Agent as it provides for example the functionality to

retrieve the architecture files in the deployments folder and the required resources for the architectures. The required

resources (number of CPUs and RAM) are denoted in a separate file deployed together with the architecture file and

need to be configured by the simulator developers.

The Cloud Agent uses a Cloud Management API to possibly create virtual machines each running a Cloud Daemon.

The Agent keeps track of all the Cloud Daemons that it started and requests additional information from them. This

includes the number of (virtual) CPUs and RAM still available on the machine that the daemon is running on. Thereby

when a simulation is about to be started the Agent can decide according to the resource availability information whether

a new virtual machine is required. This is the case if no shared daemon reports enough free resources – elastic daemons

are not considered since they are bound to a specific simulator mission. Since the Agent is the only instance controlling

the Cloud Daemons the simulator user does not need to manually start any daemons anymore. Similarly the user is not

confronted with the selection of a SIMSAT Daemon but rather only needs to select which simulator to start.

The Cloud Management API

The SIMSAT Cloud Agent manages Cloud Daemons on multiple virtual machines (VMs). These VMs are provisioned

via the VMware vCloud API [1] that allows controlling the virtual datacentre (vDC) that hosts the virtual machines in

the ESA Cloud. A VMware SDK for Java [2] hides the details of REST and HTTP which are used by the API to

command the virtual datacentre. Since SIMSAT is mainly written in C++ a separate Java program is used to manage the

virtual machines. This API represents an additional layer separate from SIMSAT which has the advantage that the API

Figure 3: Cloud Based Provisioning Concept

implementation may easily be replaced later on without impacting SIMSAT, for example in case the virtual datacentre

provider is exchanged by a different one.

Once the Cloud Agent detects the necessity to create a new VM it interfaces with the vCloud API via a Java layer. First

it needs to login to the vDC, then it fetches a predefined template to create the VM from. The template contains a VM

which is already configured to use for example an appropriate network and storage type. The number of virtual CPUs

and RAM however are passed from the Cloud Agent to the vCloud API and vary according to the simulators to be

started. The cloud management API finally powers on the VM once its deployment in the cloud is completed and the

operating system on the VM has finished booting up. This is checked by a ping mechanism that is also robust enough to

detect the network stability by reporting a successful connection only once the ping is stable for a predefined amount of

time. It then sends the IP address of the newly created VM back to the Cloud Agent. Before the Cloud Agent can start

the Cloud Daemon on the VM, the central PaaS server automatically gets configured to accept the SSH key of the new

VM in order to facilitate further communication via SSH and the VM is commanded to mount a shared drive hosting

the SIMSAT PaaS. Once these post-deployment activities have completed successfully the Cloud Agent finally starts

the SIMSAT Cloud Daemon on the VM via SSH.

Once the Agent detects that no simulator is running on a VM anymore and a certain timeout is reached to prevent

premature termination, the Cloud Daemon is gracefully stopped on the VM and the VM is shut down and deleted from

the virtual datacentre via the vCloud API. Thus the available resources of the vDC are treated with care and freed up for

alternate usage.

USER INTERFACE

The EUD based user interface to start, stop and command simulations in SIMSAT can be run on any machine that has

access to the same CORBA Naming Service that is used by the Cloud Agent and Daemons – this can be configured in

the EUD MMI. The modified EUD MMI for SIMCLOUD can work with both “normal” SIMSAT daemons and the

Cloud Agent. In case it detects a Cloud Agent in the CORBA Naming Service it changes the behaviour of the “Open

simulation” dialog to reflect the cloud based environment.

First the EUD MMI requests a list of all available and running simulators from the Cloud Agent. The list is filtered

according to permissions that can be configured per simulator to allow or disallow usage of a simulator by user name. In

addition the required resources (number of CPUs and RAM) for simulations are also retrieved and displayed to the user.

Instead of presenting the user a tree of SIMSAT daemons that are available to run a simulation the user only sees the

relevant simulations with no reference to a particular daemon.

Once the user selects a simulation the Cloud Agent scans all Cloud Daemons until it finds one with sufficient free

resources and reserves the required resources to avoid race conditions in reservation calls from multiple MMIs. The

Figure 4: Flow Diagram When Starting a Simulation

Figure 5: New "Open Simulation" Dialog

daemon reservation mechanism favours those daemons that have been created previously by the same user (so-called

elastic daemons) over other shared daemons. If none of the available daemons has enough resources left the user is

informed that a new VM will be created. The user may still abort this process in order for example to close another

simulation before trying to start a simulation again. In both cases – whether a new VM is created or not – the simulation

is started with the only notable difference being the duration until the simulation is ready as VM provisioning takes

additional time. If the user aborts the load dialog, any resources that were previously reserved for the user are freed up

for other users.

Commanding of the simulator remains unchanged though all file operations need to be done in relation to the remote

SimHost. The EUD MMI already provides a means to browse the remote file system, therefore the simulator user can

mostly use the MMI as usual.

Once the simulator user closes the simulation the corresponding daemon and VM are scheduled for deletion unless the

user starts another simulation again during a predefined grace period. In this case the VM is reused automatically

allowing for rapid turn-around time.

PERFORMANCE ANALYSIS

In addition to the cloud concepts described above, a performance assessment of simulators running in a virtualized

environment has been executed by S. Ferreri at ESOC [3]. The analyses involve the operational simulators of four

missions (namely Bepi Colombo, Gaia, Lisa Pathfinder and SeoSat) and several hardware and software configurations.

The test cases are designed by the simulator developers, the mission Flight Control Team members and the simulator

technical officers. This approach provides the highest coverage possible in terms of tested scenarios.

Hardware Specifications, Software and Configuration Details

All the tested operational simulators are installed on machines equipped with the ESOC baseline: SUSE Linux

Enterprise Server (x86_64), version 11, service pack 1; Kernel version 2.6.32.59-0.7-default.

The results of the performed tests are very similar among the simulators of the different missions. Therefore, in this

paper, we only present the results of the Bepi Colombo simulator which was chosen as the most representative system.

Table 1 summarizes the main system specifications of the machines involved in the tests.

Table 1: Hardware specifications of tested systems

Machine name Machine type CPUs Memory

1 bsimp Physical G8 2 CPU Sockets

Intel Xeon E5-2643 3.30GHz

4 cores per socket, 2 threads per core

64 GB

2 bsimv Virtualized G8 2 CPU Sockets

Intel Xeon E5-2637 v2 3.50GHz

8 cores per socket, 1 thread per core

64 GB

3 bsimvCloud Virtual machine on the

ESA Cloud

2 vCPUs on a blade chassis based on Intel Xeon

CPU E5-2680 2.70GHz

16 cores per vCPU, 1 thread per core

64 GB

The tested machines have different CPU models. In order to make the comparison meaningful, similar clock speeds and

the same number of computing units is used.

The number of processing units available (i.e. 16) is higher than the number needed (i.e. 7 for the heaviest test).

The machine used as basis for performance comparison is bsimp (see #1 in Table 1).

The operational simulator version used for the tests is BCSIM D2.1.0 based on the infrastructure suite SIMULUS 5.2

Final Acceptance.

All performed tests focus on assessing the simulator speed in different scenarios. This can be achieved by letting the

simulator run in Free Running mode (i.e. as fast as possible) without the occurrence of Real Time Slips (i.e. delays in

the execution of the scheduled events).

The tested scenarios are listed in Table 2 and the detailed description of the test cases can be found in [3].

Table 2: Test case scenarios

Test Case Test Description

TC1 Maximum simulator speed factor when in nominal operational configuration

TC2 Elapsed time for generation of set of operational configurations

TC3 Simulator performance when multiple (up to 6) emulators are running in parallel

TC4 Simulator performance with high logging rate (i.e. 1MB/s)

TC5 Simulator performance under heavy load: 2 Ground Station models, max. X-band and Ka-Band

downlink rate, AOCS SHM mode, payload models in Science mode, high TC injection rate

TC6 As TC5, but without payload models

Test Results

The test results are relative with respect to the reference machine (bsimp), and are summarized in Table 3.

Table 3: Test results overview

Test Case System#2 (bsimv) System#3 (bsimvCloud)

TC1 95.3% slower than system#1 (bsimp) 3.5% faster than system#1 (bsimp)

TC2 96.4% slower than system#1 (bsimp) 4.0% faster than system#1 (bsimp)

TC3 105.0% slower than system#1 (bsimp) 10.5% faster than system#1 (bsimp)

TC4 95.4% slower than system#1 (bsimp) 7.0% faster than system#1 (bsimp)

TC5 99.8% slower than system#1 (bsimp) 4.8% faster than system#1 (bsimp)

TC6 107.5% slower than system#1 (bsimp) 4.2% faster than system#1 (bsimp)

The percentage indicates how much time the test case took to run relative to the reference system and normalized to its

execution time, e.g. (exec_time_bsimv-exec_time_bsimp)/(exec_time_bsimp/100) therefore, if TC6 took 100 seconds

to execute on bsimp, it took 207.5 seconds on bsimv.

The performance results can be summarized as follows:

1. The virtual machine running on vCloud (system #3) provides the best performance, around 5% faster than the

physical machine, on average

2. The virtualized G8 machine (system #2) doesn’t provide operationally acceptable performance since, under

certain loads, it is not able to run the simulator in real time. The reasons of this low performance are explained

in the next section.

Machine Performance Results

Together with the simulator performance, the machine CPU utilization and I/O performance are analysed, with a

particular focus in understanding the reasons of the low performance of the virtualized G8 machine (system #2).

A direct comparison between system #1 and #2 shows that the CPU utilization profile is very similar between the

physical (Figure 6) and the virtualized (Figure 7) environment.

Figure 6: CPU utilization, TC3, bsimp

Figure 7: CPU utilization, TC3, bsimv

There are major differences in the disk I/O performances: in particular the I/O rate of the virtualized machine

(system#2) is between 3 to 7 times lower than the one of the physical machine (system #1), see Figure 8 and Figure 9.

Figure 8: I/O rate, TC4, bsimp

Figure 9: I/O rate. TC4, bsimv

The machine performance results show that the biggest problem in using virtualized environments is the I/O rate. This

factor is particularly critical when synchronous I/O is used, i.e. typical usage for ESOC operational simulators.

The virtual machine on the vCloud is not affected by this loss thanks to the high performance storage hardware used.

CONCLUSION AND FUTURE WORK

In this paper we presented the SIMCLOUD approach to run operational simulators in the cloud by implementing a

Platform-as-a-Service and Software-as-a-Service. The SIMSAT PaaS allows to dynamically provision VMs based on

required and available hardware resources. The SIMULUS suite of models is adjusted to allow parallel deployment of

multiple versions for multiple users and simulator missions. The SIMCLOUD concept eases the runtime environment

for simulator users (such as FCT members) by taking over administrative tasks such as the setup of machines with

baseline software or management of SIMULUS installations. In addition we have analysed the virtualization with

regards to potential performance impacts where the initial results indicate that virtualization can be a valuable

alternative to physical machines if using appropriate hardware, where performance is highly depending on the choice

and set-up of the virtualization layer.

The solution presented in this paper consists of changes to the architecture, design and code of multiple SIMULUS

components which are not yet part of the SIMULUS product. The deployment concept is the first change that is

currently under investigation for implementation in the SIMSAT product to allow deployment of multiple missions in

one installation.

In addition a web interface to deploy multiple missions has been developed that interacts with the PaaS and eases the

management of simulators on the shared drive thus removing the need for the user to directly access the storage drive.

This also allows automatically validating and tracking the deployments before they are made available to the simulator

users decreasing the possibility of faulty or unintentionally modified simulators.

In conclusion making use of cloud concepts in the domain of operational simulators requires some architectural changes

to the underlying software but benefits both the end user by simplifying interaction with the runtime environment and

the administrators that can rely on the elasticity of the system and gentle usage of resources.

REFERENCES

[1] VMware, “VMware vCloud REST API Reference Documentation”, https://www.vmware.com/support/

vcd/doc/rest-api-doc-1.5-html/, Revision 20110811, Version 1.5, last access February 2015
[2] VMware, “VMware vCloud SDK for Java for vCloud Suite 5.5”, https://developercenter.vmware.com/

web/sdk/5.5.0/vcloud-java, last access February 2015
[3] S. Ferreri, “BepiColombo Simulator performance comparison (physical vs. virtual machines) tests report”, BC-

ESC-RP-21006 i1r0, 02/06/2014.

https://www.vmware.com/support/vcd/doc/rest-api-doc-1.5-html/
https://www.vmware.com/support/vcd/doc/rest-api-doc-1.5-html/
https://developercenter.vmware.com/web/sdk/5.5.0/vcloud-java
https://developercenter.vmware.com/web/sdk/5.5.0/vcloud-java

	SIMCLOUD: Running Operational Simulators in the Cloud
	Abstract
	Introduction
	Platform-as-Service
	Software-as-a-Service

	Deployment Concept
	Cloud Based Provisioning
	The SIMSAT Cloud Agent and Daemon
	The Cloud Management API

	User Interface
	Performance Analysis
	Hardware Specifications, Software and Configuration Details
	Test Results
	Machine Performance Results

	References

